/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "opto/block.hpp" #include "opto/cfgnode.hpp" #include "opto/chaitin.hpp" #include "opto/coalesce.hpp" #include "opto/connode.hpp" #include "opto/indexSet.hpp" #include "opto/machnode.hpp" #include "opto/matcher.hpp" #include "opto/regmask.hpp" //============================================================================= //------------------------------reset_uf_map----------------------------------- void PhaseChaitin::reset_uf_map( uint maxlrg ) { _maxlrg = maxlrg; // Force the Union-Find mapping to be at least this large _uf_map.extend(_maxlrg,0); // Initialize it to be the ID mapping. for( uint i=0; i<_maxlrg; i++ ) _uf_map.map(i,i); } //------------------------------compress_uf_map-------------------------------- // Make all Nodes map directly to their final live range; no need for // the Union-Find mapping after this call. void PhaseChaitin::compress_uf_map_for_nodes( ) { // For all Nodes, compress mapping uint unique = _names.Size(); for( uint i=0; i_idx]); _names.map(n->_idx,lrg); return lrg; } //------------------------------Find_const------------------------------------- // Like Find above, but no path compress, so bad asymptotic behavior uint PhaseChaitin::Find_const( uint lrg ) const { if( !lrg ) return lrg; // Ignore the zero LRG // Off the end? This happens during debugging dumps when you got // brand new live ranges but have not told the allocator yet. if( lrg >= _maxlrg ) return lrg; uint next = _uf_map[lrg]; while( next != lrg ) { // Scan chain of equivalences assert( next < lrg, "always union smaller" ); lrg = next; // until find a fixed-point next = _uf_map[lrg]; } return next; } //------------------------------Find------------------------------------------- // Like Find above, but no path compress, so bad asymptotic behavior uint PhaseChaitin::Find_const( const Node *n ) const { if( n->_idx >= _names.Size() ) return 0; // not mapped, usual for debug dump return Find_const( _names[n->_idx] ); } //------------------------------Union------------------------------------------ // union 2 sets together. void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) { uint src = Find(src_n); uint dst = Find(dst_n); assert( src, "" ); assert( dst, "" ); assert( src < _maxlrg, "oob" ); assert( dst < _maxlrg, "oob" ); assert( src < dst, "always union smaller" ); _uf_map.map(dst,src); } //------------------------------new_lrg---------------------------------------- void PhaseChaitin::new_lrg( const Node *x, uint lrg ) { // Make the Node->LRG mapping _names.extend(x->_idx,lrg); // Make the Union-Find mapping an identity function _uf_map.extend(lrg,lrg); } //------------------------------clone_projs------------------------------------ // After cloning some rematerialized instruction, clone any MachProj's that // follow it. Example: Intel zero is XOR, kills flags. Sparc FP constants // use G3 as an address temp. int PhaseChaitin::clone_projs( Block *b, uint idx, Node *con, Node *copy, uint &maxlrg ) { Block *bcon = _cfg._bbs[con->_idx]; uint cindex = bcon->find_node(con); Node *con_next = bcon->_nodes[cindex+1]; if( con_next->in(0) != con || !con_next->is_MachProj() ) return false; // No MachProj's follow // Copy kills after the cloned constant Node *kills = con_next->clone(); kills->set_req( 0, copy ); b->_nodes.insert( idx, kills ); _cfg._bbs.map( kills->_idx, b ); new_lrg( kills, maxlrg++ ); return true; } //------------------------------compact---------------------------------------- // Renumber the live ranges to compact them. Makes the IFG smaller. void PhaseChaitin::compact() { // Current the _uf_map contains a series of short chains which are headed // by a self-cycle. All the chains run from big numbers to little numbers. // The Find() call chases the chains & shortens them for the next Find call. // We are going to change this structure slightly. Numbers above a moving // wave 'i' are unchanged. Numbers below 'j' point directly to their // compacted live range with no further chaining. There are no chains or // cycles below 'i', so the Find call no longer works. uint j=1; uint i; for( i=1; i < _maxlrg; i++ ) { uint lr = _uf_map[i]; // Ignore unallocated live ranges if( !lr ) continue; assert( lr <= i, "" ); _uf_map.map(i, ( lr == i ) ? j++ : _uf_map[lr]); } if( false ) // PrintOptoCompactLiveRanges printf("Compacted %d LRs from %d\n",i-j,i); // Now change the Node->LR mapping to reflect the compacted names uint unique = _names.Size(); for( i=0; iprint("L%d/N%d ",r,n->_idx); } //------------------------------dump------------------------------------------- void PhaseCoalesce::dump() const { // I know I have a block layout now, so I can print blocks in a loop for( uint i=0; i<_phc._cfg._num_blocks; i++ ) { uint j; Block *b = _phc._cfg._blocks[i]; // Print a nice block header tty->print("B%d: ",b->_pre_order); for( j=1; jnum_preds(); j++ ) tty->print("B%d ", _phc._cfg._bbs[b->pred(j)->_idx]->_pre_order); tty->print("-> "); for( j=0; j_num_succs; j++ ) tty->print("B%d ",b->_succs[j]->_pre_order); tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth); uint cnt = b->_nodes.size(); for( j=0; j_nodes[j]; dump( n ); tty->print("\t%s\t",n->Name()); // Dump the inputs uint k; // Exit value of loop for( k=0; kreq(); k++ ) // For all required inputs if( n->in(k) ) dump( n->in(k) ); else tty->print("_ "); int any_prec = 0; for( ; klen(); k++ ) // For all precedence inputs if( n->in(k) ) { if( !any_prec++ ) tty->print(" |"); dump( n->in(k) ); } // Dump node-specific info n->dump_spec(tty); tty->print("\n"); } tty->print("\n"); } } #endif //------------------------------combine_these_two------------------------------ // Combine the live ranges def'd by these 2 Nodes. N2 is an input to N1. void PhaseCoalesce::combine_these_two( Node *n1, Node *n2 ) { uint lr1 = _phc.Find(n1); uint lr2 = _phc.Find(n2); if( lr1 != lr2 && // Different live ranges already AND !_phc._ifg->test_edge_sq( lr1, lr2 ) ) { // Do not interfere LRG *lrg1 = &_phc.lrgs(lr1); LRG *lrg2 = &_phc.lrgs(lr2); // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK. // Now, why is int->oop OK? We end up declaring a raw-pointer as an oop // and in general that's a bad thing. However, int->oop conversions only // happen at GC points, so the lifetime of the misclassified raw-pointer // is from the CheckCastPP (that converts it to an oop) backwards up // through a merge point and into the slow-path call, and around the // diamond up to the heap-top check and back down into the slow-path call. // The misclassified raw pointer is NOT live across the slow-path call, // and so does not appear in any GC info, so the fact that it is // misclassified is OK. if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND // Compatible final mask lrg1->mask().overlap( lrg2->mask() ) ) { // Merge larger into smaller. if( lr1 > lr2 ) { uint tmp = lr1; lr1 = lr2; lr2 = tmp; Node *n = n1; n1 = n2; n2 = n; LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp; } // Union lr2 into lr1 _phc.Union( n1, n2 ); if (lrg1->_maxfreq < lrg2->_maxfreq) lrg1->_maxfreq = lrg2->_maxfreq; // Merge in the IFG _phc._ifg->Union( lr1, lr2 ); // Combine register restrictions lrg1->AND(lrg2->mask()); } } } //------------------------------coalesce_driver-------------------------------- // Copy coalescing void PhaseCoalesce::coalesce_driver( ) { verify(); // Coalesce from high frequency to low for( uint i=0; i<_phc._cfg._num_blocks; i++ ) coalesce( _phc._blks[i] ); } //------------------------------insert_copy_with_overlap----------------------- // I am inserting copies to come out of SSA form. In the general case, I am // doing a parallel renaming. I'm in the Named world now, so I can't do a // general parallel renaming. All the copies now use "names" (live-ranges) // to carry values instead of the explicit use-def chains. Suppose I need to // insert 2 copies into the same block. They copy L161->L128 and L128->L132. // If I insert them in the wrong order then L128 will get clobbered before it // can get used by the second copy. This cannot happen in the SSA model; // direct use-def chains get me the right value. It DOES happen in the named // model so I have to handle the reordering of copies. // // In general, I need to topo-sort the placed copies to avoid conflicts. // Its possible to have a closed cycle of copies (e.g., recirculating the same // values around a loop). In this case I need a temp to break the cycle. void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) { // Scan backwards for the locations of the last use of the dst_name. // I am about to clobber the dst_name, so the copy must be inserted // after the last use. Last use is really first-use on a backwards scan. uint i = b->end_idx()-1; while( 1 ) { Node *n = b->_nodes[i]; // Check for end of virtual copies; this is also the end of the // parallel renaming effort. if( n->_idx < _unique ) break; uint idx = n->is_Copy(); assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" ); if( idx && _phc.Find(n->in(idx)) == dst_name ) break; i--; } uint last_use_idx = i; // Also search for any kill of src_name that exits the block. // Since the copy uses src_name, I have to come before any kill. uint kill_src_idx = b->end_idx(); // There can be only 1 kill that exits any block and that is // the last kill. Thus it is the first kill on a backwards scan. i = b->end_idx()-1; while( 1 ) { Node *n = b->_nodes[i]; // Check for end of virtual copies; this is also the end of the // parallel renaming effort. if( n->_idx < _unique ) break; assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" ); if( _phc.Find(n) == src_name ) { kill_src_idx = i; break; } i--; } // Need a temp? Last use of dst comes after the kill of src? if( last_use_idx >= kill_src_idx ) { // Need to break a cycle with a temp uint idx = copy->is_Copy(); Node *tmp = copy->clone(); _phc.new_lrg(tmp,_phc._maxlrg++); // Insert new temp between copy and source tmp ->set_req(idx,copy->in(idx)); copy->set_req(idx,tmp); // Save source in temp early, before source is killed b->_nodes.insert(kill_src_idx,tmp); _phc._cfg._bbs.map( tmp->_idx, b ); last_use_idx++; } // Insert just after last use b->_nodes.insert(last_use_idx+1,copy); } //------------------------------insert_copies---------------------------------- void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) { // We do LRGs compressing and fix a liveout data only here since the other // place in Split() is guarded by the assert which we never hit. _phc.compress_uf_map_for_nodes(); // Fix block's liveout data for compressed live ranges. for(uint lrg = 1; lrg < _phc._maxlrg; lrg++ ) { uint compressed_lrg = _phc.Find(lrg); if( lrg != compressed_lrg ) { for( uint bidx = 0; bidx < _phc._cfg._num_blocks; bidx++ ) { IndexSet *liveout = _phc._live->live(_phc._cfg._blocks[bidx]); if( liveout->member(lrg) ) { liveout->remove(lrg); liveout->insert(compressed_lrg); } } } } // All new nodes added are actual copies to replace virtual copies. // Nodes with index less than '_unique' are original, non-virtual Nodes. _unique = C->unique(); for( uint i=0; i<_phc._cfg._num_blocks; i++ ) { Block *b = _phc._cfg._blocks[i]; uint cnt = b->num_preds(); // Number of inputs to the Phi for( uint l = 1; l_nodes.size(); l++ ) { Node *n = b->_nodes[l]; // Do not use removed-copies, use copied value instead uint ncnt = n->req(); for( uint k = 1; kin(k); uint cidx = copy->is_Copy(); if( cidx ) { Node *def = copy->in(cidx); if( _phc.Find(copy) == _phc.Find(def) ) n->set_req(k,def); } } // Remove any explicit copies that get coalesced. uint cidx = n->is_Copy(); if( cidx ) { Node *def = n->in(cidx); if( _phc.Find(n) == _phc.Find(def) ) { n->replace_by(def); n->set_req(cidx,NULL); b->_nodes.remove(l); l--; continue; } } if( n->is_Phi() ) { // Get the chosen name for the Phi uint phi_name = _phc.Find( n ); // Ignore the pre-allocated specials if( !phi_name ) continue; // Check for mismatch inputs to Phi for( uint j = 1; jin(j); uint src_name = _phc.Find(m); if( src_name != phi_name ) { Block *pred = _phc._cfg._bbs[b->pred(j)->_idx]; Node *copy; assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach"); // Rematerialize constants instead of copying them if( m->is_Mach() && m->as_Mach()->is_Con() && m->as_Mach()->rematerialize() ) { copy = m->clone(); // Insert the copy in the predecessor basic block pred->add_inst(copy); // Copy any flags as well _phc.clone_projs( pred, pred->end_idx(), m, copy, _phc._maxlrg ); } else { const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()]; copy = new (C) MachSpillCopyNode(m,*rm,*rm); // Find a good place to insert. Kinda tricky, use a subroutine insert_copy_with_overlap(pred,copy,phi_name,src_name); } // Insert the copy in the use-def chain n->set_req( j, copy ); _phc._cfg._bbs.map( copy->_idx, pred ); // Extend ("register allocate") the names array for the copy. _phc._names.extend( copy->_idx, phi_name ); } // End of if Phi names do not match } // End of for all inputs to Phi } else { // End of if Phi // Now check for 2-address instructions uint idx; if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) { // Get the chosen name for the Node uint name = _phc.Find( n ); assert( name, "no 2-address specials" ); // Check for name mis-match on the 2-address input Node *m = n->in(idx); if( _phc.Find(m) != name ) { Node *copy; assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach"); // At this point it is unsafe to extend live ranges (6550579). // Rematerialize only constants as we do for Phi above. if( m->is_Mach() && m->as_Mach()->is_Con() && m->as_Mach()->rematerialize() ) { copy = m->clone(); // Insert the copy in the basic block, just before us b->_nodes.insert( l++, copy ); if( _phc.clone_projs( b, l, m, copy, _phc._maxlrg ) ) l++; } else { const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()]; copy = new (C) MachSpillCopyNode( m, *rm, *rm ); // Insert the copy in the basic block, just before us b->_nodes.insert( l++, copy ); } // Insert the copy in the use-def chain n->set_req(idx, copy ); // Extend ("register allocate") the names array for the copy. _phc._names.extend( copy->_idx, name ); _phc._cfg._bbs.map( copy->_idx, b ); } } // End of is two-adr // Insert a copy at a debug use for a lrg which has high frequency if( b->_freq < OPTO_DEBUG_SPLIT_FREQ || b->is_uncommon(_phc._cfg._bbs) ) { // Walk the debug inputs to the node and check for lrg freq JVMState* jvms = n->jvms(); uint debug_start = jvms ? jvms->debug_start() : 999999; uint debug_end = jvms ? jvms->debug_end() : 999999; for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) { // Do not split monitors; they are only needed for debug table // entries and need no code. if( jvms->is_monitor_use(inpidx) ) continue; Node *inp = n->in(inpidx); uint nidx = _phc.n2lidx(inp); LRG &lrg = lrgs(nidx); // If this lrg has a high frequency use/def if( lrg._maxfreq >= _phc.high_frequency_lrg() ) { // If the live range is also live out of this block (like it // would be for a fast/slow idiom), the normal spill mechanism // does an excellent job. If it is not live out of this block // (like it would be for debug info to uncommon trap) splitting // the live range now allows a better allocation in the high // frequency blocks. // Build_IFG_virtual has converted the live sets to // live-IN info, not live-OUT info. uint k; for( k=0; k < b->_num_succs; k++ ) if( _phc._live->live(b->_succs[k])->member( nidx ) ) break; // Live in to some successor block? if( k < b->_num_succs ) continue; // Live out; do not pre-split // Split the lrg at this use const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()]; Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm ); // Insert the copy in the use-def chain n->set_req(inpidx, copy ); // Insert the copy in the basic block, just before us b->_nodes.insert( l++, copy ); // Extend ("register allocate") the names array for the copy. _phc.new_lrg( copy, _phc._maxlrg++ ); _phc._cfg._bbs.map( copy->_idx, b ); //tty->print_cr("Split a debug use in Aggressive Coalesce"); } // End of if high frequency use/def } // End of for all debug inputs } // End of if low frequency safepoint } // End of if Phi } // End of for all instructions } // End of for all blocks } //============================================================================= //------------------------------coalesce--------------------------------------- // Aggressive (but pessimistic) copy coalescing of a single block // The following coalesce pass represents a single round of aggressive // pessimistic coalesce. "Aggressive" means no attempt to preserve // colorability when coalescing. This occasionally means more spills, but // it also means fewer rounds of coalescing for better code - and that means // faster compiles. // "Pessimistic" means we do not hit the fixed point in one pass (and we are // reaching for the least fixed point to boot). This is typically solved // with a few more rounds of coalescing, but the compiler must run fast. We // could optimistically coalescing everything touching PhiNodes together // into one big live range, then check for self-interference. Everywhere // the live range interferes with self it would have to be split. Finding // the right split points can be done with some heuristics (based on // expected frequency of edges in the live range). In short, it's a real // research problem and the timeline is too short to allow such research. // Further thoughts: (1) build the LR in a pass, (2) find self-interference // in another pass, (3) per each self-conflict, split, (4) split by finding // the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted // according to the GCM algorithm (or just exec freq on CFG edges). void PhaseAggressiveCoalesce::coalesce( Block *b ) { // Copies are still "virtual" - meaning we have not made them explicitly // copies. Instead, Phi functions of successor blocks have mis-matched // live-ranges. If I fail to coalesce, I'll have to insert a copy to line // up the live-ranges. Check for Phis in successor blocks. uint i; for( i=0; i_num_succs; i++ ) { Block *bs = b->_succs[i]; // Find index of 'b' in 'bs' predecessors uint j=1; while( _phc._cfg._bbs[bs->pred(j)->_idx] != b ) j++; // Visit all the Phis in successor block for( uint k = 1; k_nodes.size(); k++ ) { Node *n = bs->_nodes[k]; if( !n->is_Phi() ) break; combine_these_two( n, n->in(j) ); } } // End of for all successor blocks // Check _this_ block for 2-address instructions and copies. uint cnt = b->end_idx(); for( i = 1; i_nodes[i]; uint idx; // 2-address instructions have a virtual Copy matching their input // to their output if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) { MachNode *mach = n->as_Mach(); combine_these_two( mach, mach->in(idx) ); } } // End of for all instructions in block } //============================================================================= //------------------------------PhaseConservativeCoalesce---------------------- PhaseConservativeCoalesce::PhaseConservativeCoalesce( PhaseChaitin &chaitin ) : PhaseCoalesce(chaitin) { _ulr.initialize(_phc._maxlrg); } //------------------------------verify----------------------------------------- void PhaseConservativeCoalesce::verify() { #ifdef ASSERT _phc.set_was_low(); #endif } //------------------------------union_helper----------------------------------- void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) { // Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the // union-find tree _phc.Union( lr1_node, lr2_node ); // Single-def live range ONLY if both live ranges are single-def. // If both are single def, then src_def powers one live range // and def_copy powers the other. After merging, src_def powers // the combined live range. lrgs(lr1)._def = (lrgs(lr1).is_multidef() || lrgs(lr2).is_multidef() ) ? NodeSentinel : src_def; lrgs(lr2)._def = NULL; // No def for lrg 2 lrgs(lr2).Clear(); // Force empty mask for LRG 2 //lrgs(lr2)._size = 0; // Live-range 2 goes dead lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop; lrgs(lr2)._is_oop = 0; // In particular, not an oop for GC info if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq) lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq; // Copy original value instead. Intermediate copies go dead, and // the dst_copy becomes useless. int didx = dst_copy->is_Copy(); dst_copy->set_req( didx, src_def ); // Add copy to free list // _phc.free_spillcopy(b->_nodes[bindex]); assert( b->_nodes[bindex] == dst_copy, "" ); dst_copy->replace_by( dst_copy->in(didx) ); dst_copy->set_req( didx, NULL); b->_nodes.remove(bindex); if( bindex < b->_ihrp_index ) b->_ihrp_index--; if( bindex < b->_fhrp_index ) b->_fhrp_index--; // Stretched lr1; add it to liveness of intermediate blocks Block *b2 = _phc._cfg._bbs[src_copy->_idx]; while( b != b2 ) { b = _phc._cfg._bbs[b->pred(1)->_idx]; _phc._live->live(b)->insert(lr1); } } //------------------------------compute_separating_interferences--------------- // Factored code from copy_copy that computes extra interferences from // lengthening a live range by double-coalescing. uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) { assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj"); assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj"); Node *prev_copy = dst_copy->in(dst_copy->is_Copy()); Block *b2 = b; uint bindex2 = bindex; while( 1 ) { // Find previous instruction bindex2--; // Chain backwards 1 instruction while( bindex2 == 0 ) { // At block start, find prior block assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" ); b2 = _phc._cfg._bbs[b2->pred(1)->_idx]; bindex2 = b2->end_idx()-1; } // Get prior instruction assert(bindex2 < b2->_nodes.size(), "index out of bounds"); Node *x = b2->_nodes[bindex2]; if( x == prev_copy ) { // Previous copy in copy chain? if( prev_copy == src_copy)// Found end of chain and all interferences break; // So break out of loop // Else work back one in copy chain prev_copy = prev_copy->in(prev_copy->is_Copy()); } else { // Else collect interferences uint lidx = _phc.Find(x); // Found another def of live-range being stretched? if( lidx == lr1 ) return max_juint; if( lidx == lr2 ) return max_juint; // If we attempt to coalesce across a bound def if( lrgs(lidx).is_bound() ) { // Do not let the coalesced LRG expect to get the bound color rm.SUBTRACT( lrgs(lidx).mask() ); // Recompute rm_size rm_size = rm.Size(); //if( rm._flags ) rm_size += 1000000; if( reg_degree >= rm_size ) return max_juint; } if( rm.overlap(lrgs(lidx).mask()) ) { // Insert lidx into union LRG; returns TRUE if actually inserted if( _ulr.insert(lidx) ) { // Infinite-stack neighbors do not alter colorability, as they // can always color to some other color. if( !lrgs(lidx).mask().is_AllStack() ) { // If this coalesce will make any new neighbor uncolorable, // do not coalesce. if( lrgs(lidx).just_lo_degree() ) return max_juint; // Bump our degree if( ++reg_degree >= rm_size ) return max_juint; } // End of if not infinite-stack neighbor } // End of if actually inserted } // End of if live range overlaps } // End of else collect interferences for 1 node } // End of while forever, scan back for interferences return reg_degree; } //------------------------------update_ifg------------------------------------- void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) { // Some original neighbors of lr1 might have gone away // because the constrained register mask prevented them. // Remove lr1 from such neighbors. IndexSetIterator one(n_lr1); uint neighbor; LRG &lrg1 = lrgs(lr1); while ((neighbor = one.next()) != 0) if( !_ulr.member(neighbor) ) if( _phc._ifg->neighbors(neighbor)->remove(lr1) ) lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) ); // lr2 is now called (coalesced into) lr1. // Remove lr2 from the IFG. IndexSetIterator two(n_lr2); LRG &lrg2 = lrgs(lr2); while ((neighbor = two.next()) != 0) if( _phc._ifg->neighbors(neighbor)->remove(lr2) ) lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) ); // Some neighbors of intermediate copies now interfere with the // combined live range. IndexSetIterator three(&_ulr); while ((neighbor = three.next()) != 0) if( _phc._ifg->neighbors(neighbor)->insert(lr1) ) lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) ); } //------------------------------record_bias------------------------------------ static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) { // Tag copy bias here if( !ifg->lrgs(lr1)._copy_bias ) ifg->lrgs(lr1)._copy_bias = lr2; if( !ifg->lrgs(lr2)._copy_bias ) ifg->lrgs(lr2)._copy_bias = lr1; } //------------------------------copy_copy-------------------------------------- // See if I can coalesce a series of multiple copies together. I need the // final dest copy and the original src copy. They can be the same Node. // Compute the compatible register masks. bool PhaseConservativeCoalesce::copy_copy( Node *dst_copy, Node *src_copy, Block *b, uint bindex ) { if( !dst_copy->is_SpillCopy() ) return false; if( !src_copy->is_SpillCopy() ) return false; Node *src_def = src_copy->in(src_copy->is_Copy()); uint lr1 = _phc.Find(dst_copy); uint lr2 = _phc.Find(src_def ); // Same live ranges already? if( lr1 == lr2 ) return false; // Interfere? if( _phc._ifg->test_edge_sq( lr1, lr2 ) ) return false; // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK. if( !lrgs(lr1)._is_oop && lrgs(lr2)._is_oop ) // not an oop->int cast return false; // Coalescing between an aligned live range and a mis-aligned live range? // No, no! Alignment changes how we count degree. if( lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj ) return false; // Sort; use smaller live-range number Node *lr1_node = dst_copy; Node *lr2_node = src_def; if( lr1 > lr2 ) { uint tmp = lr1; lr1 = lr2; lr2 = tmp; lr1_node = src_def; lr2_node = dst_copy; } // Check for compatibility of the 2 live ranges by // intersecting their allowed register sets. RegMask rm = lrgs(lr1).mask(); rm.AND(lrgs(lr2).mask()); // Number of bits free uint rm_size = rm.Size(); if (UseFPUForSpilling && rm.is_AllStack() ) { // Don't coalesce when frequency difference is large Block *dst_b = _phc._cfg._bbs[dst_copy->_idx]; Block *src_def_b = _phc._cfg._bbs[src_def->_idx]; if (src_def_b->_freq > 10*dst_b->_freq ) return false; } // If we can use any stack slot, then effective size is infinite if( rm.is_AllStack() ) rm_size += 1000000; // Incompatible masks, no way to coalesce if( rm_size == 0 ) return false; // Another early bail-out test is when we are double-coalescing and the // 2 copies are separated by some control flow. if( dst_copy != src_copy ) { Block *src_b = _phc._cfg._bbs[src_copy->_idx]; Block *b2 = b; while( b2 != src_b ) { if( b2->num_preds() > 2 ){// Found merge-point _phc._lost_opp_cflow_coalesce++; // extra record_bias commented out because Chris believes it is not // productive. Since we can record only 1 bias, we want to choose one // that stands a chance of working and this one probably does not. //record_bias( _phc._lrgs, lr1, lr2 ); return false; // To hard to find all interferences } b2 = _phc._cfg._bbs[b2->pred(1)->_idx]; } } // Union the two interference sets together into '_ulr' uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm ); if( reg_degree >= rm_size ) { record_bias( _phc._ifg, lr1, lr2 ); return false; } // Now I need to compute all the interferences between dst_copy and // src_copy. I'm not willing visit the entire interference graph, so // I limit my search to things in dst_copy's block or in a straight // line of previous blocks. I give up at merge points or when I get // more interferences than my degree. I can stop when I find src_copy. if( dst_copy != src_copy ) { reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 ); if( reg_degree == max_juint ) { record_bias( _phc._ifg, lr1, lr2 ); return false; } } // End of if dst_copy & src_copy are different // ---- THE COMBINED LRG IS COLORABLE ---- // YEAH - Now coalesce this copy away assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(), "" ); IndexSet *n_lr1 = _phc._ifg->neighbors(lr1); IndexSet *n_lr2 = _phc._ifg->neighbors(lr2); // Update the interference graph update_ifg(lr1, lr2, n_lr1, n_lr2); _ulr.remove(lr1); // Uncomment the following code to trace Coalescing in great detail. // //if (false) { // tty->cr(); // tty->print_cr("#######################################"); // tty->print_cr("union %d and %d", lr1, lr2); // n_lr1->dump(); // n_lr2->dump(); // tty->print_cr("resulting set is"); // _ulr.dump(); //} // Replace n_lr1 with the new combined live range. _ulr will use // n_lr1's old memory on the next iteration. n_lr2 is cleared to // send its internal memory to the free list. _ulr.swap(n_lr1); _ulr.clear(); n_lr2->clear(); lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) ); lrgs(lr2).set_degree( 0 ); // Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the // union-find tree union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex ); // Combine register restrictions lrgs(lr1).set_mask(rm); lrgs(lr1).compute_set_mask_size(); lrgs(lr1)._cost += lrgs(lr2)._cost; lrgs(lr1)._area += lrgs(lr2)._area; // While its uncommon to successfully coalesce live ranges that started out // being not-lo-degree, it can happen. In any case the combined coalesced // live range better Simplify nicely. lrgs(lr1)._was_lo = 1; // kinda expensive to do all the time //tty->print_cr("warning: slow verify happening"); //_phc._ifg->verify( &_phc ); return true; } //------------------------------coalesce--------------------------------------- // Conservative (but pessimistic) copy coalescing of a single block void PhaseConservativeCoalesce::coalesce( Block *b ) { // Bail out on infrequent blocks if( b->is_uncommon(_phc._cfg._bbs) ) return; // Check this block for copies. for( uint i = 1; iend_idx(); i++ ) { // Check for actual copies on inputs. Coalesce a copy into its // input if use and copy's input are compatible. Node *copy1 = b->_nodes[i]; uint idx1 = copy1->is_Copy(); if( !idx1 ) continue; // Not a copy if( copy_copy(copy1,copy1,b,i) ) { i--; // Retry, same location in block PhaseChaitin::_conserv_coalesce++; // Collect stats on success continue; } /* do not attempt pairs. About 1/2 of all pairs can be removed by post-alloc. The other set are too few to bother. Node *copy2 = copy1->in(idx1); uint idx2 = copy2->is_Copy(); if( !idx2 ) continue; if( copy_copy(copy1,copy2,b,i) ) { i--; // Retry, same location in block PhaseChaitin::_conserv_coalesce_pair++; // Collect stats on success continue; } */ } }