1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
  26 #define SHARE_VM_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/type.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 // Optimization - Graph Style
  38 
  39 class Chaitin;
  40 class NamedCounter;
  41 class MultiNode;
  42 class  SafePointNode;
  43 class   CallNode;
  44 class     CallJavaNode;
  45 class       CallStaticJavaNode;
  46 class       CallDynamicJavaNode;
  47 class     CallRuntimeNode;
  48 class       CallLeafNode;
  49 class         CallLeafNoFPNode;
  50 class     AllocateNode;
  51 class       AllocateArrayNode;
  52 class     LockNode;
  53 class     UnlockNode;
  54 class JVMState;
  55 class OopMap;
  56 class State;
  57 class StartNode;
  58 class MachCallNode;
  59 class FastLockNode;
  60 
  61 //------------------------------StartNode--------------------------------------
  62 // The method start node
  63 class StartNode : public MultiNode {
  64   virtual uint cmp( const Node &n ) const;
  65   virtual uint size_of() const; // Size is bigger
  66 public:
  67   const TypeTuple *_domain;
  68   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  69     init_class_id(Class_Start);
  70     init_flags(Flag_is_block_start);
  71     init_req(0,this);
  72     init_req(1,root);
  73   }
  74   virtual int Opcode() const;
  75   virtual bool pinned() const { return true; };
  76   virtual const Type *bottom_type() const;
  77   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  78   virtual const Type *Value( PhaseTransform *phase ) const;
  79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  80   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  81   virtual const RegMask &in_RegMask(uint) const;
  82   virtual Node *match( const ProjNode *proj, const Matcher *m );
  83   virtual uint ideal_reg() const { return 0; }
  84 #ifndef PRODUCT
  85   virtual void  dump_spec(outputStream *st) const;
  86 #endif
  87 };
  88 
  89 //------------------------------StartOSRNode-----------------------------------
  90 // The method start node for on stack replacement code
  91 class StartOSRNode : public StartNode {
  92 public:
  93   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  94   virtual int   Opcode() const;
  95   static  const TypeTuple *osr_domain();
  96 };
  97 
  98 
  99 //------------------------------ParmNode---------------------------------------
 100 // Incoming parameters
 101 class ParmNode : public ProjNode {
 102   static const char * const names[TypeFunc::Parms+1];
 103 public:
 104   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 105     init_class_id(Class_Parm);
 106   }
 107   virtual int Opcode() const;
 108   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 109   virtual uint ideal_reg() const;
 110 #ifndef PRODUCT
 111   virtual void dump_spec(outputStream *st) const;
 112 #endif
 113 };
 114 
 115 
 116 //------------------------------ReturnNode-------------------------------------
 117 // Return from subroutine node
 118 class ReturnNode : public Node {
 119 public:
 120   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 121   virtual int Opcode() const;
 122   virtual bool  is_CFG() const { return true; }
 123   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 124   virtual bool depends_only_on_test() const { return false; }
 125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 126   virtual const Type *Value( PhaseTransform *phase ) const;
 127   virtual uint ideal_reg() const { return NotAMachineReg; }
 128   virtual uint match_edge(uint idx) const;
 129 #ifndef PRODUCT
 130   virtual void dump_req() const;
 131 #endif
 132 };
 133 
 134 
 135 //------------------------------RethrowNode------------------------------------
 136 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 137 // ends the current basic block like a ReturnNode.  Restores registers and
 138 // unwinds stack.  Rethrow happens in the caller's method.
 139 class RethrowNode : public Node {
 140  public:
 141   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 142   virtual int Opcode() const;
 143   virtual bool  is_CFG() const { return true; }
 144   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 145   virtual bool depends_only_on_test() const { return false; }
 146   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 147   virtual const Type *Value( PhaseTransform *phase ) const;
 148   virtual uint match_edge(uint idx) const;
 149   virtual uint ideal_reg() const { return NotAMachineReg; }
 150 #ifndef PRODUCT
 151   virtual void dump_req() const;
 152 #endif
 153 };
 154 
 155 
 156 //------------------------------TailCallNode-----------------------------------
 157 // Pop stack frame and jump indirect
 158 class TailCallNode : public ReturnNode {
 159 public:
 160   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 161     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 162     init_req(TypeFunc::Parms, target);
 163     init_req(TypeFunc::Parms+1, moop);
 164   }
 165 
 166   virtual int Opcode() const;
 167   virtual uint match_edge(uint idx) const;
 168 };
 169 
 170 //------------------------------TailJumpNode-----------------------------------
 171 // Pop stack frame and jump indirect
 172 class TailJumpNode : public ReturnNode {
 173 public:
 174   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 175     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 176     init_req(TypeFunc::Parms, target);
 177     init_req(TypeFunc::Parms+1, ex_oop);
 178   }
 179 
 180   virtual int Opcode() const;
 181   virtual uint match_edge(uint idx) const;
 182 };
 183 
 184 //-------------------------------JVMState-------------------------------------
 185 // A linked list of JVMState nodes captures the whole interpreter state,
 186 // plus GC roots, for all active calls at some call site in this compilation
 187 // unit.  (If there is no inlining, then the list has exactly one link.)
 188 // This provides a way to map the optimized program back into the interpreter,
 189 // or to let the GC mark the stack.
 190 class JVMState : public ResourceObj {
 191 public:
 192   typedef enum {
 193     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 194     Reexecute_False     =  0, // false       -- do not reexecute
 195     Reexecute_True      =  1  // true        -- reexecute the bytecode
 196   } ReexecuteState; //Reexecute State
 197 
 198 private:
 199   JVMState*         _caller;    // List pointer for forming scope chains
 200   uint              _depth;     // One mroe than caller depth, or one.
 201   uint              _locoff;    // Offset to locals in input edge mapping
 202   uint              _stkoff;    // Offset to stack in input edge mapping
 203   uint              _monoff;    // Offset to monitors in input edge mapping
 204   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 205   uint              _endoff;    // Offset to end of input edge mapping
 206   uint              _sp;        // Jave Expression Stack Pointer for this state
 207   int               _bci;       // Byte Code Index of this JVM point
 208   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 209   ciMethod*         _method;    // Method Pointer
 210   SafePointNode*    _map;       // Map node associated with this scope
 211 public:
 212   friend class Compile;
 213   friend class PreserveReexecuteState;
 214 
 215   // Because JVMState objects live over the entire lifetime of the
 216   // Compile object, they are allocated into the comp_arena, which
 217   // does not get resource marked or reset during the compile process
 218   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
 219   void operator delete( void * ) { } // fast deallocation
 220 
 221   // Create a new JVMState, ready for abstract interpretation.
 222   JVMState(ciMethod* method, JVMState* caller);
 223   JVMState(int stack_size);  // root state; has a null method
 224 
 225   // Access functions for the JVM
 226   uint              locoff() const { return _locoff; }
 227   uint              stkoff() const { return _stkoff; }
 228   uint              argoff() const { return _stkoff + _sp; }
 229   uint              monoff() const { return _monoff; }
 230   uint              scloff() const { return _scloff; }
 231   uint              endoff() const { return _endoff; }
 232   uint              oopoff() const { return debug_end(); }
 233 
 234   int            loc_size() const { return _stkoff - _locoff; }
 235   int            stk_size() const { return _monoff - _stkoff; }
 236   int            mon_size() const { return _scloff - _monoff; }
 237   int            scl_size() const { return _endoff - _scloff; }
 238 
 239   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
 240   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
 241   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
 242   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
 243 
 244   uint                      sp() const { return _sp; }
 245   int                      bci() const { return _bci; }
 246   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 247   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 248   bool              has_method() const { return _method != NULL; }
 249   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 250   JVMState*             caller() const { return _caller; }
 251   SafePointNode*           map() const { return _map; }
 252   uint                   depth() const { return _depth; }
 253   uint             debug_start() const; // returns locoff of root caller
 254   uint               debug_end() const; // returns endoff of self
 255   uint              debug_size() const {
 256     return loc_size() + sp() + mon_size() + scl_size();
 257   }
 258   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 259 
 260   // Returns the JVM state at the desired depth (1 == root).
 261   JVMState* of_depth(int d) const;
 262 
 263   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 264   bool same_calls_as(const JVMState* that) const;
 265 
 266   // Monitors (monitors are stored as (boxNode, objNode) pairs
 267   enum { logMonitorEdges = 1 };
 268   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 269   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 270   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 271   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 272   bool is_monitor_box(uint off)    const {
 273     assert(is_mon(off), "should be called only for monitor edge");
 274     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 275   }
 276   bool is_monitor_use(uint off)    const { return (is_mon(off)
 277                                                    && is_monitor_box(off))
 278                                              || (caller() && caller()->is_monitor_use(off)); }
 279 
 280   // Initialization functions for the JVM
 281   void              set_locoff(uint off) { _locoff = off; }
 282   void              set_stkoff(uint off) { _stkoff = off; }
 283   void              set_monoff(uint off) { _monoff = off; }
 284   void              set_scloff(uint off) { _scloff = off; }
 285   void              set_endoff(uint off) { _endoff = off; }
 286   void              set_offsets(uint off) {
 287     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 288   }
 289   void              set_map(SafePointNode *map) { _map = map; }
 290   void              set_sp(uint sp) { _sp = sp; }
 291                     // _reexecute is initialized to "undefined" for a new bci
 292   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 293   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 294 
 295   // Miscellaneous utility functions
 296   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 297   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 298 
 299 #ifndef PRODUCT
 300   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 301   void      dump_spec(outputStream *st) const;
 302   void      dump_on(outputStream* st) const;
 303   void      dump() const {
 304     dump_on(tty);
 305   }
 306 #endif
 307 };
 308 
 309 //------------------------------SafePointNode----------------------------------
 310 // A SafePointNode is a subclass of a MultiNode for convenience (and
 311 // potential code sharing) only - conceptually it is independent of
 312 // the Node semantics.
 313 class SafePointNode : public MultiNode {
 314   virtual uint           cmp( const Node &n ) const;
 315   virtual uint           size_of() const;       // Size is bigger
 316 
 317 public:
 318   SafePointNode(uint edges, JVMState* jvms,
 319                 // A plain safepoint advertises no memory effects (NULL):
 320                 const TypePtr* adr_type = NULL)
 321     : MultiNode( edges ),
 322       _jvms(jvms),
 323       _oop_map(NULL),
 324       _adr_type(adr_type)
 325   {
 326     init_class_id(Class_SafePoint);
 327   }
 328 
 329   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 330   JVMState* const _jvms;      // Pointer to list of JVM State objects
 331   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 332 
 333   // Many calls take *all* of memory as input,
 334   // but some produce a limited subset of that memory as output.
 335   // The adr_type reports the call's behavior as a store, not a load.
 336 
 337   virtual JVMState* jvms() const { return _jvms; }
 338   void set_jvms(JVMState* s) {
 339     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 340   }
 341   OopMap *oop_map() const { return _oop_map; }
 342   void set_oop_map(OopMap *om) { _oop_map = om; }
 343 
 344   // Functionality from old debug nodes which has changed
 345   Node *local(JVMState* jvms, uint idx) const {
 346     assert(verify_jvms(jvms), "jvms must match");
 347     return in(jvms->locoff() + idx);
 348   }
 349   Node *stack(JVMState* jvms, uint idx) const {
 350     assert(verify_jvms(jvms), "jvms must match");
 351     return in(jvms->stkoff() + idx);
 352   }
 353   Node *argument(JVMState* jvms, uint idx) const {
 354     assert(verify_jvms(jvms), "jvms must match");
 355     return in(jvms->argoff() + idx);
 356   }
 357   Node *monitor_box(JVMState* jvms, uint idx) const {
 358     assert(verify_jvms(jvms), "jvms must match");
 359     return in(jvms->monitor_box_offset(idx));
 360   }
 361   Node *monitor_obj(JVMState* jvms, uint idx) const {
 362     assert(verify_jvms(jvms), "jvms must match");
 363     return in(jvms->monitor_obj_offset(idx));
 364   }
 365 
 366   void  set_local(JVMState* jvms, uint idx, Node *c);
 367 
 368   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 369     assert(verify_jvms(jvms), "jvms must match");
 370     set_req(jvms->stkoff() + idx, c);
 371   }
 372   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 373     assert(verify_jvms(jvms), "jvms must match");
 374     set_req(jvms->argoff() + idx, c);
 375   }
 376   void ensure_stack(JVMState* jvms, uint stk_size) {
 377     assert(verify_jvms(jvms), "jvms must match");
 378     int grow_by = (int)stk_size - (int)jvms->stk_size();
 379     if (grow_by > 0)  grow_stack(jvms, grow_by);
 380   }
 381   void grow_stack(JVMState* jvms, uint grow_by);
 382   // Handle monitor stack
 383   void push_monitor( const FastLockNode *lock );
 384   void pop_monitor ();
 385   Node *peek_monitor_box() const;
 386   Node *peek_monitor_obj() const;
 387 
 388   // Access functions for the JVM
 389   Node *control  () const { return in(TypeFunc::Control  ); }
 390   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 391   Node *memory   () const { return in(TypeFunc::Memory   ); }
 392   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 393   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 394 
 395   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 396   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 397   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 398 
 399   MergeMemNode* merged_memory() const {
 400     return in(TypeFunc::Memory)->as_MergeMem();
 401   }
 402 
 403   // The parser marks useless maps as dead when it's done with them:
 404   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 405 
 406   // Exception states bubbling out of subgraphs such as inlined calls
 407   // are recorded here.  (There might be more than one, hence the "next".)
 408   // This feature is used only for safepoints which serve as "maps"
 409   // for JVM states during parsing, intrinsic expansion, etc.
 410   SafePointNode*         next_exception() const;
 411   void               set_next_exception(SafePointNode* n);
 412   bool                   has_exceptions() const { return next_exception() != NULL; }
 413 
 414   // Standard Node stuff
 415   virtual int            Opcode() const;
 416   virtual bool           pinned() const { return true; }
 417   virtual const Type    *Value( PhaseTransform *phase ) const;
 418   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 419   virtual const TypePtr *adr_type() const { return _adr_type; }
 420   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 421   virtual Node          *Identity( PhaseTransform *phase );
 422   virtual uint           ideal_reg() const { return 0; }
 423   virtual const RegMask &in_RegMask(uint) const;
 424   virtual const RegMask &out_RegMask() const;
 425   virtual uint           match_edge(uint idx) const;
 426 
 427   static  bool           needs_polling_address_input();
 428 
 429 #ifndef PRODUCT
 430   virtual void              dump_spec(outputStream *st) const;
 431 #endif
 432 };
 433 
 434 //------------------------------SafePointScalarObjectNode----------------------
 435 // A SafePointScalarObjectNode represents the state of a scalarized object
 436 // at a safepoint.
 437 
 438 class SafePointScalarObjectNode: public TypeNode {
 439   uint _first_index; // First input edge index of a SafePoint node where
 440                      // states of the scalarized object fields are collected.
 441   uint _n_fields;    // Number of non-static fields of the scalarized object.
 442   DEBUG_ONLY(AllocateNode* _alloc;)
 443 public:
 444   SafePointScalarObjectNode(const TypeOopPtr* tp,
 445 #ifdef ASSERT
 446                             AllocateNode* alloc,
 447 #endif
 448                             uint first_index, uint n_fields);
 449   virtual int Opcode() const;
 450   virtual uint           ideal_reg() const;
 451   virtual const RegMask &in_RegMask(uint) const;
 452   virtual const RegMask &out_RegMask() const;
 453   virtual uint           match_edge(uint idx) const;
 454 
 455   uint first_index() const { return _first_index; }
 456   uint n_fields()    const { return _n_fields; }
 457   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
 458 
 459   // SafePointScalarObject should be always pinned to the control edge
 460   // of the SafePoint node for which it was generated.
 461   virtual bool pinned() const; // { return true; }
 462 
 463   // SafePointScalarObject depends on the SafePoint node
 464   // for which it was generated.
 465   virtual bool depends_only_on_test() const; // { return false; }
 466 
 467   virtual uint size_of() const { return sizeof(*this); }
 468 
 469   // Assumes that "this" is an argument to a safepoint node "s", and that
 470   // "new_call" is being created to correspond to "s".  But the difference
 471   // between the start index of the jvmstates of "new_call" and "s" is
 472   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 473   // corresponds appropriately to "this" in "new_call".  Assumes that
 474   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 475   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 476   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
 477 
 478 #ifndef PRODUCT
 479   virtual void              dump_spec(outputStream *st) const;
 480 #endif
 481 };
 482 
 483 
 484 // Simple container for the outgoing projections of a call.  Useful
 485 // for serious surgery on calls.
 486 class CallProjections : public StackObj {
 487 public:
 488   Node* fallthrough_proj;
 489   Node* fallthrough_catchproj;
 490   Node* fallthrough_memproj;
 491   Node* fallthrough_ioproj;
 492   Node* catchall_catchproj;
 493   Node* catchall_memproj;
 494   Node* catchall_ioproj;
 495   Node* resproj;
 496   Node* exobj;
 497 };
 498 
 499 
 500 //------------------------------CallNode---------------------------------------
 501 // Call nodes now subsume the function of debug nodes at callsites, so they
 502 // contain the functionality of a full scope chain of debug nodes.
 503 class CallNode : public SafePointNode {
 504 public:
 505   const TypeFunc *_tf;        // Function type
 506   address      _entry_point;  // Address of method being called
 507   float        _cnt;          // Estimate of number of times called
 508 
 509   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 510     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 511       _tf(tf),
 512       _entry_point(addr),
 513       _cnt(COUNT_UNKNOWN)
 514   {
 515     init_class_id(Class_Call);
 516     init_flags(Flag_is_Call);
 517   }
 518 
 519   const TypeFunc* tf()        const { return _tf; }
 520   const address entry_point() const { return _entry_point; }
 521   const float   cnt()         const { return _cnt; }
 522 
 523   void set_tf(const TypeFunc* tf) { _tf = tf; }
 524   void set_entry_point(address p) { _entry_point = p; }
 525   void set_cnt(float c)           { _cnt = c; }
 526 
 527   virtual const Type *bottom_type() const;
 528   virtual const Type *Value( PhaseTransform *phase ) const;
 529   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 530   virtual uint        cmp( const Node &n ) const;
 531   virtual uint        size_of() const = 0;
 532   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 533   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 534   virtual uint        ideal_reg() const { return NotAMachineReg; }
 535   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 536   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 537   virtual bool        guaranteed_safepoint()  { return true; }
 538   // For macro nodes, the JVMState gets modified during expansion, so when cloning
 539   // the node the JVMState must be cloned.
 540   virtual void        clone_jvms() { }   // default is not to clone
 541 
 542   // Returns true if the call may modify n
 543   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
 544   // Does this node have a use of n other than in debug information?
 545   bool                has_non_debug_use(Node *n);
 546   // Returns the unique CheckCastPP of a call
 547   // or result projection is there are several CheckCastPP
 548   // or returns NULL if there is no one.
 549   Node *result_cast();
 550 
 551   // Collect all the interesting edges from a call for use in
 552   // replacing the call by something else.  Used by macro expansion
 553   // and the late inlining support.
 554   void extract_projections(CallProjections* projs, bool separate_io_proj);
 555 
 556   virtual uint match_edge(uint idx) const;
 557 
 558 #ifndef PRODUCT
 559   virtual void        dump_req()  const;
 560   virtual void        dump_spec(outputStream *st) const;
 561 #endif
 562 };
 563 
 564 
 565 //------------------------------CallJavaNode-----------------------------------
 566 // Make a static or dynamic subroutine call node using Java calling
 567 // convention.  (The "Java" calling convention is the compiler's calling
 568 // convention, as opposed to the interpreter's or that of native C.)
 569 class CallJavaNode : public CallNode {
 570 protected:
 571   virtual uint cmp( const Node &n ) const;
 572   virtual uint size_of() const; // Size is bigger
 573 
 574   bool    _optimized_virtual;
 575   bool    _method_handle_invoke;
 576   ciMethod* _method;            // Method being direct called
 577 public:
 578   const int       _bci;         // Byte Code Index of call byte code
 579   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 580     : CallNode(tf, addr, TypePtr::BOTTOM),
 581       _method(method), _bci(bci),
 582       _optimized_virtual(false),
 583       _method_handle_invoke(false)
 584   {
 585     init_class_id(Class_CallJava);
 586   }
 587 
 588   virtual int   Opcode() const;
 589   ciMethod* method() const                { return _method; }
 590   void  set_method(ciMethod *m)           { _method = m; }
 591   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 592   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 593   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
 594   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
 595 
 596 #ifndef PRODUCT
 597   virtual void  dump_spec(outputStream *st) const;
 598 #endif
 599 };
 600 
 601 //------------------------------CallStaticJavaNode-----------------------------
 602 // Make a direct subroutine call using Java calling convention (for static
 603 // calls and optimized virtual calls, plus calls to wrappers for run-time
 604 // routines); generates static stub.
 605 class CallStaticJavaNode : public CallJavaNode {
 606   virtual uint cmp( const Node &n ) const;
 607   virtual uint size_of() const; // Size is bigger
 608 public:
 609   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
 610     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 611     init_class_id(Class_CallStaticJava);
 612   }
 613   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 614                      const TypePtr* adr_type)
 615     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 616     init_class_id(Class_CallStaticJava);
 617     // This node calls a runtime stub, which often has narrow memory effects.
 618     _adr_type = adr_type;
 619   }
 620   const char *_name;            // Runtime wrapper name
 621 
 622   // If this is an uncommon trap, return the request code, else zero.
 623   int uncommon_trap_request() const;
 624   static int extract_uncommon_trap_request(const Node* call);
 625 
 626   virtual int         Opcode() const;
 627 #ifndef PRODUCT
 628   virtual void        dump_spec(outputStream *st) const;
 629 #endif
 630 };
 631 
 632 //------------------------------CallDynamicJavaNode----------------------------
 633 // Make a dispatched call using Java calling convention.
 634 class CallDynamicJavaNode : public CallJavaNode {
 635   virtual uint cmp( const Node &n ) const;
 636   virtual uint size_of() const; // Size is bigger
 637 public:
 638   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 639     init_class_id(Class_CallDynamicJava);
 640   }
 641 
 642   int _vtable_index;
 643   virtual int   Opcode() const;
 644 #ifndef PRODUCT
 645   virtual void  dump_spec(outputStream *st) const;
 646 #endif
 647 };
 648 
 649 //------------------------------CallRuntimeNode--------------------------------
 650 // Make a direct subroutine call node into compiled C++ code.
 651 class CallRuntimeNode : public CallNode {
 652   virtual uint cmp( const Node &n ) const;
 653   virtual uint size_of() const; // Size is bigger
 654 public:
 655   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 656                   const TypePtr* adr_type)
 657     : CallNode(tf, addr, adr_type),
 658       _name(name)
 659   {
 660     init_class_id(Class_CallRuntime);
 661   }
 662 
 663   const char *_name;            // Printable name, if _method is NULL
 664   virtual int   Opcode() const;
 665   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 666 
 667 #ifndef PRODUCT
 668   virtual void  dump_spec(outputStream *st) const;
 669 #endif
 670 };
 671 
 672 //------------------------------CallLeafNode-----------------------------------
 673 // Make a direct subroutine call node into compiled C++ code, without
 674 // safepoints
 675 class CallLeafNode : public CallRuntimeNode {
 676 public:
 677   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 678                const TypePtr* adr_type)
 679     : CallRuntimeNode(tf, addr, name, adr_type)
 680   {
 681     init_class_id(Class_CallLeaf);
 682   }
 683   virtual int   Opcode() const;
 684   virtual bool        guaranteed_safepoint()  { return false; }
 685 #ifndef PRODUCT
 686   virtual void  dump_spec(outputStream *st) const;
 687 #endif
 688 };
 689 
 690 //------------------------------CallLeafNoFPNode-------------------------------
 691 // CallLeafNode, not using floating point or using it in the same manner as
 692 // the generated code
 693 class CallLeafNoFPNode : public CallLeafNode {
 694 public:
 695   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 696                    const TypePtr* adr_type)
 697     : CallLeafNode(tf, addr, name, adr_type)
 698   {
 699   }
 700   virtual int   Opcode() const;
 701 };
 702 
 703 
 704 //------------------------------Allocate---------------------------------------
 705 // High-level memory allocation
 706 //
 707 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 708 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 709 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 710 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 711 //  order to differentiate the uses of the projection on the normal control path from
 712 //  those on the exception return path.
 713 //
 714 class AllocateNode : public CallNode {
 715 public:
 716   enum {
 717     // Output:
 718     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 719     // Inputs:
 720     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 721     KlassNode,                        // type (maybe dynamic) of the obj.
 722     InitialTest,                      // slow-path test (may be constant)
 723     ALength,                          // array length (or TOP if none)
 724     ParmLimit
 725   };
 726 
 727   static const TypeFunc* alloc_type() {
 728     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 729     fields[AllocSize]   = TypeInt::POS;
 730     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 731     fields[InitialTest] = TypeInt::BOOL;
 732     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
 733 
 734     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 735 
 736     // create result type (range)
 737     fields = TypeTuple::fields(1);
 738     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 739 
 740     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 741 
 742     return TypeFunc::make(domain, range);
 743   }
 744 
 745   bool _is_scalar_replaceable;  // Result of Escape Analysis
 746 
 747   virtual uint size_of() const; // Size is bigger
 748   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 749                Node *size, Node *klass_node, Node *initial_test);
 750   // Expansion modifies the JVMState, so we need to clone it
 751   virtual void  clone_jvms() {
 752     set_jvms(jvms()->clone_deep(Compile::current()));
 753   }
 754   virtual int Opcode() const;
 755   virtual uint ideal_reg() const { return Op_RegP; }
 756   virtual bool        guaranteed_safepoint()  { return false; }
 757 
 758   // allocations do not modify their arguments
 759   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
 760 
 761   // Pattern-match a possible usage of AllocateNode.
 762   // Return null if no allocation is recognized.
 763   // The operand is the pointer produced by the (possible) allocation.
 764   // It must be a projection of the Allocate or its subsequent CastPP.
 765   // (Note:  This function is defined in file graphKit.cpp, near
 766   // GraphKit::new_instance/new_array, whose output it recognizes.)
 767   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 768   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 769 
 770   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 771   // an offset, which is reported back to the caller.
 772   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 773   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 774                                         intptr_t& offset);
 775 
 776   // Dig the klass operand out of a (possible) allocation site.
 777   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 778     AllocateNode* allo = Ideal_allocation(ptr, phase);
 779     return (allo == NULL) ? NULL : allo->in(KlassNode);
 780   }
 781 
 782   // Conservatively small estimate of offset of first non-header byte.
 783   int minimum_header_size() {
 784     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 785                                 instanceOopDesc::base_offset_in_bytes();
 786   }
 787 
 788   // Return the corresponding initialization barrier (or null if none).
 789   // Walks out edges to find it...
 790   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 791   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 792   InitializeNode* initialization();
 793 
 794   // Convenience for initialization->maybe_set_complete(phase)
 795   bool maybe_set_complete(PhaseGVN* phase);
 796 };
 797 
 798 //------------------------------AllocateArray---------------------------------
 799 //
 800 // High-level array allocation
 801 //
 802 class AllocateArrayNode : public AllocateNode {
 803 public:
 804   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 805                     Node* size, Node* klass_node, Node* initial_test,
 806                     Node* count_val
 807                     )
 808     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 809                    initial_test)
 810   {
 811     init_class_id(Class_AllocateArray);
 812     set_req(AllocateNode::ALength,        count_val);
 813   }
 814   virtual int Opcode() const;
 815   virtual uint size_of() const; // Size is bigger
 816   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 817 
 818   // Dig the length operand out of a array allocation site.
 819   Node* Ideal_length() {
 820     return in(AllocateNode::ALength);
 821   }
 822 
 823   // Dig the length operand out of a array allocation site and narrow the
 824   // type with a CastII, if necesssary
 825   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 826 
 827   // Pattern-match a possible usage of AllocateArrayNode.
 828   // Return null if no allocation is recognized.
 829   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 830     AllocateNode* allo = Ideal_allocation(ptr, phase);
 831     return (allo == NULL || !allo->is_AllocateArray())
 832            ? NULL : allo->as_AllocateArray();
 833   }
 834 };
 835 
 836 //------------------------------AbstractLockNode-----------------------------------
 837 class AbstractLockNode: public CallNode {
 838 private:
 839   bool _eliminate;    // indicates this lock can be safely eliminated
 840   bool _coarsened;    // indicates this lock was coarsened
 841 #ifndef PRODUCT
 842   NamedCounter* _counter;
 843 #endif
 844 
 845 protected:
 846   // helper functions for lock elimination
 847   //
 848 
 849   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 850                             GrowableArray<AbstractLockNode*> &lock_ops);
 851   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 852                                        GrowableArray<AbstractLockNode*> &lock_ops);
 853   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 854                                GrowableArray<AbstractLockNode*> &lock_ops);
 855   LockNode *find_matching_lock(UnlockNode* unlock);
 856 
 857 
 858 public:
 859   AbstractLockNode(const TypeFunc *tf)
 860     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 861       _coarsened(false),
 862       _eliminate(false)
 863   {
 864 #ifndef PRODUCT
 865     _counter = NULL;
 866 #endif
 867   }
 868   virtual int Opcode() const = 0;
 869   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 870   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 871   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 872   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 873 
 874   virtual uint size_of() const { return sizeof(*this); }
 875 
 876   bool is_eliminated()         {return _eliminate; }
 877   // mark node as eliminated and update the counter if there is one
 878   void set_eliminated();
 879 
 880   bool is_coarsened()  { return _coarsened; }
 881   void set_coarsened() { _coarsened = true; }
 882 
 883   // locking does not modify its arguments
 884   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
 885 
 886 #ifndef PRODUCT
 887   void create_lock_counter(JVMState* s);
 888   NamedCounter* counter() const { return _counter; }
 889 #endif
 890 };
 891 
 892 //------------------------------Lock---------------------------------------
 893 // High-level lock operation
 894 //
 895 // This is a subclass of CallNode because it is a macro node which gets expanded
 896 // into a code sequence containing a call.  This node takes 3 "parameters":
 897 //    0  -  object to lock
 898 //    1 -   a BoxLockNode
 899 //    2 -   a FastLockNode
 900 //
 901 class LockNode : public AbstractLockNode {
 902 public:
 903 
 904   static const TypeFunc *lock_type() {
 905     // create input type (domain)
 906     const Type **fields = TypeTuple::fields(3);
 907     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 908     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
 909     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
 910     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 911 
 912     // create result type (range)
 913     fields = TypeTuple::fields(0);
 914 
 915     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 916 
 917     return TypeFunc::make(domain,range);
 918   }
 919 
 920   virtual int Opcode() const;
 921   virtual uint size_of() const; // Size is bigger
 922   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 923     init_class_id(Class_Lock);
 924     init_flags(Flag_is_macro);
 925     C->add_macro_node(this);
 926   }
 927   virtual bool        guaranteed_safepoint()  { return false; }
 928 
 929   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 930   // Expansion modifies the JVMState, so we need to clone it
 931   virtual void  clone_jvms() {
 932     set_jvms(jvms()->clone_deep(Compile::current()));
 933   }
 934 };
 935 
 936 //------------------------------Unlock---------------------------------------
 937 // High-level unlock operation
 938 class UnlockNode : public AbstractLockNode {
 939 public:
 940   virtual int Opcode() const;
 941   virtual uint size_of() const; // Size is bigger
 942   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 943     init_class_id(Class_Unlock);
 944     init_flags(Flag_is_macro);
 945     C->add_macro_node(this);
 946   }
 947   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 948   // unlock is never a safepoint
 949   virtual bool        guaranteed_safepoint()  { return false; }
 950 };
 951 
 952 #endif // SHARE_VM_OPTO_CALLNODE_HPP