1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_ESCAPE_HPP
  26 #define SHARE_VM_OPTO_ESCAPE_HPP
  27 
  28 #include "opto/addnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "utilities/growableArray.hpp"
  31 
  32 //
  33 // Adaptation for C2 of the escape analysis algorithm described in:
  34 //
  35 // [Choi99] Jong-Deok Shoi, Manish Gupta, Mauricio Seffano,
  36 //          Vugranam C. Sreedhar, Sam Midkiff,
  37 //          "Escape Analysis for Java", Procedings of ACM SIGPLAN
  38 //          OOPSLA  Conference, November 1, 1999
  39 //
  40 // The flow-insensitive analysis described in the paper has been implemented.
  41 //
  42 // The analysis requires construction of a "connection graph" (CG) for
  43 // the method being analyzed.  The nodes of the connection graph are:
  44 //
  45 //     -  Java objects (JO)
  46 //     -  Local variables (LV)
  47 //     -  Fields of an object (OF),  these also include array elements
  48 //
  49 // The CG contains 3 types of edges:
  50 //
  51 //   -  PointsTo  (-P>)    {LV, OF} to JO
  52 //   -  Deferred  (-D>)    from {LV, OF} to {LV, OF}
  53 //   -  Field     (-F>)    from JO to OF
  54 //
  55 // The following  utility functions is used by the algorithm:
  56 //
  57 //   PointsTo(n) - n is any CG node, it returns the set of JO that n could
  58 //                 point to.
  59 //
  60 // The algorithm describes how to construct the connection graph
  61 // in the following 4 cases:
  62 //
  63 //          Case                  Edges Created
  64 //
  65 // (1)   p   = new T()              LV -P> JO
  66 // (2)   p   = q                    LV -D> LV
  67 // (3)   p.f = q                    JO -F> OF,  OF -D> LV
  68 // (4)   p   = q.f                  JO -F> OF,  LV -D> OF
  69 //
  70 // In all these cases, p and q are local variables.  For static field
  71 // references, we can construct a local variable containing a reference
  72 // to the static memory.
  73 //
  74 // C2 does not have local variables.  However for the purposes of constructing
  75 // the connection graph, the following IR nodes are treated as local variables:
  76 //     Phi    (pointer values)
  77 //     LoadP
  78 //     Proj#5 (value returned from callnodes including allocations)
  79 //     CheckCastPP, CastPP
  80 //
  81 // The LoadP, Proj and CheckCastPP behave like variables assigned to only once.
  82 // Only a Phi can have multiple assignments.  Each input to a Phi is treated
  83 // as an assignment to it.
  84 //
  85 // The following node types are JavaObject:
  86 //
  87 //     top()
  88 //     Allocate
  89 //     AllocateArray
  90 //     Parm  (for incoming arguments)
  91 //     CastX2P ("unsafe" operations)
  92 //     CreateEx
  93 //     ConP
  94 //     LoadKlass
  95 //     ThreadLocal
  96 //
  97 // AddP nodes are fields.
  98 //
  99 // After building the graph, a pass is made over the nodes, deleting deferred
 100 // nodes and copying the edges from the target of the deferred edge to the
 101 // source.  This results in a graph with no deferred edges, only:
 102 //
 103 //    LV -P> JO
 104 //    OF -P> JO (the object whose oop is stored in the field)
 105 //    JO -F> OF
 106 //
 107 // Then, for each node which is GlobalEscape, anything it could point to
 108 // is marked GlobalEscape.  Finally, for any node marked ArgEscape, anything
 109 // it could point to is marked ArgEscape.
 110 //
 111 
 112 class  Compile;
 113 class  Node;
 114 class  CallNode;
 115 class  PhiNode;
 116 class  PhaseTransform;
 117 class  Type;
 118 class  TypePtr;
 119 class  VectorSet;
 120 
 121 class PointsToNode {
 122 friend class ConnectionGraph;
 123 public:
 124   typedef enum {
 125     UnknownType = 0,
 126     JavaObject  = 1,
 127     LocalVar    = 2,
 128     Field       = 3
 129   } NodeType;
 130 
 131   typedef enum {
 132     UnknownEscape = 0,
 133     NoEscape      = 1, // A scalar replaceable object with unique type.
 134     ArgEscape     = 2, // An object passed as argument or referenced by
 135                        // argument (and not globally escape during call).
 136     GlobalEscape  = 3  // An object escapes the method and thread.
 137   } EscapeState;
 138 
 139   typedef enum {
 140     UnknownEdge   = 0,
 141     PointsToEdge  = 1,
 142     DeferredEdge  = 2,
 143     FieldEdge     = 3
 144   } EdgeType;
 145 
 146 private:
 147   enum {
 148     EdgeMask = 3,
 149     EdgeShift = 2,
 150 
 151     INITIAL_EDGE_COUNT = 4
 152   };
 153 
 154   NodeType             _type;
 155   EscapeState          _escape;
 156   GrowableArray<uint>* _edges;   // outgoing edges
 157 
 158 public:
 159   Node* _node;              // Ideal node corresponding to this PointsTo node.
 160   int   _offset;            // Object fields offsets.
 161   bool  _scalar_replaceable;// Not escaped object could be replaced with scalar
 162   bool  _hidden_alias;      // This node is an argument to a function.
 163                             // which may return it creating a hidden alias.
 164 
 165   PointsToNode():
 166     _type(UnknownType),
 167     _escape(UnknownEscape),
 168     _edges(NULL),
 169     _node(NULL),
 170     _offset(-1),
 171     _scalar_replaceable(true),
 172     _hidden_alias(false) {}
 173 
 174 
 175   EscapeState escape_state() const { return _escape; }
 176   NodeType node_type() const { return _type;}
 177   int offset() { return _offset;}
 178 
 179   void set_offset(int offs) { _offset = offs;}
 180   void set_escape_state(EscapeState state) { _escape = state; }
 181   void set_node_type(NodeType ntype) {
 182     assert(_type == UnknownType || _type == ntype, "Can't change node type");
 183     _type = ntype;
 184   }
 185 
 186   // count of outgoing edges
 187   uint edge_count() const { return (_edges == NULL) ? 0 : _edges->length(); }
 188 
 189   // node index of target of outgoing edge "e"
 190   uint edge_target(uint e) const {
 191     assert(_edges != NULL, "valid edge index");
 192     return (_edges->at(e) >> EdgeShift);
 193   }
 194   // type of outgoing edge "e"
 195   EdgeType edge_type(uint e) const {
 196     assert(_edges != NULL, "valid edge index");
 197     return (EdgeType) (_edges->at(e) & EdgeMask);
 198   }
 199 
 200   // add a edge of the specified type pointing to the specified target
 201   void add_edge(uint targIdx, EdgeType et);
 202 
 203   // remove an edge of the specified type pointing to the specified target
 204   void remove_edge(uint targIdx, EdgeType et);
 205 
 206 #ifndef PRODUCT
 207   void dump(bool print_state=true) const;
 208 #endif
 209 
 210 };
 211 
 212 class ConnectionGraph: public ResourceObj {
 213 private:
 214   GrowableArray<PointsToNode>  _nodes; // Connection graph nodes indexed
 215                                        // by ideal node index.
 216 
 217   Unique_Node_List  _delayed_worklist; // Nodes to be processed before
 218                                        // the call build_connection_graph().
 219 
 220   GrowableArray<MergeMemNode *>  _mergemem_worklist; // List of all MergeMem nodes
 221 
 222   VectorSet                _processed; // Records which nodes have been
 223                                        // processed.
 224 
 225   bool                    _collecting; // Indicates whether escape information
 226                                        // is still being collected. If false,
 227                                        // no new nodes will be processed.
 228 
 229   bool                    _progress;   // Indicates whether new Graph's edges
 230                                        // were created.
 231 
 232   uint                _phantom_object; // Index of globally escaping object
 233                                        // that pointer values loaded from
 234                                        // a field which has not been set
 235                                        // are assumed to point to.
 236   uint                      _oop_null; // ConP(#NULL)
 237   uint                     _noop_null; // ConN(#NULL)
 238 
 239   Compile *                  _compile; // Compile object for current compilation
 240   PhaseIterGVN *                _igvn; // Value numbering
 241 
 242   // Address of an element in _nodes.  Used when the element is to be modified
 243   PointsToNode *ptnode_adr(uint idx) const {
 244     // There should be no new ideal nodes during ConnectionGraph build,
 245     // growableArray::adr_at() will throw assert otherwise.
 246     return _nodes.adr_at(idx);
 247   }
 248   uint nodes_size() const { return _nodes.length(); }
 249 
 250   // Add node to ConnectionGraph.
 251   void add_node(Node *n, PointsToNode::NodeType nt, PointsToNode::EscapeState es, bool done);
 252 
 253   // offset of a field reference
 254   int address_offset(Node* adr, PhaseTransform *phase);
 255 
 256   // compute the escape state for arguments to a call
 257   void process_call_arguments(CallNode *call, PhaseTransform *phase);
 258 
 259   // compute the escape state for the return value of a call
 260   void process_call_result(ProjNode *resproj, PhaseTransform *phase);
 261 
 262   // Populate Connection Graph with Ideal nodes.
 263   void record_for_escape_analysis(Node *n, PhaseTransform *phase);
 264 
 265   // Build Connection Graph and set nodes escape state.
 266   void build_connection_graph(Node *n, PhaseTransform *phase);
 267 
 268   // walk the connection graph starting at the node corresponding to "n" and
 269   // add the index of everything it could point to, to "ptset".  This may cause
 270   // Phi's encountered to get (re)processed  (which requires "phase".)
 271   VectorSet* PointsTo(Node * n);
 272 
 273   // Reused structures for PointsTo().
 274   VectorSet            pt_ptset;
 275   VectorSet            pt_visited;
 276   GrowableArray<uint>  pt_worklist;
 277 
 278   //  Edge manipulation.  The "from_i" and "to_i" arguments are the
 279   //  node indices of the source and destination of the edge
 280   void add_pointsto_edge(uint from_i, uint to_i);
 281   void add_deferred_edge(uint from_i, uint to_i);
 282   void add_field_edge(uint from_i, uint to_i, int offs);
 283 
 284   // Add an edge of the specified type pointing to the specified target.
 285   // Set _progress if new edge is added.
 286   void add_edge(PointsToNode *f, uint to_i, PointsToNode::EdgeType et) {
 287     uint e_cnt = f->edge_count();
 288     f->add_edge(to_i, et);
 289     _progress |= (f->edge_count() != e_cnt);
 290   }
 291 
 292   // Add an edge to node given by "to_i" from any field of adr_i whose offset
 293   // matches "offset"  A deferred edge is added if to_i is a LocalVar, and
 294   // a pointsto edge is added if it is a JavaObject
 295   void add_edge_from_fields(uint adr, uint to_i, int offs);
 296 
 297   // Add a deferred  edge from node given by "from_i" to any field
 298   // of adr_i whose offset matches "offset"
 299   void add_deferred_edge_to_fields(uint from_i, uint adr, int offs);
 300 
 301 
 302   // Remove outgoing deferred edges from the node referenced by "ni".
 303   // Any outgoing edges from the target of the deferred edge are copied
 304   // to "ni".
 305   void remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited);
 306 
 307   Node_Array _node_map; // used for bookeeping during type splitting
 308                         // Used for the following purposes:
 309                         // Memory Phi    - most recent unique Phi split out
 310                         //                 from this Phi
 311                         // MemNode       - new memory input for this node
 312                         // ChecCastPP    - allocation that this is a cast of
 313                         // allocation    - CheckCastPP of the allocation
 314   bool split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn);
 315   PhiNode *create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created);
 316   PhiNode *split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn);
 317   void  move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *igvn);
 318   Node *find_inst_mem(Node *mem, int alias_idx,GrowableArray<PhiNode *>  &orig_phi_worklist,  PhaseGVN  *igvn);
 319 
 320   // Propagate unique types created for unescaped allocated objects
 321   // through the graph
 322   void split_unique_types(GrowableArray<Node *>  &alloc_worklist);
 323 
 324   // manage entries in _node_map
 325   void  set_map(int idx, Node *n)        { _node_map.map(idx, n); }
 326   Node *get_map(int idx)                 { return _node_map[idx]; }
 327   PhiNode *get_map_phi(int idx) {
 328     Node *phi = _node_map[idx];
 329     return (phi == NULL) ? NULL : phi->as_Phi();
 330   }
 331 
 332   // Notify optimizer that a node has been modified
 333   // Node:  This assumes that escape analysis is run before
 334   //        PhaseIterGVN creation
 335   void record_for_optimizer(Node *n) {
 336     _igvn->_worklist.push(n);
 337   }
 338 
 339   // Set the escape state of a node
 340   void set_escape_state(uint ni, PointsToNode::EscapeState es);
 341 
 342   // Adjust escape state after Connection Graph is built.
 343   void adjust_escape_state(int nidx, PhaseTransform* phase);
 344 
 345   // Compute the escape information
 346   bool compute_escape();
 347 
 348 public:
 349   ConnectionGraph(Compile *C, PhaseIterGVN *igvn);
 350 
 351   // Check for non-escaping candidates
 352   static bool has_candidates(Compile *C);
 353 
 354   // Perform escape analysis
 355   static void do_analysis(Compile *C, PhaseIterGVN *igvn);
 356 
 357   // escape state of a node
 358   PointsToNode::EscapeState escape_state(Node *n);
 359 
 360   // other information we have collected
 361   bool is_scalar_replaceable(Node *n) {
 362     if (_collecting || (n->_idx >= nodes_size()))
 363       return false;
 364     PointsToNode* ptn = ptnode_adr(n->_idx);
 365     return ptn->escape_state() == PointsToNode::NoEscape && ptn->_scalar_replaceable;
 366   }
 367 
 368   bool hidden_alias(Node *n) {
 369     if (_collecting || (n->_idx >= nodes_size()))
 370       return true;
 371     PointsToNode* ptn = ptnode_adr(n->_idx);
 372     return (ptn->escape_state() != PointsToNode::NoEscape) || ptn->_hidden_alias;
 373   }
 374 
 375 #ifndef PRODUCT
 376   void dump();
 377 #endif
 378 };
 379 
 380 #endif // SHARE_VM_OPTO_ESCAPE_HPP