1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "runtime/os.hpp"
  30 #include "runtime/task.hpp"
  31 #include "runtime/threadCritical.hpp"
  32 #include "utilities/ostream.hpp"
  33 #ifdef TARGET_OS_FAMILY_linux
  34 # include "os_linux.inline.hpp"
  35 #endif
  36 #ifdef TARGET_OS_FAMILY_solaris
  37 # include "os_solaris.inline.hpp"
  38 #endif
  39 #ifdef TARGET_OS_FAMILY_windows
  40 # include "os_windows.inline.hpp"
  41 #endif
  42 
  43 void* CHeapObj::operator new(size_t size){
  44   return (void *) AllocateHeap(size, "CHeapObj-new");
  45 }
  46 
  47 void CHeapObj::operator delete(void* p){
  48  FreeHeap(p);
  49 }
  50 
  51 void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
  52 void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
  53 void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
  54 void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
  55 
  56 void* ResourceObj::operator new(size_t size, allocation_type type) {
  57   address res;
  58   switch (type) {
  59    case C_HEAP:
  60     res = (address)AllocateHeap(size, "C_Heap: ResourceOBJ");
  61     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
  62     break;
  63    case RESOURCE_AREA:
  64     // new(size) sets allocation type RESOURCE_AREA.
  65     res = (address)operator new(size);
  66     break;
  67    default:
  68     ShouldNotReachHere();
  69   }
  70   return res;
  71 }
  72 
  73 void ResourceObj::operator delete(void* p) {
  74   assert(((ResourceObj *)p)->allocated_on_C_heap(),
  75          "delete only allowed for C_HEAP objects");
  76   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
  77   FreeHeap(p);
  78 }
  79 
  80 #ifdef ASSERT
  81 void ResourceObj::set_allocation_type(address res, allocation_type type) {
  82     // Set allocation type in the resource object
  83     uintptr_t allocation = (uintptr_t)res;
  84     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
  85     assert(type <= allocation_mask, "incorrect allocation type");
  86     ResourceObj* resobj = (ResourceObj *)res;
  87     resobj->_allocation_t[0] = ~(allocation + type);
  88     if (type != STACK_OR_EMBEDDED) {
  89       // Called from operator new() and CollectionSetChooser(),
  90       // set verification value.
  91       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
  92     }
  93 }
  94 
  95 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
  96     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
  97     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
  98 }
  99 
 100 bool ResourceObj::is_type_set() const {
 101     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
 102     return get_allocation_type()  == type &&
 103            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
 104 }
 105 
 106 ResourceObj::ResourceObj() { // default constructor
 107     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
 108       // Operator new() is not called for allocations
 109       // on stack and for embedded objects.
 110       set_allocation_type((address)this, STACK_OR_EMBEDDED);
 111     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
 112       // For some reason we got a value which resembles
 113       // an embedded or stack object (operator new() does not
 114       // set such type). Keep it since it is valid value
 115       // (even if it was garbage).
 116       // Ignore garbage in other fields.
 117     } else if (is_type_set()) {
 118       // Operator new() was called and type was set.
 119       assert(!allocated_on_stack(),
 120              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
 121                      this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
 122     } else {
 123       // Operator new() was not called.
 124       // Assume that it is embedded or stack object.
 125       set_allocation_type((address)this, STACK_OR_EMBEDDED);
 126     }
 127     _allocation_t[1] = 0; // Zap verification value
 128 }
 129 
 130 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
 131     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
 132     // Note: garbage may resembles valid value.
 133     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
 134            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
 135                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
 136     set_allocation_type((address)this, STACK_OR_EMBEDDED);
 137     _allocation_t[1] = 0; // Zap verification value
 138 }
 139 
 140 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
 141     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
 142     assert(allocated_on_stack(),
 143            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
 144                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
 145     // Keep current _allocation_t value;
 146     return *this;
 147 }
 148 
 149 ResourceObj::~ResourceObj() {
 150     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
 151     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
 152       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
 153     }
 154 }
 155 #endif // ASSERT
 156 
 157 
 158 void trace_heap_malloc(size_t size, const char* name, void* p) {
 159   // A lock is not needed here - tty uses a lock internally
 160   tty->print_cr("Heap malloc " INTPTR_FORMAT " %7d %s", p, size, name == NULL ? "" : name);
 161 }
 162 
 163 
 164 void trace_heap_free(void* p) {
 165   // A lock is not needed here - tty uses a lock internally
 166   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
 167 }
 168 
 169 bool warn_new_operator = false; // see vm_main
 170 
 171 //--------------------------------------------------------------------------------------
 172 // ChunkPool implementation
 173 
 174 // MT-safe pool of chunks to reduce malloc/free thrashing
 175 // NB: not using Mutex because pools are used before Threads are initialized
 176 class ChunkPool {
 177   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
 178   size_t       _num_chunks;   // number of unused chunks in pool
 179   size_t       _num_used;     // number of chunks currently checked out
 180   const size_t _size;         // size of each chunk (must be uniform)
 181 
 182   // Our three static pools
 183   static ChunkPool* _large_pool;
 184   static ChunkPool* _medium_pool;
 185   static ChunkPool* _small_pool;
 186 
 187   // return first element or null
 188   void* get_first() {
 189     Chunk* c = _first;
 190     if (_first) {
 191       _first = _first->next();
 192       _num_chunks--;
 193     }
 194     return c;
 195   }
 196 
 197  public:
 198   // All chunks in a ChunkPool has the same size
 199    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
 200 
 201   // Allocate a new chunk from the pool (might expand the pool)
 202   void* allocate(size_t bytes) {
 203     assert(bytes == _size, "bad size");
 204     void* p = NULL;
 205     { ThreadCritical tc;
 206       _num_used++;
 207       p = get_first();
 208       if (p == NULL) p = os::malloc(bytes);
 209     }
 210     if (p == NULL)
 211       vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
 212 
 213     return p;
 214   }
 215 
 216   // Return a chunk to the pool
 217   void free(Chunk* chunk) {
 218     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
 219     ThreadCritical tc;
 220     _num_used--;
 221 
 222     // Add chunk to list
 223     chunk->set_next(_first);
 224     _first = chunk;
 225     _num_chunks++;
 226   }
 227 
 228   // Prune the pool
 229   void free_all_but(size_t n) {
 230     // if we have more than n chunks, free all of them
 231     ThreadCritical tc;
 232     if (_num_chunks > n) {
 233       // free chunks at end of queue, for better locality
 234       Chunk* cur = _first;
 235       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
 236 
 237       if (cur != NULL) {
 238         Chunk* next = cur->next();
 239         cur->set_next(NULL);
 240         cur = next;
 241 
 242         // Free all remaining chunks
 243         while(cur != NULL) {
 244           next = cur->next();
 245           os::free(cur);
 246           _num_chunks--;
 247           cur = next;
 248         }
 249       }
 250     }
 251   }
 252 
 253   // Accessors to preallocated pool's
 254   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
 255   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
 256   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
 257 
 258   static void initialize() {
 259     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
 260     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
 261     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
 262   }
 263 
 264   static void clean() {
 265     enum { BlocksToKeep = 5 };
 266      _small_pool->free_all_but(BlocksToKeep);
 267      _medium_pool->free_all_but(BlocksToKeep);
 268      _large_pool->free_all_but(BlocksToKeep);
 269   }
 270 };
 271 
 272 ChunkPool* ChunkPool::_large_pool  = NULL;
 273 ChunkPool* ChunkPool::_medium_pool = NULL;
 274 ChunkPool* ChunkPool::_small_pool  = NULL;
 275 
 276 void chunkpool_init() {
 277   ChunkPool::initialize();
 278 }
 279 
 280 void
 281 Chunk::clean_chunk_pool() {
 282   ChunkPool::clean();
 283 }
 284 
 285 
 286 //--------------------------------------------------------------------------------------
 287 // ChunkPoolCleaner implementation
 288 //
 289 
 290 class ChunkPoolCleaner : public PeriodicTask {
 291   enum { CleaningInterval = 5000 };      // cleaning interval in ms
 292 
 293  public:
 294    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
 295    void task() {
 296      ChunkPool::clean();
 297    }
 298 };
 299 
 300 //--------------------------------------------------------------------------------------
 301 // Chunk implementation
 302 
 303 void* Chunk::operator new(size_t requested_size, size_t length) {
 304   // requested_size is equal to sizeof(Chunk) but in order for the arena
 305   // allocations to come out aligned as expected the size must be aligned
 306   // to expected arean alignment.
 307   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
 308   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
 309   size_t bytes = ARENA_ALIGN(requested_size) + length;
 310   switch (length) {
 311    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
 312    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
 313    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
 314    default: {
 315      void *p =  os::malloc(bytes);
 316      if (p == NULL)
 317        vm_exit_out_of_memory(bytes, "Chunk::new");
 318      return p;
 319    }
 320   }
 321 }
 322 
 323 void Chunk::operator delete(void* p) {
 324   Chunk* c = (Chunk*)p;
 325   switch (c->length()) {
 326    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
 327    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
 328    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
 329    default:                 os::free(c);
 330   }
 331 }
 332 
 333 Chunk::Chunk(size_t length) : _len(length) {
 334   _next = NULL;         // Chain on the linked list
 335 }
 336 
 337 
 338 void Chunk::chop() {
 339   Chunk *k = this;
 340   while( k ) {
 341     Chunk *tmp = k->next();
 342     // clear out this chunk (to detect allocation bugs)
 343     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
 344     delete k;                   // Free chunk (was malloc'd)
 345     k = tmp;
 346   }
 347 }
 348 
 349 void Chunk::next_chop() {
 350   _next->chop();
 351   _next = NULL;
 352 }
 353 
 354 
 355 void Chunk::start_chunk_pool_cleaner_task() {
 356 #ifdef ASSERT
 357   static bool task_created = false;
 358   assert(!task_created, "should not start chuck pool cleaner twice");
 359   task_created = true;
 360 #endif
 361   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
 362   cleaner->enroll();
 363 }
 364 
 365 //------------------------------Arena------------------------------------------
 366 
 367 Arena::Arena(size_t init_size) {
 368   size_t round_size = (sizeof (char *)) - 1;
 369   init_size = (init_size+round_size) & ~round_size;
 370   _first = _chunk = new (init_size) Chunk(init_size);
 371   _hwm = _chunk->bottom();      // Save the cached hwm, max
 372   _max = _chunk->top();
 373   set_size_in_bytes(init_size);
 374 }
 375 
 376 Arena::Arena() {
 377   _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
 378   _hwm = _chunk->bottom();      // Save the cached hwm, max
 379   _max = _chunk->top();
 380   set_size_in_bytes(Chunk::init_size);
 381 }
 382 
 383 Arena::Arena(Arena *a) : _chunk(a->_chunk), _hwm(a->_hwm), _max(a->_max), _first(a->_first) {
 384   set_size_in_bytes(a->size_in_bytes());
 385 }
 386 
 387 Arena *Arena::move_contents(Arena *copy) {
 388   copy->destruct_contents();
 389   copy->_chunk = _chunk;
 390   copy->_hwm   = _hwm;
 391   copy->_max   = _max;
 392   copy->_first = _first;
 393   copy->set_size_in_bytes(size_in_bytes());
 394   // Destroy original arena
 395   reset();
 396   return copy;            // Return Arena with contents
 397 }
 398 
 399 Arena::~Arena() {
 400   destruct_contents();
 401 }
 402 
 403 // Destroy this arenas contents and reset to empty
 404 void Arena::destruct_contents() {
 405   if (UseMallocOnly && _first != NULL) {
 406     char* end = _first->next() ? _first->top() : _hwm;
 407     free_malloced_objects(_first, _first->bottom(), end, _hwm);
 408   }
 409   _first->chop();
 410   reset();
 411 }
 412 
 413 
 414 // Total of all Chunks in arena
 415 size_t Arena::used() const {
 416   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
 417   register Chunk *k = _first;
 418   while( k != _chunk) {         // Whilst have Chunks in a row
 419     sum += k->length();         // Total size of this Chunk
 420     k = k->next();              // Bump along to next Chunk
 421   }
 422   return sum;                   // Return total consumed space.
 423 }
 424 
 425 
 426 // Grow a new Chunk
 427 void* Arena::grow( size_t x ) {
 428   // Get minimal required size.  Either real big, or even bigger for giant objs
 429   size_t len = MAX2(x, (size_t) Chunk::size);
 430 
 431   Chunk *k = _chunk;            // Get filled-up chunk address
 432   _chunk = new (len) Chunk(len);
 433 
 434   if (_chunk == NULL)
 435       vm_exit_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
 436 
 437   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
 438   else _first = _chunk;
 439   _hwm  = _chunk->bottom();     // Save the cached hwm, max
 440   _max =  _chunk->top();
 441   set_size_in_bytes(size_in_bytes() + len);
 442   void* result = _hwm;
 443   _hwm += x;
 444   return result;
 445 }
 446 
 447 
 448 
 449 // Reallocate storage in Arena.
 450 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size) {
 451   assert(new_size >= 0, "bad size");
 452   if (new_size == 0) return NULL;
 453 #ifdef ASSERT
 454   if (UseMallocOnly) {
 455     // always allocate a new object  (otherwise we'll free this one twice)
 456     char* copy = (char*)Amalloc(new_size);
 457     size_t n = MIN2(old_size, new_size);
 458     if (n > 0) memcpy(copy, old_ptr, n);
 459     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
 460     return copy;
 461   }
 462 #endif
 463   char *c_old = (char*)old_ptr; // Handy name
 464   // Stupid fast special case
 465   if( new_size <= old_size ) {  // Shrink in-place
 466     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
 467       _hwm = c_old+new_size;    // Adjust hwm
 468     return c_old;
 469   }
 470 
 471   // make sure that new_size is legal
 472   size_t corrected_new_size = ARENA_ALIGN(new_size);
 473 
 474   // See if we can resize in-place
 475   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
 476       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
 477     _hwm = c_old+corrected_new_size;      // Adjust hwm
 478     return c_old;               // Return old pointer
 479   }
 480 
 481   // Oops, got to relocate guts
 482   void *new_ptr = Amalloc(new_size);
 483   memcpy( new_ptr, c_old, old_size );
 484   Afree(c_old,old_size);        // Mostly done to keep stats accurate
 485   return new_ptr;
 486 }
 487 
 488 
 489 // Determine if pointer belongs to this Arena or not.
 490 bool Arena::contains( const void *ptr ) const {
 491 #ifdef ASSERT
 492   if (UseMallocOnly) {
 493     // really slow, but not easy to make fast
 494     if (_chunk == NULL) return false;
 495     char** bottom = (char**)_chunk->bottom();
 496     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
 497       if (*p == ptr) return true;
 498     }
 499     for (Chunk *c = _first; c != NULL; c = c->next()) {
 500       if (c == _chunk) continue;  // current chunk has been processed
 501       char** bottom = (char**)c->bottom();
 502       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
 503         if (*p == ptr) return true;
 504       }
 505     }
 506     return false;
 507   }
 508 #endif
 509   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
 510     return true;                // Check for in this chunk
 511   for (Chunk *c = _first; c; c = c->next()) {
 512     if (c == _chunk) continue;  // current chunk has been processed
 513     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
 514       return true;              // Check for every chunk in Arena
 515     }
 516   }
 517   return false;                 // Not in any Chunk, so not in Arena
 518 }
 519 
 520 
 521 #ifdef ASSERT
 522 void* Arena::malloc(size_t size) {
 523   assert(UseMallocOnly, "shouldn't call");
 524   // use malloc, but save pointer in res. area for later freeing
 525   char** save = (char**)internal_malloc_4(sizeof(char*));
 526   return (*save = (char*)os::malloc(size));
 527 }
 528 
 529 // for debugging with UseMallocOnly
 530 void* Arena::internal_malloc_4(size_t x) {
 531   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 532   if (_hwm + x > _max) {
 533     return grow(x);
 534   } else {
 535     char *old = _hwm;
 536     _hwm += x;
 537     return old;
 538   }
 539 }
 540 #endif
 541 
 542 
 543 //--------------------------------------------------------------------------------------
 544 // Non-product code
 545 
 546 #ifndef PRODUCT
 547 // The global operator new should never be called since it will usually indicate
 548 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
 549 // that they're allocated on the C heap.
 550 // Commented out in product version to avoid conflicts with third-party C++ native code.
 551 // %% note this is causing a problem on solaris debug build. the global
 552 // new is being called from jdk source and causing data corruption.
 553 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
 554 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
 555 #ifdef CATCH_OPERATOR_NEW_USAGE
 556 void* operator new(size_t size){
 557   static bool warned = false;
 558   if (!warned && warn_new_operator)
 559     warning("should not call global (default) operator new");
 560   warned = true;
 561   return (void *) AllocateHeap(size, "global operator new");
 562 }
 563 #endif
 564 
 565 void AllocatedObj::print() const       { print_on(tty); }
 566 void AllocatedObj::print_value() const { print_value_on(tty); }
 567 
 568 void AllocatedObj::print_on(outputStream* st) const {
 569   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
 570 }
 571 
 572 void AllocatedObj::print_value_on(outputStream* st) const {
 573   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
 574 }
 575 
 576 size_t Arena::_bytes_allocated = 0;
 577 
 578 AllocStats::AllocStats() {
 579   start_mallocs = os::num_mallocs;
 580   start_frees = os::num_frees;
 581   start_malloc_bytes = os::alloc_bytes;
 582   start_res_bytes = Arena::_bytes_allocated;
 583 }
 584 
 585 int     AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
 586 size_t  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
 587 size_t  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
 588 int     AllocStats::num_frees() { return os::num_frees - start_frees; }
 589 void    AllocStats::print() {
 590   tty->print("%d mallocs (%ldK), %d frees, %ldK resrc",
 591              num_mallocs(), alloc_bytes()/K, num_frees(), resource_bytes()/K);
 592 }
 593 
 594 
 595 // debugging code
 596 inline void Arena::free_all(char** start, char** end) {
 597   for (char** p = start; p < end; p++) if (*p) os::free(*p);
 598 }
 599 
 600 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
 601   assert(UseMallocOnly, "should not call");
 602   // free all objects malloced since resource mark was created; resource area
 603   // contains their addresses
 604   if (chunk->next()) {
 605     // this chunk is full, and some others too
 606     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
 607       char* top = c->top();
 608       if (c->next() == NULL) {
 609         top = hwm2;     // last junk is only used up to hwm2
 610         assert(c->contains(hwm2), "bad hwm2");
 611       }
 612       free_all((char**)c->bottom(), (char**)top);
 613     }
 614     assert(chunk->contains(hwm), "bad hwm");
 615     assert(chunk->contains(max), "bad max");
 616     free_all((char**)hwm, (char**)max);
 617   } else {
 618     // this chunk was partially used
 619     assert(chunk->contains(hwm), "bad hwm");
 620     assert(chunk->contains(hwm2), "bad hwm2");
 621     free_all((char**)hwm, (char**)hwm2);
 622   }
 623 }
 624 
 625 
 626 ReallocMark::ReallocMark() {
 627 #ifdef ASSERT
 628   Thread *thread = ThreadLocalStorage::get_thread_slow();
 629   _nesting = thread->resource_area()->nesting();
 630 #endif
 631 }
 632 
 633 void ReallocMark::check() {
 634 #ifdef ASSERT
 635   if (_nesting != Thread::current()->resource_area()->nesting()) {
 636     fatal("allocation bug: array could grow within nested ResourceMark");
 637   }
 638 #endif
 639 }
 640 
 641 #endif // Non-product