/* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "opto/connode.hpp" #include "opto/vectornode.hpp" //------------------------------VectorNode-------------------------------------- // Return vector type for an element type and vector length. const Type* VectorNode::vect_type(BasicType elt_bt, uint len) { assert(len <= VectorNode::max_vlen(elt_bt), "len in range"); switch(elt_bt) { case T_BOOLEAN: case T_BYTE: switch(len) { case 2: return TypeInt::CHAR; case 4: return TypeInt::INT; case 8: return TypeLong::LONG; } break; case T_CHAR: case T_SHORT: switch(len) { case 2: return TypeInt::INT; case 4: return TypeLong::LONG; } break; case T_INT: switch(len) { case 2: return TypeLong::LONG; } break; case T_LONG: break; case T_FLOAT: switch(len) { case 2: return Type::DOUBLE; } break; case T_DOUBLE: break; } ShouldNotReachHere(); return NULL; } // Scalar promotion VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) { BasicType bt = opd_t->array_element_basic_type(); assert(vlen <= VectorNode::max_vlen(bt), "vlen in range"); switch (bt) { case T_BOOLEAN: case T_BYTE: if (vlen == 16) return new (C, 2) Replicate16BNode(s); if (vlen == 8) return new (C, 2) Replicate8BNode(s); if (vlen == 4) return new (C, 2) Replicate4BNode(s); break; case T_CHAR: if (vlen == 8) return new (C, 2) Replicate8CNode(s); if (vlen == 4) return new (C, 2) Replicate4CNode(s); if (vlen == 2) return new (C, 2) Replicate2CNode(s); break; case T_SHORT: if (vlen == 8) return new (C, 2) Replicate8SNode(s); if (vlen == 4) return new (C, 2) Replicate4SNode(s); if (vlen == 2) return new (C, 2) Replicate2SNode(s); break; case T_INT: if (vlen == 4) return new (C, 2) Replicate4INode(s); if (vlen == 2) return new (C, 2) Replicate2INode(s); break; case T_LONG: if (vlen == 2) return new (C, 2) Replicate2LNode(s); break; case T_FLOAT: if (vlen == 4) return new (C, 2) Replicate4FNode(s); if (vlen == 2) return new (C, 2) Replicate2FNode(s); break; case T_DOUBLE: if (vlen == 2) return new (C, 2) Replicate2DNode(s); break; } ShouldNotReachHere(); return NULL; } // Return initial Pack node. Additional operands added with add_opd() calls. PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) { BasicType bt = opd_t->array_element_basic_type(); switch (bt) { case T_BOOLEAN: case T_BYTE: return new (C, 2) PackBNode(s); case T_CHAR: return new (C, 2) PackCNode(s); case T_SHORT: return new (C, 2) PackSNode(s); case T_INT: return new (C, 2) PackINode(s); case T_LONG: return new (C, 2) PackLNode(s); case T_FLOAT: return new (C, 2) PackFNode(s); case T_DOUBLE: return new (C, 2) PackDNode(s); } ShouldNotReachHere(); return NULL; } // Create a binary tree form for Packs. [lo, hi) (half-open) range Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) { int ct = hi - lo; assert(is_power_of_2(ct), "power of 2"); int mid = lo + ct/2; Node* n1 = ct == 2 ? in(lo) : binaryTreePack(C, lo, mid); Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi ); int rslt_bsize = ct * type2aelembytes(elt_basic_type()); if (bottom_type()->is_floatingpoint()) { switch (rslt_bsize) { case 8: return new (C, 3) PackFNode(n1, n2); case 16: return new (C, 3) PackDNode(n1, n2); } } else { assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long"); switch (rslt_bsize) { case 2: return new (C, 3) Pack2x1BNode(n1, n2); case 4: return new (C, 3) Pack2x2BNode(n1, n2); case 8: return new (C, 3) PackINode(n1, n2); case 16: return new (C, 3) PackLNode(n1, n2); } } ShouldNotReachHere(); return NULL; } // Return the vector operator for the specified scalar operation // and vector length. One use is to check if the code generator // supports the vector operation. int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) { BasicType bt = opd_t->array_element_basic_type(); if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt))) return 0; // unimplemented switch (sopc) { case Op_AddI: switch (bt) { case T_BOOLEAN: case T_BYTE: return Op_AddVB; case T_CHAR: return Op_AddVC; case T_SHORT: return Op_AddVS; case T_INT: return Op_AddVI; } ShouldNotReachHere(); case Op_AddL: assert(bt == T_LONG, "must be"); return Op_AddVL; case Op_AddF: assert(bt == T_FLOAT, "must be"); return Op_AddVF; case Op_AddD: assert(bt == T_DOUBLE, "must be"); return Op_AddVD; case Op_SubI: switch (bt) { case T_BOOLEAN: case T_BYTE: return Op_SubVB; case T_CHAR: return Op_SubVC; case T_SHORT: return Op_SubVS; case T_INT: return Op_SubVI; } ShouldNotReachHere(); case Op_SubL: assert(bt == T_LONG, "must be"); return Op_SubVL; case Op_SubF: assert(bt == T_FLOAT, "must be"); return Op_SubVF; case Op_SubD: assert(bt == T_DOUBLE, "must be"); return Op_SubVD; case Op_MulF: assert(bt == T_FLOAT, "must be"); return Op_MulVF; case Op_MulD: assert(bt == T_DOUBLE, "must be"); return Op_MulVD; case Op_DivF: assert(bt == T_FLOAT, "must be"); return Op_DivVF; case Op_DivD: assert(bt == T_DOUBLE, "must be"); return Op_DivVD; case Op_LShiftI: switch (bt) { case T_BOOLEAN: case T_BYTE: return Op_LShiftVB; case T_CHAR: return Op_LShiftVC; case T_SHORT: return Op_LShiftVS; case T_INT: return Op_LShiftVI; } ShouldNotReachHere(); case Op_URShiftI: switch (bt) { case T_BOOLEAN: case T_BYTE: return Op_URShiftVB; case T_CHAR: return Op_URShiftVC; case T_SHORT: return Op_URShiftVS; case T_INT: return Op_URShiftVI; } ShouldNotReachHere(); case Op_AndI: case Op_AndL: return Op_AndV; case Op_OrI: case Op_OrL: return Op_OrV; case Op_XorI: case Op_XorL: return Op_XorV; case Op_LoadB: case Op_LoadUS: case Op_LoadS: case Op_LoadI: case Op_LoadL: case Op_LoadF: case Op_LoadD: return VectorLoadNode::opcode(sopc, vlen); case Op_StoreB: case Op_StoreC: case Op_StoreI: case Op_StoreL: case Op_StoreF: case Op_StoreD: return VectorStoreNode::opcode(sopc, vlen); } return 0; // Unimplemented } // Helper for above. int VectorLoadNode::opcode(int sopc, uint vlen) { switch (sopc) { case Op_LoadB: switch (vlen) { case 2: return 0; // Unimplemented case 4: return Op_Load4B; case 8: return Op_Load8B; case 16: return Op_Load16B; } break; case Op_LoadUS: switch (vlen) { case 2: return Op_Load2C; case 4: return Op_Load4C; case 8: return Op_Load8C; } break; case Op_LoadS: switch (vlen) { case 2: return Op_Load2S; case 4: return Op_Load4S; case 8: return Op_Load8S; } break; case Op_LoadI: switch (vlen) { case 2: return Op_Load2I; case 4: return Op_Load4I; } break; case Op_LoadL: if (vlen == 2) return Op_Load2L; break; case Op_LoadF: switch (vlen) { case 2: return Op_Load2F; case 4: return Op_Load4F; } break; case Op_LoadD: if (vlen == 2) return Op_Load2D; break; } return 0; // Unimplemented } // Helper for above int VectorStoreNode::opcode(int sopc, uint vlen) { switch (sopc) { case Op_StoreB: switch (vlen) { case 2: return 0; // Unimplemented case 4: return Op_Store4B; case 8: return Op_Store8B; case 16: return Op_Store16B; } break; case Op_StoreC: switch (vlen) { case 2: return Op_Store2C; case 4: return Op_Store4C; case 8: return Op_Store8C; } break; case Op_StoreI: switch (vlen) { case 2: return Op_Store2I; case 4: return Op_Store4I; } break; case Op_StoreL: if (vlen == 2) return Op_Store2L; break; case Op_StoreF: switch (vlen) { case 2: return Op_Store2F; case 4: return Op_Store4F; } break; case Op_StoreD: if (vlen == 2) return Op_Store2D; break; } return 0; // Unimplemented } // Return the vector version of a scalar operation node. VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) { int vopc = opcode(sopc, vlen, opd_t); switch (vopc) { case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen); case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen); case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen); case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen); case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen); case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen); case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen); case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen); case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen); case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen); case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen); case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen); case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen); case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen); case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen); case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen); case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen); case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen); case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen); case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen); case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen); case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen); case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen); case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen); case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen); case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen); case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type()); case Op_OrV: return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type()); case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type()); } ShouldNotReachHere(); return NULL; } // Return the vector version of a scalar load node. VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem, Node* adr, const TypePtr* atyp, uint vlen) { int vopc = opcode(opc, vlen); switch(vopc) { case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp); case Op_Load8B: return new (C, 3) Load8BNode(ctl, mem, adr, atyp); case Op_Load4B: return new (C, 3) Load4BNode(ctl, mem, adr, atyp); case Op_Load8C: return new (C, 3) Load8CNode(ctl, mem, adr, atyp); case Op_Load4C: return new (C, 3) Load4CNode(ctl, mem, adr, atyp); case Op_Load2C: return new (C, 3) Load2CNode(ctl, mem, adr, atyp); case Op_Load8S: return new (C, 3) Load8SNode(ctl, mem, adr, atyp); case Op_Load4S: return new (C, 3) Load4SNode(ctl, mem, adr, atyp); case Op_Load2S: return new (C, 3) Load2SNode(ctl, mem, adr, atyp); case Op_Load4I: return new (C, 3) Load4INode(ctl, mem, adr, atyp); case Op_Load2I: return new (C, 3) Load2INode(ctl, mem, adr, atyp); case Op_Load2L: return new (C, 3) Load2LNode(ctl, mem, adr, atyp); case Op_Load4F: return new (C, 3) Load4FNode(ctl, mem, adr, atyp); case Op_Load2F: return new (C, 3) Load2FNode(ctl, mem, adr, atyp); case Op_Load2D: return new (C, 3) Load2DNode(ctl, mem, adr, atyp); } ShouldNotReachHere(); return NULL; } // Return the vector version of a scalar store node. VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem, Node* adr, const TypePtr* atyp, Node* val, uint vlen) { int vopc = opcode(opc, vlen); switch(vopc) { case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val); case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val); case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val); case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val); case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val); case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val); case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val); case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val); case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val); case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val); case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val); case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val); } ShouldNotReachHere(); return NULL; } // Extract a scalar element of vector. Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) { BasicType bt = opd_t->array_element_basic_type(); assert(position < VectorNode::max_vlen(bt), "pos in range"); ConINode* pos = ConINode::make(C, (int)position); switch (bt) { case T_BOOLEAN: case T_BYTE: return new (C, 3) ExtractBNode(v, pos); case T_CHAR: return new (C, 3) ExtractCNode(v, pos); case T_SHORT: return new (C, 3) ExtractSNode(v, pos); case T_INT: return new (C, 3) ExtractINode(v, pos); case T_LONG: return new (C, 3) ExtractLNode(v, pos); case T_FLOAT: return new (C, 3) ExtractFNode(v, pos); case T_DOUBLE: return new (C, 3) ExtractDNode(v, pos); } ShouldNotReachHere(); return NULL; }