1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "libadt/vectset.hpp"
  28 #include "memory/allocation.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/escape.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/rootnode.hpp"
  36 
  37 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
  38   uint v = (targIdx << EdgeShift) + ((uint) et);
  39   if (_edges == NULL) {
  40      Arena *a = Compile::current()->comp_arena();
  41     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
  42   }
  43   _edges->append_if_missing(v);
  44 }
  45 
  46 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
  47   uint v = (targIdx << EdgeShift) + ((uint) et);
  48 
  49   _edges->remove(v);
  50 }
  51 
  52 #ifndef PRODUCT
  53 static const char *node_type_names[] = {
  54   "UnknownType",
  55   "JavaObject",
  56   "LocalVar",
  57   "Field"
  58 };
  59 
  60 static const char *esc_names[] = {
  61   "UnknownEscape",
  62   "NoEscape",
  63   "ArgEscape",
  64   "GlobalEscape"
  65 };
  66 
  67 static const char *edge_type_suffix[] = {
  68  "?", // UnknownEdge
  69  "P", // PointsToEdge
  70  "D", // DeferredEdge
  71  "F"  // FieldEdge
  72 };
  73 
  74 void PointsToNode::dump(bool print_state) const {
  75   NodeType nt = node_type();
  76   tty->print("%s ", node_type_names[(int) nt]);
  77   if (print_state) {
  78     EscapeState es = escape_state();
  79     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
  80   }
  81   tty->print("[[");
  82   for (uint i = 0; i < edge_count(); i++) {
  83     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
  84   }
  85   tty->print("]]  ");
  86   if (_node == NULL)
  87     tty->print_cr("<null>");
  88   else
  89     _node->dump();
  90 }
  91 #endif
  92 
  93 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  94   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
  95   _processed(C->comp_arena()),
  96   pt_ptset(C->comp_arena()),
  97   pt_visited(C->comp_arena()),
  98   pt_worklist(C->comp_arena(), 4, 0, 0),
  99   _collecting(true),
 100   _progress(false),
 101   _compile(C),
 102   _igvn(igvn),
 103   _node_map(C->comp_arena()) {
 104 
 105   _phantom_object = C->top()->_idx,
 106   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
 107 
 108   // Add ConP(#NULL) and ConN(#NULL) nodes.
 109   Node* oop_null = igvn->zerocon(T_OBJECT);
 110   _oop_null = oop_null->_idx;
 111   assert(_oop_null < nodes_size(), "should be created already");
 112   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 113 
 114   if (UseCompressedOops) {
 115     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 116     _noop_null = noop_null->_idx;
 117     assert(_noop_null < nodes_size(), "should be created already");
 118     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 119   } else {
 120     _noop_null = _oop_null; // Should be initialized
 121   }
 122 }
 123 
 124 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
 125   PointsToNode *f = ptnode_adr(from_i);
 126   PointsToNode *t = ptnode_adr(to_i);
 127 
 128   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 129   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
 130   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
 131   add_edge(f, to_i, PointsToNode::PointsToEdge);
 132 }
 133 
 134 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
 135   PointsToNode *f = ptnode_adr(from_i);
 136   PointsToNode *t = ptnode_adr(to_i);
 137 
 138   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 139   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
 140   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
 141   // don't add a self-referential edge, this can occur during removal of
 142   // deferred edges
 143   if (from_i != to_i)
 144     add_edge(f, to_i, PointsToNode::DeferredEdge);
 145 }
 146 
 147 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
 148   const Type *adr_type = phase->type(adr);
 149   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
 150       adr->in(AddPNode::Address)->is_Proj() &&
 151       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
 152     // We are computing a raw address for a store captured by an Initialize
 153     // compute an appropriate address type. AddP cases #3 and #5 (see below).
 154     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 155     assert(offs != Type::OffsetBot ||
 156            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
 157            "offset must be a constant or it is initialization of array");
 158     return offs;
 159   }
 160   const TypePtr *t_ptr = adr_type->isa_ptr();
 161   assert(t_ptr != NULL, "must be a pointer type");
 162   return t_ptr->offset();
 163 }
 164 
 165 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
 166   PointsToNode *f = ptnode_adr(from_i);
 167   PointsToNode *t = ptnode_adr(to_i);
 168 
 169   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 170   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
 171   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
 172   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
 173   t->set_offset(offset);
 174 
 175   add_edge(f, to_i, PointsToNode::FieldEdge);
 176 }
 177 
 178 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
 179   // Don't change non-escaping state of NULL pointer.
 180   if (ni == _noop_null || ni == _oop_null)
 181     return;
 182   PointsToNode *npt = ptnode_adr(ni);
 183   PointsToNode::EscapeState old_es = npt->escape_state();
 184   if (es > old_es)
 185     npt->set_escape_state(es);
 186 }
 187 
 188 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
 189                                PointsToNode::EscapeState es, bool done) {
 190   PointsToNode* ptadr = ptnode_adr(n->_idx);
 191   ptadr->_node = n;
 192   ptadr->set_node_type(nt);
 193 
 194   // inline set_escape_state(idx, es);
 195   PointsToNode::EscapeState old_es = ptadr->escape_state();
 196   if (es > old_es)
 197     ptadr->set_escape_state(es);
 198 
 199   if (done)
 200     _processed.set(n->_idx);
 201 }
 202 
 203 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
 204   uint idx = n->_idx;
 205   PointsToNode::EscapeState es;
 206 
 207   // If we are still collecting or there were no non-escaping allocations
 208   // we don't know the answer yet
 209   if (_collecting)
 210     return PointsToNode::UnknownEscape;
 211 
 212   // if the node was created after the escape computation, return
 213   // UnknownEscape
 214   if (idx >= nodes_size())
 215     return PointsToNode::UnknownEscape;
 216 
 217   es = ptnode_adr(idx)->escape_state();
 218 
 219   // if we have already computed a value, return it
 220   if (es != PointsToNode::UnknownEscape &&
 221       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
 222     return es;
 223 
 224   // PointsTo() calls n->uncast() which can return a new ideal node.
 225   if (n->uncast()->_idx >= nodes_size())
 226     return PointsToNode::UnknownEscape;
 227 
 228   PointsToNode::EscapeState orig_es = es;
 229 
 230   // compute max escape state of anything this node could point to
 231   for(VectorSetI i(PointsTo(n)); i.test() && es != PointsToNode::GlobalEscape; ++i) {
 232     uint pt = i.elem;
 233     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
 234     if (pes > es)
 235       es = pes;
 236   }
 237   if (orig_es != es) {
 238     // cache the computed escape state
 239     assert(es > orig_es, "should have computed an escape state");
 240     set_escape_state(idx, es);
 241   } // orig_es could be PointsToNode::UnknownEscape
 242   return es;
 243 }
 244 
 245 VectorSet* ConnectionGraph::PointsTo(Node * n) {
 246   pt_ptset.Reset();
 247   pt_visited.Reset();
 248   pt_worklist.clear();
 249 
 250 #ifdef ASSERT
 251   Node *orig_n = n;
 252 #endif
 253 
 254   n = n->uncast();
 255   PointsToNode* npt = ptnode_adr(n->_idx);
 256 
 257   // If we have a JavaObject, return just that object
 258   if (npt->node_type() == PointsToNode::JavaObject) {
 259     pt_ptset.set(n->_idx);
 260     return &pt_ptset;
 261   }
 262 #ifdef ASSERT
 263   if (npt->_node == NULL) {
 264     if (orig_n != n)
 265       orig_n->dump();
 266     n->dump();
 267     assert(npt->_node != NULL, "unregistered node");
 268   }
 269 #endif
 270   pt_worklist.push(n->_idx);
 271   while(pt_worklist.length() > 0) {
 272     int ni = pt_worklist.pop();
 273     if (pt_visited.test_set(ni))
 274       continue;
 275 
 276     PointsToNode* pn = ptnode_adr(ni);
 277     // ensure that all inputs of a Phi have been processed
 278     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
 279 
 280     int edges_processed = 0;
 281     uint e_cnt = pn->edge_count();
 282     for (uint e = 0; e < e_cnt; e++) {
 283       uint etgt = pn->edge_target(e);
 284       PointsToNode::EdgeType et = pn->edge_type(e);
 285       if (et == PointsToNode::PointsToEdge) {
 286         pt_ptset.set(etgt);
 287         edges_processed++;
 288       } else if (et == PointsToNode::DeferredEdge) {
 289         pt_worklist.push(etgt);
 290         edges_processed++;
 291       } else {
 292         assert(false,"neither PointsToEdge or DeferredEdge");
 293       }
 294     }
 295     if (edges_processed == 0) {
 296       // no deferred or pointsto edges found.  Assume the value was set
 297       // outside this method.  Add the phantom object to the pointsto set.
 298       pt_ptset.set(_phantom_object);
 299     }
 300   }
 301   return &pt_ptset;
 302 }
 303 
 304 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
 305   // This method is most expensive during ConnectionGraph construction.
 306   // Reuse vectorSet and an additional growable array for deferred edges.
 307   deferred_edges->clear();
 308   visited->Reset();
 309 
 310   visited->set(ni);
 311   PointsToNode *ptn = ptnode_adr(ni);
 312 
 313   // Mark current edges as visited and move deferred edges to separate array.
 314   for (uint i = 0; i < ptn->edge_count(); ) {
 315     uint t = ptn->edge_target(i);
 316 #ifdef ASSERT
 317     assert(!visited->test_set(t), "expecting no duplications");
 318 #else
 319     visited->set(t);
 320 #endif
 321     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
 322       ptn->remove_edge(t, PointsToNode::DeferredEdge);
 323       deferred_edges->append(t);
 324     } else {
 325       i++;
 326     }
 327   }
 328   for (int next = 0; next < deferred_edges->length(); ++next) {
 329     uint t = deferred_edges->at(next);
 330     PointsToNode *ptt = ptnode_adr(t);
 331     uint e_cnt = ptt->edge_count();
 332     for (uint e = 0; e < e_cnt; e++) {
 333       uint etgt = ptt->edge_target(e);
 334       if (visited->test_set(etgt))
 335         continue;
 336 
 337       PointsToNode::EdgeType et = ptt->edge_type(e);
 338       if (et == PointsToNode::PointsToEdge) {
 339         add_pointsto_edge(ni, etgt);
 340         if(etgt == _phantom_object) {
 341           // Special case - field set outside (globally escaping).
 342           set_escape_state(ni, PointsToNode::GlobalEscape);
 343         }
 344       } else if (et == PointsToNode::DeferredEdge) {
 345         deferred_edges->append(etgt);
 346       } else {
 347         assert(false,"invalid connection graph");
 348       }
 349     }
 350   }
 351 }
 352 
 353 
 354 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
 355 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
 356 //  a pointsto edge is added if it is a JavaObject
 357 
 358 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
 359   PointsToNode* an = ptnode_adr(adr_i);
 360   PointsToNode* to = ptnode_adr(to_i);
 361   bool deferred = (to->node_type() == PointsToNode::LocalVar);
 362 
 363   for (uint fe = 0; fe < an->edge_count(); fe++) {
 364     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 365     int fi = an->edge_target(fe);
 366     PointsToNode* pf = ptnode_adr(fi);
 367     int po = pf->offset();
 368     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 369       if (deferred)
 370         add_deferred_edge(fi, to_i);
 371       else
 372         add_pointsto_edge(fi, to_i);
 373     }
 374   }
 375 }
 376 
 377 // Add a deferred  edge from node given by "from_i" to any field of adr_i
 378 // whose offset matches "offset".
 379 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
 380   PointsToNode* an = ptnode_adr(adr_i);
 381   for (uint fe = 0; fe < an->edge_count(); fe++) {
 382     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 383     int fi = an->edge_target(fe);
 384     PointsToNode* pf = ptnode_adr(fi);
 385     int po = pf->offset();
 386     if (pf->edge_count() == 0) {
 387       // we have not seen any stores to this field, assume it was set outside this method
 388       add_pointsto_edge(fi, _phantom_object);
 389     }
 390     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 391       add_deferred_edge(from_i, fi);
 392     }
 393   }
 394 }
 395 
 396 // Helper functions
 397 
 398 static Node* get_addp_base(Node *addp) {
 399   assert(addp->is_AddP(), "must be AddP");
 400   //
 401   // AddP cases for Base and Address inputs:
 402   // case #1. Direct object's field reference:
 403   //     Allocate
 404   //       |
 405   //     Proj #5 ( oop result )
 406   //       |
 407   //     CheckCastPP (cast to instance type)
 408   //      | |
 409   //     AddP  ( base == address )
 410   //
 411   // case #2. Indirect object's field reference:
 412   //      Phi
 413   //       |
 414   //     CastPP (cast to instance type)
 415   //      | |
 416   //     AddP  ( base == address )
 417   //
 418   // case #3. Raw object's field reference for Initialize node:
 419   //      Allocate
 420   //        |
 421   //      Proj #5 ( oop result )
 422   //  top   |
 423   //     \  |
 424   //     AddP  ( base == top )
 425   //
 426   // case #4. Array's element reference:
 427   //   {CheckCastPP | CastPP}
 428   //     |  | |
 429   //     |  AddP ( array's element offset )
 430   //     |  |
 431   //     AddP ( array's offset )
 432   //
 433   // case #5. Raw object's field reference for arraycopy stub call:
 434   //          The inline_native_clone() case when the arraycopy stub is called
 435   //          after the allocation before Initialize and CheckCastPP nodes.
 436   //      Allocate
 437   //        |
 438   //      Proj #5 ( oop result )
 439   //       | |
 440   //       AddP  ( base == address )
 441   //
 442   // case #6. Constant Pool, ThreadLocal, CastX2P or
 443   //          Raw object's field reference:
 444   //      {ConP, ThreadLocal, CastX2P, raw Load}
 445   //  top   |
 446   //     \  |
 447   //     AddP  ( base == top )
 448   //
 449   // case #7. Klass's field reference.
 450   //      LoadKlass
 451   //       | |
 452   //       AddP  ( base == address )
 453   //
 454   // case #8. narrow Klass's field reference.
 455   //      LoadNKlass
 456   //       |
 457   //      DecodeN
 458   //       | |
 459   //       AddP  ( base == address )
 460   //
 461   Node *base = addp->in(AddPNode::Base)->uncast();
 462   if (base->is_top()) { // The AddP case #3 and #6.
 463     base = addp->in(AddPNode::Address)->uncast();
 464     while (base->is_AddP()) {
 465       // Case #6 (unsafe access) may have several chained AddP nodes.
 466       assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
 467       base = base->in(AddPNode::Address)->uncast();
 468     }
 469     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
 470            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
 471            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
 472            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
 473   }
 474   return base;
 475 }
 476 
 477 static Node* find_second_addp(Node* addp, Node* n) {
 478   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
 479 
 480   Node* addp2 = addp->raw_out(0);
 481   if (addp->outcnt() == 1 && addp2->is_AddP() &&
 482       addp2->in(AddPNode::Base) == n &&
 483       addp2->in(AddPNode::Address) == addp) {
 484 
 485     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
 486     //
 487     // Find array's offset to push it on worklist first and
 488     // as result process an array's element offset first (pushed second)
 489     // to avoid CastPP for the array's offset.
 490     // Otherwise the inserted CastPP (LocalVar) will point to what
 491     // the AddP (Field) points to. Which would be wrong since
 492     // the algorithm expects the CastPP has the same point as
 493     // as AddP's base CheckCastPP (LocalVar).
 494     //
 495     //    ArrayAllocation
 496     //     |
 497     //    CheckCastPP
 498     //     |
 499     //    memProj (from ArrayAllocation CheckCastPP)
 500     //     |  ||
 501     //     |  ||   Int (element index)
 502     //     |  ||    |   ConI (log(element size))
 503     //     |  ||    |   /
 504     //     |  ||   LShift
 505     //     |  ||  /
 506     //     |  AddP (array's element offset)
 507     //     |  |
 508     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
 509     //     | / /
 510     //     AddP (array's offset)
 511     //      |
 512     //     Load/Store (memory operation on array's element)
 513     //
 514     return addp2;
 515   }
 516   return NULL;
 517 }
 518 
 519 //
 520 // Adjust the type and inputs of an AddP which computes the
 521 // address of a field of an instance
 522 //
 523 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
 524   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
 525   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
 526   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
 527   if (t == NULL) {
 528     // We are computing a raw address for a store captured by an Initialize
 529     // compute an appropriate address type (cases #3 and #5).
 530     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
 531     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
 532     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
 533     assert(offs != Type::OffsetBot, "offset must be a constant");
 534     t = base_t->add_offset(offs)->is_oopptr();
 535   }
 536   int inst_id =  base_t->instance_id();
 537   assert(!t->is_known_instance() || t->instance_id() == inst_id,
 538                              "old type must be non-instance or match new type");
 539 
 540   // The type 't' could be subclass of 'base_t'.
 541   // As result t->offset() could be large then base_t's size and it will
 542   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
 543   // constructor verifies correctness of the offset.
 544   //
 545   // It could happened on subclass's branch (from the type profiling
 546   // inlining) which was not eliminated during parsing since the exactness
 547   // of the allocation type was not propagated to the subclass type check.
 548   //
 549   // Or the type 't' could be not related to 'base_t' at all.
 550   // It could happened when CHA type is different from MDO type on a dead path
 551   // (for example, from instanceof check) which is not collapsed during parsing.
 552   //
 553   // Do nothing for such AddP node and don't process its users since
 554   // this code branch will go away.
 555   //
 556   if (!t->is_known_instance() &&
 557       !base_t->klass()->is_subtype_of(t->klass())) {
 558      return false; // bail out
 559   }
 560 
 561   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
 562   // Do NOT remove the next line: ensure a new alias index is allocated
 563   // for the instance type. Note: C++ will not remove it since the call
 564   // has side effect.
 565   int alias_idx = _compile->get_alias_index(tinst);
 566   igvn->set_type(addp, tinst);
 567   // record the allocation in the node map
 568   assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
 569   set_map(addp->_idx, get_map(base->_idx));
 570 
 571   // Set addp's Base and Address to 'base'.
 572   Node *abase = addp->in(AddPNode::Base);
 573   Node *adr   = addp->in(AddPNode::Address);
 574   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
 575       adr->in(0)->_idx == (uint)inst_id) {
 576     // Skip AddP cases #3 and #5.
 577   } else {
 578     assert(!abase->is_top(), "sanity"); // AddP case #3
 579     if (abase != base) {
 580       igvn->hash_delete(addp);
 581       addp->set_req(AddPNode::Base, base);
 582       if (abase == adr) {
 583         addp->set_req(AddPNode::Address, base);
 584       } else {
 585         // AddP case #4 (adr is array's element offset AddP node)
 586 #ifdef ASSERT
 587         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
 588         assert(adr->is_AddP() && atype != NULL &&
 589                atype->instance_id() == inst_id, "array's element offset should be processed first");
 590 #endif
 591       }
 592       igvn->hash_insert(addp);
 593     }
 594   }
 595   // Put on IGVN worklist since at least addp's type was changed above.
 596   record_for_optimizer(addp);
 597   return true;
 598 }
 599 
 600 //
 601 // Create a new version of orig_phi if necessary. Returns either the newly
 602 // created phi or an existing phi.  Sets create_new to indicate whether a new
 603 // phi was created.  Cache the last newly created phi in the node map.
 604 //
 605 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
 606   Compile *C = _compile;
 607   new_created = false;
 608   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
 609   // nothing to do if orig_phi is bottom memory or matches alias_idx
 610   if (phi_alias_idx == alias_idx) {
 611     return orig_phi;
 612   }
 613   // Have we recently created a Phi for this alias index?
 614   PhiNode *result = get_map_phi(orig_phi->_idx);
 615   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
 616     return result;
 617   }
 618   // Previous check may fail when the same wide memory Phi was split into Phis
 619   // for different memory slices. Search all Phis for this region.
 620   if (result != NULL) {
 621     Node* region = orig_phi->in(0);
 622     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 623       Node* phi = region->fast_out(i);
 624       if (phi->is_Phi() &&
 625           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
 626         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
 627         return phi->as_Phi();
 628       }
 629     }
 630   }
 631   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
 632     if (C->do_escape_analysis() == true && !C->failing()) {
 633       // Retry compilation without escape analysis.
 634       // If this is the first failure, the sentinel string will "stick"
 635       // to the Compile object, and the C2Compiler will see it and retry.
 636       C->record_failure(C2Compiler::retry_no_escape_analysis());
 637     }
 638     return NULL;
 639   }
 640   orig_phi_worklist.append_if_missing(orig_phi);
 641   const TypePtr *atype = C->get_adr_type(alias_idx);
 642   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
 643   C->copy_node_notes_to(result, orig_phi);
 644   igvn->set_type(result, result->bottom_type());
 645   record_for_optimizer(result);
 646 
 647   debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
 648   assert(pn == NULL || pn == orig_phi, "wrong node");
 649   set_map(orig_phi->_idx, result);
 650   ptnode_adr(orig_phi->_idx)->_node = orig_phi;
 651 
 652   new_created = true;
 653   return result;
 654 }
 655 
 656 //
 657 // Return a new version of Memory Phi "orig_phi" with the inputs having the
 658 // specified alias index.
 659 //
 660 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
 661 
 662   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
 663   Compile *C = _compile;
 664   bool new_phi_created;
 665   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
 666   if (!new_phi_created) {
 667     return result;
 668   }
 669 
 670   GrowableArray<PhiNode *>  phi_list;
 671   GrowableArray<uint>  cur_input;
 672 
 673   PhiNode *phi = orig_phi;
 674   uint idx = 1;
 675   bool finished = false;
 676   while(!finished) {
 677     while (idx < phi->req()) {
 678       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
 679       if (mem != NULL && mem->is_Phi()) {
 680         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
 681         if (new_phi_created) {
 682           // found an phi for which we created a new split, push current one on worklist and begin
 683           // processing new one
 684           phi_list.push(phi);
 685           cur_input.push(idx);
 686           phi = mem->as_Phi();
 687           result = newphi;
 688           idx = 1;
 689           continue;
 690         } else {
 691           mem = newphi;
 692         }
 693       }
 694       if (C->failing()) {
 695         return NULL;
 696       }
 697       result->set_req(idx++, mem);
 698     }
 699 #ifdef ASSERT
 700     // verify that the new Phi has an input for each input of the original
 701     assert( phi->req() == result->req(), "must have same number of inputs.");
 702     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
 703 #endif
 704     // Check if all new phi's inputs have specified alias index.
 705     // Otherwise use old phi.
 706     for (uint i = 1; i < phi->req(); i++) {
 707       Node* in = result->in(i);
 708       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
 709     }
 710     // we have finished processing a Phi, see if there are any more to do
 711     finished = (phi_list.length() == 0 );
 712     if (!finished) {
 713       phi = phi_list.pop();
 714       idx = cur_input.pop();
 715       PhiNode *prev_result = get_map_phi(phi->_idx);
 716       prev_result->set_req(idx++, result);
 717       result = prev_result;
 718     }
 719   }
 720   return result;
 721 }
 722 
 723 
 724 //
 725 // The next methods are derived from methods in MemNode.
 726 //
 727 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
 728   Node *mem = mmem;
 729   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 730   // means an array I have not precisely typed yet.  Do not do any
 731   // alias stuff with it any time soon.
 732   if( toop->base() != Type::AnyPtr &&
 733       !(toop->klass() != NULL &&
 734         toop->klass()->is_java_lang_Object() &&
 735         toop->offset() == Type::OffsetBot) ) {
 736     mem = mmem->memory_at(alias_idx);
 737     // Update input if it is progress over what we have now
 738   }
 739   return mem;
 740 }
 741 
 742 //
 743 // Move memory users to their memory slices.
 744 //
 745 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *igvn) {
 746   Compile* C = _compile;
 747 
 748   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
 749   assert(tp != NULL, "ptr type");
 750   int alias_idx = C->get_alias_index(tp);
 751   int general_idx = C->get_general_index(alias_idx);
 752 
 753   // Move users first
 754   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 755     Node* use = n->fast_out(i);
 756     if (use->is_MergeMem()) {
 757       MergeMemNode* mmem = use->as_MergeMem();
 758       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
 759       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
 760         continue; // Nothing to do
 761       }
 762       // Replace previous general reference to mem node.
 763       uint orig_uniq = C->unique();
 764       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 765       assert(orig_uniq == C->unique(), "no new nodes");
 766       mmem->set_memory_at(general_idx, m);
 767       --imax;
 768       --i;
 769     } else if (use->is_MemBar()) {
 770       assert(!use->is_Initialize(), "initializing stores should not be moved");
 771       if (use->req() > MemBarNode::Precedent &&
 772           use->in(MemBarNode::Precedent) == n) {
 773         // Don't move related membars.
 774         record_for_optimizer(use);
 775         continue;
 776       }
 777       tp = use->as_MemBar()->adr_type()->isa_ptr();
 778       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
 779           alias_idx == general_idx) {
 780         continue; // Nothing to do
 781       }
 782       // Move to general memory slice.
 783       uint orig_uniq = C->unique();
 784       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 785       assert(orig_uniq == C->unique(), "no new nodes");
 786       igvn->hash_delete(use);
 787       imax -= use->replace_edge(n, m);
 788       igvn->hash_insert(use);
 789       record_for_optimizer(use);
 790       --i;
 791 #ifdef ASSERT
 792     } else if (use->is_Mem()) {
 793       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
 794         // Don't move related cardmark.
 795         continue;
 796       }
 797       // Memory nodes should have new memory input.
 798       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
 799       assert(tp != NULL, "ptr type");
 800       int idx = C->get_alias_index(tp);
 801       assert(get_map(use->_idx) != NULL || idx == alias_idx,
 802              "Following memory nodes should have new memory input or be on the same memory slice");
 803     } else if (use->is_Phi()) {
 804       // Phi nodes should be split and moved already.
 805       tp = use->as_Phi()->adr_type()->isa_ptr();
 806       assert(tp != NULL, "ptr type");
 807       int idx = C->get_alias_index(tp);
 808       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
 809     } else {
 810       use->dump();
 811       assert(false, "should not be here");
 812 #endif
 813     }
 814   }
 815 }
 816 
 817 //
 818 // Search memory chain of "mem" to find a MemNode whose address
 819 // is the specified alias index.
 820 //
 821 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
 822   if (orig_mem == NULL)
 823     return orig_mem;
 824   Compile* C = phase->C;
 825   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
 826   bool is_instance = (toop != NULL) && toop->is_known_instance();
 827   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 828   Node *prev = NULL;
 829   Node *result = orig_mem;
 830   while (prev != result) {
 831     prev = result;
 832     if (result == start_mem)
 833       break;  // hit one of our sentinels
 834     if (result->is_Mem()) {
 835       const Type *at = phase->type(result->in(MemNode::Address));
 836       if (at == Type::TOP)
 837         break; // Dead
 838       assert (at->isa_ptr() != NULL, "pointer type required.");
 839       int idx = C->get_alias_index(at->is_ptr());
 840       if (idx == alias_idx)
 841         break; // Found
 842       if (!is_instance && (at->isa_oopptr() == NULL ||
 843                            !at->is_oopptr()->is_known_instance())) {
 844         break; // Do not skip store to general memory slice.
 845       }
 846       result = result->in(MemNode::Memory);
 847     }
 848     if (!is_instance)
 849       continue;  // don't search further for non-instance types
 850     // skip over a call which does not affect this memory slice
 851     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 852       Node *proj_in = result->in(0);
 853       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
 854         break;  // hit one of our sentinels
 855       } else if (proj_in->is_Call()) {
 856         CallNode *call = proj_in->as_Call();
 857         if (!call->may_modify(toop, phase)) {
 858           result = call->in(TypeFunc::Memory);
 859         }
 860       } else if (proj_in->is_Initialize()) {
 861         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 862         // Stop if this is the initialization for the object instance which
 863         // which contains this memory slice, otherwise skip over it.
 864         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
 865           result = proj_in->in(TypeFunc::Memory);
 866         }
 867       } else if (proj_in->is_MemBar()) {
 868         result = proj_in->in(TypeFunc::Memory);
 869       }
 870     } else if (result->is_MergeMem()) {
 871       MergeMemNode *mmem = result->as_MergeMem();
 872       result = step_through_mergemem(mmem, alias_idx, toop);
 873       if (result == mmem->base_memory()) {
 874         // Didn't find instance memory, search through general slice recursively.
 875         result = mmem->memory_at(C->get_general_index(alias_idx));
 876         result = find_inst_mem(result, alias_idx, orig_phis, phase);
 877         if (C->failing()) {
 878           return NULL;
 879         }
 880         mmem->set_memory_at(alias_idx, result);
 881       }
 882     } else if (result->is_Phi() &&
 883                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
 884       Node *un = result->as_Phi()->unique_input(phase);
 885       if (un != NULL) {
 886         orig_phis.append_if_missing(result->as_Phi());
 887         result = un;
 888       } else {
 889         break;
 890       }
 891     } else if (result->is_ClearArray()) {
 892       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
 893         // Can not bypass initialization of the instance
 894         // we are looking for.
 895         break;
 896       }
 897       // Otherwise skip it (the call updated 'result' value).
 898     } else if (result->Opcode() == Op_SCMemProj) {
 899       assert(result->in(0)->is_LoadStore(), "sanity");
 900       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
 901       if (at != Type::TOP) {
 902         assert (at->isa_ptr() != NULL, "pointer type required.");
 903         int idx = C->get_alias_index(at->is_ptr());
 904         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
 905         break;
 906       }
 907       result = result->in(0)->in(MemNode::Memory);
 908     }
 909   }
 910   if (result->is_Phi()) {
 911     PhiNode *mphi = result->as_Phi();
 912     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 913     const TypePtr *t = mphi->adr_type();
 914     if (!is_instance) {
 915       // Push all non-instance Phis on the orig_phis worklist to update inputs
 916       // during Phase 4 if needed.
 917       orig_phis.append_if_missing(mphi);
 918     } else if (C->get_alias_index(t) != alias_idx) {
 919       // Create a new Phi with the specified alias index type.
 920       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
 921     }
 922   }
 923   // the result is either MemNode, PhiNode, InitializeNode.
 924   return result;
 925 }
 926 
 927 //
 928 //  Convert the types of unescaped object to instance types where possible,
 929 //  propagate the new type information through the graph, and update memory
 930 //  edges and MergeMem inputs to reflect the new type.
 931 //
 932 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
 933 //  The processing is done in 4 phases:
 934 //
 935 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
 936 //            types for the CheckCastPP for allocations where possible.
 937 //            Propagate the the new types through users as follows:
 938 //               casts and Phi:  push users on alloc_worklist
 939 //               AddP:  cast Base and Address inputs to the instance type
 940 //                      push any AddP users on alloc_worklist and push any memnode
 941 //                      users onto memnode_worklist.
 942 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
 943 //            search the Memory chain for a store with the appropriate type
 944 //            address type.  If a Phi is found, create a new version with
 945 //            the appropriate memory slices from each of the Phi inputs.
 946 //            For stores, process the users as follows:
 947 //               MemNode:  push on memnode_worklist
 948 //               MergeMem: push on mergemem_worklist
 949 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
 950 //            moving the first node encountered of each  instance type to the
 951 //            the input corresponding to its alias index.
 952 //            appropriate memory slice.
 953 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
 954 //
 955 // In the following example, the CheckCastPP nodes are the cast of allocation
 956 // results and the allocation of node 29 is unescaped and eligible to be an
 957 // instance type.
 958 //
 959 // We start with:
 960 //
 961 //     7 Parm #memory
 962 //    10  ConI  "12"
 963 //    19  CheckCastPP   "Foo"
 964 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 965 //    29  CheckCastPP   "Foo"
 966 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
 967 //
 968 //    40  StoreP  25   7  20   ... alias_index=4
 969 //    50  StoreP  35  40  30   ... alias_index=4
 970 //    60  StoreP  45  50  20   ... alias_index=4
 971 //    70  LoadP    _  60  30   ... alias_index=4
 972 //    80  Phi     75  50  60   Memory alias_index=4
 973 //    90  LoadP    _  80  30   ... alias_index=4
 974 //   100  LoadP    _  80  20   ... alias_index=4
 975 //
 976 //
 977 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
 978 // and creating a new alias index for node 30.  This gives:
 979 //
 980 //     7 Parm #memory
 981 //    10  ConI  "12"
 982 //    19  CheckCastPP   "Foo"
 983 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 984 //    29  CheckCastPP   "Foo"  iid=24
 985 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 986 //
 987 //    40  StoreP  25   7  20   ... alias_index=4
 988 //    50  StoreP  35  40  30   ... alias_index=6
 989 //    60  StoreP  45  50  20   ... alias_index=4
 990 //    70  LoadP    _  60  30   ... alias_index=6
 991 //    80  Phi     75  50  60   Memory alias_index=4
 992 //    90  LoadP    _  80  30   ... alias_index=6
 993 //   100  LoadP    _  80  20   ... alias_index=4
 994 //
 995 // In phase 2, new memory inputs are computed for the loads and stores,
 996 // And a new version of the phi is created.  In phase 4, the inputs to
 997 // node 80 are updated and then the memory nodes are updated with the
 998 // values computed in phase 2.  This results in:
 999 //
1000 //     7 Parm #memory
1001 //    10  ConI  "12"
1002 //    19  CheckCastPP   "Foo"
1003 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
1004 //    29  CheckCastPP   "Foo"  iid=24
1005 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
1006 //
1007 //    40  StoreP  25  7   20   ... alias_index=4
1008 //    50  StoreP  35  7   30   ... alias_index=6
1009 //    60  StoreP  45  40  20   ... alias_index=4
1010 //    70  LoadP    _  50  30   ... alias_index=6
1011 //    80  Phi     75  40  60   Memory alias_index=4
1012 //   120  Phi     75  50  50   Memory alias_index=6
1013 //    90  LoadP    _ 120  30   ... alias_index=6
1014 //   100  LoadP    _  80  20   ... alias_index=4
1015 //
1016 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
1017   GrowableArray<Node *>  memnode_worklist;
1018   GrowableArray<PhiNode *>  orig_phis;
1019 
1020   PhaseIterGVN  *igvn = _igvn;
1021   uint new_index_start = (uint) _compile->num_alias_types();
1022   Arena* arena = Thread::current()->resource_area();
1023   VectorSet visited(arena);
1024 
1025 
1026   //  Phase 1:  Process possible allocations from alloc_worklist.
1027   //  Create instance types for the CheckCastPP for allocations where possible.
1028   //
1029   // (Note: don't forget to change the order of the second AddP node on
1030   //  the alloc_worklist if the order of the worklist processing is changed,
1031   //  see the comment in find_second_addp().)
1032   //
1033   while (alloc_worklist.length() != 0) {
1034     Node *n = alloc_worklist.pop();
1035     uint ni = n->_idx;
1036     const TypeOopPtr* tinst = NULL;
1037     if (n->is_Call()) {
1038       CallNode *alloc = n->as_Call();
1039       // copy escape information to call node
1040       PointsToNode* ptn = ptnode_adr(alloc->_idx);
1041       PointsToNode::EscapeState es = escape_state(alloc);
1042       // We have an allocation or call which returns a Java object,
1043       // see if it is unescaped.
1044       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
1045         continue;
1046 
1047       // Find CheckCastPP for the allocate or for the return value of a call
1048       n = alloc->result_cast();
1049       if (n == NULL) {            // No uses except Initialize node
1050         if (alloc->is_Allocate()) {
1051           // Set the scalar_replaceable flag for allocation
1052           // so it could be eliminated if it has no uses.
1053           alloc->as_Allocate()->_is_scalar_replaceable = true;
1054         }
1055         continue;
1056       }
1057       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
1058         assert(!alloc->is_Allocate(), "allocation should have unique type");
1059         continue;
1060       }
1061 
1062       // The inline code for Object.clone() casts the allocation result to
1063       // java.lang.Object and then to the actual type of the allocated
1064       // object. Detect this case and use the second cast.
1065       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
1066       // the allocation result is cast to java.lang.Object and then
1067       // to the actual Array type.
1068       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
1069           && (alloc->is_AllocateArray() ||
1070               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
1071         Node *cast2 = NULL;
1072         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1073           Node *use = n->fast_out(i);
1074           if (use->is_CheckCastPP()) {
1075             cast2 = use;
1076             break;
1077           }
1078         }
1079         if (cast2 != NULL) {
1080           n = cast2;
1081         } else {
1082           // Non-scalar replaceable if the allocation type is unknown statically
1083           // (reflection allocation), the object can't be restored during
1084           // deoptimization without precise type.
1085           continue;
1086         }
1087       }
1088       if (alloc->is_Allocate()) {
1089         // Set the scalar_replaceable flag for allocation
1090         // so it could be eliminated.
1091         alloc->as_Allocate()->_is_scalar_replaceable = true;
1092       }
1093       set_escape_state(n->_idx, es);
1094       // in order for an object to be scalar-replaceable, it must be:
1095       //   - a direct allocation (not a call returning an object)
1096       //   - non-escaping
1097       //   - eligible to be a unique type
1098       //   - not determined to be ineligible by escape analysis
1099       assert(ptnode_adr(alloc->_idx)->_node != NULL &&
1100              ptnode_adr(n->_idx)->_node != NULL, "should be registered");
1101       set_map(alloc->_idx, n);
1102       set_map(n->_idx, alloc);
1103       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
1104       if (t == NULL)
1105         continue;  // not a TypeInstPtr
1106       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
1107       igvn->hash_delete(n);
1108       igvn->set_type(n,  tinst);
1109       n->raise_bottom_type(tinst);
1110       igvn->hash_insert(n);
1111       record_for_optimizer(n);
1112       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
1113           (t->isa_instptr() || t->isa_aryptr())) {
1114 
1115         // First, put on the worklist all Field edges from Connection Graph
1116         // which is more accurate then putting immediate users from Ideal Graph.
1117         for (uint e = 0; e < ptn->edge_count(); e++) {
1118           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
1119           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
1120                  "only AddP nodes are Field edges in CG");
1121           if (use->outcnt() > 0) { // Don't process dead nodes
1122             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
1123             if (addp2 != NULL) {
1124               assert(alloc->is_AllocateArray(),"array allocation was expected");
1125               alloc_worklist.append_if_missing(addp2);
1126             }
1127             alloc_worklist.append_if_missing(use);
1128           }
1129         }
1130 
1131         // An allocation may have an Initialize which has raw stores. Scan
1132         // the users of the raw allocation result and push AddP users
1133         // on alloc_worklist.
1134         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
1135         assert (raw_result != NULL, "must have an allocation result");
1136         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
1137           Node *use = raw_result->fast_out(i);
1138           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
1139             Node* addp2 = find_second_addp(use, raw_result);
1140             if (addp2 != NULL) {
1141               assert(alloc->is_AllocateArray(),"array allocation was expected");
1142               alloc_worklist.append_if_missing(addp2);
1143             }
1144             alloc_worklist.append_if_missing(use);
1145           } else if (use->is_MemBar()) {
1146             memnode_worklist.append_if_missing(use);
1147           }
1148         }
1149       }
1150     } else if (n->is_AddP()) {
1151       VectorSet* ptset = PointsTo(get_addp_base(n));
1152       assert(ptset->Size() == 1, "AddP address is unique");
1153       uint elem = ptset->getelem(); // Allocation node's index
1154       if (elem == _phantom_object) {
1155         assert(false, "escaped allocation");
1156         continue; // Assume the value was set outside this method.
1157       }
1158       Node *base = get_map(elem);  // CheckCastPP node
1159       if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
1160       tinst = igvn->type(base)->isa_oopptr();
1161     } else if (n->is_Phi() ||
1162                n->is_CheckCastPP() ||
1163                n->is_EncodeP() ||
1164                n->is_DecodeN() ||
1165                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
1166       if (visited.test_set(n->_idx)) {
1167         assert(n->is_Phi(), "loops only through Phi's");
1168         continue;  // already processed
1169       }
1170       VectorSet* ptset = PointsTo(n);
1171       if (ptset->Size() == 1) {
1172         uint elem = ptset->getelem(); // Allocation node's index
1173         if (elem == _phantom_object) {
1174           assert(false, "escaped allocation");
1175           continue; // Assume the value was set outside this method.
1176         }
1177         Node *val = get_map(elem);   // CheckCastPP node
1178         TypeNode *tn = n->as_Type();
1179         tinst = igvn->type(val)->isa_oopptr();
1180         assert(tinst != NULL && tinst->is_known_instance() &&
1181                (uint)tinst->instance_id() == elem , "instance type expected.");
1182 
1183         const Type *tn_type = igvn->type(tn);
1184         const TypeOopPtr *tn_t;
1185         if (tn_type->isa_narrowoop()) {
1186           tn_t = tn_type->make_ptr()->isa_oopptr();
1187         } else {
1188           tn_t = tn_type->isa_oopptr();
1189         }
1190 
1191         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
1192           if (tn_type->isa_narrowoop()) {
1193             tn_type = tinst->make_narrowoop();
1194           } else {
1195             tn_type = tinst;
1196           }
1197           igvn->hash_delete(tn);
1198           igvn->set_type(tn, tn_type);
1199           tn->set_type(tn_type);
1200           igvn->hash_insert(tn);
1201           record_for_optimizer(n);
1202         } else {
1203           assert(tn_type == TypePtr::NULL_PTR ||
1204                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
1205                  "unexpected type");
1206           continue; // Skip dead path with different type
1207         }
1208       }
1209     } else {
1210       debug_only(n->dump();)
1211       assert(false, "EA: unexpected node");
1212       continue;
1213     }
1214     // push allocation's users on appropriate worklist
1215     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1216       Node *use = n->fast_out(i);
1217       if(use->is_Mem() && use->in(MemNode::Address) == n) {
1218         // Load/store to instance's field
1219         memnode_worklist.append_if_missing(use);
1220       } else if (use->is_MemBar()) {
1221         memnode_worklist.append_if_missing(use);
1222       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
1223         Node* addp2 = find_second_addp(use, n);
1224         if (addp2 != NULL) {
1225           alloc_worklist.append_if_missing(addp2);
1226         }
1227         alloc_worklist.append_if_missing(use);
1228       } else if (use->is_Phi() ||
1229                  use->is_CheckCastPP() ||
1230                  use->is_EncodeP() ||
1231                  use->is_DecodeN() ||
1232                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
1233         alloc_worklist.append_if_missing(use);
1234 #ifdef ASSERT
1235       } else if (use->is_Mem()) {
1236         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
1237       } else if (use->is_MergeMem()) {
1238         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1239       } else if (use->is_SafePoint()) {
1240         // Look for MergeMem nodes for calls which reference unique allocation
1241         // (through CheckCastPP nodes) even for debug info.
1242         Node* m = use->in(TypeFunc::Memory);
1243         if (m->is_MergeMem()) {
1244           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1245         }
1246       } else {
1247         uint op = use->Opcode();
1248         if (!(op == Op_CmpP || op == Op_Conv2B ||
1249               op == Op_CastP2X || op == Op_StoreCM ||
1250               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
1251               op == Op_StrEquals || op == Op_StrIndexOf)) {
1252           n->dump();
1253           use->dump();
1254           assert(false, "EA: missing allocation reference path");
1255         }
1256 #endif
1257       }
1258     }
1259 
1260   }
1261   // New alias types were created in split_AddP().
1262   uint new_index_end = (uint) _compile->num_alias_types();
1263 
1264   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1265   //            compute new values for Memory inputs  (the Memory inputs are not
1266   //            actually updated until phase 4.)
1267   if (memnode_worklist.length() == 0)
1268     return;  // nothing to do
1269 
1270   while (memnode_worklist.length() != 0) {
1271     Node *n = memnode_worklist.pop();
1272     if (visited.test_set(n->_idx))
1273       continue;
1274     if (n->is_Phi() || n->is_ClearArray()) {
1275       // we don't need to do anything, but the users must be pushed
1276     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
1277       // we don't need to do anything, but the users must be pushed
1278       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
1279       if (n == NULL)
1280         continue;
1281     } else {
1282       assert(n->is_Mem(), "memory node required.");
1283       Node *addr = n->in(MemNode::Address);
1284       const Type *addr_t = igvn->type(addr);
1285       if (addr_t == Type::TOP)
1286         continue;
1287       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
1288       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
1289       assert ((uint)alias_idx < new_index_end, "wrong alias index");
1290       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
1291       if (_compile->failing()) {
1292         return;
1293       }
1294       if (mem != n->in(MemNode::Memory)) {
1295         // We delay the memory edge update since we need old one in
1296         // MergeMem code below when instances memory slices are separated.
1297         debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
1298         assert(pn == NULL || pn == n, "wrong node");
1299         set_map(n->_idx, mem);
1300         ptnode_adr(n->_idx)->_node = n;
1301       }
1302       if (n->is_Load()) {
1303         continue;  // don't push users
1304       } else if (n->is_LoadStore()) {
1305         // get the memory projection
1306         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1307           Node *use = n->fast_out(i);
1308           if (use->Opcode() == Op_SCMemProj) {
1309             n = use;
1310             break;
1311           }
1312         }
1313         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
1314       }
1315     }
1316     // push user on appropriate worklist
1317     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1318       Node *use = n->fast_out(i);
1319       if (use->is_Phi() || use->is_ClearArray()) {
1320         memnode_worklist.append_if_missing(use);
1321       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
1322         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
1323           continue;
1324         memnode_worklist.append_if_missing(use);
1325       } else if (use->is_MemBar()) {
1326         memnode_worklist.append_if_missing(use);
1327 #ifdef ASSERT
1328       } else if(use->is_Mem()) {
1329         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
1330       } else if (use->is_MergeMem()) {
1331         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1332       } else {
1333         uint op = use->Opcode();
1334         if (!(op == Op_StoreCM ||
1335               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
1336                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
1337               op == Op_AryEq || op == Op_StrComp ||
1338               op == Op_StrEquals || op == Op_StrIndexOf)) {
1339           n->dump();
1340           use->dump();
1341           assert(false, "EA: missing memory path");
1342         }
1343 #endif
1344       }
1345     }
1346   }
1347 
1348   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
1349   //            Walk each memory slice moving the first node encountered of each
1350   //            instance type to the the input corresponding to its alias index.
1351   uint length = _mergemem_worklist.length();
1352   for( uint next = 0; next < length; ++next ) {
1353     MergeMemNode* nmm = _mergemem_worklist.at(next);
1354     assert(!visited.test_set(nmm->_idx), "should not be visited before");
1355     // Note: we don't want to use MergeMemStream here because we only want to
1356     // scan inputs which exist at the start, not ones we add during processing.
1357     // Note 2: MergeMem may already contains instance memory slices added
1358     // during find_inst_mem() call when memory nodes were processed above.
1359     igvn->hash_delete(nmm);
1360     uint nslices = nmm->req();
1361     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
1362       Node* mem = nmm->in(i);
1363       Node* cur = NULL;
1364       if (mem == NULL || mem->is_top())
1365         continue;
1366       // First, update mergemem by moving memory nodes to corresponding slices
1367       // if their type became more precise since this mergemem was created.
1368       while (mem->is_Mem()) {
1369         const Type *at = igvn->type(mem->in(MemNode::Address));
1370         if (at != Type::TOP) {
1371           assert (at->isa_ptr() != NULL, "pointer type required.");
1372           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
1373           if (idx == i) {
1374             if (cur == NULL)
1375               cur = mem;
1376           } else {
1377             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
1378               nmm->set_memory_at(idx, mem);
1379             }
1380           }
1381         }
1382         mem = mem->in(MemNode::Memory);
1383       }
1384       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
1385       // Find any instance of the current type if we haven't encountered
1386       // already a memory slice of the instance along the memory chain.
1387       for (uint ni = new_index_start; ni < new_index_end; ni++) {
1388         if((uint)_compile->get_general_index(ni) == i) {
1389           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
1390           if (nmm->is_empty_memory(m)) {
1391             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
1392             if (_compile->failing()) {
1393               return;
1394             }
1395             nmm->set_memory_at(ni, result);
1396           }
1397         }
1398       }
1399     }
1400     // Find the rest of instances values
1401     for (uint ni = new_index_start; ni < new_index_end; ni++) {
1402       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
1403       Node* result = step_through_mergemem(nmm, ni, tinst);
1404       if (result == nmm->base_memory()) {
1405         // Didn't find instance memory, search through general slice recursively.
1406         result = nmm->memory_at(_compile->get_general_index(ni));
1407         result = find_inst_mem(result, ni, orig_phis, igvn);
1408         if (_compile->failing()) {
1409           return;
1410         }
1411         nmm->set_memory_at(ni, result);
1412       }
1413     }
1414     igvn->hash_insert(nmm);
1415     record_for_optimizer(nmm);
1416   }
1417 
1418   //  Phase 4:  Update the inputs of non-instance memory Phis and
1419   //            the Memory input of memnodes
1420   // First update the inputs of any non-instance Phi's from
1421   // which we split out an instance Phi.  Note we don't have
1422   // to recursively process Phi's encounted on the input memory
1423   // chains as is done in split_memory_phi() since they  will
1424   // also be processed here.
1425   for (int j = 0; j < orig_phis.length(); j++) {
1426     PhiNode *phi = orig_phis.at(j);
1427     int alias_idx = _compile->get_alias_index(phi->adr_type());
1428     igvn->hash_delete(phi);
1429     for (uint i = 1; i < phi->req(); i++) {
1430       Node *mem = phi->in(i);
1431       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
1432       if (_compile->failing()) {
1433         return;
1434       }
1435       if (mem != new_mem) {
1436         phi->set_req(i, new_mem);
1437       }
1438     }
1439     igvn->hash_insert(phi);
1440     record_for_optimizer(phi);
1441   }
1442 
1443   // Update the memory inputs of MemNodes with the value we computed
1444   // in Phase 2 and move stores memory users to corresponding memory slices.
1445 
1446   // Disable memory split verification code until the fix for 6984348.
1447   // Currently it produces false negative results since it does not cover all cases.
1448 #if 0 // ifdef ASSERT
1449   visited.Reset();
1450   Node_Stack old_mems(arena, _compile->unique() >> 2);
1451 #endif
1452   for (uint i = 0; i < nodes_size(); i++) {
1453     Node *nmem = get_map(i);
1454     if (nmem != NULL) {
1455       Node *n = ptnode_adr(i)->_node;
1456       assert(n != NULL, "sanity");
1457       if (n->is_Mem()) {
1458 #if 0 // ifdef ASSERT
1459         Node* old_mem = n->in(MemNode::Memory);
1460         if (!visited.test_set(old_mem->_idx)) {
1461           old_mems.push(old_mem, old_mem->outcnt());
1462         }
1463 #endif
1464         assert(n->in(MemNode::Memory) != nmem, "sanity");
1465         if (!n->is_Load()) {
1466           // Move memory users of a store first.
1467           move_inst_mem(n, orig_phis, igvn);
1468         }
1469         // Now update memory input
1470         igvn->hash_delete(n);
1471         n->set_req(MemNode::Memory, nmem);
1472         igvn->hash_insert(n);
1473         record_for_optimizer(n);
1474       } else {
1475         assert(n->is_Allocate() || n->is_CheckCastPP() ||
1476                n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
1477       }
1478     }
1479   }
1480 #if 0 // ifdef ASSERT
1481   // Verify that memory was split correctly
1482   while (old_mems.is_nonempty()) {
1483     Node* old_mem = old_mems.node();
1484     uint  old_cnt = old_mems.index();
1485     old_mems.pop();
1486     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
1487   }
1488 #endif
1489 }
1490 
1491 bool ConnectionGraph::has_candidates(Compile *C) {
1492   // EA brings benefits only when the code has allocations and/or locks which
1493   // are represented by ideal Macro nodes.
1494   int cnt = C->macro_count();
1495   for( int i=0; i < cnt; i++ ) {
1496     Node *n = C->macro_node(i);
1497     if ( n->is_Allocate() )
1498       return true;
1499     if( n->is_Lock() ) {
1500       Node* obj = n->as_Lock()->obj_node()->uncast();
1501       if( !(obj->is_Parm() || obj->is_Con()) )
1502         return true;
1503     }
1504   }
1505   return false;
1506 }
1507 
1508 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
1509   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
1510   // to create space for them in ConnectionGraph::_nodes[].
1511   Node* oop_null = igvn->zerocon(T_OBJECT);
1512   Node* noop_null = igvn->zerocon(T_NARROWOOP);
1513 
1514   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
1515   // Perform escape analysis
1516   if (congraph->compute_escape()) {
1517     // There are non escaping objects.
1518     C->set_congraph(congraph);
1519   }
1520 
1521   // Cleanup.
1522   if (oop_null->outcnt() == 0)
1523     igvn->hash_delete(oop_null);
1524   if (noop_null->outcnt() == 0)
1525     igvn->hash_delete(noop_null);
1526 }
1527 
1528 bool ConnectionGraph::compute_escape() {
1529   Compile* C = _compile;
1530 
1531   // 1. Populate Connection Graph (CG) with Ideal nodes.
1532 
1533   Unique_Node_List worklist_init;
1534   worklist_init.map(C->unique(), NULL);  // preallocate space
1535 
1536   // Initialize worklist
1537   if (C->root() != NULL) {
1538     worklist_init.push(C->root());
1539   }
1540 
1541   GrowableArray<int> cg_worklist;
1542   PhaseGVN* igvn = _igvn;
1543   bool has_allocations = false;
1544 
1545   // Push all useful nodes onto CG list and set their type.
1546   for( uint next = 0; next < worklist_init.size(); ++next ) {
1547     Node* n = worklist_init.at(next);
1548     record_for_escape_analysis(n, igvn);
1549     // Only allocations and java static calls results are checked
1550     // for an escape status. See process_call_result() below.
1551     if (n->is_Allocate() || n->is_CallStaticJava() &&
1552         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
1553       has_allocations = true;
1554     }
1555     if(n->is_AddP()) {
1556       // Collect address nodes. Use them during stage 3 below
1557       // to build initial connection graph field edges.
1558       cg_worklist.append(n->_idx);
1559     } else if (n->is_MergeMem()) {
1560       // Collect all MergeMem nodes to add memory slices for
1561       // scalar replaceable objects in split_unique_types().
1562       _mergemem_worklist.append(n->as_MergeMem());
1563     }
1564     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1565       Node* m = n->fast_out(i);   // Get user
1566       worklist_init.push(m);
1567     }
1568   }
1569 
1570   if (!has_allocations) {
1571     _collecting = false;
1572     return false; // Nothing to do.
1573   }
1574 
1575   // 2. First pass to create simple CG edges (doesn't require to walk CG).
1576   uint delayed_size = _delayed_worklist.size();
1577   for( uint next = 0; next < delayed_size; ++next ) {
1578     Node* n = _delayed_worklist.at(next);
1579     build_connection_graph(n, igvn);
1580   }
1581 
1582   // 3. Pass to create initial fields edges (JavaObject -F-> AddP)
1583   //    to reduce number of iterations during stage 4 below.
1584   uint cg_length = cg_worklist.length();
1585   for( uint next = 0; next < cg_length; ++next ) {
1586     int ni = cg_worklist.at(next);
1587     Node* n = ptnode_adr(ni)->_node;
1588     Node* base = get_addp_base(n);
1589     if (base->is_Proj())
1590       base = base->in(0);
1591     PointsToNode::NodeType nt = ptnode_adr(base->_idx)->node_type();
1592     if (nt == PointsToNode::JavaObject) {
1593       build_connection_graph(n, igvn);
1594     }
1595   }
1596 
1597   cg_worklist.clear();
1598   cg_worklist.append(_phantom_object);
1599   GrowableArray<uint>  worklist;
1600 
1601   // 4. Build Connection Graph which need
1602   //    to walk the connection graph.
1603   _progress = false;
1604   for (uint ni = 0; ni < nodes_size(); ni++) {
1605     PointsToNode* ptn = ptnode_adr(ni);
1606     Node *n = ptn->_node;
1607     if (n != NULL) { // Call, AddP, LoadP, StoreP
1608       build_connection_graph(n, igvn);
1609       if (ptn->node_type() != PointsToNode::UnknownType)
1610         cg_worklist.append(n->_idx); // Collect CG nodes
1611       if (!_processed.test(n->_idx))
1612         worklist.append(n->_idx); // Collect C/A/L/S nodes
1613     }
1614   }
1615 
1616   // After IGVN user nodes may have smaller _idx than
1617   // their inputs so they will be processed first in
1618   // previous loop. Because of that not all Graph
1619   // edges will be created. Walk over interesting
1620   // nodes again until no new edges are created.
1621   //
1622   // Normally only 1-3 passes needed to build
1623   // Connection Graph depending on graph complexity.
1624   // Observed 8 passes in jvm2008 compiler.compiler.
1625   // Set limit to 20 to catch situation when something
1626   // did go wrong and recompile the method without EA.
1627 
1628 #define CG_BUILD_ITER_LIMIT 20
1629 
1630   uint length = worklist.length();
1631   int iterations = 0;
1632   while(_progress && (iterations++ < CG_BUILD_ITER_LIMIT)) {
1633     _progress = false;
1634     for( uint next = 0; next < length; ++next ) {
1635       int ni = worklist.at(next);
1636       PointsToNode* ptn = ptnode_adr(ni);
1637       Node* n = ptn->_node;
1638       assert(n != NULL, "should be known node");
1639       build_connection_graph(n, igvn);
1640     }
1641   }
1642   if (iterations >= CG_BUILD_ITER_LIMIT) {
1643     assert(iterations < CG_BUILD_ITER_LIMIT,
1644            err_msg("infinite EA connection graph build with %d nodes and worklist size %d",
1645            nodes_size(), length));
1646     // Possible infinite build_connection_graph loop,
1647     // retry compilation without escape analysis.
1648     C->record_failure(C2Compiler::retry_no_escape_analysis());
1649     _collecting = false;
1650     return false;
1651   }
1652 #undef CG_BUILD_ITER_LIMIT
1653 
1654   Arena* arena = Thread::current()->resource_area();
1655   VectorSet visited(arena);
1656   worklist.clear();
1657 
1658   // 5. Remove deferred edges from the graph and adjust
1659   //    escape state of nonescaping objects.
1660   cg_length = cg_worklist.length();
1661   for( uint next = 0; next < cg_length; ++next ) {
1662     int ni = cg_worklist.at(next);
1663     PointsToNode* ptn = ptnode_adr(ni);
1664     PointsToNode::NodeType nt = ptn->node_type();
1665     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
1666       remove_deferred(ni, &worklist, &visited);
1667       Node *n = ptn->_node;
1668       if (n->is_AddP()) {
1669         // Search for objects which are not scalar replaceable
1670         // and adjust their escape state.
1671         adjust_escape_state(ni, igvn);
1672       }
1673     }
1674   }
1675 
1676   // 6. Propagate escape states.
1677   worklist.clear();
1678   bool has_non_escaping_obj = false;
1679 
1680   // push all GlobalEscape nodes on the worklist
1681   for( uint next = 0; next < cg_length; ++next ) {
1682     int nk = cg_worklist.at(next);
1683     if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
1684       worklist.push(nk);
1685   }
1686   // mark all nodes reachable from GlobalEscape nodes
1687   while(worklist.length() > 0) {
1688     PointsToNode* ptn = ptnode_adr(worklist.pop());
1689     uint e_cnt = ptn->edge_count();
1690     for (uint ei = 0; ei < e_cnt; ei++) {
1691       uint npi = ptn->edge_target(ei);
1692       PointsToNode *np = ptnode_adr(npi);
1693       if (np->escape_state() < PointsToNode::GlobalEscape) {
1694         set_escape_state(npi, PointsToNode::GlobalEscape);
1695         worklist.push(npi);
1696       }
1697     }
1698   }
1699 
1700   // push all ArgEscape nodes on the worklist
1701   for( uint next = 0; next < cg_length; ++next ) {
1702     int nk = cg_worklist.at(next);
1703     if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
1704       worklist.push(nk);
1705   }
1706   // mark all nodes reachable from ArgEscape nodes
1707   while(worklist.length() > 0) {
1708     PointsToNode* ptn = ptnode_adr(worklist.pop());
1709     if (ptn->node_type() == PointsToNode::JavaObject)
1710       has_non_escaping_obj = true; // Non GlobalEscape
1711     uint e_cnt = ptn->edge_count();
1712     for (uint ei = 0; ei < e_cnt; ei++) {
1713       uint npi = ptn->edge_target(ei);
1714       PointsToNode *np = ptnode_adr(npi);
1715       if (np->escape_state() < PointsToNode::ArgEscape) {
1716         set_escape_state(npi, PointsToNode::ArgEscape);
1717         worklist.push(npi);
1718       }
1719     }
1720   }
1721 
1722   GrowableArray<Node*> alloc_worklist;
1723 
1724   // push all NoEscape nodes on the worklist
1725   for( uint next = 0; next < cg_length; ++next ) {
1726     int nk = cg_worklist.at(next);
1727     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
1728       worklist.push(nk);
1729   }
1730   // mark all nodes reachable from NoEscape nodes
1731   while(worklist.length() > 0) {
1732     uint nk = worklist.pop();
1733     PointsToNode* ptn = ptnode_adr(nk);
1734     if (ptn->node_type() == PointsToNode::JavaObject &&
1735         !(nk == _noop_null || nk == _oop_null))
1736       has_non_escaping_obj = true; // Non Escape
1737     Node* n = ptn->_node;
1738     if (n->is_Allocate() && ptn->_scalar_replaceable ) {
1739       // Push scalar replaceable allocations on alloc_worklist
1740       // for processing in split_unique_types().
1741       alloc_worklist.append(n);
1742     }
1743     uint e_cnt = ptn->edge_count();
1744     for (uint ei = 0; ei < e_cnt; ei++) {
1745       uint npi = ptn->edge_target(ei);
1746       PointsToNode *np = ptnode_adr(npi);
1747       if (np->escape_state() < PointsToNode::NoEscape) {
1748         set_escape_state(npi, PointsToNode::NoEscape);
1749         worklist.push(npi);
1750       }
1751     }
1752   }
1753 
1754   _collecting = false;
1755   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
1756 
1757   assert(ptnode_adr(_oop_null)->escape_state() == PointsToNode::NoEscape, "sanity");
1758   if (UseCompressedOops) {
1759     assert(ptnode_adr(_noop_null)->escape_state() == PointsToNode::NoEscape, "sanity");
1760   }
1761 
1762   if (EliminateLocks) {
1763     // Mark locks before changing ideal graph.
1764     int cnt = C->macro_count();
1765     for( int i=0; i < cnt; i++ ) {
1766       Node *n = C->macro_node(i);
1767       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1768         AbstractLockNode* alock = n->as_AbstractLock();
1769         if (!alock->is_eliminated()) {
1770           PointsToNode::EscapeState es = escape_state(alock->obj_node());
1771           assert(es != PointsToNode::UnknownEscape, "should know");
1772           if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
1773             // Mark it eliminated
1774             alock->set_eliminated();
1775           }
1776         }
1777       }
1778     }
1779   }
1780 
1781 #ifndef PRODUCT
1782   if (PrintEscapeAnalysis) {
1783     dump(); // Dump ConnectionGraph
1784   }
1785 #endif
1786 
1787   bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
1788   if ( has_scalar_replaceable_candidates &&
1789        C->AliasLevel() >= 3 && EliminateAllocations ) {
1790 
1791     // Now use the escape information to create unique types for
1792     // scalar replaceable objects.
1793     split_unique_types(alloc_worklist);
1794 
1795     if (C->failing())  return false;
1796 
1797     C->print_method("After Escape Analysis", 2);
1798 
1799 #ifdef ASSERT
1800   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
1801     tty->print("=== No allocations eliminated for ");
1802     C->method()->print_short_name();
1803     if(!EliminateAllocations) {
1804       tty->print(" since EliminateAllocations is off ===");
1805     } else if(!has_scalar_replaceable_candidates) {
1806       tty->print(" since there are no scalar replaceable candidates ===");
1807     } else if(C->AliasLevel() < 3) {
1808       tty->print(" since AliasLevel < 3 ===");
1809     }
1810     tty->cr();
1811 #endif
1812   }
1813   return has_non_escaping_obj;
1814 }
1815 
1816 // Adjust escape state after Connection Graph is built.
1817 void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) {
1818   PointsToNode* ptn = ptnode_adr(nidx);
1819   Node* n = ptn->_node;
1820   assert(n->is_AddP(), "Should be called for AddP nodes only");
1821   // Search for objects which are not scalar replaceable.
1822   // Mark their escape state as ArgEscape to propagate the state
1823   // to referenced objects.
1824   // Note: currently there are no difference in compiler optimizations
1825   // for ArgEscape objects and NoEscape objects which are not
1826   // scalar replaceable.
1827 
1828   Compile* C = _compile;
1829 
1830   int offset = ptn->offset();
1831   Node* base = get_addp_base(n);
1832   VectorSet* ptset = PointsTo(base);
1833   int ptset_size = ptset->Size();
1834 
1835   // Check if a oop field's initializing value is recorded and add
1836   // a corresponding NULL field's value if it is not recorded.
1837   // Connection Graph does not record a default initialization by NULL
1838   // captured by Initialize node.
1839   //
1840   // Note: it will disable scalar replacement in some cases:
1841   //
1842   //    Point p[] = new Point[1];
1843   //    p[0] = new Point(); // Will be not scalar replaced
1844   //
1845   // but it will save us from incorrect optimizations in next cases:
1846   //
1847   //    Point p[] = new Point[1];
1848   //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1849   //
1850   // Do a simple control flow analysis to distinguish above cases.
1851   //
1852   if (offset != Type::OffsetBot && ptset_size == 1) {
1853     uint elem = ptset->getelem(); // Allocation node's index
1854     // It does not matter if it is not Allocation node since
1855     // only non-escaping allocations are scalar replaced.
1856     if (ptnode_adr(elem)->_node->is_Allocate() &&
1857         ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
1858       AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
1859       InitializeNode* ini = alloc->initialization();
1860 
1861       // Check only oop fields.
1862       const Type* adr_type = n->as_AddP()->bottom_type();
1863       BasicType basic_field_type = T_INT;
1864       if (adr_type->isa_instptr()) {
1865         ciField* field = C->alias_type(adr_type->isa_instptr())->field();
1866         if (field != NULL) {
1867           basic_field_type = field->layout_type();
1868         } else {
1869           // Ignore non field load (for example, klass load)
1870         }
1871       } else if (adr_type->isa_aryptr()) {
1872         const Type* elemtype = adr_type->isa_aryptr()->elem();
1873         basic_field_type = elemtype->array_element_basic_type();
1874       } else {
1875         // Raw pointers are used for initializing stores so skip it.
1876         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1877                (base->in(0) == alloc),"unexpected pointer type");
1878       }
1879       if (basic_field_type == T_OBJECT ||
1880           basic_field_type == T_NARROWOOP ||
1881           basic_field_type == T_ARRAY) {
1882         Node* value = NULL;
1883         if (ini != NULL) {
1884           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
1885           Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
1886           if (store != NULL && store->is_Store()) {
1887             value = store->in(MemNode::ValueIn);
1888           } else if (ptn->edge_count() > 0) { // Are there oop stores?
1889             // Check for a store which follows allocation without branches.
1890             // For example, a volatile field store is not collected
1891             // by Initialize node. TODO: it would be nice to use idom() here.
1892             for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1893               store = n->fast_out(i);
1894               if (store->is_Store() && store->in(0) != NULL) {
1895                 Node* ctrl = store->in(0);
1896                 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
1897                         ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
1898                         ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
1899                    ctrl = ctrl->in(0);
1900                 }
1901                 if (ctrl == ini || ctrl == alloc) {
1902                   value = store->in(MemNode::ValueIn);
1903                   break;
1904                 }
1905               }
1906             }
1907           }
1908         }
1909         if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
1910           // A field's initializing value was not recorded. Add NULL.
1911           uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
1912           add_pointsto_edge(nidx, null_idx);
1913         }
1914       }
1915     }
1916   }
1917 
1918   // An object is not scalar replaceable if the field which may point
1919   // to it has unknown offset (unknown element of an array of objects).
1920   //
1921   if (offset == Type::OffsetBot) {
1922     uint e_cnt = ptn->edge_count();
1923     for (uint ei = 0; ei < e_cnt; ei++) {
1924       uint npi = ptn->edge_target(ei);
1925       set_escape_state(npi, PointsToNode::ArgEscape);
1926       ptnode_adr(npi)->_scalar_replaceable = false;
1927     }
1928   }
1929 
1930   // Currently an object is not scalar replaceable if a LoadStore node
1931   // access its field since the field value is unknown after it.
1932   //
1933   bool has_LoadStore = false;
1934   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1935     Node *use = n->fast_out(i);
1936     if (use->is_LoadStore()) {
1937       has_LoadStore = true;
1938       break;
1939     }
1940   }
1941   // An object is not scalar replaceable if the address points
1942   // to unknown field (unknown element for arrays, offset is OffsetBot).
1943   //
1944   // Or the address may point to more then one object. This may produce
1945   // the false positive result (set scalar_replaceable to false)
1946   // since the flow-insensitive escape analysis can't separate
1947   // the case when stores overwrite the field's value from the case
1948   // when stores happened on different control branches.
1949   //
1950   if (ptset_size > 1 || ptset_size != 0 &&
1951       (has_LoadStore || offset == Type::OffsetBot)) {
1952     for( VectorSetI j(ptset); j.test(); ++j ) {
1953       set_escape_state(j.elem, PointsToNode::ArgEscape);
1954       ptnode_adr(j.elem)->_scalar_replaceable = false;
1955     }
1956   }
1957 }
1958 
1959 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
1960 
1961     switch (call->Opcode()) {
1962 #ifdef ASSERT
1963     case Op_Allocate:
1964     case Op_AllocateArray:
1965     case Op_Lock:
1966     case Op_Unlock:
1967       assert(false, "should be done already");
1968       break;
1969 #endif
1970     case Op_CallLeaf:
1971     case Op_CallLeafNoFP:
1972     {
1973       // Stub calls, objects do not escape but they are not scale replaceable.
1974       // Adjust escape state for outgoing arguments.
1975       const TypeTuple * d = call->tf()->domain();
1976       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1977         const Type* at = d->field_at(i);
1978         Node *arg = call->in(i)->uncast();
1979         const Type *aat = phase->type(arg);
1980         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
1981             ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
1982 
1983           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
1984                  aat->isa_ptr() != NULL, "expecting an Ptr");
1985 #ifdef ASSERT
1986           if (!(call->Opcode() == Op_CallLeafNoFP &&
1987                 call->as_CallLeaf()->_name != NULL &&
1988                 (strstr(call->as_CallLeaf()->_name, "arraycopy")  != 0) ||
1989                 call->as_CallLeaf()->_name != NULL &&
1990                 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
1991                  strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
1992           ) {
1993             call->dump();
1994             assert(false, "EA: unexpected CallLeaf");
1995           }
1996 #endif
1997           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1998           if (arg->is_AddP()) {
1999             //
2000             // The inline_native_clone() case when the arraycopy stub is called
2001             // after the allocation before Initialize and CheckCastPP nodes.
2002             //
2003             // Set AddP's base (Allocate) as not scalar replaceable since
2004             // pointer to the base (with offset) is passed as argument.
2005             //
2006             arg = get_addp_base(arg);
2007           }
2008           for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
2009             uint pt = j.elem;
2010             set_escape_state(pt, PointsToNode::ArgEscape);
2011           }
2012         }
2013       }
2014       break;
2015     }
2016 
2017     case Op_CallStaticJava:
2018     // For a static call, we know exactly what method is being called.
2019     // Use bytecode estimator to record the call's escape affects
2020     {
2021       ciMethod *meth = call->as_CallJava()->method();
2022       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
2023       // fall-through if not a Java method or no analyzer information
2024       if (call_analyzer != NULL) {
2025         const TypeTuple * d = call->tf()->domain();
2026         bool copy_dependencies = false;
2027         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2028           const Type* at = d->field_at(i);
2029           int k = i - TypeFunc::Parms;
2030           Node *arg = call->in(i)->uncast();
2031 
2032           if (at->isa_oopptr() != NULL &&
2033               ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
2034 
2035             bool global_escapes = false;
2036             bool fields_escapes = false;
2037             if (!call_analyzer->is_arg_stack(k)) {
2038               // The argument global escapes, mark everything it could point to
2039               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
2040               global_escapes = true;
2041             } else {
2042               if (!call_analyzer->is_arg_local(k)) {
2043                 // The argument itself doesn't escape, but any fields might
2044                 fields_escapes = true;
2045               }
2046               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
2047               copy_dependencies = true;
2048             }
2049 
2050             for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
2051               uint pt = j.elem;
2052               if (global_escapes) {
2053                 //The argument global escapes, mark everything it could point to
2054                 set_escape_state(pt, PointsToNode::GlobalEscape);
2055               } else {
2056                 if (fields_escapes) {
2057                   // The argument itself doesn't escape, but any fields might
2058                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
2059                 }
2060                 set_escape_state(pt, PointsToNode::ArgEscape);
2061               }
2062             }
2063           }
2064         }
2065         if (copy_dependencies)
2066           call_analyzer->copy_dependencies(_compile->dependencies());
2067         break;
2068       }
2069     }
2070 
2071     default:
2072     // Fall-through here if not a Java method or no analyzer information
2073     // or some other type of call, assume the worst case: all arguments
2074     // globally escape.
2075     {
2076       // adjust escape state for  outgoing arguments
2077       const TypeTuple * d = call->tf()->domain();
2078       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2079         const Type* at = d->field_at(i);
2080         if (at->isa_oopptr() != NULL) {
2081           Node *arg = call->in(i)->uncast();
2082           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
2083           for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
2084             uint pt = j.elem;
2085             set_escape_state(pt, PointsToNode::GlobalEscape);
2086           }
2087         }
2088       }
2089     }
2090   }
2091 }
2092 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
2093   CallNode   *call = resproj->in(0)->as_Call();
2094   uint    call_idx = call->_idx;
2095   uint resproj_idx = resproj->_idx;
2096 
2097   switch (call->Opcode()) {
2098     case Op_Allocate:
2099     {
2100       Node *k = call->in(AllocateNode::KlassNode);
2101       const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
2102       assert(kt != NULL, "TypeKlassPtr  required.");
2103       ciKlass* cik = kt->klass();
2104 
2105       PointsToNode::EscapeState es;
2106       uint edge_to;
2107       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
2108          !cik->is_instance_klass() || // StressReflectiveCode
2109           cik->as_instance_klass()->has_finalizer()) {
2110         es = PointsToNode::GlobalEscape;
2111         edge_to = _phantom_object; // Could not be worse
2112       } else {
2113         es = PointsToNode::NoEscape;
2114         edge_to = call_idx;
2115       }
2116       set_escape_state(call_idx, es);
2117       add_pointsto_edge(resproj_idx, edge_to);
2118       _processed.set(resproj_idx);
2119       break;
2120     }
2121 
2122     case Op_AllocateArray:
2123     {
2124 
2125       Node *k = call->in(AllocateNode::KlassNode);
2126       const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
2127       assert(kt != NULL, "TypeKlassPtr  required.");
2128       ciKlass* cik = kt->klass();
2129 
2130       PointsToNode::EscapeState es;
2131       uint edge_to;
2132       if (!cik->is_array_klass()) { // StressReflectiveCode
2133         es = PointsToNode::GlobalEscape;
2134         edge_to = _phantom_object;
2135       } else {
2136         es = PointsToNode::NoEscape;
2137         edge_to = call_idx;
2138         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
2139         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
2140           // Not scalar replaceable if the length is not constant or too big.
2141           ptnode_adr(call_idx)->_scalar_replaceable = false;
2142         }
2143       }
2144       set_escape_state(call_idx, es);
2145       add_pointsto_edge(resproj_idx, edge_to);
2146       _processed.set(resproj_idx);
2147       break;
2148     }
2149 
2150     case Op_CallStaticJava:
2151     // For a static call, we know exactly what method is being called.
2152     // Use bytecode estimator to record whether the call's return value escapes
2153     {
2154       bool done = true;
2155       const TypeTuple *r = call->tf()->range();
2156       const Type* ret_type = NULL;
2157 
2158       if (r->cnt() > TypeFunc::Parms)
2159         ret_type = r->field_at(TypeFunc::Parms);
2160 
2161       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
2162       //        _multianewarray functions return a TypeRawPtr.
2163       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
2164         _processed.set(resproj_idx);
2165         break;  // doesn't return a pointer type
2166       }
2167       ciMethod *meth = call->as_CallJava()->method();
2168       const TypeTuple * d = call->tf()->domain();
2169       if (meth == NULL) {
2170         // not a Java method, assume global escape
2171         set_escape_state(call_idx, PointsToNode::GlobalEscape);
2172         add_pointsto_edge(resproj_idx, _phantom_object);
2173       } else {
2174         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
2175         bool copy_dependencies = false;
2176 
2177         if (call_analyzer->is_return_allocated()) {
2178           // Returns a newly allocated unescaped object, simply
2179           // update dependency information.
2180           // Mark it as NoEscape so that objects referenced by
2181           // it's fields will be marked as NoEscape at least.
2182           set_escape_state(call_idx, PointsToNode::NoEscape);
2183           add_pointsto_edge(resproj_idx, call_idx);
2184           copy_dependencies = true;
2185         } else if (call_analyzer->is_return_local()) {
2186           // determine whether any arguments are returned
2187           set_escape_state(call_idx, PointsToNode::NoEscape);
2188           bool ret_arg = false;
2189           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2190             const Type* at = d->field_at(i);
2191 
2192             if (at->isa_oopptr() != NULL) {
2193               Node *arg = call->in(i)->uncast();
2194 
2195               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2196                 ret_arg = true;
2197                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
2198                 if (arg_esp->node_type() == PointsToNode::UnknownType)
2199                   done = false;
2200                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
2201                   add_pointsto_edge(resproj_idx, arg->_idx);
2202                 else
2203                   add_deferred_edge(resproj_idx, arg->_idx);
2204                 arg_esp->_hidden_alias = true;
2205               }
2206             }
2207           }
2208           if (done && !ret_arg) {
2209             // Returns unknown object.
2210             set_escape_state(call_idx, PointsToNode::GlobalEscape);
2211             add_pointsto_edge(resproj_idx, _phantom_object);
2212           }
2213           copy_dependencies = true;
2214         } else {
2215           set_escape_state(call_idx, PointsToNode::GlobalEscape);
2216           add_pointsto_edge(resproj_idx, _phantom_object);
2217           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2218             const Type* at = d->field_at(i);
2219             if (at->isa_oopptr() != NULL) {
2220               Node *arg = call->in(i)->uncast();
2221               PointsToNode *arg_esp = ptnode_adr(arg->_idx);
2222               arg_esp->_hidden_alias = true;
2223             }
2224           }
2225         }
2226         if (copy_dependencies)
2227           call_analyzer->copy_dependencies(_compile->dependencies());
2228       }
2229       if (done)
2230         _processed.set(resproj_idx);
2231       break;
2232     }
2233 
2234     default:
2235     // Some other type of call, assume the worst case that the
2236     // returned value, if any, globally escapes.
2237     {
2238       const TypeTuple *r = call->tf()->range();
2239       if (r->cnt() > TypeFunc::Parms) {
2240         const Type* ret_type = r->field_at(TypeFunc::Parms);
2241 
2242         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
2243         //        _multianewarray functions return a TypeRawPtr.
2244         if (ret_type->isa_ptr() != NULL) {
2245           set_escape_state(call_idx, PointsToNode::GlobalEscape);
2246           add_pointsto_edge(resproj_idx, _phantom_object);
2247         }
2248       }
2249       _processed.set(resproj_idx);
2250     }
2251   }
2252 }
2253 
2254 // Populate Connection Graph with Ideal nodes and create simple
2255 // connection graph edges (do not need to check the node_type of inputs
2256 // or to call PointsTo() to walk the connection graph).
2257 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
2258   if (_processed.test(n->_idx))
2259     return; // No need to redefine node's state.
2260 
2261   if (n->is_Call()) {
2262     // Arguments to allocation and locking don't escape.
2263     if (n->is_Allocate()) {
2264       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
2265       record_for_optimizer(n);
2266     } else if (n->is_Lock() || n->is_Unlock()) {
2267       // Put Lock and Unlock nodes on IGVN worklist to process them during
2268       // the first IGVN optimization when escape information is still available.
2269       record_for_optimizer(n);
2270       _processed.set(n->_idx);
2271     } else {
2272       // Don't mark as processed since call's arguments have to be processed.
2273       PointsToNode::NodeType nt = PointsToNode::UnknownType;
2274       PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
2275 
2276       // Check if a call returns an object.
2277       const TypeTuple *r = n->as_Call()->tf()->range();
2278       if (r->cnt() > TypeFunc::Parms &&
2279           r->field_at(TypeFunc::Parms)->isa_ptr() &&
2280           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
2281         nt = PointsToNode::JavaObject;
2282         if (!n->is_CallStaticJava()) {
2283           // Since the called mathod is statically unknown assume
2284           // the worst case that the returned value globally escapes.
2285           es = PointsToNode::GlobalEscape;
2286         }
2287       }
2288       add_node(n, nt, es, false);
2289     }
2290     return;
2291   }
2292 
2293   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
2294   // ThreadLocal has RawPrt type.
2295   switch (n->Opcode()) {
2296     case Op_AddP:
2297     {
2298       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
2299       break;
2300     }
2301     case Op_CastX2P:
2302     { // "Unsafe" memory access.
2303       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2304       break;
2305     }
2306     case Op_CastPP:
2307     case Op_CheckCastPP:
2308     case Op_EncodeP:
2309     case Op_DecodeN:
2310     {
2311       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2312       int ti = n->in(1)->_idx;
2313       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2314       if (nt == PointsToNode::UnknownType) {
2315         _delayed_worklist.push(n); // Process it later.
2316         break;
2317       } else if (nt == PointsToNode::JavaObject) {
2318         add_pointsto_edge(n->_idx, ti);
2319       } else {
2320         add_deferred_edge(n->_idx, ti);
2321       }
2322       _processed.set(n->_idx);
2323       break;
2324     }
2325     case Op_ConP:
2326     {
2327       // assume all pointer constants globally escape except for null
2328       PointsToNode::EscapeState es;
2329       if (phase->type(n) == TypePtr::NULL_PTR)
2330         es = PointsToNode::NoEscape;
2331       else
2332         es = PointsToNode::GlobalEscape;
2333 
2334       add_node(n, PointsToNode::JavaObject, es, true);
2335       break;
2336     }
2337     case Op_ConN:
2338     {
2339       // assume all narrow oop constants globally escape except for null
2340       PointsToNode::EscapeState es;
2341       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
2342         es = PointsToNode::NoEscape;
2343       else
2344         es = PointsToNode::GlobalEscape;
2345 
2346       add_node(n, PointsToNode::JavaObject, es, true);
2347       break;
2348     }
2349     case Op_CreateEx:
2350     {
2351       // assume that all exception objects globally escape
2352       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2353       break;
2354     }
2355     case Op_LoadKlass:
2356     case Op_LoadNKlass:
2357     {
2358       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2359       break;
2360     }
2361     case Op_LoadP:
2362     case Op_LoadN:
2363     {
2364       const Type *t = phase->type(n);
2365       if (t->make_ptr() == NULL) {
2366         _processed.set(n->_idx);
2367         return;
2368       }
2369       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2370       break;
2371     }
2372     case Op_Parm:
2373     {
2374       _processed.set(n->_idx); // No need to redefine it state.
2375       uint con = n->as_Proj()->_con;
2376       if (con < TypeFunc::Parms)
2377         return;
2378       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
2379       if (t->isa_ptr() == NULL)
2380         return;
2381       // We have to assume all input parameters globally escape
2382       // (Note: passing 'false' since _processed is already set).
2383       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
2384       break;
2385     }
2386     case Op_Phi:
2387     {
2388       const Type *t = n->as_Phi()->type();
2389       if (t->make_ptr() == NULL) {
2390         // nothing to do if not an oop or narrow oop
2391         _processed.set(n->_idx);
2392         return;
2393       }
2394       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2395       uint i;
2396       for (i = 1; i < n->req() ; i++) {
2397         Node* in = n->in(i);
2398         if (in == NULL)
2399           continue;  // ignore NULL
2400         in = in->uncast();
2401         if (in->is_top() || in == n)
2402           continue;  // ignore top or inputs which go back this node
2403         int ti = in->_idx;
2404         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2405         if (nt == PointsToNode::UnknownType) {
2406           break;
2407         } else if (nt == PointsToNode::JavaObject) {
2408           add_pointsto_edge(n->_idx, ti);
2409         } else {
2410           add_deferred_edge(n->_idx, ti);
2411         }
2412       }
2413       if (i >= n->req())
2414         _processed.set(n->_idx);
2415       else
2416         _delayed_worklist.push(n);
2417       break;
2418     }
2419     case Op_Proj:
2420     {
2421       // we are only interested in the oop result projection from a call
2422       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2423         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
2424         assert(r->cnt() > TypeFunc::Parms, "sanity");
2425         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
2426           add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2427           int ti = n->in(0)->_idx;
2428           // The call may not be registered yet (since not all its inputs are registered)
2429           // if this is the projection from backbranch edge of Phi.
2430           if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
2431             process_call_result(n->as_Proj(), phase);
2432           }
2433           if (!_processed.test(n->_idx)) {
2434             // The call's result may need to be processed later if the call
2435             // returns it's argument and the argument is not processed yet.
2436             _delayed_worklist.push(n);
2437           }
2438           break;
2439         }
2440       }
2441       _processed.set(n->_idx);
2442       break;
2443     }
2444     case Op_Return:
2445     {
2446       if( n->req() > TypeFunc::Parms &&
2447           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2448         // Treat Return value as LocalVar with GlobalEscape escape state.
2449         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
2450         int ti = n->in(TypeFunc::Parms)->_idx;
2451         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2452         if (nt == PointsToNode::UnknownType) {
2453           _delayed_worklist.push(n); // Process it later.
2454           break;
2455         } else if (nt == PointsToNode::JavaObject) {
2456           add_pointsto_edge(n->_idx, ti);
2457         } else {
2458           add_deferred_edge(n->_idx, ti);
2459         }
2460       }
2461       _processed.set(n->_idx);
2462       break;
2463     }
2464     case Op_StoreP:
2465     case Op_StoreN:
2466     {
2467       const Type *adr_type = phase->type(n->in(MemNode::Address));
2468       adr_type = adr_type->make_ptr();
2469       if (adr_type->isa_oopptr()) {
2470         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2471       } else {
2472         Node* adr = n->in(MemNode::Address);
2473         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
2474             adr->in(AddPNode::Address)->is_Proj() &&
2475             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2476           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2477           // We are computing a raw address for a store captured
2478           // by an Initialize compute an appropriate address type.
2479           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2480           assert(offs != Type::OffsetBot, "offset must be a constant");
2481         } else {
2482           _processed.set(n->_idx);
2483           return;
2484         }
2485       }
2486       break;
2487     }
2488     case Op_StorePConditional:
2489     case Op_CompareAndSwapP:
2490     case Op_CompareAndSwapN:
2491     {
2492       const Type *adr_type = phase->type(n->in(MemNode::Address));
2493       adr_type = adr_type->make_ptr();
2494       if (adr_type->isa_oopptr()) {
2495         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2496       } else {
2497         _processed.set(n->_idx);
2498         return;
2499       }
2500       break;
2501     }
2502     case Op_AryEq:
2503     case Op_StrComp:
2504     case Op_StrEquals:
2505     case Op_StrIndexOf:
2506     {
2507       // char[] arrays passed to string intrinsics are not scalar replaceable.
2508       add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2509       break;
2510     }
2511     case Op_ThreadLocal:
2512     {
2513       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
2514       break;
2515     }
2516     default:
2517       ;
2518       // nothing to do
2519   }
2520   return;
2521 }
2522 
2523 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
2524   uint n_idx = n->_idx;
2525   assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
2526 
2527   // Don't set processed bit for AddP, LoadP, StoreP since
2528   // they may need more then one pass to process.
2529   // Also don't mark as processed Call nodes since their
2530   // arguments may need more then one pass to process.
2531   if (_processed.test(n_idx))
2532     return; // No need to redefine node's state.
2533 
2534   if (n->is_Call()) {
2535     CallNode *call = n->as_Call();
2536     process_call_arguments(call, phase);
2537     return;
2538   }
2539 
2540   switch (n->Opcode()) {
2541     case Op_AddP:
2542     {
2543       Node *base = get_addp_base(n);
2544       // Create a field edge to this node from everything base could point to.
2545       for( VectorSetI i(PointsTo(base)); i.test(); ++i ) {
2546         uint pt = i.elem;
2547         add_field_edge(pt, n_idx, address_offset(n, phase));
2548       }
2549       break;
2550     }
2551     case Op_CastX2P:
2552     {
2553       assert(false, "Op_CastX2P");
2554       break;
2555     }
2556     case Op_CastPP:
2557     case Op_CheckCastPP:
2558     case Op_EncodeP:
2559     case Op_DecodeN:
2560     {
2561       int ti = n->in(1)->_idx;
2562       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
2563       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2564         add_pointsto_edge(n_idx, ti);
2565       } else {
2566         add_deferred_edge(n_idx, ti);
2567       }
2568       _processed.set(n_idx);
2569       break;
2570     }
2571     case Op_ConP:
2572     {
2573       assert(false, "Op_ConP");
2574       break;
2575     }
2576     case Op_ConN:
2577     {
2578       assert(false, "Op_ConN");
2579       break;
2580     }
2581     case Op_CreateEx:
2582     {
2583       assert(false, "Op_CreateEx");
2584       break;
2585     }
2586     case Op_LoadKlass:
2587     case Op_LoadNKlass:
2588     {
2589       assert(false, "Op_LoadKlass");
2590       break;
2591     }
2592     case Op_LoadP:
2593     case Op_LoadN:
2594     {
2595       const Type *t = phase->type(n);
2596 #ifdef ASSERT
2597       if (t->make_ptr() == NULL)
2598         assert(false, "Op_LoadP");
2599 #endif
2600 
2601       Node* adr = n->in(MemNode::Address)->uncast();
2602       Node* adr_base;
2603       if (adr->is_AddP()) {
2604         adr_base = get_addp_base(adr);
2605       } else {
2606         adr_base = adr;
2607       }
2608 
2609       // For everything "adr_base" could point to, create a deferred edge from
2610       // this node to each field with the same offset.
2611       int offset = address_offset(adr, phase);
2612       for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
2613         uint pt = i.elem;
2614         add_deferred_edge_to_fields(n_idx, pt, offset);
2615       }
2616       break;
2617     }
2618     case Op_Parm:
2619     {
2620       assert(false, "Op_Parm");
2621       break;
2622     }
2623     case Op_Phi:
2624     {
2625 #ifdef ASSERT
2626       const Type *t = n->as_Phi()->type();
2627       if (t->make_ptr() == NULL)
2628         assert(false, "Op_Phi");
2629 #endif
2630       for (uint i = 1; i < n->req() ; i++) {
2631         Node* in = n->in(i);
2632         if (in == NULL)
2633           continue;  // ignore NULL
2634         in = in->uncast();
2635         if (in->is_top() || in == n)
2636           continue;  // ignore top or inputs which go back this node
2637         int ti = in->_idx;
2638         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2639         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
2640         if (nt == PointsToNode::JavaObject) {
2641           add_pointsto_edge(n_idx, ti);
2642         } else {
2643           add_deferred_edge(n_idx, ti);
2644         }
2645       }
2646       _processed.set(n_idx);
2647       break;
2648     }
2649     case Op_Proj:
2650     {
2651       // we are only interested in the oop result projection from a call
2652       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2653         assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
2654                "all nodes should be registered");
2655         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
2656         assert(r->cnt() > TypeFunc::Parms, "sanity");
2657         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
2658           process_call_result(n->as_Proj(), phase);
2659           assert(_processed.test(n_idx), "all call results should be processed");
2660           break;
2661         }
2662       }
2663       assert(false, "Op_Proj");
2664       break;
2665     }
2666     case Op_Return:
2667     {
2668 #ifdef ASSERT
2669       if( n->req() <= TypeFunc::Parms ||
2670           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2671         assert(false, "Op_Return");
2672       }
2673 #endif
2674       int ti = n->in(TypeFunc::Parms)->_idx;
2675       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
2676       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2677         add_pointsto_edge(n_idx, ti);
2678       } else {
2679         add_deferred_edge(n_idx, ti);
2680       }
2681       _processed.set(n_idx);
2682       break;
2683     }
2684     case Op_StoreP:
2685     case Op_StoreN:
2686     case Op_StorePConditional:
2687     case Op_CompareAndSwapP:
2688     case Op_CompareAndSwapN:
2689     {
2690       Node *adr = n->in(MemNode::Address);
2691       const Type *adr_type = phase->type(adr)->make_ptr();
2692 #ifdef ASSERT
2693       if (!adr_type->isa_oopptr())
2694         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
2695 #endif
2696 
2697       assert(adr->is_AddP(), "expecting an AddP");
2698       Node *adr_base = get_addp_base(adr);
2699       Node *val = n->in(MemNode::ValueIn)->uncast();
2700       // For everything "adr_base" could point to, create a deferred edge
2701       // to "val" from each field with the same offset.
2702       for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
2703         uint pt = i.elem;
2704         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
2705       }
2706       break;
2707     }
2708     case Op_AryEq:
2709     case Op_StrComp:
2710     case Op_StrEquals:
2711     case Op_StrIndexOf:
2712     {
2713       // char[] arrays passed to string intrinsic do not escape but
2714       // they are not scalar replaceable. Adjust escape state for them.
2715       // Start from in(2) edge since in(1) is memory edge.
2716       for (uint i = 2; i < n->req(); i++) {
2717         Node* adr = n->in(i)->uncast();
2718         const Type *at = phase->type(adr);
2719         if (!adr->is_top() && at->isa_ptr()) {
2720           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
2721                  at->isa_ptr() != NULL, "expecting an Ptr");
2722           if (adr->is_AddP()) {
2723             adr = get_addp_base(adr);
2724           }
2725           // Mark as ArgEscape everything "adr" could point to.
2726           set_escape_state(adr->_idx, PointsToNode::ArgEscape);
2727         }
2728       }
2729       _processed.set(n_idx);
2730       break;
2731     }
2732     case Op_ThreadLocal:
2733     {
2734       assert(false, "Op_ThreadLocal");
2735       break;
2736     }
2737     default:
2738       // This method should be called only for EA specific nodes.
2739       ShouldNotReachHere();
2740   }
2741 }
2742 
2743 #ifndef PRODUCT
2744 void ConnectionGraph::dump() {
2745   bool first = true;
2746 
2747   uint size = nodes_size();
2748   for (uint ni = 0; ni < size; ni++) {
2749     PointsToNode *ptn = ptnode_adr(ni);
2750     PointsToNode::NodeType ptn_type = ptn->node_type();
2751 
2752     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
2753       continue;
2754     PointsToNode::EscapeState es = escape_state(ptn->_node);
2755     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
2756       if (first) {
2757         tty->cr();
2758         tty->print("======== Connection graph for ");
2759         _compile->method()->print_short_name();
2760         tty->cr();
2761         first = false;
2762       }
2763       tty->print("%6d ", ni);
2764       ptn->dump();
2765       // Print all locals which reference this allocation
2766       for (uint li = ni; li < size; li++) {
2767         PointsToNode *ptn_loc = ptnode_adr(li);
2768         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
2769         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
2770              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
2771           ptnode_adr(li)->dump(false);
2772         }
2773       }
2774       if (Verbose) {
2775         // Print all fields which reference this allocation
2776         for (uint i = 0; i < ptn->edge_count(); i++) {
2777           uint ei = ptn->edge_target(i);
2778           ptnode_adr(ei)->dump(false);
2779         }
2780       }
2781       tty->cr();
2782     }
2783   }
2784 }
2785 #endif