1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_sparc.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_sparc.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/methodOop.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "utilities/top.hpp"
  41 #ifdef TARGET_OS_FAMILY_linux
  42 # include "thread_linux.inline.hpp"
  43 #endif
  44 #ifdef TARGET_OS_FAMILY_solaris
  45 # include "thread_solaris.inline.hpp"
  46 #endif
  47 #ifdef COMPILER2
  48 #include "opto/runtime.hpp"
  49 #endif
  50 
  51 // Declaration and definition of StubGenerator (no .hpp file).
  52 // For a more detailed description of the stub routine structure
  53 // see the comment in stubRoutines.hpp.
  54 
  55 #define __ _masm->
  56 
  57 #ifdef PRODUCT
  58 #define BLOCK_COMMENT(str) /* nothing */
  59 #else
  60 #define BLOCK_COMMENT(str) __ block_comment(str)
  61 #endif
  62 
  63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  64 
  65 // Note:  The register L7 is used as L7_thread_cache, and may not be used
  66 //        any other way within this module.
  67 
  68 
  69 static const Register& Lstub_temp = L2;
  70 
  71 // -------------------------------------------------------------------------------------------------------------------------
  72 // Stub Code definitions
  73 
  74 static address handle_unsafe_access() {
  75   JavaThread* thread = JavaThread::current();
  76   address pc  = thread->saved_exception_pc();
  77   address npc = thread->saved_exception_npc();
  78   // pc is the instruction which we must emulate
  79   // doing a no-op is fine:  return garbage from the load
  80 
  81   // request an async exception
  82   thread->set_pending_unsafe_access_error();
  83 
  84   // return address of next instruction to execute
  85   return npc;
  86 }
  87 
  88 class StubGenerator: public StubCodeGenerator {
  89  private:
  90 
  91 #ifdef PRODUCT
  92 #define inc_counter_np(a,b,c) (0)
  93 #else
  94 #define inc_counter_np(counter, t1, t2) \
  95   BLOCK_COMMENT("inc_counter " #counter); \
  96   __ inc_counter(&counter, t1, t2);
  97 #endif
  98 
  99   //----------------------------------------------------------------------------------------------------
 100   // Call stubs are used to call Java from C
 101 
 102   address generate_call_stub(address& return_pc) {
 103     StubCodeMark mark(this, "StubRoutines", "call_stub");
 104     address start = __ pc();
 105 
 106     // Incoming arguments:
 107     //
 108     // o0         : call wrapper address
 109     // o1         : result (address)
 110     // o2         : result type
 111     // o3         : method
 112     // o4         : (interpreter) entry point
 113     // o5         : parameters (address)
 114     // [sp + 0x5c]: parameter size (in words)
 115     // [sp + 0x60]: thread
 116     //
 117     // +---------------+ <--- sp + 0
 118     // |               |
 119     // . reg save area .
 120     // |               |
 121     // +---------------+ <--- sp + 0x40
 122     // |               |
 123     // . extra 7 slots .
 124     // |               |
 125     // +---------------+ <--- sp + 0x5c
 126     // |  param. size  |
 127     // +---------------+ <--- sp + 0x60
 128     // |    thread     |
 129     // +---------------+
 130     // |               |
 131 
 132     // note: if the link argument position changes, adjust
 133     //       the code in frame::entry_frame_call_wrapper()
 134 
 135     const Argument link           = Argument(0, false); // used only for GC
 136     const Argument result         = Argument(1, false);
 137     const Argument result_type    = Argument(2, false);
 138     const Argument method         = Argument(3, false);
 139     const Argument entry_point    = Argument(4, false);
 140     const Argument parameters     = Argument(5, false);
 141     const Argument parameter_size = Argument(6, false);
 142     const Argument thread         = Argument(7, false);
 143 
 144     // setup thread register
 145     __ ld_ptr(thread.as_address(), G2_thread);
 146     __ reinit_heapbase();
 147 
 148 #ifdef ASSERT
 149     // make sure we have no pending exceptions
 150     { const Register t = G3_scratch;
 151       Label L;
 152       __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
 153       __ br_null_short(t, Assembler::pt, L);
 154       __ stop("StubRoutines::call_stub: entered with pending exception");
 155       __ bind(L);
 156     }
 157 #endif
 158 
 159     // create activation frame & allocate space for parameters
 160     { const Register t = G3_scratch;
 161       __ ld_ptr(parameter_size.as_address(), t);                // get parameter size (in words)
 162       __ add(t, frame::memory_parameter_word_sp_offset, t);     // add space for save area (in words)
 163       __ round_to(t, WordsPerLong);                             // make sure it is multiple of 2 (in words)
 164       __ sll(t, Interpreter::logStackElementSize, t);           // compute number of bytes
 165       __ neg(t);                                                // negate so it can be used with save
 166       __ save(SP, t, SP);                                       // setup new frame
 167     }
 168 
 169     // +---------------+ <--- sp + 0
 170     // |               |
 171     // . reg save area .
 172     // |               |
 173     // +---------------+ <--- sp + 0x40
 174     // |               |
 175     // . extra 7 slots .
 176     // |               |
 177     // +---------------+ <--- sp + 0x5c
 178     // |  empty slot   |      (only if parameter size is even)
 179     // +---------------+
 180     // |               |
 181     // .  parameters   .
 182     // |               |
 183     // +---------------+ <--- fp + 0
 184     // |               |
 185     // . reg save area .
 186     // |               |
 187     // +---------------+ <--- fp + 0x40
 188     // |               |
 189     // . extra 7 slots .
 190     // |               |
 191     // +---------------+ <--- fp + 0x5c
 192     // |  param. size  |
 193     // +---------------+ <--- fp + 0x60
 194     // |    thread     |
 195     // +---------------+
 196     // |               |
 197 
 198     // pass parameters if any
 199     BLOCK_COMMENT("pass parameters if any");
 200     { const Register src = parameters.as_in().as_register();
 201       const Register dst = Lentry_args;
 202       const Register tmp = G3_scratch;
 203       const Register cnt = G4_scratch;
 204 
 205       // test if any parameters & setup of Lentry_args
 206       Label exit;
 207       __ ld_ptr(parameter_size.as_in().as_address(), cnt);      // parameter counter
 208       __ add( FP, STACK_BIAS, dst );
 209       __ cmp_zero_and_br(Assembler::zero, cnt, exit);
 210       __ delayed()->sub(dst, BytesPerWord, dst);                 // setup Lentry_args
 211 
 212       // copy parameters if any
 213       Label loop;
 214       __ BIND(loop);
 215       // Store parameter value
 216       __ ld_ptr(src, 0, tmp);
 217       __ add(src, BytesPerWord, src);
 218       __ st_ptr(tmp, dst, 0);
 219       __ deccc(cnt);
 220       __ br(Assembler::greater, false, Assembler::pt, loop);
 221       __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
 222 
 223       // done
 224       __ BIND(exit);
 225     }
 226 
 227     // setup parameters, method & call Java function
 228 #ifdef ASSERT
 229     // layout_activation_impl checks it's notion of saved SP against
 230     // this register, so if this changes update it as well.
 231     const Register saved_SP = Lscratch;
 232     __ mov(SP, saved_SP);                               // keep track of SP before call
 233 #endif
 234 
 235     // setup parameters
 236     const Register t = G3_scratch;
 237     __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
 238     __ sll(t, Interpreter::logStackElementSize, t);    // compute number of bytes
 239     __ sub(FP, t, Gargs);                              // setup parameter pointer
 240 #ifdef _LP64
 241     __ add( Gargs, STACK_BIAS, Gargs );                // Account for LP64 stack bias
 242 #endif
 243     __ mov(SP, O5_savedSP);
 244 
 245 
 246     // do the call
 247     //
 248     // the following register must be setup:
 249     //
 250     // G2_thread
 251     // G5_method
 252     // Gargs
 253     BLOCK_COMMENT("call Java function");
 254     __ jmpl(entry_point.as_in().as_register(), G0, O7);
 255     __ delayed()->mov(method.as_in().as_register(), G5_method);   // setup method
 256 
 257     BLOCK_COMMENT("call_stub_return_address:");
 258     return_pc = __ pc();
 259 
 260     // The callee, if it wasn't interpreted, can return with SP changed so
 261     // we can no longer assert of change of SP.
 262 
 263     // store result depending on type
 264     // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
 265     //  is treated as T_INT)
 266     { const Register addr = result     .as_in().as_register();
 267       const Register type = result_type.as_in().as_register();
 268       Label is_long, is_float, is_double, is_object, exit;
 269       __            cmp(type, T_OBJECT);  __ br(Assembler::equal, false, Assembler::pn, is_object);
 270       __ delayed()->cmp(type, T_FLOAT);   __ br(Assembler::equal, false, Assembler::pn, is_float);
 271       __ delayed()->cmp(type, T_DOUBLE);  __ br(Assembler::equal, false, Assembler::pn, is_double);
 272       __ delayed()->cmp(type, T_LONG);    __ br(Assembler::equal, false, Assembler::pn, is_long);
 273       __ delayed()->nop();
 274 
 275       // store int result
 276       __ st(O0, addr, G0);
 277 
 278       __ BIND(exit);
 279       __ ret();
 280       __ delayed()->restore();
 281 
 282       __ BIND(is_object);
 283       __ ba(exit);
 284       __ delayed()->st_ptr(O0, addr, G0);
 285 
 286       __ BIND(is_float);
 287       __ ba(exit);
 288       __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
 289 
 290       __ BIND(is_double);
 291       __ ba(exit);
 292       __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
 293 
 294       __ BIND(is_long);
 295 #ifdef _LP64
 296       __ ba(exit);
 297       __ delayed()->st_long(O0, addr, G0);      // store entire long
 298 #else
 299 #if defined(COMPILER2)
 300   // All return values are where we want them, except for Longs.  C2 returns
 301   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 302   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 303   // build we simply always use G1.
 304   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 305   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 306   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 307 
 308       __ ba(exit);
 309       __ delayed()->stx(G1, addr, G0);  // store entire long
 310 #else
 311       __ st(O1, addr, BytesPerInt);
 312       __ ba(exit);
 313       __ delayed()->st(O0, addr, G0);
 314 #endif /* COMPILER2 */
 315 #endif /* _LP64 */
 316      }
 317      return start;
 318   }
 319 
 320 
 321   //----------------------------------------------------------------------------------------------------
 322   // Return point for a Java call if there's an exception thrown in Java code.
 323   // The exception is caught and transformed into a pending exception stored in
 324   // JavaThread that can be tested from within the VM.
 325   //
 326   // Oexception: exception oop
 327 
 328   address generate_catch_exception() {
 329     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 330 
 331     address start = __ pc();
 332     // verify that thread corresponds
 333     __ verify_thread();
 334 
 335     const Register& temp_reg = Gtemp;
 336     Address pending_exception_addr    (G2_thread, Thread::pending_exception_offset());
 337     Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset   ());
 338     Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset   ());
 339 
 340     // set pending exception
 341     __ verify_oop(Oexception);
 342     __ st_ptr(Oexception, pending_exception_addr);
 343     __ set((intptr_t)__FILE__, temp_reg);
 344     __ st_ptr(temp_reg, exception_file_offset_addr);
 345     __ set((intptr_t)__LINE__, temp_reg);
 346     __ st(temp_reg, exception_line_offset_addr);
 347 
 348     // complete return to VM
 349     assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
 350 
 351     AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
 352     __ jump_to(stub_ret, temp_reg);
 353     __ delayed()->nop();
 354 
 355     return start;
 356   }
 357 
 358 
 359   //----------------------------------------------------------------------------------------------------
 360   // Continuation point for runtime calls returning with a pending exception
 361   // The pending exception check happened in the runtime or native call stub
 362   // The pending exception in Thread is converted into a Java-level exception
 363   //
 364   // Contract with Java-level exception handler: O0 = exception
 365   //                                             O1 = throwing pc
 366 
 367   address generate_forward_exception() {
 368     StubCodeMark mark(this, "StubRoutines", "forward_exception");
 369     address start = __ pc();
 370 
 371     // Upon entry, O7 has the return address returning into Java
 372     // (interpreted or compiled) code; i.e. the return address
 373     // becomes the throwing pc.
 374 
 375     const Register& handler_reg = Gtemp;
 376 
 377     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 378 
 379 #ifdef ASSERT
 380     // make sure that this code is only executed if there is a pending exception
 381     { Label L;
 382       __ ld_ptr(exception_addr, Gtemp);
 383       __ br_notnull_short(Gtemp, Assembler::pt, L);
 384       __ stop("StubRoutines::forward exception: no pending exception (1)");
 385       __ bind(L);
 386     }
 387 #endif
 388 
 389     // compute exception handler into handler_reg
 390     __ get_thread();
 391     __ ld_ptr(exception_addr, Oexception);
 392     __ verify_oop(Oexception);
 393     __ save_frame(0);             // compensates for compiler weakness
 394     __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
 395     BLOCK_COMMENT("call exception_handler_for_return_address");
 396     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
 397     __ mov(O0, handler_reg);
 398     __ restore();                 // compensates for compiler weakness
 399 
 400     __ ld_ptr(exception_addr, Oexception);
 401     __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
 402 
 403 #ifdef ASSERT
 404     // make sure exception is set
 405     { Label L;
 406       __ br_notnull_short(Oexception, Assembler::pt, L);
 407       __ stop("StubRoutines::forward exception: no pending exception (2)");
 408       __ bind(L);
 409     }
 410 #endif
 411     // jump to exception handler
 412     __ jmp(handler_reg, 0);
 413     // clear pending exception
 414     __ delayed()->st_ptr(G0, exception_addr);
 415 
 416     return start;
 417   }
 418 
 419 
 420   //------------------------------------------------------------------------------------------------------------------------
 421   // Continuation point for throwing of implicit exceptions that are not handled in
 422   // the current activation. Fabricates an exception oop and initiates normal
 423   // exception dispatching in this frame. Only callee-saved registers are preserved
 424   // (through the normal register window / RegisterMap handling).
 425   // If the compiler needs all registers to be preserved between the fault
 426   // point and the exception handler then it must assume responsibility for that in
 427   // AbstractCompiler::continuation_for_implicit_null_exception or
 428   // continuation_for_implicit_division_by_zero_exception. All other implicit
 429   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
 430   // either at call sites or otherwise assume that stack unwinding will be initiated,
 431   // so caller saved registers were assumed volatile in the compiler.
 432 
 433   // Note that we generate only this stub into a RuntimeStub, because it needs to be
 434   // properly traversed and ignored during GC, so we change the meaning of the "__"
 435   // macro within this method.
 436 #undef __
 437 #define __ masm->
 438 
 439   address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc,
 440                                    Register arg1 = noreg, Register arg2 = noreg) {
 441 #ifdef ASSERT
 442     int insts_size = VerifyThread ? 1 * K : 600;
 443 #else
 444     int insts_size = VerifyThread ? 1 * K : 256;
 445 #endif /* ASSERT */
 446     int locs_size  = 32;
 447 
 448     CodeBuffer      code(name, insts_size, locs_size);
 449     MacroAssembler* masm = new MacroAssembler(&code);
 450 
 451     __ verify_thread();
 452 
 453     // This is an inlined and slightly modified version of call_VM
 454     // which has the ability to fetch the return PC out of thread-local storage
 455     __ assert_not_delayed();
 456 
 457     // Note that we always push a frame because on the SPARC
 458     // architecture, for all of our implicit exception kinds at call
 459     // sites, the implicit exception is taken before the callee frame
 460     // is pushed.
 461     __ save_frame(0);
 462 
 463     int frame_complete = __ offset();
 464 
 465     if (restore_saved_exception_pc) {
 466       __ ld_ptr(G2_thread, JavaThread::saved_exception_pc_offset(), I7);
 467       __ sub(I7, frame::pc_return_offset, I7);
 468     }
 469 
 470     // Note that we always have a runtime stub frame on the top of stack by this point
 471     Register last_java_sp = SP;
 472     // 64-bit last_java_sp is biased!
 473     __ set_last_Java_frame(last_java_sp, G0);
 474     if (VerifyThread)  __ mov(G2_thread, O0); // about to be smashed; pass early
 475     __ save_thread(noreg);
 476     if (arg1 != noreg) {
 477       assert(arg2 != O1, "clobbered");
 478       __ mov(arg1, O1);
 479     }
 480     if (arg2 != noreg) {
 481       __ mov(arg2, O2);
 482     }
 483     // do the call
 484     BLOCK_COMMENT("call runtime_entry");
 485     __ call(runtime_entry, relocInfo::runtime_call_type);
 486     if (!VerifyThread)
 487       __ delayed()->mov(G2_thread, O0);  // pass thread as first argument
 488     else
 489       __ delayed()->nop();             // (thread already passed)
 490     __ restore_thread(noreg);
 491     __ reset_last_Java_frame();
 492 
 493     // check for pending exceptions. use Gtemp as scratch register.
 494 #ifdef ASSERT
 495     Label L;
 496 
 497     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 498     Register scratch_reg = Gtemp;
 499     __ ld_ptr(exception_addr, scratch_reg);
 500     __ br_notnull_short(scratch_reg, Assembler::pt, L);
 501     __ should_not_reach_here();
 502     __ bind(L);
 503 #endif // ASSERT
 504     BLOCK_COMMENT("call forward_exception_entry");
 505     __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
 506     // we use O7 linkage so that forward_exception_entry has the issuing PC
 507     __ delayed()->restore();
 508 
 509     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
 510     return stub->entry_point();
 511   }
 512 
 513 #undef __
 514 #define __ _masm->
 515 
 516 
 517   // Generate a routine that sets all the registers so we
 518   // can tell if the stop routine prints them correctly.
 519   address generate_test_stop() {
 520     StubCodeMark mark(this, "StubRoutines", "test_stop");
 521     address start = __ pc();
 522 
 523     int i;
 524 
 525     __ save_frame(0);
 526 
 527     static jfloat zero = 0.0, one = 1.0;
 528 
 529     // put addr in L0, then load through L0 to F0
 530     __ set((intptr_t)&zero, L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F0);
 531     __ set((intptr_t)&one,  L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
 532 
 533     // use add to put 2..18 in F2..F18
 534     for ( i = 2;  i <= 18;  ++i ) {
 535       __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1),  as_FloatRegister(i));
 536     }
 537 
 538     // Now put double 2 in F16, double 18 in F18
 539     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
 540     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
 541 
 542     // use add to put 20..32 in F20..F32
 543     for (i = 20; i < 32; i += 2) {
 544       __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2),  as_FloatRegister(i));
 545     }
 546 
 547     // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
 548     for ( i = 0; i < 8; ++i ) {
 549       if (i < 6) {
 550         __ set(     i, as_iRegister(i));
 551         __ set(16 + i, as_oRegister(i));
 552         __ set(24 + i, as_gRegister(i));
 553       }
 554       __ set( 8 + i, as_lRegister(i));
 555     }
 556 
 557     __ stop("testing stop");
 558 
 559 
 560     __ ret();
 561     __ delayed()->restore();
 562 
 563     return start;
 564   }
 565 
 566 
 567   address generate_stop_subroutine() {
 568     StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
 569     address start = __ pc();
 570 
 571     __ stop_subroutine();
 572 
 573     return start;
 574   }
 575 
 576   address generate_flush_callers_register_windows() {
 577     StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
 578     address start = __ pc();
 579 
 580     __ flush_windows();
 581     __ retl(false);
 582     __ delayed()->add( FP, STACK_BIAS, O0 );
 583     // The returned value must be a stack pointer whose register save area
 584     // is flushed, and will stay flushed while the caller executes.
 585 
 586     return start;
 587   }
 588 
 589   // Helper functions for v8 atomic operations.
 590   //
 591   void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
 592     if (mark_oop_reg == noreg) {
 593       address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
 594       __ set((intptr_t)lock_ptr, lock_ptr_reg);
 595     } else {
 596       assert(scratch_reg != noreg, "just checking");
 597       address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
 598       __ set((intptr_t)lock_ptr, lock_ptr_reg);
 599       __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
 600       __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
 601     }
 602   }
 603 
 604   void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
 605 
 606     get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
 607     __ set(StubRoutines::Sparc::locked, lock_reg);
 608     // Initialize yield counter
 609     __ mov(G0,yield_reg);
 610 
 611     __ BIND(retry);
 612     __ cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dontyield);
 613 
 614     // This code can only be called from inside the VM, this
 615     // stub is only invoked from Atomic::add().  We do not
 616     // want to use call_VM, because _last_java_sp and such
 617     // must already be set.
 618     //
 619     // Save the regs and make space for a C call
 620     __ save(SP, -96, SP);
 621     __ save_all_globals_into_locals();
 622     BLOCK_COMMENT("call os::naked_sleep");
 623     __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
 624     __ delayed()->nop();
 625     __ restore_globals_from_locals();
 626     __ restore();
 627     // reset the counter
 628     __ mov(G0,yield_reg);
 629 
 630     __ BIND(dontyield);
 631 
 632     // try to get lock
 633     __ swap(lock_ptr_reg, 0, lock_reg);
 634 
 635     // did we get the lock?
 636     __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
 637     __ br(Assembler::notEqual, true, Assembler::pn, retry);
 638     __ delayed()->add(yield_reg,1,yield_reg);
 639 
 640     // yes, got lock. do the operation here.
 641   }
 642 
 643   void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
 644     __ st(lock_reg, lock_ptr_reg, 0); // unlock
 645   }
 646 
 647   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
 648   //
 649   // Arguments :
 650   //
 651   //      exchange_value: O0
 652   //      dest:           O1
 653   //
 654   // Results:
 655   //
 656   //     O0: the value previously stored in dest
 657   //
 658   address generate_atomic_xchg() {
 659     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 660     address start = __ pc();
 661 
 662     if (UseCASForSwap) {
 663       // Use CAS instead of swap, just in case the MP hardware
 664       // prefers to work with just one kind of synch. instruction.
 665       Label retry;
 666       __ BIND(retry);
 667       __ mov(O0, O3);       // scratch copy of exchange value
 668       __ ld(O1, 0, O2);     // observe the previous value
 669       // try to replace O2 with O3
 670       __ cas_under_lock(O1, O2, O3,
 671       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
 672       __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
 673 
 674       __ retl(false);
 675       __ delayed()->mov(O2, O0);  // report previous value to caller
 676 
 677     } else {
 678       if (VM_Version::v9_instructions_work()) {
 679         __ retl(false);
 680         __ delayed()->swap(O1, 0, O0);
 681       } else {
 682         const Register& lock_reg = O2;
 683         const Register& lock_ptr_reg = O3;
 684         const Register& yield_reg = O4;
 685 
 686         Label retry;
 687         Label dontyield;
 688 
 689         generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
 690         // got the lock, do the swap
 691         __ swap(O1, 0, O0);
 692 
 693         generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
 694         __ retl(false);
 695         __ delayed()->nop();
 696       }
 697     }
 698 
 699     return start;
 700   }
 701 
 702 
 703   // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
 704   //
 705   // Arguments :
 706   //
 707   //      exchange_value: O0
 708   //      dest:           O1
 709   //      compare_value:  O2
 710   //
 711   // Results:
 712   //
 713   //     O0: the value previously stored in dest
 714   //
 715   // Overwrites (v8): O3,O4,O5
 716   //
 717   address generate_atomic_cmpxchg() {
 718     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
 719     address start = __ pc();
 720 
 721     // cmpxchg(dest, compare_value, exchange_value)
 722     __ cas_under_lock(O1, O2, O0,
 723       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
 724     __ retl(false);
 725     __ delayed()->nop();
 726 
 727     return start;
 728   }
 729 
 730   // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
 731   //
 732   // Arguments :
 733   //
 734   //      exchange_value: O1:O0
 735   //      dest:           O2
 736   //      compare_value:  O4:O3
 737   //
 738   // Results:
 739   //
 740   //     O1:O0: the value previously stored in dest
 741   //
 742   // This only works on V9, on V8 we don't generate any
 743   // code and just return NULL.
 744   //
 745   // Overwrites: G1,G2,G3
 746   //
 747   address generate_atomic_cmpxchg_long() {
 748     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
 749     address start = __ pc();
 750 
 751     if (!VM_Version::supports_cx8())
 752         return NULL;;
 753     __ sllx(O0, 32, O0);
 754     __ srl(O1, 0, O1);
 755     __ or3(O0,O1,O0);      // O0 holds 64-bit value from compare_value
 756     __ sllx(O3, 32, O3);
 757     __ srl(O4, 0, O4);
 758     __ or3(O3,O4,O3);     // O3 holds 64-bit value from exchange_value
 759     __ casx(O2, O3, O0);
 760     __ srl(O0, 0, O1);    // unpacked return value in O1:O0
 761     __ retl(false);
 762     __ delayed()->srlx(O0, 32, O0);
 763 
 764     return start;
 765   }
 766 
 767 
 768   // Support for jint Atomic::add(jint add_value, volatile jint* dest).
 769   //
 770   // Arguments :
 771   //
 772   //      add_value: O0   (e.g., +1 or -1)
 773   //      dest:      O1
 774   //
 775   // Results:
 776   //
 777   //     O0: the new value stored in dest
 778   //
 779   // Overwrites (v9): O3
 780   // Overwrites (v8): O3,O4,O5
 781   //
 782   address generate_atomic_add() {
 783     StubCodeMark mark(this, "StubRoutines", "atomic_add");
 784     address start = __ pc();
 785     __ BIND(_atomic_add_stub);
 786 
 787     if (VM_Version::v9_instructions_work()) {
 788       Label(retry);
 789       __ BIND(retry);
 790 
 791       __ lduw(O1, 0, O2);
 792       __ add(O0, O2, O3);
 793       __ cas(O1, O2, O3);
 794       __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
 795       __ retl(false);
 796       __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
 797     } else {
 798       const Register& lock_reg = O2;
 799       const Register& lock_ptr_reg = O3;
 800       const Register& value_reg = O4;
 801       const Register& yield_reg = O5;
 802 
 803       Label(retry);
 804       Label(dontyield);
 805 
 806       generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
 807       // got lock, do the increment
 808       __ ld(O1, 0, value_reg);
 809       __ add(O0, value_reg, value_reg);
 810       __ st(value_reg, O1, 0);
 811 
 812       // %%% only for RMO and PSO
 813       __ membar(Assembler::StoreStore);
 814 
 815       generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
 816 
 817       __ retl(false);
 818       __ delayed()->mov(value_reg, O0);
 819     }
 820 
 821     return start;
 822   }
 823   Label _atomic_add_stub;  // called from other stubs
 824 
 825 
 826   //------------------------------------------------------------------------------------------------------------------------
 827   // The following routine generates a subroutine to throw an asynchronous
 828   // UnknownError when an unsafe access gets a fault that could not be
 829   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
 830   //
 831   // Arguments :
 832   //
 833   //      trapping PC:    O7
 834   //
 835   // Results:
 836   //     posts an asynchronous exception, skips the trapping instruction
 837   //
 838 
 839   address generate_handler_for_unsafe_access() {
 840     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 841     address start = __ pc();
 842 
 843     const int preserve_register_words = (64 * 2);
 844     Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
 845 
 846     Register Lthread = L7_thread_cache;
 847     int i;
 848 
 849     __ save_frame(0);
 850     __ mov(G1, L1);
 851     __ mov(G2, L2);
 852     __ mov(G3, L3);
 853     __ mov(G4, L4);
 854     __ mov(G5, L5);
 855     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
 856       __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
 857     }
 858 
 859     address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
 860     BLOCK_COMMENT("call handle_unsafe_access");
 861     __ call(entry_point, relocInfo::runtime_call_type);
 862     __ delayed()->nop();
 863 
 864     __ mov(L1, G1);
 865     __ mov(L2, G2);
 866     __ mov(L3, G3);
 867     __ mov(L4, G4);
 868     __ mov(L5, G5);
 869     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
 870       __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
 871     }
 872 
 873     __ verify_thread();
 874 
 875     __ jmp(O0, 0);
 876     __ delayed()->restore();
 877 
 878     return start;
 879   }
 880 
 881 
 882   // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
 883   // Arguments :
 884   //
 885   //      ret  : O0, returned
 886   //      icc/xcc: set as O0 (depending on wordSize)
 887   //      sub  : O1, argument, not changed
 888   //      super: O2, argument, not changed
 889   //      raddr: O7, blown by call
 890   address generate_partial_subtype_check() {
 891     __ align(CodeEntryAlignment);
 892     StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
 893     address start = __ pc();
 894     Label miss;
 895 
 896 #if defined(COMPILER2) && !defined(_LP64)
 897     // Do not use a 'save' because it blows the 64-bit O registers.
 898     __ add(SP,-4*wordSize,SP);  // Make space for 4 temps (stack must be 2 words aligned)
 899     __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
 900     __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
 901     __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
 902     __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
 903     Register Rret   = O0;
 904     Register Rsub   = O1;
 905     Register Rsuper = O2;
 906 #else
 907     __ save_frame(0);
 908     Register Rret   = I0;
 909     Register Rsub   = I1;
 910     Register Rsuper = I2;
 911 #endif
 912 
 913     Register L0_ary_len = L0;
 914     Register L1_ary_ptr = L1;
 915     Register L2_super   = L2;
 916     Register L3_index   = L3;
 917 
 918     __ check_klass_subtype_slow_path(Rsub, Rsuper,
 919                                      L0, L1, L2, L3,
 920                                      NULL, &miss);
 921 
 922     // Match falls through here.
 923     __ addcc(G0,0,Rret);        // set Z flags, Z result
 924 
 925 #if defined(COMPILER2) && !defined(_LP64)
 926     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
 927     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
 928     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
 929     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
 930     __ retl();                  // Result in Rret is zero; flags set to Z
 931     __ delayed()->add(SP,4*wordSize,SP);
 932 #else
 933     __ ret();                   // Result in Rret is zero; flags set to Z
 934     __ delayed()->restore();
 935 #endif
 936 
 937     __ BIND(miss);
 938     __ addcc(G0,1,Rret);        // set NZ flags, NZ result
 939 
 940 #if defined(COMPILER2) && !defined(_LP64)
 941     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
 942     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
 943     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
 944     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
 945     __ retl();                  // Result in Rret is != 0; flags set to NZ
 946     __ delayed()->add(SP,4*wordSize,SP);
 947 #else
 948     __ ret();                   // Result in Rret is != 0; flags set to NZ
 949     __ delayed()->restore();
 950 #endif
 951 
 952     return start;
 953   }
 954 
 955 
 956   // Called from MacroAssembler::verify_oop
 957   //
 958   address generate_verify_oop_subroutine() {
 959     StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
 960 
 961     address start = __ pc();
 962 
 963     __ verify_oop_subroutine();
 964 
 965     return start;
 966   }
 967 
 968 
 969   //
 970   // Verify that a register contains clean 32-bits positive value
 971   // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
 972   //
 973   //  Input:
 974   //    Rint  -  32-bits value
 975   //    Rtmp  -  scratch
 976   //
 977   void assert_clean_int(Register Rint, Register Rtmp) {
 978 #if defined(ASSERT) && defined(_LP64)
 979     __ signx(Rint, Rtmp);
 980     __ cmp(Rint, Rtmp);
 981     __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
 982 #endif
 983   }
 984 
 985   //
 986   //  Generate overlap test for array copy stubs
 987   //
 988   //  Input:
 989   //    O0    -  array1
 990   //    O1    -  array2
 991   //    O2    -  element count
 992   //
 993   //  Kills temps:  O3, O4
 994   //
 995   void array_overlap_test(address no_overlap_target, int log2_elem_size) {
 996     assert(no_overlap_target != NULL, "must be generated");
 997     array_overlap_test(no_overlap_target, NULL, log2_elem_size);
 998   }
 999   void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
1000     array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
1001   }
1002   void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
1003     const Register from       = O0;
1004     const Register to         = O1;
1005     const Register count      = O2;
1006     const Register to_from    = O3; // to - from
1007     const Register byte_count = O4; // count << log2_elem_size
1008 
1009       __ subcc(to, from, to_from);
1010       __ sll_ptr(count, log2_elem_size, byte_count);
1011       if (NOLp == NULL)
1012         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
1013       else
1014         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
1015       __ delayed()->cmp(to_from, byte_count);
1016       if (NOLp == NULL)
1017         __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
1018       else
1019         __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
1020       __ delayed()->nop();
1021   }
1022 
1023   //
1024   //  Generate pre-write barrier for array.
1025   //
1026   //  Input:
1027   //     addr     - register containing starting address
1028   //     count    - register containing element count
1029   //     tmp      - scratch register
1030   //
1031   //  The input registers are overwritten.
1032   //
1033   void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
1034     BarrierSet* bs = Universe::heap()->barrier_set();
1035     switch (bs->kind()) {
1036       case BarrierSet::G1SATBCT:
1037       case BarrierSet::G1SATBCTLogging:
1038         // With G1, don't generate the call if we statically know that the target in uninitialized
1039         if (!dest_uninitialized) {
1040           __ save_frame(0);
1041           // Save the necessary global regs... will be used after.
1042           if (addr->is_global()) {
1043             __ mov(addr, L0);
1044           }
1045           if (count->is_global()) {
1046             __ mov(count, L1);
1047           }
1048           __ mov(addr->after_save(), O0);
1049           // Get the count into O1
1050           __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
1051           __ delayed()->mov(count->after_save(), O1);
1052           if (addr->is_global()) {
1053             __ mov(L0, addr);
1054           }
1055           if (count->is_global()) {
1056             __ mov(L1, count);
1057           }
1058           __ restore();
1059         }
1060         break;
1061       case BarrierSet::CardTableModRef:
1062       case BarrierSet::CardTableExtension:
1063       case BarrierSet::ModRef:
1064         break;
1065       default:
1066         ShouldNotReachHere();
1067     }
1068   }
1069   //
1070   //  Generate post-write barrier for array.
1071   //
1072   //  Input:
1073   //     addr     - register containing starting address
1074   //     count    - register containing element count
1075   //     tmp      - scratch register
1076   //
1077   //  The input registers are overwritten.
1078   //
1079   void gen_write_ref_array_post_barrier(Register addr, Register count,
1080                                         Register tmp) {
1081     BarrierSet* bs = Universe::heap()->barrier_set();
1082 
1083     switch (bs->kind()) {
1084       case BarrierSet::G1SATBCT:
1085       case BarrierSet::G1SATBCTLogging:
1086         {
1087           // Get some new fresh output registers.
1088           __ save_frame(0);
1089           __ mov(addr->after_save(), O0);
1090           __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
1091           __ delayed()->mov(count->after_save(), O1);
1092           __ restore();
1093         }
1094         break;
1095       case BarrierSet::CardTableModRef:
1096       case BarrierSet::CardTableExtension:
1097         {
1098           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1099           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1100           assert_different_registers(addr, count, tmp);
1101 
1102           Label L_loop;
1103 
1104           __ sll_ptr(count, LogBytesPerHeapOop, count);
1105           __ sub(count, BytesPerHeapOop, count);
1106           __ add(count, addr, count);
1107           // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
1108           __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
1109           __ srl_ptr(count, CardTableModRefBS::card_shift, count);
1110           __ sub(count, addr, count);
1111           AddressLiteral rs(ct->byte_map_base);
1112           __ set(rs, tmp);
1113         __ BIND(L_loop);
1114           __ stb(G0, tmp, addr);
1115           __ subcc(count, 1, count);
1116           __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
1117           __ delayed()->add(addr, 1, addr);
1118         }
1119         break;
1120       case BarrierSet::ModRef:
1121         break;
1122       default:
1123         ShouldNotReachHere();
1124     }
1125   }
1126 
1127   //
1128   // Generate main code for disjoint arraycopy
1129   //
1130   typedef void (StubGenerator::*CopyLoopFunc)(Register from, Register to, Register count, int count_dec,
1131                                               Label& L_loop, bool use_prefetch, bool use_bis);
1132 
1133   void disjoint_copy_core(Register from, Register to, Register count, int log2_elem_size,
1134                           int iter_size, CopyLoopFunc copy_loop_func) {
1135     Label L_copy;
1136 
1137     assert(log2_elem_size <= 3, "the following code should be changed");
1138     int count_dec = 16>>log2_elem_size;
1139 
1140     int prefetch_dist = MAX2(ArraycopySrcPrefetchDistance, ArraycopyDstPrefetchDistance);
1141     assert(prefetch_dist < 4096, "invalid value");
1142     prefetch_dist = (prefetch_dist + (iter_size-1)) & (-iter_size); // round up to one iteration copy size
1143     int prefetch_count = (prefetch_dist >> log2_elem_size); // elements count
1144 
1145     if (UseBlockCopy) {
1146       Label L_block_copy, L_block_copy_prefetch, L_skip_block_copy;
1147 
1148       // 64 bytes tail + bytes copied in one loop iteration
1149       int tail_size = 64 + iter_size;
1150       int block_copy_count = (MAX2(tail_size, (int)BlockCopyLowLimit)) >> log2_elem_size;
1151       // Use BIS copy only for big arrays since it requires membar.
1152       __ set(block_copy_count, O4);
1153       __ cmp_and_br_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_skip_block_copy);
1154       // This code is for disjoint source and destination:
1155       //   to <= from || to >= from+count
1156       // but BIS will stomp over 'from' if (to > from-tail_size && to <= from)
1157       __ sub(from, to, O4);
1158       __ srax(O4, 4, O4); // divide by 16 since following short branch have only 5 bits for imm.
1159       __ cmp_and_br_short(O4, (tail_size>>4), Assembler::lessEqualUnsigned, Assembler::pn, L_skip_block_copy);
1160 
1161       __ wrasi(G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
1162       // BIS should not be used to copy tail (64 bytes+iter_size)
1163       // to avoid zeroing of following values.
1164       __ sub(count, (tail_size>>log2_elem_size), count); // count is still positive >= 0
1165 
1166       if (prefetch_count > 0) { // rounded up to one iteration count
1167         // Do prefetching only if copy size is bigger
1168         // than prefetch distance.
1169         __ set(prefetch_count, O4);
1170         __ cmp_and_brx_short(count, O4, Assembler::less, Assembler::pt, L_block_copy);
1171         __ sub(count, prefetch_count, count);
1172 
1173         (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy_prefetch, true, true);
1174         __ add(count, prefetch_count, count); // restore count
1175 
1176       } // prefetch_count > 0
1177 
1178       (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy, false, true);
1179       __ add(count, (tail_size>>log2_elem_size), count); // restore count
1180 
1181       __ wrasi(G0, Assembler::ASI_PRIMARY_NOFAULT);
1182       // BIS needs membar.
1183       __ membar(Assembler::StoreLoad);
1184       // Copy tail
1185       __ ba_short(L_copy);
1186 
1187       __ BIND(L_skip_block_copy);
1188     } // UseBlockCopy
1189 
1190     if (prefetch_count > 0) { // rounded up to one iteration count
1191       // Do prefetching only if copy size is bigger
1192       // than prefetch distance.
1193       __ set(prefetch_count, O4);
1194       __ cmp_and_brx_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_copy);
1195       __ sub(count, prefetch_count, count);
1196  
1197       Label L_copy_prefetch;
1198       (this->*copy_loop_func)(from, to, count, count_dec, L_copy_prefetch, true, false);
1199       __ add(count, prefetch_count, count); // restore count
1200 
1201     } // prefetch_count > 0
1202 
1203     (this->*copy_loop_func)(from, to, count, count_dec, L_copy, false, false);
1204   }
1205 
1206 
1207 
1208   // 
1209   // Helper methods for copy_16_bytes_forward_with_shift()
1210   // 
1211   void copy_16_bytes_shift_loop(Register from, Register to, Register count, int count_dec,
1212                                 Label& L_loop, bool use_prefetch, bool use_bis) {
1213 
1214     const Register left_shift  = G1; // left  shift bit counter
1215     const Register right_shift = G5; // right shift bit counter
1216 
1217     __ align(OptoLoopAlignment);
1218     __ BIND(L_loop);
1219     if (use_prefetch) {
1220       if (ArraycopySrcPrefetchDistance > 0) {
1221         __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
1222       }
1223       if (ArraycopyDstPrefetchDistance > 0) {
1224         __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
1225       }
1226     }
1227     __ ldx(from, 0, O4);
1228     __ ldx(from, 8, G4);
1229     __ inc(to, 16);
1230     __ inc(from, 16);
1231     __ deccc(count, count_dec); // Can we do next iteration after this one?
1232     __ srlx(O4, right_shift, G3);
1233     __ bset(G3, O3);
1234     __ sllx(O4, left_shift,  O4);
1235     __ srlx(G4, right_shift, G3);
1236     __ bset(G3, O4);
1237     if (use_bis) {
1238       __ stxa(O3, to, -16);
1239       __ stxa(O4, to, -8);
1240     } else {
1241       __ stx(O3, to, -16);
1242       __ stx(O4, to, -8);
1243     }
1244     __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
1245     __ delayed()->sllx(G4, left_shift,  O3);
1246   }
1247 
1248   // Copy big chunks forward with shift
1249   //
1250   // Inputs:
1251   //   from      - source arrays
1252   //   to        - destination array aligned to 8-bytes
1253   //   count     - elements count to copy >= the count equivalent to 16 bytes
1254   //   count_dec - elements count's decrement equivalent to 16 bytes
1255   //   L_copy_bytes - copy exit label
1256   //
1257   void copy_16_bytes_forward_with_shift(Register from, Register to,
1258                      Register count, int log2_elem_size, Label& L_copy_bytes) {
1259     Label L_aligned_copy, L_copy_last_bytes;
1260     assert(log2_elem_size <= 3, "the following code should be changed");
1261     int count_dec = 16>>log2_elem_size;
1262 
1263     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
1264     __ andcc(from, 7, G1); // misaligned bytes
1265     __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
1266     __ delayed()->nop();
1267 
1268     const Register left_shift  = G1; // left  shift bit counter
1269     const Register right_shift = G5; // right shift bit counter
1270 
1271     __ sll(G1, LogBitsPerByte, left_shift);
1272     __ mov(64, right_shift);
1273     __ sub(right_shift, left_shift, right_shift);
1274 
1275     //
1276     // Load 2 aligned 8-bytes chunks and use one from previous iteration
1277     // to form 2 aligned 8-bytes chunks to store.
1278     //
1279     __ dec(count, count_dec);   // Pre-decrement 'count'
1280     __ andn(from, 7, from);     // Align address
1281     __ ldx(from, 0, O3);
1282     __ inc(from, 8);
1283     __ sllx(O3, left_shift,  O3);
1284 
1285     disjoint_copy_core(from, to, count, log2_elem_size, 16, copy_16_bytes_shift_loop);
1286 
1287     __ inccc(count, count_dec>>1 ); // + 8 bytes
1288     __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
1289     __ delayed()->inc(count, count_dec>>1); // restore 'count'
1290 
1291     // copy 8 bytes, part of them already loaded in O3
1292     __ ldx(from, 0, O4);
1293     __ inc(to, 8);
1294     __ inc(from, 8);
1295     __ srlx(O4, right_shift, G3);
1296     __ bset(O3, G3);
1297     __ stx(G3, to, -8);
1298 
1299     __ BIND(L_copy_last_bytes);
1300     __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
1301     __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
1302     __ delayed()->sub(from, right_shift, from);       // restore address
1303 
1304     __ BIND(L_aligned_copy);
1305   }
1306 
1307   // Copy big chunks backward with shift
1308   //
1309   // Inputs:
1310   //   end_from  - source arrays end address
1311   //   end_to    - destination array end address aligned to 8-bytes
1312   //   count     - elements count to copy >= the count equivalent to 16 bytes
1313   //   count_dec - elements count's decrement equivalent to 16 bytes
1314   //   L_aligned_copy - aligned copy exit label
1315   //   L_copy_bytes   - copy exit label
1316   //
1317   void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
1318                      Register count, int count_dec,
1319                      Label& L_aligned_copy, Label& L_copy_bytes) {
1320     Label L_loop, L_copy_last_bytes;
1321 
1322     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
1323       __ andcc(end_from, 7, G1); // misaligned bytes
1324       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
1325       __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
1326 
1327     const Register left_shift  = G1; // left  shift bit counter
1328     const Register right_shift = G5; // right shift bit counter
1329 
1330       __ sll(G1, LogBitsPerByte, left_shift);
1331       __ mov(64, right_shift);
1332       __ sub(right_shift, left_shift, right_shift);
1333 
1334     //
1335     // Load 2 aligned 8-bytes chunks and use one from previous iteration
1336     // to form 2 aligned 8-bytes chunks to store.
1337     //
1338       __ andn(end_from, 7, end_from);     // Align address
1339       __ ldx(end_from, 0, O3);
1340       __ align(OptoLoopAlignment);
1341     __ BIND(L_loop);
1342       __ ldx(end_from, -8, O4);
1343       __ deccc(count, count_dec); // Can we do next iteration after this one?
1344       __ ldx(end_from, -16, G4);
1345       __ dec(end_to, 16);
1346       __ dec(end_from, 16);
1347       __ srlx(O3, right_shift, O3);
1348       __ sllx(O4, left_shift,  G3);
1349       __ bset(G3, O3);
1350       __ stx(O3, end_to, 8);
1351       __ srlx(O4, right_shift, O4);
1352       __ sllx(G4, left_shift,  G3);
1353       __ bset(G3, O4);
1354       __ stx(O4, end_to, 0);
1355       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
1356       __ delayed()->mov(G4, O3);
1357 
1358       __ inccc(count, count_dec>>1 ); // + 8 bytes
1359       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
1360       __ delayed()->inc(count, count_dec>>1); // restore 'count'
1361 
1362       // copy 8 bytes, part of them already loaded in O3
1363       __ ldx(end_from, -8, O4);
1364       __ dec(end_to, 8);
1365       __ dec(end_from, 8);
1366       __ srlx(O3, right_shift, O3);
1367       __ sllx(O4, left_shift,  G3);
1368       __ bset(O3, G3);
1369       __ stx(G3, end_to, 0);
1370 
1371     __ BIND(L_copy_last_bytes);
1372       __ srl(left_shift, LogBitsPerByte, left_shift);    // misaligned bytes
1373       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
1374       __ delayed()->add(end_from, left_shift, end_from); // restore address
1375   }
1376 
1377   //
1378   //  Generate stub for disjoint byte copy.  If "aligned" is true, the
1379   //  "from" and "to" addresses are assumed to be heapword aligned.
1380   //
1381   // Arguments for generated stub:
1382   //      from:  O0
1383   //      to:    O1
1384   //      count: O2 treated as signed
1385   //
1386   address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
1387     __ align(CodeEntryAlignment);
1388     StubCodeMark mark(this, "StubRoutines", name);
1389     address start = __ pc();
1390 
1391     Label L_skip_alignment, L_align;
1392     Label L_copy_byte, L_copy_byte_loop, L_exit;
1393 
1394     const Register from      = O0;   // source array address
1395     const Register to        = O1;   // destination array address
1396     const Register count     = O2;   // elements count
1397     const Register offset    = O5;   // offset from start of arrays
1398     // O3, O4, G3, G4 are used as temp registers
1399 
1400     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1401 
1402     if (entry != NULL) {
1403       *entry = __ pc();
1404       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1405       BLOCK_COMMENT("Entry:");
1406     }
1407 
1408     // for short arrays, just do single element copy
1409     __ cmp(count, 23); // 16 + 7
1410     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
1411     __ delayed()->mov(G0, offset);
1412 
1413     if (aligned) {
1414       // 'aligned' == true when it is known statically during compilation
1415       // of this arraycopy call site that both 'from' and 'to' addresses
1416       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
1417       //
1418       // Aligned arrays have 4 bytes alignment in 32-bits VM
1419       // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
1420       //
1421 #ifndef _LP64
1422       // copy a 4-bytes word if necessary to align 'to' to 8 bytes
1423       __ andcc(to, 7, G0);
1424       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
1425       __ delayed()->ld(from, 0, O3);
1426       __ inc(from, 4);
1427       __ inc(to, 4);
1428       __ dec(count, 4);
1429       __ st(O3, to, -4);
1430     __ BIND(L_skip_alignment);
1431 #endif
1432     } else {
1433       // copy bytes to align 'to' on 8 byte boundary
1434       __ andcc(to, 7, G1); // misaligned bytes
1435       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1436       __ delayed()->neg(G1);
1437       __ inc(G1, 8);       // bytes need to copy to next 8-bytes alignment
1438       __ sub(count, G1, count);
1439     __ BIND(L_align);
1440       __ ldub(from, 0, O3);
1441       __ deccc(G1);
1442       __ inc(from);
1443       __ stb(O3, to, 0);
1444       __ br(Assembler::notZero, false, Assembler::pt, L_align);
1445       __ delayed()->inc(to);
1446     __ BIND(L_skip_alignment);
1447     }
1448 #ifdef _LP64
1449     if (!aligned)
1450 #endif
1451     {
1452       // Copy with shift 16 bytes per iteration if arrays do not have
1453       // the same alignment mod 8, otherwise fall through to the next
1454       // code for aligned copy.
1455       // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
1456       // Also jump over aligned copy after the copy with shift completed.
1457 
1458       copy_16_bytes_forward_with_shift(from, to, count, 0, L_copy_byte);
1459     }
1460 
1461     // Both array are 8 bytes aligned, copy 16 bytes at a time
1462       __ and3(count, 7, G4); // Save count
1463       __ srl(count, 3, count);
1464      generate_disjoint_long_copy_core(aligned);
1465       __ mov(G4, count);     // Restore count
1466 
1467     // copy tailing bytes
1468     __ BIND(L_copy_byte);
1469       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
1470       __ align(OptoLoopAlignment);
1471     __ BIND(L_copy_byte_loop);
1472       __ ldub(from, offset, O3);
1473       __ deccc(count);
1474       __ stb(O3, to, offset);
1475       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
1476       __ delayed()->inc(offset);
1477 
1478     __ BIND(L_exit);
1479       // O3, O4 are used as temp registers
1480       inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
1481       __ retl();
1482       __ delayed()->mov(G0, O0); // return 0
1483     return start;
1484   }
1485 
1486   //
1487   //  Generate stub for conjoint byte copy.  If "aligned" is true, the
1488   //  "from" and "to" addresses are assumed to be heapword aligned.
1489   //
1490   // Arguments for generated stub:
1491   //      from:  O0
1492   //      to:    O1
1493   //      count: O2 treated as signed
1494   //
1495   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
1496                                       address *entry, const char *name) {
1497     // Do reverse copy.
1498 
1499     __ align(CodeEntryAlignment);
1500     StubCodeMark mark(this, "StubRoutines", name);
1501     address start = __ pc();
1502 
1503     Label L_skip_alignment, L_align, L_aligned_copy;
1504     Label L_copy_byte, L_copy_byte_loop, L_exit;
1505 
1506     const Register from      = O0;   // source array address
1507     const Register to        = O1;   // destination array address
1508     const Register count     = O2;   // elements count
1509     const Register end_from  = from; // source array end address
1510     const Register end_to    = to;   // destination array end address
1511 
1512     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1513 
1514     if (entry != NULL) {
1515       *entry = __ pc();
1516       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1517       BLOCK_COMMENT("Entry:");
1518     }
1519 
1520     array_overlap_test(nooverlap_target, 0);
1521 
1522     __ add(to, count, end_to);       // offset after last copied element
1523 
1524     // for short arrays, just do single element copy
1525     __ cmp(count, 23); // 16 + 7
1526     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
1527     __ delayed()->add(from, count, end_from);
1528 
1529     {
1530       // Align end of arrays since they could be not aligned even
1531       // when arrays itself are aligned.
1532 
1533       // copy bytes to align 'end_to' on 8 byte boundary
1534       __ andcc(end_to, 7, G1); // misaligned bytes
1535       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1536       __ delayed()->nop();
1537       __ sub(count, G1, count);
1538     __ BIND(L_align);
1539       __ dec(end_from);
1540       __ dec(end_to);
1541       __ ldub(end_from, 0, O3);
1542       __ deccc(G1);
1543       __ brx(Assembler::notZero, false, Assembler::pt, L_align);
1544       __ delayed()->stb(O3, end_to, 0);
1545     __ BIND(L_skip_alignment);
1546     }
1547 #ifdef _LP64
1548     if (aligned) {
1549       // Both arrays are aligned to 8-bytes in 64-bits VM.
1550       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
1551       // in unaligned case.
1552       __ dec(count, 16);
1553     } else
1554 #endif
1555     {
1556       // Copy with shift 16 bytes per iteration if arrays do not have
1557       // the same alignment mod 8, otherwise jump to the next
1558       // code for aligned copy (and substracting 16 from 'count' before jump).
1559       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
1560       // Also jump over aligned copy after the copy with shift completed.
1561 
1562       copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
1563                                         L_aligned_copy, L_copy_byte);
1564     }
1565     // copy 4 elements (16 bytes) at a time
1566       __ align(OptoLoopAlignment);
1567     __ BIND(L_aligned_copy);
1568       __ dec(end_from, 16);
1569       __ ldx(end_from, 8, O3);
1570       __ ldx(end_from, 0, O4);
1571       __ dec(end_to, 16);
1572       __ deccc(count, 16);
1573       __ stx(O3, end_to, 8);
1574       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
1575       __ delayed()->stx(O4, end_to, 0);
1576       __ inc(count, 16);
1577 
1578     // copy 1 element (2 bytes) at a time
1579     __ BIND(L_copy_byte);
1580       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
1581       __ align(OptoLoopAlignment);
1582     __ BIND(L_copy_byte_loop);
1583       __ dec(end_from);
1584       __ dec(end_to);
1585       __ ldub(end_from, 0, O4);
1586       __ deccc(count);
1587       __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
1588       __ delayed()->stb(O4, end_to, 0);
1589 
1590     __ BIND(L_exit);
1591     // O3, O4 are used as temp registers
1592     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
1593     __ retl();
1594     __ delayed()->mov(G0, O0); // return 0
1595     return start;
1596   }
1597 
1598   //
1599   //  Generate stub for disjoint short copy.  If "aligned" is true, the
1600   //  "from" and "to" addresses are assumed to be heapword aligned.
1601   //
1602   // Arguments for generated stub:
1603   //      from:  O0
1604   //      to:    O1
1605   //      count: O2 treated as signed
1606   //
1607   address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
1608     __ align(CodeEntryAlignment);
1609     StubCodeMark mark(this, "StubRoutines", name);
1610     address start = __ pc();
1611 
1612     Label L_skip_alignment, L_skip_alignment2;
1613     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
1614 
1615     const Register from      = O0;   // source array address
1616     const Register to        = O1;   // destination array address
1617     const Register count     = O2;   // elements count
1618     const Register offset    = O5;   // offset from start of arrays
1619     // O3, O4, G3, G4 are used as temp registers
1620 
1621     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1622 
1623     if (entry != NULL) {
1624       *entry = __ pc();
1625       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1626       BLOCK_COMMENT("Entry:");
1627     }
1628 
1629     // for short arrays, just do single element copy
1630     __ cmp(count, 11); // 8 + 3  (22 bytes)
1631     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
1632     __ delayed()->mov(G0, offset);
1633 
1634     if (aligned) {
1635       // 'aligned' == true when it is known statically during compilation
1636       // of this arraycopy call site that both 'from' and 'to' addresses
1637       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
1638       //
1639       // Aligned arrays have 4 bytes alignment in 32-bits VM
1640       // and 8 bytes - in 64-bits VM.
1641       //
1642 #ifndef _LP64
1643       // copy a 2-elements word if necessary to align 'to' to 8 bytes
1644       __ andcc(to, 7, G0);
1645       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1646       __ delayed()->ld(from, 0, O3);
1647       __ inc(from, 4);
1648       __ inc(to, 4);
1649       __ dec(count, 2);
1650       __ st(O3, to, -4);
1651     __ BIND(L_skip_alignment);
1652 #endif
1653     } else {
1654       // copy 1 element if necessary to align 'to' on an 4 bytes
1655       __ andcc(to, 3, G0);
1656       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1657       __ delayed()->lduh(from, 0, O3);
1658       __ inc(from, 2);
1659       __ inc(to, 2);
1660       __ dec(count);
1661       __ sth(O3, to, -2);
1662     __ BIND(L_skip_alignment);
1663 
1664       // copy 2 elements to align 'to' on an 8 byte boundary
1665       __ andcc(to, 7, G0);
1666       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
1667       __ delayed()->lduh(from, 0, O3);
1668       __ dec(count, 2);
1669       __ lduh(from, 2, O4);
1670       __ inc(from, 4);
1671       __ inc(to, 4);
1672       __ sth(O3, to, -4);
1673       __ sth(O4, to, -2);
1674     __ BIND(L_skip_alignment2);
1675     }
1676 #ifdef _LP64
1677     if (!aligned)
1678 #endif
1679     {
1680       // Copy with shift 16 bytes per iteration if arrays do not have
1681       // the same alignment mod 8, otherwise fall through to the next
1682       // code for aligned copy.
1683       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
1684       // Also jump over aligned copy after the copy with shift completed.
1685 
1686       copy_16_bytes_forward_with_shift(from, to, count, 1, L_copy_2_bytes);
1687     }
1688 
1689     // Both array are 8 bytes aligned, copy 16 bytes at a time
1690       __ and3(count, 3, G4); // Save
1691       __ srl(count, 2, count);
1692      generate_disjoint_long_copy_core(aligned);
1693       __ mov(G4, count); // restore
1694 
1695     // copy 1 element at a time
1696     __ BIND(L_copy_2_bytes);
1697       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
1698       __ align(OptoLoopAlignment);
1699     __ BIND(L_copy_2_bytes_loop);
1700       __ lduh(from, offset, O3);
1701       __ deccc(count);
1702       __ sth(O3, to, offset);
1703       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
1704       __ delayed()->inc(offset, 2);
1705 
1706     __ BIND(L_exit);
1707       // O3, O4 are used as temp registers
1708       inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
1709       __ retl();
1710       __ delayed()->mov(G0, O0); // return 0
1711     return start;
1712   }
1713 
1714   //
1715   //  Generate stub for disjoint short fill.  If "aligned" is true, the
1716   //  "to" address is assumed to be heapword aligned.
1717   //
1718   // Arguments for generated stub:
1719   //      to:    O0
1720   //      value: O1
1721   //      count: O2 treated as signed
1722   //
1723   address generate_fill(BasicType t, bool aligned, const char* name) {
1724     __ align(CodeEntryAlignment);
1725     StubCodeMark mark(this, "StubRoutines", name);
1726     address start = __ pc();
1727 
1728     const Register to        = O0;   // source array address
1729     const Register value     = O1;   // fill value
1730     const Register count     = O2;   // elements count
1731     // O3 is used as a temp register
1732 
1733     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1734 
1735     Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
1736     Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
1737 
1738     int shift = -1;
1739     switch (t) {
1740        case T_BYTE:
1741         shift = 2;
1742         break;
1743        case T_SHORT:
1744         shift = 1;
1745         break;
1746       case T_INT:
1747          shift = 0;
1748         break;
1749       default: ShouldNotReachHere();
1750     }
1751 
1752     BLOCK_COMMENT("Entry:");
1753 
1754     if (t == T_BYTE) {
1755       // Zero extend value
1756       __ and3(value, 0xff, value);
1757       __ sllx(value, 8, O3);
1758       __ or3(value, O3, value);
1759     }
1760     if (t == T_SHORT) {
1761       // Zero extend value
1762       __ sllx(value, 48, value);
1763       __ srlx(value, 48, value);
1764     }
1765     if (t == T_BYTE || t == T_SHORT) {
1766       __ sllx(value, 16, O3);
1767       __ or3(value, O3, value);
1768     }
1769 
1770     __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
1771     __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
1772     __ delayed()->andcc(count, 1, G0);
1773 
1774     if (!aligned && (t == T_BYTE || t == T_SHORT)) {
1775       // align source address at 4 bytes address boundary
1776       if (t == T_BYTE) {
1777         // One byte misalignment happens only for byte arrays
1778         __ andcc(to, 1, G0);
1779         __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
1780         __ delayed()->nop();
1781         __ stb(value, to, 0);
1782         __ inc(to, 1);
1783         __ dec(count, 1);
1784         __ BIND(L_skip_align1);
1785       }
1786       // Two bytes misalignment happens only for byte and short (char) arrays
1787       __ andcc(to, 2, G0);
1788       __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
1789       __ delayed()->nop();
1790       __ sth(value, to, 0);
1791       __ inc(to, 2);
1792       __ dec(count, 1 << (shift - 1));
1793       __ BIND(L_skip_align2);
1794     }
1795 #ifdef _LP64
1796     if (!aligned) {
1797 #endif
1798     // align to 8 bytes, we know we are 4 byte aligned to start
1799     __ andcc(to, 7, G0);
1800     __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
1801     __ delayed()->nop();
1802     __ stw(value, to, 0);
1803     __ inc(to, 4);
1804     __ dec(count, 1 << shift);
1805     __ BIND(L_fill_32_bytes);
1806 #ifdef _LP64
1807     }
1808 #endif
1809 
1810     if (t == T_INT) {
1811       // Zero extend value
1812       __ srl(value, 0, value);
1813     }
1814     if (t == T_BYTE || t == T_SHORT || t == T_INT) {
1815       __ sllx(value, 32, O3);
1816       __ or3(value, O3, value);
1817     }
1818 
1819     Label L_check_fill_8_bytes;
1820     // Fill 32-byte chunks
1821     __ subcc(count, 8 << shift, count);
1822     __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
1823     __ delayed()->nop();
1824 
1825     Label L_fill_32_bytes_loop, L_fill_4_bytes;
1826     __ align(16);
1827     __ BIND(L_fill_32_bytes_loop);
1828 
1829     __ stx(value, to, 0);
1830     __ stx(value, to, 8);
1831     __ stx(value, to, 16);
1832     __ stx(value, to, 24);
1833 
1834     __ subcc(count, 8 << shift, count);
1835     __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
1836     __ delayed()->add(to, 32, to);
1837 
1838     __ BIND(L_check_fill_8_bytes);
1839     __ addcc(count, 8 << shift, count);
1840     __ brx(Assembler::zero, false, Assembler::pn, L_exit);
1841     __ delayed()->subcc(count, 1 << (shift + 1), count);
1842     __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
1843     __ delayed()->andcc(count, 1<<shift, G0);
1844 
1845     //
1846     // length is too short, just fill 8 bytes at a time
1847     //
1848     Label L_fill_8_bytes_loop;
1849     __ BIND(L_fill_8_bytes_loop);
1850     __ stx(value, to, 0);
1851     __ subcc(count, 1 << (shift + 1), count);
1852     __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
1853     __ delayed()->add(to, 8, to);
1854 
1855     // fill trailing 4 bytes
1856     __ andcc(count, 1<<shift, G0);  // in delay slot of branches
1857     if (t == T_INT) {
1858       __ BIND(L_fill_elements);
1859     }
1860     __ BIND(L_fill_4_bytes);
1861     __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
1862     if (t == T_BYTE || t == T_SHORT) {
1863       __ delayed()->andcc(count, 1<<(shift-1), G0);
1864     } else {
1865       __ delayed()->nop();
1866     }
1867     __ stw(value, to, 0);
1868     if (t == T_BYTE || t == T_SHORT) {
1869       __ inc(to, 4);
1870       // fill trailing 2 bytes
1871       __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
1872       __ BIND(L_fill_2_bytes);
1873       __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
1874       __ delayed()->andcc(count, 1, count);
1875       __ sth(value, to, 0);
1876       if (t == T_BYTE) {
1877         __ inc(to, 2);
1878         // fill trailing byte
1879         __ andcc(count, 1, count);  // in delay slot of branches
1880         __ BIND(L_fill_byte);
1881         __ brx(Assembler::zero, false, Assembler::pt, L_exit);
1882         __ delayed()->nop();
1883         __ stb(value, to, 0);
1884       } else {
1885         __ BIND(L_fill_byte);
1886       }
1887     } else {
1888       __ BIND(L_fill_2_bytes);
1889     }
1890     __ BIND(L_exit);
1891     __ retl();
1892     __ delayed()->nop();
1893 
1894     // Handle copies less than 8 bytes.  Int is handled elsewhere.
1895     if (t == T_BYTE) {
1896       __ BIND(L_fill_elements);
1897       Label L_fill_2, L_fill_4;
1898       // in delay slot __ andcc(count, 1, G0);
1899       __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
1900       __ delayed()->andcc(count, 2, G0);
1901       __ stb(value, to, 0);
1902       __ inc(to, 1);
1903       __ BIND(L_fill_2);
1904       __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
1905       __ delayed()->andcc(count, 4, G0);
1906       __ stb(value, to, 0);
1907       __ stb(value, to, 1);
1908       __ inc(to, 2);
1909       __ BIND(L_fill_4);
1910       __ brx(Assembler::zero, false, Assembler::pt, L_exit);
1911       __ delayed()->nop();
1912       __ stb(value, to, 0);
1913       __ stb(value, to, 1);
1914       __ stb(value, to, 2);
1915       __ retl();
1916       __ delayed()->stb(value, to, 3);
1917     }
1918 
1919     if (t == T_SHORT) {
1920       Label L_fill_2;
1921       __ BIND(L_fill_elements);
1922       // in delay slot __ andcc(count, 1, G0);
1923       __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
1924       __ delayed()->andcc(count, 2, G0);
1925       __ sth(value, to, 0);
1926       __ inc(to, 2);
1927       __ BIND(L_fill_2);
1928       __ brx(Assembler::zero, false, Assembler::pt, L_exit);
1929       __ delayed()->nop();
1930       __ sth(value, to, 0);
1931       __ retl();
1932       __ delayed()->sth(value, to, 2);
1933     }
1934     return start;
1935   }
1936 
1937   //
1938   //  Generate stub for conjoint short copy.  If "aligned" is true, the
1939   //  "from" and "to" addresses are assumed to be heapword aligned.
1940   //
1941   // Arguments for generated stub:
1942   //      from:  O0
1943   //      to:    O1
1944   //      count: O2 treated as signed
1945   //
1946   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
1947                                        address *entry, const char *name) {
1948     // Do reverse copy.
1949 
1950     __ align(CodeEntryAlignment);
1951     StubCodeMark mark(this, "StubRoutines", name);
1952     address start = __ pc();
1953 
1954     Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
1955     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
1956 
1957     const Register from      = O0;   // source array address
1958     const Register to        = O1;   // destination array address
1959     const Register count     = O2;   // elements count
1960     const Register end_from  = from; // source array end address
1961     const Register end_to    = to;   // destination array end address
1962 
1963     const Register byte_count = O3;  // bytes count to copy
1964 
1965     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1966 
1967     if (entry != NULL) {
1968       *entry = __ pc();
1969       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1970       BLOCK_COMMENT("Entry:");
1971     }
1972 
1973     array_overlap_test(nooverlap_target, 1);
1974 
1975     __ sllx(count, LogBytesPerShort, byte_count);
1976     __ add(to, byte_count, end_to);  // offset after last copied element
1977 
1978     // for short arrays, just do single element copy
1979     __ cmp(count, 11); // 8 + 3  (22 bytes)
1980     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
1981     __ delayed()->add(from, byte_count, end_from);
1982 
1983     {
1984       // Align end of arrays since they could be not aligned even
1985       // when arrays itself are aligned.
1986 
1987       // copy 1 element if necessary to align 'end_to' on an 4 bytes
1988       __ andcc(end_to, 3, G0);
1989       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1990       __ delayed()->lduh(end_from, -2, O3);
1991       __ dec(end_from, 2);
1992       __ dec(end_to, 2);
1993       __ dec(count);
1994       __ sth(O3, end_to, 0);
1995     __ BIND(L_skip_alignment);
1996 
1997       // copy 2 elements to align 'end_to' on an 8 byte boundary
1998       __ andcc(end_to, 7, G0);
1999       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
2000       __ delayed()->lduh(end_from, -2, O3);
2001       __ dec(count, 2);
2002       __ lduh(end_from, -4, O4);
2003       __ dec(end_from, 4);
2004       __ dec(end_to, 4);
2005       __ sth(O3, end_to, 2);
2006       __ sth(O4, end_to, 0);
2007     __ BIND(L_skip_alignment2);
2008     }
2009 #ifdef _LP64
2010     if (aligned) {
2011       // Both arrays are aligned to 8-bytes in 64-bits VM.
2012       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
2013       // in unaligned case.
2014       __ dec(count, 8);
2015     } else
2016 #endif
2017     {
2018       // Copy with shift 16 bytes per iteration if arrays do not have
2019       // the same alignment mod 8, otherwise jump to the next
2020       // code for aligned copy (and substracting 8 from 'count' before jump).
2021       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
2022       // Also jump over aligned copy after the copy with shift completed.
2023 
2024       copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
2025                                         L_aligned_copy, L_copy_2_bytes);
2026     }
2027     // copy 4 elements (16 bytes) at a time
2028       __ align(OptoLoopAlignment);
2029     __ BIND(L_aligned_copy);
2030       __ dec(end_from, 16);
2031       __ ldx(end_from, 8, O3);
2032       __ ldx(end_from, 0, O4);
2033       __ dec(end_to, 16);
2034       __ deccc(count, 8);
2035       __ stx(O3, end_to, 8);
2036       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
2037       __ delayed()->stx(O4, end_to, 0);
2038       __ inc(count, 8);
2039 
2040     // copy 1 element (2 bytes) at a time
2041     __ BIND(L_copy_2_bytes);
2042       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
2043     __ BIND(L_copy_2_bytes_loop);
2044       __ dec(end_from, 2);
2045       __ dec(end_to, 2);
2046       __ lduh(end_from, 0, O4);
2047       __ deccc(count);
2048       __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
2049       __ delayed()->sth(O4, end_to, 0);
2050 
2051     __ BIND(L_exit);
2052     // O3, O4 are used as temp registers
2053     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
2054     __ retl();
2055     __ delayed()->mov(G0, O0); // return 0
2056     return start;
2057   }
2058 
2059   // 
2060   // Helper methods for generate_disjoint_int_copy_core()
2061   // 
2062   void copy_16_bytes_loop(Register from, Register to, Register count, int count_dec,
2063                           Label& L_loop, bool use_prefetch, bool use_bis) {
2064 
2065     __ align(OptoLoopAlignment);
2066     __ BIND(L_loop);
2067     if (use_prefetch) {
2068       if (ArraycopySrcPrefetchDistance > 0) {
2069         __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
2070       }
2071       if (ArraycopyDstPrefetchDistance > 0) {
2072         __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
2073       }
2074     }
2075     __ ldx(from, 4, O4);
2076     __ ldx(from, 12, G4);
2077     __ inc(to, 16);
2078     __ inc(from, 16);
2079     __ deccc(count, 4); // Can we do next iteration after this one?
2080 
2081     __ srlx(O4, 32, G3);
2082     __ bset(G3, O3);
2083     __ sllx(O4, 32, O4);
2084     __ srlx(G4, 32, G3);
2085     __ bset(G3, O4);
2086     if (use_bis) {
2087       __ stxa(O3, to, -16);
2088       __ stxa(O4, to, -8);
2089     } else {
2090       __ stx(O3, to, -16);
2091       __ stx(O4, to, -8);
2092     }
2093     __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
2094     __ delayed()->sllx(G4, 32,  O3);
2095 
2096   }
2097 
2098   //
2099   //  Generate core code for disjoint int copy (and oop copy on 32-bit).
2100   //  If "aligned" is true, the "from" and "to" addresses are assumed
2101   //  to be heapword aligned.
2102   //
2103   // Arguments:
2104   //      from:  O0
2105   //      to:    O1
2106   //      count: O2 treated as signed
2107   //
2108   void generate_disjoint_int_copy_core(bool aligned) {
2109 
2110     Label L_skip_alignment, L_aligned_copy;
2111     Label L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
2112 
2113     const Register from      = O0;   // source array address
2114     const Register to        = O1;   // destination array address
2115     const Register count     = O2;   // elements count
2116     const Register offset    = O5;   // offset from start of arrays
2117     // O3, O4, G3, G4 are used as temp registers
2118 
2119     // 'aligned' == true when it is known statically during compilation
2120     // of this arraycopy call site that both 'from' and 'to' addresses
2121     // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
2122     //
2123     // Aligned arrays have 4 bytes alignment in 32-bits VM
2124     // and 8 bytes - in 64-bits VM.
2125     //
2126 #ifdef _LP64
2127     if (!aligned)
2128 #endif
2129     {
2130       // The next check could be put under 'ifndef' since the code in
2131       // generate_disjoint_long_copy_core() has own checks and set 'offset'.
2132 
2133       // for short arrays, just do single element copy
2134       __ cmp(count, 5); // 4 + 1 (20 bytes)
2135       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
2136       __ delayed()->mov(G0, offset);
2137 
2138       // copy 1 element to align 'to' on an 8 byte boundary
2139       __ andcc(to, 7, G0);
2140       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
2141       __ delayed()->ld(from, 0, O3);
2142       __ inc(from, 4);
2143       __ inc(to, 4);
2144       __ dec(count);
2145       __ st(O3, to, -4);
2146     __ BIND(L_skip_alignment);
2147 
2148     // if arrays have same alignment mod 8, do 4 elements copy
2149       __ andcc(from, 7, G0);
2150       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
2151       __ delayed()->ld(from, 0, O3);
2152 
2153     //
2154     // Load 2 aligned 8-bytes chunks and use one from previous iteration
2155     // to form 2 aligned 8-bytes chunks to store.
2156     //
2157     // copy_16_bytes_forward_with_shift() is not used here since this
2158     // code is more optimal.
2159 
2160     // copy with shift 4 elements (16 bytes) at a time
2161       __ dec(count, 4);   // The cmp at the beginning guaranty count >= 4
2162       __ sllx(O3, 32,  O3);
2163 
2164       disjoint_copy_core(from, to, count, 2, 16, copy_16_bytes_loop);
2165 
2166       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
2167       __ delayed()->inc(count, 4); // restore 'count'
2168 
2169     __ BIND(L_aligned_copy);
2170     } // !aligned
2171 
2172     // copy 4 elements (16 bytes) at a time
2173       __ and3(count, 1, G4); // Save
2174       __ srl(count, 1, count);
2175      generate_disjoint_long_copy_core(aligned);
2176       __ mov(G4, count);     // Restore
2177 
2178     // copy 1 element at a time
2179     __ BIND(L_copy_4_bytes);
2180       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
2181     __ BIND(L_copy_4_bytes_loop);
2182       __ ld(from, offset, O3);
2183       __ deccc(count);
2184       __ st(O3, to, offset);
2185       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
2186       __ delayed()->inc(offset, 4);
2187     __ BIND(L_exit);
2188   }
2189 
2190   //
2191   //  Generate stub for disjoint int copy.  If "aligned" is true, the
2192   //  "from" and "to" addresses are assumed to be heapword aligned.
2193   //
2194   // Arguments for generated stub:
2195   //      from:  O0
2196   //      to:    O1
2197   //      count: O2 treated as signed
2198   //
2199   address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
2200     __ align(CodeEntryAlignment);
2201     StubCodeMark mark(this, "StubRoutines", name);
2202     address start = __ pc();
2203 
2204     const Register count = O2;
2205     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
2206 
2207     if (entry != NULL) {
2208       *entry = __ pc();
2209       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2210       BLOCK_COMMENT("Entry:");
2211     }
2212 
2213     generate_disjoint_int_copy_core(aligned);
2214 
2215     // O3, O4 are used as temp registers
2216     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
2217     __ retl();
2218     __ delayed()->mov(G0, O0); // return 0
2219     return start;
2220   }
2221 
2222   //
2223   //  Generate core code for conjoint int copy (and oop copy on 32-bit).
2224   //  If "aligned" is true, the "from" and "to" addresses are assumed
2225   //  to be heapword aligned.
2226   //
2227   // Arguments:
2228   //      from:  O0
2229   //      to:    O1
2230   //      count: O2 treated as signed
2231   //
2232   void generate_conjoint_int_copy_core(bool aligned) {
2233     // Do reverse copy.
2234 
2235     Label L_skip_alignment, L_aligned_copy;
2236     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
2237 
2238     const Register from      = O0;   // source array address
2239     const Register to        = O1;   // destination array address
2240     const Register count     = O2;   // elements count
2241     const Register end_from  = from; // source array end address
2242     const Register end_to    = to;   // destination array end address
2243     // O3, O4, O5, G3 are used as temp registers
2244 
2245     const Register byte_count = O3;  // bytes count to copy
2246 
2247       __ sllx(count, LogBytesPerInt, byte_count);
2248       __ add(to, byte_count, end_to); // offset after last copied element
2249 
2250       __ cmp(count, 5); // for short arrays, just do single element copy
2251       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
2252       __ delayed()->add(from, byte_count, end_from);
2253 
2254     // copy 1 element to align 'to' on an 8 byte boundary
2255       __ andcc(end_to, 7, G0);
2256       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
2257       __ delayed()->nop();
2258       __ dec(count);
2259       __ dec(end_from, 4);
2260       __ dec(end_to,   4);
2261       __ ld(end_from, 0, O4);
2262       __ st(O4, end_to, 0);
2263     __ BIND(L_skip_alignment);
2264 
2265     // Check if 'end_from' and 'end_to' has the same alignment.
2266       __ andcc(end_from, 7, G0);
2267       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
2268       __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
2269 
2270     // copy with shift 4 elements (16 bytes) at a time
2271     //
2272     // Load 2 aligned 8-bytes chunks and use one from previous iteration
2273     // to form 2 aligned 8-bytes chunks to store.
2274     //
2275       __ ldx(end_from, -4, O3);
2276       __ align(OptoLoopAlignment);
2277     __ BIND(L_copy_16_bytes);
2278       __ ldx(end_from, -12, O4);
2279       __ deccc(count, 4);
2280       __ ldx(end_from, -20, O5);
2281       __ dec(end_to, 16);
2282       __ dec(end_from, 16);
2283       __ srlx(O3, 32, O3);
2284       __ sllx(O4, 32, G3);
2285       __ bset(G3, O3);
2286       __ stx(O3, end_to, 8);
2287       __ srlx(O4, 32, O4);
2288       __ sllx(O5, 32, G3);
2289       __ bset(O4, G3);
2290       __ stx(G3, end_to, 0);
2291       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
2292       __ delayed()->mov(O5, O3);
2293 
2294       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
2295       __ delayed()->inc(count, 4);
2296 
2297     // copy 4 elements (16 bytes) at a time
2298       __ align(OptoLoopAlignment);
2299     __ BIND(L_aligned_copy);
2300       __ dec(end_from, 16);
2301       __ ldx(end_from, 8, O3);
2302       __ ldx(end_from, 0, O4);
2303       __ dec(end_to, 16);
2304       __ deccc(count, 4);
2305       __ stx(O3, end_to, 8);
2306       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
2307       __ delayed()->stx(O4, end_to, 0);
2308       __ inc(count, 4);
2309 
2310     // copy 1 element (4 bytes) at a time
2311     __ BIND(L_copy_4_bytes);
2312       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
2313     __ BIND(L_copy_4_bytes_loop);
2314       __ dec(end_from, 4);
2315       __ dec(end_to, 4);
2316       __ ld(end_from, 0, O4);
2317       __ deccc(count);
2318       __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
2319       __ delayed()->st(O4, end_to, 0);
2320     __ BIND(L_exit);
2321   }
2322 
2323   //
2324   //  Generate stub for conjoint int copy.  If "aligned" is true, the
2325   //  "from" and "to" addresses are assumed to be heapword aligned.
2326   //
2327   // Arguments for generated stub:
2328   //      from:  O0
2329   //      to:    O1
2330   //      count: O2 treated as signed
2331   //
2332   address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
2333                                      address *entry, const char *name) {
2334     __ align(CodeEntryAlignment);
2335     StubCodeMark mark(this, "StubRoutines", name);
2336     address start = __ pc();
2337 
2338     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
2339 
2340     if (entry != NULL) {
2341       *entry = __ pc();
2342       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2343       BLOCK_COMMENT("Entry:");
2344     }
2345 
2346     array_overlap_test(nooverlap_target, 2);
2347 
2348     generate_conjoint_int_copy_core(aligned);
2349 
2350     // O3, O4 are used as temp registers
2351     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
2352     __ retl();
2353     __ delayed()->mov(G0, O0); // return 0
2354     return start;
2355   }
2356 
2357   // 
2358   // Helper methods for generate_disjoint_long_copy_core()
2359   // 
2360   void copy_64_bytes_loop(Register from, Register to, Register count, int count_dec,
2361                           Label& L_loop, bool use_prefetch, bool use_bis) {
2362     __ align(OptoLoopAlignment);
2363     __ BIND(L_loop);
2364     for (int off = 0; off < 64; off += 16) {
2365       if (use_prefetch && (off & 31) == 0) {
2366         if (ArraycopySrcPrefetchDistance > 0) {
2367           __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
2368         }
2369         if (ArraycopyDstPrefetchDistance > 0) {
2370           __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
2371         }
2372       } 
2373       __ ldx(from,  off+0, O4);
2374       __ ldx(from,  off+8, O5);
2375       if (use_bis) {
2376         __ stxa(O4, to,  off+0);
2377         __ stxa(O5, to,  off+8);
2378       } else {
2379         __ stx(O4, to,  off+0);
2380         __ stx(O5, to,  off+8);
2381       }
2382     }
2383     __ deccc(count, 8);
2384     __ inc(from, 64);
2385     __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
2386     __ delayed()->inc(to, 64);
2387   }
2388 
2389   //
2390   //  Generate core code for disjoint long copy (and oop copy on 64-bit).
2391   //  "aligned" is ignored, because we must make the stronger
2392   //  assumption that both addresses are always 64-bit aligned.
2393   //
2394   // Arguments:
2395   //      from:  O0
2396   //      to:    O1
2397   //      count: O2 treated as signed
2398   //
2399   // count -= 2;
2400   // if ( count >= 0 ) { // >= 2 elements
2401   //   if ( count > 6) { // >= 8 elements
2402   //     count -= 6; // original count - 8
2403   //     do {
2404   //       copy_8_elements;
2405   //       count -= 8;
2406   //     } while ( count >= 0 );
2407   //     count += 6;
2408   //   }
2409   //   if ( count >= 0 ) { // >= 2 elements
2410   //     do {
2411   //       copy_2_elements;
2412   //     } while ( (count=count-2) >= 0 );
2413   //   }
2414   // }
2415   // count += 2;
2416   // if ( count != 0 ) { // 1 element left
2417   //   copy_1_element;
2418   // }
2419   //
2420   void generate_disjoint_long_copy_core(bool aligned) {
2421     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
2422     const Register from    = O0;  // source array address
2423     const Register to      = O1;  // destination array address
2424     const Register count   = O2;  // elements count
2425     const Register offset0 = O4;  // element offset
2426     const Register offset8 = O5;  // next element offset
2427 
2428     __ deccc(count, 2);
2429     __ mov(G0, offset0);   // offset from start of arrays (0)
2430     __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
2431     __ delayed()->add(offset0, 8, offset8);
2432 
2433     // Copy by 64 bytes chunks
2434 
2435     const Register from64 = O3;  // source address
2436     const Register to64   = G3;  // destination address
2437     __ subcc(count, 6, O3);
2438     __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
2439     __ delayed()->mov(to,   to64);
2440     // Now we can use O4(offset0), O5(offset8) as temps
2441     __ mov(O3, count);
2442     // count >= 0 (original count - 8)
2443     __ mov(from, from64);
2444 
2445     disjoint_copy_core(from64, to64, count, 3, 64, copy_64_bytes_loop);
2446 
2447       // Restore O4(offset0), O5(offset8)
2448       __ sub(from64, from, offset0);
2449       __ inccc(count, 6); // restore count
2450       __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
2451       __ delayed()->add(offset0, 8, offset8);
2452 
2453       // Copy by 16 bytes chunks
2454       __ align(OptoLoopAlignment);
2455     __ BIND(L_copy_16_bytes);
2456       __ ldx(from, offset0, O3);
2457       __ ldx(from, offset8, G3);
2458       __ deccc(count, 2);
2459       __ stx(O3, to, offset0);
2460       __ inc(offset0, 16);
2461       __ stx(G3, to, offset8);
2462       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
2463       __ delayed()->inc(offset8, 16);
2464 
2465       // Copy last 8 bytes
2466     __ BIND(L_copy_8_bytes);
2467       __ inccc(count, 2);
2468       __ brx(Assembler::zero, true, Assembler::pn, L_exit );
2469       __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
2470       __ ldx(from, offset0, O3);
2471       __ stx(O3, to, offset0);
2472     __ BIND(L_exit);
2473   }
2474 
2475   //
2476   //  Generate stub for disjoint long copy.
2477   //  "aligned" is ignored, because we must make the stronger
2478   //  assumption that both addresses are always 64-bit aligned.
2479   //
2480   // Arguments for generated stub:
2481   //      from:  O0
2482   //      to:    O1
2483   //      count: O2 treated as signed
2484   //
2485   address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
2486     __ align(CodeEntryAlignment);
2487     StubCodeMark mark(this, "StubRoutines", name);
2488     address start = __ pc();
2489 
2490     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
2491 
2492     if (entry != NULL) {
2493       *entry = __ pc();
2494       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2495       BLOCK_COMMENT("Entry:");
2496     }
2497 
2498     generate_disjoint_long_copy_core(aligned);
2499 
2500     // O3, O4 are used as temp registers
2501     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
2502     __ retl();
2503     __ delayed()->mov(G0, O0); // return 0
2504     return start;
2505   }
2506 
2507   //
2508   //  Generate core code for conjoint long copy (and oop copy on 64-bit).
2509   //  "aligned" is ignored, because we must make the stronger
2510   //  assumption that both addresses are always 64-bit aligned.
2511   //
2512   // Arguments:
2513   //      from:  O0
2514   //      to:    O1
2515   //      count: O2 treated as signed
2516   //
2517   void generate_conjoint_long_copy_core(bool aligned) {
2518     // Do reverse copy.
2519     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
2520     const Register from    = O0;  // source array address
2521     const Register to      = O1;  // destination array address
2522     const Register count   = O2;  // elements count
2523     const Register offset8 = O4;  // element offset
2524     const Register offset0 = O5;  // previous element offset
2525 
2526       __ subcc(count, 1, count);
2527       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
2528       __ delayed()->sllx(count, LogBytesPerLong, offset8);
2529       __ sub(offset8, 8, offset0);
2530       __ align(OptoLoopAlignment);
2531     __ BIND(L_copy_16_bytes);
2532       __ ldx(from, offset8, O2);
2533       __ ldx(from, offset0, O3);
2534       __ stx(O2, to, offset8);
2535       __ deccc(offset8, 16);      // use offset8 as counter
2536       __ stx(O3, to, offset0);
2537       __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
2538       __ delayed()->dec(offset0, 16);
2539 
2540     __ BIND(L_copy_8_bytes);
2541       __ brx(Assembler::negative, false, Assembler::pn, L_exit );
2542       __ delayed()->nop();
2543       __ ldx(from, 0, O3);
2544       __ stx(O3, to, 0);
2545     __ BIND(L_exit);
2546   }
2547 
2548   //  Generate stub for conjoint long copy.
2549   //  "aligned" is ignored, because we must make the stronger
2550   //  assumption that both addresses are always 64-bit aligned.
2551   //
2552   // Arguments for generated stub:
2553   //      from:  O0
2554   //      to:    O1
2555   //      count: O2 treated as signed
2556   //
2557   address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
2558                                       address *entry, const char *name) {
2559     __ align(CodeEntryAlignment);
2560     StubCodeMark mark(this, "StubRoutines", name);
2561     address start = __ pc();
2562 
2563     assert(aligned, "Should always be aligned");
2564 
2565     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
2566 
2567     if (entry != NULL) {
2568       *entry = __ pc();
2569       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2570       BLOCK_COMMENT("Entry:");
2571     }
2572 
2573     array_overlap_test(nooverlap_target, 3);
2574 
2575     generate_conjoint_long_copy_core(aligned);
2576 
2577     // O3, O4 are used as temp registers
2578     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
2579     __ retl();
2580     __ delayed()->mov(G0, O0); // return 0
2581     return start;
2582   }
2583 
2584   //  Generate stub for disjoint oop copy.  If "aligned" is true, the
2585   //  "from" and "to" addresses are assumed to be heapword aligned.
2586   //
2587   // Arguments for generated stub:
2588   //      from:  O0
2589   //      to:    O1
2590   //      count: O2 treated as signed
2591   //
2592   address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name,
2593                                      bool dest_uninitialized = false) {
2594 
2595     const Register from  = O0;  // source array address
2596     const Register to    = O1;  // destination array address
2597     const Register count = O2;  // elements count
2598 
2599     __ align(CodeEntryAlignment);
2600     StubCodeMark mark(this, "StubRoutines", name);
2601     address start = __ pc();
2602 
2603     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
2604 
2605     if (entry != NULL) {
2606       *entry = __ pc();
2607       // caller can pass a 64-bit byte count here
2608       BLOCK_COMMENT("Entry:");
2609     }
2610 
2611     // save arguments for barrier generation
2612     __ mov(to, G1);
2613     __ mov(count, G5);
2614     gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
2615   #ifdef _LP64
2616     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
2617     if (UseCompressedOops) {
2618       generate_disjoint_int_copy_core(aligned);
2619     } else {
2620       generate_disjoint_long_copy_core(aligned);
2621     }
2622   #else
2623     generate_disjoint_int_copy_core(aligned);
2624   #endif
2625     // O0 is used as temp register
2626     gen_write_ref_array_post_barrier(G1, G5, O0);
2627 
2628     // O3, O4 are used as temp registers
2629     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
2630     __ retl();
2631     __ delayed()->mov(G0, O0); // return 0
2632     return start;
2633   }
2634 
2635   //  Generate stub for conjoint oop copy.  If "aligned" is true, the
2636   //  "from" and "to" addresses are assumed to be heapword aligned.
2637   //
2638   // Arguments for generated stub:
2639   //      from:  O0
2640   //      to:    O1
2641   //      count: O2 treated as signed
2642   //
2643   address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
2644                                      address *entry, const char *name,
2645                                      bool dest_uninitialized = false) {
2646 
2647     const Register from  = O0;  // source array address
2648     const Register to    = O1;  // destination array address
2649     const Register count = O2;  // elements count
2650 
2651     __ align(CodeEntryAlignment);
2652     StubCodeMark mark(this, "StubRoutines", name);
2653     address start = __ pc();
2654 
2655     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
2656 
2657     if (entry != NULL) {
2658       *entry = __ pc();
2659       // caller can pass a 64-bit byte count here
2660       BLOCK_COMMENT("Entry:");
2661     }
2662 
2663     array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
2664 
2665     // save arguments for barrier generation
2666     __ mov(to, G1);
2667     __ mov(count, G5);
2668     gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
2669 
2670   #ifdef _LP64
2671     if (UseCompressedOops) {
2672       generate_conjoint_int_copy_core(aligned);
2673     } else {
2674       generate_conjoint_long_copy_core(aligned);
2675     }
2676   #else
2677     generate_conjoint_int_copy_core(aligned);
2678   #endif
2679 
2680     // O0 is used as temp register
2681     gen_write_ref_array_post_barrier(G1, G5, O0);
2682 
2683     // O3, O4 are used as temp registers
2684     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
2685     __ retl();
2686     __ delayed()->mov(G0, O0); // return 0
2687     return start;
2688   }
2689 
2690 
2691   // Helper for generating a dynamic type check.
2692   // Smashes only the given temp registers.
2693   void generate_type_check(Register sub_klass,
2694                            Register super_check_offset,
2695                            Register super_klass,
2696                            Register temp,
2697                            Label& L_success) {
2698     assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
2699 
2700     BLOCK_COMMENT("type_check:");
2701 
2702     Label L_miss, L_pop_to_miss;
2703 
2704     assert_clean_int(super_check_offset, temp);
2705 
2706     __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
2707                                      &L_success, &L_miss, NULL,
2708                                      super_check_offset);
2709 
2710     BLOCK_COMMENT("type_check_slow_path:");
2711     __ save_frame(0);
2712     __ check_klass_subtype_slow_path(sub_klass->after_save(),
2713                                      super_klass->after_save(),
2714                                      L0, L1, L2, L4,
2715                                      NULL, &L_pop_to_miss);
2716     __ ba(L_success);
2717     __ delayed()->restore();
2718 
2719     __ bind(L_pop_to_miss);
2720     __ restore();
2721 
2722     // Fall through on failure!
2723     __ BIND(L_miss);
2724   }
2725 
2726 
2727   //  Generate stub for checked oop copy.
2728   //
2729   // Arguments for generated stub:
2730   //      from:  O0
2731   //      to:    O1
2732   //      count: O2 treated as signed
2733   //      ckoff: O3 (super_check_offset)
2734   //      ckval: O4 (super_klass)
2735   //      ret:   O0 zero for success; (-1^K) where K is partial transfer count
2736   //
2737   address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) {
2738 
2739     const Register O0_from   = O0;      // source array address
2740     const Register O1_to     = O1;      // destination array address
2741     const Register O2_count  = O2;      // elements count
2742     const Register O3_ckoff  = O3;      // super_check_offset
2743     const Register O4_ckval  = O4;      // super_klass
2744 
2745     const Register O5_offset = O5;      // loop var, with stride wordSize
2746     const Register G1_remain = G1;      // loop var, with stride -1
2747     const Register G3_oop    = G3;      // actual oop copied
2748     const Register G4_klass  = G4;      // oop._klass
2749     const Register G5_super  = G5;      // oop._klass._primary_supers[ckval]
2750 
2751     __ align(CodeEntryAlignment);
2752     StubCodeMark mark(this, "StubRoutines", name);
2753     address start = __ pc();
2754 
2755 #ifdef ASSERT
2756     // We sometimes save a frame (see generate_type_check below).
2757     // If this will cause trouble, let's fail now instead of later.
2758     __ save_frame(0);
2759     __ restore();
2760 #endif
2761 
2762     assert_clean_int(O2_count, G1);     // Make sure 'count' is clean int.
2763 
2764 #ifdef ASSERT
2765     // caller guarantees that the arrays really are different
2766     // otherwise, we would have to make conjoint checks
2767     { Label L;
2768       __ mov(O3, G1);           // spill: overlap test smashes O3
2769       __ mov(O4, G4);           // spill: overlap test smashes O4
2770       array_overlap_test(L, LogBytesPerHeapOop);
2771       __ stop("checkcast_copy within a single array");
2772       __ bind(L);
2773       __ mov(G1, O3);
2774       __ mov(G4, O4);
2775     }
2776 #endif //ASSERT
2777 
2778     if (entry != NULL) {
2779       *entry = __ pc();
2780       // caller can pass a 64-bit byte count here (from generic stub)
2781       BLOCK_COMMENT("Entry:");
2782     }
2783     gen_write_ref_array_pre_barrier(O1_to, O2_count, dest_uninitialized);
2784 
2785     Label load_element, store_element, do_card_marks, fail, done;
2786     __ addcc(O2_count, 0, G1_remain);   // initialize loop index, and test it
2787     __ brx(Assembler::notZero, false, Assembler::pt, load_element);
2788     __ delayed()->mov(G0, O5_offset);   // offset from start of arrays
2789 
2790     // Empty array:  Nothing to do.
2791     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
2792     __ retl();
2793     __ delayed()->set(0, O0);           // return 0 on (trivial) success
2794 
2795     // ======== begin loop ========
2796     // (Loop is rotated; its entry is load_element.)
2797     // Loop variables:
2798     //   (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
2799     //   (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
2800     //   G3, G4, G5 --- current oop, oop.klass, oop.klass.super
2801     __ align(OptoLoopAlignment);
2802 
2803     __ BIND(store_element);
2804     __ deccc(G1_remain);                // decrement the count
2805     __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
2806     __ inc(O5_offset, heapOopSize);     // step to next offset
2807     __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
2808     __ delayed()->set(0, O0);           // return -1 on success
2809 
2810     // ======== loop entry is here ========
2811     __ BIND(load_element);
2812     __ load_heap_oop(O0_from, O5_offset, G3_oop);  // load the oop
2813     __ br_null_short(G3_oop, Assembler::pt, store_element);
2814 
2815     __ load_klass(G3_oop, G4_klass); // query the object klass
2816 
2817     generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
2818                         // branch to this on success:
2819                         store_element);
2820     // ======== end loop ========
2821 
2822     // It was a real error; we must depend on the caller to finish the job.
2823     // Register G1 has number of *remaining* oops, O2 number of *total* oops.
2824     // Emit GC store barriers for the oops we have copied (O2 minus G1),
2825     // and report their number to the caller.
2826     __ BIND(fail);
2827     __ subcc(O2_count, G1_remain, O2_count);
2828     __ brx(Assembler::zero, false, Assembler::pt, done);
2829     __ delayed()->not1(O2_count, O0);   // report (-1^K) to caller
2830 
2831     __ BIND(do_card_marks);
2832     gen_write_ref_array_post_barrier(O1_to, O2_count, O3);   // store check on O1[0..O2]
2833 
2834     __ BIND(done);
2835     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
2836     __ retl();
2837     __ delayed()->nop();             // return value in 00
2838 
2839     return start;
2840   }
2841 
2842 
2843   //  Generate 'unsafe' array copy stub
2844   //  Though just as safe as the other stubs, it takes an unscaled
2845   //  size_t argument instead of an element count.
2846   //
2847   // Arguments for generated stub:
2848   //      from:  O0
2849   //      to:    O1
2850   //      count: O2 byte count, treated as ssize_t, can be zero
2851   //
2852   // Examines the alignment of the operands and dispatches
2853   // to a long, int, short, or byte copy loop.
2854   //
2855   address generate_unsafe_copy(const char* name,
2856                                address byte_copy_entry,
2857                                address short_copy_entry,
2858                                address int_copy_entry,
2859                                address long_copy_entry) {
2860 
2861     const Register O0_from   = O0;      // source array address
2862     const Register O1_to     = O1;      // destination array address
2863     const Register O2_count  = O2;      // elements count
2864 
2865     const Register G1_bits   = G1;      // test copy of low bits
2866 
2867     __ align(CodeEntryAlignment);
2868     StubCodeMark mark(this, "StubRoutines", name);
2869     address start = __ pc();
2870 
2871     // bump this on entry, not on exit:
2872     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
2873 
2874     __ or3(O0_from, O1_to, G1_bits);
2875     __ or3(O2_count,       G1_bits, G1_bits);
2876 
2877     __ btst(BytesPerLong-1, G1_bits);
2878     __ br(Assembler::zero, true, Assembler::pt,
2879           long_copy_entry, relocInfo::runtime_call_type);
2880     // scale the count on the way out:
2881     __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
2882 
2883     __ btst(BytesPerInt-1, G1_bits);
2884     __ br(Assembler::zero, true, Assembler::pt,
2885           int_copy_entry, relocInfo::runtime_call_type);
2886     // scale the count on the way out:
2887     __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
2888 
2889     __ btst(BytesPerShort-1, G1_bits);
2890     __ br(Assembler::zero, true, Assembler::pt,
2891           short_copy_entry, relocInfo::runtime_call_type);
2892     // scale the count on the way out:
2893     __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
2894 
2895     __ br(Assembler::always, false, Assembler::pt,
2896           byte_copy_entry, relocInfo::runtime_call_type);
2897     __ delayed()->nop();
2898 
2899     return start;
2900   }
2901 
2902 
2903   // Perform range checks on the proposed arraycopy.
2904   // Kills the two temps, but nothing else.
2905   // Also, clean the sign bits of src_pos and dst_pos.
2906   void arraycopy_range_checks(Register src,     // source array oop (O0)
2907                               Register src_pos, // source position (O1)
2908                               Register dst,     // destination array oo (O2)
2909                               Register dst_pos, // destination position (O3)
2910                               Register length,  // length of copy (O4)
2911                               Register temp1, Register temp2,
2912                               Label& L_failed) {
2913     BLOCK_COMMENT("arraycopy_range_checks:");
2914 
2915     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
2916 
2917     const Register array_length = temp1;  // scratch
2918     const Register end_pos      = temp2;  // scratch
2919 
2920     // Note:  This next instruction may be in the delay slot of a branch:
2921     __ add(length, src_pos, end_pos);  // src_pos + length
2922     __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
2923     __ cmp(end_pos, array_length);
2924     __ br(Assembler::greater, false, Assembler::pn, L_failed);
2925 
2926     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
2927     __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
2928     __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
2929     __ cmp(end_pos, array_length);
2930     __ br(Assembler::greater, false, Assembler::pn, L_failed);
2931 
2932     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2933     // Move with sign extension can be used since they are positive.
2934     __ delayed()->signx(src_pos, src_pos);
2935     __ signx(dst_pos, dst_pos);
2936 
2937     BLOCK_COMMENT("arraycopy_range_checks done");
2938   }
2939 
2940 
2941   //
2942   //  Generate generic array copy stubs
2943   //
2944   //  Input:
2945   //    O0    -  src oop
2946   //    O1    -  src_pos
2947   //    O2    -  dst oop
2948   //    O3    -  dst_pos
2949   //    O4    -  element count
2950   //
2951   //  Output:
2952   //    O0 ==  0  -  success
2953   //    O0 == -1  -  need to call System.arraycopy
2954   //
2955   address generate_generic_copy(const char *name,
2956                                 address entry_jbyte_arraycopy,
2957                                 address entry_jshort_arraycopy,
2958                                 address entry_jint_arraycopy,
2959                                 address entry_oop_arraycopy,
2960                                 address entry_jlong_arraycopy,
2961                                 address entry_checkcast_arraycopy) {
2962     Label L_failed, L_objArray;
2963 
2964     // Input registers
2965     const Register src      = O0;  // source array oop
2966     const Register src_pos  = O1;  // source position
2967     const Register dst      = O2;  // destination array oop
2968     const Register dst_pos  = O3;  // destination position
2969     const Register length   = O4;  // elements count
2970 
2971     // registers used as temp
2972     const Register G3_src_klass = G3; // source array klass
2973     const Register G4_dst_klass = G4; // destination array klass
2974     const Register G5_lh        = G5; // layout handler
2975     const Register O5_temp      = O5;
2976 
2977     __ align(CodeEntryAlignment);
2978     StubCodeMark mark(this, "StubRoutines", name);
2979     address start = __ pc();
2980 
2981     // bump this on entry, not on exit:
2982     inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
2983 
2984     // In principle, the int arguments could be dirty.
2985     //assert_clean_int(src_pos, G1);
2986     //assert_clean_int(dst_pos, G1);
2987     //assert_clean_int(length, G1);
2988 
2989     //-----------------------------------------------------------------------
2990     // Assembler stubs will be used for this call to arraycopy
2991     // if the following conditions are met:
2992     //
2993     // (1) src and dst must not be null.
2994     // (2) src_pos must not be negative.
2995     // (3) dst_pos must not be negative.
2996     // (4) length  must not be negative.
2997     // (5) src klass and dst klass should be the same and not NULL.
2998     // (6) src and dst should be arrays.
2999     // (7) src_pos + length must not exceed length of src.
3000     // (8) dst_pos + length must not exceed length of dst.
3001     BLOCK_COMMENT("arraycopy initial argument checks");
3002 
3003     //  if (src == NULL) return -1;
3004     __ br_null(src, false, Assembler::pn, L_failed);
3005 
3006     //  if (src_pos < 0) return -1;
3007     __ delayed()->tst(src_pos);
3008     __ br(Assembler::negative, false, Assembler::pn, L_failed);
3009     __ delayed()->nop();
3010 
3011     //  if (dst == NULL) return -1;
3012     __ br_null(dst, false, Assembler::pn, L_failed);
3013 
3014     //  if (dst_pos < 0) return -1;
3015     __ delayed()->tst(dst_pos);
3016     __ br(Assembler::negative, false, Assembler::pn, L_failed);
3017 
3018     //  if (length < 0) return -1;
3019     __ delayed()->tst(length);
3020     __ br(Assembler::negative, false, Assembler::pn, L_failed);
3021 
3022     BLOCK_COMMENT("arraycopy argument klass checks");
3023     //  get src->klass()
3024     if (UseCompressedOops) {
3025       __ delayed()->nop(); // ??? not good
3026       __ load_klass(src, G3_src_klass);
3027     } else {
3028       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
3029     }
3030 
3031 #ifdef ASSERT
3032     //  assert(src->klass() != NULL);
3033     BLOCK_COMMENT("assert klasses not null");
3034     { Label L_a, L_b;
3035       __ br_notnull_short(G3_src_klass, Assembler::pt, L_b); // it is broken if klass is NULL
3036       __ bind(L_a);
3037       __ stop("broken null klass");
3038       __ bind(L_b);
3039       __ load_klass(dst, G4_dst_klass);
3040       __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
3041       __ delayed()->mov(G0, G4_dst_klass);      // scribble the temp
3042       BLOCK_COMMENT("assert done");
3043     }
3044 #endif
3045 
3046     // Load layout helper
3047     //
3048     //  |array_tag|     | header_size | element_type |     |log2_element_size|
3049     // 32        30    24            16              8     2                 0
3050     //
3051     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
3052     //
3053 
3054     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
3055                     Klass::layout_helper_offset_in_bytes();
3056 
3057     // Load 32-bits signed value. Use br() instruction with it to check icc.
3058     __ lduw(G3_src_klass, lh_offset, G5_lh);
3059 
3060     if (UseCompressedOops) {
3061       __ load_klass(dst, G4_dst_klass);
3062     }
3063     // Handle objArrays completely differently...
3064     juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3065     __ set(objArray_lh, O5_temp);
3066     __ cmp(G5_lh,       O5_temp);
3067     __ br(Assembler::equal, false, Assembler::pt, L_objArray);
3068     if (UseCompressedOops) {
3069       __ delayed()->nop();
3070     } else {
3071       __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
3072     }
3073 
3074     //  if (src->klass() != dst->klass()) return -1;
3075     __ cmp_and_brx_short(G3_src_klass, G4_dst_klass, Assembler::notEqual, Assembler::pn, L_failed);
3076 
3077     //  if (!src->is_Array()) return -1;
3078     __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
3079     __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
3080 
3081     // At this point, it is known to be a typeArray (array_tag 0x3).
3082 #ifdef ASSERT
3083     __ delayed()->nop();
3084     { Label L;
3085       jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
3086       __ set(lh_prim_tag_in_place, O5_temp);
3087       __ cmp(G5_lh,                O5_temp);
3088       __ br(Assembler::greaterEqual, false, Assembler::pt, L);
3089       __ delayed()->nop();
3090       __ stop("must be a primitive array");
3091       __ bind(L);
3092     }
3093 #else
3094     __ delayed();                               // match next insn to prev branch
3095 #endif
3096 
3097     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
3098                            O5_temp, G4_dst_klass, L_failed);
3099 
3100     // typeArrayKlass
3101     //
3102     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
3103     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
3104     //
3105 
3106     const Register G4_offset = G4_dst_klass;    // array offset
3107     const Register G3_elsize = G3_src_klass;    // log2 element size
3108 
3109     __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
3110     __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
3111     __ add(src, G4_offset, src);       // src array offset
3112     __ add(dst, G4_offset, dst);       // dst array offset
3113     __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
3114 
3115     // next registers should be set before the jump to corresponding stub
3116     const Register from     = O0;  // source array address
3117     const Register to       = O1;  // destination array address
3118     const Register count    = O2;  // elements count
3119 
3120     // 'from', 'to', 'count' registers should be set in this order
3121     // since they are the same as 'src', 'src_pos', 'dst'.
3122 
3123     BLOCK_COMMENT("scale indexes to element size");
3124     __ sll_ptr(src_pos, G3_elsize, src_pos);
3125     __ sll_ptr(dst_pos, G3_elsize, dst_pos);
3126     __ add(src, src_pos, from);       // src_addr
3127     __ add(dst, dst_pos, to);         // dst_addr
3128 
3129     BLOCK_COMMENT("choose copy loop based on element size");
3130     __ cmp(G3_elsize, 0);
3131     __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
3132     __ delayed()->signx(length, count); // length
3133 
3134     __ cmp(G3_elsize, LogBytesPerShort);
3135     __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
3136     __ delayed()->signx(length, count); // length
3137 
3138     __ cmp(G3_elsize, LogBytesPerInt);
3139     __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
3140     __ delayed()->signx(length, count); // length
3141 #ifdef ASSERT
3142     { Label L;
3143       __ cmp_and_br_short(G3_elsize, LogBytesPerLong, Assembler::equal, Assembler::pt, L);
3144       __ stop("must be long copy, but elsize is wrong");
3145       __ bind(L);
3146     }
3147 #endif
3148     __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
3149     __ delayed()->signx(length, count); // length
3150 
3151     // objArrayKlass
3152   __ BIND(L_objArray);
3153     // live at this point:  G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
3154 
3155     Label L_plain_copy, L_checkcast_copy;
3156     //  test array classes for subtyping
3157     __ cmp(G3_src_klass, G4_dst_klass);         // usual case is exact equality
3158     __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
3159     __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
3160 
3161     // Identically typed arrays can be copied without element-wise checks.
3162     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
3163                            O5_temp, G5_lh, L_failed);
3164 
3165     __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
3166     __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
3167     __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
3168     __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
3169     __ add(src, src_pos, from);       // src_addr
3170     __ add(dst, dst_pos, to);         // dst_addr
3171   __ BIND(L_plain_copy);
3172     __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
3173     __ delayed()->signx(length, count); // length
3174 
3175   __ BIND(L_checkcast_copy);
3176     // live at this point:  G3_src_klass, G4_dst_klass
3177     {
3178       // Before looking at dst.length, make sure dst is also an objArray.
3179       // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
3180       __ cmp(G5_lh,                    O5_temp);
3181       __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
3182 
3183       // It is safe to examine both src.length and dst.length.
3184       __ delayed();                             // match next insn to prev branch
3185       arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
3186                              O5_temp, G5_lh, L_failed);
3187 
3188       // Marshal the base address arguments now, freeing registers.
3189       __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
3190       __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
3191       __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
3192       __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
3193       __ add(src, src_pos, from);               // src_addr
3194       __ add(dst, dst_pos, to);                 // dst_addr
3195       __ signx(length, count);                  // length (reloaded)
3196 
3197       Register sco_temp = O3;                   // this register is free now
3198       assert_different_registers(from, to, count, sco_temp,
3199                                  G4_dst_klass, G3_src_klass);
3200 
3201       // Generate the type check.
3202       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
3203                         Klass::super_check_offset_offset_in_bytes());
3204       __ lduw(G4_dst_klass, sco_offset, sco_temp);
3205       generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
3206                           O5_temp, L_plain_copy);
3207 
3208       // Fetch destination element klass from the objArrayKlass header.
3209       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
3210                        objArrayKlass::element_klass_offset_in_bytes());
3211 
3212       // the checkcast_copy loop needs two extra arguments:
3213       __ ld_ptr(G4_dst_klass, ek_offset, O4);   // dest elem klass
3214       // lduw(O4, sco_offset, O3);              // sco of elem klass
3215 
3216       __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
3217       __ delayed()->lduw(O4, sco_offset, O3);
3218     }
3219 
3220   __ BIND(L_failed);
3221     __ retl();
3222     __ delayed()->sub(G0, 1, O0); // return -1
3223     return start;
3224   }
3225 
3226   //
3227   //  Generate stub for heap zeroing.
3228   //  "to" address is aligned to jlong (8 bytes).
3229   //
3230   // Arguments for generated stub:
3231   //      to:    O0
3232   //      count: O1 treated as signed (count of HeapWord)
3233   //             count could be 0
3234   //
3235   address generate_zero_aligned_words(const char* name) {
3236     __ align(CodeEntryAlignment);
3237     StubCodeMark mark(this, "StubRoutines", name);
3238     address start = __ pc();
3239 
3240     const Register to    = O0;   // source array address
3241     const Register count = O1;   // HeapWords count
3242     const Register temp  = O2;   // scratch
3243 
3244     Label Ldone;
3245     __ sllx(count, LogHeapWordSize, count); // to bytes count
3246     // Use BIS for zeroing
3247     __ bis_zeroing(to, count, temp, Ldone);
3248     __ bind(Ldone);
3249     __ retl();
3250     __ delayed()->nop();
3251     return start;
3252 }
3253 
3254   void generate_arraycopy_stubs() {
3255     address entry;
3256     address entry_jbyte_arraycopy;
3257     address entry_jshort_arraycopy;
3258     address entry_jint_arraycopy;
3259     address entry_oop_arraycopy;
3260     address entry_jlong_arraycopy;
3261     address entry_checkcast_arraycopy;
3262 
3263     //*** jbyte
3264     // Always need aligned and unaligned versions
3265     StubRoutines::_jbyte_disjoint_arraycopy         = generate_disjoint_byte_copy(false, &entry,
3266                                                                                   "jbyte_disjoint_arraycopy");
3267     StubRoutines::_jbyte_arraycopy                  = generate_conjoint_byte_copy(false, entry,
3268                                                                                   &entry_jbyte_arraycopy,
3269                                                                                   "jbyte_arraycopy");
3270     StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
3271                                                                                   "arrayof_jbyte_disjoint_arraycopy");
3272     StubRoutines::_arrayof_jbyte_arraycopy          = generate_conjoint_byte_copy(true, entry, NULL,
3273                                                                                   "arrayof_jbyte_arraycopy");
3274 
3275     //*** jshort
3276     // Always need aligned and unaligned versions
3277     StubRoutines::_jshort_disjoint_arraycopy         = generate_disjoint_short_copy(false, &entry,
3278                                                                                     "jshort_disjoint_arraycopy");
3279     StubRoutines::_jshort_arraycopy                  = generate_conjoint_short_copy(false, entry,
3280                                                                                     &entry_jshort_arraycopy,
3281                                                                                     "jshort_arraycopy");
3282     StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
3283                                                                                     "arrayof_jshort_disjoint_arraycopy");
3284     StubRoutines::_arrayof_jshort_arraycopy          = generate_conjoint_short_copy(true, entry, NULL,
3285                                                                                     "arrayof_jshort_arraycopy");
3286 
3287     //*** jint
3288     // Aligned versions
3289     StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
3290                                                                                 "arrayof_jint_disjoint_arraycopy");
3291     StubRoutines::_arrayof_jint_arraycopy          = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
3292                                                                                 "arrayof_jint_arraycopy");
3293 #ifdef _LP64
3294     // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
3295     // entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it).
3296     StubRoutines::_jint_disjoint_arraycopy         = generate_disjoint_int_copy(false, &entry,
3297                                                                                 "jint_disjoint_arraycopy");
3298     StubRoutines::_jint_arraycopy                  = generate_conjoint_int_copy(false, entry,
3299                                                                                 &entry_jint_arraycopy,
3300                                                                                 "jint_arraycopy");
3301 #else
3302     // In 32 bit jints are always HeapWordSize aligned, so always use the aligned version
3303     // (in fact in 32bit we always have a pre-loop part even in the aligned version,
3304     //  because it uses 64-bit loads/stores, so the aligned flag is actually ignored).
3305     StubRoutines::_jint_disjoint_arraycopy = StubRoutines::_arrayof_jint_disjoint_arraycopy;
3306     StubRoutines::_jint_arraycopy          = StubRoutines::_arrayof_jint_arraycopy;
3307 #endif
3308 
3309 
3310     //*** jlong
3311     // It is always aligned
3312     StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
3313                                                                                   "arrayof_jlong_disjoint_arraycopy");
3314     StubRoutines::_arrayof_jlong_arraycopy          = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
3315                                                                                   "arrayof_jlong_arraycopy");
3316     StubRoutines::_jlong_disjoint_arraycopy         = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
3317     StubRoutines::_jlong_arraycopy                  = StubRoutines::_arrayof_jlong_arraycopy;
3318 
3319 
3320     //*** oops
3321     // Aligned versions
3322     StubRoutines::_arrayof_oop_disjoint_arraycopy        = generate_disjoint_oop_copy(true, &entry,
3323                                                                                       "arrayof_oop_disjoint_arraycopy");
3324     StubRoutines::_arrayof_oop_arraycopy                 = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy,
3325                                                                                       "arrayof_oop_arraycopy");
3326     // Aligned versions without pre-barriers
3327     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, &entry,
3328                                                                                       "arrayof_oop_disjoint_arraycopy_uninit",
3329                                                                                       /*dest_uninitialized*/true);
3330     StubRoutines::_arrayof_oop_arraycopy_uninit          = generate_conjoint_oop_copy(true, entry, NULL,
3331                                                                                       "arrayof_oop_arraycopy_uninit",
3332                                                                                       /*dest_uninitialized*/true);
3333 #ifdef _LP64
3334     if (UseCompressedOops) {
3335       // With compressed oops we need unaligned versions, notice that we overwrite entry_oop_arraycopy.
3336       StubRoutines::_oop_disjoint_arraycopy            = generate_disjoint_oop_copy(false, &entry,
3337                                                                                     "oop_disjoint_arraycopy");
3338       StubRoutines::_oop_arraycopy                     = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
3339                                                                                     "oop_arraycopy");
3340       // Unaligned versions without pre-barriers
3341       StubRoutines::_oop_disjoint_arraycopy_uninit     = generate_disjoint_oop_copy(false, &entry,
3342                                                                                     "oop_disjoint_arraycopy_uninit",
3343                                                                                     /*dest_uninitialized*/true);
3344       StubRoutines::_oop_arraycopy_uninit              = generate_conjoint_oop_copy(false, entry, NULL,
3345                                                                                     "oop_arraycopy_uninit",
3346                                                                                     /*dest_uninitialized*/true);
3347     } else
3348 #endif
3349     {
3350       // oop arraycopy is always aligned on 32bit and 64bit without compressed oops
3351       StubRoutines::_oop_disjoint_arraycopy            = StubRoutines::_arrayof_oop_disjoint_arraycopy;
3352       StubRoutines::_oop_arraycopy                     = StubRoutines::_arrayof_oop_arraycopy;
3353       StubRoutines::_oop_disjoint_arraycopy_uninit     = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
3354       StubRoutines::_oop_arraycopy_uninit              = StubRoutines::_arrayof_oop_arraycopy_uninit;
3355     }
3356 
3357     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
3358     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
3359                                                                         /*dest_uninitialized*/true);
3360 
3361     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
3362                                                               entry_jbyte_arraycopy,
3363                                                               entry_jshort_arraycopy,
3364                                                               entry_jint_arraycopy,
3365                                                               entry_jlong_arraycopy);
3366     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
3367                                                                entry_jbyte_arraycopy,
3368                                                                entry_jshort_arraycopy,
3369                                                                entry_jint_arraycopy,
3370                                                                entry_oop_arraycopy,
3371                                                                entry_jlong_arraycopy,
3372                                                                entry_checkcast_arraycopy);
3373 
3374     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
3375     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
3376     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
3377     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
3378     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
3379     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
3380 
3381     if (UseBlockZeroing) {
3382       StubRoutines::_zero_aligned_words = generate_zero_aligned_words("zero_aligned_words");
3383     }
3384   }
3385 
3386   void generate_initial() {
3387     // Generates all stubs and initializes the entry points
3388 
3389     //------------------------------------------------------------------------------------------------------------------------
3390     // entry points that exist in all platforms
3391     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
3392     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
3393     StubRoutines::_forward_exception_entry                 = generate_forward_exception();
3394 
3395     StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
3396     StubRoutines::_catch_exception_entry                   = generate_catch_exception();
3397 
3398     //------------------------------------------------------------------------------------------------------------------------
3399     // entry points that are platform specific
3400     StubRoutines::Sparc::_test_stop_entry                  = generate_test_stop();
3401 
3402     StubRoutines::Sparc::_stop_subroutine_entry            = generate_stop_subroutine();
3403     StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
3404 
3405 #if !defined(COMPILER2) && !defined(_LP64)
3406     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
3407     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
3408     StubRoutines::_atomic_add_entry          = generate_atomic_add();
3409     StubRoutines::_atomic_xchg_ptr_entry     = StubRoutines::_atomic_xchg_entry;
3410     StubRoutines::_atomic_cmpxchg_ptr_entry  = StubRoutines::_atomic_cmpxchg_entry;
3411     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
3412     StubRoutines::_atomic_add_ptr_entry      = StubRoutines::_atomic_add_entry;
3413 #endif  // COMPILER2 !=> _LP64
3414 
3415     // Build this early so it's available for the interpreter.  The
3416     // stub expects the required and actual type to already be in O1
3417     // and O2 respectively.
3418     StubRoutines::_throw_WrongMethodTypeException_entry =
3419       generate_throw_exception("WrongMethodTypeException throw_exception",
3420                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
3421                                false, G5_method_type, G3_method_handle);
3422   }
3423 
3424 
3425   void generate_all() {
3426     // Generates all stubs and initializes the entry points
3427 
3428     // Generate partial_subtype_check first here since its code depends on
3429     // UseZeroBaseCompressedOops which is defined after heap initialization.
3430     StubRoutines::Sparc::_partial_subtype_check                = generate_partial_subtype_check();
3431     // These entry points require SharedInfo::stack0 to be set up in non-core builds
3432     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
3433     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
3434     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
3435     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
3436     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
3437     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
3438 
3439     StubRoutines::_handler_for_unsafe_access_entry =
3440       generate_handler_for_unsafe_access();
3441 
3442     // support for verify_oop (must happen after universe_init)
3443     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop_subroutine();
3444 
3445     // arraycopy stubs used by compilers
3446     generate_arraycopy_stubs();
3447 
3448     // Don't initialize the platform math functions since sparc
3449     // doesn't have intrinsics for these operations.
3450   }
3451 
3452 
3453  public:
3454   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3455     // replace the standard masm with a special one:
3456     _masm = new MacroAssembler(code);
3457 
3458     _stub_count = !all ? 0x100 : 0x200;
3459     if (all) {
3460       generate_all();
3461     } else {
3462       generate_initial();
3463     }
3464 
3465     // make sure this stub is available for all local calls
3466     if (_atomic_add_stub.is_unbound()) {
3467       // generate a second time, if necessary
3468       (void) generate_atomic_add();
3469     }
3470   }
3471 
3472 
3473  private:
3474   int _stub_count;
3475   void stub_prolog(StubCodeDesc* cdesc) {
3476     # ifdef ASSERT
3477       // put extra information in the stub code, to make it more readable
3478 #ifdef _LP64
3479 // Write the high part of the address
3480 // [RGV] Check if there is a dependency on the size of this prolog
3481       __ emit_data((intptr_t)cdesc >> 32,    relocInfo::none);
3482 #endif
3483       __ emit_data((intptr_t)cdesc,    relocInfo::none);
3484       __ emit_data(++_stub_count, relocInfo::none);
3485     # endif
3486     align(true);
3487   }
3488 
3489   void align(bool at_header = false) {
3490     // %%%%% move this constant somewhere else
3491     // UltraSPARC cache line size is 8 instructions:
3492     const unsigned int icache_line_size = 32;
3493     const unsigned int icache_half_line_size = 16;
3494 
3495     if (at_header) {
3496       while ((intptr_t)(__ pc()) % icache_line_size != 0) {
3497         __ emit_data(0, relocInfo::none);
3498       }
3499     } else {
3500       while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
3501         __ nop();
3502       }
3503     }
3504   }
3505 
3506 }; // end class declaration
3507 
3508 void StubGenerator_generate(CodeBuffer* code, bool all) {
3509   StubGenerator g(code, all);
3510 }