1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
  26 #define SHARE_VM_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 
  34 class CmpNode;
  35 class CountedLoopEndNode;
  36 class CountedLoopNode;
  37 class IdealLoopTree;
  38 class LoopNode;
  39 class Node;
  40 class PhaseIdealLoop;
  41 class VectorSet;
  42 class Invariance;
  43 struct small_cache;
  44 
  45 //
  46 //                  I D E A L I Z E D   L O O P S
  47 //
  48 // Idealized loops are the set of loops I perform more interesting
  49 // transformations on, beyond simple hoisting.
  50 
  51 //------------------------------LoopNode---------------------------------------
  52 // Simple loop header.  Fall in path on left, loop-back path on right.
  53 class LoopNode : public RegionNode {
  54   // Size is bigger to hold the flags.  However, the flags do not change
  55   // the semantics so it does not appear in the hash & cmp functions.
  56   virtual uint size_of() const { return sizeof(*this); }
  57 protected:
  58   short _loop_flags;
  59   // Names for flag bitfields
  60   enum { pre_post_main=0, inner_loop=8, partial_peel_loop=16, partial_peel_failed=32  };
  61   char _unswitch_count;
  62   enum { _unswitch_max=3 };
  63 
  64 public:
  65   // Names for edge indices
  66   enum { Self=0, EntryControl, LoopBackControl };
  67 
  68   int is_inner_loop() const { return _loop_flags & inner_loop; }
  69   void set_inner_loop() { _loop_flags |= inner_loop; }
  70 
  71   int is_partial_peel_loop() const { return _loop_flags & partial_peel_loop; }
  72   void set_partial_peel_loop() { _loop_flags |= partial_peel_loop; }
  73   int partial_peel_has_failed() const { return _loop_flags & partial_peel_failed; }
  74   void mark_partial_peel_failed() { _loop_flags |= partial_peel_failed; }
  75 
  76   int unswitch_max() { return _unswitch_max; }
  77   int unswitch_count() { return _unswitch_count; }
  78   void set_unswitch_count(int val) {
  79     assert (val <= unswitch_max(), "too many unswitches");
  80     _unswitch_count = val;
  81   }
  82 
  83   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
  84     init_class_id(Class_Loop);
  85     init_req(EntryControl, entry);
  86     init_req(LoopBackControl, backedge);
  87   }
  88 
  89   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  90   virtual int Opcode() const;
  91   bool can_be_counted_loop(PhaseTransform* phase) const {
  92     return req() == 3 && in(0) != NULL &&
  93       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
  94       in(2) != NULL && phase->type(in(2)) != Type::TOP;
  95   }
  96 #ifndef PRODUCT
  97   virtual void dump_spec(outputStream *st) const;
  98 #endif
  99 };
 100 
 101 //------------------------------Counted Loops----------------------------------
 102 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 103 // path (and maybe some other exit paths).  The trip-counter exit is always
 104 // last in the loop.  The trip-counter does not have to stride by a constant,
 105 // but it does have to stride by a loop-invariant amount; the exit value is
 106 // also loop invariant.
 107 
 108 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 109 // CountedLoopNode has the incoming loop control and the loop-back-control
 110 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 111 // CountedLoopEndNode has an incoming control (possibly not the
 112 // CountedLoopNode if there is control flow in the loop), the post-increment
 113 // trip-counter value, and the limit.  The trip-counter value is always of
 114 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 115 // by a Phi connected to the CountedLoopNode.  The stride is loop invariant.
 116 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 117 // CountedLoopEndNode also takes in the loop-invariant limit value.
 118 
 119 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 120 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 121 // via the old-trip-counter from the Op node.
 122 
 123 //------------------------------CountedLoopNode--------------------------------
 124 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 125 // inputs the incoming loop-start control and the loop-back control, so they
 126 // act like RegionNodes.  They also take in the initial trip counter, the
 127 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 128 // produce a loop-body control and the trip counter value.  Since
 129 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 130 
 131 class CountedLoopNode : public LoopNode {
 132   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 133   // the semantics so it does not appear in the hash & cmp functions.
 134   virtual uint size_of() const { return sizeof(*this); }
 135 
 136   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 137   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 138   node_idx_t _main_idx;
 139 
 140   // Known trip count calculated by policy_maximally_unroll
 141   int   _trip_count;
 142 
 143   // Expected trip count from profile data
 144   float _profile_trip_cnt;
 145 
 146   // Log2 of original loop bodies in unrolled loop
 147   int _unrolled_count_log2;
 148 
 149   // Node count prior to last unrolling - used to decide if
 150   // unroll,optimize,unroll,optimize,... is making progress
 151   int _node_count_before_unroll;
 152 
 153 public:
 154   CountedLoopNode( Node *entry, Node *backedge )
 155     : LoopNode(entry, backedge), _trip_count(max_jint),
 156       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
 157       _node_count_before_unroll(0) {
 158     init_class_id(Class_CountedLoop);
 159     // Initialize _trip_count to the largest possible value.
 160     // Will be reset (lower) if the loop's trip count is known.
 161   }
 162 
 163   virtual int Opcode() const;
 164   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 165 
 166   Node *init_control() const { return in(EntryControl); }
 167   Node *back_control() const { return in(LoopBackControl); }
 168   CountedLoopEndNode *loopexit() const;
 169   Node *init_trip() const;
 170   Node *stride() const;
 171   int   stride_con() const;
 172   bool  stride_is_con() const;
 173   Node *limit() const;
 174   Node *incr() const;
 175   Node *phi() const;
 176 
 177   // Match increment with optional truncation
 178   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 179 
 180   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 181   // can run short a few iterations and may start a few iterations in.
 182   // It will be RCE'd and unrolled and aligned.
 183 
 184   // A following 'post' loop will run any remaining iterations.  Used
 185   // during Range Check Elimination, the 'post' loop will do any final
 186   // iterations with full checks.  Also used by Loop Unrolling, where
 187   // the 'post' loop will do any epilog iterations needed.  Basically,
 188   // a 'post' loop can not profitably be further unrolled or RCE'd.
 189 
 190   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 191   // it may do under-flow checks for RCE and may do alignment iterations
 192   // so the following main loop 'knows' that it is striding down cache
 193   // lines.
 194 
 195   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 196   // Aligned, may be missing it's pre-loop.
 197   enum { Normal=0, Pre=1, Main=2, Post=3, PrePostFlagsMask=3, Main_Has_No_Pre_Loop=4 };
 198   int is_normal_loop() const { return (_loop_flags&PrePostFlagsMask) == Normal; }
 199   int is_pre_loop   () const { return (_loop_flags&PrePostFlagsMask) == Pre;    }
 200   int is_main_loop  () const { return (_loop_flags&PrePostFlagsMask) == Main;   }
 201   int is_post_loop  () const { return (_loop_flags&PrePostFlagsMask) == Post;   }
 202   int is_main_no_pre_loop() const { return _loop_flags & Main_Has_No_Pre_Loop; }
 203   void set_main_no_pre_loop() { _loop_flags |= Main_Has_No_Pre_Loop; }
 204 
 205   int main_idx() const { return _main_idx; }
 206 
 207 
 208   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 209   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 210   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 211   void set_normal_loop(                    ) { _loop_flags &= ~PrePostFlagsMask; }
 212 
 213   void set_trip_count(int tc) { _trip_count = tc; }
 214   int trip_count()            { return _trip_count; }
 215 
 216   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 217   float profile_trip_cnt()             { return _profile_trip_cnt; }
 218 
 219   void double_unrolled_count() { _unrolled_count_log2++; }
 220   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 221 
 222   void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
 223   int  node_count_before_unroll()           { return _node_count_before_unroll; }
 224 
 225 #ifndef PRODUCT
 226   virtual void dump_spec(outputStream *st) const;
 227 #endif
 228 };
 229 
 230 //------------------------------CountedLoopEndNode-----------------------------
 231 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 232 // IfNodes.
 233 class CountedLoopEndNode : public IfNode {
 234 public:
 235   enum { TestControl, TestValue };
 236 
 237   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 238     : IfNode( control, test, prob, cnt) {
 239     init_class_id(Class_CountedLoopEnd);
 240   }
 241   virtual int Opcode() const;
 242 
 243   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 244   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 245   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 246   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 247   Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 248   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 249   int stride_con() const;
 250   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 251   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 252   CountedLoopNode *loopnode() const {
 253     Node *ln = phi()->in(0);
 254     assert( ln->Opcode() == Op_CountedLoop, "malformed loop" );
 255     return (CountedLoopNode*)ln; }
 256 
 257 #ifndef PRODUCT
 258   virtual void dump_spec(outputStream *st) const;
 259 #endif
 260 };
 261 
 262 
 263 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
 264   Node *bc = back_control();
 265   if( bc == NULL ) return NULL;
 266   Node *le = bc->in(0);
 267   if( le->Opcode() != Op_CountedLoopEnd )
 268     return NULL;
 269   return (CountedLoopEndNode*)le;
 270 }
 271 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
 272 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
 273 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
 274 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
 275 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
 276 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
 277 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
 278 
 279 
 280 // -----------------------------IdealLoopTree----------------------------------
 281 class IdealLoopTree : public ResourceObj {
 282 public:
 283   IdealLoopTree *_parent;       // Parent in loop tree
 284   IdealLoopTree *_next;         // Next sibling in loop tree
 285   IdealLoopTree *_child;        // First child in loop tree
 286 
 287   // The head-tail backedge defines the loop.
 288   // If tail is NULL then this loop has multiple backedges as part of the
 289   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 290   // them at the loop bottom and flow 1 real backedge into the loop.
 291   Node *_head;                  // Head of loop
 292   Node *_tail;                  // Tail of loop
 293   inline Node *tail();          // Handle lazy update of _tail field
 294   PhaseIdealLoop* _phase;
 295 
 296   Node_List _body;              // Loop body for inner loops
 297 
 298   uint8 _nest;                  // Nesting depth
 299   uint8 _irreducible:1,         // True if irreducible
 300         _has_call:1,            // True if has call safepoint
 301         _has_sfpt:1,            // True if has non-call safepoint
 302         _rce_candidate:1;       // True if candidate for range check elimination
 303 
 304   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 305   bool  _allow_optimizations;   // Allow loop optimizations
 306 
 307   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 308     : _parent(0), _next(0), _child(0),
 309       _head(head), _tail(tail),
 310       _phase(phase),
 311       _required_safept(NULL),
 312       _allow_optimizations(true),
 313       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
 314   { }
 315 
 316   // Is 'l' a member of 'this'?
 317   int is_member( const IdealLoopTree *l ) const; // Test for nested membership
 318 
 319   // Set loop nesting depth.  Accumulate has_call bits.
 320   int set_nest( uint depth );
 321 
 322   // Split out multiple fall-in edges from the loop header.  Move them to a
 323   // private RegionNode before the loop.  This becomes the loop landing pad.
 324   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 325 
 326   // Split out the outermost loop from this shared header.
 327   void split_outer_loop( PhaseIdealLoop *phase );
 328 
 329   // Merge all the backedges from the shared header into a private Region.
 330   // Feed that region as the one backedge to this loop.
 331   void merge_many_backedges( PhaseIdealLoop *phase );
 332 
 333   // Split shared headers and insert loop landing pads.
 334   // Insert a LoopNode to replace the RegionNode.
 335   // Returns TRUE if loop tree is structurally changed.
 336   bool beautify_loops( PhaseIdealLoop *phase );
 337 
 338   // Perform optimization to use the loop predicates for null checks and range checks.
 339   // Applies to any loop level (not just the innermost one)
 340   bool loop_predication( PhaseIdealLoop *phase);
 341 
 342   // Perform iteration-splitting on inner loops.  Split iterations to
 343   // avoid range checks or one-shot null checks.  Returns false if the
 344   // current round of loop opts should stop.
 345   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 346 
 347   // Driver for various flavors of iteration splitting.  Returns false
 348   // if the current round of loop opts should stop.
 349   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 350 
 351   // Given dominators, try to find loops with calls that must always be
 352   // executed (call dominates loop tail).  These loops do not need non-call
 353   // safepoints (ncsfpt).
 354   void check_safepts(VectorSet &visited, Node_List &stack);
 355 
 356   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 357   // encountered.
 358   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 359 
 360   // Convert to counted loops where possible
 361   void counted_loop( PhaseIdealLoop *phase );
 362 
 363   // Check for Node being a loop-breaking test
 364   Node *is_loop_exit(Node *iff) const;
 365 
 366   // Returns true if ctrl is executed on every complete iteration
 367   bool dominates_backedge(Node* ctrl);
 368 
 369   // Remove simplistic dead code from loop body
 370   void DCE_loop_body();
 371 
 372   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 373   // Replace with a 1-in-10 exit guess.
 374   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 375 
 376   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 377   // Useful for unrolling loops with NO array accesses.
 378   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 379 
 380   // Return TRUE or FALSE if the loop should be unswitched -- clone
 381   // loop with an invariant test
 382   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 383 
 384   // Micro-benchmark spamming.  Remove empty loops.
 385   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 386 
 387   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 388   // make some loop-invariant test (usually a null-check) happen before the
 389   // loop.
 390   bool policy_peeling( PhaseIdealLoop *phase ) const;
 391 
 392   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 393   // known trip count in the counted loop node.
 394   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 395 
 396   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 397   // the loop is a CountedLoop and the body is small enough.
 398   bool policy_unroll( PhaseIdealLoop *phase ) const;
 399 
 400   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 401   // Gather a list of IF tests that are dominated by iteration splitting;
 402   // also gather the end of the first split and the start of the 2nd split.
 403   bool policy_range_check( PhaseIdealLoop *phase ) const;
 404 
 405   // Return TRUE or FALSE if the loop should be cache-line aligned.
 406   // Gather the expression that does the alignment.  Note that only
 407   // one array base can be aligned in a loop (unless the VM guarantees
 408   // mutual alignment).  Note that if we vectorize short memory ops
 409   // into longer memory ops, we may want to increase alignment.
 410   bool policy_align( PhaseIdealLoop *phase ) const;
 411 
 412   // Return TRUE if "iff" is a range check.
 413   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
 414 
 415   // Compute loop trip count from profile data
 416   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 417 
 418   // Reassociate invariant expressions.
 419   void reassociate_invariants(PhaseIdealLoop *phase);
 420   // Reassociate invariant add and subtract expressions.
 421   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 422   // Return nonzero index of invariant operand if invariant and variant
 423   // are combined with an Add or Sub. Helper for reassociate_invariants.
 424   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 425 
 426   // Return true if n is invariant
 427   bool is_invariant(Node* n) const;
 428 
 429   // Put loop body on igvn work list
 430   void record_for_igvn();
 431 
 432   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 433   bool is_inner()   { return is_loop() && _child == NULL; }
 434   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 435 
 436 #ifndef PRODUCT
 437   void dump_head( ) const;      // Dump loop head only
 438   void dump() const;            // Dump this loop recursively
 439   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 440 #endif
 441 
 442 };
 443 
 444 // -----------------------------PhaseIdealLoop---------------------------------
 445 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 446 // loop tree.  Drives the loop-based transformations on the ideal graph.
 447 class PhaseIdealLoop : public PhaseTransform {
 448   friend class IdealLoopTree;
 449   friend class SuperWord;
 450   // Pre-computed def-use info
 451   PhaseIterGVN &_igvn;
 452 
 453   // Head of loop tree
 454   IdealLoopTree *_ltree_root;
 455 
 456   // Array of pre-order numbers, plus post-visited bit.
 457   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 458   // ODD for post-visited.  Other bits are the pre-order number.
 459   uint *_preorders;
 460   uint _max_preorder;
 461 
 462   const PhaseIdealLoop* _verify_me;
 463   bool _verify_only;
 464 
 465   // Allocate _preorders[] array
 466   void allocate_preorders() {
 467     _max_preorder = C->unique()+8;
 468     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 469     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 470   }
 471 
 472   // Allocate _preorders[] array
 473   void reallocate_preorders() {
 474     if ( _max_preorder < C->unique() ) {
 475       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 476       _max_preorder = C->unique();
 477     }
 478     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 479   }
 480 
 481   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 482   // adds new nodes.
 483   void check_grow_preorders( ) {
 484     if ( _max_preorder < C->unique() ) {
 485       uint newsize = _max_preorder<<1;  // double size of array
 486       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 487       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 488       _max_preorder = newsize;
 489     }
 490   }
 491   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 492   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 493   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 494   void set_preorder_visited( Node *n, int pre_order ) {
 495     assert( !is_visited( n ), "already set" );
 496     _preorders[n->_idx] = (pre_order<<1);
 497   };
 498   // Return pre-order number.
 499   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 500 
 501   // Check for being post-visited.
 502   // Should be previsited already (checked with assert(is_visited(n))).
 503   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 504 
 505   // Mark as post visited
 506   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 507 
 508   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 509   // Returns true if "n" is a data node, false if it's a control node.
 510   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 511 
 512   // clear out dead code after build_loop_late
 513   Node_List _deadlist;
 514 
 515   // Support for faster execution of get_late_ctrl()/dom_lca()
 516   // when a node has many uses and dominator depth is deep.
 517   Node_Array _dom_lca_tags;
 518   void   init_dom_lca_tags();
 519   void   clear_dom_lca_tags();
 520 
 521   // Helper for debugging bad dominance relationships
 522   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 523 
 524   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 525 
 526   // Inline wrapper for frequent cases:
 527   // 1) only one use
 528   // 2) a use is the same as the current LCA passed as 'n1'
 529   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 530     assert( n->is_CFG(), "" );
 531     // Fast-path NULL lca
 532     if( lca != NULL && lca != n ) {
 533       assert( lca->is_CFG(), "" );
 534       // find LCA of all uses
 535       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 536     }
 537     return find_non_split_ctrl(n);
 538   }
 539   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 540 
 541   // Helper function for directing control inputs away from CFG split
 542   // points.
 543   Node *find_non_split_ctrl( Node *ctrl ) const {
 544     if (ctrl != NULL) {
 545       if (ctrl->is_MultiBranch()) {
 546         ctrl = ctrl->in(0);
 547       }
 548       assert(ctrl->is_CFG(), "CFG");
 549     }
 550     return ctrl;
 551   }
 552 
 553 public:
 554   bool has_node( Node* n ) const { return _nodes[n->_idx] != NULL; }
 555   // check if transform created new nodes that need _ctrl recorded
 556   Node *get_late_ctrl( Node *n, Node *early );
 557   Node *get_early_ctrl( Node *n );
 558   void set_early_ctrl( Node *n );
 559   void set_subtree_ctrl( Node *root );
 560   void set_ctrl( Node *n, Node *ctrl ) {
 561     assert( !has_node(n) || has_ctrl(n), "" );
 562     assert( ctrl->in(0), "cannot set dead control node" );
 563     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 564     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 565   }
 566   // Set control and update loop membership
 567   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 568     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 569     IdealLoopTree* new_loop = get_loop(ctrl);
 570     if (old_loop != new_loop) {
 571       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 572       if (new_loop->_child == NULL) new_loop->_body.push(n);
 573     }
 574     set_ctrl(n, ctrl);
 575   }
 576   // Control nodes can be replaced or subsumed.  During this pass they
 577   // get their replacement Node in slot 1.  Instead of updating the block
 578   // location of all Nodes in the subsumed block, we lazily do it.  As we
 579   // pull such a subsumed block out of the array, we write back the final
 580   // correct block.
 581   Node *get_ctrl( Node *i ) {
 582     assert(has_node(i), "");
 583     Node *n = get_ctrl_no_update(i);
 584     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 585     assert(has_node(i) && has_ctrl(i), "");
 586     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 587     return n;
 588   }
 589   // true if CFG node d dominates CFG node n
 590   bool is_dominator(Node *d, Node *n);
 591   // return get_ctrl for a data node and self(n) for a CFG node
 592   Node* ctrl_or_self(Node* n) {
 593     if (has_ctrl(n))
 594       return get_ctrl(n);
 595     else {
 596       assert (n->is_CFG(), "must be a CFG node");
 597       return n;
 598     }
 599   }
 600 
 601 private:
 602   Node *get_ctrl_no_update( Node *i ) const {
 603     assert( has_ctrl(i), "" );
 604     Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 605     if (!n->in(0)) {
 606       // Skip dead CFG nodes
 607       do {
 608         n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 609       } while (!n->in(0));
 610       n = find_non_split_ctrl(n);
 611     }
 612     return n;
 613   }
 614 
 615   // Check for loop being set
 616   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 617   bool has_loop( Node *n ) const {
 618     assert(!has_node(n) || !has_ctrl(n), "");
 619     return has_node(n);
 620   }
 621   // Set loop
 622   void set_loop( Node *n, IdealLoopTree *loop ) {
 623     _nodes.map(n->_idx, (Node*)loop);
 624   }
 625   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 626   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 627   // from old_node to new_node to support the lazy update.  Reference
 628   // replaces loop reference, since that is not needed for dead node.
 629 public:
 630   void lazy_update( Node *old_node, Node *new_node ) {
 631     assert( old_node != new_node, "no cycles please" );
 632     //old_node->set_req( 1, new_node /*NO DU INFO*/ );
 633     // Nodes always have DU info now, so re-use the side array slot
 634     // for this node to provide the forwarding pointer.
 635     _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
 636   }
 637   void lazy_replace( Node *old_node, Node *new_node ) {
 638     _igvn.replace_node( old_node, new_node );
 639     lazy_update( old_node, new_node );
 640   }
 641   void lazy_replace_proj( Node *old_node, Node *new_node ) {
 642     assert( old_node->req() == 1, "use this for Projs" );
 643     _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
 644     old_node->add_req( NULL );
 645     lazy_replace( old_node, new_node );
 646   }
 647 
 648 private:
 649 
 650   // Place 'n' in some loop nest, where 'n' is a CFG node
 651   void build_loop_tree();
 652   int build_loop_tree_impl( Node *n, int pre_order );
 653   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 654   // loop tree, not the root.
 655   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 656 
 657   // Place Data nodes in some loop nest
 658   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 659   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 660   void build_loop_late_post ( Node* n );
 661 
 662   // Array of immediate dominance info for each CFG node indexed by node idx
 663 private:
 664   uint _idom_size;
 665   Node **_idom;                 // Array of immediate dominators
 666   uint *_dom_depth;           // Used for fast LCA test
 667   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 668 
 669   Node* idom_no_update(Node* d) const {
 670     assert(d->_idx < _idom_size, "oob");
 671     Node* n = _idom[d->_idx];
 672     assert(n != NULL,"Bad immediate dominator info.");
 673     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 674       //n = n->in(1);
 675       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 676       assert(n != NULL,"Bad immediate dominator info.");
 677     }
 678     return n;
 679   }
 680   Node *idom(Node* d) const {
 681     uint didx = d->_idx;
 682     Node *n = idom_no_update(d);
 683     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 684     return n;
 685   }
 686   uint dom_depth(Node* d) const {
 687     assert(d->_idx < _idom_size, "");
 688     return _dom_depth[d->_idx];
 689   }
 690   void set_idom(Node* d, Node* n, uint dom_depth);
 691   // Locally compute IDOM using dom_lca call
 692   Node *compute_idom( Node *region ) const;
 693   // Recompute dom_depth
 694   void recompute_dom_depth();
 695 
 696   // Is safept not required by an outer loop?
 697   bool is_deleteable_safept(Node* sfpt);
 698 
 699   // Perform verification that the graph is valid.
 700   PhaseIdealLoop( PhaseIterGVN &igvn) :
 701     PhaseTransform(Ideal_Loop),
 702     _igvn(igvn),
 703     _dom_lca_tags(C->comp_arena()),
 704     _verify_me(NULL),
 705     _verify_only(true) {
 706     build_and_optimize(false, false);
 707   }
 708 
 709   // build the loop tree and perform any requested optimizations
 710   void build_and_optimize(bool do_split_if, bool do_loop_pred);
 711 
 712 public:
 713   // Dominators for the sea of nodes
 714   void Dominators();
 715   Node *dom_lca( Node *n1, Node *n2 ) const {
 716     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 717   }
 718   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 719 
 720   // Compute the Ideal Node to Loop mapping
 721   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool do_loop_pred) :
 722     PhaseTransform(Ideal_Loop),
 723     _igvn(igvn),
 724     _dom_lca_tags(C->comp_arena()),
 725     _verify_me(NULL),
 726     _verify_only(false) {
 727     build_and_optimize(do_split_ifs, do_loop_pred);
 728   }
 729 
 730   // Verify that verify_me made the same decisions as a fresh run.
 731   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
 732     PhaseTransform(Ideal_Loop),
 733     _igvn(igvn),
 734     _dom_lca_tags(C->comp_arena()),
 735     _verify_me(verify_me),
 736     _verify_only(false) {
 737     build_and_optimize(false, false);
 738   }
 739 
 740   // Build and verify the loop tree without modifying the graph.  This
 741   // is useful to verify that all inputs properly dominate their uses.
 742   static void verify(PhaseIterGVN& igvn) {
 743 #ifdef ASSERT
 744     PhaseIdealLoop v(igvn);
 745 #endif
 746   }
 747 
 748   // True if the method has at least 1 irreducible loop
 749   bool _has_irreducible_loops;
 750 
 751   // Per-Node transform
 752   virtual Node *transform( Node *a_node ) { return 0; }
 753 
 754   Node *is_counted_loop( Node *x, IdealLoopTree *loop );
 755 
 756   // Return a post-walked LoopNode
 757   IdealLoopTree *get_loop( Node *n ) const {
 758     // Dead nodes have no loop, so return the top level loop instead
 759     if (!has_node(n))  return _ltree_root;
 760     assert(!has_ctrl(n), "");
 761     return (IdealLoopTree*)_nodes[n->_idx];
 762   }
 763 
 764   // Is 'n' a (nested) member of 'loop'?
 765   int is_member( const IdealLoopTree *loop, Node *n ) const {
 766     return loop->is_member(get_loop(n)); }
 767 
 768   // This is the basic building block of the loop optimizations.  It clones an
 769   // entire loop body.  It makes an old_new loop body mapping; with this
 770   // mapping you can find the new-loop equivalent to an old-loop node.  All
 771   // new-loop nodes are exactly equal to their old-loop counterparts, all
 772   // edges are the same.  All exits from the old-loop now have a RegionNode
 773   // that merges the equivalent new-loop path.  This is true even for the
 774   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 775   // now come from (one or more) Phis that merge their new-loop equivalents.
 776   // Parameter side_by_side_idom:
 777   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 778   //      the clone loop to dominate the original.  Used in construction of
 779   //      pre-main-post loop sequence.
 780   //   When nonnull, the clone and original are side-by-side, both are
 781   //      dominated by the passed in side_by_side_idom node.  Used in
 782   //      construction of unswitched loops.
 783   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
 784                    Node* side_by_side_idom = NULL);
 785 
 786   // If we got the effect of peeling, either by actually peeling or by
 787   // making a pre-loop which must execute at least once, we can remove
 788   // all loop-invariant dominated tests in the main body.
 789   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
 790 
 791   // Generate code to do a loop peel for the given loop (and body).
 792   // old_new is a temp array.
 793   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
 794 
 795   // Add pre and post loops around the given loop.  These loops are used
 796   // during RCE, unrolling and aligning loops.
 797   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
 798   // If Node n lives in the back_ctrl block, we clone a private version of n
 799   // in preheader_ctrl block and return that, otherwise return n.
 800   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n );
 801 
 802   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
 803   // unroll to do double iterations.  The next round of major loop transforms
 804   // will repeat till the doubled loop body does all remaining iterations in 1
 805   // pass.
 806   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
 807 
 808   // Unroll the loop body one step - make each trip do 2 iterations.
 809   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
 810 
 811   // Return true if exp is a constant times an induction var
 812   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
 813 
 814   // Return true if exp is a scaled induction var plus (or minus) constant
 815   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
 816 
 817   // Return true if proj is for "proj->[region->..]call_uct"
 818   bool is_uncommon_trap_proj(ProjNode* proj, bool must_reason_predicate = false);
 819   // Return true for    "if(test)-> proj -> ...
 820   //                          |
 821   //                          V
 822   //                      other_proj->[region->..]call_uct"
 823   bool is_uncommon_trap_if_pattern(ProjNode* proj, bool must_reason_predicate = false);
 824   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
 825   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj);
 826   // Find a good location to insert a predicate
 827   ProjNode* find_predicate_insertion_point(Node* start_c);
 828   // Construct a range check for a predicate if
 829   BoolNode* rc_predicate(Node* ctrl,
 830                          int scale, Node* offset,
 831                          Node* init, Node* limit, Node* stride,
 832                          Node* range, bool upper);
 833 
 834   // Implementation of the loop predication to promote checks outside the loop
 835   bool loop_predication_impl(IdealLoopTree *loop);
 836 
 837   // Helper function to collect predicate for eliminating the useless ones
 838   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
 839   void eliminate_useless_predicates();
 840 
 841   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
 842   void do_range_check( IdealLoopTree *loop, Node_List &old_new );
 843 
 844   // Create a slow version of the loop by cloning the loop
 845   // and inserting an if to select fast-slow versions.
 846   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
 847                                         Node_List &old_new);
 848 
 849   // Clone loop with an invariant test (that does not exit) and
 850   // insert a clone of the test that selects which version to
 851   // execute.
 852   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
 853 
 854   // Find candidate "if" for unswitching
 855   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
 856 
 857   // Range Check Elimination uses this function!
 858   // Constrain the main loop iterations so the affine function:
 859   //    scale_con * I + offset  <  limit
 860   // always holds true.  That is, either increase the number of iterations in
 861   // the pre-loop or the post-loop until the condition holds true in the main
 862   // loop.  Scale_con, offset and limit are all loop invariant.
 863   void add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
 864 
 865   // Partially peel loop up through last_peel node.
 866   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
 867 
 868   // Create a scheduled list of nodes control dependent on ctrl set.
 869   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
 870   // Has a use in the vector set
 871   bool has_use_in_set( Node* n, VectorSet& vset );
 872   // Has use internal to the vector set (ie. not in a phi at the loop head)
 873   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
 874   // clone "n" for uses that are outside of loop
 875   void clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
 876   // clone "n" for special uses that are in the not_peeled region
 877   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
 878                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
 879   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
 880   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
 881 #ifdef ASSERT
 882   // Validate the loop partition sets: peel and not_peel
 883   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
 884   // Ensure that uses outside of loop are of the right form
 885   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
 886                                  uint orig_exit_idx, uint clone_exit_idx);
 887   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
 888 #endif
 889 
 890   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
 891   int stride_of_possible_iv( Node* iff );
 892   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
 893   // Return the (unique) control output node that's in the loop (if it exists.)
 894   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
 895   // Insert a signed compare loop exit cloned from an unsigned compare.
 896   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
 897   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
 898   // Utility to register node "n" with PhaseIdealLoop
 899   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
 900   // Utility to create an if-projection
 901   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
 902   // Force the iff control output to be the live_proj
 903   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
 904   // Insert a region before an if projection
 905   RegionNode* insert_region_before_proj(ProjNode* proj);
 906   // Insert a new if before an if projection
 907   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
 908 
 909   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
 910   // "Nearly" because all Nodes have been cloned from the original in the loop,
 911   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
 912   // through the Phi recursively, and return a Bool.
 913   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
 914   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
 915 
 916 
 917   // Rework addressing expressions to get the most loop-invariant stuff
 918   // moved out.  We'd like to do all associative operators, but it's especially
 919   // important (common) to do address expressions.
 920   Node *remix_address_expressions( Node *n );
 921 
 922   // Attempt to use a conditional move instead of a phi/branch
 923   Node *conditional_move( Node *n );
 924 
 925   // Reorganize offset computations to lower register pressure.
 926   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
 927   // (which are then alive with the post-incremented trip counter
 928   // forcing an extra register move)
 929   void reorg_offsets( IdealLoopTree *loop );
 930 
 931   // Check for aggressive application of 'split-if' optimization,
 932   // using basic block level info.
 933   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
 934   Node *split_if_with_blocks_pre ( Node *n );
 935   void  split_if_with_blocks_post( Node *n );
 936   Node *has_local_phi_input( Node *n );
 937   // Mark an IfNode as being dominated by a prior test,
 938   // without actually altering the CFG (and hence IDOM info).
 939   void dominated_by( Node *prevdom, Node *iff );
 940 
 941   // Split Node 'n' through merge point
 942   Node *split_thru_region( Node *n, Node *region );
 943   // Split Node 'n' through merge point if there is enough win.
 944   Node *split_thru_phi( Node *n, Node *region, int policy );
 945   // Found an If getting its condition-code input from a Phi in the
 946   // same block.  Split thru the Region.
 947   void do_split_if( Node *iff );
 948 
 949   // Conversion of fill/copy patterns into intrisic versions
 950   bool do_intrinsify_fill();
 951   bool intrinsify_fill(IdealLoopTree* lpt);
 952   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
 953                        Node*& shift, Node*& offset);
 954 
 955 private:
 956   // Return a type based on condition control flow
 957   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
 958   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
 959  // Helpers for filtered type
 960   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
 961 
 962   // Helper functions
 963   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
 964   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
 965   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
 966   bool split_up( Node *n, Node *blk1, Node *blk2 );
 967   void sink_use( Node *use, Node *post_loop );
 968   Node *place_near_use( Node *useblock ) const;
 969 
 970   bool _created_loop_node;
 971 public:
 972   void set_created_loop_node() { _created_loop_node = true; }
 973   bool created_loop_node()     { return _created_loop_node; }
 974   void register_new_node( Node *n, Node *blk );
 975 
 976 #ifndef PRODUCT
 977   void dump( ) const;
 978   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
 979   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
 980   void verify() const;          // Major slow  :-)
 981   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
 982   IdealLoopTree *get_loop_idx(Node* n) const {
 983     // Dead nodes have no loop, so return the top level loop instead
 984     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
 985   }
 986   // Print some stats
 987   static void print_statistics();
 988   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
 989   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
 990 #endif
 991 };
 992 
 993 inline Node* IdealLoopTree::tail() {
 994 // Handle lazy update of _tail field
 995   Node *n = _tail;
 996   //while( !n->in(0) )  // Skip dead CFG nodes
 997     //n = n->in(1);
 998   if (n->in(0) == NULL)
 999     n = _phase->get_ctrl(n);
1000   _tail = n;
1001   return n;
1002 }
1003 
1004 
1005 // Iterate over the loop tree using a preorder, left-to-right traversal.
1006 //
1007 // Example that visits all counted loops from within PhaseIdealLoop
1008 //
1009 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1010 //   IdealLoopTree* lpt = iter.current();
1011 //   if (!lpt->is_counted()) continue;
1012 //   ...
1013 class LoopTreeIterator : public StackObj {
1014 private:
1015   IdealLoopTree* _root;
1016   IdealLoopTree* _curnt;
1017 
1018 public:
1019   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1020 
1021   bool done() { return _curnt == NULL; }       // Finished iterating?
1022 
1023   void next();                                 // Advance to next loop tree
1024 
1025   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1026 };
1027 
1028 #endif // SHARE_VM_OPTO_LOOPNODE_HPP