1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "libadt/vectset.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/compile.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/locknode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/macro.hpp"
  36 #include "opto/memnode.hpp"
  37 #include "opto/node.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/subnode.hpp"
  42 #include "opto/type.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 
  45 
  46 //
  47 // Replace any references to "oldref" in inputs to "use" with "newref".
  48 // Returns the number of replacements made.
  49 //
  50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  51   int nreplacements = 0;
  52   uint req = use->req();
  53   for (uint j = 0; j < use->len(); j++) {
  54     Node *uin = use->in(j);
  55     if (uin == oldref) {
  56       if (j < req)
  57         use->set_req(j, newref);
  58       else
  59         use->set_prec(j, newref);
  60       nreplacements++;
  61     } else if (j >= req && uin == NULL) {
  62       break;
  63     }
  64   }
  65   return nreplacements;
  66 }
  67 
  68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  69   // Copy debug information and adjust JVMState information
  70   uint old_dbg_start = oldcall->tf()->domain()->cnt();
  71   uint new_dbg_start = newcall->tf()->domain()->cnt();
  72   int jvms_adj  = new_dbg_start - old_dbg_start;
  73   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  74 
  75   Dict* sosn_map = new Dict(cmpkey,hashkey);
  76   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  77     Node* old_in = oldcall->in(i);
  78     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  79     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  80       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  81       uint old_unique = C->unique();
  82       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
  83       if (old_unique != C->unique()) {
  84         new_in->set_req(0, newcall->in(0)); // reset control edge
  85         new_in = transform_later(new_in); // Register new node.
  86       }
  87       old_in = new_in;
  88     }
  89     newcall->add_req(old_in);
  90   }
  91 
  92   newcall->set_jvms(oldcall->jvms());
  93   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
  94     jvms->set_map(newcall);
  95     jvms->set_locoff(jvms->locoff()+jvms_adj);
  96     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
  97     jvms->set_monoff(jvms->monoff()+jvms_adj);
  98     jvms->set_scloff(jvms->scloff()+jvms_adj);
  99     jvms->set_endoff(jvms->endoff()+jvms_adj);
 100   }
 101 }
 102 
 103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
 104   Node* cmp;
 105   if (mask != 0) {
 106     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
 107     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
 108   } else {
 109     cmp = word;
 110   }
 111   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
 112   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 113   transform_later(iff);
 114 
 115   // Fast path taken.
 116   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
 117 
 118   // Fast path not-taken, i.e. slow path
 119   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
 120 
 121   if (return_fast_path) {
 122     region->init_req(edge, slow_taken); // Capture slow-control
 123     return fast_taken;
 124   } else {
 125     region->init_req(edge, fast_taken); // Capture fast-control
 126     return slow_taken;
 127   }
 128 }
 129 
 130 //--------------------copy_predefined_input_for_runtime_call--------------------
 131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 132   // Set fixed predefined input arguments
 133   call->init_req( TypeFunc::Control, ctrl );
 134   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 135   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 136   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 137   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 138 }
 139 
 140 //------------------------------make_slow_call---------------------------------
 141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
 142 
 143   // Slow-path call
 144   int size = slow_call_type->domain()->cnt();
 145  CallNode *call = leaf_name
 146    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 147    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 148 
 149   // Slow path call has no side-effects, uses few values
 150   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 151   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 152   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 153   copy_call_debug_info(oldcall, call);
 154   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 155   _igvn.replace_node(oldcall, call);
 156   transform_later(call);
 157 
 158   return call;
 159 }
 160 
 161 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 162   _fallthroughproj = NULL;
 163   _fallthroughcatchproj = NULL;
 164   _ioproj_fallthrough = NULL;
 165   _ioproj_catchall = NULL;
 166   _catchallcatchproj = NULL;
 167   _memproj_fallthrough = NULL;
 168   _memproj_catchall = NULL;
 169   _resproj = NULL;
 170   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 171     ProjNode *pn = call->fast_out(i)->as_Proj();
 172     switch (pn->_con) {
 173       case TypeFunc::Control:
 174       {
 175         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 176         _fallthroughproj = pn;
 177         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 178         const Node *cn = pn->fast_out(j);
 179         if (cn->is_Catch()) {
 180           ProjNode *cpn = NULL;
 181           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 182             cpn = cn->fast_out(k)->as_Proj();
 183             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 184             if (cpn->_con == CatchProjNode::fall_through_index)
 185               _fallthroughcatchproj = cpn;
 186             else {
 187               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 188               _catchallcatchproj = cpn;
 189             }
 190           }
 191         }
 192         break;
 193       }
 194       case TypeFunc::I_O:
 195         if (pn->_is_io_use)
 196           _ioproj_catchall = pn;
 197         else
 198           _ioproj_fallthrough = pn;
 199         break;
 200       case TypeFunc::Memory:
 201         if (pn->_is_io_use)
 202           _memproj_catchall = pn;
 203         else
 204           _memproj_fallthrough = pn;
 205         break;
 206       case TypeFunc::Parms:
 207         _resproj = pn;
 208         break;
 209       default:
 210         assert(false, "unexpected projection from allocation node.");
 211     }
 212   }
 213 
 214 }
 215 
 216 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 217 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
 218   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 219   if (!UseG1GC) {
 220     // vanilla/CMS post barrier
 221     Node *shift = p2x->unique_out();
 222     Node *addp = shift->unique_out();
 223     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 224       Node *mem = addp->last_out(j);
 225       if (UseCondCardMark && mem->is_Load()) {
 226         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 227         // The load is checking if the card has been written so
 228         // replace it with zero to fold the test.
 229         _igvn.replace_node(mem, intcon(0));
 230         continue;
 231       }
 232       assert(mem->is_Store(), "store required");
 233       _igvn.replace_node(mem, mem->in(MemNode::Memory));
 234     }
 235   } else {
 236     // G1 pre/post barriers
 237     assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
 238     // It could be only one user, URShift node, in Object.clone() instrinsic
 239     // but the new allocation is passed to arraycopy stub and it could not
 240     // be scalar replaced. So we don't check the case.
 241 
 242     // Remove G1 post barrier.
 243 
 244     // Search for CastP2X->Xor->URShift->Cmp path which
 245     // checks if the store done to a different from the value's region.
 246     // And replace Cmp with #0 (false) to collapse G1 post barrier.
 247     Node* xorx = NULL;
 248     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
 249       Node* u = p2x->fast_out(i);
 250       if (u->Opcode() == Op_XorX) {
 251         xorx = u;
 252         break;
 253       }
 254     }
 255     assert(xorx != NULL, "missing G1 post barrier");
 256     Node* shift = xorx->unique_out();
 257     Node* cmpx = shift->unique_out();
 258     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 259     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 260     "missing region check in G1 post barrier");
 261     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 262 
 263     // Remove G1 pre barrier.
 264 
 265     // Search "if (marking != 0)" check and set it to "false".
 266     Node* this_region = p2x->in(0);
 267     assert(this_region != NULL, "");
 268     // There is no G1 pre barrier if previous stored value is NULL
 269     // (for example, after initialization).
 270     if (this_region->is_Region() && this_region->req() == 3) {
 271       int ind = 1;
 272       if (!this_region->in(ind)->is_IfFalse()) {
 273         ind = 2;
 274       }
 275       if (this_region->in(ind)->is_IfFalse()) {
 276         Node* bol = this_region->in(ind)->in(0)->in(1);
 277         assert(bol->is_Bool(), "");
 278         cmpx = bol->in(1);
 279         if (bol->as_Bool()->_test._test == BoolTest::ne &&
 280             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
 281             cmpx->in(1)->is_Load()) {
 282           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
 283           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
 284                                               PtrQueue::byte_offset_of_active());
 285           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
 286               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 287               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
 288             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 289           }
 290         }
 291       }
 292     }
 293     // Now CastP2X can be removed since it is used only on dead path
 294     // which currently still alive until igvn optimize it.
 295     assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
 296     _igvn.replace_node(p2x, top());
 297   }
 298 }
 299 
 300 // Search for a memory operation for the specified memory slice.
 301 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 302   Node *orig_mem = mem;
 303   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 304   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 305   while (true) {
 306     if (mem == alloc_mem || mem == start_mem ) {
 307       return mem;  // hit one of our sentinels
 308     } else if (mem->is_MergeMem()) {
 309       mem = mem->as_MergeMem()->memory_at(alias_idx);
 310     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 311       Node *in = mem->in(0);
 312       // we can safely skip over safepoints, calls, locks and membars because we
 313       // already know that the object is safe to eliminate.
 314       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 315         return in;
 316       } else if (in->is_Call()) {
 317         CallNode *call = in->as_Call();
 318         if (!call->may_modify(tinst, phase)) {
 319           mem = call->in(TypeFunc::Memory);
 320         }
 321         mem = in->in(TypeFunc::Memory);
 322       } else if (in->is_MemBar()) {
 323         mem = in->in(TypeFunc::Memory);
 324       } else {
 325         assert(false, "unexpected projection");
 326       }
 327     } else if (mem->is_Store()) {
 328       const TypePtr* atype = mem->as_Store()->adr_type();
 329       int adr_idx = Compile::current()->get_alias_index(atype);
 330       if (adr_idx == alias_idx) {
 331         assert(atype->isa_oopptr(), "address type must be oopptr");
 332         int adr_offset = atype->offset();
 333         uint adr_iid = atype->is_oopptr()->instance_id();
 334         // Array elements references have the same alias_idx
 335         // but different offset and different instance_id.
 336         if (adr_offset == offset && adr_iid == alloc->_idx)
 337           return mem;
 338       } else {
 339         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 340       }
 341       mem = mem->in(MemNode::Memory);
 342     } else if (mem->is_ClearArray()) {
 343       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 344         // Can not bypass initialization of the instance
 345         // we are looking.
 346         debug_only(intptr_t offset;)
 347         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 348         InitializeNode* init = alloc->as_Allocate()->initialization();
 349         // We are looking for stored value, return Initialize node
 350         // or memory edge from Allocate node.
 351         if (init != NULL)
 352           return init;
 353         else
 354           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 355       }
 356       // Otherwise skip it (the call updated 'mem' value).
 357     } else if (mem->Opcode() == Op_SCMemProj) {
 358       assert(mem->in(0)->is_LoadStore(), "sanity");
 359       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
 360       int adr_idx = Compile::current()->get_alias_index(atype);
 361       if (adr_idx == alias_idx) {
 362         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 363         return NULL;
 364       }
 365       mem = mem->in(0)->in(MemNode::Memory);
 366     } else {
 367       return mem;
 368     }
 369     assert(mem != orig_mem, "dead memory loop");
 370   }
 371 }
 372 
 373 //
 374 // Given a Memory Phi, compute a value Phi containing the values from stores
 375 // on the input paths.
 376 // Note: this function is recursive, its depth is limied by the "level" argument
 377 // Returns the computed Phi, or NULL if it cannot compute it.
 378 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
 379   assert(mem->is_Phi(), "sanity");
 380   int alias_idx = C->get_alias_index(adr_t);
 381   int offset = adr_t->offset();
 382   int instance_id = adr_t->instance_id();
 383 
 384   // Check if an appropriate value phi already exists.
 385   Node* region = mem->in(0);
 386   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 387     Node* phi = region->fast_out(k);
 388     if (phi->is_Phi() && phi != mem &&
 389         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
 390       return phi;
 391     }
 392   }
 393   // Check if an appropriate new value phi already exists.
 394   Node* new_phi = NULL;
 395   uint size = value_phis->size();
 396   for (uint i=0; i < size; i++) {
 397     if ( mem->_idx == value_phis->index_at(i) ) {
 398       return value_phis->node_at(i);
 399     }
 400   }
 401 
 402   if (level <= 0) {
 403     return NULL; // Give up: phi tree too deep
 404   }
 405   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 406   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 407 
 408   uint length = mem->req();
 409   GrowableArray <Node *> values(length, length, NULL);
 410 
 411   // create a new Phi for the value
 412   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
 413   transform_later(phi);
 414   value_phis->push(phi, mem->_idx);
 415 
 416   for (uint j = 1; j < length; j++) {
 417     Node *in = mem->in(j);
 418     if (in == NULL || in->is_top()) {
 419       values.at_put(j, in);
 420     } else  {
 421       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 422       if (val == start_mem || val == alloc_mem) {
 423         // hit a sentinel, return appropriate 0 value
 424         values.at_put(j, _igvn.zerocon(ft));
 425         continue;
 426       }
 427       if (val->is_Initialize()) {
 428         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 429       }
 430       if (val == NULL) {
 431         return NULL;  // can't find a value on this path
 432       }
 433       if (val == mem) {
 434         values.at_put(j, mem);
 435       } else if (val->is_Store()) {
 436         values.at_put(j, val->in(MemNode::ValueIn));
 437       } else if(val->is_Proj() && val->in(0) == alloc) {
 438         values.at_put(j, _igvn.zerocon(ft));
 439       } else if (val->is_Phi()) {
 440         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 441         if (val == NULL) {
 442           return NULL;
 443         }
 444         values.at_put(j, val);
 445       } else if (val->Opcode() == Op_SCMemProj) {
 446         assert(val->in(0)->is_LoadStore(), "sanity");
 447         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 448         return NULL;
 449       } else {
 450 #ifdef ASSERT
 451         val->dump();
 452         assert(false, "unknown node on this path");
 453 #endif
 454         return NULL;  // unknown node on this path
 455       }
 456     }
 457   }
 458   // Set Phi's inputs
 459   for (uint j = 1; j < length; j++) {
 460     if (values.at(j) == mem) {
 461       phi->init_req(j, phi);
 462     } else {
 463       phi->init_req(j, values.at(j));
 464     }
 465   }
 466   return phi;
 467 }
 468 
 469 // Search the last value stored into the object's field.
 470 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
 471   assert(adr_t->is_known_instance_field(), "instance required");
 472   int instance_id = adr_t->instance_id();
 473   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 474 
 475   int alias_idx = C->get_alias_index(adr_t);
 476   int offset = adr_t->offset();
 477   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 478   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 479   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 480   Arena *a = Thread::current()->resource_area();
 481   VectorSet visited(a);
 482 
 483 
 484   bool done = sfpt_mem == alloc_mem;
 485   Node *mem = sfpt_mem;
 486   while (!done) {
 487     if (visited.test_set(mem->_idx)) {
 488       return NULL;  // found a loop, give up
 489     }
 490     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 491     if (mem == start_mem || mem == alloc_mem) {
 492       done = true;  // hit a sentinel, return appropriate 0 value
 493     } else if (mem->is_Initialize()) {
 494       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 495       if (mem == NULL) {
 496         done = true; // Something go wrong.
 497       } else if (mem->is_Store()) {
 498         const TypePtr* atype = mem->as_Store()->adr_type();
 499         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 500         done = true;
 501       }
 502     } else if (mem->is_Store()) {
 503       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 504       assert(atype != NULL, "address type must be oopptr");
 505       assert(C->get_alias_index(atype) == alias_idx &&
 506              atype->is_known_instance_field() && atype->offset() == offset &&
 507              atype->instance_id() == instance_id, "store is correct memory slice");
 508       done = true;
 509     } else if (mem->is_Phi()) {
 510       // try to find a phi's unique input
 511       Node *unique_input = NULL;
 512       Node *top = C->top();
 513       for (uint i = 1; i < mem->req(); i++) {
 514         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 515         if (n == NULL || n == top || n == mem) {
 516           continue;
 517         } else if (unique_input == NULL) {
 518           unique_input = n;
 519         } else if (unique_input != n) {
 520           unique_input = top;
 521           break;
 522         }
 523       }
 524       if (unique_input != NULL && unique_input != top) {
 525         mem = unique_input;
 526       } else {
 527         done = true;
 528       }
 529     } else {
 530       assert(false, "unexpected node");
 531     }
 532   }
 533   if (mem != NULL) {
 534     if (mem == start_mem || mem == alloc_mem) {
 535       // hit a sentinel, return appropriate 0 value
 536       return _igvn.zerocon(ft);
 537     } else if (mem->is_Store()) {
 538       return mem->in(MemNode::ValueIn);
 539     } else if (mem->is_Phi()) {
 540       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 541       Node_Stack value_phis(a, 8);
 542       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 543       if (phi != NULL) {
 544         return phi;
 545       } else {
 546         // Kill all new Phis
 547         while(value_phis.is_nonempty()) {
 548           Node* n = value_phis.node();
 549           _igvn.replace_node(n, C->top());
 550           value_phis.pop();
 551         }
 552       }
 553     }
 554   }
 555   // Something go wrong.
 556   return NULL;
 557 }
 558 
 559 // Check the possibility of scalar replacement.
 560 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 561   //  Scan the uses of the allocation to check for anything that would
 562   //  prevent us from eliminating it.
 563   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 564   DEBUG_ONLY( Node* disq_node = NULL; )
 565   bool  can_eliminate = true;
 566 
 567   Node* res = alloc->result_cast();
 568   const TypeOopPtr* res_type = NULL;
 569   if (res == NULL) {
 570     // All users were eliminated.
 571   } else if (!res->is_CheckCastPP()) {
 572     alloc->_is_scalar_replaceable = false;  // don't try again
 573     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 574     can_eliminate = false;
 575   } else {
 576     res_type = _igvn.type(res)->isa_oopptr();
 577     if (res_type == NULL) {
 578       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 579       can_eliminate = false;
 580     } else if (res_type->isa_aryptr()) {
 581       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 582       if (length < 0) {
 583         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 584         can_eliminate = false;
 585       }
 586     }
 587   }
 588 
 589   if (can_eliminate && res != NULL) {
 590     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 591                                j < jmax && can_eliminate; j++) {
 592       Node* use = res->fast_out(j);
 593 
 594       if (use->is_AddP()) {
 595         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 596         int offset = addp_type->offset();
 597 
 598         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 599           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 600           can_eliminate = false;
 601           break;
 602         }
 603         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 604                                    k < kmax && can_eliminate; k++) {
 605           Node* n = use->fast_out(k);
 606           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
 607             DEBUG_ONLY(disq_node = n;)
 608             if (n->is_Load() || n->is_LoadStore()) {
 609               NOT_PRODUCT(fail_eliminate = "Field load";)
 610             } else {
 611               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
 612             }
 613             can_eliminate = false;
 614           }
 615         }
 616       } else if (use->is_SafePoint()) {
 617         SafePointNode* sfpt = use->as_SafePoint();
 618         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 619           // Object is passed as argument.
 620           DEBUG_ONLY(disq_node = use;)
 621           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 622           can_eliminate = false;
 623         }
 624         Node* sfptMem = sfpt->memory();
 625         if (sfptMem == NULL || sfptMem->is_top()) {
 626           DEBUG_ONLY(disq_node = use;)
 627           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 628           can_eliminate = false;
 629         } else {
 630           safepoints.append_if_missing(sfpt);
 631         }
 632       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 633         if (use->is_Phi()) {
 634           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 635             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 636           } else {
 637             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 638           }
 639           DEBUG_ONLY(disq_node = use;)
 640         } else {
 641           if (use->Opcode() == Op_Return) {
 642             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 643           }else {
 644             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 645           }
 646           DEBUG_ONLY(disq_node = use;)
 647         }
 648         can_eliminate = false;
 649       }
 650     }
 651   }
 652 
 653 #ifndef PRODUCT
 654   if (PrintEliminateAllocations) {
 655     if (can_eliminate) {
 656       tty->print("Scalar ");
 657       if (res == NULL)
 658         alloc->dump();
 659       else
 660         res->dump();
 661     } else {
 662       tty->print("NotScalar (%s)", fail_eliminate);
 663       if (res == NULL)
 664         alloc->dump();
 665       else
 666         res->dump();
 667 #ifdef ASSERT
 668       if (disq_node != NULL) {
 669           tty->print("  >>>> ");
 670           disq_node->dump();
 671       }
 672 #endif /*ASSERT*/
 673     }
 674   }
 675 #endif
 676   return can_eliminate;
 677 }
 678 
 679 // Do scalar replacement.
 680 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 681   GrowableArray <SafePointNode *> safepoints_done;
 682 
 683   ciKlass* klass = NULL;
 684   ciInstanceKlass* iklass = NULL;
 685   int nfields = 0;
 686   int array_base;
 687   int element_size;
 688   BasicType basic_elem_type;
 689   ciType* elem_type;
 690 
 691   Node* res = alloc->result_cast();
 692   const TypeOopPtr* res_type = NULL;
 693   if (res != NULL) { // Could be NULL when there are no users
 694     res_type = _igvn.type(res)->isa_oopptr();
 695   }
 696 
 697   if (res != NULL) {
 698     klass = res_type->klass();
 699     if (res_type->isa_instptr()) {
 700       // find the fields of the class which will be needed for safepoint debug information
 701       assert(klass->is_instance_klass(), "must be an instance klass.");
 702       iklass = klass->as_instance_klass();
 703       nfields = iklass->nof_nonstatic_fields();
 704     } else {
 705       // find the array's elements which will be needed for safepoint debug information
 706       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 707       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 708       elem_type = klass->as_array_klass()->element_type();
 709       basic_elem_type = elem_type->basic_type();
 710       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 711       element_size = type2aelembytes(basic_elem_type);
 712     }
 713   }
 714   //
 715   // Process the safepoint uses
 716   //
 717   while (safepoints.length() > 0) {
 718     SafePointNode* sfpt = safepoints.pop();
 719     Node* mem = sfpt->memory();
 720     uint first_ind = sfpt->req();
 721     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
 722 #ifdef ASSERT
 723                                                  alloc,
 724 #endif
 725                                                  first_ind, nfields);
 726     sobj->init_req(0, sfpt->in(TypeFunc::Control));
 727     transform_later(sobj);
 728 
 729     // Scan object's fields adding an input to the safepoint for each field.
 730     for (int j = 0; j < nfields; j++) {
 731       intptr_t offset;
 732       ciField* field = NULL;
 733       if (iklass != NULL) {
 734         field = iklass->nonstatic_field_at(j);
 735         offset = field->offset();
 736         elem_type = field->type();
 737         basic_elem_type = field->layout_type();
 738       } else {
 739         offset = array_base + j * (intptr_t)element_size;
 740       }
 741 
 742       const Type *field_type;
 743       // The next code is taken from Parse::do_get_xxx().
 744       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 745         if (!elem_type->is_loaded()) {
 746           field_type = TypeInstPtr::BOTTOM;
 747         } else if (field != NULL && field->is_constant() && field->is_static()) {
 748           // This can happen if the constant oop is non-perm.
 749           ciObject* con = field->constant_value().as_object();
 750           // Do not "join" in the previous type; it doesn't add value,
 751           // and may yield a vacuous result if the field is of interface type.
 752           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 753           assert(field_type != NULL, "field singleton type must be consistent");
 754         } else {
 755           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 756         }
 757         if (UseCompressedOops) {
 758           field_type = field_type->make_narrowoop();
 759           basic_elem_type = T_NARROWOOP;
 760         }
 761       } else {
 762         field_type = Type::get_const_basic_type(basic_elem_type);
 763       }
 764 
 765       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 766 
 767       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
 768       if (field_val == NULL) {
 769         // we weren't able to find a value for this field,
 770         // give up on eliminating this allocation
 771         alloc->_is_scalar_replaceable = false;  // don't try again
 772         // remove any extra entries we added to the safepoint
 773         uint last = sfpt->req() - 1;
 774         for (int k = 0;  k < j; k++) {
 775           sfpt->del_req(last--);
 776         }
 777         // rollback processed safepoints
 778         while (safepoints_done.length() > 0) {
 779           SafePointNode* sfpt_done = safepoints_done.pop();
 780           // remove any extra entries we added to the safepoint
 781           last = sfpt_done->req() - 1;
 782           for (int k = 0;  k < nfields; k++) {
 783             sfpt_done->del_req(last--);
 784           }
 785           JVMState *jvms = sfpt_done->jvms();
 786           jvms->set_endoff(sfpt_done->req());
 787           // Now make a pass over the debug information replacing any references
 788           // to SafePointScalarObjectNode with the allocated object.
 789           int start = jvms->debug_start();
 790           int end   = jvms->debug_end();
 791           for (int i = start; i < end; i++) {
 792             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 793               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 794               if (scobj->first_index() == sfpt_done->req() &&
 795                   scobj->n_fields() == (uint)nfields) {
 796                 assert(scobj->alloc() == alloc, "sanity");
 797                 sfpt_done->set_req(i, res);
 798               }
 799             }
 800           }
 801         }
 802 #ifndef PRODUCT
 803         if (PrintEliminateAllocations) {
 804           if (field != NULL) {
 805             tty->print("=== At SafePoint node %d can't find value of Field: ",
 806                        sfpt->_idx);
 807             field->print();
 808             int field_idx = C->get_alias_index(field_addr_type);
 809             tty->print(" (alias_idx=%d)", field_idx);
 810           } else { // Array's element
 811             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 812                        sfpt->_idx, j);
 813           }
 814           tty->print(", which prevents elimination of: ");
 815           if (res == NULL)
 816             alloc->dump();
 817           else
 818             res->dump();
 819         }
 820 #endif
 821         return false;
 822       }
 823       if (UseCompressedOops && field_type->isa_narrowoop()) {
 824         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 825         // to be able scalar replace the allocation.
 826         if (field_val->is_EncodeP()) {
 827           field_val = field_val->in(1);
 828         } else {
 829           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
 830         }
 831       }
 832       sfpt->add_req(field_val);
 833     }
 834     JVMState *jvms = sfpt->jvms();
 835     jvms->set_endoff(sfpt->req());
 836     // Now make a pass over the debug information replacing any references
 837     // to the allocated object with "sobj"
 838     int start = jvms->debug_start();
 839     int end   = jvms->debug_end();
 840     for (int i = start; i < end; i++) {
 841       if (sfpt->in(i) == res) {
 842         sfpt->set_req(i, sobj);
 843       }
 844     }
 845     safepoints_done.append_if_missing(sfpt); // keep it for rollback
 846   }
 847   return true;
 848 }
 849 
 850 // Process users of eliminated allocation.
 851 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
 852   Node* res = alloc->result_cast();
 853   if (res != NULL) {
 854     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 855       Node *use = res->last_out(j);
 856       uint oc1 = res->outcnt();
 857 
 858       if (use->is_AddP()) {
 859         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 860           Node *n = use->last_out(k);
 861           uint oc2 = use->outcnt();
 862           if (n->is_Store()) {
 863 #ifdef ASSERT
 864             // Verify that there is no dependent MemBarVolatile nodes,
 865             // they should be removed during IGVN, see MemBarNode::Ideal().
 866             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
 867                                        p < pmax; p++) {
 868               Node* mb = n->fast_out(p);
 869               assert(mb->is_Initialize() || !mb->is_MemBar() ||
 870                      mb->req() <= MemBarNode::Precedent ||
 871                      mb->in(MemBarNode::Precedent) != n,
 872                      "MemBarVolatile should be eliminated for non-escaping object");
 873             }
 874 #endif
 875             _igvn.replace_node(n, n->in(MemNode::Memory));
 876           } else {
 877             eliminate_card_mark(n);
 878           }
 879           k -= (oc2 - use->outcnt());
 880         }
 881       } else {
 882         eliminate_card_mark(use);
 883       }
 884       j -= (oc1 - res->outcnt());
 885     }
 886     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
 887     _igvn.remove_dead_node(res);
 888   }
 889 
 890   //
 891   // Process other users of allocation's projections
 892   //
 893   if (_resproj != NULL && _resproj->outcnt() != 0) {
 894     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
 895       Node *use = _resproj->last_out(j);
 896       uint oc1 = _resproj->outcnt();
 897       if (use->is_Initialize()) {
 898         // Eliminate Initialize node.
 899         InitializeNode *init = use->as_Initialize();
 900         assert(init->outcnt() <= 2, "only a control and memory projection expected");
 901         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
 902         if (ctrl_proj != NULL) {
 903            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
 904           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
 905         }
 906         Node *mem_proj = init->proj_out(TypeFunc::Memory);
 907         if (mem_proj != NULL) {
 908           Node *mem = init->in(TypeFunc::Memory);
 909 #ifdef ASSERT
 910           if (mem->is_MergeMem()) {
 911             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
 912           } else {
 913             assert(mem == _memproj_fallthrough, "allocation memory projection");
 914           }
 915 #endif
 916           _igvn.replace_node(mem_proj, mem);
 917         }
 918       } else if (use->is_AddP()) {
 919         // raw memory addresses used only by the initialization
 920         _igvn.replace_node(use, C->top());
 921       } else  {
 922         assert(false, "only Initialize or AddP expected");
 923       }
 924       j -= (oc1 - _resproj->outcnt());
 925     }
 926   }
 927   if (_fallthroughcatchproj != NULL) {
 928     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
 929   }
 930   if (_memproj_fallthrough != NULL) {
 931     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
 932   }
 933   if (_memproj_catchall != NULL) {
 934     _igvn.replace_node(_memproj_catchall, C->top());
 935   }
 936   if (_ioproj_fallthrough != NULL) {
 937     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
 938   }
 939   if (_ioproj_catchall != NULL) {
 940     _igvn.replace_node(_ioproj_catchall, C->top());
 941   }
 942   if (_catchallcatchproj != NULL) {
 943     _igvn.replace_node(_catchallcatchproj, C->top());
 944   }
 945 }
 946 
 947 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
 948 
 949   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
 950     return false;
 951   }
 952 
 953   extract_call_projections(alloc);
 954 
 955   GrowableArray <SafePointNode *> safepoints;
 956   if (!can_eliminate_allocation(alloc, safepoints)) {
 957     return false;
 958   }
 959 
 960   if (!scalar_replacement(alloc, safepoints)) {
 961     return false;
 962   }
 963 
 964   CompileLog* log = C->log();
 965   if (log != NULL) {
 966     Node* klass = alloc->in(AllocateNode::KlassNode);
 967     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
 968     log->head("eliminate_allocation type='%d'",
 969               log->identify(tklass->klass()));
 970     JVMState* p = alloc->jvms();
 971     while (p != NULL) {
 972       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
 973       p = p->caller();
 974     }
 975     log->tail("eliminate_allocation");
 976   }
 977 
 978   process_users_of_allocation(alloc);
 979 
 980 #ifndef PRODUCT
 981   if (PrintEliminateAllocations) {
 982     if (alloc->is_AllocateArray())
 983       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
 984     else
 985       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
 986   }
 987 #endif
 988 
 989   return true;
 990 }
 991 
 992 
 993 //---------------------------set_eden_pointers-------------------------
 994 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
 995   if (UseTLAB) {                // Private allocation: load from TLS
 996     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
 997     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
 998     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
 999     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1000     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1001   } else {                      // Shared allocation: load from globals
1002     CollectedHeap* ch = Universe::heap();
1003     address top_adr = (address)ch->top_addr();
1004     address end_adr = (address)ch->end_addr();
1005     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1006     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1007   }
1008 }
1009 
1010 
1011 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1012   Node* adr = basic_plus_adr(base, offset);
1013   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1014   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
1015   transform_later(value);
1016   return value;
1017 }
1018 
1019 
1020 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1021   Node* adr = basic_plus_adr(base, offset);
1022   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
1023   transform_later(mem);
1024   return mem;
1025 }
1026 
1027 //=============================================================================
1028 //
1029 //                              A L L O C A T I O N
1030 //
1031 // Allocation attempts to be fast in the case of frequent small objects.
1032 // It breaks down like this:
1033 //
1034 // 1) Size in doublewords is computed.  This is a constant for objects and
1035 // variable for most arrays.  Doubleword units are used to avoid size
1036 // overflow of huge doubleword arrays.  We need doublewords in the end for
1037 // rounding.
1038 //
1039 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1040 // the slow path into the VM.  The slow path can throw any required
1041 // exceptions, and does all the special checks for very large arrays.  The
1042 // size test can constant-fold away for objects.  For objects with
1043 // finalizers it constant-folds the otherway: you always go slow with
1044 // finalizers.
1045 //
1046 // 3) If NOT using TLABs, this is the contended loop-back point.
1047 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1048 //
1049 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1050 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1051 // "size*8" we always enter the VM, where "largish" is a constant picked small
1052 // enough that there's always space between the eden max and 4Gig (old space is
1053 // there so it's quite large) and large enough that the cost of entering the VM
1054 // is dwarfed by the cost to initialize the space.
1055 //
1056 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1057 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1058 // adjusted heap top back down; there is no contention.
1059 //
1060 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1061 // fields.
1062 //
1063 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1064 // oop flavor.
1065 //
1066 //=============================================================================
1067 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1068 // Allocations bigger than this always go the slow route.
1069 // This value must be small enough that allocation attempts that need to
1070 // trigger exceptions go the slow route.  Also, it must be small enough so
1071 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1072 //=============================================================================j//
1073 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1074 // The allocator will coalesce int->oop copies away.  See comment in
1075 // coalesce.cpp about how this works.  It depends critically on the exact
1076 // code shape produced here, so if you are changing this code shape
1077 // make sure the GC info for the heap-top is correct in and around the
1078 // slow-path call.
1079 //
1080 
1081 void PhaseMacroExpand::expand_allocate_common(
1082             AllocateNode* alloc, // allocation node to be expanded
1083             Node* length,  // array length for an array allocation
1084             const TypeFunc* slow_call_type, // Type of slow call
1085             address slow_call_address  // Address of slow call
1086     )
1087 {
1088 
1089   Node* ctrl = alloc->in(TypeFunc::Control);
1090   Node* mem  = alloc->in(TypeFunc::Memory);
1091   Node* i_o  = alloc->in(TypeFunc::I_O);
1092   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1093   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1094   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1095 
1096   assert(ctrl != NULL, "must have control");
1097   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1098   // they will not be used if "always_slow" is set
1099   enum { slow_result_path = 1, fast_result_path = 2 };
1100   Node *result_region;
1101   Node *result_phi_rawmem;
1102   Node *result_phi_rawoop;
1103   Node *result_phi_i_o;
1104 
1105   // The initial slow comparison is a size check, the comparison
1106   // we want to do is a BoolTest::gt
1107   bool always_slow = false;
1108   int tv = _igvn.find_int_con(initial_slow_test, -1);
1109   if (tv >= 0) {
1110     always_slow = (tv == 1);
1111     initial_slow_test = NULL;
1112   } else {
1113     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1114   }
1115 
1116   if (C->env()->dtrace_alloc_probes() ||
1117       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
1118                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
1119     // Force slow-path allocation
1120     always_slow = true;
1121     initial_slow_test = NULL;
1122   }
1123 
1124 
1125   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1126   Node *slow_region = NULL;
1127   Node *toobig_false = ctrl;
1128 
1129   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1130   // generate the initial test if necessary
1131   if (initial_slow_test != NULL ) {
1132     slow_region = new (C, 3) RegionNode(3);
1133 
1134     // Now make the initial failure test.  Usually a too-big test but
1135     // might be a TRUE for finalizers or a fancy class check for
1136     // newInstance0.
1137     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1138     transform_later(toobig_iff);
1139     // Plug the failing-too-big test into the slow-path region
1140     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
1141     transform_later(toobig_true);
1142     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1143     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
1144     transform_later(toobig_false);
1145   } else {         // No initial test, just fall into next case
1146     toobig_false = ctrl;
1147     debug_only(slow_region = NodeSentinel);
1148   }
1149 
1150   Node *slow_mem = mem;  // save the current memory state for slow path
1151   // generate the fast allocation code unless we know that the initial test will always go slow
1152   if (!always_slow) {
1153     // Fast path modifies only raw memory.
1154     if (mem->is_MergeMem()) {
1155       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1156     }
1157 
1158     Node* eden_top_adr;
1159     Node* eden_end_adr;
1160 
1161     set_eden_pointers(eden_top_adr, eden_end_adr);
1162 
1163     // Load Eden::end.  Loop invariant and hoisted.
1164     //
1165     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1166     //       a TLAB to work around a bug where these values were being moved across
1167     //       a safepoint.  These are not oops, so they cannot be include in the oop
1168     //       map, but they can be changed by a GC.   The proper way to fix this would
1169     //       be to set the raw memory state when generating a  SafepointNode.  However
1170     //       this will require extensive changes to the loop optimization in order to
1171     //       prevent a degradation of the optimization.
1172     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1173     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1174 
1175     // allocate the Region and Phi nodes for the result
1176     result_region = new (C, 3) RegionNode(3);
1177     result_phi_rawmem = new (C, 3) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1178     result_phi_rawoop = new (C, 3) PhiNode(result_region, TypeRawPtr::BOTTOM);
1179     result_phi_i_o    = new (C, 3) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1180 
1181     // We need a Region for the loop-back contended case.
1182     enum { fall_in_path = 1, contended_loopback_path = 2 };
1183     Node *contended_region;
1184     Node *contended_phi_rawmem;
1185     if (UseTLAB) {
1186       contended_region = toobig_false;
1187       contended_phi_rawmem = mem;
1188     } else {
1189       contended_region = new (C, 3) RegionNode(3);
1190       contended_phi_rawmem = new (C, 3) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1191       // Now handle the passing-too-big test.  We fall into the contended
1192       // loop-back merge point.
1193       contended_region    ->init_req(fall_in_path, toobig_false);
1194       contended_phi_rawmem->init_req(fall_in_path, mem);
1195       transform_later(contended_region);
1196       transform_later(contended_phi_rawmem);
1197     }
1198 
1199     // Load(-locked) the heap top.
1200     // See note above concerning the control input when using a TLAB
1201     Node *old_eden_top = UseTLAB
1202       ? new (C, 3) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
1203       : new (C, 3) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
1204 
1205     transform_later(old_eden_top);
1206     // Add to heap top to get a new heap top
1207     Node *new_eden_top = new (C, 4) AddPNode(top(), old_eden_top, size_in_bytes);
1208     transform_later(new_eden_top);
1209     // Check for needing a GC; compare against heap end
1210     Node *needgc_cmp = new (C, 3) CmpPNode(new_eden_top, eden_end);
1211     transform_later(needgc_cmp);
1212     Node *needgc_bol = new (C, 2) BoolNode(needgc_cmp, BoolTest::ge);
1213     transform_later(needgc_bol);
1214     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
1215     transform_later(needgc_iff);
1216 
1217     // Plug the failing-heap-space-need-gc test into the slow-path region
1218     Node *needgc_true = new (C, 1) IfTrueNode(needgc_iff);
1219     transform_later(needgc_true);
1220     if (initial_slow_test) {
1221       slow_region->init_req(need_gc_path, needgc_true);
1222       // This completes all paths into the slow merge point
1223       transform_later(slow_region);
1224     } else {                      // No initial slow path needed!
1225       // Just fall from the need-GC path straight into the VM call.
1226       slow_region = needgc_true;
1227     }
1228     // No need for a GC.  Setup for the Store-Conditional
1229     Node *needgc_false = new (C, 1) IfFalseNode(needgc_iff);
1230     transform_later(needgc_false);
1231 
1232     // Grab regular I/O before optional prefetch may change it.
1233     // Slow-path does no I/O so just set it to the original I/O.
1234     result_phi_i_o->init_req(slow_result_path, i_o);
1235 
1236     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1237                               old_eden_top, new_eden_top, length);
1238 
1239     // Name successful fast-path variables
1240     Node* fast_oop = old_eden_top;
1241     Node* fast_oop_ctrl;
1242     Node* fast_oop_rawmem;
1243 
1244     // Store (-conditional) the modified eden top back down.
1245     // StorePConditional produces flags for a test PLUS a modified raw
1246     // memory state.
1247     if (UseTLAB) {
1248       Node* store_eden_top =
1249         new (C, 4) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1250                               TypeRawPtr::BOTTOM, new_eden_top);
1251       transform_later(store_eden_top);
1252       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1253       fast_oop_rawmem = store_eden_top;
1254     } else {
1255       Node* store_eden_top =
1256         new (C, 5) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1257                                          new_eden_top, fast_oop/*old_eden_top*/);
1258       transform_later(store_eden_top);
1259       Node *contention_check = new (C, 2) BoolNode(store_eden_top, BoolTest::ne);
1260       transform_later(contention_check);
1261       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
1262       transform_later(store_eden_top);
1263 
1264       // If not using TLABs, check to see if there was contention.
1265       IfNode *contention_iff = new (C, 2) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
1266       transform_later(contention_iff);
1267       Node *contention_true = new (C, 1) IfTrueNode(contention_iff);
1268       transform_later(contention_true);
1269       // If contention, loopback and try again.
1270       contended_region->init_req(contended_loopback_path, contention_true);
1271       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
1272 
1273       // Fast-path succeeded with no contention!
1274       Node *contention_false = new (C, 1) IfFalseNode(contention_iff);
1275       transform_later(contention_false);
1276       fast_oop_ctrl = contention_false;
1277 
1278       // Bump total allocated bytes for this thread
1279       Node* thread = new (C, 1) ThreadLocalNode();
1280       transform_later(thread);
1281       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
1282                                              in_bytes(JavaThread::allocated_bytes_offset()));
1283       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1284                                     0, TypeLong::LONG, T_LONG);
1285 #ifdef _LP64
1286       Node* alloc_size = size_in_bytes;
1287 #else
1288       Node* alloc_size = new (C, 2) ConvI2LNode(size_in_bytes);
1289       transform_later(alloc_size);
1290 #endif
1291       Node* new_alloc_bytes = new (C, 3) AddLNode(alloc_bytes, alloc_size);
1292       transform_later(new_alloc_bytes);
1293       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1294                                    0, new_alloc_bytes, T_LONG);
1295     }
1296 
1297     fast_oop_rawmem = initialize_object(alloc,
1298                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1299                                         klass_node, length, size_in_bytes);
1300 
1301     if (C->env()->dtrace_extended_probes()) {
1302       // Slow-path call
1303       int size = TypeFunc::Parms + 2;
1304       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1305                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1306                                                       "dtrace_object_alloc",
1307                                                       TypeRawPtr::BOTTOM);
1308 
1309       // Get base of thread-local storage area
1310       Node* thread = new (C, 1) ThreadLocalNode();
1311       transform_later(thread);
1312 
1313       call->init_req(TypeFunc::Parms+0, thread);
1314       call->init_req(TypeFunc::Parms+1, fast_oop);
1315       call->init_req(TypeFunc::Control, fast_oop_ctrl);
1316       call->init_req(TypeFunc::I_O    , top()); // does no i/o
1317       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1318       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1319       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1320       transform_later(call);
1321       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
1322       transform_later(fast_oop_ctrl);
1323       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
1324       transform_later(fast_oop_rawmem);
1325     }
1326 
1327     // Plug in the successful fast-path into the result merge point
1328     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1329     result_phi_rawoop->init_req(fast_result_path, fast_oop);
1330     result_phi_i_o   ->init_req(fast_result_path, i_o);
1331     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1332   } else {
1333     slow_region = ctrl;
1334   }
1335 
1336   // Generate slow-path call
1337   CallNode *call = new (C, slow_call_type->domain()->cnt())
1338     CallStaticJavaNode(slow_call_type, slow_call_address,
1339                        OptoRuntime::stub_name(slow_call_address),
1340                        alloc->jvms()->bci(),
1341                        TypePtr::BOTTOM);
1342   call->init_req( TypeFunc::Control, slow_region );
1343   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1344   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1345   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1346   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1347 
1348   call->init_req(TypeFunc::Parms+0, klass_node);
1349   if (length != NULL) {
1350     call->init_req(TypeFunc::Parms+1, length);
1351   }
1352 
1353   // Copy debug information and adjust JVMState information, then replace
1354   // allocate node with the call
1355   copy_call_debug_info((CallNode *) alloc,  call);
1356   if (!always_slow) {
1357     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1358   }
1359   _igvn.replace_node(alloc, call);
1360   transform_later(call);
1361 
1362   // Identify the output projections from the allocate node and
1363   // adjust any references to them.
1364   // The control and io projections look like:
1365   //
1366   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1367   //  Allocate                   Catch
1368   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1369   //
1370   //  We are interested in the CatchProj nodes.
1371   //
1372   extract_call_projections(call);
1373 
1374   // An allocate node has separate memory projections for the uses on the control and i_o paths
1375   // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
1376   if (!always_slow && _memproj_fallthrough != NULL) {
1377     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1378       Node *use = _memproj_fallthrough->fast_out(i);
1379       _igvn.hash_delete(use);
1380       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1381       _igvn._worklist.push(use);
1382       // back up iterator
1383       --i;
1384     }
1385   }
1386   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
1387   // we end up with a call that has only 1 memory projection
1388   if (_memproj_catchall != NULL ) {
1389     if (_memproj_fallthrough == NULL) {
1390       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
1391       transform_later(_memproj_fallthrough);
1392     }
1393     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1394       Node *use = _memproj_catchall->fast_out(i);
1395       _igvn.hash_delete(use);
1396       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1397       _igvn._worklist.push(use);
1398       // back up iterator
1399       --i;
1400     }
1401   }
1402 
1403   // An allocate node has separate i_o projections for the uses on the control and i_o paths
1404   // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
1405   if (_ioproj_fallthrough == NULL) {
1406     _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
1407     transform_later(_ioproj_fallthrough);
1408   } else if (!always_slow) {
1409     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1410       Node *use = _ioproj_fallthrough->fast_out(i);
1411 
1412       _igvn.hash_delete(use);
1413       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1414       _igvn._worklist.push(use);
1415       // back up iterator
1416       --i;
1417     }
1418   }
1419   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
1420   // we end up with a call that has only 1 control projection
1421   if (_ioproj_catchall != NULL ) {
1422     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1423       Node *use = _ioproj_catchall->fast_out(i);
1424       _igvn.hash_delete(use);
1425       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1426       _igvn._worklist.push(use);
1427       // back up iterator
1428       --i;
1429     }
1430   }
1431 
1432   // if we generated only a slow call, we are done
1433   if (always_slow)
1434     return;
1435 
1436 
1437   if (_fallthroughcatchproj != NULL) {
1438     ctrl = _fallthroughcatchproj->clone();
1439     transform_later(ctrl);
1440     _igvn.replace_node(_fallthroughcatchproj, result_region);
1441   } else {
1442     ctrl = top();
1443   }
1444   Node *slow_result;
1445   if (_resproj == NULL) {
1446     // no uses of the allocation result
1447     slow_result = top();
1448   } else {
1449     slow_result = _resproj->clone();
1450     transform_later(slow_result);
1451     _igvn.replace_node(_resproj, result_phi_rawoop);
1452   }
1453 
1454   // Plug slow-path into result merge point
1455   result_region    ->init_req( slow_result_path, ctrl );
1456   result_phi_rawoop->init_req( slow_result_path, slow_result);
1457   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1458   transform_later(result_region);
1459   transform_later(result_phi_rawoop);
1460   transform_later(result_phi_rawmem);
1461   transform_later(result_phi_i_o);
1462   // This completes all paths into the result merge point
1463 }
1464 
1465 
1466 // Helper for PhaseMacroExpand::expand_allocate_common.
1467 // Initializes the newly-allocated storage.
1468 Node*
1469 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1470                                     Node* control, Node* rawmem, Node* object,
1471                                     Node* klass_node, Node* length,
1472                                     Node* size_in_bytes) {
1473   InitializeNode* init = alloc->initialization();
1474   // Store the klass & mark bits
1475   Node* mark_node = NULL;
1476   // For now only enable fast locking for non-array types
1477   if (UseBiasedLocking && (length == NULL)) {
1478     mark_node = make_load(control, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
1479   } else {
1480     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1481   }
1482   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1483 
1484   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
1485   int header_size = alloc->minimum_header_size();  // conservatively small
1486 
1487   // Array length
1488   if (length != NULL) {         // Arrays need length field
1489     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1490     // conservatively small header size:
1491     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1492     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1493     if (k->is_array_klass())    // we know the exact header size in most cases:
1494       header_size = Klass::layout_helper_header_size(k->layout_helper());
1495   }
1496 
1497   // Clear the object body, if necessary.
1498   if (init == NULL) {
1499     // The init has somehow disappeared; be cautious and clear everything.
1500     //
1501     // This can happen if a node is allocated but an uncommon trap occurs
1502     // immediately.  In this case, the Initialize gets associated with the
1503     // trap, and may be placed in a different (outer) loop, if the Allocate
1504     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1505     // there can be two Allocates to one Initialize.  The answer in all these
1506     // edge cases is safety first.  It is always safe to clear immediately
1507     // within an Allocate, and then (maybe or maybe not) clear some more later.
1508     if (!ZeroTLAB)
1509       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1510                                             header_size, size_in_bytes,
1511                                             &_igvn);
1512   } else {
1513     if (!init->is_complete()) {
1514       // Try to win by zeroing only what the init does not store.
1515       // We can also try to do some peephole optimizations,
1516       // such as combining some adjacent subword stores.
1517       rawmem = init->complete_stores(control, rawmem, object,
1518                                      header_size, size_in_bytes, &_igvn);
1519     }
1520     // We have no more use for this link, since the AllocateNode goes away:
1521     init->set_req(InitializeNode::RawAddress, top());
1522     // (If we keep the link, it just confuses the register allocator,
1523     // who thinks he sees a real use of the address by the membar.)
1524   }
1525 
1526   return rawmem;
1527 }
1528 
1529 // Generate prefetch instructions for next allocations.
1530 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1531                                         Node*& contended_phi_rawmem,
1532                                         Node* old_eden_top, Node* new_eden_top,
1533                                         Node* length) {
1534    enum { fall_in_path = 1, pf_path = 2 };
1535    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1536       // Generate prefetch allocation with watermark check.
1537       // As an allocation hits the watermark, we will prefetch starting
1538       // at a "distance" away from watermark.
1539 
1540       Node *pf_region = new (C, 3) RegionNode(3);
1541       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1542                                                 TypeRawPtr::BOTTOM );
1543       // I/O is used for Prefetch
1544       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
1545 
1546       Node *thread = new (C, 1) ThreadLocalNode();
1547       transform_later(thread);
1548 
1549       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
1550                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1551       transform_later(eden_pf_adr);
1552 
1553       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
1554                                    contended_phi_rawmem, eden_pf_adr,
1555                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
1556       transform_later(old_pf_wm);
1557 
1558       // check against new_eden_top
1559       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
1560       transform_later(need_pf_cmp);
1561       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
1562       transform_later(need_pf_bol);
1563       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
1564                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1565       transform_later(need_pf_iff);
1566 
1567       // true node, add prefetchdistance
1568       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
1569       transform_later(need_pf_true);
1570 
1571       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
1572       transform_later(need_pf_false);
1573 
1574       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
1575                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1576       transform_later(new_pf_wmt );
1577       new_pf_wmt->set_req(0, need_pf_true);
1578 
1579       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
1580                                        contended_phi_rawmem, eden_pf_adr,
1581                                        TypeRawPtr::BOTTOM, new_pf_wmt );
1582       transform_later(store_new_wmt);
1583 
1584       // adding prefetches
1585       pf_phi_abio->init_req( fall_in_path, i_o );
1586 
1587       Node *prefetch_adr;
1588       Node *prefetch;
1589       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
1590       uint step_size = AllocatePrefetchStepSize;
1591       uint distance = 0;
1592 
1593       for ( uint i = 0; i < lines; i++ ) {
1594         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
1595                                             _igvn.MakeConX(distance) );
1596         transform_later(prefetch_adr);
1597         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1598         transform_later(prefetch);
1599         distance += step_size;
1600         i_o = prefetch;
1601       }
1602       pf_phi_abio->set_req( pf_path, i_o );
1603 
1604       pf_region->init_req( fall_in_path, need_pf_false );
1605       pf_region->init_req( pf_path, need_pf_true );
1606 
1607       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1608       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1609 
1610       transform_later(pf_region);
1611       transform_later(pf_phi_rawmem);
1612       transform_later(pf_phi_abio);
1613 
1614       needgc_false = pf_region;
1615       contended_phi_rawmem = pf_phi_rawmem;
1616       i_o = pf_phi_abio;
1617    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1618       // Insert a prefetch for each allocation only on the fast-path
1619       Node *pf_region = new (C, 3) RegionNode(3);
1620       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1621                                                 TypeRawPtr::BOTTOM );
1622 
1623       // Generate several prefetch instructions only for arrays.
1624       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
1625       uint step_size = AllocatePrefetchStepSize;
1626       uint distance = AllocatePrefetchDistance;
1627 
1628       // Next cache address.
1629       Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
1630                                             _igvn.MakeConX(distance));
1631       transform_later(cache_adr);
1632       cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
1633       transform_later(cache_adr);
1634       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1635       cache_adr = new (C, 3) AndXNode(cache_adr, mask);
1636       transform_later(cache_adr);
1637       cache_adr = new (C, 2) CastX2PNode(cache_adr);
1638       transform_later(cache_adr);
1639 
1640       // Prefetch
1641       Node *prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, cache_adr );
1642       prefetch->set_req(0, needgc_false);
1643       transform_later(prefetch);
1644       contended_phi_rawmem = prefetch;
1645       Node *prefetch_adr;
1646       distance = step_size;
1647       for ( uint i = 1; i < lines; i++ ) {
1648         prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
1649                                             _igvn.MakeConX(distance) );
1650         transform_later(prefetch_adr);
1651         prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, prefetch_adr );
1652         transform_later(prefetch);
1653         distance += step_size;
1654         contended_phi_rawmem = prefetch;
1655       }
1656    } else if( AllocatePrefetchStyle > 0 ) {
1657       // Insert a prefetch for each allocation only on the fast-path
1658       Node *prefetch_adr;
1659       Node *prefetch;
1660       // Generate several prefetch instructions only for arrays.
1661       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
1662       uint step_size = AllocatePrefetchStepSize;
1663       uint distance = AllocatePrefetchDistance;
1664       for ( uint i = 0; i < lines; i++ ) {
1665         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
1666                                             _igvn.MakeConX(distance) );
1667         transform_later(prefetch_adr);
1668         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1669         // Do not let it float too high, since if eden_top == eden_end,
1670         // both might be null.
1671         if( i == 0 ) { // Set control for first prefetch, next follows it
1672           prefetch->init_req(0, needgc_false);
1673         }
1674         transform_later(prefetch);
1675         distance += step_size;
1676         i_o = prefetch;
1677       }
1678    }
1679    return i_o;
1680 }
1681 
1682 
1683 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1684   expand_allocate_common(alloc, NULL,
1685                          OptoRuntime::new_instance_Type(),
1686                          OptoRuntime::new_instance_Java());
1687 }
1688 
1689 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1690   Node* length = alloc->in(AllocateNode::ALength);
1691   expand_allocate_common(alloc, length,
1692                          OptoRuntime::new_array_Type(),
1693                          OptoRuntime::new_array_Java());
1694 }
1695 
1696 
1697 // we have determined that this lock/unlock can be eliminated, we simply
1698 // eliminate the node without expanding it.
1699 //
1700 // Note:  The membar's associated with the lock/unlock are currently not
1701 //        eliminated.  This should be investigated as a future enhancement.
1702 //
1703 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
1704 
1705   if (!alock->is_eliminated()) {
1706     return false;
1707   }
1708   if (alock->is_Lock() && !alock->is_coarsened()) {
1709       // Create new "eliminated" BoxLock node and use it
1710       // in monitor debug info for the same object.
1711       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1712       Node* obj = alock->obj_node();
1713       if (!oldbox->is_eliminated()) {
1714         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1715         newbox->set_eliminated();
1716         transform_later(newbox);
1717         // Replace old box node with new box for all users
1718         // of the same object.
1719         for (uint i = 0; i < oldbox->outcnt();) {
1720 
1721           bool next_edge = true;
1722           Node* u = oldbox->raw_out(i);
1723           if (u == alock) {
1724             i++;
1725             continue; // It will be removed below
1726           }
1727           if (u->is_Lock() &&
1728               u->as_Lock()->obj_node() == obj &&
1729               // oldbox could be referenced in debug info also
1730               u->as_Lock()->box_node() == oldbox) {
1731             assert(u->as_Lock()->is_eliminated(), "sanity");
1732             _igvn.hash_delete(u);
1733             u->set_req(TypeFunc::Parms + 1, newbox);
1734             next_edge = false;
1735 #ifdef ASSERT
1736           } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
1737             assert(u->as_Unlock()->is_eliminated(), "sanity");
1738 #endif
1739           }
1740           // Replace old box in monitor debug info.
1741           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1742             SafePointNode* sfn = u->as_SafePoint();
1743             JVMState* youngest_jvms = sfn->jvms();
1744             int max_depth = youngest_jvms->depth();
1745             for (int depth = 1; depth <= max_depth; depth++) {
1746               JVMState* jvms = youngest_jvms->of_depth(depth);
1747               int num_mon  = jvms->nof_monitors();
1748               // Loop over monitors
1749               for (int idx = 0; idx < num_mon; idx++) {
1750                 Node* obj_node = sfn->monitor_obj(jvms, idx);
1751                 Node* box_node = sfn->monitor_box(jvms, idx);
1752                 if (box_node == oldbox && obj_node == obj) {
1753                   int j = jvms->monitor_box_offset(idx);
1754                   _igvn.hash_delete(u);
1755                   u->set_req(j, newbox);
1756                   next_edge = false;
1757                 }
1758               } // for (int idx = 0;
1759             } // for (int depth = 1;
1760           } // if (u->is_SafePoint()
1761           if (next_edge) i++;
1762         } // for (uint i = 0; i < oldbox->outcnt();)
1763       } // if (!oldbox->is_eliminated())
1764   } // if (alock->is_Lock() && !lock->is_coarsened())
1765 
1766   CompileLog* log = C->log();
1767   if (log != NULL) {
1768     log->head("eliminate_lock lock='%d'",
1769               alock->is_Lock());
1770     JVMState* p = alock->jvms();
1771     while (p != NULL) {
1772       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1773       p = p->caller();
1774     }
1775     log->tail("eliminate_lock");
1776   }
1777 
1778   #ifndef PRODUCT
1779   if (PrintEliminateLocks) {
1780     if (alock->is_Lock()) {
1781       tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
1782     } else {
1783       tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
1784     }
1785   }
1786   #endif
1787 
1788   Node* mem  = alock->in(TypeFunc::Memory);
1789   Node* ctrl = alock->in(TypeFunc::Control);
1790 
1791   extract_call_projections(alock);
1792   // There are 2 projections from the lock.  The lock node will
1793   // be deleted when its last use is subsumed below.
1794   assert(alock->outcnt() == 2 &&
1795          _fallthroughproj != NULL &&
1796          _memproj_fallthrough != NULL,
1797          "Unexpected projections from Lock/Unlock");
1798 
1799   Node* fallthroughproj = _fallthroughproj;
1800   Node* memproj_fallthrough = _memproj_fallthrough;
1801 
1802   // The memory projection from a lock/unlock is RawMem
1803   // The input to a Lock is merged memory, so extract its RawMem input
1804   // (unless the MergeMem has been optimized away.)
1805   if (alock->is_Lock()) {
1806     // Seach for MemBarAcquire node and delete it also.
1807     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
1808     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
1809     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
1810     Node* memproj = membar->proj_out(TypeFunc::Memory);
1811     _igvn.replace_node(ctrlproj, fallthroughproj);
1812     _igvn.replace_node(memproj, memproj_fallthrough);
1813 
1814     // Delete FastLock node also if this Lock node is unique user
1815     // (a loop peeling may clone a Lock node).
1816     Node* flock = alock->as_Lock()->fastlock_node();
1817     if (flock->outcnt() == 1) {
1818       assert(flock->unique_out() == alock, "sanity");
1819       _igvn.replace_node(flock, top());
1820     }
1821   }
1822 
1823   // Seach for MemBarRelease node and delete it also.
1824   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
1825       ctrl->in(0)->is_MemBar()) {
1826     MemBarNode* membar = ctrl->in(0)->as_MemBar();
1827     assert(membar->Opcode() == Op_MemBarRelease &&
1828            mem->is_Proj() && membar == mem->in(0), "");
1829     _igvn.replace_node(fallthroughproj, ctrl);
1830     _igvn.replace_node(memproj_fallthrough, mem);
1831     fallthroughproj = ctrl;
1832     memproj_fallthrough = mem;
1833     ctrl = membar->in(TypeFunc::Control);
1834     mem  = membar->in(TypeFunc::Memory);
1835   }
1836 
1837   _igvn.replace_node(fallthroughproj, ctrl);
1838   _igvn.replace_node(memproj_fallthrough, mem);
1839   return true;
1840 }
1841 
1842 
1843 //------------------------------expand_lock_node----------------------
1844 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
1845 
1846   Node* ctrl = lock->in(TypeFunc::Control);
1847   Node* mem = lock->in(TypeFunc::Memory);
1848   Node* obj = lock->obj_node();
1849   Node* box = lock->box_node();
1850   Node* flock = lock->fastlock_node();
1851 
1852   // Make the merge point
1853   Node *region;
1854   Node *mem_phi;
1855   Node *slow_path;
1856 
1857   if (UseOptoBiasInlining) {
1858     /*
1859      *  See the full description in MacroAssembler::biased_locking_enter().
1860      *
1861      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
1862      *    // The object is biased.
1863      *    proto_node = klass->prototype_header;
1864      *    o_node = thread | proto_node;
1865      *    x_node = o_node ^ mark_word;
1866      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
1867      *      // Done.
1868      *    } else {
1869      *      if( (x_node & biased_lock_mask) != 0 ) {
1870      *        // The klass's prototype header is no longer biased.
1871      *        cas(&mark_word, mark_word, proto_node)
1872      *        goto cas_lock;
1873      *      } else {
1874      *        // The klass's prototype header is still biased.
1875      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
1876      *          old = mark_word;
1877      *          new = o_node;
1878      *        } else {
1879      *          // Different thread or anonymous biased.
1880      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
1881      *          new = thread | old;
1882      *        }
1883      *        // Try to rebias.
1884      *        if( cas(&mark_word, old, new) == 0 ) {
1885      *          // Done.
1886      *        } else {
1887      *          goto slow_path; // Failed.
1888      *        }
1889      *      }
1890      *    }
1891      *  } else {
1892      *    // The object is not biased.
1893      *    cas_lock:
1894      *    if( FastLock(obj) == 0 ) {
1895      *      // Done.
1896      *    } else {
1897      *      slow_path:
1898      *      OptoRuntime::complete_monitor_locking_Java(obj);
1899      *    }
1900      *  }
1901      */
1902 
1903     region  = new (C, 5) RegionNode(5);
1904     // create a Phi for the memory state
1905     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1906 
1907     Node* fast_lock_region  = new (C, 3) RegionNode(3);
1908     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1909 
1910     // First, check mark word for the biased lock pattern.
1911     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
1912 
1913     // Get fast path - mark word has the biased lock pattern.
1914     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
1915                          markOopDesc::biased_lock_mask_in_place,
1916                          markOopDesc::biased_lock_pattern, true);
1917     // fast_lock_region->in(1) is set to slow path.
1918     fast_lock_mem_phi->init_req(1, mem);
1919 
1920     // Now check that the lock is biased to the current thread and has
1921     // the same epoch and bias as Klass::_prototype_header.
1922 
1923     // Special-case a fresh allocation to avoid building nodes:
1924     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
1925     if (klass_node == NULL) {
1926       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1927       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
1928 #ifdef _LP64
1929       if (UseCompressedOops && klass_node->is_DecodeN()) {
1930         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
1931         klass_node->in(1)->init_req(0, ctrl);
1932       } else
1933 #endif
1934       klass_node->init_req(0, ctrl);
1935     }
1936     Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
1937 
1938     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
1939     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1940     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
1941     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
1942 
1943     // Get slow path - mark word does NOT match the value.
1944     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
1945                                       (~markOopDesc::age_mask_in_place), 0);
1946     // region->in(3) is set to fast path - the object is biased to the current thread.
1947     mem_phi->init_req(3, mem);
1948 
1949 
1950     // Mark word does NOT match the value (thread | Klass::_prototype_header).
1951 
1952 
1953     // First, check biased pattern.
1954     // Get fast path - _prototype_header has the same biased lock pattern.
1955     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
1956                           markOopDesc::biased_lock_mask_in_place, 0, true);
1957 
1958     not_biased_ctrl = fast_lock_region->in(2); // Slow path
1959     // fast_lock_region->in(2) - the prototype header is no longer biased
1960     // and we have to revoke the bias on this object.
1961     // We are going to try to reset the mark of this object to the prototype
1962     // value and fall through to the CAS-based locking scheme.
1963     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
1964     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
1965                                                  proto_node, mark_node);
1966     transform_later(cas);
1967     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
1968     fast_lock_mem_phi->init_req(2, proj);
1969 
1970 
1971     // Second, check epoch bits.
1972     Node* rebiased_region  = new (C, 3) RegionNode(3);
1973     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1974     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1975 
1976     // Get slow path - mark word does NOT match epoch bits.
1977     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
1978                                       markOopDesc::epoch_mask_in_place, 0);
1979     // The epoch of the current bias is not valid, attempt to rebias the object
1980     // toward the current thread.
1981     rebiased_region->init_req(2, epoch_ctrl);
1982     old_phi->init_req(2, mark_node);
1983     new_phi->init_req(2, o_node);
1984 
1985     // rebiased_region->in(1) is set to fast path.
1986     // The epoch of the current bias is still valid but we know
1987     // nothing about the owner; it might be set or it might be clear.
1988     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
1989                              markOopDesc::age_mask_in_place |
1990                              markOopDesc::epoch_mask_in_place);
1991     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
1992     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1993     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
1994     old_phi->init_req(1, old);
1995     new_phi->init_req(1, new_mark);
1996 
1997     transform_later(rebiased_region);
1998     transform_later(old_phi);
1999     transform_later(new_phi);
2000 
2001     // Try to acquire the bias of the object using an atomic operation.
2002     // If this fails we will go in to the runtime to revoke the object's bias.
2003     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
2004                                            new_phi, old_phi);
2005     transform_later(cas);
2006     proj = transform_later( new (C, 1) SCMemProjNode(cas));
2007 
2008     // Get slow path - Failed to CAS.
2009     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2010     mem_phi->init_req(4, proj);
2011     // region->in(4) is set to fast path - the object is rebiased to the current thread.
2012 
2013     // Failed to CAS.
2014     slow_path  = new (C, 3) RegionNode(3);
2015     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2016 
2017     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2018     slow_mem->init_req(1, proj);
2019 
2020     // Call CAS-based locking scheme (FastLock node).
2021 
2022     transform_later(fast_lock_region);
2023     transform_later(fast_lock_mem_phi);
2024 
2025     // Get slow path - FastLock failed to lock the object.
2026     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2027     mem_phi->init_req(2, fast_lock_mem_phi);
2028     // region->in(2) is set to fast path - the object is locked to the current thread.
2029 
2030     slow_path->init_req(2, ctrl); // Capture slow-control
2031     slow_mem->init_req(2, fast_lock_mem_phi);
2032 
2033     transform_later(slow_path);
2034     transform_later(slow_mem);
2035     // Reset lock's memory edge.
2036     lock->set_req(TypeFunc::Memory, slow_mem);
2037 
2038   } else {
2039     region  = new (C, 3) RegionNode(3);
2040     // create a Phi for the memory state
2041     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2042 
2043     // Optimize test; set region slot 2
2044     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2045     mem_phi->init_req(2, mem);
2046   }
2047 
2048   // Make slow path call
2049   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
2050 
2051   extract_call_projections(call);
2052 
2053   // Slow path can only throw asynchronous exceptions, which are always
2054   // de-opted.  So the compiler thinks the slow-call can never throw an
2055   // exception.  If it DOES throw an exception we would need the debug
2056   // info removed first (since if it throws there is no monitor).
2057   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2058            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2059 
2060   // Capture slow path
2061   // disconnect fall-through projection from call and create a new one
2062   // hook up users of fall-through projection to region
2063   Node *slow_ctrl = _fallthroughproj->clone();
2064   transform_later(slow_ctrl);
2065   _igvn.hash_delete(_fallthroughproj);
2066   _fallthroughproj->disconnect_inputs(NULL);
2067   region->init_req(1, slow_ctrl);
2068   // region inputs are now complete
2069   transform_later(region);
2070   _igvn.replace_node(_fallthroughproj, region);
2071 
2072   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2073   mem_phi->init_req(1, memproj );
2074   transform_later(mem_phi);
2075   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2076 }
2077 
2078 //------------------------------expand_unlock_node----------------------
2079 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2080 
2081   Node* ctrl = unlock->in(TypeFunc::Control);
2082   Node* mem = unlock->in(TypeFunc::Memory);
2083   Node* obj = unlock->obj_node();
2084   Node* box = unlock->box_node();
2085 
2086   // No need for a null check on unlock
2087 
2088   // Make the merge point
2089   Node *region;
2090   Node *mem_phi;
2091 
2092   if (UseOptoBiasInlining) {
2093     // Check for biased locking unlock case, which is a no-op.
2094     // See the full description in MacroAssembler::biased_locking_exit().
2095     region  = new (C, 4) RegionNode(4);
2096     // create a Phi for the memory state
2097     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2098     mem_phi->init_req(3, mem);
2099 
2100     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2101     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2102                          markOopDesc::biased_lock_mask_in_place,
2103                          markOopDesc::biased_lock_pattern);
2104   } else {
2105     region  = new (C, 3) RegionNode(3);
2106     // create a Phi for the memory state
2107     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2108   }
2109 
2110   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
2111   funlock = transform_later( funlock )->as_FastUnlock();
2112   // Optimize test; set region slot 2
2113   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2114 
2115   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
2116 
2117   extract_call_projections(call);
2118 
2119   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2120            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2121 
2122   // No exceptions for unlocking
2123   // Capture slow path
2124   // disconnect fall-through projection from call and create a new one
2125   // hook up users of fall-through projection to region
2126   Node *slow_ctrl = _fallthroughproj->clone();
2127   transform_later(slow_ctrl);
2128   _igvn.hash_delete(_fallthroughproj);
2129   _fallthroughproj->disconnect_inputs(NULL);
2130   region->init_req(1, slow_ctrl);
2131   // region inputs are now complete
2132   transform_later(region);
2133   _igvn.replace_node(_fallthroughproj, region);
2134 
2135   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2136   mem_phi->init_req(1, memproj );
2137   mem_phi->init_req(2, mem);
2138   transform_later(mem_phi);
2139   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2140 }
2141 
2142 //------------------------------expand_macro_nodes----------------------
2143 //  Returns true if a failure occurred.
2144 bool PhaseMacroExpand::expand_macro_nodes() {
2145   if (C->macro_count() == 0)
2146     return false;
2147   // First, attempt to eliminate locks
2148   bool progress = true;
2149   while (progress) {
2150     progress = false;
2151     for (int i = C->macro_count(); i > 0; i--) {
2152       Node * n = C->macro_node(i-1);
2153       bool success = false;
2154       debug_only(int old_macro_count = C->macro_count(););
2155       if (n->is_AbstractLock()) {
2156         success = eliminate_locking_node(n->as_AbstractLock());
2157       } else if (n->Opcode() == Op_LoopLimit) {
2158         // Remove it from macro list and put on IGVN worklist to optimize.
2159         C->remove_macro_node(n);
2160         _igvn._worklist.push(n);
2161         success = true;
2162       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2163         _igvn.replace_node(n, n->in(1));
2164         success = true;
2165       }
2166       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2167       progress = progress || success;
2168     }
2169   }
2170   // Next, attempt to eliminate allocations
2171   progress = true;
2172   while (progress) {
2173     progress = false;
2174     for (int i = C->macro_count(); i > 0; i--) {
2175       Node * n = C->macro_node(i-1);
2176       bool success = false;
2177       debug_only(int old_macro_count = C->macro_count(););
2178       switch (n->class_id()) {
2179       case Node::Class_Allocate:
2180       case Node::Class_AllocateArray:
2181         success = eliminate_allocate_node(n->as_Allocate());
2182         break;
2183       case Node::Class_Lock:
2184       case Node::Class_Unlock:
2185         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2186         break;
2187       default:
2188         assert(false, "unknown node type in macro list");
2189       }
2190       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2191       progress = progress || success;
2192     }
2193   }
2194   // Make sure expansion will not cause node limit to be exceeded.
2195   // Worst case is a macro node gets expanded into about 50 nodes.
2196   // Allow 50% more for optimization.
2197   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
2198     return true;
2199 
2200   // expand "macro" nodes
2201   // nodes are removed from the macro list as they are processed
2202   while (C->macro_count() > 0) {
2203     int macro_count = C->macro_count();
2204     Node * n = C->macro_node(macro_count-1);
2205     assert(n->is_macro(), "only macro nodes expected here");
2206     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2207       // node is unreachable, so don't try to expand it
2208       C->remove_macro_node(n);
2209       continue;
2210     }
2211     switch (n->class_id()) {
2212     case Node::Class_Allocate:
2213       expand_allocate(n->as_Allocate());
2214       break;
2215     case Node::Class_AllocateArray:
2216       expand_allocate_array(n->as_AllocateArray());
2217       break;
2218     case Node::Class_Lock:
2219       expand_lock_node(n->as_Lock());
2220       break;
2221     case Node::Class_Unlock:
2222       expand_unlock_node(n->as_Unlock());
2223       break;
2224     default:
2225       assert(false, "unknown node type in macro list");
2226     }
2227     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2228     if (C->failing())  return true;
2229   }
2230 
2231   _igvn.set_delay_transform(false);
2232   _igvn.optimize();
2233   return false;
2234 }