1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 class BiasedLockingCounters;
  26 
  27 // Contains all the definitions needed for x86 assembly code generation.
  28 
  29 // Calling convention
  30 class Argument VALUE_OBJ_CLASS_SPEC {
  31  public:
  32   enum {
  33 #ifdef _LP64
  34 #ifdef _WIN64
  35     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  36     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  37 #else
  38     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  39     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  40 #endif // _WIN64
  41     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  42     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  43 #else
  44     n_register_parameters = 0   // 0 registers used to pass arguments
  45 #endif // _LP64
  46   };
  47 };
  48 
  49 
  50 #ifdef _LP64
  51 // Symbolically name the register arguments used by the c calling convention.
  52 // Windows is different from linux/solaris. So much for standards...
  53 
  54 #ifdef _WIN64
  55 
  56 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  57 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  58 REGISTER_DECLARATION(Register, c_rarg2, r8);
  59 REGISTER_DECLARATION(Register, c_rarg3, r9);
  60 
  61 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  62 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  63 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  64 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  65 
  66 #else
  67 
  68 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  69 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  70 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  71 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  72 REGISTER_DECLARATION(Register, c_rarg4, r8);
  73 REGISTER_DECLARATION(Register, c_rarg5, r9);
  74 
  75 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  76 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  77 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  78 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  79 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  80 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  81 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  82 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  83 
  84 #endif // _WIN64
  85 
  86 // Symbolically name the register arguments used by the Java calling convention.
  87 // We have control over the convention for java so we can do what we please.
  88 // What pleases us is to offset the java calling convention so that when
  89 // we call a suitable jni method the arguments are lined up and we don't
  90 // have to do little shuffling. A suitable jni method is non-static and a
  91 // small number of arguments (two fewer args on windows)
  92 //
  93 //        |-------------------------------------------------------|
  94 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
  95 //        |-------------------------------------------------------|
  96 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
  97 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
  98 //        |-------------------------------------------------------|
  99 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 100 //        |-------------------------------------------------------|
 101 
 102 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 103 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 104 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 105 // Windows runs out of register args here
 106 #ifdef _WIN64
 107 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 108 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 109 #else
 110 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 111 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 112 #endif /* _WIN64 */
 113 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 114 
 115 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 116 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 117 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 118 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 119 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 120 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 121 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 122 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 123 
 124 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 125 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 126 
 127 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 128 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 129 
 130 #else
 131 // rscratch1 will apear in 32bit code that is dead but of course must compile
 132 // Using noreg ensures if the dead code is incorrectly live and executed it
 133 // will cause an assertion failure
 134 #define rscratch1 noreg
 135 
 136 #endif // _LP64
 137 
 138 // JSR 292 fixed register usages:
 139 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
 140 
 141 // Address is an abstraction used to represent a memory location
 142 // using any of the amd64 addressing modes with one object.
 143 //
 144 // Note: A register location is represented via a Register, not
 145 //       via an address for efficiency & simplicity reasons.
 146 
 147 class ArrayAddress;
 148 
 149 class Address VALUE_OBJ_CLASS_SPEC {
 150  public:
 151   enum ScaleFactor {
 152     no_scale = -1,
 153     times_1  =  0,
 154     times_2  =  1,
 155     times_4  =  2,
 156     times_8  =  3,
 157     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 158   };
 159   static ScaleFactor times(int size) {
 160     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 161     if (size == 8)  return times_8;
 162     if (size == 4)  return times_4;
 163     if (size == 2)  return times_2;
 164     return times_1;
 165   }
 166   static int scale_size(ScaleFactor scale) {
 167     assert(scale != no_scale, "");
 168     assert(((1 << (int)times_1) == 1 &&
 169             (1 << (int)times_2) == 2 &&
 170             (1 << (int)times_4) == 4 &&
 171             (1 << (int)times_8) == 8), "");
 172     return (1 << (int)scale);
 173   }
 174 
 175  private:
 176   Register         _base;
 177   Register         _index;
 178   ScaleFactor      _scale;
 179   int              _disp;
 180   RelocationHolder _rspec;
 181 
 182   // Easily misused constructors make them private
 183   // %%% can we make these go away?
 184   NOT_LP64(Address(address loc, RelocationHolder spec);)
 185   Address(int disp, address loc, relocInfo::relocType rtype);
 186   Address(int disp, address loc, RelocationHolder spec);
 187 
 188  public:
 189 
 190  int disp() { return _disp; }
 191   // creation
 192   Address()
 193     : _base(noreg),
 194       _index(noreg),
 195       _scale(no_scale),
 196       _disp(0) {
 197   }
 198 
 199   // No default displacement otherwise Register can be implicitly
 200   // converted to 0(Register) which is quite a different animal.
 201 
 202   Address(Register base, int disp)
 203     : _base(base),
 204       _index(noreg),
 205       _scale(no_scale),
 206       _disp(disp) {
 207   }
 208 
 209   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 210     : _base (base),
 211       _index(index),
 212       _scale(scale),
 213       _disp (disp) {
 214     assert(!index->is_valid() == (scale == Address::no_scale),
 215            "inconsistent address");
 216   }
 217 
 218   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 219     : _base (base),
 220       _index(index.register_or_noreg()),
 221       _scale(scale),
 222       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 223     if (!index.is_register())  scale = Address::no_scale;
 224     assert(!_index->is_valid() == (scale == Address::no_scale),
 225            "inconsistent address");
 226   }
 227 
 228   Address plus_disp(int disp) const {
 229     Address a = (*this);
 230     a._disp += disp;
 231     return a;
 232   }
 233 
 234   // The following two overloads are used in connection with the
 235   // ByteSize type (see sizes.hpp).  They simplify the use of
 236   // ByteSize'd arguments in assembly code. Note that their equivalent
 237   // for the optimized build are the member functions with int disp
 238   // argument since ByteSize is mapped to an int type in that case.
 239   //
 240   // Note: DO NOT introduce similar overloaded functions for WordSize
 241   // arguments as in the optimized mode, both ByteSize and WordSize
 242   // are mapped to the same type and thus the compiler cannot make a
 243   // distinction anymore (=> compiler errors).
 244 
 245 #ifdef ASSERT
 246   Address(Register base, ByteSize disp)
 247     : _base(base),
 248       _index(noreg),
 249       _scale(no_scale),
 250       _disp(in_bytes(disp)) {
 251   }
 252 
 253   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 254     : _base(base),
 255       _index(index),
 256       _scale(scale),
 257       _disp(in_bytes(disp)) {
 258     assert(!index->is_valid() == (scale == Address::no_scale),
 259            "inconsistent address");
 260   }
 261 
 262   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 263     : _base (base),
 264       _index(index.register_or_noreg()),
 265       _scale(scale),
 266       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 267     if (!index.is_register())  scale = Address::no_scale;
 268     assert(!_index->is_valid() == (scale == Address::no_scale),
 269            "inconsistent address");
 270   }
 271 
 272 #endif // ASSERT
 273 
 274   // accessors
 275   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 276   Register    base()             const { return _base;  }
 277   Register    index()            const { return _index; }
 278   ScaleFactor scale()            const { return _scale; }
 279   int         disp()             const { return _disp;  }
 280 
 281   // Convert the raw encoding form into the form expected by the constructor for
 282   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 283   // that to noreg for the Address constructor.
 284   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
 285 
 286   static Address make_array(ArrayAddress);
 287 
 288  private:
 289   bool base_needs_rex() const {
 290     return _base != noreg && _base->encoding() >= 8;
 291   }
 292 
 293   bool index_needs_rex() const {
 294     return _index != noreg &&_index->encoding() >= 8;
 295   }
 296 
 297   relocInfo::relocType reloc() const { return _rspec.type(); }
 298 
 299   friend class Assembler;
 300   friend class MacroAssembler;
 301   friend class LIR_Assembler; // base/index/scale/disp
 302 };
 303 
 304 //
 305 // AddressLiteral has been split out from Address because operands of this type
 306 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 307 // the few instructions that need to deal with address literals are unique and the
 308 // MacroAssembler does not have to implement every instruction in the Assembler
 309 // in order to search for address literals that may need special handling depending
 310 // on the instruction and the platform. As small step on the way to merging i486/amd64
 311 // directories.
 312 //
 313 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 314   friend class ArrayAddress;
 315   RelocationHolder _rspec;
 316   // Typically we use AddressLiterals we want to use their rval
 317   // However in some situations we want the lval (effect address) of the item.
 318   // We provide a special factory for making those lvals.
 319   bool _is_lval;
 320 
 321   // If the target is far we'll need to load the ea of this to
 322   // a register to reach it. Otherwise if near we can do rip
 323   // relative addressing.
 324 
 325   address          _target;
 326 
 327  protected:
 328   // creation
 329   AddressLiteral()
 330     : _is_lval(false),
 331       _target(NULL)
 332   {}
 333 
 334   public:
 335 
 336 
 337   AddressLiteral(address target, relocInfo::relocType rtype);
 338 
 339   AddressLiteral(address target, RelocationHolder const& rspec)
 340     : _rspec(rspec),
 341       _is_lval(false),
 342       _target(target)
 343   {}
 344 
 345   AddressLiteral addr() {
 346     AddressLiteral ret = *this;
 347     ret._is_lval = true;
 348     return ret;
 349   }
 350 
 351 
 352  private:
 353 
 354   address target() { return _target; }
 355   bool is_lval() { return _is_lval; }
 356 
 357   relocInfo::relocType reloc() const { return _rspec.type(); }
 358   const RelocationHolder& rspec() const { return _rspec; }
 359 
 360   friend class Assembler;
 361   friend class MacroAssembler;
 362   friend class Address;
 363   friend class LIR_Assembler;
 364 };
 365 
 366 // Convience classes
 367 class RuntimeAddress: public AddressLiteral {
 368 
 369   public:
 370 
 371   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 372 
 373 };
 374 
 375 class OopAddress: public AddressLiteral {
 376 
 377   public:
 378 
 379   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
 380 
 381 };
 382 
 383 class ExternalAddress: public AddressLiteral {
 384 
 385   public:
 386 
 387   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
 388 
 389 };
 390 
 391 class InternalAddress: public AddressLiteral {
 392 
 393   public:
 394 
 395   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 396 
 397 };
 398 
 399 // x86 can do array addressing as a single operation since disp can be an absolute
 400 // address amd64 can't. We create a class that expresses the concept but does extra
 401 // magic on amd64 to get the final result
 402 
 403 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 404   private:
 405 
 406   AddressLiteral _base;
 407   Address        _index;
 408 
 409   public:
 410 
 411   ArrayAddress() {};
 412   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 413   AddressLiteral base() { return _base; }
 414   Address index() { return _index; }
 415 
 416 };
 417 
 418 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
 419 
 420 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 421 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 422 // is what you get. The Assembler is generating code into a CodeBuffer.
 423 
 424 class Assembler : public AbstractAssembler  {
 425   friend class AbstractAssembler; // for the non-virtual hack
 426   friend class LIR_Assembler; // as_Address()
 427   friend class StubGenerator;
 428 
 429  public:
 430   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 431     zero          = 0x4,
 432     notZero       = 0x5,
 433     equal         = 0x4,
 434     notEqual      = 0x5,
 435     less          = 0xc,
 436     lessEqual     = 0xe,
 437     greater       = 0xf,
 438     greaterEqual  = 0xd,
 439     below         = 0x2,
 440     belowEqual    = 0x6,
 441     above         = 0x7,
 442     aboveEqual    = 0x3,
 443     overflow      = 0x0,
 444     noOverflow    = 0x1,
 445     carrySet      = 0x2,
 446     carryClear    = 0x3,
 447     negative      = 0x8,
 448     positive      = 0x9,
 449     parity        = 0xa,
 450     noParity      = 0xb
 451   };
 452 
 453   enum Prefix {
 454     // segment overrides
 455     CS_segment = 0x2e,
 456     SS_segment = 0x36,
 457     DS_segment = 0x3e,
 458     ES_segment = 0x26,
 459     FS_segment = 0x64,
 460     GS_segment = 0x65,
 461 
 462     REX        = 0x40,
 463 
 464     REX_B      = 0x41,
 465     REX_X      = 0x42,
 466     REX_XB     = 0x43,
 467     REX_R      = 0x44,
 468     REX_RB     = 0x45,
 469     REX_RX     = 0x46,
 470     REX_RXB    = 0x47,
 471 
 472     REX_W      = 0x48,
 473 
 474     REX_WB     = 0x49,
 475     REX_WX     = 0x4A,
 476     REX_WXB    = 0x4B,
 477     REX_WR     = 0x4C,
 478     REX_WRB    = 0x4D,
 479     REX_WRX    = 0x4E,
 480     REX_WRXB   = 0x4F
 481   };
 482 
 483   enum WhichOperand {
 484     // input to locate_operand, and format code for relocations
 485     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 486     disp32_operand = 1,          // embedded 32-bit displacement or address
 487     call32_operand = 2,          // embedded 32-bit self-relative displacement
 488 #ifndef _LP64
 489     _WhichOperand_limit = 3
 490 #else
 491      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 492     _WhichOperand_limit = 4
 493 #endif
 494   };
 495 
 496 
 497 
 498   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 499   // of instructions are freely declared without the need for wrapping them an ifdef.
 500   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 501   // In the .cpp file the implementations are wrapped so that they are dropped out
 502   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
 503   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 504   //
 505   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 506   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 507 
 508 private:
 509 
 510 
 511   // 64bit prefixes
 512   int prefix_and_encode(int reg_enc, bool byteinst = false);
 513   int prefixq_and_encode(int reg_enc);
 514 
 515   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
 516   int prefixq_and_encode(int dst_enc, int src_enc);
 517 
 518   void prefix(Register reg);
 519   void prefix(Address adr);
 520   void prefixq(Address adr);
 521 
 522   void prefix(Address adr, Register reg,  bool byteinst = false);
 523   void prefixq(Address adr, Register reg);
 524 
 525   void prefix(Address adr, XMMRegister reg);
 526 
 527   void prefetch_prefix(Address src);
 528 
 529   // Helper functions for groups of instructions
 530   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 531 
 532   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 533   // only 32bit??
 534   void emit_arith(int op1, int op2, Register dst, jobject obj);
 535   void emit_arith(int op1, int op2, Register dst, Register src);
 536 
 537   void emit_operand(Register reg,
 538                     Register base, Register index, Address::ScaleFactor scale,
 539                     int disp,
 540                     RelocationHolder const& rspec,
 541                     int rip_relative_correction = 0);
 542 
 543   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 544 
 545   // operands that only take the original 32bit registers
 546   void emit_operand32(Register reg, Address adr);
 547 
 548   void emit_operand(XMMRegister reg,
 549                     Register base, Register index, Address::ScaleFactor scale,
 550                     int disp,
 551                     RelocationHolder const& rspec);
 552 
 553   void emit_operand(XMMRegister reg, Address adr);
 554 
 555   void emit_operand(MMXRegister reg, Address adr);
 556 
 557   // workaround gcc (3.2.1-7) bug
 558   void emit_operand(Address adr, MMXRegister reg);
 559 
 560 
 561   // Immediate-to-memory forms
 562   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 563 
 564   void emit_farith(int b1, int b2, int i);
 565 
 566 
 567  protected:
 568   #ifdef ASSERT
 569   void check_relocation(RelocationHolder const& rspec, int format);
 570   #endif
 571 
 572   inline void emit_long64(jlong x);
 573 
 574   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 575   void emit_data(jint data, RelocationHolder const& rspec, int format);
 576   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 577   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 578 
 579 
 580   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 581 
 582   // These are all easily abused and hence protected
 583 
 584   // 32BIT ONLY SECTION
 585 #ifndef _LP64
 586   // Make these disappear in 64bit mode since they would never be correct
 587   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 588   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 589 
 590   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 591   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 592 
 593   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 594 #else
 595   // 64BIT ONLY SECTION
 596   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 597 
 598   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 599   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 600 
 601   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 602   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 603 #endif // _LP64
 604 
 605   // These are unique in that we are ensured by the caller that the 32bit
 606   // relative in these instructions will always be able to reach the potentially
 607   // 64bit address described by entry. Since they can take a 64bit address they
 608   // don't have the 32 suffix like the other instructions in this class.
 609 
 610   void call_literal(address entry, RelocationHolder const& rspec);
 611   void jmp_literal(address entry, RelocationHolder const& rspec);
 612 
 613   // Avoid using directly section
 614   // Instructions in this section are actually usable by anyone without danger
 615   // of failure but have performance issues that are addressed my enhanced
 616   // instructions which will do the proper thing base on the particular cpu.
 617   // We protect them because we don't trust you...
 618 
 619   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 620   // could cause a partial flag stall since they don't set CF flag.
 621   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 622   // which call inc() & dec() or add() & sub() in accordance with
 623   // the product flag UseIncDec value.
 624 
 625   void decl(Register dst);
 626   void decl(Address dst);
 627   void decq(Register dst);
 628   void decq(Address dst);
 629 
 630   void incl(Register dst);
 631   void incl(Address dst);
 632   void incq(Register dst);
 633   void incq(Address dst);
 634 
 635   // New cpus require use of movsd and movss to avoid partial register stall
 636   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 637   // The selection is done in MacroAssembler::movdbl() and movflt().
 638 
 639   // Move Scalar Single-Precision Floating-Point Values
 640   void movss(XMMRegister dst, Address src);
 641   void movss(XMMRegister dst, XMMRegister src);
 642   void movss(Address dst, XMMRegister src);
 643 
 644   // Move Scalar Double-Precision Floating-Point Values
 645   void movsd(XMMRegister dst, Address src);
 646   void movsd(XMMRegister dst, XMMRegister src);
 647   void movsd(Address dst, XMMRegister src);
 648   void movlpd(XMMRegister dst, Address src);
 649 
 650   // New cpus require use of movaps and movapd to avoid partial register stall
 651   // when moving between registers.
 652   void movaps(XMMRegister dst, XMMRegister src);
 653   void movapd(XMMRegister dst, XMMRegister src);
 654 
 655   // End avoid using directly
 656 
 657 
 658   // Instruction prefixes
 659   void prefix(Prefix p);
 660 
 661   public:
 662 
 663   // Creation
 664   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
 665 
 666   // Decoding
 667   static address locate_operand(address inst, WhichOperand which);
 668   static address locate_next_instruction(address inst);
 669 
 670   // Utilities
 671 
 672 #ifdef _LP64
 673  static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
 674  static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
 675 #else
 676  static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
 677  static bool is_simm32(int32_t x) { return true; }
 678 #endif // LP64
 679 
 680   // Generic instructions
 681   // Does 32bit or 64bit as needed for the platform. In some sense these
 682   // belong in macro assembler but there is no need for both varieties to exist
 683 
 684   void lea(Register dst, Address src);
 685 
 686   void mov(Register dst, Register src);
 687 
 688   void pusha();
 689   void popa();
 690 
 691   void pushf();
 692   void popf();
 693 
 694   void push(int32_t imm32);
 695 
 696   void push(Register src);
 697 
 698   void pop(Register dst);
 699 
 700   // These are dummies to prevent surprise implicit conversions to Register
 701   void push(void* v);
 702   void pop(void* v);
 703 
 704 
 705   // These do register sized moves/scans
 706   void rep_mov();
 707   void rep_set();
 708   void repne_scan();
 709 #ifdef _LP64
 710   void repne_scanl();
 711 #endif
 712 
 713   // Vanilla instructions in lexical order
 714 
 715   void adcl(Register dst, int32_t imm32);
 716   void adcl(Register dst, Address src);
 717   void adcl(Register dst, Register src);
 718 
 719   void adcq(Register dst, int32_t imm32);
 720   void adcq(Register dst, Address src);
 721   void adcq(Register dst, Register src);
 722 
 723 
 724   void addl(Address dst, int32_t imm32);
 725   void addl(Address dst, Register src);
 726   void addl(Register dst, int32_t imm32);
 727   void addl(Register dst, Address src);
 728   void addl(Register dst, Register src);
 729 
 730   void addq(Address dst, int32_t imm32);
 731   void addq(Address dst, Register src);
 732   void addq(Register dst, int32_t imm32);
 733   void addq(Register dst, Address src);
 734   void addq(Register dst, Register src);
 735 
 736 
 737   void addr_nop_4();
 738   void addr_nop_5();
 739   void addr_nop_7();
 740   void addr_nop_8();
 741 
 742   // Add Scalar Double-Precision Floating-Point Values
 743   void addsd(XMMRegister dst, Address src);
 744   void addsd(XMMRegister dst, XMMRegister src);
 745 
 746   // Add Scalar Single-Precision Floating-Point Values
 747   void addss(XMMRegister dst, Address src);
 748   void addss(XMMRegister dst, XMMRegister src);
 749 
 750   void andl(Register dst, int32_t imm32);
 751   void andl(Register dst, Address src);
 752   void andl(Register dst, Register src);
 753 
 754   void andq(Register dst, int32_t imm32);
 755   void andq(Register dst, Address src);
 756   void andq(Register dst, Register src);
 757 
 758 
 759   // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
 760   void andpd(XMMRegister dst, Address src);
 761   void andpd(XMMRegister dst, XMMRegister src);
 762 
 763   void bsfl(Register dst, Register src);
 764   void bsrl(Register dst, Register src);
 765 
 766 #ifdef _LP64
 767   void bsfq(Register dst, Register src);
 768   void bsrq(Register dst, Register src);
 769 #endif
 770 
 771   void bswapl(Register reg);
 772 
 773   void bswapq(Register reg);
 774 
 775   void call(Label& L, relocInfo::relocType rtype);
 776   void call(Register reg);  // push pc; pc <- reg
 777   void call(Address adr);   // push pc; pc <- adr
 778 
 779   void cdql();
 780 
 781   void cdqq();
 782 
 783   void cld() { emit_byte(0xfc); }
 784 
 785   void clflush(Address adr);
 786 
 787   void cmovl(Condition cc, Register dst, Register src);
 788   void cmovl(Condition cc, Register dst, Address src);
 789 
 790   void cmovq(Condition cc, Register dst, Register src);
 791   void cmovq(Condition cc, Register dst, Address src);
 792 
 793 
 794   void cmpb(Address dst, int imm8);
 795 
 796   void cmpl(Address dst, int32_t imm32);
 797 
 798   void cmpl(Register dst, int32_t imm32);
 799   void cmpl(Register dst, Register src);
 800   void cmpl(Register dst, Address src);
 801 
 802   void cmpq(Address dst, int32_t imm32);
 803   void cmpq(Address dst, Register src);
 804 
 805   void cmpq(Register dst, int32_t imm32);
 806   void cmpq(Register dst, Register src);
 807   void cmpq(Register dst, Address src);
 808 
 809   // these are dummies used to catch attempting to convert NULL to Register
 810   void cmpl(Register dst, void* junk); // dummy
 811   void cmpq(Register dst, void* junk); // dummy
 812 
 813   void cmpw(Address dst, int imm16);
 814 
 815   void cmpxchg8 (Address adr);
 816 
 817   void cmpxchgl(Register reg, Address adr);
 818 
 819   void cmpxchgq(Register reg, Address adr);
 820 
 821   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
 822   void comisd(XMMRegister dst, Address src);
 823 
 824   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
 825   void comiss(XMMRegister dst, Address src);
 826 
 827   // Identify processor type and features
 828   void cpuid() {
 829     emit_byte(0x0F);
 830     emit_byte(0xA2);
 831   }
 832 
 833   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
 834   void cvtsd2ss(XMMRegister dst, XMMRegister src);
 835 
 836   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
 837   void cvtsi2sdl(XMMRegister dst, Register src);
 838   void cvtsi2sdq(XMMRegister dst, Register src);
 839 
 840   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
 841   void cvtsi2ssl(XMMRegister dst, Register src);
 842   void cvtsi2ssq(XMMRegister dst, Register src);
 843 
 844   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
 845   void cvtdq2pd(XMMRegister dst, XMMRegister src);
 846 
 847   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
 848   void cvtdq2ps(XMMRegister dst, XMMRegister src);
 849 
 850   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
 851   void cvtss2sd(XMMRegister dst, XMMRegister src);
 852 
 853   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
 854   void cvttsd2sil(Register dst, Address src);
 855   void cvttsd2sil(Register dst, XMMRegister src);
 856   void cvttsd2siq(Register dst, XMMRegister src);
 857 
 858   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
 859   void cvttss2sil(Register dst, XMMRegister src);
 860   void cvttss2siq(Register dst, XMMRegister src);
 861 
 862   // Divide Scalar Double-Precision Floating-Point Values
 863   void divsd(XMMRegister dst, Address src);
 864   void divsd(XMMRegister dst, XMMRegister src);
 865 
 866   // Divide Scalar Single-Precision Floating-Point Values
 867   void divss(XMMRegister dst, Address src);
 868   void divss(XMMRegister dst, XMMRegister src);
 869 
 870   void emms();
 871 
 872   void fabs();
 873 
 874   void fadd(int i);
 875 
 876   void fadd_d(Address src);
 877   void fadd_s(Address src);
 878 
 879   // "Alternate" versions of x87 instructions place result down in FPU
 880   // stack instead of on TOS
 881 
 882   void fadda(int i); // "alternate" fadd
 883   void faddp(int i = 1);
 884 
 885   void fchs();
 886 
 887   void fcom(int i);
 888 
 889   void fcomp(int i = 1);
 890   void fcomp_d(Address src);
 891   void fcomp_s(Address src);
 892 
 893   void fcompp();
 894 
 895   void fcos();
 896 
 897   void fdecstp();
 898 
 899   void fdiv(int i);
 900   void fdiv_d(Address src);
 901   void fdivr_s(Address src);
 902   void fdiva(int i);  // "alternate" fdiv
 903   void fdivp(int i = 1);
 904 
 905   void fdivr(int i);
 906   void fdivr_d(Address src);
 907   void fdiv_s(Address src);
 908 
 909   void fdivra(int i); // "alternate" reversed fdiv
 910 
 911   void fdivrp(int i = 1);
 912 
 913   void ffree(int i = 0);
 914 
 915   void fild_d(Address adr);
 916   void fild_s(Address adr);
 917 
 918   void fincstp();
 919 
 920   void finit();
 921 
 922   void fist_s (Address adr);
 923   void fistp_d(Address adr);
 924   void fistp_s(Address adr);
 925 
 926   void fld1();
 927 
 928   void fld_d(Address adr);
 929   void fld_s(Address adr);
 930   void fld_s(int index);
 931   void fld_x(Address adr);  // extended-precision (80-bit) format
 932 
 933   void fldcw(Address src);
 934 
 935   void fldenv(Address src);
 936 
 937   void fldlg2();
 938 
 939   void fldln2();
 940 
 941   void fldz();
 942 
 943   void flog();
 944   void flog10();
 945 
 946   void fmul(int i);
 947 
 948   void fmul_d(Address src);
 949   void fmul_s(Address src);
 950 
 951   void fmula(int i);  // "alternate" fmul
 952 
 953   void fmulp(int i = 1);
 954 
 955   void fnsave(Address dst);
 956 
 957   void fnstcw(Address src);
 958 
 959   void fnstsw_ax();
 960 
 961   void fprem();
 962   void fprem1();
 963 
 964   void frstor(Address src);
 965 
 966   void fsin();
 967 
 968   void fsqrt();
 969 
 970   void fst_d(Address adr);
 971   void fst_s(Address adr);
 972 
 973   void fstp_d(Address adr);
 974   void fstp_d(int index);
 975   void fstp_s(Address adr);
 976   void fstp_x(Address adr); // extended-precision (80-bit) format
 977 
 978   void fsub(int i);
 979   void fsub_d(Address src);
 980   void fsub_s(Address src);
 981 
 982   void fsuba(int i);  // "alternate" fsub
 983 
 984   void fsubp(int i = 1);
 985 
 986   void fsubr(int i);
 987   void fsubr_d(Address src);
 988   void fsubr_s(Address src);
 989 
 990   void fsubra(int i); // "alternate" reversed fsub
 991 
 992   void fsubrp(int i = 1);
 993 
 994   void ftan();
 995 
 996   void ftst();
 997 
 998   void fucomi(int i = 1);
 999   void fucomip(int i = 1);
1000 
1001   void fwait();
1002 
1003   void fxch(int i = 1);
1004 
1005   void fxrstor(Address src);
1006 
1007   void fxsave(Address dst);
1008 
1009   void fyl2x();
1010 
1011   void hlt();
1012 
1013   void idivl(Register src);
1014 
1015   void idivq(Register src);
1016 
1017   void imull(Register dst, Register src);
1018   void imull(Register dst, Register src, int value);
1019 
1020   void imulq(Register dst, Register src);
1021   void imulq(Register dst, Register src, int value);
1022 
1023 
1024   // jcc is the generic conditional branch generator to run-
1025   // time routines, jcc is used for branches to labels. jcc
1026   // takes a branch opcode (cc) and a label (L) and generates
1027   // either a backward branch or a forward branch and links it
1028   // to the label fixup chain. Usage:
1029   //
1030   // Label L;      // unbound label
1031   // jcc(cc, L);   // forward branch to unbound label
1032   // bind(L);      // bind label to the current pc
1033   // jcc(cc, L);   // backward branch to bound label
1034   // bind(L);      // illegal: a label may be bound only once
1035   //
1036   // Note: The same Label can be used for forward and backward branches
1037   // but it may be bound only once.
1038 
1039   void jcc(Condition cc, Label& L,
1040            relocInfo::relocType rtype = relocInfo::none);
1041 
1042   // Conditional jump to a 8-bit offset to L.
1043   // WARNING: be very careful using this for forward jumps.  If the label is
1044   // not bound within an 8-bit offset of this instruction, a run-time error
1045   // will occur.
1046   void jccb(Condition cc, Label& L);
1047 
1048   void jmp(Address entry);    // pc <- entry
1049 
1050   // Label operations & relative jumps (PPUM Appendix D)
1051   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
1052 
1053   void jmp(Register entry); // pc <- entry
1054 
1055   // Unconditional 8-bit offset jump to L.
1056   // WARNING: be very careful using this for forward jumps.  If the label is
1057   // not bound within an 8-bit offset of this instruction, a run-time error
1058   // will occur.
1059   void jmpb(Label& L);
1060 
1061   void ldmxcsr( Address src );
1062 
1063   void leal(Register dst, Address src);
1064 
1065   void leaq(Register dst, Address src);
1066 
1067   void lfence() {
1068     emit_byte(0x0F);
1069     emit_byte(0xAE);
1070     emit_byte(0xE8);
1071   }
1072 
1073   void lock();
1074 
1075   void lzcntl(Register dst, Register src);
1076 
1077 #ifdef _LP64
1078   void lzcntq(Register dst, Register src);
1079 #endif
1080 
1081   enum Membar_mask_bits {
1082     StoreStore = 1 << 3,
1083     LoadStore  = 1 << 2,
1084     StoreLoad  = 1 << 1,
1085     LoadLoad   = 1 << 0
1086   };
1087 
1088   // Serializes memory and blows flags
1089   void membar(Membar_mask_bits order_constraint) {
1090     if (os::is_MP()) {
1091       // We only have to handle StoreLoad
1092       if (order_constraint & StoreLoad) {
1093         // All usable chips support "locked" instructions which suffice
1094         // as barriers, and are much faster than the alternative of
1095         // using cpuid instruction. We use here a locked add [esp],0.
1096         // This is conveniently otherwise a no-op except for blowing
1097         // flags.
1098         // Any change to this code may need to revisit other places in
1099         // the code where this idiom is used, in particular the
1100         // orderAccess code.
1101         lock();
1102         addl(Address(rsp, 0), 0);// Assert the lock# signal here
1103       }
1104     }
1105   }
1106 
1107   void mfence();
1108 
1109   // Moves
1110 
1111   void mov64(Register dst, int64_t imm64);
1112 
1113   void movb(Address dst, Register src);
1114   void movb(Address dst, int imm8);
1115   void movb(Register dst, Address src);
1116 
1117   void movdl(XMMRegister dst, Register src);
1118   void movdl(Register dst, XMMRegister src);
1119 
1120   // Move Double Quadword
1121   void movdq(XMMRegister dst, Register src);
1122   void movdq(Register dst, XMMRegister src);
1123 
1124   // Move Aligned Double Quadword
1125   void movdqa(Address     dst, XMMRegister src);
1126   void movdqa(XMMRegister dst, Address src);
1127   void movdqa(XMMRegister dst, XMMRegister src);
1128 
1129   // Move Unaligned Double Quadword
1130   void movdqu(Address     dst, XMMRegister src);
1131   void movdqu(XMMRegister dst, Address src);
1132   void movdqu(XMMRegister dst, XMMRegister src);
1133 
1134   void movl(Register dst, int32_t imm32);
1135   void movl(Address dst, int32_t imm32);
1136   void movl(Register dst, Register src);
1137   void movl(Register dst, Address src);
1138   void movl(Address dst, Register src);
1139 
1140   // These dummies prevent using movl from converting a zero (like NULL) into Register
1141   // by giving the compiler two choices it can't resolve
1142 
1143   void movl(Address  dst, void* junk);
1144   void movl(Register dst, void* junk);
1145 
1146 #ifdef _LP64
1147   void movq(Register dst, Register src);
1148   void movq(Register dst, Address src);
1149   void movq(Address dst, Register src);
1150 #endif
1151 
1152   void movq(Address     dst, MMXRegister src );
1153   void movq(MMXRegister dst, Address src );
1154 
1155 #ifdef _LP64
1156   // These dummies prevent using movq from converting a zero (like NULL) into Register
1157   // by giving the compiler two choices it can't resolve
1158 
1159   void movq(Address  dst, void* dummy);
1160   void movq(Register dst, void* dummy);
1161 #endif
1162 
1163   // Move Quadword
1164   void movq(Address     dst, XMMRegister src);
1165   void movq(XMMRegister dst, Address src);
1166 
1167   void movsbl(Register dst, Address src);
1168   void movsbl(Register dst, Register src);
1169 
1170 #ifdef _LP64
1171   void movsbq(Register dst, Address src);
1172   void movsbq(Register dst, Register src);
1173 
1174   // Move signed 32bit immediate to 64bit extending sign
1175   void movslq(Address dst, int32_t imm64);
1176   void movslq(Register dst, int32_t imm64);
1177 
1178   void movslq(Register dst, Address src);
1179   void movslq(Register dst, Register src);
1180   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1181 #endif
1182 
1183   void movswl(Register dst, Address src);
1184   void movswl(Register dst, Register src);
1185 
1186 #ifdef _LP64
1187   void movswq(Register dst, Address src);
1188   void movswq(Register dst, Register src);
1189 #endif
1190 
1191   void movw(Address dst, int imm16);
1192   void movw(Register dst, Address src);
1193   void movw(Address dst, Register src);
1194 
1195   void movzbl(Register dst, Address src);
1196   void movzbl(Register dst, Register src);
1197 
1198 #ifdef _LP64
1199   void movzbq(Register dst, Address src);
1200   void movzbq(Register dst, Register src);
1201 #endif
1202 
1203   void movzwl(Register dst, Address src);
1204   void movzwl(Register dst, Register src);
1205 
1206 #ifdef _LP64
1207   void movzwq(Register dst, Address src);
1208   void movzwq(Register dst, Register src);
1209 #endif
1210 
1211   void mull(Address src);
1212   void mull(Register src);
1213 
1214   // Multiply Scalar Double-Precision Floating-Point Values
1215   void mulsd(XMMRegister dst, Address src);
1216   void mulsd(XMMRegister dst, XMMRegister src);
1217 
1218   // Multiply Scalar Single-Precision Floating-Point Values
1219   void mulss(XMMRegister dst, Address src);
1220   void mulss(XMMRegister dst, XMMRegister src);
1221 
1222   void negl(Register dst);
1223 
1224 #ifdef _LP64
1225   void negq(Register dst);
1226 #endif
1227 
1228   void nop(int i = 1);
1229 
1230   void notl(Register dst);
1231 
1232 #ifdef _LP64
1233   void notq(Register dst);
1234 #endif
1235 
1236   void orl(Address dst, int32_t imm32);
1237   void orl(Register dst, int32_t imm32);
1238   void orl(Register dst, Address src);
1239   void orl(Register dst, Register src);
1240 
1241   void orq(Address dst, int32_t imm32);
1242   void orq(Register dst, int32_t imm32);
1243   void orq(Register dst, Address src);
1244   void orq(Register dst, Register src);
1245 
1246   // SSE4.2 string instructions
1247   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1248   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1249 
1250 #ifndef _LP64 // no 32bit push/pop on amd64
1251   void popl(Address dst);
1252 #endif
1253 
1254 #ifdef _LP64
1255   void popq(Address dst);
1256 #endif
1257 
1258   void popcntl(Register dst, Address src);
1259   void popcntl(Register dst, Register src);
1260 
1261 #ifdef _LP64
1262   void popcntq(Register dst, Address src);
1263   void popcntq(Register dst, Register src);
1264 #endif
1265 
1266   // Prefetches (SSE, SSE2, 3DNOW only)
1267 
1268   void prefetchnta(Address src);
1269   void prefetchr(Address src);
1270   void prefetcht0(Address src);
1271   void prefetcht1(Address src);
1272   void prefetcht2(Address src);
1273   void prefetchw(Address src);
1274 
1275   // Shuffle Packed Doublewords
1276   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1277   void pshufd(XMMRegister dst, Address src,     int mode);
1278 
1279   // Shuffle Packed Low Words
1280   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1281   void pshuflw(XMMRegister dst, Address src,     int mode);
1282 
1283   // Shift Right Logical Quadword Immediate
1284   void psrlq(XMMRegister dst, int shift);
1285 
1286   // Logical Compare Double Quadword
1287   void ptest(XMMRegister dst, XMMRegister src);
1288   void ptest(XMMRegister dst, Address src);
1289 
1290   // Interleave Low Bytes
1291   void punpcklbw(XMMRegister dst, XMMRegister src);
1292 
1293 #ifndef _LP64 // no 32bit push/pop on amd64
1294   void pushl(Address src);
1295 #endif
1296 
1297   void pushq(Address src);
1298 
1299   // Xor Packed Byte Integer Values
1300   void pxor(XMMRegister dst, Address src);
1301   void pxor(XMMRegister dst, XMMRegister src);
1302 
1303   void rcll(Register dst, int imm8);
1304 
1305   void rclq(Register dst, int imm8);
1306 
1307   void ret(int imm16);
1308 
1309   void sahf();
1310 
1311   void sarl(Register dst, int imm8);
1312   void sarl(Register dst);
1313 
1314   void sarq(Register dst, int imm8);
1315   void sarq(Register dst);
1316 
1317   void sbbl(Address dst, int32_t imm32);
1318   void sbbl(Register dst, int32_t imm32);
1319   void sbbl(Register dst, Address src);
1320   void sbbl(Register dst, Register src);
1321 
1322   void sbbq(Address dst, int32_t imm32);
1323   void sbbq(Register dst, int32_t imm32);
1324   void sbbq(Register dst, Address src);
1325   void sbbq(Register dst, Register src);
1326 
1327   void setb(Condition cc, Register dst);
1328 
1329   void shldl(Register dst, Register src);
1330 
1331   void shll(Register dst, int imm8);
1332   void shll(Register dst);
1333 
1334   void shlq(Register dst, int imm8);
1335   void shlq(Register dst);
1336 
1337   void shrdl(Register dst, Register src);
1338 
1339   void shrl(Register dst, int imm8);
1340   void shrl(Register dst);
1341 
1342   void shrq(Register dst, int imm8);
1343   void shrq(Register dst);
1344 
1345   void smovl(); // QQQ generic?
1346 
1347   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1348   void sqrtsd(XMMRegister dst, Address src);
1349   void sqrtsd(XMMRegister dst, XMMRegister src);
1350 
1351   void std() { emit_byte(0xfd); }
1352 
1353   void stmxcsr( Address dst );
1354 
1355   void subl(Address dst, int32_t imm32);
1356   void subl(Address dst, Register src);
1357   void subl(Register dst, int32_t imm32);
1358   void subl(Register dst, Address src);
1359   void subl(Register dst, Register src);
1360 
1361   void subq(Address dst, int32_t imm32);
1362   void subq(Address dst, Register src);
1363   void subq(Register dst, int32_t imm32);
1364   void subq(Register dst, Address src);
1365   void subq(Register dst, Register src);
1366 
1367 
1368   // Subtract Scalar Double-Precision Floating-Point Values
1369   void subsd(XMMRegister dst, Address src);
1370   void subsd(XMMRegister dst, XMMRegister src);
1371 
1372   // Subtract Scalar Single-Precision Floating-Point Values
1373   void subss(XMMRegister dst, Address src);
1374   void subss(XMMRegister dst, XMMRegister src);
1375 
1376   void testb(Register dst, int imm8);
1377 
1378   void testl(Register dst, int32_t imm32);
1379   void testl(Register dst, Register src);
1380   void testl(Register dst, Address src);
1381 
1382   void testq(Register dst, int32_t imm32);
1383   void testq(Register dst, Register src);
1384 
1385 
1386   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1387   void ucomisd(XMMRegister dst, Address src);
1388   void ucomisd(XMMRegister dst, XMMRegister src);
1389 
1390   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1391   void ucomiss(XMMRegister dst, Address src);
1392   void ucomiss(XMMRegister dst, XMMRegister src);
1393 
1394   void xaddl(Address dst, Register src);
1395 
1396   void xaddq(Address dst, Register src);
1397 
1398   void xchgl(Register reg, Address adr);
1399   void xchgl(Register dst, Register src);
1400 
1401   void xchgq(Register reg, Address adr);
1402   void xchgq(Register dst, Register src);
1403 
1404   void xorl(Register dst, int32_t imm32);
1405   void xorl(Register dst, Address src);
1406   void xorl(Register dst, Register src);
1407 
1408   void xorq(Register dst, Address src);
1409   void xorq(Register dst, Register src);
1410 
1411   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1412   void xorpd(XMMRegister dst, Address src);
1413   void xorpd(XMMRegister dst, XMMRegister src);
1414 
1415   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1416   void xorps(XMMRegister dst, Address src);
1417   void xorps(XMMRegister dst, XMMRegister src);
1418 
1419   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1420 };
1421 
1422 
1423 // MacroAssembler extends Assembler by frequently used macros.
1424 //
1425 // Instructions for which a 'better' code sequence exists depending
1426 // on arguments should also go in here.
1427 
1428 class MacroAssembler: public Assembler {
1429   friend class LIR_Assembler;
1430   friend class Runtime1;      // as_Address()
1431  protected:
1432 
1433   Address as_Address(AddressLiteral adr);
1434   Address as_Address(ArrayAddress adr);
1435 
1436   // Support for VM calls
1437   //
1438   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1439   // may customize this version by overriding it for its purposes (e.g., to save/restore
1440   // additional registers when doing a VM call).
1441 #ifdef CC_INTERP
1442   // c++ interpreter never wants to use interp_masm version of call_VM
1443   #define VIRTUAL
1444 #else
1445   #define VIRTUAL virtual
1446 #endif
1447 
1448   VIRTUAL void call_VM_leaf_base(
1449     address entry_point,               // the entry point
1450     int     number_of_arguments        // the number of arguments to pop after the call
1451   );
1452 
1453   // This is the base routine called by the different versions of call_VM. The interpreter
1454   // may customize this version by overriding it for its purposes (e.g., to save/restore
1455   // additional registers when doing a VM call).
1456   //
1457   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
1458   // returns the register which contains the thread upon return. If a thread register has been
1459   // specified, the return value will correspond to that register. If no last_java_sp is specified
1460   // (noreg) than rsp will be used instead.
1461   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
1462     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
1463     Register java_thread,              // the thread if computed before     ; use noreg otherwise
1464     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
1465     address  entry_point,              // the entry point
1466     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
1467     bool     check_exceptions          // whether to check for pending exceptions after return
1468   );
1469 
1470   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1471   // The implementation is only non-empty for the InterpreterMacroAssembler,
1472   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
1473   virtual void check_and_handle_popframe(Register java_thread);
1474   virtual void check_and_handle_earlyret(Register java_thread);
1475 
1476   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
1477 
1478   // helpers for FPU flag access
1479   // tmp is a temporary register, if none is available use noreg
1480   void save_rax   (Register tmp);
1481   void restore_rax(Register tmp);
1482 
1483  public:
1484   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1485 
1486   // Support for NULL-checks
1487   //
1488   // Generates code that causes a NULL OS exception if the content of reg is NULL.
1489   // If the accessed location is M[reg + offset] and the offset is known, provide the
1490   // offset. No explicit code generation is needed if the offset is within a certain
1491   // range (0 <= offset <= page_size).
1492 
1493   void null_check(Register reg, int offset = -1);
1494   static bool needs_explicit_null_check(intptr_t offset);
1495 
1496   // Required platform-specific helpers for Label::patch_instructions.
1497   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1498   void pd_patch_instruction(address branch, address target);
1499 #ifndef PRODUCT
1500   static void pd_print_patched_instruction(address branch);
1501 #endif
1502 
1503   // The following 4 methods return the offset of the appropriate move instruction
1504 
1505   // Support for fast byte/short loading with zero extension (depending on particular CPU)
1506   int load_unsigned_byte(Register dst, Address src);
1507   int load_unsigned_short(Register dst, Address src);
1508 
1509   // Support for fast byte/short loading with sign extension (depending on particular CPU)
1510   int load_signed_byte(Register dst, Address src);
1511   int load_signed_short(Register dst, Address src);
1512 
1513   // Support for sign-extension (hi:lo = extend_sign(lo))
1514   void extend_sign(Register hi, Register lo);
1515 
1516   // Loading values by size and signed-ness
1517   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
1518 
1519   // Support for inc/dec with optimal instruction selection depending on value
1520 
1521   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
1522   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
1523 
1524   void decrementl(Address dst, int value = 1);
1525   void decrementl(Register reg, int value = 1);
1526 
1527   void decrementq(Register reg, int value = 1);
1528   void decrementq(Address dst, int value = 1);
1529 
1530   void incrementl(Address dst, int value = 1);
1531   void incrementl(Register reg, int value = 1);
1532 
1533   void incrementq(Register reg, int value = 1);
1534   void incrementq(Address dst, int value = 1);
1535 
1536 
1537   // Support optimal SSE move instructions.
1538   void movflt(XMMRegister dst, XMMRegister src) {
1539     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
1540     else                       { movss (dst, src); return; }
1541   }
1542   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
1543   void movflt(XMMRegister dst, AddressLiteral src);
1544   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
1545 
1546   void movdbl(XMMRegister dst, XMMRegister src) {
1547     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
1548     else                       { movsd (dst, src); return; }
1549   }
1550 
1551   void movdbl(XMMRegister dst, AddressLiteral src);
1552 
1553   void movdbl(XMMRegister dst, Address src) {
1554     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
1555     else                         { movlpd(dst, src); return; }
1556   }
1557   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
1558 
1559   void incrementl(AddressLiteral dst);
1560   void incrementl(ArrayAddress dst);
1561 
1562   // Alignment
1563   void align(int modulus);
1564 
1565   // Misc
1566   void fat_nop(); // 5 byte nop
1567 
1568   // Stack frame creation/removal
1569   void enter();
1570   void leave();
1571 
1572   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
1573   // The pointer will be loaded into the thread register.
1574   void get_thread(Register thread);
1575 
1576 
1577   // Support for VM calls
1578   //
1579   // It is imperative that all calls into the VM are handled via the call_VM macros.
1580   // They make sure that the stack linkage is setup correctly. call_VM's correspond
1581   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1582 
1583 
1584   void call_VM(Register oop_result,
1585                address entry_point,
1586                bool check_exceptions = true);
1587   void call_VM(Register oop_result,
1588                address entry_point,
1589                Register arg_1,
1590                bool check_exceptions = true);
1591   void call_VM(Register oop_result,
1592                address entry_point,
1593                Register arg_1, Register arg_2,
1594                bool check_exceptions = true);
1595   void call_VM(Register oop_result,
1596                address entry_point,
1597                Register arg_1, Register arg_2, Register arg_3,
1598                bool check_exceptions = true);
1599 
1600   // Overloadings with last_Java_sp
1601   void call_VM(Register oop_result,
1602                Register last_java_sp,
1603                address entry_point,
1604                int number_of_arguments = 0,
1605                bool check_exceptions = true);
1606   void call_VM(Register oop_result,
1607                Register last_java_sp,
1608                address entry_point,
1609                Register arg_1, bool
1610                check_exceptions = true);
1611   void call_VM(Register oop_result,
1612                Register last_java_sp,
1613                address entry_point,
1614                Register arg_1, Register arg_2,
1615                bool check_exceptions = true);
1616   void call_VM(Register oop_result,
1617                Register last_java_sp,
1618                address entry_point,
1619                Register arg_1, Register arg_2, Register arg_3,
1620                bool check_exceptions = true);
1621 
1622   void call_VM_leaf(address entry_point,
1623                     int number_of_arguments = 0);
1624   void call_VM_leaf(address entry_point,
1625                     Register arg_1);
1626   void call_VM_leaf(address entry_point,
1627                     Register arg_1, Register arg_2);
1628   void call_VM_leaf(address entry_point,
1629                     Register arg_1, Register arg_2, Register arg_3);
1630 
1631   // last Java Frame (fills frame anchor)
1632   void set_last_Java_frame(Register thread,
1633                            Register last_java_sp,
1634                            Register last_java_fp,
1635                            address last_java_pc);
1636 
1637   // thread in the default location (r15_thread on 64bit)
1638   void set_last_Java_frame(Register last_java_sp,
1639                            Register last_java_fp,
1640                            address last_java_pc);
1641 
1642   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
1643 
1644   // thread in the default location (r15_thread on 64bit)
1645   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
1646 
1647   // Stores
1648   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
1649   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
1650 
1651   void g1_write_barrier_pre(Register obj,
1652 #ifndef _LP64
1653                             Register thread,
1654 #endif
1655                             Register tmp,
1656                             Register tmp2,
1657                             bool     tosca_live);
1658   void g1_write_barrier_post(Register store_addr,
1659                              Register new_val,
1660 #ifndef _LP64
1661                              Register thread,
1662 #endif
1663                              Register tmp,
1664                              Register tmp2);
1665 
1666 
1667   // split store_check(Register obj) to enhance instruction interleaving
1668   void store_check_part_1(Register obj);
1669   void store_check_part_2(Register obj);
1670 
1671   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
1672   void c2bool(Register x);
1673 
1674   // C++ bool manipulation
1675 
1676   void movbool(Register dst, Address src);
1677   void movbool(Address dst, bool boolconst);
1678   void movbool(Address dst, Register src);
1679   void testbool(Register dst);
1680 
1681   // oop manipulations
1682   void load_klass(Register dst, Register src);
1683   void store_klass(Register dst, Register src);
1684 
1685   void load_heap_oop(Register dst, Address src);
1686   void store_heap_oop(Address dst, Register src);
1687 
1688   // Used for storing NULL. All other oop constants should be
1689   // stored using routines that take a jobject.
1690   void store_heap_oop_null(Address dst);
1691 
1692   void load_prototype_header(Register dst, Register src);
1693 
1694 #ifdef _LP64
1695   void store_klass_gap(Register dst, Register src);
1696 
1697   // This dummy is to prevent a call to store_heap_oop from
1698   // converting a zero (like NULL) into a Register by giving
1699   // the compiler two choices it can't resolve
1700 
1701   void store_heap_oop(Address dst, void* dummy);
1702 
1703   void encode_heap_oop(Register r);
1704   void decode_heap_oop(Register r);
1705   void encode_heap_oop_not_null(Register r);
1706   void decode_heap_oop_not_null(Register r);
1707   void encode_heap_oop_not_null(Register dst, Register src);
1708   void decode_heap_oop_not_null(Register dst, Register src);
1709 
1710   void set_narrow_oop(Register dst, jobject obj);
1711   void set_narrow_oop(Address dst, jobject obj);
1712   void cmp_narrow_oop(Register dst, jobject obj);
1713   void cmp_narrow_oop(Address dst, jobject obj);
1714 
1715   // if heap base register is used - reinit it with the correct value
1716   void reinit_heapbase();
1717 
1718   DEBUG_ONLY(void verify_heapbase(const char* msg);)
1719 
1720 #endif // _LP64
1721 
1722   // Int division/remainder for Java
1723   // (as idivl, but checks for special case as described in JVM spec.)
1724   // returns idivl instruction offset for implicit exception handling
1725   int corrected_idivl(Register reg);
1726 
1727   // Long division/remainder for Java
1728   // (as idivq, but checks for special case as described in JVM spec.)
1729   // returns idivq instruction offset for implicit exception handling
1730   int corrected_idivq(Register reg);
1731 
1732   void int3();
1733 
1734   // Long operation macros for a 32bit cpu
1735   // Long negation for Java
1736   void lneg(Register hi, Register lo);
1737 
1738   // Long multiplication for Java
1739   // (destroys contents of eax, ebx, ecx and edx)
1740   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
1741 
1742   // Long shifts for Java
1743   // (semantics as described in JVM spec.)
1744   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
1745   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
1746 
1747   // Long compare for Java
1748   // (semantics as described in JVM spec.)
1749   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
1750 
1751 
1752   // misc
1753 
1754   // Sign extension
1755   void sign_extend_short(Register reg);
1756   void sign_extend_byte(Register reg);
1757 
1758   // Division by power of 2, rounding towards 0
1759   void division_with_shift(Register reg, int shift_value);
1760 
1761   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
1762   //
1763   // CF (corresponds to C0) if x < y
1764   // PF (corresponds to C2) if unordered
1765   // ZF (corresponds to C3) if x = y
1766   //
1767   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1768   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
1769   void fcmp(Register tmp);
1770   // Variant of the above which allows y to be further down the stack
1771   // and which only pops x and y if specified. If pop_right is
1772   // specified then pop_left must also be specified.
1773   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
1774 
1775   // Floating-point comparison for Java
1776   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
1777   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1778   // (semantics as described in JVM spec.)
1779   void fcmp2int(Register dst, bool unordered_is_less);
1780   // Variant of the above which allows y to be further down the stack
1781   // and which only pops x and y if specified. If pop_right is
1782   // specified then pop_left must also be specified.
1783   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
1784 
1785   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
1786   // tmp is a temporary register, if none is available use noreg
1787   void fremr(Register tmp);
1788 
1789 
1790   // same as fcmp2int, but using SSE2
1791   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1792   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1793 
1794   // Inlined sin/cos generator for Java; must not use CPU instruction
1795   // directly on Intel as it does not have high enough precision
1796   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
1797   // number of FPU stack slots in use; all but the topmost will
1798   // require saving if a slow case is necessary. Assumes argument is
1799   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
1800   // this code.
1801   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
1802 
1803   // branch to L if FPU flag C2 is set/not set
1804   // tmp is a temporary register, if none is available use noreg
1805   void jC2 (Register tmp, Label& L);
1806   void jnC2(Register tmp, Label& L);
1807 
1808   // Pop ST (ffree & fincstp combined)
1809   void fpop();
1810 
1811   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1812   void push_fTOS();
1813 
1814   // pops double TOS element from CPU stack and pushes on FPU stack
1815   void pop_fTOS();
1816 
1817   void empty_FPU_stack();
1818 
1819   void push_IU_state();
1820   void pop_IU_state();
1821 
1822   void push_FPU_state();
1823   void pop_FPU_state();
1824 
1825   void push_CPU_state();
1826   void pop_CPU_state();
1827 
1828   // Round up to a power of two
1829   void round_to(Register reg, int modulus);
1830 
1831   // Callee saved registers handling
1832   void push_callee_saved_registers();
1833   void pop_callee_saved_registers();
1834 
1835   // allocation
1836   void eden_allocate(
1837     Register obj,                      // result: pointer to object after successful allocation
1838     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1839     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1840     Register t1,                       // temp register
1841     Label&   slow_case                 // continuation point if fast allocation fails
1842   );
1843   void tlab_allocate(
1844     Register obj,                      // result: pointer to object after successful allocation
1845     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1846     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1847     Register t1,                       // temp register
1848     Register t2,                       // temp register
1849     Label&   slow_case                 // continuation point if fast allocation fails
1850   );
1851   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
1852 
1853   // interface method calling
1854   void lookup_interface_method(Register recv_klass,
1855                                Register intf_klass,
1856                                RegisterOrConstant itable_index,
1857                                Register method_result,
1858                                Register scan_temp,
1859                                Label& no_such_interface);
1860 
1861   // Test sub_klass against super_klass, with fast and slow paths.
1862 
1863   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1864   // One of the three labels can be NULL, meaning take the fall-through.
1865   // If super_check_offset is -1, the value is loaded up from super_klass.
1866   // No registers are killed, except temp_reg.
1867   void check_klass_subtype_fast_path(Register sub_klass,
1868                                      Register super_klass,
1869                                      Register temp_reg,
1870                                      Label* L_success,
1871                                      Label* L_failure,
1872                                      Label* L_slow_path,
1873                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1874 
1875   // The rest of the type check; must be wired to a corresponding fast path.
1876   // It does not repeat the fast path logic, so don't use it standalone.
1877   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1878   // Updates the sub's secondary super cache as necessary.
1879   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1880   void check_klass_subtype_slow_path(Register sub_klass,
1881                                      Register super_klass,
1882                                      Register temp_reg,
1883                                      Register temp2_reg,
1884                                      Label* L_success,
1885                                      Label* L_failure,
1886                                      bool set_cond_codes = false);
1887 
1888   // Simplified, combined version, good for typical uses.
1889   // Falls through on failure.
1890   void check_klass_subtype(Register sub_klass,
1891                            Register super_klass,
1892                            Register temp_reg,
1893                            Label& L_success);
1894 
1895   // method handles (JSR 292)
1896   void check_method_handle_type(Register mtype_reg, Register mh_reg,
1897                                 Register temp_reg,
1898                                 Label& wrong_method_type);
1899   void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
1900                                   Register temp_reg);
1901   void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
1902   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1903 
1904 
1905   //----
1906   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
1907 
1908   // Debugging
1909 
1910   // only if +VerifyOops
1911   void verify_oop(Register reg, const char* s = "broken oop");
1912   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
1913 
1914   // only if +VerifyFPU
1915   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1916 
1917   // prints msg, dumps registers and stops execution
1918   void stop(const char* msg);
1919 
1920   // prints msg and continues
1921   void warn(const char* msg);
1922 
1923   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
1924   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1925 
1926   void os_breakpoint();
1927 
1928   void untested()                                { stop("untested"); }
1929 
1930   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
1931 
1932   void should_not_reach_here()                   { stop("should not reach here"); }
1933 
1934   void print_CPU_state();
1935 
1936   // Stack overflow checking
1937   void bang_stack_with_offset(int offset) {
1938     // stack grows down, caller passes positive offset
1939     assert(offset > 0, "must bang with negative offset");
1940     movl(Address(rsp, (-offset)), rax);
1941   }
1942 
1943   // Writes to stack successive pages until offset reached to check for
1944   // stack overflow + shadow pages.  Also, clobbers tmp
1945   void bang_stack_size(Register size, Register tmp);
1946 
1947   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
1948                                                 Register tmp,
1949                                                 int offset);
1950 
1951   // Support for serializing memory accesses between threads
1952   void serialize_memory(Register thread, Register tmp);
1953 
1954   void verify_tlab();
1955 
1956   // Biased locking support
1957   // lock_reg and obj_reg must be loaded up with the appropriate values.
1958   // swap_reg must be rax, and is killed.
1959   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
1960   // be killed; if not supplied, push/pop will be used internally to
1961   // allocate a temporary (inefficient, avoid if possible).
1962   // Optional slow case is for implementations (interpreter and C1) which branch to
1963   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
1964   // Returns offset of first potentially-faulting instruction for null
1965   // check info (currently consumed only by C1). If
1966   // swap_reg_contains_mark is true then returns -1 as it is assumed
1967   // the calling code has already passed any potential faults.
1968   int biased_locking_enter(Register lock_reg, Register obj_reg,
1969                            Register swap_reg, Register tmp_reg,
1970                            bool swap_reg_contains_mark,
1971                            Label& done, Label* slow_case = NULL,
1972                            BiasedLockingCounters* counters = NULL);
1973   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
1974 
1975 
1976   Condition negate_condition(Condition cond);
1977 
1978   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
1979   // operands. In general the names are modified to avoid hiding the instruction in Assembler
1980   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
1981   // here in MacroAssembler. The major exception to this rule is call
1982 
1983   // Arithmetics
1984 
1985 
1986   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
1987   void addptr(Address dst, Register src);
1988 
1989   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
1990   void addptr(Register dst, int32_t src);
1991   void addptr(Register dst, Register src);
1992 
1993   void andptr(Register dst, int32_t src);
1994   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
1995 
1996   void cmp8(AddressLiteral src1, int imm);
1997 
1998   // renamed to drag out the casting of address to int32_t/intptr_t
1999   void cmp32(Register src1, int32_t imm);
2000 
2001   void cmp32(AddressLiteral src1, int32_t imm);
2002   // compare reg - mem, or reg - &mem
2003   void cmp32(Register src1, AddressLiteral src2);
2004 
2005   void cmp32(Register src1, Address src2);
2006 
2007 #ifndef _LP64
2008   void cmpoop(Address dst, jobject obj);
2009   void cmpoop(Register dst, jobject obj);
2010 #endif // _LP64
2011 
2012   // NOTE src2 must be the lval. This is NOT an mem-mem compare
2013   void cmpptr(Address src1, AddressLiteral src2);
2014 
2015   void cmpptr(Register src1, AddressLiteral src2);
2016 
2017   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2018   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2019   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2020 
2021   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2022   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2023 
2024   // cmp64 to avoild hiding cmpq
2025   void cmp64(Register src1, AddressLiteral src);
2026 
2027   void cmpxchgptr(Register reg, Address adr);
2028 
2029   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
2030 
2031 
2032   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
2033 
2034 
2035   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
2036 
2037   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
2038 
2039   void shlptr(Register dst, int32_t shift);
2040   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
2041 
2042   void shrptr(Register dst, int32_t shift);
2043   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
2044 
2045   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
2046   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
2047 
2048   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2049 
2050   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2051   void subptr(Register dst, int32_t src);
2052   void subptr(Register dst, Register src);
2053 
2054 
2055   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2056   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2057 
2058   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2059   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2060 
2061   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
2062 
2063 
2064 
2065   // Helper functions for statistics gathering.
2066   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
2067   void cond_inc32(Condition cond, AddressLiteral counter_addr);
2068   // Unconditional atomic increment.
2069   void atomic_incl(AddressLiteral counter_addr);
2070 
2071   void lea(Register dst, AddressLiteral adr);
2072   void lea(Address dst, AddressLiteral adr);
2073   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
2074 
2075   void leal32(Register dst, Address src) { leal(dst, src); }
2076 
2077   void test32(Register src1, AddressLiteral src2);
2078 
2079   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2080   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2081   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2082 
2083   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
2084   void testptr(Register src1, Register src2);
2085 
2086   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2087   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2088 
2089   // Calls
2090 
2091   void call(Label& L, relocInfo::relocType rtype);
2092   void call(Register entry);
2093 
2094   // NOTE: this call tranfers to the effective address of entry NOT
2095   // the address contained by entry. This is because this is more natural
2096   // for jumps/calls.
2097   void call(AddressLiteral entry);
2098 
2099   // Jumps
2100 
2101   // NOTE: these jumps tranfer to the effective address of dst NOT
2102   // the address contained by dst. This is because this is more natural
2103   // for jumps/calls.
2104   void jump(AddressLiteral dst);
2105   void jump_cc(Condition cc, AddressLiteral dst);
2106 
2107   // 32bit can do a case table jump in one instruction but we no longer allow the base
2108   // to be installed in the Address class. This jump will tranfers to the address
2109   // contained in the location described by entry (not the address of entry)
2110   void jump(ArrayAddress entry);
2111 
2112   // Floating
2113 
2114   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
2115   void andpd(XMMRegister dst, AddressLiteral src);
2116 
2117   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
2118   void comiss(XMMRegister dst, AddressLiteral src);
2119 
2120   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
2121   void comisd(XMMRegister dst, AddressLiteral src);
2122 
2123   void fldcw(Address src) { Assembler::fldcw(src); }
2124   void fldcw(AddressLiteral src);
2125 
2126   void fld_s(int index)   { Assembler::fld_s(index); }
2127   void fld_s(Address src) { Assembler::fld_s(src); }
2128   void fld_s(AddressLiteral src);
2129 
2130   void fld_d(Address src) { Assembler::fld_d(src); }
2131   void fld_d(AddressLiteral src);
2132 
2133   void fld_x(Address src) { Assembler::fld_x(src); }
2134   void fld_x(AddressLiteral src);
2135 
2136   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
2137   void ldmxcsr(AddressLiteral src);
2138 
2139 private:
2140   // these are private because users should be doing movflt/movdbl
2141 
2142   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
2143   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
2144   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
2145   void movss(XMMRegister dst, AddressLiteral src);
2146 
2147   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
2148   void movlpd(XMMRegister dst, AddressLiteral src);
2149 
2150 public:
2151 
2152   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
2153   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
2154   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
2155   void movsd(XMMRegister dst, AddressLiteral src);
2156 
2157   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
2158   void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
2159   void ucomiss(XMMRegister dst, AddressLiteral src);
2160 
2161   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
2162   void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
2163   void ucomisd(XMMRegister dst, AddressLiteral src);
2164 
2165   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
2166   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
2167   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
2168   void xorpd(XMMRegister dst, AddressLiteral src);
2169 
2170   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
2171   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
2172   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
2173   void xorps(XMMRegister dst, AddressLiteral src);
2174 
2175   // Data
2176 
2177   void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2178 
2179   void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2180   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2181 
2182   void movoop(Register dst, jobject obj);
2183   void movoop(Address dst, jobject obj);
2184 
2185   void movptr(ArrayAddress dst, Register src);
2186   // can this do an lea?
2187   void movptr(Register dst, ArrayAddress src);
2188 
2189   void movptr(Register dst, Address src);
2190 
2191   void movptr(Register dst, AddressLiteral src);
2192 
2193   void movptr(Register dst, intptr_t src);
2194   void movptr(Register dst, Register src);
2195   void movptr(Address dst, intptr_t src);
2196 
2197   void movptr(Address dst, Register src);
2198 
2199 #ifdef _LP64
2200   // Generally the next two are only used for moving NULL
2201   // Although there are situations in initializing the mark word where
2202   // they could be used. They are dangerous.
2203 
2204   // They only exist on LP64 so that int32_t and intptr_t are not the same
2205   // and we have ambiguous declarations.
2206 
2207   void movptr(Address dst, int32_t imm32);
2208   void movptr(Register dst, int32_t imm32);
2209 #endif // _LP64
2210 
2211   // to avoid hiding movl
2212   void mov32(AddressLiteral dst, Register src);
2213   void mov32(Register dst, AddressLiteral src);
2214 
2215   // to avoid hiding movb
2216   void movbyte(ArrayAddress dst, int src);
2217 
2218   // Can push value or effective address
2219   void pushptr(AddressLiteral src);
2220 
2221   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2222   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2223 
2224   void pushoop(jobject obj);
2225 
2226   // sign extend as need a l to ptr sized element
2227   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2228   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2229 
2230   // IndexOf strings.
2231   void string_indexof(Register str1, Register str2,
2232                       Register cnt1, Register cnt2, Register result,
2233                       XMMRegister vec, Register tmp);
2234 
2235   // Compare strings.
2236   void string_compare(Register str1, Register str2,
2237                       Register cnt1, Register cnt2, Register result,
2238                       XMMRegister vec1, XMMRegister vec2);
2239 
2240   // Compare char[] arrays.
2241   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
2242                           Register limit, Register result, Register chr,
2243                           XMMRegister vec1, XMMRegister vec2);
2244 
2245   // Fill primitive arrays
2246   void generate_fill(BasicType t, bool aligned,
2247                      Register to, Register value, Register count,
2248                      Register rtmp, XMMRegister xtmp);
2249 
2250 #undef VIRTUAL
2251 
2252 };
2253 
2254 /**
2255  * class SkipIfEqual:
2256  *
2257  * Instantiating this class will result in assembly code being output that will
2258  * jump around any code emitted between the creation of the instance and it's
2259  * automatic destruction at the end of a scope block, depending on the value of
2260  * the flag passed to the constructor, which will be checked at run-time.
2261  */
2262 class SkipIfEqual {
2263  private:
2264   MacroAssembler* _masm;
2265   Label _label;
2266 
2267  public:
2268    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
2269    ~SkipIfEqual();
2270 };
2271 
2272 #ifdef ASSERT
2273 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
2274 #endif