1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 
  42 class LibraryIntrinsic : public InlineCallGenerator {
  43   // Extend the set of intrinsics known to the runtime:
  44  public:
  45  private:
  46   bool             _is_virtual;
  47   vmIntrinsics::ID _intrinsic_id;
  48 
  49  public:
  50   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
  51     : InlineCallGenerator(m),
  52       _is_virtual(is_virtual),
  53       _intrinsic_id(id)
  54   {
  55   }
  56   virtual bool is_intrinsic() const { return true; }
  57   virtual bool is_virtual()   const { return _is_virtual; }
  58   virtual JVMState* generate(JVMState* jvms);
  59   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  60 };
  61 
  62 
  63 // Local helper class for LibraryIntrinsic:
  64 class LibraryCallKit : public GraphKit {
  65  private:
  66   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
  67 
  68  public:
  69   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
  70     : GraphKit(caller),
  71       _intrinsic(intrinsic)
  72   {
  73   }
  74 
  75   ciMethod*         caller()    const    { return jvms()->method(); }
  76   int               bci()       const    { return jvms()->bci(); }
  77   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
  78   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
  79   ciMethod*         callee()    const    { return _intrinsic->method(); }
  80   ciSignature*      signature() const    { return callee()->signature(); }
  81   int               arg_size()  const    { return callee()->arg_size(); }
  82 
  83   bool try_to_inline();
  84 
  85   // Helper functions to inline natives
  86   void push_result(RegionNode* region, PhiNode* value);
  87   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
  88   Node* generate_slow_guard(Node* test, RegionNode* region);
  89   Node* generate_fair_guard(Node* test, RegionNode* region);
  90   Node* generate_negative_guard(Node* index, RegionNode* region,
  91                                 // resulting CastII of index:
  92                                 Node* *pos_index = NULL);
  93   Node* generate_nonpositive_guard(Node* index, bool never_negative,
  94                                    // resulting CastII of index:
  95                                    Node* *pos_index = NULL);
  96   Node* generate_limit_guard(Node* offset, Node* subseq_length,
  97                              Node* array_length,
  98                              RegionNode* region);
  99   Node* generate_current_thread(Node* &tls_output);
 100   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 101                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 102   Node* load_mirror_from_klass(Node* klass);
 103   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 104                                       int nargs,
 105                                       RegionNode* region, int null_path,
 106                                       int offset);
 107   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
 108                                RegionNode* region, int null_path) {
 109     int offset = java_lang_Class::klass_offset_in_bytes();
 110     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 111                                          region, null_path,
 112                                          offset);
 113   }
 114   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 115                                      int nargs,
 116                                      RegionNode* region, int null_path) {
 117     int offset = java_lang_Class::array_klass_offset_in_bytes();
 118     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 119                                          region, null_path,
 120                                          offset);
 121   }
 122   Node* generate_access_flags_guard(Node* kls,
 123                                     int modifier_mask, int modifier_bits,
 124                                     RegionNode* region);
 125   Node* generate_interface_guard(Node* kls, RegionNode* region);
 126   Node* generate_array_guard(Node* kls, RegionNode* region) {
 127     return generate_array_guard_common(kls, region, false, false);
 128   }
 129   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 130     return generate_array_guard_common(kls, region, false, true);
 131   }
 132   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 133     return generate_array_guard_common(kls, region, true, false);
 134   }
 135   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 136     return generate_array_guard_common(kls, region, true, true);
 137   }
 138   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 139                                     bool obj_array, bool not_array);
 140   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 141   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 142                                      bool is_virtual = false, bool is_static = false);
 143   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 144     return generate_method_call(method_id, false, true);
 145   }
 146   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 147     return generate_method_call(method_id, true, false);
 148   }
 149 
 150   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
 151   bool inline_string_compareTo();
 152   bool inline_string_indexOf();
 153   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 154   bool inline_string_equals();
 155   Node* pop_math_arg();
 156   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 157   bool inline_math_native(vmIntrinsics::ID id);
 158   bool inline_trig(vmIntrinsics::ID id);
 159   bool inline_trans(vmIntrinsics::ID id);
 160   bool inline_abs(vmIntrinsics::ID id);
 161   bool inline_sqrt(vmIntrinsics::ID id);
 162   bool inline_pow(vmIntrinsics::ID id);
 163   bool inline_exp(vmIntrinsics::ID id);
 164   bool inline_min_max(vmIntrinsics::ID id);
 165   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 166   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 167   int classify_unsafe_addr(Node* &base, Node* &offset);
 168   Node* make_unsafe_address(Node* base, Node* offset);
 169   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 170   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 171   bool inline_unsafe_allocate();
 172   bool inline_unsafe_copyMemory();
 173   bool inline_native_currentThread();
 174   bool inline_native_time_funcs(bool isNano);
 175   bool inline_native_isInterrupted();
 176   bool inline_native_Class_query(vmIntrinsics::ID id);
 177   bool inline_native_subtype_check();
 178 
 179   bool inline_native_newArray();
 180   bool inline_native_getLength();
 181   bool inline_array_copyOf(bool is_copyOfRange);
 182   bool inline_array_equals();
 183   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 184   bool inline_native_clone(bool is_virtual);
 185   bool inline_native_Reflection_getCallerClass();
 186   bool inline_native_AtomicLong_get();
 187   bool inline_native_AtomicLong_attemptUpdate();
 188   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 189   // Helper function for inlining native object hash method
 190   bool inline_native_hashcode(bool is_virtual, bool is_static);
 191   bool inline_native_getClass();
 192 
 193   // Helper functions for inlining arraycopy
 194   bool inline_arraycopy();
 195   void generate_arraycopy(const TypePtr* adr_type,
 196                           BasicType basic_elem_type,
 197                           Node* src,  Node* src_offset,
 198                           Node* dest, Node* dest_offset,
 199                           Node* copy_length,
 200                           bool disjoint_bases = false,
 201                           bool length_never_negative = false,
 202                           RegionNode* slow_region = NULL);
 203   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 204                                                 RegionNode* slow_region);
 205   void generate_clear_array(const TypePtr* adr_type,
 206                             Node* dest,
 207                             BasicType basic_elem_type,
 208                             Node* slice_off,
 209                             Node* slice_len,
 210                             Node* slice_end);
 211   bool generate_block_arraycopy(const TypePtr* adr_type,
 212                                 BasicType basic_elem_type,
 213                                 AllocateNode* alloc,
 214                                 Node* src,  Node* src_offset,
 215                                 Node* dest, Node* dest_offset,
 216                                 Node* dest_size, bool dest_uninitialized);
 217   void generate_slow_arraycopy(const TypePtr* adr_type,
 218                                Node* src,  Node* src_offset,
 219                                Node* dest, Node* dest_offset,
 220                                Node* copy_length, bool dest_uninitialized);
 221   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 222                                      Node* dest_elem_klass,
 223                                      Node* src,  Node* src_offset,
 224                                      Node* dest, Node* dest_offset,
 225                                      Node* copy_length, bool dest_uninitialized);
 226   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 227                                    Node* src,  Node* src_offset,
 228                                    Node* dest, Node* dest_offset,
 229                                    Node* copy_length, bool dest_uninitialized);
 230   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 231                                     BasicType basic_elem_type,
 232                                     bool disjoint_bases,
 233                                     Node* src,  Node* src_offset,
 234                                     Node* dest, Node* dest_offset,
 235                                     Node* copy_length, bool dest_uninitialized);
 236   bool inline_unsafe_CAS(BasicType type);
 237   bool inline_unsafe_ordered_store(BasicType type);
 238   bool inline_fp_conversions(vmIntrinsics::ID id);
 239   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
 240   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
 241   bool inline_bitCount(vmIntrinsics::ID id);
 242   bool inline_reverseBytes(vmIntrinsics::ID id);
 243 };
 244 
 245 
 246 //---------------------------make_vm_intrinsic----------------------------
 247 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 248   vmIntrinsics::ID id = m->intrinsic_id();
 249   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 250 
 251   if (DisableIntrinsic[0] != '\0'
 252       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 253     // disabled by a user request on the command line:
 254     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 255     return NULL;
 256   }
 257 
 258   if (!m->is_loaded()) {
 259     // do not attempt to inline unloaded methods
 260     return NULL;
 261   }
 262 
 263   // Only a few intrinsics implement a virtual dispatch.
 264   // They are expensive calls which are also frequently overridden.
 265   if (is_virtual) {
 266     switch (id) {
 267     case vmIntrinsics::_hashCode:
 268     case vmIntrinsics::_clone:
 269       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 270       break;
 271     default:
 272       return NULL;
 273     }
 274   }
 275 
 276   // -XX:-InlineNatives disables nearly all intrinsics:
 277   if (!InlineNatives) {
 278     switch (id) {
 279     case vmIntrinsics::_indexOf:
 280     case vmIntrinsics::_compareTo:
 281     case vmIntrinsics::_equals:
 282     case vmIntrinsics::_equalsC:
 283       break;  // InlineNatives does not control String.compareTo
 284     default:
 285       return NULL;
 286     }
 287   }
 288 
 289   switch (id) {
 290   case vmIntrinsics::_compareTo:
 291     if (!SpecialStringCompareTo)  return NULL;
 292     break;
 293   case vmIntrinsics::_indexOf:
 294     if (!SpecialStringIndexOf)  return NULL;
 295     break;
 296   case vmIntrinsics::_equals:
 297     if (!SpecialStringEquals)  return NULL;
 298     break;
 299   case vmIntrinsics::_equalsC:
 300     if (!SpecialArraysEquals)  return NULL;
 301     break;
 302   case vmIntrinsics::_arraycopy:
 303     if (!InlineArrayCopy)  return NULL;
 304     break;
 305   case vmIntrinsics::_copyMemory:
 306     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 307     if (!InlineArrayCopy)  return NULL;
 308     break;
 309   case vmIntrinsics::_hashCode:
 310     if (!InlineObjectHash)  return NULL;
 311     break;
 312   case vmIntrinsics::_clone:
 313   case vmIntrinsics::_copyOf:
 314   case vmIntrinsics::_copyOfRange:
 315     if (!InlineObjectCopy)  return NULL;
 316     // These also use the arraycopy intrinsic mechanism:
 317     if (!InlineArrayCopy)  return NULL;
 318     break;
 319   case vmIntrinsics::_checkIndex:
 320     // We do not intrinsify this.  The optimizer does fine with it.
 321     return NULL;
 322 
 323   case vmIntrinsics::_get_AtomicLong:
 324   case vmIntrinsics::_attemptUpdate:
 325     if (!InlineAtomicLong)  return NULL;
 326     break;
 327 
 328   case vmIntrinsics::_getCallerClass:
 329     if (!UseNewReflection)  return NULL;
 330     if (!InlineReflectionGetCallerClass)  return NULL;
 331     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 332     break;
 333 
 334   case vmIntrinsics::_bitCount_i:
 335   case vmIntrinsics::_bitCount_l:
 336     if (!UsePopCountInstruction)  return NULL;
 337     break;
 338 
 339  default:
 340     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 341     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 342     break;
 343   }
 344 
 345   // -XX:-InlineClassNatives disables natives from the Class class.
 346   // The flag applies to all reflective calls, notably Array.newArray
 347   // (visible to Java programmers as Array.newInstance).
 348   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 349       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 350     if (!InlineClassNatives)  return NULL;
 351   }
 352 
 353   // -XX:-InlineThreadNatives disables natives from the Thread class.
 354   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 355     if (!InlineThreadNatives)  return NULL;
 356   }
 357 
 358   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 359   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 360       m->holder()->name() == ciSymbol::java_lang_Float() ||
 361       m->holder()->name() == ciSymbol::java_lang_Double()) {
 362     if (!InlineMathNatives)  return NULL;
 363   }
 364 
 365   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 366   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 367     if (!InlineUnsafeOps)  return NULL;
 368   }
 369 
 370   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
 371 }
 372 
 373 //----------------------register_library_intrinsics-----------------------
 374 // Initialize this file's data structures, for each Compile instance.
 375 void Compile::register_library_intrinsics() {
 376   // Nothing to do here.
 377 }
 378 
 379 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 380   LibraryCallKit kit(jvms, this);
 381   Compile* C = kit.C;
 382   int nodes = C->unique();
 383 #ifndef PRODUCT
 384   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 385     char buf[1000];
 386     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 387     tty->print_cr("Intrinsic %s", str);
 388   }
 389 #endif
 390   if (kit.try_to_inline()) {
 391     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 392       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 393     }
 394     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 395     if (C->log()) {
 396       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 397                      vmIntrinsics::name_at(intrinsic_id()),
 398                      (is_virtual() ? " virtual='1'" : ""),
 399                      C->unique() - nodes);
 400     }
 401     return kit.transfer_exceptions_into_jvms();
 402   }
 403 
 404   if (PrintIntrinsics) {
 405     tty->print("Did not inline intrinsic %s%s at bci:%d in",
 406                vmIntrinsics::name_at(intrinsic_id()),
 407                (is_virtual() ? " (virtual)" : ""), kit.bci());
 408     kit.caller()->print_short_name(tty);
 409     tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 410   }
 411   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 412   return NULL;
 413 }
 414 
 415 bool LibraryCallKit::try_to_inline() {
 416   // Handle symbolic names for otherwise undistinguished boolean switches:
 417   const bool is_store       = true;
 418   const bool is_native_ptr  = true;
 419   const bool is_static      = true;
 420 
 421   switch (intrinsic_id()) {
 422   case vmIntrinsics::_hashCode:
 423     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 424   case vmIntrinsics::_identityHashCode:
 425     return inline_native_hashcode(/*!virtual*/ false, is_static);
 426   case vmIntrinsics::_getClass:
 427     return inline_native_getClass();
 428 
 429   case vmIntrinsics::_dsin:
 430   case vmIntrinsics::_dcos:
 431   case vmIntrinsics::_dtan:
 432   case vmIntrinsics::_dabs:
 433   case vmIntrinsics::_datan2:
 434   case vmIntrinsics::_dsqrt:
 435   case vmIntrinsics::_dexp:
 436   case vmIntrinsics::_dlog:
 437   case vmIntrinsics::_dlog10:
 438   case vmIntrinsics::_dpow:
 439     return inline_math_native(intrinsic_id());
 440 
 441   case vmIntrinsics::_min:
 442   case vmIntrinsics::_max:
 443     return inline_min_max(intrinsic_id());
 444 
 445   case vmIntrinsics::_arraycopy:
 446     return inline_arraycopy();
 447 
 448   case vmIntrinsics::_compareTo:
 449     return inline_string_compareTo();
 450   case vmIntrinsics::_indexOf:
 451     return inline_string_indexOf();
 452   case vmIntrinsics::_equals:
 453     return inline_string_equals();
 454 
 455   case vmIntrinsics::_getObject:
 456     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
 457   case vmIntrinsics::_getBoolean:
 458     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
 459   case vmIntrinsics::_getByte:
 460     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
 461   case vmIntrinsics::_getShort:
 462     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
 463   case vmIntrinsics::_getChar:
 464     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
 465   case vmIntrinsics::_getInt:
 466     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
 467   case vmIntrinsics::_getLong:
 468     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
 469   case vmIntrinsics::_getFloat:
 470     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
 471   case vmIntrinsics::_getDouble:
 472     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
 473 
 474   case vmIntrinsics::_putObject:
 475     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
 476   case vmIntrinsics::_putBoolean:
 477     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
 478   case vmIntrinsics::_putByte:
 479     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
 480   case vmIntrinsics::_putShort:
 481     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
 482   case vmIntrinsics::_putChar:
 483     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
 484   case vmIntrinsics::_putInt:
 485     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
 486   case vmIntrinsics::_putLong:
 487     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
 488   case vmIntrinsics::_putFloat:
 489     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
 490   case vmIntrinsics::_putDouble:
 491     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
 492 
 493   case vmIntrinsics::_getByte_raw:
 494     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
 495   case vmIntrinsics::_getShort_raw:
 496     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
 497   case vmIntrinsics::_getChar_raw:
 498     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
 499   case vmIntrinsics::_getInt_raw:
 500     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
 501   case vmIntrinsics::_getLong_raw:
 502     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
 503   case vmIntrinsics::_getFloat_raw:
 504     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
 505   case vmIntrinsics::_getDouble_raw:
 506     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
 507   case vmIntrinsics::_getAddress_raw:
 508     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
 509 
 510   case vmIntrinsics::_putByte_raw:
 511     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
 512   case vmIntrinsics::_putShort_raw:
 513     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
 514   case vmIntrinsics::_putChar_raw:
 515     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
 516   case vmIntrinsics::_putInt_raw:
 517     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
 518   case vmIntrinsics::_putLong_raw:
 519     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
 520   case vmIntrinsics::_putFloat_raw:
 521     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
 522   case vmIntrinsics::_putDouble_raw:
 523     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
 524   case vmIntrinsics::_putAddress_raw:
 525     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
 526 
 527   case vmIntrinsics::_getObjectVolatile:
 528     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
 529   case vmIntrinsics::_getBooleanVolatile:
 530     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
 531   case vmIntrinsics::_getByteVolatile:
 532     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
 533   case vmIntrinsics::_getShortVolatile:
 534     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
 535   case vmIntrinsics::_getCharVolatile:
 536     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
 537   case vmIntrinsics::_getIntVolatile:
 538     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
 539   case vmIntrinsics::_getLongVolatile:
 540     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
 541   case vmIntrinsics::_getFloatVolatile:
 542     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
 543   case vmIntrinsics::_getDoubleVolatile:
 544     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
 545 
 546   case vmIntrinsics::_putObjectVolatile:
 547     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
 548   case vmIntrinsics::_putBooleanVolatile:
 549     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
 550   case vmIntrinsics::_putByteVolatile:
 551     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
 552   case vmIntrinsics::_putShortVolatile:
 553     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
 554   case vmIntrinsics::_putCharVolatile:
 555     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
 556   case vmIntrinsics::_putIntVolatile:
 557     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
 558   case vmIntrinsics::_putLongVolatile:
 559     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
 560   case vmIntrinsics::_putFloatVolatile:
 561     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
 562   case vmIntrinsics::_putDoubleVolatile:
 563     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
 564 
 565   case vmIntrinsics::_prefetchRead:
 566     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 567   case vmIntrinsics::_prefetchWrite:
 568     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
 569   case vmIntrinsics::_prefetchReadStatic:
 570     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
 571   case vmIntrinsics::_prefetchWriteStatic:
 572     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
 573 
 574   case vmIntrinsics::_compareAndSwapObject:
 575     return inline_unsafe_CAS(T_OBJECT);
 576   case vmIntrinsics::_compareAndSwapInt:
 577     return inline_unsafe_CAS(T_INT);
 578   case vmIntrinsics::_compareAndSwapLong:
 579     return inline_unsafe_CAS(T_LONG);
 580 
 581   case vmIntrinsics::_putOrderedObject:
 582     return inline_unsafe_ordered_store(T_OBJECT);
 583   case vmIntrinsics::_putOrderedInt:
 584     return inline_unsafe_ordered_store(T_INT);
 585   case vmIntrinsics::_putOrderedLong:
 586     return inline_unsafe_ordered_store(T_LONG);
 587 
 588   case vmIntrinsics::_currentThread:
 589     return inline_native_currentThread();
 590   case vmIntrinsics::_isInterrupted:
 591     return inline_native_isInterrupted();
 592 
 593   case vmIntrinsics::_currentTimeMillis:
 594     return inline_native_time_funcs(false);
 595   case vmIntrinsics::_nanoTime:
 596     return inline_native_time_funcs(true);
 597   case vmIntrinsics::_allocateInstance:
 598     return inline_unsafe_allocate();
 599   case vmIntrinsics::_copyMemory:
 600     return inline_unsafe_copyMemory();
 601   case vmIntrinsics::_newArray:
 602     return inline_native_newArray();
 603   case vmIntrinsics::_getLength:
 604     return inline_native_getLength();
 605   case vmIntrinsics::_copyOf:
 606     return inline_array_copyOf(false);
 607   case vmIntrinsics::_copyOfRange:
 608     return inline_array_copyOf(true);
 609   case vmIntrinsics::_equalsC:
 610     return inline_array_equals();
 611   case vmIntrinsics::_clone:
 612     return inline_native_clone(intrinsic()->is_virtual());
 613 
 614   case vmIntrinsics::_isAssignableFrom:
 615     return inline_native_subtype_check();
 616 
 617   case vmIntrinsics::_isInstance:
 618   case vmIntrinsics::_getModifiers:
 619   case vmIntrinsics::_isInterface:
 620   case vmIntrinsics::_isArray:
 621   case vmIntrinsics::_isPrimitive:
 622   case vmIntrinsics::_getSuperclass:
 623   case vmIntrinsics::_getComponentType:
 624   case vmIntrinsics::_getClassAccessFlags:
 625     return inline_native_Class_query(intrinsic_id());
 626 
 627   case vmIntrinsics::_floatToRawIntBits:
 628   case vmIntrinsics::_floatToIntBits:
 629   case vmIntrinsics::_intBitsToFloat:
 630   case vmIntrinsics::_doubleToRawLongBits:
 631   case vmIntrinsics::_doubleToLongBits:
 632   case vmIntrinsics::_longBitsToDouble:
 633     return inline_fp_conversions(intrinsic_id());
 634 
 635   case vmIntrinsics::_numberOfLeadingZeros_i:
 636   case vmIntrinsics::_numberOfLeadingZeros_l:
 637     return inline_numberOfLeadingZeros(intrinsic_id());
 638 
 639   case vmIntrinsics::_numberOfTrailingZeros_i:
 640   case vmIntrinsics::_numberOfTrailingZeros_l:
 641     return inline_numberOfTrailingZeros(intrinsic_id());
 642 
 643   case vmIntrinsics::_bitCount_i:
 644   case vmIntrinsics::_bitCount_l:
 645     return inline_bitCount(intrinsic_id());
 646 
 647   case vmIntrinsics::_reverseBytes_i:
 648   case vmIntrinsics::_reverseBytes_l:
 649   case vmIntrinsics::_reverseBytes_s:
 650   case vmIntrinsics::_reverseBytes_c:
 651     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
 652 
 653   case vmIntrinsics::_get_AtomicLong:
 654     return inline_native_AtomicLong_get();
 655   case vmIntrinsics::_attemptUpdate:
 656     return inline_native_AtomicLong_attemptUpdate();
 657 
 658   case vmIntrinsics::_getCallerClass:
 659     return inline_native_Reflection_getCallerClass();
 660 
 661   default:
 662     // If you get here, it may be that someone has added a new intrinsic
 663     // to the list in vmSymbols.hpp without implementing it here.
 664 #ifndef PRODUCT
 665     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 666       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 667                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 668     }
 669 #endif
 670     return false;
 671   }
 672 }
 673 
 674 //------------------------------push_result------------------------------
 675 // Helper function for finishing intrinsics.
 676 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
 677   record_for_igvn(region);
 678   set_control(_gvn.transform(region));
 679   BasicType value_type = value->type()->basic_type();
 680   push_node(value_type, _gvn.transform(value));
 681 }
 682 
 683 //------------------------------generate_guard---------------------------
 684 // Helper function for generating guarded fast-slow graph structures.
 685 // The given 'test', if true, guards a slow path.  If the test fails
 686 // then a fast path can be taken.  (We generally hope it fails.)
 687 // In all cases, GraphKit::control() is updated to the fast path.
 688 // The returned value represents the control for the slow path.
 689 // The return value is never 'top'; it is either a valid control
 690 // or NULL if it is obvious that the slow path can never be taken.
 691 // Also, if region and the slow control are not NULL, the slow edge
 692 // is appended to the region.
 693 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 694   if (stopped()) {
 695     // Already short circuited.
 696     return NULL;
 697   }
 698 
 699   // Build an if node and its projections.
 700   // If test is true we take the slow path, which we assume is uncommon.
 701   if (_gvn.type(test) == TypeInt::ZERO) {
 702     // The slow branch is never taken.  No need to build this guard.
 703     return NULL;
 704   }
 705 
 706   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 707 
 708   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
 709   if (if_slow == top()) {
 710     // The slow branch is never taken.  No need to build this guard.
 711     return NULL;
 712   }
 713 
 714   if (region != NULL)
 715     region->add_req(if_slow);
 716 
 717   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 718   set_control(if_fast);
 719 
 720   return if_slow;
 721 }
 722 
 723 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 724   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 725 }
 726 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 727   return generate_guard(test, region, PROB_FAIR);
 728 }
 729 
 730 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 731                                                      Node* *pos_index) {
 732   if (stopped())
 733     return NULL;                // already stopped
 734   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 735     return NULL;                // index is already adequately typed
 736   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 737   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 738   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 739   if (is_neg != NULL && pos_index != NULL) {
 740     // Emulate effect of Parse::adjust_map_after_if.
 741     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
 742     ccast->set_req(0, control());
 743     (*pos_index) = _gvn.transform(ccast);
 744   }
 745   return is_neg;
 746 }
 747 
 748 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 749                                                         Node* *pos_index) {
 750   if (stopped())
 751     return NULL;                // already stopped
 752   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 753     return NULL;                // index is already adequately typed
 754   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 755   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 756   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
 757   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 758   if (is_notp != NULL && pos_index != NULL) {
 759     // Emulate effect of Parse::adjust_map_after_if.
 760     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
 761     ccast->set_req(0, control());
 762     (*pos_index) = _gvn.transform(ccast);
 763   }
 764   return is_notp;
 765 }
 766 
 767 // Make sure that 'position' is a valid limit index, in [0..length].
 768 // There are two equivalent plans for checking this:
 769 //   A. (offset + copyLength)  unsigned<=  arrayLength
 770 //   B. offset  <=  (arrayLength - copyLength)
 771 // We require that all of the values above, except for the sum and
 772 // difference, are already known to be non-negative.
 773 // Plan A is robust in the face of overflow, if offset and copyLength
 774 // are both hugely positive.
 775 //
 776 // Plan B is less direct and intuitive, but it does not overflow at
 777 // all, since the difference of two non-negatives is always
 778 // representable.  Whenever Java methods must perform the equivalent
 779 // check they generally use Plan B instead of Plan A.
 780 // For the moment we use Plan A.
 781 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 782                                                   Node* subseq_length,
 783                                                   Node* array_length,
 784                                                   RegionNode* region) {
 785   if (stopped())
 786     return NULL;                // already stopped
 787   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 788   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
 789     return NULL;                // common case of whole-array copy
 790   Node* last = subseq_length;
 791   if (!zero_offset)             // last += offset
 792     last = _gvn.transform( new (C, 3) AddINode(last, offset));
 793   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
 794   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 795   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 796   return is_over;
 797 }
 798 
 799 
 800 //--------------------------generate_current_thread--------------------
 801 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 802   ciKlass*    thread_klass = env()->Thread_klass();
 803   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 804   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
 805   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 806   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 807   tls_output = thread;
 808   return threadObj;
 809 }
 810 
 811 
 812 //------------------------------make_string_method_node------------------------
 813 // Helper method for String intrinsic finctions.
 814 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
 815   const int value_offset  = java_lang_String::value_offset_in_bytes();
 816   const int count_offset  = java_lang_String::count_offset_in_bytes();
 817   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 818 
 819   Node* no_ctrl = NULL;
 820 
 821   ciInstanceKlass* klass = env()->String_klass();
 822   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
 823 
 824   const TypeAryPtr* value_type =
 825         TypeAryPtr::make(TypePtr::NotNull,
 826                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
 827                          ciTypeArrayKlass::make(T_CHAR), true, 0);
 828 
 829   // Get start addr of string and substring
 830   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
 831   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 832   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
 833   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 834   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
 835 
 836   // Pin loads from String::equals() argument since it could be NULL.
 837   Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
 838   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
 839   Node* str2_value   = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 840   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
 841   Node* str2_offset  = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 842   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
 843 
 844   Node* result = NULL;
 845   switch (opcode) {
 846   case Op_StrIndexOf:
 847     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
 848                                        str1_start, cnt1, str2_start, cnt2);
 849     break;
 850   case Op_StrComp:
 851     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
 852                                     str1_start, cnt1, str2_start, cnt2);
 853     break;
 854   case Op_StrEquals:
 855     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
 856                                       str1_start, str2_start, cnt1);
 857     break;
 858   default:
 859     ShouldNotReachHere();
 860     return NULL;
 861   }
 862 
 863   // All these intrinsics have checks.
 864   C->set_has_split_ifs(true); // Has chance for split-if optimization
 865 
 866   return _gvn.transform(result);
 867 }
 868 
 869 //------------------------------inline_string_compareTo------------------------
 870 bool LibraryCallKit::inline_string_compareTo() {
 871 
 872   if (!Matcher::has_match_rule(Op_StrComp)) return false;
 873 
 874   const int value_offset = java_lang_String::value_offset_in_bytes();
 875   const int count_offset = java_lang_String::count_offset_in_bytes();
 876   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 877 
 878   _sp += 2;
 879   Node *argument = pop();  // pop non-receiver first:  it was pushed second
 880   Node *receiver = pop();
 881 
 882   // Null check on self without removing any arguments.  The argument
 883   // null check technically happens in the wrong place, which can lead to
 884   // invalid stack traces when string compare is inlined into a method
 885   // which handles NullPointerExceptions.
 886   _sp += 2;
 887   receiver = do_null_check(receiver, T_OBJECT);
 888   argument = do_null_check(argument, T_OBJECT);
 889   _sp -= 2;
 890   if (stopped()) {
 891     return true;
 892   }
 893 
 894   ciInstanceKlass* klass = env()->String_klass();
 895   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
 896   Node* no_ctrl = NULL;
 897 
 898   // Get counts for string and argument
 899   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
 900   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 901 
 902   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
 903   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 904 
 905   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
 906   push(compare);
 907   return true;
 908 }
 909 
 910 //------------------------------inline_string_equals------------------------
 911 bool LibraryCallKit::inline_string_equals() {
 912 
 913   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
 914 
 915   const int value_offset = java_lang_String::value_offset_in_bytes();
 916   const int count_offset = java_lang_String::count_offset_in_bytes();
 917   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 918 
 919   int nargs = 2;
 920   _sp += nargs;
 921   Node* argument = pop();  // pop non-receiver first:  it was pushed second
 922   Node* receiver = pop();
 923 
 924   // Null check on self without removing any arguments.  The argument
 925   // null check technically happens in the wrong place, which can lead to
 926   // invalid stack traces when string compare is inlined into a method
 927   // which handles NullPointerExceptions.
 928   _sp += nargs;
 929   receiver = do_null_check(receiver, T_OBJECT);
 930   //should not do null check for argument for String.equals(), because spec
 931   //allows to specify NULL as argument.
 932   _sp -= nargs;
 933 
 934   if (stopped()) {
 935     return true;
 936   }
 937 
 938   // paths (plus control) merge
 939   RegionNode* region = new (C, 5) RegionNode(5);
 940   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
 941 
 942   // does source == target string?
 943   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
 944   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
 945 
 946   Node* if_eq = generate_slow_guard(bol, NULL);
 947   if (if_eq != NULL) {
 948     // receiver == argument
 949     phi->init_req(2, intcon(1));
 950     region->init_req(2, if_eq);
 951   }
 952 
 953   // get String klass for instanceOf
 954   ciInstanceKlass* klass = env()->String_klass();
 955 
 956   if (!stopped()) {
 957     _sp += nargs;          // gen_instanceof might do an uncommon trap
 958     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
 959     _sp -= nargs;
 960     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
 961     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
 962 
 963     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
 964     //instanceOf == true, fallthrough
 965 
 966     if (inst_false != NULL) {
 967       phi->init_req(3, intcon(0));
 968       region->init_req(3, inst_false);
 969     }
 970   }
 971 
 972   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
 973 
 974   Node* no_ctrl = NULL;
 975   Node* receiver_cnt;
 976   Node* argument_cnt;
 977 
 978   if (!stopped()) {
 979     // Properly cast the argument to String
 980     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
 981 
 982     // Get counts for string and argument
 983     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
 984     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 985 
 986     // Pin load from argument string since it could be NULL.
 987     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
 988     argument_cnt  = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 989 
 990     // Check for receiver count != argument count
 991     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
 992     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
 993     Node* if_ne = generate_slow_guard(bol, NULL);
 994     if (if_ne != NULL) {
 995       phi->init_req(4, intcon(0));
 996       region->init_req(4, if_ne);
 997     }
 998   }
 999 
1000   // Check for count == 0 is done by mach node StrEquals.
1001 
1002   if (!stopped()) {
1003     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
1004     phi->init_req(1, equals);
1005     region->init_req(1, control());
1006   }
1007 
1008   // post merge
1009   set_control(_gvn.transform(region));
1010   record_for_igvn(region);
1011 
1012   push(_gvn.transform(phi));
1013 
1014   return true;
1015 }
1016 
1017 //------------------------------inline_array_equals----------------------------
1018 bool LibraryCallKit::inline_array_equals() {
1019 
1020   if (!Matcher::has_match_rule(Op_AryEq)) return false;
1021 
1022   _sp += 2;
1023   Node *argument2 = pop();
1024   Node *argument1 = pop();
1025 
1026   Node* equals =
1027     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
1028                                         argument1, argument2) );
1029   push(equals);
1030   return true;
1031 }
1032 
1033 // Java version of String.indexOf(constant string)
1034 // class StringDecl {
1035 //   StringDecl(char[] ca) {
1036 //     offset = 0;
1037 //     count = ca.length;
1038 //     value = ca;
1039 //   }
1040 //   int offset;
1041 //   int count;
1042 //   char[] value;
1043 // }
1044 //
1045 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1046 //                             int targetOffset, int cache_i, int md2) {
1047 //   int cache = cache_i;
1048 //   int sourceOffset = string_object.offset;
1049 //   int sourceCount = string_object.count;
1050 //   int targetCount = target_object.length;
1051 //
1052 //   int targetCountLess1 = targetCount - 1;
1053 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1054 //
1055 //   char[] source = string_object.value;
1056 //   char[] target = target_object;
1057 //   int lastChar = target[targetCountLess1];
1058 //
1059 //  outer_loop:
1060 //   for (int i = sourceOffset; i < sourceEnd; ) {
1061 //     int src = source[i + targetCountLess1];
1062 //     if (src == lastChar) {
1063 //       // With random strings and a 4-character alphabet,
1064 //       // reverse matching at this point sets up 0.8% fewer
1065 //       // frames, but (paradoxically) makes 0.3% more probes.
1066 //       // Since those probes are nearer the lastChar probe,
1067 //       // there is may be a net D$ win with reverse matching.
1068 //       // But, reversing loop inhibits unroll of inner loop
1069 //       // for unknown reason.  So, does running outer loop from
1070 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1071 //       for (int j = 0; j < targetCountLess1; j++) {
1072 //         if (target[targetOffset + j] != source[i+j]) {
1073 //           if ((cache & (1 << source[i+j])) == 0) {
1074 //             if (md2 < j+1) {
1075 //               i += j+1;
1076 //               continue outer_loop;
1077 //             }
1078 //           }
1079 //           i += md2;
1080 //           continue outer_loop;
1081 //         }
1082 //       }
1083 //       return i - sourceOffset;
1084 //     }
1085 //     if ((cache & (1 << src)) == 0) {
1086 //       i += targetCountLess1;
1087 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1088 //     i++;
1089 //   }
1090 //   return -1;
1091 // }
1092 
1093 //------------------------------string_indexOf------------------------
1094 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1095                                      jint cache_i, jint md2_i) {
1096 
1097   Node* no_ctrl  = NULL;
1098   float likely   = PROB_LIKELY(0.9);
1099   float unlikely = PROB_UNLIKELY(0.9);
1100 
1101   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
1102 
1103   const int value_offset  = java_lang_String::value_offset_in_bytes();
1104   const int count_offset  = java_lang_String::count_offset_in_bytes();
1105   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1106 
1107   ciInstanceKlass* klass = env()->String_klass();
1108   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1109   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
1110 
1111   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
1112   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
1113   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
1114   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1115   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
1116   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
1117 
1118   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
1119   jint target_length = target_array->length();
1120   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1121   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1122 
1123   IdealKit kit(this, false, true);
1124 #define __ kit.
1125   Node* zero             = __ ConI(0);
1126   Node* one              = __ ConI(1);
1127   Node* cache            = __ ConI(cache_i);
1128   Node* md2              = __ ConI(md2_i);
1129   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1130   Node* targetCount      = __ ConI(target_length);
1131   Node* targetCountLess1 = __ ConI(target_length - 1);
1132   Node* targetOffset     = __ ConI(targetOffset_i);
1133   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1134 
1135   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1136   Node* outer_loop = __ make_label(2 /* goto */);
1137   Node* return_    = __ make_label(1);
1138 
1139   __ set(rtn,__ ConI(-1));
1140   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1141        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1142        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1143        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1144        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1145          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1146               Node* tpj = __ AddI(targetOffset, __ value(j));
1147               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1148               Node* ipj  = __ AddI(__ value(i), __ value(j));
1149               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1150               __ if_then(targ, BoolTest::ne, src2); {
1151                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1152                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1153                     __ increment(i, __ AddI(__ value(j), one));
1154                     __ goto_(outer_loop);
1155                   } __ end_if(); __ dead(j);
1156                 }__ end_if(); __ dead(j);
1157                 __ increment(i, md2);
1158                 __ goto_(outer_loop);
1159               }__ end_if();
1160               __ increment(j, one);
1161          }__ end_loop(); __ dead(j);
1162          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1163          __ goto_(return_);
1164        }__ end_if();
1165        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1166          __ increment(i, targetCountLess1);
1167        }__ end_if();
1168        __ increment(i, one);
1169        __ bind(outer_loop);
1170   }__ end_loop(); __ dead(i);
1171   __ bind(return_);
1172 
1173   // Final sync IdealKit and GraphKit.
1174   sync_kit(kit);
1175   Node* result = __ value(rtn);
1176 #undef __
1177   C->set_has_loops(true);
1178   return result;
1179 }
1180 
1181 //------------------------------inline_string_indexOf------------------------
1182 bool LibraryCallKit::inline_string_indexOf() {
1183 
1184   const int value_offset  = java_lang_String::value_offset_in_bytes();
1185   const int count_offset  = java_lang_String::count_offset_in_bytes();
1186   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1187 
1188   _sp += 2;
1189   Node *argument = pop();  // pop non-receiver first:  it was pushed second
1190   Node *receiver = pop();
1191 
1192   Node* result;
1193   // Disable the use of pcmpestri until it can be guaranteed that
1194   // the load doesn't cross into the uncommited space.
1195   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1196       UseSSE42Intrinsics) {
1197     // Generate SSE4.2 version of indexOf
1198     // We currently only have match rules that use SSE4.2
1199 
1200     // Null check on self without removing any arguments.  The argument
1201     // null check technically happens in the wrong place, which can lead to
1202     // invalid stack traces when string compare is inlined into a method
1203     // which handles NullPointerExceptions.
1204     _sp += 2;
1205     receiver = do_null_check(receiver, T_OBJECT);
1206     argument = do_null_check(argument, T_OBJECT);
1207     _sp -= 2;
1208 
1209     if (stopped()) {
1210       return true;
1211     }
1212 
1213     ciInstanceKlass* str_klass = env()->String_klass();
1214     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1215 
1216     // Make the merge point
1217     RegionNode* result_rgn = new (C, 4) RegionNode(4);
1218     Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
1219     Node* no_ctrl  = NULL;
1220 
1221     // Get counts for string and substr
1222     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
1223     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1224 
1225     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
1226     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1227 
1228     // Check for substr count > string count
1229     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
1230     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
1231     Node* if_gt = generate_slow_guard(bol, NULL);
1232     if (if_gt != NULL) {
1233       result_phi->init_req(2, intcon(-1));
1234       result_rgn->init_req(2, if_gt);
1235     }
1236 
1237     if (!stopped()) {
1238       // Check for substr count == 0
1239       cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
1240       bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
1241       Node* if_zero = generate_slow_guard(bol, NULL);
1242       if (if_zero != NULL) {
1243         result_phi->init_req(3, intcon(0));
1244         result_rgn->init_req(3, if_zero);
1245       }
1246     }
1247 
1248     if (!stopped()) {
1249       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
1250       result_phi->init_req(1, result);
1251       result_rgn->init_req(1, control());
1252     }
1253     set_control(_gvn.transform(result_rgn));
1254     record_for_igvn(result_rgn);
1255     result = _gvn.transform(result_phi);
1256 
1257   } else { // Use LibraryCallKit::string_indexOf
1258     // don't intrinsify if argument isn't a constant string.
1259     if (!argument->is_Con()) {
1260      return false;
1261     }
1262     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1263     if (str_type == NULL) {
1264       return false;
1265     }
1266     ciInstanceKlass* klass = env()->String_klass();
1267     ciObject* str_const = str_type->const_oop();
1268     if (str_const == NULL || str_const->klass() != klass) {
1269       return false;
1270     }
1271     ciInstance* str = str_const->as_instance();
1272     assert(str != NULL, "must be instance");
1273 
1274     ciObject* v = str->field_value_by_offset(value_offset).as_object();
1275     int       o = str->field_value_by_offset(offset_offset).as_int();
1276     int       c = str->field_value_by_offset(count_offset).as_int();
1277     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1278 
1279     // constant strings have no offset and count == length which
1280     // simplifies the resulting code somewhat so lets optimize for that.
1281     if (o != 0 || c != pat->length()) {
1282      return false;
1283     }
1284 
1285     // Null check on self without removing any arguments.  The argument
1286     // null check technically happens in the wrong place, which can lead to
1287     // invalid stack traces when string compare is inlined into a method
1288     // which handles NullPointerExceptions.
1289     _sp += 2;
1290     receiver = do_null_check(receiver, T_OBJECT);
1291     // No null check on the argument is needed since it's a constant String oop.
1292     _sp -= 2;
1293     if (stopped()) {
1294       return true;
1295     }
1296 
1297     // The null string as a pattern always returns 0 (match at beginning of string)
1298     if (c == 0) {
1299       push(intcon(0));
1300       return true;
1301     }
1302 
1303     // Generate default indexOf
1304     jchar lastChar = pat->char_at(o + (c - 1));
1305     int cache = 0;
1306     int i;
1307     for (i = 0; i < c - 1; i++) {
1308       assert(i < pat->length(), "out of range");
1309       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1310     }
1311 
1312     int md2 = c;
1313     for (i = 0; i < c - 1; i++) {
1314       assert(i < pat->length(), "out of range");
1315       if (pat->char_at(o + i) == lastChar) {
1316         md2 = (c - 1) - i;
1317       }
1318     }
1319 
1320     result = string_indexOf(receiver, pat, o, cache, md2);
1321   }
1322 
1323   push(result);
1324   return true;
1325 }
1326 
1327 //--------------------------pop_math_arg--------------------------------
1328 // Pop a double argument to a math function from the stack
1329 // rounding it if necessary.
1330 Node * LibraryCallKit::pop_math_arg() {
1331   Node *arg = pop_pair();
1332   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1333     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1334   return arg;
1335 }
1336 
1337 //------------------------------inline_trig----------------------------------
1338 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1339 // argument reduction which will turn into a fast/slow diamond.
1340 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1341   _sp += arg_size();            // restore stack pointer
1342   Node* arg = pop_math_arg();
1343   Node* trig = NULL;
1344 
1345   switch (id) {
1346   case vmIntrinsics::_dsin:
1347     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1348     break;
1349   case vmIntrinsics::_dcos:
1350     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1351     break;
1352   case vmIntrinsics::_dtan:
1353     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1354     break;
1355   default:
1356     assert(false, "bad intrinsic was passed in");
1357     return false;
1358   }
1359 
1360   // Rounding required?  Check for argument reduction!
1361   if( Matcher::strict_fp_requires_explicit_rounding ) {
1362 
1363     static const double     pi_4 =  0.7853981633974483;
1364     static const double neg_pi_4 = -0.7853981633974483;
1365     // pi/2 in 80-bit extended precision
1366     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1367     // -pi/2 in 80-bit extended precision
1368     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1369     // Cutoff value for using this argument reduction technique
1370     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1371     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1372 
1373     // Pseudocode for sin:
1374     // if (x <= Math.PI / 4.0) {
1375     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1376     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1377     // } else {
1378     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1379     // }
1380     // return StrictMath.sin(x);
1381 
1382     // Pseudocode for cos:
1383     // if (x <= Math.PI / 4.0) {
1384     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1385     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1386     // } else {
1387     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1388     // }
1389     // return StrictMath.cos(x);
1390 
1391     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1392     // requires a special machine instruction to load it.  Instead we'll try
1393     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1394     // probably do the math inside the SIN encoding.
1395 
1396     // Make the merge point
1397     RegionNode *r = new (C, 3) RegionNode(3);
1398     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1399 
1400     // Flatten arg so we need only 1 test
1401     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1402     // Node for PI/4 constant
1403     Node *pi4 = makecon(TypeD::make(pi_4));
1404     // Check PI/4 : abs(arg)
1405     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1406     // Check: If PI/4 < abs(arg) then go slow
1407     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1408     // Branch either way
1409     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1410     set_control(opt_iff(r,iff));
1411 
1412     // Set fast path result
1413     phi->init_req(2,trig);
1414 
1415     // Slow path - non-blocking leaf call
1416     Node* call = NULL;
1417     switch (id) {
1418     case vmIntrinsics::_dsin:
1419       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1420                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1421                                "Sin", NULL, arg, top());
1422       break;
1423     case vmIntrinsics::_dcos:
1424       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1425                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1426                                "Cos", NULL, arg, top());
1427       break;
1428     case vmIntrinsics::_dtan:
1429       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1430                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1431                                "Tan", NULL, arg, top());
1432       break;
1433     }
1434     assert(control()->in(0) == call, "");
1435     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1436     r->init_req(1,control());
1437     phi->init_req(1,slow_result);
1438 
1439     // Post-merge
1440     set_control(_gvn.transform(r));
1441     record_for_igvn(r);
1442     trig = _gvn.transform(phi);
1443 
1444     C->set_has_split_ifs(true); // Has chance for split-if optimization
1445   }
1446   // Push result back on JVM stack
1447   push_pair(trig);
1448   return true;
1449 }
1450 
1451 //------------------------------inline_sqrt-------------------------------------
1452 // Inline square root instruction, if possible.
1453 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1454   assert(id == vmIntrinsics::_dsqrt, "Not square root");
1455   _sp += arg_size();        // restore stack pointer
1456   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1457   return true;
1458 }
1459 
1460 //------------------------------inline_abs-------------------------------------
1461 // Inline absolute value instruction, if possible.
1462 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1463   assert(id == vmIntrinsics::_dabs, "Not absolute value");
1464   _sp += arg_size();        // restore stack pointer
1465   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1466   return true;
1467 }
1468 
1469 //------------------------------inline_exp-------------------------------------
1470 // Inline exp instructions, if possible.  The Intel hardware only misses
1471 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1472 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1473   assert(id == vmIntrinsics::_dexp, "Not exp");
1474 
1475   // If this inlining ever returned NaN in the past, we do not intrinsify it
1476   // every again.  NaN results requires StrictMath.exp handling.
1477   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1478 
1479   // Do not intrinsify on older platforms which lack cmove.
1480   if (ConditionalMoveLimit == 0)  return false;
1481 
1482   _sp += arg_size();        // restore stack pointer
1483   Node *x = pop_math_arg();
1484   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1485 
1486   //-------------------
1487   //result=(result.isNaN())? StrictMath::exp():result;
1488   // Check: If isNaN() by checking result!=result? then go to Strict Math
1489   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1490   // Build the boolean node
1491   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1492 
1493   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1494     // End the current control-flow path
1495     push_pair(x);
1496     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1497     // to handle.  Recompile without intrinsifying Math.exp
1498     uncommon_trap(Deoptimization::Reason_intrinsic,
1499                   Deoptimization::Action_make_not_entrant);
1500   }
1501 
1502   C->set_has_split_ifs(true); // Has chance for split-if optimization
1503 
1504   push_pair(result);
1505 
1506   return true;
1507 }
1508 
1509 //------------------------------inline_pow-------------------------------------
1510 // Inline power instructions, if possible.
1511 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1512   assert(id == vmIntrinsics::_dpow, "Not pow");
1513 
1514   // If this inlining ever returned NaN in the past, we do not intrinsify it
1515   // every again.  NaN results requires StrictMath.pow handling.
1516   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1517 
1518   // Do not intrinsify on older platforms which lack cmove.
1519   if (ConditionalMoveLimit == 0)  return false;
1520 
1521   // Pseudocode for pow
1522   // if (x <= 0.0) {
1523   //   if ((double)((int)y)==y) { // if y is int
1524   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1525   //   } else {
1526   //     result = NaN;
1527   //   }
1528   // } else {
1529   //   result = DPow(x,y);
1530   // }
1531   // if (result != result)?  {
1532   //   uncommon_trap();
1533   // }
1534   // return result;
1535 
1536   _sp += arg_size();        // restore stack pointer
1537   Node* y = pop_math_arg();
1538   Node* x = pop_math_arg();
1539 
1540   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1541 
1542   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1543   // inside of something) then skip the fancy tests and just check for
1544   // NaN result.
1545   Node *result = NULL;
1546   if( jvms()->depth() >= 1 ) {
1547     result = fast_result;
1548   } else {
1549 
1550     // Set the merge point for If node with condition of (x <= 0.0)
1551     // There are four possible paths to region node and phi node
1552     RegionNode *r = new (C, 4) RegionNode(4);
1553     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1554 
1555     // Build the first if node: if (x <= 0.0)
1556     // Node for 0 constant
1557     Node *zeronode = makecon(TypeD::ZERO);
1558     // Check x:0
1559     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1560     // Check: If (x<=0) then go complex path
1561     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1562     // Branch either way
1563     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1564     Node *opt_test = _gvn.transform(if1);
1565     //assert( opt_test->is_If(), "Expect an IfNode");
1566     IfNode *opt_if1 = (IfNode*)opt_test;
1567     // Fast path taken; set region slot 3
1568     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1569     r->init_req(3,fast_taken); // Capture fast-control
1570 
1571     // Fast path not-taken, i.e. slow path
1572     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1573 
1574     // Set fast path result
1575     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1576     phi->init_req(3, fast_result);
1577 
1578     // Complex path
1579     // Build the second if node (if y is int)
1580     // Node for (int)y
1581     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1582     // Node for (double)((int) y)
1583     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1584     // Check (double)((int) y) : y
1585     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1586     // Check if (y isn't int) then go to slow path
1587 
1588     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1589     // Branch either way
1590     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1591     Node *slow_path = opt_iff(r,if2); // Set region path 2
1592 
1593     // Calculate DPow(abs(x), y)*(1 & (int)y)
1594     // Node for constant 1
1595     Node *conone = intcon(1);
1596     // 1& (int)y
1597     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1598     // zero node
1599     Node *conzero = intcon(0);
1600     // Check (1&(int)y)==0?
1601     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1602     // Check if (1&(int)y)!=0?, if so the result is negative
1603     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1604     // abs(x)
1605     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1606     // abs(x)^y
1607     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1608     // -abs(x)^y
1609     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1610     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1611     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1612     // Set complex path fast result
1613     phi->init_req(2, signresult);
1614 
1615     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1616     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1617     r->init_req(1,slow_path);
1618     phi->init_req(1,slow_result);
1619 
1620     // Post merge
1621     set_control(_gvn.transform(r));
1622     record_for_igvn(r);
1623     result=_gvn.transform(phi);
1624   }
1625 
1626   //-------------------
1627   //result=(result.isNaN())? uncommon_trap():result;
1628   // Check: If isNaN() by checking result!=result? then go to Strict Math
1629   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1630   // Build the boolean node
1631   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1632 
1633   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1634     // End the current control-flow path
1635     push_pair(x);
1636     push_pair(y);
1637     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1638     // to handle.  Recompile without intrinsifying Math.pow.
1639     uncommon_trap(Deoptimization::Reason_intrinsic,
1640                   Deoptimization::Action_make_not_entrant);
1641   }
1642 
1643   C->set_has_split_ifs(true); // Has chance for split-if optimization
1644 
1645   push_pair(result);
1646 
1647   return true;
1648 }
1649 
1650 //------------------------------inline_trans-------------------------------------
1651 // Inline transcendental instructions, if possible.  The Intel hardware gets
1652 // these right, no funny corner cases missed.
1653 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1654   _sp += arg_size();        // restore stack pointer
1655   Node* arg = pop_math_arg();
1656   Node* trans = NULL;
1657 
1658   switch (id) {
1659   case vmIntrinsics::_dlog:
1660     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1661     break;
1662   case vmIntrinsics::_dlog10:
1663     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1664     break;
1665   default:
1666     assert(false, "bad intrinsic was passed in");
1667     return false;
1668   }
1669 
1670   // Push result back on JVM stack
1671   push_pair(trans);
1672   return true;
1673 }
1674 
1675 //------------------------------runtime_math-----------------------------
1676 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1677   Node* a = NULL;
1678   Node* b = NULL;
1679 
1680   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1681          "must be (DD)D or (D)D type");
1682 
1683   // Inputs
1684   _sp += arg_size();        // restore stack pointer
1685   if (call_type == OptoRuntime::Math_DD_D_Type()) {
1686     b = pop_math_arg();
1687   }
1688   a = pop_math_arg();
1689 
1690   const TypePtr* no_memory_effects = NULL;
1691   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1692                                  no_memory_effects,
1693                                  a, top(), b, b ? top() : NULL);
1694   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1695 #ifdef ASSERT
1696   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1697   assert(value_top == top(), "second value must be top");
1698 #endif
1699 
1700   push_pair(value);
1701   return true;
1702 }
1703 
1704 //------------------------------inline_math_native-----------------------------
1705 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1706   switch (id) {
1707     // These intrinsics are not properly supported on all hardware
1708   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1709     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1710   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1711     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1712   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1713     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1714 
1715   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1716     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1717   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1718     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1719 
1720     // These intrinsics are supported on all hardware
1721   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1722   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1723 
1724     // These intrinsics don't work on X86.  The ad implementation doesn't
1725     // handle NaN's properly.  Instead of returning infinity, the ad
1726     // implementation returns a NaN on overflow. See bug: 6304089
1727     // Once the ad implementations are fixed, change the code below
1728     // to match the intrinsics above
1729 
1730   case vmIntrinsics::_dexp:  return
1731     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1732   case vmIntrinsics::_dpow:  return
1733     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1734 
1735    // These intrinsics are not yet correctly implemented
1736   case vmIntrinsics::_datan2:
1737     return false;
1738 
1739   default:
1740     ShouldNotReachHere();
1741     return false;
1742   }
1743 }
1744 
1745 static bool is_simple_name(Node* n) {
1746   return (n->req() == 1         // constant
1747           || (n->is_Type() && n->as_Type()->type()->singleton())
1748           || n->is_Proj()       // parameter or return value
1749           || n->is_Phi()        // local of some sort
1750           );
1751 }
1752 
1753 //----------------------------inline_min_max-----------------------------------
1754 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1755   push(generate_min_max(id, argument(0), argument(1)));
1756 
1757   return true;
1758 }
1759 
1760 Node*
1761 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1762   // These are the candidate return value:
1763   Node* xvalue = x0;
1764   Node* yvalue = y0;
1765 
1766   if (xvalue == yvalue) {
1767     return xvalue;
1768   }
1769 
1770   bool want_max = (id == vmIntrinsics::_max);
1771 
1772   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1773   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1774   if (txvalue == NULL || tyvalue == NULL)  return top();
1775   // This is not really necessary, but it is consistent with a
1776   // hypothetical MaxINode::Value method:
1777   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1778 
1779   // %%% This folding logic should (ideally) be in a different place.
1780   // Some should be inside IfNode, and there to be a more reliable
1781   // transformation of ?: style patterns into cmoves.  We also want
1782   // more powerful optimizations around cmove and min/max.
1783 
1784   // Try to find a dominating comparison of these guys.
1785   // It can simplify the index computation for Arrays.copyOf
1786   // and similar uses of System.arraycopy.
1787   // First, compute the normalized version of CmpI(x, y).
1788   int   cmp_op = Op_CmpI;
1789   Node* xkey = xvalue;
1790   Node* ykey = yvalue;
1791   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1792   if (ideal_cmpxy->is_Cmp()) {
1793     // E.g., if we have CmpI(length - offset, count),
1794     // it might idealize to CmpI(length, count + offset)
1795     cmp_op = ideal_cmpxy->Opcode();
1796     xkey = ideal_cmpxy->in(1);
1797     ykey = ideal_cmpxy->in(2);
1798   }
1799 
1800   // Start by locating any relevant comparisons.
1801   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1802   Node* cmpxy = NULL;
1803   Node* cmpyx = NULL;
1804   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1805     Node* cmp = start_from->fast_out(k);
1806     if (cmp->outcnt() > 0 &&            // must have prior uses
1807         cmp->in(0) == NULL &&           // must be context-independent
1808         cmp->Opcode() == cmp_op) {      // right kind of compare
1809       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1810       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1811     }
1812   }
1813 
1814   const int NCMPS = 2;
1815   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1816   int cmpn;
1817   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1818     if (cmps[cmpn] != NULL)  break;     // find a result
1819   }
1820   if (cmpn < NCMPS) {
1821     // Look for a dominating test that tells us the min and max.
1822     int depth = 0;                // Limit search depth for speed
1823     Node* dom = control();
1824     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1825       if (++depth >= 100)  break;
1826       Node* ifproj = dom;
1827       if (!ifproj->is_Proj())  continue;
1828       Node* iff = ifproj->in(0);
1829       if (!iff->is_If())  continue;
1830       Node* bol = iff->in(1);
1831       if (!bol->is_Bool())  continue;
1832       Node* cmp = bol->in(1);
1833       if (cmp == NULL)  continue;
1834       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1835         if (cmps[cmpn] == cmp)  break;
1836       if (cmpn == NCMPS)  continue;
1837       BoolTest::mask btest = bol->as_Bool()->_test._test;
1838       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1839       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1840       // At this point, we know that 'x btest y' is true.
1841       switch (btest) {
1842       case BoolTest::eq:
1843         // They are proven equal, so we can collapse the min/max.
1844         // Either value is the answer.  Choose the simpler.
1845         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1846           return yvalue;
1847         return xvalue;
1848       case BoolTest::lt:          // x < y
1849       case BoolTest::le:          // x <= y
1850         return (want_max ? yvalue : xvalue);
1851       case BoolTest::gt:          // x > y
1852       case BoolTest::ge:          // x >= y
1853         return (want_max ? xvalue : yvalue);
1854       }
1855     }
1856   }
1857 
1858   // We failed to find a dominating test.
1859   // Let's pick a test that might GVN with prior tests.
1860   Node*          best_bol   = NULL;
1861   BoolTest::mask best_btest = BoolTest::illegal;
1862   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1863     Node* cmp = cmps[cmpn];
1864     if (cmp == NULL)  continue;
1865     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1866       Node* bol = cmp->fast_out(j);
1867       if (!bol->is_Bool())  continue;
1868       BoolTest::mask btest = bol->as_Bool()->_test._test;
1869       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1870       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1871       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1872         best_bol   = bol->as_Bool();
1873         best_btest = btest;
1874       }
1875     }
1876   }
1877 
1878   Node* answer_if_true  = NULL;
1879   Node* answer_if_false = NULL;
1880   switch (best_btest) {
1881   default:
1882     if (cmpxy == NULL)
1883       cmpxy = ideal_cmpxy;
1884     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1885     // and fall through:
1886   case BoolTest::lt:          // x < y
1887   case BoolTest::le:          // x <= y
1888     answer_if_true  = (want_max ? yvalue : xvalue);
1889     answer_if_false = (want_max ? xvalue : yvalue);
1890     break;
1891   case BoolTest::gt:          // x > y
1892   case BoolTest::ge:          // x >= y
1893     answer_if_true  = (want_max ? xvalue : yvalue);
1894     answer_if_false = (want_max ? yvalue : xvalue);
1895     break;
1896   }
1897 
1898   jint hi, lo;
1899   if (want_max) {
1900     // We can sharpen the minimum.
1901     hi = MAX2(txvalue->_hi, tyvalue->_hi);
1902     lo = MAX2(txvalue->_lo, tyvalue->_lo);
1903   } else {
1904     // We can sharpen the maximum.
1905     hi = MIN2(txvalue->_hi, tyvalue->_hi);
1906     lo = MIN2(txvalue->_lo, tyvalue->_lo);
1907   }
1908 
1909   // Use a flow-free graph structure, to avoid creating excess control edges
1910   // which could hinder other optimizations.
1911   // Since Math.min/max is often used with arraycopy, we want
1912   // tightly_coupled_allocation to be able to see beyond min/max expressions.
1913   Node* cmov = CMoveNode::make(C, NULL, best_bol,
1914                                answer_if_false, answer_if_true,
1915                                TypeInt::make(lo, hi, widen));
1916 
1917   return _gvn.transform(cmov);
1918 
1919   /*
1920   // This is not as desirable as it may seem, since Min and Max
1921   // nodes do not have a full set of optimizations.
1922   // And they would interfere, anyway, with 'if' optimizations
1923   // and with CMoveI canonical forms.
1924   switch (id) {
1925   case vmIntrinsics::_min:
1926     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1927   case vmIntrinsics::_max:
1928     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1929   default:
1930     ShouldNotReachHere();
1931   }
1932   */
1933 }
1934 
1935 inline int
1936 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1937   const TypePtr* base_type = TypePtr::NULL_PTR;
1938   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1939   if (base_type == NULL) {
1940     // Unknown type.
1941     return Type::AnyPtr;
1942   } else if (base_type == TypePtr::NULL_PTR) {
1943     // Since this is a NULL+long form, we have to switch to a rawptr.
1944     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1945     offset = MakeConX(0);
1946     return Type::RawPtr;
1947   } else if (base_type->base() == Type::RawPtr) {
1948     return Type::RawPtr;
1949   } else if (base_type->isa_oopptr()) {
1950     // Base is never null => always a heap address.
1951     if (base_type->ptr() == TypePtr::NotNull) {
1952       return Type::OopPtr;
1953     }
1954     // Offset is small => always a heap address.
1955     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1956     if (offset_type != NULL &&
1957         base_type->offset() == 0 &&     // (should always be?)
1958         offset_type->_lo >= 0 &&
1959         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1960       return Type::OopPtr;
1961     }
1962     // Otherwise, it might either be oop+off or NULL+addr.
1963     return Type::AnyPtr;
1964   } else {
1965     // No information:
1966     return Type::AnyPtr;
1967   }
1968 }
1969 
1970 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
1971   int kind = classify_unsafe_addr(base, offset);
1972   if (kind == Type::RawPtr) {
1973     return basic_plus_adr(top(), base, offset);
1974   } else {
1975     return basic_plus_adr(base, offset);
1976   }
1977 }
1978 
1979 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
1980 // inline int Integer.numberOfLeadingZeros(int)
1981 // inline int Long.numberOfLeadingZeros(long)
1982 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
1983   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
1984   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
1985   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
1986   _sp += arg_size();  // restore stack pointer
1987   switch (id) {
1988   case vmIntrinsics::_numberOfLeadingZeros_i:
1989     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
1990     break;
1991   case vmIntrinsics::_numberOfLeadingZeros_l:
1992     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
1993     break;
1994   default:
1995     ShouldNotReachHere();
1996   }
1997   return true;
1998 }
1999 
2000 //-------------------inline_numberOfTrailingZeros_int/long----------------------
2001 // inline int Integer.numberOfTrailingZeros(int)
2002 // inline int Long.numberOfTrailingZeros(long)
2003 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
2004   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
2005   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
2006   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
2007   _sp += arg_size();  // restore stack pointer
2008   switch (id) {
2009   case vmIntrinsics::_numberOfTrailingZeros_i:
2010     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
2011     break;
2012   case vmIntrinsics::_numberOfTrailingZeros_l:
2013     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
2014     break;
2015   default:
2016     ShouldNotReachHere();
2017   }
2018   return true;
2019 }
2020 
2021 //----------------------------inline_bitCount_int/long-----------------------
2022 // inline int Integer.bitCount(int)
2023 // inline int Long.bitCount(long)
2024 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
2025   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
2026   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
2027   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
2028   _sp += arg_size();  // restore stack pointer
2029   switch (id) {
2030   case vmIntrinsics::_bitCount_i:
2031     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
2032     break;
2033   case vmIntrinsics::_bitCount_l:
2034     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
2035     break;
2036   default:
2037     ShouldNotReachHere();
2038   }
2039   return true;
2040 }
2041 
2042 //----------------------------inline_reverseBytes_int/long/char/short-------------------
2043 // inline Integer.reverseBytes(int)
2044 // inline Long.reverseBytes(long)
2045 // inline Character.reverseBytes(char)
2046 // inline Short.reverseBytes(short)
2047 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
2048   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
2049          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
2050          "not reverse Bytes");
2051   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
2052   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
2053   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
2054   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
2055   _sp += arg_size();        // restore stack pointer
2056   switch (id) {
2057   case vmIntrinsics::_reverseBytes_i:
2058     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
2059     break;
2060   case vmIntrinsics::_reverseBytes_l:
2061     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
2062     break;
2063   case vmIntrinsics::_reverseBytes_c:
2064     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
2065     break;
2066   case vmIntrinsics::_reverseBytes_s:
2067     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
2068     break;
2069   default:
2070     ;
2071   }
2072   return true;
2073 }
2074 
2075 //----------------------------inline_unsafe_access----------------------------
2076 
2077 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2078 
2079 // Interpret Unsafe.fieldOffset cookies correctly:
2080 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2081 
2082 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2083   if (callee()->is_static())  return false;  // caller must have the capability!
2084 
2085 #ifndef PRODUCT
2086   {
2087     ResourceMark rm;
2088     // Check the signatures.
2089     ciSignature* sig = signature();
2090 #ifdef ASSERT
2091     if (!is_store) {
2092       // Object getObject(Object base, int/long offset), etc.
2093       BasicType rtype = sig->return_type()->basic_type();
2094       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2095           rtype = T_ADDRESS;  // it is really a C void*
2096       assert(rtype == type, "getter must return the expected value");
2097       if (!is_native_ptr) {
2098         assert(sig->count() == 2, "oop getter has 2 arguments");
2099         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2100         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2101       } else {
2102         assert(sig->count() == 1, "native getter has 1 argument");
2103         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2104       }
2105     } else {
2106       // void putObject(Object base, int/long offset, Object x), etc.
2107       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2108       if (!is_native_ptr) {
2109         assert(sig->count() == 3, "oop putter has 3 arguments");
2110         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2111         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2112       } else {
2113         assert(sig->count() == 2, "native putter has 2 arguments");
2114         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2115       }
2116       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2117       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2118         vtype = T_ADDRESS;  // it is really a C void*
2119       assert(vtype == type, "putter must accept the expected value");
2120     }
2121 #endif // ASSERT
2122  }
2123 #endif //PRODUCT
2124 
2125   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2126 
2127   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
2128 
2129   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
2130   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
2131 
2132   debug_only(int saved_sp = _sp);
2133   _sp += nargs;
2134 
2135   Node* val;
2136   debug_only(val = (Node*)(uintptr_t)-1);
2137 
2138 
2139   if (is_store) {
2140     // Get the value being stored.  (Pop it first; it was pushed last.)
2141     switch (type) {
2142     case T_DOUBLE:
2143     case T_LONG:
2144     case T_ADDRESS:
2145       val = pop_pair();
2146       break;
2147     default:
2148       val = pop();
2149     }
2150   }
2151 
2152   // Build address expression.  See the code in inline_unsafe_prefetch.
2153   Node *adr;
2154   Node *heap_base_oop = top();
2155   if (!is_native_ptr) {
2156     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2157     Node* offset = pop_pair();
2158     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2159     Node* base   = pop();
2160     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2161     // to be plain byte offsets, which are also the same as those accepted
2162     // by oopDesc::field_base.
2163     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2164            "fieldOffset must be byte-scaled");
2165     // 32-bit machines ignore the high half!
2166     offset = ConvL2X(offset);
2167     adr = make_unsafe_address(base, offset);
2168     heap_base_oop = base;
2169   } else {
2170     Node* ptr = pop_pair();
2171     // Adjust Java long to machine word:
2172     ptr = ConvL2X(ptr);
2173     adr = make_unsafe_address(NULL, ptr);
2174   }
2175 
2176   // Pop receiver last:  it was pushed first.
2177   Node *receiver = pop();
2178 
2179   assert(saved_sp == _sp, "must have correct argument count");
2180 
2181   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2182 
2183   // First guess at the value type.
2184   const Type *value_type = Type::get_const_basic_type(type);
2185 
2186   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2187   // there was not enough information to nail it down.
2188   Compile::AliasType* alias_type = C->alias_type(adr_type);
2189   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2190 
2191   // We will need memory barriers unless we can determine a unique
2192   // alias category for this reference.  (Note:  If for some reason
2193   // the barriers get omitted and the unsafe reference begins to "pollute"
2194   // the alias analysis of the rest of the graph, either Compile::can_alias
2195   // or Compile::must_alias will throw a diagnostic assert.)
2196   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2197 
2198   if (!is_store && type == T_OBJECT) {
2199     // Attempt to infer a sharper value type from the offset and base type.
2200     ciKlass* sharpened_klass = NULL;
2201 
2202     // See if it is an instance field, with an object type.
2203     if (alias_type->field() != NULL) {
2204       assert(!is_native_ptr, "native pointer op cannot use a java address");
2205       if (alias_type->field()->type()->is_klass()) {
2206         sharpened_klass = alias_type->field()->type()->as_klass();
2207       }
2208     }
2209 
2210     // See if it is a narrow oop array.
2211     if (adr_type->isa_aryptr()) {
2212       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2213         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2214         if (elem_type != NULL) {
2215           sharpened_klass = elem_type->klass();
2216         }
2217       }
2218     }
2219 
2220     if (sharpened_klass != NULL) {
2221       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2222 
2223       // Sharpen the value type.
2224       value_type = tjp;
2225 
2226 #ifndef PRODUCT
2227       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2228         tty->print("  from base type:  ");   adr_type->dump();
2229         tty->print("  sharpened value: "); value_type->dump();
2230       }
2231 #endif
2232     }
2233   }
2234 
2235   // Null check on self without removing any arguments.  The argument
2236   // null check technically happens in the wrong place, which can lead to
2237   // invalid stack traces when the primitive is inlined into a method
2238   // which handles NullPointerExceptions.
2239   _sp += nargs;
2240   do_null_check(receiver, T_OBJECT);
2241   _sp -= nargs;
2242   if (stopped()) {
2243     return true;
2244   }
2245   // Heap pointers get a null-check from the interpreter,
2246   // as a courtesy.  However, this is not guaranteed by Unsafe,
2247   // and it is not possible to fully distinguish unintended nulls
2248   // from intended ones in this API.
2249 
2250   if (is_volatile) {
2251     // We need to emit leading and trailing CPU membars (see below) in
2252     // addition to memory membars when is_volatile. This is a little
2253     // too strong, but avoids the need to insert per-alias-type
2254     // volatile membars (for stores; compare Parse::do_put_xxx), which
2255     // we cannot do effectively here because we probably only have a
2256     // rough approximation of type.
2257     need_mem_bar = true;
2258     // For Stores, place a memory ordering barrier now.
2259     if (is_store)
2260       insert_mem_bar(Op_MemBarRelease);
2261   }
2262 
2263   // Memory barrier to prevent normal and 'unsafe' accesses from
2264   // bypassing each other.  Happens after null checks, so the
2265   // exception paths do not take memory state from the memory barrier,
2266   // so there's no problems making a strong assert about mixing users
2267   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2268   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2269   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2270 
2271   if (!is_store) {
2272     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2273     // load value and push onto stack
2274     switch (type) {
2275     case T_BOOLEAN:
2276     case T_CHAR:
2277     case T_BYTE:
2278     case T_SHORT:
2279     case T_INT:
2280     case T_FLOAT:
2281     case T_OBJECT:
2282       push( p );
2283       break;
2284     case T_ADDRESS:
2285       // Cast to an int type.
2286       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
2287       p = ConvX2L(p);
2288       push_pair(p);
2289       break;
2290     case T_DOUBLE:
2291     case T_LONG:
2292       push_pair( p );
2293       break;
2294     default: ShouldNotReachHere();
2295     }
2296   } else {
2297     // place effect of store into memory
2298     switch (type) {
2299     case T_DOUBLE:
2300       val = dstore_rounding(val);
2301       break;
2302     case T_ADDRESS:
2303       // Repackage the long as a pointer.
2304       val = ConvL2X(val);
2305       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
2306       break;
2307     }
2308 
2309     if (type != T_OBJECT ) {
2310       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2311     } else {
2312       // Possibly an oop being stored to Java heap or native memory
2313       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2314         // oop to Java heap.
2315         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2316       } else {
2317         // We can't tell at compile time if we are storing in the Java heap or outside
2318         // of it. So we need to emit code to conditionally do the proper type of
2319         // store.
2320 
2321         IdealKit ideal(this);
2322 #define __ ideal.
2323         // QQQ who knows what probability is here??
2324         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2325           // Sync IdealKit and graphKit.
2326           sync_kit(ideal, false);
2327           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2328           // Update IdealKit memory.
2329           __ sync_kit(this);
2330         } __ else_(); {
2331           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2332         } __ end_if();
2333         // Final sync IdealKit and GraphKit.
2334         sync_kit(ideal);
2335 #undef __
2336       }
2337     }
2338   }
2339 
2340   if (is_volatile) {
2341     if (!is_store)
2342       insert_mem_bar(Op_MemBarAcquire);
2343     else
2344       insert_mem_bar(Op_MemBarVolatile);
2345   }
2346 
2347   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2348 
2349   return true;
2350 }
2351 
2352 //----------------------------inline_unsafe_prefetch----------------------------
2353 
2354 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2355 #ifndef PRODUCT
2356   {
2357     ResourceMark rm;
2358     // Check the signatures.
2359     ciSignature* sig = signature();
2360 #ifdef ASSERT
2361     // Object getObject(Object base, int/long offset), etc.
2362     BasicType rtype = sig->return_type()->basic_type();
2363     if (!is_native_ptr) {
2364       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2365       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2366       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2367     } else {
2368       assert(sig->count() == 1, "native prefetch has 1 argument");
2369       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2370     }
2371 #endif // ASSERT
2372   }
2373 #endif // !PRODUCT
2374 
2375   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2376 
2377   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2378   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2379 
2380   debug_only(int saved_sp = _sp);
2381   _sp += nargs;
2382 
2383   // Build address expression.  See the code in inline_unsafe_access.
2384   Node *adr;
2385   if (!is_native_ptr) {
2386     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2387     Node* offset = pop_pair();
2388     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2389     Node* base   = pop();
2390     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2391     // to be plain byte offsets, which are also the same as those accepted
2392     // by oopDesc::field_base.
2393     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2394            "fieldOffset must be byte-scaled");
2395     // 32-bit machines ignore the high half!
2396     offset = ConvL2X(offset);
2397     adr = make_unsafe_address(base, offset);
2398   } else {
2399     Node* ptr = pop_pair();
2400     // Adjust Java long to machine word:
2401     ptr = ConvL2X(ptr);
2402     adr = make_unsafe_address(NULL, ptr);
2403   }
2404 
2405   if (is_static) {
2406     assert(saved_sp == _sp, "must have correct argument count");
2407   } else {
2408     // Pop receiver last:  it was pushed first.
2409     Node *receiver = pop();
2410     assert(saved_sp == _sp, "must have correct argument count");
2411 
2412     // Null check on self without removing any arguments.  The argument
2413     // null check technically happens in the wrong place, which can lead to
2414     // invalid stack traces when the primitive is inlined into a method
2415     // which handles NullPointerExceptions.
2416     _sp += nargs;
2417     do_null_check(receiver, T_OBJECT);
2418     _sp -= nargs;
2419     if (stopped()) {
2420       return true;
2421     }
2422   }
2423 
2424   // Generate the read or write prefetch
2425   Node *prefetch;
2426   if (is_store) {
2427     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2428   } else {
2429     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2430   }
2431   prefetch->init_req(0, control());
2432   set_i_o(_gvn.transform(prefetch));
2433 
2434   return true;
2435 }
2436 
2437 //----------------------------inline_unsafe_CAS----------------------------
2438 
2439 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2440   // This basic scheme here is the same as inline_unsafe_access, but
2441   // differs in enough details that combining them would make the code
2442   // overly confusing.  (This is a true fact! I originally combined
2443   // them, but even I was confused by it!) As much code/comments as
2444   // possible are retained from inline_unsafe_access though to make
2445   // the correspondences clearer. - dl
2446 
2447   if (callee()->is_static())  return false;  // caller must have the capability!
2448 
2449 #ifndef PRODUCT
2450   {
2451     ResourceMark rm;
2452     // Check the signatures.
2453     ciSignature* sig = signature();
2454 #ifdef ASSERT
2455     BasicType rtype = sig->return_type()->basic_type();
2456     assert(rtype == T_BOOLEAN, "CAS must return boolean");
2457     assert(sig->count() == 4, "CAS has 4 arguments");
2458     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2459     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2460 #endif // ASSERT
2461   }
2462 #endif //PRODUCT
2463 
2464   // number of stack slots per value argument (1 or 2)
2465   int type_words = type2size[type];
2466 
2467   // Cannot inline wide CAS on machines that don't support it natively
2468   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
2469     return false;
2470 
2471   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2472 
2473   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2474   int nargs = 1 + 1 + 2  + type_words + type_words;
2475 
2476   // pop arguments: newval, oldval, offset, base, and receiver
2477   debug_only(int saved_sp = _sp);
2478   _sp += nargs;
2479   Node* newval   = (type_words == 1) ? pop() : pop_pair();
2480   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2481   Node *offset   = pop_pair();
2482   Node *base     = pop();
2483   Node *receiver = pop();
2484   assert(saved_sp == _sp, "must have correct argument count");
2485 
2486   //  Null check receiver.
2487   _sp += nargs;
2488   do_null_check(receiver, T_OBJECT);
2489   _sp -= nargs;
2490   if (stopped()) {
2491     return true;
2492   }
2493 
2494   // Build field offset expression.
2495   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2496   // to be plain byte offsets, which are also the same as those accepted
2497   // by oopDesc::field_base.
2498   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2499   // 32-bit machines ignore the high half of long offsets
2500   offset = ConvL2X(offset);
2501   Node* adr = make_unsafe_address(base, offset);
2502   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2503 
2504   // (Unlike inline_unsafe_access, there seems no point in trying
2505   // to refine types. Just use the coarse types here.
2506   const Type *value_type = Type::get_const_basic_type(type);
2507   Compile::AliasType* alias_type = C->alias_type(adr_type);
2508   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2509   int alias_idx = C->get_alias_index(adr_type);
2510 
2511   // Memory-model-wise, a CAS acts like a little synchronized block,
2512   // so needs barriers on each side.  These don't translate into
2513   // actual barriers on most machines, but we still need rest of
2514   // compiler to respect ordering.
2515 
2516   insert_mem_bar(Op_MemBarRelease);
2517   insert_mem_bar(Op_MemBarCPUOrder);
2518 
2519   // 4984716: MemBars must be inserted before this
2520   //          memory node in order to avoid a false
2521   //          dependency which will confuse the scheduler.
2522   Node *mem = memory(alias_idx);
2523 
2524   // For now, we handle only those cases that actually exist: ints,
2525   // longs, and Object. Adding others should be straightforward.
2526   Node* cas;
2527   switch(type) {
2528   case T_INT:
2529     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2530     break;
2531   case T_LONG:
2532     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2533     break;
2534   case T_OBJECT:
2535      // reference stores need a store barrier.
2536     // (They don't if CAS fails, but it isn't worth checking.)
2537     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
2538 #ifdef _LP64
2539     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2540       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2541       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2542       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
2543                                                           newval_enc, oldval_enc));
2544     } else
2545 #endif
2546     {
2547       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2548     }
2549     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2550     break;
2551   default:
2552     ShouldNotReachHere();
2553     break;
2554   }
2555 
2556   // SCMemProjNodes represent the memory state of CAS. Their main
2557   // role is to prevent CAS nodes from being optimized away when their
2558   // results aren't used.
2559   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2560   set_memory(proj, alias_idx);
2561 
2562   // Add the trailing membar surrounding the access
2563   insert_mem_bar(Op_MemBarCPUOrder);
2564   insert_mem_bar(Op_MemBarAcquire);
2565 
2566   push(cas);
2567   return true;
2568 }
2569 
2570 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2571   // This is another variant of inline_unsafe_access, differing in
2572   // that it always issues store-store ("release") barrier and ensures
2573   // store-atomicity (which only matters for "long").
2574 
2575   if (callee()->is_static())  return false;  // caller must have the capability!
2576 
2577 #ifndef PRODUCT
2578   {
2579     ResourceMark rm;
2580     // Check the signatures.
2581     ciSignature* sig = signature();
2582 #ifdef ASSERT
2583     BasicType rtype = sig->return_type()->basic_type();
2584     assert(rtype == T_VOID, "must return void");
2585     assert(sig->count() == 3, "has 3 arguments");
2586     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2587     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2588 #endif // ASSERT
2589   }
2590 #endif //PRODUCT
2591 
2592   // number of stack slots per value argument (1 or 2)
2593   int type_words = type2size[type];
2594 
2595   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2596 
2597   // Argument words:  "this" plus oop plus offset plus value;
2598   int nargs = 1 + 1 + 2 + type_words;
2599 
2600   // pop arguments: val, offset, base, and receiver
2601   debug_only(int saved_sp = _sp);
2602   _sp += nargs;
2603   Node* val      = (type_words == 1) ? pop() : pop_pair();
2604   Node *offset   = pop_pair();
2605   Node *base     = pop();
2606   Node *receiver = pop();
2607   assert(saved_sp == _sp, "must have correct argument count");
2608 
2609   //  Null check receiver.
2610   _sp += nargs;
2611   do_null_check(receiver, T_OBJECT);
2612   _sp -= nargs;
2613   if (stopped()) {
2614     return true;
2615   }
2616 
2617   // Build field offset expression.
2618   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2619   // 32-bit machines ignore the high half of long offsets
2620   offset = ConvL2X(offset);
2621   Node* adr = make_unsafe_address(base, offset);
2622   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2623   const Type *value_type = Type::get_const_basic_type(type);
2624   Compile::AliasType* alias_type = C->alias_type(adr_type);
2625 
2626   insert_mem_bar(Op_MemBarRelease);
2627   insert_mem_bar(Op_MemBarCPUOrder);
2628   // Ensure that the store is atomic for longs:
2629   bool require_atomic_access = true;
2630   Node* store;
2631   if (type == T_OBJECT) // reference stores need a store barrier.
2632     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2633   else {
2634     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2635   }
2636   insert_mem_bar(Op_MemBarCPUOrder);
2637   return true;
2638 }
2639 
2640 bool LibraryCallKit::inline_unsafe_allocate() {
2641   if (callee()->is_static())  return false;  // caller must have the capability!
2642   int nargs = 1 + 1;
2643   assert(signature()->size() == nargs-1, "alloc has 1 argument");
2644   null_check_receiver(callee());  // check then ignore argument(0)
2645   _sp += nargs;  // set original stack for use by uncommon_trap
2646   Node* cls = do_null_check(argument(1), T_OBJECT);
2647   _sp -= nargs;
2648   if (stopped())  return true;
2649 
2650   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2651   _sp += nargs;  // set original stack for use by uncommon_trap
2652   kls = do_null_check(kls, T_OBJECT);
2653   _sp -= nargs;
2654   if (stopped())  return true;  // argument was like int.class
2655 
2656   // Note:  The argument might still be an illegal value like
2657   // Serializable.class or Object[].class.   The runtime will handle it.
2658   // But we must make an explicit check for initialization.
2659   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
2660   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
2661   Node* bits = intcon(instanceKlass::fully_initialized);
2662   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2663   // The 'test' is non-zero if we need to take a slow path.
2664 
2665   Node* obj = new_instance(kls, test);
2666   push(obj);
2667 
2668   return true;
2669 }
2670 
2671 //------------------------inline_native_time_funcs--------------
2672 // inline code for System.currentTimeMillis() and System.nanoTime()
2673 // these have the same type and signature
2674 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2675   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2676                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2677   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2678   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2679   const TypePtr* no_memory_effects = NULL;
2680   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2681   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2682 #ifdef ASSERT
2683   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2684   assert(value_top == top(), "second value must be top");
2685 #endif
2686   push_pair(value);
2687   return true;
2688 }
2689 
2690 //------------------------inline_native_currentThread------------------
2691 bool LibraryCallKit::inline_native_currentThread() {
2692   Node* junk = NULL;
2693   push(generate_current_thread(junk));
2694   return true;
2695 }
2696 
2697 //------------------------inline_native_isInterrupted------------------
2698 bool LibraryCallKit::inline_native_isInterrupted() {
2699   const int nargs = 1+1;  // receiver + boolean
2700   assert(nargs == arg_size(), "sanity");
2701   // Add a fast path to t.isInterrupted(clear_int):
2702   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2703   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2704   // So, in the common case that the interrupt bit is false,
2705   // we avoid making a call into the VM.  Even if the interrupt bit
2706   // is true, if the clear_int argument is false, we avoid the VM call.
2707   // However, if the receiver is not currentThread, we must call the VM,
2708   // because there must be some locking done around the operation.
2709 
2710   // We only go to the fast case code if we pass two guards.
2711   // Paths which do not pass are accumulated in the slow_region.
2712   RegionNode* slow_region = new (C, 1) RegionNode(1);
2713   record_for_igvn(slow_region);
2714   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2715   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2716   enum { no_int_result_path   = 1,
2717          no_clear_result_path = 2,
2718          slow_result_path     = 3
2719   };
2720 
2721   // (a) Receiving thread must be the current thread.
2722   Node* rec_thr = argument(0);
2723   Node* tls_ptr = NULL;
2724   Node* cur_thr = generate_current_thread(tls_ptr);
2725   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2726   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2727 
2728   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2729   if (!known_current_thread)
2730     generate_slow_guard(bol_thr, slow_region);
2731 
2732   // (b) Interrupt bit on TLS must be false.
2733   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2734   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2735   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2736   // Set the control input on the field _interrupted read to prevent it floating up.
2737   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2738   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2739   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2740 
2741   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2742 
2743   // First fast path:  if (!TLS._interrupted) return false;
2744   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2745   result_rgn->init_req(no_int_result_path, false_bit);
2746   result_val->init_req(no_int_result_path, intcon(0));
2747 
2748   // drop through to next case
2749   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2750 
2751   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2752   Node* clr_arg = argument(1);
2753   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2754   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2755   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2756 
2757   // Second fast path:  ... else if (!clear_int) return true;
2758   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2759   result_rgn->init_req(no_clear_result_path, false_arg);
2760   result_val->init_req(no_clear_result_path, intcon(1));
2761 
2762   // drop through to next case
2763   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2764 
2765   // (d) Otherwise, go to the slow path.
2766   slow_region->add_req(control());
2767   set_control( _gvn.transform(slow_region) );
2768 
2769   if (stopped()) {
2770     // There is no slow path.
2771     result_rgn->init_req(slow_result_path, top());
2772     result_val->init_req(slow_result_path, top());
2773   } else {
2774     // non-virtual because it is a private non-static
2775     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2776 
2777     Node* slow_val = set_results_for_java_call(slow_call);
2778     // this->control() comes from set_results_for_java_call
2779 
2780     // If we know that the result of the slow call will be true, tell the optimizer!
2781     if (known_current_thread)  slow_val = intcon(1);
2782 
2783     Node* fast_io  = slow_call->in(TypeFunc::I_O);
2784     Node* fast_mem = slow_call->in(TypeFunc::Memory);
2785     // These two phis are pre-filled with copies of of the fast IO and Memory
2786     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2787     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2788 
2789     result_rgn->init_req(slow_result_path, control());
2790     io_phi    ->init_req(slow_result_path, i_o());
2791     mem_phi   ->init_req(slow_result_path, reset_memory());
2792     result_val->init_req(slow_result_path, slow_val);
2793 
2794     set_all_memory( _gvn.transform(mem_phi) );
2795     set_i_o(        _gvn.transform(io_phi) );
2796   }
2797 
2798   push_result(result_rgn, result_val);
2799   C->set_has_split_ifs(true); // Has chance for split-if optimization
2800 
2801   return true;
2802 }
2803 
2804 //---------------------------load_mirror_from_klass----------------------------
2805 // Given a klass oop, load its java mirror (a java.lang.Class oop).
2806 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2807   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
2808   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2809 }
2810 
2811 //-----------------------load_klass_from_mirror_common-------------------------
2812 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2813 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2814 // and branch to the given path on the region.
2815 // If never_see_null, take an uncommon trap on null, so we can optimistically
2816 // compile for the non-null case.
2817 // If the region is NULL, force never_see_null = true.
2818 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2819                                                     bool never_see_null,
2820                                                     int nargs,
2821                                                     RegionNode* region,
2822                                                     int null_path,
2823                                                     int offset) {
2824   if (region == NULL)  never_see_null = true;
2825   Node* p = basic_plus_adr(mirror, offset);
2826   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2827   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
2828   _sp += nargs; // any deopt will start just before call to enclosing method
2829   Node* null_ctl = top();
2830   kls = null_check_oop(kls, &null_ctl, never_see_null);
2831   if (region != NULL) {
2832     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2833     region->init_req(null_path, null_ctl);
2834   } else {
2835     assert(null_ctl == top(), "no loose ends");
2836   }
2837   _sp -= nargs;
2838   return kls;
2839 }
2840 
2841 //--------------------(inline_native_Class_query helpers)---------------------
2842 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
2843 // Fall through if (mods & mask) == bits, take the guard otherwise.
2844 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2845   // Branch around if the given klass has the given modifier bit set.
2846   // Like generate_guard, adds a new path onto the region.
2847   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2848   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
2849   Node* mask = intcon(modifier_mask);
2850   Node* bits = intcon(modifier_bits);
2851   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
2852   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
2853   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
2854   return generate_fair_guard(bol, region);
2855 }
2856 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
2857   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
2858 }
2859 
2860 //-------------------------inline_native_Class_query-------------------
2861 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
2862   int nargs = 1+0;  // just the Class mirror, in most cases
2863   const Type* return_type = TypeInt::BOOL;
2864   Node* prim_return_value = top();  // what happens if it's a primitive class?
2865   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2866   bool expect_prim = false;     // most of these guys expect to work on refs
2867 
2868   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
2869 
2870   switch (id) {
2871   case vmIntrinsics::_isInstance:
2872     nargs = 1+1;  // the Class mirror, plus the object getting queried about
2873     // nothing is an instance of a primitive type
2874     prim_return_value = intcon(0);
2875     break;
2876   case vmIntrinsics::_getModifiers:
2877     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2878     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
2879     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
2880     break;
2881   case vmIntrinsics::_isInterface:
2882     prim_return_value = intcon(0);
2883     break;
2884   case vmIntrinsics::_isArray:
2885     prim_return_value = intcon(0);
2886     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
2887     break;
2888   case vmIntrinsics::_isPrimitive:
2889     prim_return_value = intcon(1);
2890     expect_prim = true;  // obviously
2891     break;
2892   case vmIntrinsics::_getSuperclass:
2893     prim_return_value = null();
2894     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2895     break;
2896   case vmIntrinsics::_getComponentType:
2897     prim_return_value = null();
2898     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2899     break;
2900   case vmIntrinsics::_getClassAccessFlags:
2901     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2902     return_type = TypeInt::INT;  // not bool!  6297094
2903     break;
2904   default:
2905     ShouldNotReachHere();
2906   }
2907 
2908   Node* mirror =                      argument(0);
2909   Node* obj    = (nargs <= 1)? top(): argument(1);
2910 
2911   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
2912   if (mirror_con == NULL)  return false;  // cannot happen?
2913 
2914 #ifndef PRODUCT
2915   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2916     ciType* k = mirror_con->java_mirror_type();
2917     if (k) {
2918       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
2919       k->print_name();
2920       tty->cr();
2921     }
2922   }
2923 #endif
2924 
2925   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
2926   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2927   record_for_igvn(region);
2928   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
2929 
2930   // The mirror will never be null of Reflection.getClassAccessFlags, however
2931   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
2932   // if it is. See bug 4774291.
2933 
2934   // For Reflection.getClassAccessFlags(), the null check occurs in
2935   // the wrong place; see inline_unsafe_access(), above, for a similar
2936   // situation.
2937   _sp += nargs;  // set original stack for use by uncommon_trap
2938   mirror = do_null_check(mirror, T_OBJECT);
2939   _sp -= nargs;
2940   // If mirror or obj is dead, only null-path is taken.
2941   if (stopped())  return true;
2942 
2943   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
2944 
2945   // Now load the mirror's klass metaobject, and null-check it.
2946   // Side-effects region with the control path if the klass is null.
2947   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
2948                                      region, _prim_path);
2949   // If kls is null, we have a primitive mirror.
2950   phi->init_req(_prim_path, prim_return_value);
2951   if (stopped()) { push_result(region, phi); return true; }
2952 
2953   Node* p;  // handy temp
2954   Node* null_ctl;
2955 
2956   // Now that we have the non-null klass, we can perform the real query.
2957   // For constant classes, the query will constant-fold in LoadNode::Value.
2958   Node* query_value = top();
2959   switch (id) {
2960   case vmIntrinsics::_isInstance:
2961     // nothing is an instance of a primitive type
2962     _sp += nargs;          // gen_instanceof might do an uncommon trap
2963     query_value = gen_instanceof(obj, kls);
2964     _sp -= nargs;
2965     break;
2966 
2967   case vmIntrinsics::_getModifiers:
2968     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
2969     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2970     break;
2971 
2972   case vmIntrinsics::_isInterface:
2973     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2974     if (generate_interface_guard(kls, region) != NULL)
2975       // A guard was added.  If the guard is taken, it was an interface.
2976       phi->add_req(intcon(1));
2977     // If we fall through, it's a plain class.
2978     query_value = intcon(0);
2979     break;
2980 
2981   case vmIntrinsics::_isArray:
2982     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
2983     if (generate_array_guard(kls, region) != NULL)
2984       // A guard was added.  If the guard is taken, it was an array.
2985       phi->add_req(intcon(1));
2986     // If we fall through, it's a plain class.
2987     query_value = intcon(0);
2988     break;
2989 
2990   case vmIntrinsics::_isPrimitive:
2991     query_value = intcon(0); // "normal" path produces false
2992     break;
2993 
2994   case vmIntrinsics::_getSuperclass:
2995     // The rules here are somewhat unfortunate, but we can still do better
2996     // with random logic than with a JNI call.
2997     // Interfaces store null or Object as _super, but must report null.
2998     // Arrays store an intermediate super as _super, but must report Object.
2999     // Other types can report the actual _super.
3000     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3001     if (generate_interface_guard(kls, region) != NULL)
3002       // A guard was added.  If the guard is taken, it was an interface.
3003       phi->add_req(null());
3004     if (generate_array_guard(kls, region) != NULL)
3005       // A guard was added.  If the guard is taken, it was an array.
3006       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3007     // If we fall through, it's a plain class.  Get its _super.
3008     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
3009     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
3010     null_ctl = top();
3011     kls = null_check_oop(kls, &null_ctl);
3012     if (null_ctl != top()) {
3013       // If the guard is taken, Object.superClass is null (both klass and mirror).
3014       region->add_req(null_ctl);
3015       phi   ->add_req(null());
3016     }
3017     if (!stopped()) {
3018       query_value = load_mirror_from_klass(kls);
3019     }
3020     break;
3021 
3022   case vmIntrinsics::_getComponentType:
3023     if (generate_array_guard(kls, region) != NULL) {
3024       // Be sure to pin the oop load to the guard edge just created:
3025       Node* is_array_ctrl = region->in(region->req()-1);
3026       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
3027       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3028       phi->add_req(cmo);
3029     }
3030     query_value = null();  // non-array case is null
3031     break;
3032 
3033   case vmIntrinsics::_getClassAccessFlags:
3034     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
3035     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3036     break;
3037 
3038   default:
3039     ShouldNotReachHere();
3040   }
3041 
3042   // Fall-through is the normal case of a query to a real class.
3043   phi->init_req(1, query_value);
3044   region->init_req(1, control());
3045 
3046   push_result(region, phi);
3047   C->set_has_split_ifs(true); // Has chance for split-if optimization
3048 
3049   return true;
3050 }
3051 
3052 //--------------------------inline_native_subtype_check------------------------
3053 // This intrinsic takes the JNI calls out of the heart of
3054 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3055 bool LibraryCallKit::inline_native_subtype_check() {
3056   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
3057 
3058   // Pull both arguments off the stack.
3059   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3060   args[0] = argument(0);
3061   args[1] = argument(1);
3062   Node* klasses[2];             // corresponding Klasses: superk, subk
3063   klasses[0] = klasses[1] = top();
3064 
3065   enum {
3066     // A full decision tree on {superc is prim, subc is prim}:
3067     _prim_0_path = 1,           // {P,N} => false
3068                                 // {P,P} & superc!=subc => false
3069     _prim_same_path,            // {P,P} & superc==subc => true
3070     _prim_1_path,               // {N,P} => false
3071     _ref_subtype_path,          // {N,N} & subtype check wins => true
3072     _both_ref_path,             // {N,N} & subtype check loses => false
3073     PATH_LIMIT
3074   };
3075 
3076   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3077   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
3078   record_for_igvn(region);
3079 
3080   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3081   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3082   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3083 
3084   // First null-check both mirrors and load each mirror's klass metaobject.
3085   int which_arg;
3086   for (which_arg = 0; which_arg <= 1; which_arg++) {
3087     Node* arg = args[which_arg];
3088     _sp += nargs;  // set original stack for use by uncommon_trap
3089     arg = do_null_check(arg, T_OBJECT);
3090     _sp -= nargs;
3091     if (stopped())  break;
3092     args[which_arg] = _gvn.transform(arg);
3093 
3094     Node* p = basic_plus_adr(arg, class_klass_offset);
3095     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3096     klasses[which_arg] = _gvn.transform(kls);
3097   }
3098 
3099   // Having loaded both klasses, test each for null.
3100   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3101   for (which_arg = 0; which_arg <= 1; which_arg++) {
3102     Node* kls = klasses[which_arg];
3103     Node* null_ctl = top();
3104     _sp += nargs;  // set original stack for use by uncommon_trap
3105     kls = null_check_oop(kls, &null_ctl, never_see_null);
3106     _sp -= nargs;
3107     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3108     region->init_req(prim_path, null_ctl);
3109     if (stopped())  break;
3110     klasses[which_arg] = kls;
3111   }
3112 
3113   if (!stopped()) {
3114     // now we have two reference types, in klasses[0..1]
3115     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3116     Node* superk = klasses[0];  // the receiver
3117     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3118     // now we have a successful reference subtype check
3119     region->set_req(_ref_subtype_path, control());
3120   }
3121 
3122   // If both operands are primitive (both klasses null), then
3123   // we must return true when they are identical primitives.
3124   // It is convenient to test this after the first null klass check.
3125   set_control(region->in(_prim_0_path)); // go back to first null check
3126   if (!stopped()) {
3127     // Since superc is primitive, make a guard for the superc==subc case.
3128     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
3129     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
3130     generate_guard(bol_eq, region, PROB_FAIR);
3131     if (region->req() == PATH_LIMIT+1) {
3132       // A guard was added.  If the added guard is taken, superc==subc.
3133       region->swap_edges(PATH_LIMIT, _prim_same_path);
3134       region->del_req(PATH_LIMIT);
3135     }
3136     region->set_req(_prim_0_path, control()); // Not equal after all.
3137   }
3138 
3139   // these are the only paths that produce 'true':
3140   phi->set_req(_prim_same_path,   intcon(1));
3141   phi->set_req(_ref_subtype_path, intcon(1));
3142 
3143   // pull together the cases:
3144   assert(region->req() == PATH_LIMIT, "sane region");
3145   for (uint i = 1; i < region->req(); i++) {
3146     Node* ctl = region->in(i);
3147     if (ctl == NULL || ctl == top()) {
3148       region->set_req(i, top());
3149       phi   ->set_req(i, top());
3150     } else if (phi->in(i) == NULL) {
3151       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3152     }
3153   }
3154 
3155   set_control(_gvn.transform(region));
3156   push(_gvn.transform(phi));
3157 
3158   return true;
3159 }
3160 
3161 //---------------------generate_array_guard_common------------------------
3162 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3163                                                   bool obj_array, bool not_array) {
3164   // If obj_array/non_array==false/false:
3165   // Branch around if the given klass is in fact an array (either obj or prim).
3166   // If obj_array/non_array==false/true:
3167   // Branch around if the given klass is not an array klass of any kind.
3168   // If obj_array/non_array==true/true:
3169   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3170   // If obj_array/non_array==true/false:
3171   // Branch around if the kls is an oop array (Object[] or subtype)
3172   //
3173   // Like generate_guard, adds a new path onto the region.
3174   jint  layout_con = 0;
3175   Node* layout_val = get_layout_helper(kls, layout_con);
3176   if (layout_val == NULL) {
3177     bool query = (obj_array
3178                   ? Klass::layout_helper_is_objArray(layout_con)
3179                   : Klass::layout_helper_is_javaArray(layout_con));
3180     if (query == not_array) {
3181       return NULL;                       // never a branch
3182     } else {                             // always a branch
3183       Node* always_branch = control();
3184       if (region != NULL)
3185         region->add_req(always_branch);
3186       set_control(top());
3187       return always_branch;
3188     }
3189   }
3190   // Now test the correct condition.
3191   jint  nval = (obj_array
3192                 ? ((jint)Klass::_lh_array_tag_type_value
3193                    <<    Klass::_lh_array_tag_shift)
3194                 : Klass::_lh_neutral_value);
3195   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
3196   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3197   // invert the test if we are looking for a non-array
3198   if (not_array)  btest = BoolTest(btest).negate();
3199   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
3200   return generate_fair_guard(bol, region);
3201 }
3202 
3203 
3204 //-----------------------inline_native_newArray--------------------------
3205 bool LibraryCallKit::inline_native_newArray() {
3206   int nargs = 2;
3207   Node* mirror    = argument(0);
3208   Node* count_val = argument(1);
3209 
3210   _sp += nargs;  // set original stack for use by uncommon_trap
3211   mirror = do_null_check(mirror, T_OBJECT);
3212   _sp -= nargs;
3213   // If mirror or obj is dead, only null-path is taken.
3214   if (stopped())  return true;
3215 
3216   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3217   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3218   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3219                                                       TypeInstPtr::NOTNULL);
3220   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3221   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3222                                                       TypePtr::BOTTOM);
3223 
3224   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3225   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3226                                                   nargs,
3227                                                   result_reg, _slow_path);
3228   Node* normal_ctl   = control();
3229   Node* no_array_ctl = result_reg->in(_slow_path);
3230 
3231   // Generate code for the slow case.  We make a call to newArray().
3232   set_control(no_array_ctl);
3233   if (!stopped()) {
3234     // Either the input type is void.class, or else the
3235     // array klass has not yet been cached.  Either the
3236     // ensuing call will throw an exception, or else it
3237     // will cache the array klass for next time.
3238     PreserveJVMState pjvms(this);
3239     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3240     Node* slow_result = set_results_for_java_call(slow_call);
3241     // this->control() comes from set_results_for_java_call
3242     result_reg->set_req(_slow_path, control());
3243     result_val->set_req(_slow_path, slow_result);
3244     result_io ->set_req(_slow_path, i_o());
3245     result_mem->set_req(_slow_path, reset_memory());
3246   }
3247 
3248   set_control(normal_ctl);
3249   if (!stopped()) {
3250     // Normal case:  The array type has been cached in the java.lang.Class.
3251     // The following call works fine even if the array type is polymorphic.
3252     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3253     Node* obj = new_array(klass_node, count_val, nargs);
3254     result_reg->init_req(_normal_path, control());
3255     result_val->init_req(_normal_path, obj);
3256     result_io ->init_req(_normal_path, i_o());
3257     result_mem->init_req(_normal_path, reset_memory());
3258   }
3259 
3260   // Return the combined state.
3261   set_i_o(        _gvn.transform(result_io)  );
3262   set_all_memory( _gvn.transform(result_mem) );
3263   push_result(result_reg, result_val);
3264   C->set_has_split_ifs(true); // Has chance for split-if optimization
3265 
3266   return true;
3267 }
3268 
3269 //----------------------inline_native_getLength--------------------------
3270 bool LibraryCallKit::inline_native_getLength() {
3271   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3272 
3273   int nargs = 1;
3274   Node* array = argument(0);
3275 
3276   _sp += nargs;  // set original stack for use by uncommon_trap
3277   array = do_null_check(array, T_OBJECT);
3278   _sp -= nargs;
3279 
3280   // If array is dead, only null-path is taken.
3281   if (stopped())  return true;
3282 
3283   // Deoptimize if it is a non-array.
3284   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3285 
3286   if (non_array != NULL) {
3287     PreserveJVMState pjvms(this);
3288     set_control(non_array);
3289     _sp += nargs;  // push the arguments back on the stack
3290     uncommon_trap(Deoptimization::Reason_intrinsic,
3291                   Deoptimization::Action_maybe_recompile);
3292   }
3293 
3294   // If control is dead, only non-array-path is taken.
3295   if (stopped())  return true;
3296 
3297   // The works fine even if the array type is polymorphic.
3298   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3299   push( load_array_length(array) );
3300 
3301   C->set_has_split_ifs(true); // Has chance for split-if optimization
3302 
3303   return true;
3304 }
3305 
3306 //------------------------inline_array_copyOf----------------------------
3307 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3308   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3309 
3310   // Restore the stack and pop off the arguments.
3311   int nargs = 3 + (is_copyOfRange? 1: 0);
3312   Node* original          = argument(0);
3313   Node* start             = is_copyOfRange? argument(1): intcon(0);
3314   Node* end               = is_copyOfRange? argument(2): argument(1);
3315   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3316 
3317   Node* newcopy;
3318 
3319   //set the original stack and the reexecute bit for the interpreter to reexecute
3320   //the bytecode that invokes Arrays.copyOf if deoptimization happens
3321   { PreserveReexecuteState preexecs(this);
3322     _sp += nargs;
3323     jvms()->set_should_reexecute(true);
3324 
3325     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3326     original          = do_null_check(original, T_OBJECT);
3327 
3328     // Check if a null path was taken unconditionally.
3329     if (stopped())  return true;
3330 
3331     Node* orig_length = load_array_length(original);
3332 
3333     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
3334                                               NULL, 0);
3335     klass_node = do_null_check(klass_node, T_OBJECT);
3336 
3337     RegionNode* bailout = new (C, 1) RegionNode(1);
3338     record_for_igvn(bailout);
3339 
3340     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3341     // Bail out if that is so.
3342     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3343     if (not_objArray != NULL) {
3344       // Improve the klass node's type from the new optimistic assumption:
3345       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3346       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3347       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
3348       cast->init_req(0, control());
3349       klass_node = _gvn.transform(cast);
3350     }
3351 
3352     // Bail out if either start or end is negative.
3353     generate_negative_guard(start, bailout, &start);
3354     generate_negative_guard(end,   bailout, &end);
3355 
3356     Node* length = end;
3357     if (_gvn.type(start) != TypeInt::ZERO) {
3358       length = _gvn.transform( new (C, 3) SubINode(end, start) );
3359     }
3360 
3361     // Bail out if length is negative.
3362     // ...Not needed, since the new_array will throw the right exception.
3363     //generate_negative_guard(length, bailout, &length);
3364 
3365     if (bailout->req() > 1) {
3366       PreserveJVMState pjvms(this);
3367       set_control( _gvn.transform(bailout) );
3368       uncommon_trap(Deoptimization::Reason_intrinsic,
3369                     Deoptimization::Action_maybe_recompile);
3370     }
3371 
3372     if (!stopped()) {
3373 
3374       // How many elements will we copy from the original?
3375       // The answer is MinI(orig_length - start, length).
3376       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
3377       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3378 
3379       const bool raw_mem_only = true;
3380       newcopy = new_array(klass_node, length, 0, raw_mem_only);
3381 
3382       // Generate a direct call to the right arraycopy function(s).
3383       // We know the copy is disjoint but we might not know if the
3384       // oop stores need checking.
3385       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3386       // This will fail a store-check if x contains any non-nulls.
3387       bool disjoint_bases = true;
3388       bool length_never_negative = true;
3389       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3390                          original, start, newcopy, intcon(0), moved,
3391                          disjoint_bases, length_never_negative);
3392     }
3393   } //original reexecute and sp are set back here
3394 
3395   if(!stopped()) {
3396     push(newcopy);
3397   }
3398 
3399   C->set_has_split_ifs(true); // Has chance for split-if optimization
3400 
3401   return true;
3402 }
3403 
3404 
3405 //----------------------generate_virtual_guard---------------------------
3406 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3407 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3408                                              RegionNode* slow_region) {
3409   ciMethod* method = callee();
3410   int vtable_index = method->vtable_index();
3411   // Get the methodOop out of the appropriate vtable entry.
3412   int entry_offset  = (instanceKlass::vtable_start_offset() +
3413                      vtable_index*vtableEntry::size()) * wordSize +
3414                      vtableEntry::method_offset_in_bytes();
3415   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3416   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3417 
3418   // Compare the target method with the expected method (e.g., Object.hashCode).
3419   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3420 
3421   Node* native_call = makecon(native_call_addr);
3422   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3423   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3424 
3425   return generate_slow_guard(test_native, slow_region);
3426 }
3427 
3428 //-----------------------generate_method_call----------------------------
3429 // Use generate_method_call to make a slow-call to the real
3430 // method if the fast path fails.  An alternative would be to
3431 // use a stub like OptoRuntime::slow_arraycopy_Java.
3432 // This only works for expanding the current library call,
3433 // not another intrinsic.  (E.g., don't use this for making an
3434 // arraycopy call inside of the copyOf intrinsic.)
3435 CallJavaNode*
3436 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3437   // When compiling the intrinsic method itself, do not use this technique.
3438   guarantee(callee() != C->method(), "cannot make slow-call to self");
3439 
3440   ciMethod* method = callee();
3441   // ensure the JVMS we have will be correct for this call
3442   guarantee(method_id == method->intrinsic_id(), "must match");
3443 
3444   const TypeFunc* tf = TypeFunc::make(method);
3445   int tfdc = tf->domain()->cnt();
3446   CallJavaNode* slow_call;
3447   if (is_static) {
3448     assert(!is_virtual, "");
3449     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3450                                 SharedRuntime::get_resolve_static_call_stub(),
3451                                 method, bci());
3452   } else if (is_virtual) {
3453     null_check_receiver(method);
3454     int vtable_index = methodOopDesc::invalid_vtable_index;
3455     if (UseInlineCaches) {
3456       // Suppress the vtable call
3457     } else {
3458       // hashCode and clone are not a miranda methods,
3459       // so the vtable index is fixed.
3460       // No need to use the linkResolver to get it.
3461        vtable_index = method->vtable_index();
3462     }
3463     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3464                                 SharedRuntime::get_resolve_virtual_call_stub(),
3465                                 method, vtable_index, bci());
3466   } else {  // neither virtual nor static:  opt_virtual
3467     null_check_receiver(method);
3468     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3469                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3470                                 method, bci());
3471     slow_call->set_optimized_virtual(true);
3472   }
3473   set_arguments_for_java_call(slow_call);
3474   set_edges_for_java_call(slow_call);
3475   return slow_call;
3476 }
3477 
3478 
3479 //------------------------------inline_native_hashcode--------------------
3480 // Build special case code for calls to hashCode on an object.
3481 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3482   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3483   assert(!(is_virtual && is_static), "either virtual, special, or static");
3484 
3485   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3486 
3487   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3488   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3489                                                       TypeInt::INT);
3490   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3491   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3492                                                       TypePtr::BOTTOM);
3493   Node* obj = NULL;
3494   if (!is_static) {
3495     // Check for hashing null object
3496     obj = null_check_receiver(callee());
3497     if (stopped())  return true;        // unconditionally null
3498     result_reg->init_req(_null_path, top());
3499     result_val->init_req(_null_path, top());
3500   } else {
3501     // Do a null check, and return zero if null.
3502     // System.identityHashCode(null) == 0
3503     obj = argument(0);
3504     Node* null_ctl = top();
3505     obj = null_check_oop(obj, &null_ctl);
3506     result_reg->init_req(_null_path, null_ctl);
3507     result_val->init_req(_null_path, _gvn.intcon(0));
3508   }
3509 
3510   // Unconditionally null?  Then return right away.
3511   if (stopped()) {
3512     set_control( result_reg->in(_null_path) );
3513     if (!stopped())
3514       push(      result_val ->in(_null_path) );
3515     return true;
3516   }
3517 
3518   // After null check, get the object's klass.
3519   Node* obj_klass = load_object_klass(obj);
3520 
3521   // This call may be virtual (invokevirtual) or bound (invokespecial).
3522   // For each case we generate slightly different code.
3523 
3524   // We only go to the fast case code if we pass a number of guards.  The
3525   // paths which do not pass are accumulated in the slow_region.
3526   RegionNode* slow_region = new (C, 1) RegionNode(1);
3527   record_for_igvn(slow_region);
3528 
3529   // If this is a virtual call, we generate a funny guard.  We pull out
3530   // the vtable entry corresponding to hashCode() from the target object.
3531   // If the target method which we are calling happens to be the native
3532   // Object hashCode() method, we pass the guard.  We do not need this
3533   // guard for non-virtual calls -- the caller is known to be the native
3534   // Object hashCode().
3535   if (is_virtual) {
3536     generate_virtual_guard(obj_klass, slow_region);
3537   }
3538 
3539   // Get the header out of the object, use LoadMarkNode when available
3540   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3541   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3542 
3543   // Test the header to see if it is unlocked.
3544   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3545   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3546   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3547   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3548   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3549 
3550   generate_slow_guard(test_unlocked, slow_region);
3551 
3552   // Get the hash value and check to see that it has been properly assigned.
3553   // We depend on hash_mask being at most 32 bits and avoid the use of
3554   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3555   // vm: see markOop.hpp.
3556   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3557   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3558   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3559   // This hack lets the hash bits live anywhere in the mark object now, as long
3560   // as the shift drops the relevant bits into the low 32 bits.  Note that
3561   // Java spec says that HashCode is an int so there's no point in capturing
3562   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3563   hshifted_header      = ConvX2I(hshifted_header);
3564   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3565 
3566   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3567   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3568   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3569 
3570   generate_slow_guard(test_assigned, slow_region);
3571 
3572   Node* init_mem = reset_memory();
3573   // fill in the rest of the null path:
3574   result_io ->init_req(_null_path, i_o());
3575   result_mem->init_req(_null_path, init_mem);
3576 
3577   result_val->init_req(_fast_path, hash_val);
3578   result_reg->init_req(_fast_path, control());
3579   result_io ->init_req(_fast_path, i_o());
3580   result_mem->init_req(_fast_path, init_mem);
3581 
3582   // Generate code for the slow case.  We make a call to hashCode().
3583   set_control(_gvn.transform(slow_region));
3584   if (!stopped()) {
3585     // No need for PreserveJVMState, because we're using up the present state.
3586     set_all_memory(init_mem);
3587     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3588     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3589     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3590     Node* slow_result = set_results_for_java_call(slow_call);
3591     // this->control() comes from set_results_for_java_call
3592     result_reg->init_req(_slow_path, control());
3593     result_val->init_req(_slow_path, slow_result);
3594     result_io  ->set_req(_slow_path, i_o());
3595     result_mem ->set_req(_slow_path, reset_memory());
3596   }
3597 
3598   // Return the combined state.
3599   set_i_o(        _gvn.transform(result_io)  );
3600   set_all_memory( _gvn.transform(result_mem) );
3601   push_result(result_reg, result_val);
3602 
3603   return true;
3604 }
3605 
3606 //---------------------------inline_native_getClass----------------------------
3607 // Build special case code for calls to getClass on an object.
3608 bool LibraryCallKit::inline_native_getClass() {
3609   Node* obj = null_check_receiver(callee());
3610   if (stopped())  return true;
3611   push( load_mirror_from_klass(load_object_klass(obj)) );
3612   return true;
3613 }
3614 
3615 //-----------------inline_native_Reflection_getCallerClass---------------------
3616 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3617 //
3618 // NOTE that this code must perform the same logic as
3619 // vframeStream::security_get_caller_frame in that it must skip
3620 // Method.invoke() and auxiliary frames.
3621 
3622 
3623 
3624 
3625 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3626   ciMethod*       method = callee();
3627 
3628 #ifndef PRODUCT
3629   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3630     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3631   }
3632 #endif
3633 
3634   debug_only(int saved_sp = _sp);
3635 
3636   // Argument words:  (int depth)
3637   int nargs = 1;
3638 
3639   _sp += nargs;
3640   Node* caller_depth_node = pop();
3641 
3642   assert(saved_sp == _sp, "must have correct argument count");
3643 
3644   // The depth value must be a constant in order for the runtime call
3645   // to be eliminated.
3646   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3647   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3648 #ifndef PRODUCT
3649     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3650       tty->print_cr("  Bailing out because caller depth was not a constant");
3651     }
3652 #endif
3653     return false;
3654   }
3655   // Note that the JVM state at this point does not include the
3656   // getCallerClass() frame which we are trying to inline. The
3657   // semantics of getCallerClass(), however, are that the "first"
3658   // frame is the getCallerClass() frame, so we subtract one from the
3659   // requested depth before continuing. We don't inline requests of
3660   // getCallerClass(0).
3661   int caller_depth = caller_depth_type->get_con() - 1;
3662   if (caller_depth < 0) {
3663 #ifndef PRODUCT
3664     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3665       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3666     }
3667 #endif
3668     return false;
3669   }
3670 
3671   if (!jvms()->has_method()) {
3672 #ifndef PRODUCT
3673     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3674       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3675     }
3676 #endif
3677     return false;
3678   }
3679   int _depth = jvms()->depth();  // cache call chain depth
3680 
3681   // Walk back up the JVM state to find the caller at the required
3682   // depth. NOTE that this code must perform the same logic as
3683   // vframeStream::security_get_caller_frame in that it must skip
3684   // Method.invoke() and auxiliary frames. Note also that depth is
3685   // 1-based (1 is the bottom of the inlining).
3686   int inlining_depth = _depth;
3687   JVMState* caller_jvms = NULL;
3688 
3689   if (inlining_depth > 0) {
3690     caller_jvms = jvms();
3691     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3692     do {
3693       // The following if-tests should be performed in this order
3694       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3695         // Skip a Method.invoke() or auxiliary frame
3696       } else if (caller_depth > 0) {
3697         // Skip real frame
3698         --caller_depth;
3699       } else {
3700         // We're done: reached desired caller after skipping.
3701         break;
3702       }
3703       caller_jvms = caller_jvms->caller();
3704       --inlining_depth;
3705     } while (inlining_depth > 0);
3706   }
3707 
3708   if (inlining_depth == 0) {
3709 #ifndef PRODUCT
3710     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3711       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3712       tty->print_cr("  JVM state at this point:");
3713       for (int i = _depth; i >= 1; i--) {
3714         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3715       }
3716     }
3717 #endif
3718     return false; // Reached end of inlining
3719   }
3720 
3721   // Acquire method holder as java.lang.Class
3722   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3723   ciInstance*      caller_mirror = caller_klass->java_mirror();
3724   // Push this as a constant
3725   push(makecon(TypeInstPtr::make(caller_mirror)));
3726 #ifndef PRODUCT
3727   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3728     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3729     tty->print_cr("  JVM state at this point:");
3730     for (int i = _depth; i >= 1; i--) {
3731       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3732     }
3733   }
3734 #endif
3735   return true;
3736 }
3737 
3738 // Helper routine for above
3739 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3740   ciMethod* method = jvms->method();
3741 
3742   // Is this the Method.invoke method itself?
3743   if (method->intrinsic_id() == vmIntrinsics::_invoke)
3744     return true;
3745 
3746   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3747   ciKlass* k = method->holder();
3748   if (k->is_instance_klass()) {
3749     ciInstanceKlass* ik = k->as_instance_klass();
3750     for (; ik != NULL; ik = ik->super()) {
3751       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3752           ik == env()->find_system_klass(ik->name())) {
3753         return true;
3754       }
3755     }
3756   }
3757   else if (method->is_method_handle_adapter()) {
3758     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
3759     return true;
3760   }
3761 
3762   return false;
3763 }
3764 
3765 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3766                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
3767                                      // computing it since there is no lookup field by name function in the
3768                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3769                                      // Using a static variable here is safe even if we have multiple compilation
3770                                      // threads because the offset is constant.  At worst the same offset will be
3771                                      // computed and  stored multiple
3772 
3773 bool LibraryCallKit::inline_native_AtomicLong_get() {
3774   // Restore the stack and pop off the argument
3775   _sp+=1;
3776   Node *obj = pop();
3777 
3778   // get the offset of the "value" field. Since the CI interfaces
3779   // does not provide a way to look up a field by name, we scan the bytecodes
3780   // to get the field index.  We expect the first 2 instructions of the method
3781   // to be:
3782   //    0 aload_0
3783   //    1 getfield "value"
3784   ciMethod* method = callee();
3785   if (value_field_offset == -1)
3786   {
3787     ciField* value_field;
3788     ciBytecodeStream iter(method);
3789     Bytecodes::Code bc = iter.next();
3790 
3791     if ((bc != Bytecodes::_aload_0) &&
3792               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3793       return false;
3794     bc = iter.next();
3795     if (bc != Bytecodes::_getfield)
3796       return false;
3797     bool ignore;
3798     value_field = iter.get_field(ignore);
3799     value_field_offset = value_field->offset_in_bytes();
3800   }
3801 
3802   // Null check without removing any arguments.
3803   _sp++;
3804   obj = do_null_check(obj, T_OBJECT);
3805   _sp--;
3806   // Check for locking null object
3807   if (stopped()) return true;
3808 
3809   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3810   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3811   int alias_idx = C->get_alias_index(adr_type);
3812 
3813   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3814 
3815   push_pair(result);
3816 
3817   return true;
3818 }
3819 
3820 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3821   // Restore the stack and pop off the arguments
3822   _sp+=5;
3823   Node *newVal = pop_pair();
3824   Node *oldVal = pop_pair();
3825   Node *obj = pop();
3826 
3827   // we need the offset of the "value" field which was computed when
3828   // inlining the get() method.  Give up if we don't have it.
3829   if (value_field_offset == -1)
3830     return false;
3831 
3832   // Null check without removing any arguments.
3833   _sp+=5;
3834   obj = do_null_check(obj, T_OBJECT);
3835   _sp-=5;
3836   // Check for locking null object
3837   if (stopped()) return true;
3838 
3839   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3840   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3841   int alias_idx = C->get_alias_index(adr_type);
3842 
3843   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
3844   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
3845   set_memory(store_proj, alias_idx);
3846   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
3847 
3848   Node *result;
3849   // CMove node is not used to be able fold a possible check code
3850   // after attemptUpdate() call. This code could be transformed
3851   // into CMove node by loop optimizations.
3852   {
3853     RegionNode *r = new (C, 3) RegionNode(3);
3854     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
3855 
3856     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
3857     Node *iftrue = opt_iff(r, iff);
3858     r->init_req(1, iftrue);
3859     result->init_req(1, intcon(1));
3860     result->init_req(2, intcon(0));
3861 
3862     set_control(_gvn.transform(r));
3863     record_for_igvn(r);
3864 
3865     C->set_has_split_ifs(true); // Has chance for split-if optimization
3866   }
3867 
3868   push(_gvn.transform(result));
3869   return true;
3870 }
3871 
3872 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3873   // restore the arguments
3874   _sp += arg_size();
3875 
3876   switch (id) {
3877   case vmIntrinsics::_floatToRawIntBits:
3878     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
3879     break;
3880 
3881   case vmIntrinsics::_intBitsToFloat:
3882     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
3883     break;
3884 
3885   case vmIntrinsics::_doubleToRawLongBits:
3886     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
3887     break;
3888 
3889   case vmIntrinsics::_longBitsToDouble:
3890     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
3891     break;
3892 
3893   case vmIntrinsics::_doubleToLongBits: {
3894     Node* value = pop_pair();
3895 
3896     // two paths (plus control) merge in a wood
3897     RegionNode *r = new (C, 3) RegionNode(3);
3898     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
3899 
3900     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
3901     // Build the boolean node
3902     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3903 
3904     // Branch either way.
3905     // NaN case is less traveled, which makes all the difference.
3906     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3907     Node *opt_isnan = _gvn.transform(ifisnan);
3908     assert( opt_isnan->is_If(), "Expect an IfNode");
3909     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3910     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3911 
3912     set_control(iftrue);
3913 
3914     static const jlong nan_bits = CONST64(0x7ff8000000000000);
3915     Node *slow_result = longcon(nan_bits); // return NaN
3916     phi->init_req(1, _gvn.transform( slow_result ));
3917     r->init_req(1, iftrue);
3918 
3919     // Else fall through
3920     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3921     set_control(iffalse);
3922 
3923     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
3924     r->init_req(2, iffalse);
3925 
3926     // Post merge
3927     set_control(_gvn.transform(r));
3928     record_for_igvn(r);
3929 
3930     Node* result = _gvn.transform(phi);
3931     assert(result->bottom_type()->isa_long(), "must be");
3932     push_pair(result);
3933 
3934     C->set_has_split_ifs(true); // Has chance for split-if optimization
3935 
3936     break;
3937   }
3938 
3939   case vmIntrinsics::_floatToIntBits: {
3940     Node* value = pop();
3941 
3942     // two paths (plus control) merge in a wood
3943     RegionNode *r = new (C, 3) RegionNode(3);
3944     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
3945 
3946     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
3947     // Build the boolean node
3948     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3949 
3950     // Branch either way.
3951     // NaN case is less traveled, which makes all the difference.
3952     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3953     Node *opt_isnan = _gvn.transform(ifisnan);
3954     assert( opt_isnan->is_If(), "Expect an IfNode");
3955     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3956     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3957 
3958     set_control(iftrue);
3959 
3960     static const jint nan_bits = 0x7fc00000;
3961     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
3962     phi->init_req(1, _gvn.transform( slow_result ));
3963     r->init_req(1, iftrue);
3964 
3965     // Else fall through
3966     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3967     set_control(iffalse);
3968 
3969     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
3970     r->init_req(2, iffalse);
3971 
3972     // Post merge
3973     set_control(_gvn.transform(r));
3974     record_for_igvn(r);
3975 
3976     Node* result = _gvn.transform(phi);
3977     assert(result->bottom_type()->isa_int(), "must be");
3978     push(result);
3979 
3980     C->set_has_split_ifs(true); // Has chance for split-if optimization
3981 
3982     break;
3983   }
3984 
3985   default:
3986     ShouldNotReachHere();
3987   }
3988 
3989   return true;
3990 }
3991 
3992 #ifdef _LP64
3993 #define XTOP ,top() /*additional argument*/
3994 #else  //_LP64
3995 #define XTOP        /*no additional argument*/
3996 #endif //_LP64
3997 
3998 //----------------------inline_unsafe_copyMemory-------------------------
3999 bool LibraryCallKit::inline_unsafe_copyMemory() {
4000   if (callee()->is_static())  return false;  // caller must have the capability!
4001   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
4002   assert(signature()->size() == nargs-1, "copy has 5 arguments");
4003   null_check_receiver(callee());  // check then ignore argument(0)
4004   if (stopped())  return true;
4005 
4006   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4007 
4008   Node* src_ptr = argument(1);
4009   Node* src_off = ConvL2X(argument(2));
4010   assert(argument(3)->is_top(), "2nd half of long");
4011   Node* dst_ptr = argument(4);
4012   Node* dst_off = ConvL2X(argument(5));
4013   assert(argument(6)->is_top(), "2nd half of long");
4014   Node* size    = ConvL2X(argument(7));
4015   assert(argument(8)->is_top(), "2nd half of long");
4016 
4017   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4018          "fieldOffset must be byte-scaled");
4019 
4020   Node* src = make_unsafe_address(src_ptr, src_off);
4021   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4022 
4023   // Conservatively insert a memory barrier on all memory slices.
4024   // Do not let writes of the copy source or destination float below the copy.
4025   insert_mem_bar(Op_MemBarCPUOrder);
4026 
4027   // Call it.  Note that the length argument is not scaled.
4028   make_runtime_call(RC_LEAF|RC_NO_FP,
4029                     OptoRuntime::fast_arraycopy_Type(),
4030                     StubRoutines::unsafe_arraycopy(),
4031                     "unsafe_arraycopy",
4032                     TypeRawPtr::BOTTOM,
4033                     src, dst, size XTOP);
4034 
4035   // Do not let reads of the copy destination float above the copy.
4036   insert_mem_bar(Op_MemBarCPUOrder);
4037 
4038   return true;
4039 }
4040 
4041 //------------------------clone_coping-----------------------------------
4042 // Helper function for inline_native_clone.
4043 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4044   assert(obj_size != NULL, "");
4045   Node* raw_obj = alloc_obj->in(1);
4046   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4047 
4048   if (ReduceBulkZeroing) {
4049     // We will be completely responsible for initializing this object -
4050     // mark Initialize node as complete.
4051     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4052     // The object was just allocated - there should be no any stores!
4053     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4054   }
4055 
4056   // Copy the fastest available way.
4057   // TODO: generate fields copies for small objects instead.
4058   Node* src  = obj;
4059   Node* dest = alloc_obj;
4060   Node* size = _gvn.transform(obj_size);
4061 
4062   // Exclude the header but include array length to copy by 8 bytes words.
4063   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4064   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4065                             instanceOopDesc::base_offset_in_bytes();
4066   // base_off:
4067   // 8  - 32-bit VM
4068   // 12 - 64-bit VM, compressed oops
4069   // 16 - 64-bit VM, normal oops
4070   if (base_off % BytesPerLong != 0) {
4071     assert(UseCompressedOops, "");
4072     if (is_array) {
4073       // Exclude length to copy by 8 bytes words.
4074       base_off += sizeof(int);
4075     } else {
4076       // Include klass to copy by 8 bytes words.
4077       base_off = instanceOopDesc::klass_offset_in_bytes();
4078     }
4079     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4080   }
4081   src  = basic_plus_adr(src,  base_off);
4082   dest = basic_plus_adr(dest, base_off);
4083 
4084   // Compute the length also, if needed:
4085   Node* countx = size;
4086   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
4087   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4088 
4089   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4090   bool disjoint_bases = true;
4091   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4092                                src, NULL, dest, NULL, countx,
4093                                /*dest_uninitialized*/true);
4094 
4095   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4096   if (card_mark) {
4097     assert(!is_array, "");
4098     // Put in store barrier for any and all oops we are sticking
4099     // into this object.  (We could avoid this if we could prove
4100     // that the object type contains no oop fields at all.)
4101     Node* no_particular_value = NULL;
4102     Node* no_particular_field = NULL;
4103     int raw_adr_idx = Compile::AliasIdxRaw;
4104     post_barrier(control(),
4105                  memory(raw_adr_type),
4106                  alloc_obj,
4107                  no_particular_field,
4108                  raw_adr_idx,
4109                  no_particular_value,
4110                  T_OBJECT,
4111                  false);
4112   }
4113 
4114   // Do not let reads from the cloned object float above the arraycopy.
4115   insert_mem_bar(Op_MemBarCPUOrder);
4116 }
4117 
4118 //------------------------inline_native_clone----------------------------
4119 // Here are the simple edge cases:
4120 //  null receiver => normal trap
4121 //  virtual and clone was overridden => slow path to out-of-line clone
4122 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4123 //
4124 // The general case has two steps, allocation and copying.
4125 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4126 //
4127 // Copying also has two cases, oop arrays and everything else.
4128 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4129 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4130 //
4131 // These steps fold up nicely if and when the cloned object's klass
4132 // can be sharply typed as an object array, a type array, or an instance.
4133 //
4134 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4135   int nargs = 1;
4136   PhiNode* result_val;
4137 
4138   //set the original stack and the reexecute bit for the interpreter to reexecute
4139   //the bytecode that invokes Object.clone if deoptimization happens
4140   { PreserveReexecuteState preexecs(this);
4141     jvms()->set_should_reexecute(true);
4142 
4143     //null_check_receiver will adjust _sp (push and pop)
4144     Node* obj = null_check_receiver(callee());
4145     if (stopped())  return true;
4146 
4147     _sp += nargs;
4148 
4149     Node* obj_klass = load_object_klass(obj);
4150     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4151     const TypeOopPtr*   toop   = ((tklass != NULL)
4152                                 ? tklass->as_instance_type()
4153                                 : TypeInstPtr::NOTNULL);
4154 
4155     // Conservatively insert a memory barrier on all memory slices.
4156     // Do not let writes into the original float below the clone.
4157     insert_mem_bar(Op_MemBarCPUOrder);
4158 
4159     // paths into result_reg:
4160     enum {
4161       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4162       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4163       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4164       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4165       PATH_LIMIT
4166     };
4167     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4168     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
4169                                                         TypeInstPtr::NOTNULL);
4170     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
4171     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
4172                                                         TypePtr::BOTTOM);
4173     record_for_igvn(result_reg);
4174 
4175     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4176     int raw_adr_idx = Compile::AliasIdxRaw;
4177     const bool raw_mem_only = true;
4178 
4179 
4180     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4181     if (array_ctl != NULL) {
4182       // It's an array.
4183       PreserveJVMState pjvms(this);
4184       set_control(array_ctl);
4185       Node* obj_length = load_array_length(obj);
4186       Node* obj_size  = NULL;
4187       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
4188                                   raw_mem_only, &obj_size);
4189 
4190       if (!use_ReduceInitialCardMarks()) {
4191         // If it is an oop array, it requires very special treatment,
4192         // because card marking is required on each card of the array.
4193         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4194         if (is_obja != NULL) {
4195           PreserveJVMState pjvms2(this);
4196           set_control(is_obja);
4197           // Generate a direct call to the right arraycopy function(s).
4198           bool disjoint_bases = true;
4199           bool length_never_negative = true;
4200           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4201                              obj, intcon(0), alloc_obj, intcon(0),
4202                              obj_length,
4203                              disjoint_bases, length_never_negative);
4204           result_reg->init_req(_objArray_path, control());
4205           result_val->init_req(_objArray_path, alloc_obj);
4206           result_i_o ->set_req(_objArray_path, i_o());
4207           result_mem ->set_req(_objArray_path, reset_memory());
4208         }
4209       }
4210       // Otherwise, there are no card marks to worry about.
4211       // (We can dispense with card marks if we know the allocation
4212       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4213       //  causes the non-eden paths to take compensating steps to
4214       //  simulate a fresh allocation, so that no further
4215       //  card marks are required in compiled code to initialize
4216       //  the object.)
4217 
4218       if (!stopped()) {
4219         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4220 
4221         // Present the results of the copy.
4222         result_reg->init_req(_array_path, control());
4223         result_val->init_req(_array_path, alloc_obj);
4224         result_i_o ->set_req(_array_path, i_o());
4225         result_mem ->set_req(_array_path, reset_memory());
4226       }
4227     }
4228 
4229     // We only go to the instance fast case code if we pass a number of guards.
4230     // The paths which do not pass are accumulated in the slow_region.
4231     RegionNode* slow_region = new (C, 1) RegionNode(1);
4232     record_for_igvn(slow_region);
4233     if (!stopped()) {
4234       // It's an instance (we did array above).  Make the slow-path tests.
4235       // If this is a virtual call, we generate a funny guard.  We grab
4236       // the vtable entry corresponding to clone() from the target object.
4237       // If the target method which we are calling happens to be the
4238       // Object clone() method, we pass the guard.  We do not need this
4239       // guard for non-virtual calls; the caller is known to be the native
4240       // Object clone().
4241       if (is_virtual) {
4242         generate_virtual_guard(obj_klass, slow_region);
4243       }
4244 
4245       // The object must be cloneable and must not have a finalizer.
4246       // Both of these conditions may be checked in a single test.
4247       // We could optimize the cloneable test further, but we don't care.
4248       generate_access_flags_guard(obj_klass,
4249                                   // Test both conditions:
4250                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4251                                   // Must be cloneable but not finalizer:
4252                                   JVM_ACC_IS_CLONEABLE,
4253                                   slow_region);
4254     }
4255 
4256     if (!stopped()) {
4257       // It's an instance, and it passed the slow-path tests.
4258       PreserveJVMState pjvms(this);
4259       Node* obj_size  = NULL;
4260       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
4261 
4262       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4263 
4264       // Present the results of the slow call.
4265       result_reg->init_req(_instance_path, control());
4266       result_val->init_req(_instance_path, alloc_obj);
4267       result_i_o ->set_req(_instance_path, i_o());
4268       result_mem ->set_req(_instance_path, reset_memory());
4269     }
4270 
4271     // Generate code for the slow case.  We make a call to clone().
4272     set_control(_gvn.transform(slow_region));
4273     if (!stopped()) {
4274       PreserveJVMState pjvms(this);
4275       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4276       Node* slow_result = set_results_for_java_call(slow_call);
4277       // this->control() comes from set_results_for_java_call
4278       result_reg->init_req(_slow_path, control());
4279       result_val->init_req(_slow_path, slow_result);
4280       result_i_o ->set_req(_slow_path, i_o());
4281       result_mem ->set_req(_slow_path, reset_memory());
4282     }
4283 
4284     // Return the combined state.
4285     set_control(    _gvn.transform(result_reg) );
4286     set_i_o(        _gvn.transform(result_i_o) );
4287     set_all_memory( _gvn.transform(result_mem) );
4288   } //original reexecute and sp are set back here
4289 
4290   push(_gvn.transform(result_val));
4291 
4292   return true;
4293 }
4294 
4295 
4296 // constants for computing the copy function
4297 enum {
4298   COPYFUNC_UNALIGNED = 0,
4299   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
4300   COPYFUNC_CONJOINT = 0,
4301   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
4302 };
4303 
4304 // Note:  The condition "disjoint" applies also for overlapping copies
4305 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
4306 static address
4307 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name, bool dest_uninitialized) {
4308   int selector =
4309     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
4310     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
4311 
4312 #define RETURN_STUB(xxx_arraycopy) { \
4313   name = #xxx_arraycopy; \
4314   return StubRoutines::xxx_arraycopy(); }
4315 
4316 #define RETURN_STUB_PARM(xxx_arraycopy, parm) {           \
4317   name = #xxx_arraycopy; \
4318   return StubRoutines::xxx_arraycopy(parm); }
4319 
4320   switch (t) {
4321   case T_BYTE:
4322   case T_BOOLEAN:
4323     switch (selector) {
4324     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
4325     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
4326     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
4327     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
4328     }
4329   case T_CHAR:
4330   case T_SHORT:
4331     switch (selector) {
4332     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
4333     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
4334     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
4335     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
4336     }
4337   case T_INT:
4338   case T_FLOAT:
4339     switch (selector) {
4340     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
4341     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
4342     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
4343     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
4344     }
4345   case T_DOUBLE:
4346   case T_LONG:
4347     switch (selector) {
4348     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
4349     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
4350     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
4351     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
4352     }
4353   case T_ARRAY:
4354   case T_OBJECT:
4355     switch (selector) {
4356     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB_PARM(oop_arraycopy, dest_uninitialized);
4357     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB_PARM(arrayof_oop_arraycopy, dest_uninitialized);
4358     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB_PARM(oop_disjoint_arraycopy, dest_uninitialized);
4359     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB_PARM(arrayof_oop_disjoint_arraycopy, dest_uninitialized);
4360     }
4361   default:
4362     ShouldNotReachHere();
4363     return NULL;
4364   }
4365 
4366 #undef RETURN_STUB
4367 #undef RETURN_STUB_PARM
4368 }
4369 
4370 //------------------------------basictype2arraycopy----------------------------
4371 address LibraryCallKit::basictype2arraycopy(BasicType t,
4372                                             Node* src_offset,
4373                                             Node* dest_offset,
4374                                             bool disjoint_bases,
4375                                             const char* &name,
4376                                             bool dest_uninitialized) {
4377   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4378   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4379 
4380   bool aligned = false;
4381   bool disjoint = disjoint_bases;
4382 
4383   // if the offsets are the same, we can treat the memory regions as
4384   // disjoint, because either the memory regions are in different arrays,
4385   // or they are identical (which we can treat as disjoint.)  We can also
4386   // treat a copy with a destination index  less that the source index
4387   // as disjoint since a low->high copy will work correctly in this case.
4388   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4389       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4390     // both indices are constants
4391     int s_offs = src_offset_inttype->get_con();
4392     int d_offs = dest_offset_inttype->get_con();
4393     int element_size = type2aelembytes(t);
4394     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4395               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4396     if (s_offs >= d_offs)  disjoint = true;
4397   } else if (src_offset == dest_offset && src_offset != NULL) {
4398     // This can occur if the offsets are identical non-constants.
4399     disjoint = true;
4400   }
4401 
4402   return select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4403 }
4404 
4405 
4406 //------------------------------inline_arraycopy-----------------------
4407 bool LibraryCallKit::inline_arraycopy() {
4408   // Restore the stack and pop off the arguments.
4409   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4410   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4411 
4412   Node *src         = argument(0);
4413   Node *src_offset  = argument(1);
4414   Node *dest        = argument(2);
4415   Node *dest_offset = argument(3);
4416   Node *length      = argument(4);
4417 
4418   // Compile time checks.  If any of these checks cannot be verified at compile time,
4419   // we do not make a fast path for this call.  Instead, we let the call remain as it
4420   // is.  The checks we choose to mandate at compile time are:
4421   //
4422   // (1) src and dest are arrays.
4423   const Type* src_type = src->Value(&_gvn);
4424   const Type* dest_type = dest->Value(&_gvn);
4425   const TypeAryPtr* top_src = src_type->isa_aryptr();
4426   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4427   if (top_src  == NULL || top_src->klass()  == NULL ||
4428       top_dest == NULL || top_dest->klass() == NULL) {
4429     // Conservatively insert a memory barrier on all memory slices.
4430     // Do not let writes into the source float below the arraycopy.
4431     insert_mem_bar(Op_MemBarCPUOrder);
4432 
4433     // Call StubRoutines::generic_arraycopy stub.
4434     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4435                        src, src_offset, dest, dest_offset, length);
4436 
4437     // Do not let reads from the destination float above the arraycopy.
4438     // Since we cannot type the arrays, we don't know which slices
4439     // might be affected.  We could restrict this barrier only to those
4440     // memory slices which pertain to array elements--but don't bother.
4441     if (!InsertMemBarAfterArraycopy)
4442       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4443       insert_mem_bar(Op_MemBarCPUOrder);
4444     return true;
4445   }
4446 
4447   // (2) src and dest arrays must have elements of the same BasicType
4448   // Figure out the size and type of the elements we will be copying.
4449   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4450   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4451   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4452   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4453 
4454   if (src_elem != dest_elem || dest_elem == T_VOID) {
4455     // The component types are not the same or are not recognized.  Punt.
4456     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4457     generate_slow_arraycopy(TypePtr::BOTTOM,
4458                             src, src_offset, dest, dest_offset, length,
4459                             /*dest_uninitialized*/false);
4460     return true;
4461   }
4462 
4463   //---------------------------------------------------------------------------
4464   // We will make a fast path for this call to arraycopy.
4465 
4466   // We have the following tests left to perform:
4467   //
4468   // (3) src and dest must not be null.
4469   // (4) src_offset must not be negative.
4470   // (5) dest_offset must not be negative.
4471   // (6) length must not be negative.
4472   // (7) src_offset + length must not exceed length of src.
4473   // (8) dest_offset + length must not exceed length of dest.
4474   // (9) each element of an oop array must be assignable
4475 
4476   RegionNode* slow_region = new (C, 1) RegionNode(1);
4477   record_for_igvn(slow_region);
4478 
4479   // (3) operands must not be null
4480   // We currently perform our null checks with the do_null_check routine.
4481   // This means that the null exceptions will be reported in the caller
4482   // rather than (correctly) reported inside of the native arraycopy call.
4483   // This should be corrected, given time.  We do our null check with the
4484   // stack pointer restored.
4485   _sp += nargs;
4486   src  = do_null_check(src,  T_ARRAY);
4487   dest = do_null_check(dest, T_ARRAY);
4488   _sp -= nargs;
4489 
4490   // (4) src_offset must not be negative.
4491   generate_negative_guard(src_offset, slow_region);
4492 
4493   // (5) dest_offset must not be negative.
4494   generate_negative_guard(dest_offset, slow_region);
4495 
4496   // (6) length must not be negative (moved to generate_arraycopy()).
4497   // generate_negative_guard(length, slow_region);
4498 
4499   // (7) src_offset + length must not exceed length of src.
4500   generate_limit_guard(src_offset, length,
4501                        load_array_length(src),
4502                        slow_region);
4503 
4504   // (8) dest_offset + length must not exceed length of dest.
4505   generate_limit_guard(dest_offset, length,
4506                        load_array_length(dest),
4507                        slow_region);
4508 
4509   // (9) each element of an oop array must be assignable
4510   // The generate_arraycopy subroutine checks this.
4511 
4512   // This is where the memory effects are placed:
4513   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4514   generate_arraycopy(adr_type, dest_elem,
4515                      src, src_offset, dest, dest_offset, length,
4516                      false, false, slow_region);
4517 
4518   return true;
4519 }
4520 
4521 //-----------------------------generate_arraycopy----------------------
4522 // Generate an optimized call to arraycopy.
4523 // Caller must guard against non-arrays.
4524 // Caller must determine a common array basic-type for both arrays.
4525 // Caller must validate offsets against array bounds.
4526 // The slow_region has already collected guard failure paths
4527 // (such as out of bounds length or non-conformable array types).
4528 // The generated code has this shape, in general:
4529 //
4530 //     if (length == 0)  return   // via zero_path
4531 //     slowval = -1
4532 //     if (types unknown) {
4533 //       slowval = call generic copy loop
4534 //       if (slowval == 0)  return  // via checked_path
4535 //     } else if (indexes in bounds) {
4536 //       if ((is object array) && !(array type check)) {
4537 //         slowval = call checked copy loop
4538 //         if (slowval == 0)  return  // via checked_path
4539 //       } else {
4540 //         call bulk copy loop
4541 //         return  // via fast_path
4542 //       }
4543 //     }
4544 //     // adjust params for remaining work:
4545 //     if (slowval != -1) {
4546 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4547 //     }
4548 //   slow_region:
4549 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4550 //     return  // via slow_call_path
4551 //
4552 // This routine is used from several intrinsics:  System.arraycopy,
4553 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4554 //
4555 void
4556 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4557                                    BasicType basic_elem_type,
4558                                    Node* src,  Node* src_offset,
4559                                    Node* dest, Node* dest_offset,
4560                                    Node* copy_length,
4561                                    bool disjoint_bases,
4562                                    bool length_never_negative,
4563                                    RegionNode* slow_region) {
4564 
4565   if (slow_region == NULL) {
4566     slow_region = new(C,1) RegionNode(1);
4567     record_for_igvn(slow_region);
4568   }
4569 
4570   Node* original_dest      = dest;
4571   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4572   bool  dest_uninitialized = false;
4573 
4574   // See if this is the initialization of a newly-allocated array.
4575   // If so, we will take responsibility here for initializing it to zero.
4576   // (Note:  Because tightly_coupled_allocation performs checks on the
4577   // out-edges of the dest, we need to avoid making derived pointers
4578   // from it until we have checked its uses.)
4579   if (ReduceBulkZeroing
4580       && !ZeroTLAB              // pointless if already zeroed
4581       && basic_elem_type != T_CONFLICT // avoid corner case
4582       && !_gvn.eqv_uncast(src, dest)
4583       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4584           != NULL)
4585       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4586       && alloc->maybe_set_complete(&_gvn)) {
4587     // "You break it, you buy it."
4588     InitializeNode* init = alloc->initialization();
4589     assert(init->is_complete(), "we just did this");
4590     assert(dest->is_CheckCastPP(), "sanity");
4591     assert(dest->in(0)->in(0) == init, "dest pinned");
4592     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4593     // From this point on, every exit path is responsible for
4594     // initializing any non-copied parts of the object to zero.
4595     // Also, if this flag is set we make sure that arraycopy interacts properly
4596     // with G1, eliding pre-barriers. See CR 6627983.
4597     dest_uninitialized = true;
4598   } else {
4599     // No zeroing elimination here.
4600     alloc             = NULL;
4601     //original_dest   = dest;
4602     //dest_uninitialized = false;
4603   }
4604 
4605   // Results are placed here:
4606   enum { fast_path        = 1,  // normal void-returning assembly stub
4607          checked_path     = 2,  // special assembly stub with cleanup
4608          slow_call_path   = 3,  // something went wrong; call the VM
4609          zero_path        = 4,  // bypass when length of copy is zero
4610          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4611          PATH_LIMIT       = 6
4612   };
4613   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4614   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4615   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4616   record_for_igvn(result_region);
4617   _gvn.set_type_bottom(result_i_o);
4618   _gvn.set_type_bottom(result_memory);
4619   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4620 
4621   // The slow_control path:
4622   Node* slow_control;
4623   Node* slow_i_o = i_o();
4624   Node* slow_mem = memory(adr_type);
4625   debug_only(slow_control = (Node*) badAddress);
4626 
4627   // Checked control path:
4628   Node* checked_control = top();
4629   Node* checked_mem     = NULL;
4630   Node* checked_i_o     = NULL;
4631   Node* checked_value   = NULL;
4632 
4633   if (basic_elem_type == T_CONFLICT) {
4634     assert(!dest_uninitialized, "");
4635     Node* cv = generate_generic_arraycopy(adr_type,
4636                                           src, src_offset, dest, dest_offset,
4637                                           copy_length, dest_uninitialized);
4638     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4639     checked_control = control();
4640     checked_i_o     = i_o();
4641     checked_mem     = memory(adr_type);
4642     checked_value   = cv;
4643     set_control(top());         // no fast path
4644   }
4645 
4646   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4647   if (not_pos != NULL) {
4648     PreserveJVMState pjvms(this);
4649     set_control(not_pos);
4650 
4651     // (6) length must not be negative.
4652     if (!length_never_negative) {
4653       generate_negative_guard(copy_length, slow_region);
4654     }
4655 
4656     // copy_length is 0.
4657     if (!stopped() && dest_uninitialized) {
4658       Node* dest_length = alloc->in(AllocateNode::ALength);
4659       if (_gvn.eqv_uncast(copy_length, dest_length)
4660           || _gvn.find_int_con(dest_length, 1) <= 0) {
4661         // There is no zeroing to do. No need for a secondary raw memory barrier.
4662       } else {
4663         // Clear the whole thing since there are no source elements to copy.
4664         generate_clear_array(adr_type, dest, basic_elem_type,
4665                              intcon(0), NULL,
4666                              alloc->in(AllocateNode::AllocSize));
4667         // Use a secondary InitializeNode as raw memory barrier.
4668         // Currently it is needed only on this path since other
4669         // paths have stub or runtime calls as raw memory barriers.
4670         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4671                                                        Compile::AliasIdxRaw,
4672                                                        top())->as_Initialize();
4673         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4674       }
4675     }
4676 
4677     // Present the results of the fast call.
4678     result_region->init_req(zero_path, control());
4679     result_i_o   ->init_req(zero_path, i_o());
4680     result_memory->init_req(zero_path, memory(adr_type));
4681   }
4682 
4683   if (!stopped() && dest_uninitialized) {
4684     // We have to initialize the *uncopied* part of the array to zero.
4685     // The copy destination is the slice dest[off..off+len].  The other slices
4686     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4687     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4688     Node* dest_length = alloc->in(AllocateNode::ALength);
4689     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4690                                                           copy_length) );
4691 
4692     // If there is a head section that needs zeroing, do it now.
4693     if (find_int_con(dest_offset, -1) != 0) {
4694       generate_clear_array(adr_type, dest, basic_elem_type,
4695                            intcon(0), dest_offset,
4696                            NULL);
4697     }
4698 
4699     // Next, perform a dynamic check on the tail length.
4700     // It is often zero, and we can win big if we prove this.
4701     // There are two wins:  Avoid generating the ClearArray
4702     // with its attendant messy index arithmetic, and upgrade
4703     // the copy to a more hardware-friendly word size of 64 bits.
4704     Node* tail_ctl = NULL;
4705     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
4706       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4707       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4708       tail_ctl = generate_slow_guard(bol_lt, NULL);
4709       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4710     }
4711 
4712     // At this point, let's assume there is no tail.
4713     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4714       // There is no tail.  Try an upgrade to a 64-bit copy.
4715       bool didit = false;
4716       { PreserveJVMState pjvms(this);
4717         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4718                                          src, src_offset, dest, dest_offset,
4719                                          dest_size, dest_uninitialized);
4720         if (didit) {
4721           // Present the results of the block-copying fast call.
4722           result_region->init_req(bcopy_path, control());
4723           result_i_o   ->init_req(bcopy_path, i_o());
4724           result_memory->init_req(bcopy_path, memory(adr_type));
4725         }
4726       }
4727       if (didit)
4728         set_control(top());     // no regular fast path
4729     }
4730 
4731     // Clear the tail, if any.
4732     if (tail_ctl != NULL) {
4733       Node* notail_ctl = stopped() ? NULL : control();
4734       set_control(tail_ctl);
4735       if (notail_ctl == NULL) {
4736         generate_clear_array(adr_type, dest, basic_elem_type,
4737                              dest_tail, NULL,
4738                              dest_size);
4739       } else {
4740         // Make a local merge.
4741         Node* done_ctl = new(C,3) RegionNode(3);
4742         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4743         done_ctl->init_req(1, notail_ctl);
4744         done_mem->init_req(1, memory(adr_type));
4745         generate_clear_array(adr_type, dest, basic_elem_type,
4746                              dest_tail, NULL,
4747                              dest_size);
4748         done_ctl->init_req(2, control());
4749         done_mem->init_req(2, memory(adr_type));
4750         set_control( _gvn.transform(done_ctl) );
4751         set_memory(  _gvn.transform(done_mem), adr_type );
4752       }
4753     }
4754   }
4755 
4756   BasicType copy_type = basic_elem_type;
4757   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4758   if (!stopped() && copy_type == T_OBJECT) {
4759     // If src and dest have compatible element types, we can copy bits.
4760     // Types S[] and D[] are compatible if D is a supertype of S.
4761     //
4762     // If they are not, we will use checked_oop_disjoint_arraycopy,
4763     // which performs a fast optimistic per-oop check, and backs off
4764     // further to JVM_ArrayCopy on the first per-oop check that fails.
4765     // (Actually, we don't move raw bits only; the GC requires card marks.)
4766 
4767     // Get the klassOop for both src and dest
4768     Node* src_klass  = load_object_klass(src);
4769     Node* dest_klass = load_object_klass(dest);
4770 
4771     // Generate the subtype check.
4772     // This might fold up statically, or then again it might not.
4773     //
4774     // Non-static example:  Copying List<String>.elements to a new String[].
4775     // The backing store for a List<String> is always an Object[],
4776     // but its elements are always type String, if the generic types
4777     // are correct at the source level.
4778     //
4779     // Test S[] against D[], not S against D, because (probably)
4780     // the secondary supertype cache is less busy for S[] than S.
4781     // This usually only matters when D is an interface.
4782     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4783     // Plug failing path into checked_oop_disjoint_arraycopy
4784     if (not_subtype_ctrl != top()) {
4785       PreserveJVMState pjvms(this);
4786       set_control(not_subtype_ctrl);
4787       // (At this point we can assume disjoint_bases, since types differ.)
4788       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
4789       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4790       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4791       Node* dest_elem_klass = _gvn.transform(n1);
4792       Node* cv = generate_checkcast_arraycopy(adr_type,
4793                                               dest_elem_klass,
4794                                               src, src_offset, dest, dest_offset,
4795                                               ConvI2X(copy_length), dest_uninitialized);
4796       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4797       checked_control = control();
4798       checked_i_o     = i_o();
4799       checked_mem     = memory(adr_type);
4800       checked_value   = cv;
4801     }
4802     // At this point we know we do not need type checks on oop stores.
4803 
4804     // Let's see if we need card marks:
4805     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4806       // If we do not need card marks, copy using the jint or jlong stub.
4807       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4808       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4809              "sizes agree");
4810     }
4811   }
4812 
4813   if (!stopped()) {
4814     // Generate the fast path, if possible.
4815     PreserveJVMState pjvms(this);
4816     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4817                                  src, src_offset, dest, dest_offset,
4818                                  ConvI2X(copy_length), dest_uninitialized);
4819 
4820     // Present the results of the fast call.
4821     result_region->init_req(fast_path, control());
4822     result_i_o   ->init_req(fast_path, i_o());
4823     result_memory->init_req(fast_path, memory(adr_type));
4824   }
4825 
4826   // Here are all the slow paths up to this point, in one bundle:
4827   slow_control = top();
4828   if (slow_region != NULL)
4829     slow_control = _gvn.transform(slow_region);
4830   debug_only(slow_region = (RegionNode*)badAddress);
4831 
4832   set_control(checked_control);
4833   if (!stopped()) {
4834     // Clean up after the checked call.
4835     // The returned value is either 0 or -1^K,
4836     // where K = number of partially transferred array elements.
4837     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4838     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4839     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4840 
4841     // If it is 0, we are done, so transfer to the end.
4842     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4843     result_region->init_req(checked_path, checks_done);
4844     result_i_o   ->init_req(checked_path, checked_i_o);
4845     result_memory->init_req(checked_path, checked_mem);
4846 
4847     // If it is not zero, merge into the slow call.
4848     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4849     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4850     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4851     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4852     record_for_igvn(slow_reg2);
4853     slow_reg2  ->init_req(1, slow_control);
4854     slow_i_o2  ->init_req(1, slow_i_o);
4855     slow_mem2  ->init_req(1, slow_mem);
4856     slow_reg2  ->init_req(2, control());
4857     slow_i_o2  ->init_req(2, checked_i_o);
4858     slow_mem2  ->init_req(2, checked_mem);
4859 
4860     slow_control = _gvn.transform(slow_reg2);
4861     slow_i_o     = _gvn.transform(slow_i_o2);
4862     slow_mem     = _gvn.transform(slow_mem2);
4863 
4864     if (alloc != NULL) {
4865       // We'll restart from the very beginning, after zeroing the whole thing.
4866       // This can cause double writes, but that's OK since dest is brand new.
4867       // So we ignore the low 31 bits of the value returned from the stub.
4868     } else {
4869       // We must continue the copy exactly where it failed, or else
4870       // another thread might see the wrong number of writes to dest.
4871       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4872       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4873       slow_offset->init_req(1, intcon(0));
4874       slow_offset->init_req(2, checked_offset);
4875       slow_offset  = _gvn.transform(slow_offset);
4876 
4877       // Adjust the arguments by the conditionally incoming offset.
4878       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4879       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4880       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4881 
4882       // Tweak the node variables to adjust the code produced below:
4883       src_offset  = src_off_plus;
4884       dest_offset = dest_off_plus;
4885       copy_length = length_minus;
4886     }
4887   }
4888 
4889   set_control(slow_control);
4890   if (!stopped()) {
4891     // Generate the slow path, if needed.
4892     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4893 
4894     set_memory(slow_mem, adr_type);
4895     set_i_o(slow_i_o);
4896 
4897     if (dest_uninitialized) {
4898       generate_clear_array(adr_type, dest, basic_elem_type,
4899                            intcon(0), NULL,
4900                            alloc->in(AllocateNode::AllocSize));
4901     }
4902 
4903     generate_slow_arraycopy(adr_type,
4904                             src, src_offset, dest, dest_offset,
4905                             copy_length, /*dest_uninitialized*/false);
4906 
4907     result_region->init_req(slow_call_path, control());
4908     result_i_o   ->init_req(slow_call_path, i_o());
4909     result_memory->init_req(slow_call_path, memory(adr_type));
4910   }
4911 
4912   // Remove unused edges.
4913   for (uint i = 1; i < result_region->req(); i++) {
4914     if (result_region->in(i) == NULL)
4915       result_region->init_req(i, top());
4916   }
4917 
4918   // Finished; return the combined state.
4919   set_control( _gvn.transform(result_region) );
4920   set_i_o(     _gvn.transform(result_i_o)    );
4921   set_memory(  _gvn.transform(result_memory), adr_type );
4922 
4923   // The memory edges above are precise in order to model effects around
4924   // array copies accurately to allow value numbering of field loads around
4925   // arraycopy.  Such field loads, both before and after, are common in Java
4926   // collections and similar classes involving header/array data structures.
4927   //
4928   // But with low number of register or when some registers are used or killed
4929   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4930   // The next memory barrier is added to avoid it. If the arraycopy can be
4931   // optimized away (which it can, sometimes) then we can manually remove
4932   // the membar also.
4933   //
4934   // Do not let reads from the cloned object float above the arraycopy.
4935   if (InsertMemBarAfterArraycopy || alloc != NULL)
4936     insert_mem_bar(Op_MemBarCPUOrder);
4937 }
4938 
4939 
4940 // Helper function which determines if an arraycopy immediately follows
4941 // an allocation, with no intervening tests or other escapes for the object.
4942 AllocateArrayNode*
4943 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4944                                            RegionNode* slow_region) {
4945   if (stopped())             return NULL;  // no fast path
4946   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4947 
4948   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4949   if (alloc == NULL)  return NULL;
4950 
4951   Node* rawmem = memory(Compile::AliasIdxRaw);
4952   // Is the allocation's memory state untouched?
4953   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4954     // Bail out if there have been raw-memory effects since the allocation.
4955     // (Example:  There might have been a call or safepoint.)
4956     return NULL;
4957   }
4958   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4959   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4960     return NULL;
4961   }
4962 
4963   // There must be no unexpected observers of this allocation.
4964   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4965     Node* obs = ptr->fast_out(i);
4966     if (obs != this->map()) {
4967       return NULL;
4968     }
4969   }
4970 
4971   // This arraycopy must unconditionally follow the allocation of the ptr.
4972   Node* alloc_ctl = ptr->in(0);
4973   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4974 
4975   Node* ctl = control();
4976   while (ctl != alloc_ctl) {
4977     // There may be guards which feed into the slow_region.
4978     // Any other control flow means that we might not get a chance
4979     // to finish initializing the allocated object.
4980     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4981       IfNode* iff = ctl->in(0)->as_If();
4982       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4983       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4984       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4985         ctl = iff->in(0);       // This test feeds the known slow_region.
4986         continue;
4987       }
4988       // One more try:  Various low-level checks bottom out in
4989       // uncommon traps.  If the debug-info of the trap omits
4990       // any reference to the allocation, as we've already
4991       // observed, then there can be no objection to the trap.
4992       bool found_trap = false;
4993       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4994         Node* obs = not_ctl->fast_out(j);
4995         if (obs->in(0) == not_ctl && obs->is_Call() &&
4996             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4997           found_trap = true; break;
4998         }
4999       }
5000       if (found_trap) {
5001         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5002         continue;
5003       }
5004     }
5005     return NULL;
5006   }
5007 
5008   // If we get this far, we have an allocation which immediately
5009   // precedes the arraycopy, and we can take over zeroing the new object.
5010   // The arraycopy will finish the initialization, and provide
5011   // a new control state to which we will anchor the destination pointer.
5012 
5013   return alloc;
5014 }
5015 
5016 // Helper for initialization of arrays, creating a ClearArray.
5017 // It writes zero bits in [start..end), within the body of an array object.
5018 // The memory effects are all chained onto the 'adr_type' alias category.
5019 //
5020 // Since the object is otherwise uninitialized, we are free
5021 // to put a little "slop" around the edges of the cleared area,
5022 // as long as it does not go back into the array's header,
5023 // or beyond the array end within the heap.
5024 //
5025 // The lower edge can be rounded down to the nearest jint and the
5026 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5027 //
5028 // Arguments:
5029 //   adr_type           memory slice where writes are generated
5030 //   dest               oop of the destination array
5031 //   basic_elem_type    element type of the destination
5032 //   slice_idx          array index of first element to store
5033 //   slice_len          number of elements to store (or NULL)
5034 //   dest_size          total size in bytes of the array object
5035 //
5036 // Exactly one of slice_len or dest_size must be non-NULL.
5037 // If dest_size is non-NULL, zeroing extends to the end of the object.
5038 // If slice_len is non-NULL, the slice_idx value must be a constant.
5039 void
5040 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5041                                      Node* dest,
5042                                      BasicType basic_elem_type,
5043                                      Node* slice_idx,
5044                                      Node* slice_len,
5045                                      Node* dest_size) {
5046   // one or the other but not both of slice_len and dest_size:
5047   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5048   if (slice_len == NULL)  slice_len = top();
5049   if (dest_size == NULL)  dest_size = top();
5050 
5051   // operate on this memory slice:
5052   Node* mem = memory(adr_type); // memory slice to operate on
5053 
5054   // scaling and rounding of indexes:
5055   int scale = exact_log2(type2aelembytes(basic_elem_type));
5056   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5057   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5058   int bump_bit  = (-1 << scale) & BytesPerInt;
5059 
5060   // determine constant starts and ends
5061   const intptr_t BIG_NEG = -128;
5062   assert(BIG_NEG + 2*abase < 0, "neg enough");
5063   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5064   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5065   if (slice_len_con == 0) {
5066     return;                     // nothing to do here
5067   }
5068   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5069   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5070   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5071     assert(end_con < 0, "not two cons");
5072     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5073                        BytesPerLong);
5074   }
5075 
5076   if (start_con >= 0 && end_con >= 0) {
5077     // Constant start and end.  Simple.
5078     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5079                                        start_con, end_con, &_gvn);
5080   } else if (start_con >= 0 && dest_size != top()) {
5081     // Constant start, pre-rounded end after the tail of the array.
5082     Node* end = dest_size;
5083     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5084                                        start_con, end, &_gvn);
5085   } else if (start_con >= 0 && slice_len != top()) {
5086     // Constant start, non-constant end.  End needs rounding up.
5087     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5088     intptr_t end_base  = abase + (slice_idx_con << scale);
5089     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5090     Node*    end       = ConvI2X(slice_len);
5091     if (scale != 0)
5092       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
5093     end_base += end_round;
5094     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
5095     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
5096     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5097                                        start_con, end, &_gvn);
5098   } else if (start_con < 0 && dest_size != top()) {
5099     // Non-constant start, pre-rounded end after the tail of the array.
5100     // This is almost certainly a "round-to-end" operation.
5101     Node* start = slice_idx;
5102     start = ConvI2X(start);
5103     if (scale != 0)
5104       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
5105     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
5106     if ((bump_bit | clear_low) != 0) {
5107       int to_clear = (bump_bit | clear_low);
5108       // Align up mod 8, then store a jint zero unconditionally
5109       // just before the mod-8 boundary.
5110       if (((abase + bump_bit) & ~to_clear) - bump_bit
5111           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5112         bump_bit = 0;
5113         assert((abase & to_clear) == 0, "array base must be long-aligned");
5114       } else {
5115         // Bump 'start' up to (or past) the next jint boundary:
5116         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
5117         assert((abase & clear_low) == 0, "array base must be int-aligned");
5118       }
5119       // Round bumped 'start' down to jlong boundary in body of array.
5120       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
5121       if (bump_bit != 0) {
5122         // Store a zero to the immediately preceding jint:
5123         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
5124         Node* p1 = basic_plus_adr(dest, x1);
5125         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5126         mem = _gvn.transform(mem);
5127       }
5128     }
5129     Node* end = dest_size; // pre-rounded
5130     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5131                                        start, end, &_gvn);
5132   } else {
5133     // Non-constant start, unrounded non-constant end.
5134     // (Nobody zeroes a random midsection of an array using this routine.)
5135     ShouldNotReachHere();       // fix caller
5136   }
5137 
5138   // Done.
5139   set_memory(mem, adr_type);
5140 }
5141 
5142 
5143 bool
5144 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5145                                          BasicType basic_elem_type,
5146                                          AllocateNode* alloc,
5147                                          Node* src,  Node* src_offset,
5148                                          Node* dest, Node* dest_offset,
5149                                          Node* dest_size, bool dest_uninitialized) {
5150   // See if there is an advantage from block transfer.
5151   int scale = exact_log2(type2aelembytes(basic_elem_type));
5152   if (scale >= LogBytesPerLong)
5153     return false;               // it is already a block transfer
5154 
5155   // Look at the alignment of the starting offsets.
5156   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5157   const intptr_t BIG_NEG = -128;
5158   assert(BIG_NEG + 2*abase < 0, "neg enough");
5159 
5160   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
5161   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
5162   if (src_off < 0 || dest_off < 0)
5163     // At present, we can only understand constants.
5164     return false;
5165 
5166   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5167     // Non-aligned; too bad.
5168     // One more chance:  Pick off an initial 32-bit word.
5169     // This is a common case, since abase can be odd mod 8.
5170     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5171         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5172       Node* sptr = basic_plus_adr(src,  src_off);
5173       Node* dptr = basic_plus_adr(dest, dest_off);
5174       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5175       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5176       src_off += BytesPerInt;
5177       dest_off += BytesPerInt;
5178     } else {
5179       return false;
5180     }
5181   }
5182   assert(src_off % BytesPerLong == 0, "");
5183   assert(dest_off % BytesPerLong == 0, "");
5184 
5185   // Do this copy by giant steps.
5186   Node* sptr  = basic_plus_adr(src,  src_off);
5187   Node* dptr  = basic_plus_adr(dest, dest_off);
5188   Node* countx = dest_size;
5189   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
5190   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5191 
5192   bool disjoint_bases = true;   // since alloc != NULL
5193   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5194                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5195 
5196   return true;
5197 }
5198 
5199 
5200 // Helper function; generates code for the slow case.
5201 // We make a call to a runtime method which emulates the native method,
5202 // but without the native wrapper overhead.
5203 void
5204 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5205                                         Node* src,  Node* src_offset,
5206                                         Node* dest, Node* dest_offset,
5207                                         Node* copy_length, bool dest_uninitialized) {
5208   assert(!dest_uninitialized, "Invariant");
5209   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5210                                  OptoRuntime::slow_arraycopy_Type(),
5211                                  OptoRuntime::slow_arraycopy_Java(),
5212                                  "slow_arraycopy", adr_type,
5213                                  src, src_offset, dest, dest_offset,
5214                                  copy_length);
5215 
5216   // Handle exceptions thrown by this fellow:
5217   make_slow_call_ex(call, env()->Throwable_klass(), false);
5218 }
5219 
5220 // Helper function; generates code for cases requiring runtime checks.
5221 Node*
5222 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5223                                              Node* dest_elem_klass,
5224                                              Node* src,  Node* src_offset,
5225                                              Node* dest, Node* dest_offset,
5226                                              Node* copy_length, bool dest_uninitialized) {
5227   if (stopped())  return NULL;
5228 
5229   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5230   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5231     return NULL;
5232   }
5233 
5234   // Pick out the parameters required to perform a store-check
5235   // for the target array.  This is an optimistic check.  It will
5236   // look in each non-null element's class, at the desired klass's
5237   // super_check_offset, for the desired klass.
5238   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
5239   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5240   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5241   Node* check_offset = ConvI2X(_gvn.transform(n3));
5242   Node* check_value  = dest_elem_klass;
5243 
5244   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5245   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5246 
5247   // (We know the arrays are never conjoint, because their types differ.)
5248   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5249                                  OptoRuntime::checkcast_arraycopy_Type(),
5250                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5251                                  // five arguments, of which two are
5252                                  // intptr_t (jlong in LP64)
5253                                  src_start, dest_start,
5254                                  copy_length XTOP,
5255                                  check_offset XTOP,
5256                                  check_value);
5257 
5258   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5259 }
5260 
5261 
5262 // Helper function; generates code for cases requiring runtime checks.
5263 Node*
5264 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5265                                            Node* src,  Node* src_offset,
5266                                            Node* dest, Node* dest_offset,
5267                                            Node* copy_length, bool dest_uninitialized) {
5268   assert(!dest_uninitialized, "Invariant");
5269   if (stopped())  return NULL;
5270   address copyfunc_addr = StubRoutines::generic_arraycopy();
5271   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5272     return NULL;
5273   }
5274 
5275   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5276                     OptoRuntime::generic_arraycopy_Type(),
5277                     copyfunc_addr, "generic_arraycopy", adr_type,
5278                     src, src_offset, dest, dest_offset, copy_length);
5279 
5280   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5281 }
5282 
5283 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5284 void
5285 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5286                                              BasicType basic_elem_type,
5287                                              bool disjoint_bases,
5288                                              Node* src,  Node* src_offset,
5289                                              Node* dest, Node* dest_offset,
5290                                              Node* copy_length, bool dest_uninitialized) {
5291   if (stopped())  return;               // nothing to do
5292 
5293   Node* src_start  = src;
5294   Node* dest_start = dest;
5295   if (src_offset != NULL || dest_offset != NULL) {
5296     assert(src_offset != NULL && dest_offset != NULL, "");
5297     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5298     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5299   }
5300 
5301   // Figure out which arraycopy runtime method to call.
5302   const char* copyfunc_name = "arraycopy";
5303   address     copyfunc_addr =
5304       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5305                           disjoint_bases, copyfunc_name, dest_uninitialized);
5306 
5307   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5308   make_runtime_call(RC_LEAF|RC_NO_FP,
5309                     OptoRuntime::fast_arraycopy_Type(),
5310                     copyfunc_addr, copyfunc_name, adr_type,
5311                     src_start, dest_start, copy_length XTOP);
5312 }