1 /*
   2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/connode.hpp"
  31 #include "opto/divnode.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/mulnode.hpp"
  34 #include "opto/rootnode.hpp"
  35 #include "opto/runtime.hpp"
  36 #include "opto/subnode.hpp"
  37 
  38 //------------------------------is_loop_exit-----------------------------------
  39 // Given an IfNode, return the loop-exiting projection or NULL if both
  40 // arms remain in the loop.
  41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
  42   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
  43   PhaseIdealLoop *phase = _phase;
  44   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  45   // we need loop unswitching instead of peeling.
  46   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
  47     return iff->raw_out(0);
  48   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
  49     return iff->raw_out(1);
  50   return NULL;
  51 }
  52 
  53 
  54 //=============================================================================
  55 
  56 
  57 //------------------------------record_for_igvn----------------------------
  58 // Put loop body on igvn work list
  59 void IdealLoopTree::record_for_igvn() {
  60   for( uint i = 0; i < _body.size(); i++ ) {
  61     Node *n = _body.at(i);
  62     _phase->_igvn._worklist.push(n);
  63   }
  64 }
  65 
  66 //------------------------------compute_exact_trip_count-----------------------
  67 // Compute loop exact trip count if possible. Do not recalculate trip count for
  68 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
  69 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
  70   if (!_head->as_Loop()->is_valid_counted_loop()) {
  71     return;
  72   }
  73   CountedLoopNode* cl = _head->as_CountedLoop();
  74   // Trip count may become nonexact for iteration split loops since
  75   // RCE modifies limits. Note, _trip_count value is not reset since
  76   // it is used to limit unrolling of main loop.
  77   cl->set_nonexact_trip_count();
  78 
  79   // Loop's test should be part of loop.
  80   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  81     return; // Infinite loop
  82 
  83 #ifdef ASSERT
  84   BoolTest::mask bt = cl->loopexit()->test_trip();
  85   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
  86          bt == BoolTest::ne, "canonical test is expected");
  87 #endif
  88 
  89   Node* init_n = cl->init_trip();
  90   Node* limit_n = cl->limit();
  91   if (init_n  != NULL &&  init_n->is_Con() &&
  92       limit_n != NULL && limit_n->is_Con()) {
  93     // Use longs to avoid integer overflow.
  94     int stride_con  = cl->stride_con();
  95     long init_con   = cl->init_trip()->get_int();
  96     long limit_con  = cl->limit()->get_int();
  97     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
  98     long trip_count = (limit_con - init_con + stride_m)/stride_con;
  99     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
 100       // Set exact trip count.
 101       cl->set_exact_trip_count((uint)trip_count);
 102     }
 103   }
 104 }
 105 
 106 //------------------------------compute_profile_trip_cnt----------------------------
 107 // Compute loop trip count from profile data as
 108 //    (backedge_count + loop_exit_count) / loop_exit_count
 109 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
 110   if (!_head->is_CountedLoop()) {
 111     return;
 112   }
 113   CountedLoopNode* head = _head->as_CountedLoop();
 114   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
 115     return; // Already computed
 116   }
 117   float trip_cnt = (float)max_jint; // default is big
 118 
 119   Node* back = head->in(LoopNode::LoopBackControl);
 120   while (back != head) {
 121     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 122         back->in(0) &&
 123         back->in(0)->is_If() &&
 124         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
 125         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
 126       break;
 127     }
 128     back = phase->idom(back);
 129   }
 130   if (back != head) {
 131     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 132            back->in(0), "if-projection exists");
 133     IfNode* back_if = back->in(0)->as_If();
 134     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
 135 
 136     // Now compute a loop exit count
 137     float loop_exit_cnt = 0.0f;
 138     for( uint i = 0; i < _body.size(); i++ ) {
 139       Node *n = _body[i];
 140       if( n->is_If() ) {
 141         IfNode *iff = n->as_If();
 142         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
 143           Node *exit = is_loop_exit(iff);
 144           if( exit ) {
 145             float exit_prob = iff->_prob;
 146             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
 147             if (exit_prob > PROB_MIN) {
 148               float exit_cnt = iff->_fcnt * exit_prob;
 149               loop_exit_cnt += exit_cnt;
 150             }
 151           }
 152         }
 153       }
 154     }
 155     if (loop_exit_cnt > 0.0f) {
 156       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
 157     } else {
 158       // No exit count so use
 159       trip_cnt = loop_back_cnt;
 160     }
 161   }
 162 #ifndef PRODUCT
 163   if (TraceProfileTripCount) {
 164     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
 165   }
 166 #endif
 167   head->set_profile_trip_cnt(trip_cnt);
 168 }
 169 
 170 //---------------------is_invariant_addition-----------------------------
 171 // Return nonzero index of invariant operand for an Add or Sub
 172 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
 173 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
 174   int op = n->Opcode();
 175   if (op == Op_AddI || op == Op_SubI) {
 176     bool in1_invar = this->is_invariant(n->in(1));
 177     bool in2_invar = this->is_invariant(n->in(2));
 178     if (in1_invar && !in2_invar) return 1;
 179     if (!in1_invar && in2_invar) return 2;
 180   }
 181   return 0;
 182 }
 183 
 184 //---------------------reassociate_add_sub-----------------------------
 185 // Reassociate invariant add and subtract expressions:
 186 //
 187 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
 188 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
 189 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
 190 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
 191 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
 192 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
 193 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
 194 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
 195 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
 196 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
 197 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
 198 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
 199 //
 200 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
 201   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
 202   if (is_invariant(n1)) return NULL;
 203   int inv1_idx = is_invariant_addition(n1, phase);
 204   if (!inv1_idx) return NULL;
 205   // Don't mess with add of constant (igvn moves them to expression tree root.)
 206   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
 207   Node* inv1 = n1->in(inv1_idx);
 208   Node* n2 = n1->in(3 - inv1_idx);
 209   int inv2_idx = is_invariant_addition(n2, phase);
 210   if (!inv2_idx) return NULL;
 211   Node* x    = n2->in(3 - inv2_idx);
 212   Node* inv2 = n2->in(inv2_idx);
 213 
 214   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
 215   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
 216   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
 217   if (n1->is_Sub() && inv1_idx == 1) {
 218     neg_x    = !neg_x;
 219     neg_inv2 = !neg_inv2;
 220   }
 221   Node* inv1_c = phase->get_ctrl(inv1);
 222   Node* inv2_c = phase->get_ctrl(inv2);
 223   Node* n_inv1;
 224   if (neg_inv1) {
 225     Node *zero = phase->_igvn.intcon(0);
 226     phase->set_ctrl(zero, phase->C->root());
 227     n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
 228     phase->register_new_node(n_inv1, inv1_c);
 229   } else {
 230     n_inv1 = inv1;
 231   }
 232   Node* inv;
 233   if (neg_inv2) {
 234     inv = new (phase->C, 3) SubINode(n_inv1, inv2);
 235   } else {
 236     inv = new (phase->C, 3) AddINode(n_inv1, inv2);
 237   }
 238   phase->register_new_node(inv, phase->get_early_ctrl(inv));
 239 
 240   Node* addx;
 241   if (neg_x) {
 242     addx = new (phase->C, 3) SubINode(inv, x);
 243   } else {
 244     addx = new (phase->C, 3) AddINode(x, inv);
 245   }
 246   phase->register_new_node(addx, phase->get_ctrl(x));
 247   phase->_igvn.replace_node(n1, addx);
 248   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
 249   _body.yank(n1);
 250   return addx;
 251 }
 252 
 253 //---------------------reassociate_invariants-----------------------------
 254 // Reassociate invariant expressions:
 255 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
 256   for (int i = _body.size() - 1; i >= 0; i--) {
 257     Node *n = _body.at(i);
 258     for (int j = 0; j < 5; j++) {
 259       Node* nn = reassociate_add_sub(n, phase);
 260       if (nn == NULL) break;
 261       n = nn; // again
 262     };
 263   }
 264 }
 265 
 266 //------------------------------policy_peeling---------------------------------
 267 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 268 // make some loop-invariant test (usually a null-check) happen before the loop.
 269 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
 270   Node *test = ((IdealLoopTree*)this)->tail();
 271   int  body_size = ((IdealLoopTree*)this)->_body.size();
 272   int  uniq      = phase->C->unique();
 273   // Peeling does loop cloning which can result in O(N^2) node construction
 274   if( body_size > 255 /* Prevent overflow for large body_size */
 275       || (body_size * body_size + uniq > MaxNodeLimit) ) {
 276     return false;           // too large to safely clone
 277   }
 278   while( test != _head ) {      // Scan till run off top of loop
 279     if( test->is_If() ) {       // Test?
 280       Node *ctrl = phase->get_ctrl(test->in(1));
 281       if (ctrl->is_top())
 282         return false;           // Found dead test on live IF?  No peeling!
 283       // Standard IF only has one input value to check for loop invariance
 284       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
 285       // Condition is not a member of this loop?
 286       if( !is_member(phase->get_loop(ctrl)) &&
 287           is_loop_exit(test) )
 288         return true;            // Found reason to peel!
 289     }
 290     // Walk up dominators to loop _head looking for test which is
 291     // executed on every path thru loop.
 292     test = phase->idom(test);
 293   }
 294   return false;
 295 }
 296 
 297 //------------------------------peeled_dom_test_elim---------------------------
 298 // If we got the effect of peeling, either by actually peeling or by making
 299 // a pre-loop which must execute at least once, we can remove all
 300 // loop-invariant dominated tests in the main body.
 301 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
 302   bool progress = true;
 303   while( progress ) {
 304     progress = false;           // Reset for next iteration
 305     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
 306     Node *test = prev->in(0);
 307     while( test != loop->_head ) { // Scan till run off top of loop
 308 
 309       int p_op = prev->Opcode();
 310       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
 311           test->is_If() &&      // Test?
 312           !test->in(1)->is_Con() && // And not already obvious?
 313           // Condition is not a member of this loop?
 314           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
 315         // Walk loop body looking for instances of this test
 316         for( uint i = 0; i < loop->_body.size(); i++ ) {
 317           Node *n = loop->_body.at(i);
 318           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
 319             // IfNode was dominated by version in peeled loop body
 320             progress = true;
 321             dominated_by( old_new[prev->_idx], n );
 322           }
 323         }
 324       }
 325       prev = test;
 326       test = idom(test);
 327     } // End of scan tests in loop
 328 
 329   } // End of while( progress )
 330 }
 331 
 332 //------------------------------do_peeling-------------------------------------
 333 // Peel the first iteration of the given loop.
 334 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 335 //         The pre-loop illegally has 2 control users (old & new loops).
 336 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 337 //         Do this by making the old-loop fall-in edges act as if they came
 338 //         around the loopback from the prior iteration (follow the old-loop
 339 //         backedges) and then map to the new peeled iteration.  This leaves
 340 //         the pre-loop with only 1 user (the new peeled iteration), but the
 341 //         peeled-loop backedge has 2 users.
 342 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 343 //         extra backedge user.
 344 //
 345 //                   orig
 346 //
 347 //                  stmt1
 348 //                    |
 349 //                    v
 350 //              loop predicate
 351 //                    |
 352 //                    v
 353 //                   loop<----+
 354 //                     |      |
 355 //                   stmt2    |
 356 //                     |      |
 357 //                     v      |
 358 //                    if      ^
 359 //                   / \      |
 360 //                  /   \     |
 361 //                 v     v    |
 362 //               false true   |
 363 //               /       \    |
 364 //              /         ----+
 365 //             |
 366 //             v
 367 //           exit
 368 //
 369 //
 370 //            after clone loop
 371 //
 372 //                   stmt1
 373 //                     |
 374 //                     v
 375 //               loop predicate
 376 //                 /       \
 377 //        clone   /         \   orig
 378 //               /           \
 379 //              /             \
 380 //             v               v
 381 //   +---->loop clone          loop<----+
 382 //   |      |                    |      |
 383 //   |    stmt2 clone          stmt2    |
 384 //   |      |                    |      |
 385 //   |      v                    v      |
 386 //   ^      if clone            If      ^
 387 //   |      / \                / \      |
 388 //   |     /   \              /   \     |
 389 //   |    v     v            v     v    |
 390 //   |    true  false      false true   |
 391 //   |    /         \      /       \    |
 392 //   +----           \    /         ----+
 393 //                    \  /
 394 //                    1v v2
 395 //                  region
 396 //                     |
 397 //                     v
 398 //                   exit
 399 //
 400 //
 401 //         after peel and predicate move
 402 //
 403 //                   stmt1
 404 //                    /
 405 //                   /
 406 //        clone     /            orig
 407 //                 /
 408 //                /              +----------+
 409 //               /               |          |
 410 //              /          loop predicate   |
 411 //             /                 |          |
 412 //            v                  v          |
 413 //   TOP-->loop clone          loop<----+   |
 414 //          |                    |      |   |
 415 //        stmt2 clone          stmt2    |   |
 416 //          |                    |      |   ^
 417 //          v                    v      |   |
 418 //          if clone            If      ^   |
 419 //          / \                / \      |   |
 420 //         /   \              /   \     |   |
 421 //        v     v            v     v    |   |
 422 //      true   false      false  true   |   |
 423 //        |         \      /       \    |   |
 424 //        |          \    /         ----+   ^
 425 //        |           \  /                  |
 426 //        |           1v v2                 |
 427 //        v         region                  |
 428 //        |            |                    |
 429 //        |            v                    |
 430 //        |          exit                   |
 431 //        |                                 |
 432 //        +--------------->-----------------+
 433 //
 434 //
 435 //              final graph
 436 //
 437 //                  stmt1
 438 //                    |
 439 //                    v
 440 //                  stmt2 clone
 441 //                    |
 442 //                    v
 443 //                   if clone
 444 //                  / |
 445 //                 /  |
 446 //                v   v
 447 //            false  true
 448 //             |      |
 449 //             |      v
 450 //             | loop predicate
 451 //             |      |
 452 //             |      v
 453 //             |     loop<----+
 454 //             |      |       |
 455 //             |    stmt2     |
 456 //             |      |       |
 457 //             |      v       |
 458 //             v      if      ^
 459 //             |     /  \     |
 460 //             |    /    \    |
 461 //             |   v     v    |
 462 //             | false  true  |
 463 //             |  |        \  |
 464 //             v  v         --+
 465 //            region
 466 //              |
 467 //              v
 468 //             exit
 469 //
 470 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
 471 
 472   C->set_major_progress();
 473   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
 474   // 'pre' loop from the main and the 'pre' can no longer have it's
 475   // iterations adjusted.  Therefore, we need to declare this loop as
 476   // no longer a 'main' loop; it will need new pre and post loops before
 477   // we can do further RCE.
 478 #ifndef PRODUCT
 479   if (TraceLoopOpts) {
 480     tty->print("Peel         ");
 481     loop->dump_head();
 482   }
 483 #endif
 484   Node* head = loop->_head;
 485   bool counted_loop = head->is_CountedLoop();
 486   if (counted_loop) {
 487     CountedLoopNode *cl = head->as_CountedLoop();
 488     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
 489     cl->set_trip_count(cl->trip_count() - 1);
 490     if (cl->is_main_loop()) {
 491       cl->set_normal_loop();
 492 #ifndef PRODUCT
 493       if (PrintOpto && VerifyLoopOptimizations) {
 494         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
 495         loop->dump_head();
 496       }
 497 #endif
 498     }
 499   }
 500   Node* entry = head->in(LoopNode::EntryControl);
 501 
 502   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 503   //         The pre-loop illegally has 2 control users (old & new loops).
 504   clone_loop( loop, old_new, dom_depth(head) );
 505 
 506   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 507   //         Do this by making the old-loop fall-in edges act as if they came
 508   //         around the loopback from the prior iteration (follow the old-loop
 509   //         backedges) and then map to the new peeled iteration.  This leaves
 510   //         the pre-loop with only 1 user (the new peeled iteration), but the
 511   //         peeled-loop backedge has 2 users.
 512   Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
 513   _igvn.hash_delete(head);
 514   head->set_req(LoopNode::EntryControl, new_entry);
 515   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
 516     Node* old = head->fast_out(j);
 517     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
 518       Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
 519       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
 520         // Then loop body backedge value remains the same.
 521         new_exit_value = old->in(LoopNode::LoopBackControl);
 522       _igvn.hash_delete(old);
 523       old->set_req(LoopNode::EntryControl, new_exit_value);
 524     }
 525   }
 526 
 527 
 528   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 529   //         extra backedge user.
 530   Node* new_head = old_new[head->_idx];
 531   _igvn.hash_delete(new_head);
 532   new_head->set_req(LoopNode::LoopBackControl, C->top());
 533   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
 534     Node* use = new_head->fast_out(j2);
 535     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
 536       _igvn.hash_delete(use);
 537       use->set_req(LoopNode::LoopBackControl, C->top());
 538     }
 539   }
 540 
 541 
 542   // Step 4: Correct dom-depth info.  Set to loop-head depth.
 543   int dd = dom_depth(head);
 544   set_idom(head, head->in(1), dd);
 545   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
 546     Node *old = loop->_body.at(j3);
 547     Node *nnn = old_new[old->_idx];
 548     if (!has_ctrl(nnn))
 549       set_idom(nnn, idom(nnn), dd-1);
 550     // While we're at it, remove any SafePoints from the peeled code
 551     if (old->Opcode() == Op_SafePoint) {
 552       Node *nnn = old_new[old->_idx];
 553       lazy_replace(nnn,nnn->in(TypeFunc::Control));
 554     }
 555   }
 556 
 557   // Now force out all loop-invariant dominating tests.  The optimizer
 558   // finds some, but we _know_ they are all useless.
 559   peeled_dom_test_elim(loop,old_new);
 560 
 561   loop->record_for_igvn();
 562 }
 563 
 564 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
 565 
 566 //------------------------------policy_maximally_unroll------------------------
 567 // Calculate exact loop trip count and return true if loop can be maximally
 568 // unrolled.
 569 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
 570   CountedLoopNode *cl = _head->as_CountedLoop();
 571   assert(cl->is_normal_loop(), "");
 572   if (!cl->is_valid_counted_loop())
 573     return false; // Malformed counted loop
 574 
 575   if (!cl->has_exact_trip_count()) {
 576     // Trip count is not exact.
 577     return false;
 578   }
 579 
 580   uint trip_count = cl->trip_count();
 581   // Note, max_juint is used to indicate unknown trip count.
 582   assert(trip_count > 1, "one iteration loop should be optimized out already");
 583   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
 584 
 585   // Real policy: if we maximally unroll, does it get too big?
 586   // Allow the unrolled mess to get larger than standard loop
 587   // size.  After all, it will no longer be a loop.
 588   uint body_size    = _body.size();
 589   uint unroll_limit = (uint)LoopUnrollLimit * 4;
 590   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
 591   if (trip_count > unroll_limit || body_size > unroll_limit) {
 592     return false;
 593   }
 594 
 595   // Fully unroll a loop with few iterations regardless next
 596   // conditions since following loop optimizations will split
 597   // such loop anyway (pre-main-post).
 598   if (trip_count <= 3)
 599     return true;
 600 
 601   // Take into account that after unroll conjoined heads and tails will fold,
 602   // otherwise policy_unroll() may allow more unrolling than max unrolling.
 603   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
 604   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
 605   if (body_size != tst_body_size) // Check for int overflow
 606     return false;
 607   if (new_body_size > unroll_limit ||
 608       // Unrolling can result in a large amount of node construction
 609       new_body_size >= MaxNodeLimit - phase->C->unique()) {
 610     return false;
 611   }
 612 
 613   // Do not unroll a loop with String intrinsics code.
 614   // String intrinsics are large and have loops.
 615   for (uint k = 0; k < _body.size(); k++) {
 616     Node* n = _body.at(k);
 617     switch (n->Opcode()) {
 618       case Op_StrComp:
 619       case Op_StrEquals:
 620       case Op_StrIndexOf:
 621       case Op_AryEq: {
 622         return false;
 623       }
 624     } // switch
 625   }
 626 
 627   return true; // Do maximally unroll
 628 }
 629 
 630 
 631 #define MAX_UNROLL 16 // maximum number of unrolls for main loop
 632 
 633 //------------------------------policy_unroll----------------------------------
 634 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 635 // the loop is a CountedLoop and the body is small enough.
 636 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
 637 
 638   CountedLoopNode *cl = _head->as_CountedLoop();
 639   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
 640 
 641   if (!cl->is_valid_counted_loop())
 642     return false; // Malformed counted loop
 643 
 644   // Protect against over-unrolling.
 645   // After split at least one iteration will be executed in pre-loop.
 646   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
 647 
 648   int future_unroll_ct = cl->unrolled_count() * 2;
 649   if (future_unroll_ct > MAX_UNROLL) return false;
 650 
 651   // Check for initial stride being a small enough constant
 652   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
 653 
 654   // Don't unroll if the next round of unrolling would push us
 655   // over the expected trip count of the loop.  One is subtracted
 656   // from the expected trip count because the pre-loop normally
 657   // executes 1 iteration.
 658   if (UnrollLimitForProfileCheck > 0 &&
 659       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
 660       future_unroll_ct        > UnrollLimitForProfileCheck &&
 661       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
 662     return false;
 663   }
 664 
 665   // When unroll count is greater than LoopUnrollMin, don't unroll if:
 666   //   the residual iterations are more than 10% of the trip count
 667   //   and rounds of "unroll,optimize" are not making significant progress
 668   //   Progress defined as current size less than 20% larger than previous size.
 669   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
 670       future_unroll_ct > LoopUnrollMin &&
 671       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
 672       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
 673     return false;
 674   }
 675 
 676   Node *init_n = cl->init_trip();
 677   Node *limit_n = cl->limit();
 678   int stride_con = cl->stride_con();
 679   // Non-constant bounds.
 680   // Protect against over-unrolling when init or/and limit are not constant
 681   // (so that trip_count's init value is maxint) but iv range is known.
 682   if (init_n   == NULL || !init_n->is_Con()  ||
 683       limit_n  == NULL || !limit_n->is_Con()) {
 684     Node* phi = cl->phi();
 685     if (phi != NULL) {
 686       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
 687       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
 688       int next_stride = stride_con * 2; // stride after this unroll
 689       if (next_stride > 0) {
 690         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
 691             iv_type->_lo + next_stride >  iv_type->_hi) {
 692           return false;  // over-unrolling
 693         }
 694       } else if (next_stride < 0) {
 695         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
 696             iv_type->_hi + next_stride <  iv_type->_lo) {
 697           return false;  // over-unrolling
 698         }
 699       }
 700     }
 701   }
 702 
 703   // After unroll limit will be adjusted: new_limit = limit-stride.
 704   // Bailout if adjustment overflow.
 705   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
 706   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
 707       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
 708     return false;  // overflow
 709 
 710   // Adjust body_size to determine if we unroll or not
 711   uint body_size = _body.size();
 712   // Also count ModL, DivL and MulL which expand mightly
 713   for (uint k = 0; k < _body.size(); k++) {
 714     Node* n = _body.at(k);
 715     switch (n->Opcode()) {
 716       case Op_ModL: body_size += 30; break;
 717       case Op_DivL: body_size += 30; break;
 718       case Op_MulL: body_size += 10; break;
 719       case Op_StrComp:
 720       case Op_StrEquals:
 721       case Op_StrIndexOf:
 722       case Op_AryEq: {
 723         // Do not unroll a loop with String intrinsics code.
 724         // String intrinsics are large and have loops.
 725         return false;
 726       }
 727     } // switch
 728   }
 729 
 730   // Check for being too big
 731   if (body_size > (uint)LoopUnrollLimit) {
 732      // Normal case: loop too big
 733     return false;
 734   }
 735 
 736   // Unroll once!  (Each trip will soon do double iterations)
 737   return true;
 738 }
 739 
 740 //------------------------------policy_align-----------------------------------
 741 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
 742 // expression that does the alignment.  Note that only one array base can be
 743 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
 744 // if we vectorize short memory ops into longer memory ops, we may want to
 745 // increase alignment.
 746 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
 747   return false;
 748 }
 749 
 750 //------------------------------policy_range_check-----------------------------
 751 // Return TRUE or FALSE if the loop should be range-check-eliminated.
 752 // Actually we do iteration-splitting, a more powerful form of RCE.
 753 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
 754   if (!RangeCheckElimination) return false;
 755 
 756   CountedLoopNode *cl = _head->as_CountedLoop();
 757   // If we unrolled with no intention of doing RCE and we later
 758   // changed our minds, we got no pre-loop.  Either we need to
 759   // make a new pre-loop, or we gotta disallow RCE.
 760   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
 761   Node *trip_counter = cl->phi();
 762 
 763   // Check loop body for tests of trip-counter plus loop-invariant vs
 764   // loop-invariant.
 765   for (uint i = 0; i < _body.size(); i++) {
 766     Node *iff = _body[i];
 767     if (iff->Opcode() == Op_If) { // Test?
 768 
 769       // Comparing trip+off vs limit
 770       Node *bol = iff->in(1);
 771       if (bol->req() != 2) continue; // dead constant test
 772       if (!bol->is_Bool()) {
 773         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
 774         continue;
 775       }
 776       if (bol->as_Bool()->_test._test == BoolTest::ne)
 777         continue; // not RC
 778 
 779       Node *cmp = bol->in(1);
 780 
 781       Node *rc_exp = cmp->in(1);
 782       Node *limit = cmp->in(2);
 783 
 784       Node *limit_c = phase->get_ctrl(limit);
 785       if( limit_c == phase->C->top() )
 786         return false;           // Found dead test on live IF?  No RCE!
 787       if( is_member(phase->get_loop(limit_c) ) ) {
 788         // Compare might have operands swapped; commute them
 789         rc_exp = cmp->in(2);
 790         limit  = cmp->in(1);
 791         limit_c = phase->get_ctrl(limit);
 792         if( is_member(phase->get_loop(limit_c) ) )
 793           continue;             // Both inputs are loop varying; cannot RCE
 794       }
 795 
 796       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
 797         continue;
 798       }
 799       // Yeah!  Found a test like 'trip+off vs limit'
 800       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
 801       // we need loop unswitching instead of iteration splitting.
 802       if( is_loop_exit(iff) )
 803         return true;            // Found reason to split iterations
 804     } // End of is IF
 805   }
 806 
 807   return false;
 808 }
 809 
 810 //------------------------------policy_peel_only-------------------------------
 811 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
 812 // for unrolling loops with NO array accesses.
 813 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
 814 
 815   for( uint i = 0; i < _body.size(); i++ )
 816     if( _body[i]->is_Mem() )
 817       return false;
 818 
 819   // No memory accesses at all!
 820   return true;
 821 }
 822 
 823 //------------------------------clone_up_backedge_goo--------------------------
 824 // If Node n lives in the back_ctrl block and cannot float, we clone a private
 825 // version of n in preheader_ctrl block and return that, otherwise return n.
 826 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
 827   if( get_ctrl(n) != back_ctrl ) return n;
 828 
 829   // Only visit once
 830   if (visited.test_set(n->_idx)) {
 831     Node *x = clones.find(n->_idx);
 832     if (x != NULL)
 833       return x;
 834     return n;
 835   }
 836 
 837   Node *x = NULL;               // If required, a clone of 'n'
 838   // Check for 'n' being pinned in the backedge.
 839   if( n->in(0) && n->in(0) == back_ctrl ) {
 840     assert(clones.find(n->_idx) == NULL, "dead loop");
 841     x = n->clone();             // Clone a copy of 'n' to preheader
 842     clones.push(x, n->_idx);
 843     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
 844   }
 845 
 846   // Recursive fixup any other input edges into x.
 847   // If there are no changes we can just return 'n', otherwise
 848   // we need to clone a private copy and change it.
 849   for( uint i = 1; i < n->req(); i++ ) {
 850     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
 851     if( g != n->in(i) ) {
 852       if( !x ) {
 853         assert(clones.find(n->_idx) == NULL, "dead loop");
 854         x = n->clone();
 855         clones.push(x, n->_idx);
 856       }
 857       x->set_req(i, g);
 858     }
 859   }
 860   if( x ) {                     // x can legally float to pre-header location
 861     register_new_node( x, preheader_ctrl );
 862     return x;
 863   } else {                      // raise n to cover LCA of uses
 864     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
 865   }
 866   return n;
 867 }
 868 
 869 //------------------------------insert_pre_post_loops--------------------------
 870 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
 871 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
 872 // alignment.  Useful to unroll loops that do no array accesses.
 873 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
 874 
 875 #ifndef PRODUCT
 876   if (TraceLoopOpts) {
 877     if (peel_only)
 878       tty->print("PeelMainPost ");
 879     else
 880       tty->print("PreMainPost  ");
 881     loop->dump_head();
 882   }
 883 #endif
 884   C->set_major_progress();
 885 
 886   // Find common pieces of the loop being guarded with pre & post loops
 887   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
 888   assert( main_head->is_normal_loop(), "" );
 889   CountedLoopEndNode *main_end = main_head->loopexit();
 890   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
 891   uint dd_main_head = dom_depth(main_head);
 892   uint max = main_head->outcnt();
 893 
 894   Node *pre_header= main_head->in(LoopNode::EntryControl);
 895   Node *init      = main_head->init_trip();
 896   Node *incr      = main_end ->incr();
 897   Node *limit     = main_end ->limit();
 898   Node *stride    = main_end ->stride();
 899   Node *cmp       = main_end ->cmp_node();
 900   BoolTest::mask b_test = main_end->test_trip();
 901 
 902   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
 903   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
 904   if( bol->outcnt() != 1 ) {
 905     bol = bol->clone();
 906     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
 907     _igvn.hash_delete(main_end);
 908     main_end->set_req(CountedLoopEndNode::TestValue, bol);
 909   }
 910   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
 911   if( cmp->outcnt() != 1 ) {
 912     cmp = cmp->clone();
 913     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
 914     _igvn.hash_delete(bol);
 915     bol->set_req(1, cmp);
 916   }
 917 
 918   //------------------------------
 919   // Step A: Create Post-Loop.
 920   Node* main_exit = main_end->proj_out(false);
 921   assert( main_exit->Opcode() == Op_IfFalse, "" );
 922   int dd_main_exit = dom_depth(main_exit);
 923 
 924   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
 925   // loop pre-header illegally has 2 control users (old & new loops).
 926   clone_loop( loop, old_new, dd_main_exit );
 927   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
 928   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
 929   post_head->set_post_loop(main_head);
 930 
 931   // Reduce the post-loop trip count.
 932   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
 933   post_end->_prob = PROB_FAIR;
 934 
 935   // Build the main-loop normal exit.
 936   IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
 937   _igvn.register_new_node_with_optimizer( new_main_exit );
 938   set_idom(new_main_exit, main_end, dd_main_exit );
 939   set_loop(new_main_exit, loop->_parent);
 940 
 941   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
 942   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
 943   // (the main-loop trip-counter exit value) because we will be changing
 944   // the exit value (via unrolling) so we cannot constant-fold away the zero
 945   // trip guard until all unrolling is done.
 946   Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
 947   Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
 948   Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
 949   register_new_node( zer_opaq, new_main_exit );
 950   register_new_node( zer_cmp , new_main_exit );
 951   register_new_node( zer_bol , new_main_exit );
 952 
 953   // Build the IfNode
 954   IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
 955   _igvn.register_new_node_with_optimizer( zer_iff );
 956   set_idom(zer_iff, new_main_exit, dd_main_exit);
 957   set_loop(zer_iff, loop->_parent);
 958 
 959   // Plug in the false-path, taken if we need to skip post-loop
 960   _igvn.hash_delete( main_exit );
 961   main_exit->set_req(0, zer_iff);
 962   _igvn._worklist.push(main_exit);
 963   set_idom(main_exit, zer_iff, dd_main_exit);
 964   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
 965   // Make the true-path, must enter the post loop
 966   Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
 967   _igvn.register_new_node_with_optimizer( zer_taken );
 968   set_idom(zer_taken, zer_iff, dd_main_exit);
 969   set_loop(zer_taken, loop->_parent);
 970   // Plug in the true path
 971   _igvn.hash_delete( post_head );
 972   post_head->set_req(LoopNode::EntryControl, zer_taken);
 973   set_idom(post_head, zer_taken, dd_main_exit);
 974 
 975   Arena *a = Thread::current()->resource_area();
 976   VectorSet visited(a);
 977   Node_Stack clones(a, main_head->back_control()->outcnt());
 978   // Step A3: Make the fall-in values to the post-loop come from the
 979   // fall-out values of the main-loop.
 980   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
 981     Node* main_phi = main_head->fast_out(i);
 982     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
 983       Node *post_phi = old_new[main_phi->_idx];
 984       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
 985                                               post_head->init_control(),
 986                                               main_phi->in(LoopNode::LoopBackControl),
 987                                               visited, clones);
 988       _igvn.hash_delete(post_phi);
 989       post_phi->set_req( LoopNode::EntryControl, fallmain );
 990     }
 991   }
 992 
 993   // Update local caches for next stanza
 994   main_exit = new_main_exit;
 995 
 996 
 997   //------------------------------
 998   // Step B: Create Pre-Loop.
 999 
1000   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
1001   // loop pre-header illegally has 2 control users (old & new loops).
1002   clone_loop( loop, old_new, dd_main_head );
1003   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
1004   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
1005   pre_head->set_pre_loop(main_head);
1006   Node *pre_incr = old_new[incr->_idx];
1007 
1008   // Reduce the pre-loop trip count.
1009   pre_end->_prob = PROB_FAIR;
1010 
1011   // Find the pre-loop normal exit.
1012   Node* pre_exit = pre_end->proj_out(false);
1013   assert( pre_exit->Opcode() == Op_IfFalse, "" );
1014   IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
1015   _igvn.register_new_node_with_optimizer( new_pre_exit );
1016   set_idom(new_pre_exit, pre_end, dd_main_head);
1017   set_loop(new_pre_exit, loop->_parent);
1018 
1019   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
1020   // pre-loop, the main-loop may not execute at all.  Later in life this
1021   // zero-trip guard will become the minimum-trip guard when we unroll
1022   // the main-loop.
1023   Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
1024   Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
1025   Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
1026   register_new_node( min_opaq, new_pre_exit );
1027   register_new_node( min_cmp , new_pre_exit );
1028   register_new_node( min_bol , new_pre_exit );
1029 
1030   // Build the IfNode (assume the main-loop is executed always).
1031   IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
1032   _igvn.register_new_node_with_optimizer( min_iff );
1033   set_idom(min_iff, new_pre_exit, dd_main_head);
1034   set_loop(min_iff, loop->_parent);
1035 
1036   // Plug in the false-path, taken if we need to skip main-loop
1037   _igvn.hash_delete( pre_exit );
1038   pre_exit->set_req(0, min_iff);
1039   set_idom(pre_exit, min_iff, dd_main_head);
1040   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
1041   // Make the true-path, must enter the main loop
1042   Node *min_taken = new (C, 1) IfTrueNode( min_iff );
1043   _igvn.register_new_node_with_optimizer( min_taken );
1044   set_idom(min_taken, min_iff, dd_main_head);
1045   set_loop(min_taken, loop->_parent);
1046   // Plug in the true path
1047   _igvn.hash_delete( main_head );
1048   main_head->set_req(LoopNode::EntryControl, min_taken);
1049   set_idom(main_head, min_taken, dd_main_head);
1050 
1051   visited.Clear();
1052   clones.clear();
1053   // Step B3: Make the fall-in values to the main-loop come from the
1054   // fall-out values of the pre-loop.
1055   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
1056     Node* main_phi = main_head->fast_out(i2);
1057     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
1058       Node *pre_phi = old_new[main_phi->_idx];
1059       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
1060                                              main_head->init_control(),
1061                                              pre_phi->in(LoopNode::LoopBackControl),
1062                                              visited, clones);
1063       _igvn.hash_delete(main_phi);
1064       main_phi->set_req( LoopNode::EntryControl, fallpre );
1065     }
1066   }
1067 
1068   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
1069   // RCE and alignment may change this later.
1070   Node *cmp_end = pre_end->cmp_node();
1071   assert( cmp_end->in(2) == limit, "" );
1072   Node *pre_limit = new (C, 3) AddINode( init, stride );
1073 
1074   // Save the original loop limit in this Opaque1 node for
1075   // use by range check elimination.
1076   Node *pre_opaq  = new (C, 3) Opaque1Node(C, pre_limit, limit);
1077 
1078   register_new_node( pre_limit, pre_head->in(0) );
1079   register_new_node( pre_opaq , pre_head->in(0) );
1080 
1081   // Since no other users of pre-loop compare, I can hack limit directly
1082   assert( cmp_end->outcnt() == 1, "no other users" );
1083   _igvn.hash_delete(cmp_end);
1084   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
1085 
1086   // Special case for not-equal loop bounds:
1087   // Change pre loop test, main loop test, and the
1088   // main loop guard test to use lt or gt depending on stride
1089   // direction:
1090   // positive stride use <
1091   // negative stride use >
1092   //
1093   // not-equal test is kept for post loop to handle case
1094   // when init > limit when stride > 0 (and reverse).
1095 
1096   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
1097 
1098     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
1099     // Modify pre loop end condition
1100     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1101     BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
1102     register_new_node( new_bol0, pre_head->in(0) );
1103     _igvn.hash_delete(pre_end);
1104     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
1105     // Modify main loop guard condition
1106     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
1107     BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
1108     register_new_node( new_bol1, new_pre_exit );
1109     _igvn.hash_delete(min_iff);
1110     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
1111     // Modify main loop end condition
1112     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1113     BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
1114     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
1115     _igvn.hash_delete(main_end);
1116     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
1117   }
1118 
1119   // Flag main loop
1120   main_head->set_main_loop();
1121   if( peel_only ) main_head->set_main_no_pre_loop();
1122 
1123   // Subtract a trip count for the pre-loop.
1124   main_head->set_trip_count(main_head->trip_count() - 1);
1125 
1126   // It's difficult to be precise about the trip-counts
1127   // for the pre/post loops.  They are usually very short,
1128   // so guess that 4 trips is a reasonable value.
1129   post_head->set_profile_trip_cnt(4.0);
1130   pre_head->set_profile_trip_cnt(4.0);
1131 
1132   // Now force out all loop-invariant dominating tests.  The optimizer
1133   // finds some, but we _know_ they are all useless.
1134   peeled_dom_test_elim(loop,old_new);
1135 }
1136 
1137 //------------------------------is_invariant-----------------------------
1138 // Return true if n is invariant
1139 bool IdealLoopTree::is_invariant(Node* n) const {
1140   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
1141   if (n_c->is_top()) return false;
1142   return !is_member(_phase->get_loop(n_c));
1143 }
1144 
1145 
1146 //------------------------------do_unroll--------------------------------------
1147 // Unroll the loop body one step - make each trip do 2 iterations.
1148 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
1149   assert(LoopUnrollLimit, "");
1150   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
1151   CountedLoopEndNode *loop_end = loop_head->loopexit();
1152   assert(loop_end, "");
1153 #ifndef PRODUCT
1154   if (PrintOpto && VerifyLoopOptimizations) {
1155     tty->print("Unrolling ");
1156     loop->dump_head();
1157   } else if (TraceLoopOpts) {
1158     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
1159       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
1160     } else {
1161       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
1162     }
1163     loop->dump_head();
1164   }
1165 #endif
1166 
1167   // Remember loop node count before unrolling to detect
1168   // if rounds of unroll,optimize are making progress
1169   loop_head->set_node_count_before_unroll(loop->_body.size());
1170 
1171   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
1172   Node *limit = loop_head->limit();
1173   Node *init  = loop_head->init_trip();
1174   Node *stride = loop_head->stride();
1175 
1176   Node *opaq = NULL;
1177   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
1178     // Search for zero-trip guard.
1179     assert( loop_head->is_main_loop(), "" );
1180     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
1181     Node *iff = ctrl->in(0);
1182     assert( iff->Opcode() == Op_If, "" );
1183     Node *bol = iff->in(1);
1184     assert( bol->Opcode() == Op_Bool, "" );
1185     Node *cmp = bol->in(1);
1186     assert( cmp->Opcode() == Op_CmpI, "" );
1187     opaq = cmp->in(2);
1188     // Occasionally it's possible for a zero-trip guard Opaque1 node to be
1189     // optimized away and then another round of loop opts attempted.
1190     // We can not optimize this particular loop in that case.
1191     if (opaq->Opcode() != Op_Opaque1)
1192       return; // Cannot find zero-trip guard!  Bail out!
1193     // Zero-trip test uses an 'opaque' node which is not shared.
1194     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
1195   }
1196 
1197   C->set_major_progress();
1198 
1199   Node* new_limit = NULL;
1200   if (UnrollLimitCheck) {
1201     int stride_con = stride->get_int();
1202     int stride_p = (stride_con > 0) ? stride_con : -stride_con;
1203     uint old_trip_count = loop_head->trip_count();
1204     // Verify that unroll policy result is still valid.
1205     assert(old_trip_count > 1 &&
1206            (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
1207 
1208     // Adjust loop limit to keep valid iterations number after unroll.
1209     // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
1210     // which may overflow.
1211     if (!adjust_min_trip) {
1212       assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
1213              "odd trip count for maximally unroll");
1214       // Don't need to adjust limit for maximally unroll since trip count is even.
1215     } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
1216       // Loop's limit is constant. Loop's init could be constant when pre-loop
1217       // become peeled iteration.
1218       long init_con = init->get_int();
1219       // We can keep old loop limit if iterations count stays the same:
1220       //   old_trip_count == new_trip_count * 2
1221       // Note: since old_trip_count >= 2 then new_trip_count >= 1
1222       // so we also don't need to adjust zero trip test.
1223       long limit_con  = limit->get_int();
1224       // (stride_con*2) not overflow since stride_con <= 8.
1225       int new_stride_con = stride_con * 2;
1226       int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
1227       long trip_count = (limit_con - init_con + stride_m)/new_stride_con;
1228       // New trip count should satisfy next conditions.
1229       assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
1230       uint new_trip_count = (uint)trip_count;
1231       adjust_min_trip = (old_trip_count != new_trip_count*2);
1232     }
1233 
1234     if (adjust_min_trip) {
1235       // Step 2: Adjust the trip limit if it is called for.
1236       // The adjustment amount is -stride. Need to make sure if the
1237       // adjustment underflows or overflows, then the main loop is skipped.
1238       Node* cmp = loop_end->cmp_node();
1239       assert(cmp->in(2) == limit, "sanity");
1240       assert(opaq != NULL && opaq->in(1) == limit, "sanity");
1241 
1242       // Verify that policy_unroll result is still valid.
1243       const TypeInt* limit_type = _igvn.type(limit)->is_int();
1244       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
1245              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
1246 
1247       if (limit->is_Con()) {
1248         // The check in policy_unroll and the assert above guarantee
1249         // no underflow if limit is constant.
1250         new_limit = _igvn.intcon(limit->get_int() - stride_con);
1251         set_ctrl(new_limit, C->root());
1252       } else {
1253         // Limit is not constant.
1254         if (loop_head->unrolled_count() == 1) { // only for first unroll
1255           // Separate limit by Opaque node in case it is an incremented
1256           // variable from previous loop to avoid using pre-incremented
1257           // value which could increase register pressure.
1258           // Otherwise reorg_offsets() optimization will create a separate
1259           // Opaque node for each use of trip-counter and as result
1260           // zero trip guard limit will be different from loop limit.
1261           assert(has_ctrl(opaq), "should have it");
1262           Node* opaq_ctrl = get_ctrl(opaq);
1263           limit = new (C, 2) Opaque2Node( C, limit );
1264           register_new_node( limit, opaq_ctrl );
1265         }
1266         if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
1267                    stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
1268           // No underflow.
1269           new_limit = new (C, 3) SubINode(limit, stride);
1270         } else {
1271           // (limit - stride) may underflow.
1272           // Clamp the adjustment value with MININT or MAXINT:
1273           //
1274           //   new_limit = limit-stride
1275           //   if (stride > 0)
1276           //     new_limit = (limit < new_limit) ? MININT : new_limit;
1277           //   else
1278           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
1279           //
1280           BoolTest::mask bt = loop_end->test_trip();
1281           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1282           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
1283           set_ctrl(adj_max, C->root());
1284           Node* old_limit = NULL;
1285           Node* adj_limit = NULL;
1286           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
1287           if (loop_head->unrolled_count() > 1 &&
1288               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
1289               limit->in(CMoveNode::IfTrue) == adj_max &&
1290               bol->as_Bool()->_test._test == bt &&
1291               bol->in(1)->Opcode() == Op_CmpI &&
1292               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
1293             // Loop was unrolled before.
1294             // Optimize the limit to avoid nested CMove:
1295             // use original limit as old limit.
1296             old_limit = bol->in(1)->in(1);
1297             // Adjust previous adjusted limit.
1298             adj_limit = limit->in(CMoveNode::IfFalse);
1299             adj_limit = new (C, 3) SubINode(adj_limit, stride);
1300           } else {
1301             old_limit = limit;
1302             adj_limit = new (C, 3) SubINode(limit, stride);
1303           }
1304           assert(old_limit != NULL && adj_limit != NULL, "");
1305           register_new_node( adj_limit, ctrl ); // adjust amount
1306           Node* adj_cmp = new (C, 3) CmpINode(old_limit, adj_limit);
1307           register_new_node( adj_cmp, ctrl );
1308           Node* adj_bool = new (C, 2) BoolNode(adj_cmp, bt);
1309           register_new_node( adj_bool, ctrl );
1310           new_limit = new (C, 4) CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
1311         }
1312         register_new_node(new_limit, ctrl);
1313       }
1314       assert(new_limit != NULL, "");
1315       // Replace in loop test.
1316       assert(loop_end->in(1)->in(1) == cmp, "sanity");
1317       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
1318         // Don't need to create new test since only one user.
1319         _igvn.hash_delete(cmp);
1320         cmp->set_req(2, new_limit);
1321       } else {
1322         // Create new test since it is shared.
1323         Node* ctrl2 = loop_end->in(0);
1324         Node* cmp2  = cmp->clone();
1325         cmp2->set_req(2, new_limit);
1326         register_new_node(cmp2, ctrl2);
1327         Node* bol2 = loop_end->in(1)->clone();
1328         bol2->set_req(1, cmp2);
1329         register_new_node(bol2, ctrl2);
1330         _igvn.hash_delete(loop_end);
1331         loop_end->set_req(1, bol2);
1332       }
1333       // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1334       // Make it a 1-trip test (means at least 2 trips).
1335 
1336       // Guard test uses an 'opaque' node which is not shared.  Hence I
1337       // can edit it's inputs directly.  Hammer in the new limit for the
1338       // minimum-trip guard.
1339       assert(opaq->outcnt() == 1, "");
1340       _igvn.hash_delete(opaq);
1341       opaq->set_req(1, new_limit);
1342     }
1343 
1344     // Adjust max trip count. The trip count is intentionally rounded
1345     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1346     // the main, unrolled, part of the loop will never execute as it is protected
1347     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1348     // and later determined that part of the unrolled loop was dead.
1349     loop_head->set_trip_count(old_trip_count / 2);
1350 
1351     // Double the count of original iterations in the unrolled loop body.
1352     loop_head->double_unrolled_count();
1353 
1354   } else { // LoopLimitCheck
1355 
1356     // Adjust max trip count. The trip count is intentionally rounded
1357     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1358     // the main, unrolled, part of the loop will never execute as it is protected
1359     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1360     // and later determined that part of the unrolled loop was dead.
1361     loop_head->set_trip_count(loop_head->trip_count() / 2);
1362 
1363     // Double the count of original iterations in the unrolled loop body.
1364     loop_head->double_unrolled_count();
1365 
1366     // -----------
1367     // Step 2: Cut back the trip counter for an unroll amount of 2.
1368     // Loop will normally trip (limit - init)/stride_con.  Since it's a
1369     // CountedLoop this is exact (stride divides limit-init exactly).
1370     // We are going to double the loop body, so we want to knock off any
1371     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
1372     Node *span = new (C, 3) SubINode( limit, init );
1373     register_new_node( span, ctrl );
1374     Node *trip = new (C, 3) DivINode( 0, span, stride );
1375     register_new_node( trip, ctrl );
1376     Node *mtwo = _igvn.intcon(-2);
1377     set_ctrl(mtwo, C->root());
1378     Node *rond = new (C, 3) AndINode( trip, mtwo );
1379     register_new_node( rond, ctrl );
1380     Node *spn2 = new (C, 3) MulINode( rond, stride );
1381     register_new_node( spn2, ctrl );
1382     new_limit = new (C, 3) AddINode( spn2, init );
1383     register_new_node( new_limit, ctrl );
1384 
1385     // Hammer in the new limit
1386     Node *ctrl2 = loop_end->in(0);
1387     Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), new_limit );
1388     register_new_node( cmp2, ctrl2 );
1389     Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
1390     register_new_node( bol2, ctrl2 );
1391     _igvn.hash_delete(loop_end);
1392     loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
1393 
1394     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1395     // Make it a 1-trip test (means at least 2 trips).
1396     if( adjust_min_trip ) {
1397       assert( new_limit != NULL, "" );
1398       // Guard test uses an 'opaque' node which is not shared.  Hence I
1399       // can edit it's inputs directly.  Hammer in the new limit for the
1400       // minimum-trip guard.
1401       assert( opaq->outcnt() == 1, "" );
1402       _igvn.hash_delete(opaq);
1403       opaq->set_req(1, new_limit);
1404     }
1405   } // LoopLimitCheck
1406 
1407   // ---------
1408   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
1409   // represents the odd iterations; since the loop trips an even number of
1410   // times its backedge is never taken.  Kill the backedge.
1411   uint dd = dom_depth(loop_head);
1412   clone_loop( loop, old_new, dd );
1413 
1414   // Make backedges of the clone equal to backedges of the original.
1415   // Make the fall-in from the original come from the fall-out of the clone.
1416   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
1417     Node* phi = loop_head->fast_out(j);
1418     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
1419       Node *newphi = old_new[phi->_idx];
1420       _igvn.hash_delete( phi );
1421       _igvn.hash_delete( newphi );
1422 
1423       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
1424       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
1425       phi   ->set_req(LoopNode::LoopBackControl, C->top());
1426     }
1427   }
1428   Node *clone_head = old_new[loop_head->_idx];
1429   _igvn.hash_delete( clone_head );
1430   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
1431   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
1432   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
1433   loop->_head = clone_head;     // New loop header
1434 
1435   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
1436   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
1437 
1438   // Kill the clone's backedge
1439   Node *newcle = old_new[loop_end->_idx];
1440   _igvn.hash_delete( newcle );
1441   Node *one = _igvn.intcon(1);
1442   set_ctrl(one, C->root());
1443   newcle->set_req(1, one);
1444   // Force clone into same loop body
1445   uint max = loop->_body.size();
1446   for( uint k = 0; k < max; k++ ) {
1447     Node *old = loop->_body.at(k);
1448     Node *nnn = old_new[old->_idx];
1449     loop->_body.push(nnn);
1450     if (!has_ctrl(old))
1451       set_loop(nnn, loop);
1452   }
1453 
1454   loop->record_for_igvn();
1455 }
1456 
1457 //------------------------------do_maximally_unroll----------------------------
1458 
1459 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
1460   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1461   assert(cl->has_exact_trip_count(), "trip count is not exact");
1462   assert(cl->trip_count() > 0, "");
1463 #ifndef PRODUCT
1464   if (TraceLoopOpts) {
1465     tty->print("MaxUnroll  %d ", cl->trip_count());
1466     loop->dump_head();
1467   }
1468 #endif
1469 
1470   // If loop is tripping an odd number of times, peel odd iteration
1471   if ((cl->trip_count() & 1) == 1) {
1472     do_peeling(loop, old_new);
1473   }
1474 
1475   // Now its tripping an even number of times remaining.  Double loop body.
1476   // Do not adjust pre-guards; they are not needed and do not exist.
1477   if (cl->trip_count() > 0) {
1478     assert((cl->trip_count() & 1) == 0, "missed peeling");
1479     do_unroll(loop, old_new, false);
1480   }
1481 }
1482 
1483 //------------------------------dominates_backedge---------------------------------
1484 // Returns true if ctrl is executed on every complete iteration
1485 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1486   assert(ctrl->is_CFG(), "must be control");
1487   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1488   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1489 }
1490 
1491 //------------------------------adjust_limit-----------------------------------
1492 // Helper function for add_constraint().
1493 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
1494   // Compute "I :: (limit-offset)/scale"
1495   Node *con = new (C, 3) SubINode(rc_limit, offset);
1496   register_new_node(con, pre_ctrl);
1497   Node *X = new (C, 3) DivINode(0, con, scale);
1498   register_new_node(X, pre_ctrl);
1499 
1500   // Adjust loop limit
1501   loop_limit = (stride_con > 0)
1502                ? (Node*)(new (C, 3) MinINode(loop_limit, X))
1503                : (Node*)(new (C, 3) MaxINode(loop_limit, X));
1504   register_new_node(loop_limit, pre_ctrl);
1505   return loop_limit;
1506 }
1507 
1508 //------------------------------add_constraint---------------------------------
1509 // Constrain the main loop iterations so the conditions:
1510 //    low_limit <= scale_con * I + offset  <  upper_limit
1511 // always holds true.  That is, either increase the number of iterations in
1512 // the pre-loop or the post-loop until the condition holds true in the main
1513 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1514 // stride and scale are constants (offset and limit often are).
1515 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1516   // For positive stride, the pre-loop limit always uses a MAX function
1517   // and the main loop a MIN function.  For negative stride these are
1518   // reversed.
1519 
1520   // Also for positive stride*scale the affine function is increasing, so the
1521   // pre-loop must check for underflow and the post-loop for overflow.
1522   // Negative stride*scale reverses this; pre-loop checks for overflow and
1523   // post-loop for underflow.
1524 
1525   Node *scale = _igvn.intcon(scale_con);
1526   set_ctrl(scale, C->root());
1527 
1528   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
1529     // The overflow limit: scale*I+offset < upper_limit
1530     // For main-loop compute
1531     //   ( if (scale > 0) /* and stride > 0 */
1532     //       I < (upper_limit-offset)/scale
1533     //     else /* scale < 0 and stride < 0 */
1534     //       I > (upper_limit-offset)/scale
1535     //   )
1536     //
1537     // (upper_limit-offset) may overflow or underflow.
1538     // But it is fine since main loop will either have
1539     // less iterations or will be skipped in such case.
1540     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
1541 
1542     // The underflow limit: low_limit <= scale*I+offset.
1543     // For pre-loop compute
1544     //   NOT(scale*I+offset >= low_limit)
1545     //   scale*I+offset < low_limit
1546     //   ( if (scale > 0) /* and stride > 0 */
1547     //       I < (low_limit-offset)/scale
1548     //     else /* scale < 0 and stride < 0 */
1549     //       I > (low_limit-offset)/scale
1550     //   )
1551 
1552     if (low_limit->get_int() == -max_jint) {
1553       if (!RangeLimitCheck) return;
1554       // We need this guard when scale*pre_limit+offset >= limit
1555       // due to underflow. So we need execute pre-loop until
1556       // scale*I+offset >= min_int. But (min_int-offset) will
1557       // underflow when offset > 0 and X will be > original_limit
1558       // when stride > 0. To avoid it we replace positive offset with 0.
1559       //
1560       // Also (min_int+1 == -max_int) is used instead of min_int here
1561       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1562       Node* shift = _igvn.intcon(31);
1563       set_ctrl(shift, C->root());
1564       Node* sign = new (C, 3) RShiftINode(offset, shift);
1565       register_new_node(sign, pre_ctrl);
1566       offset = new (C, 3) AndINode(offset, sign);
1567       register_new_node(offset, pre_ctrl);
1568     } else {
1569       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1570       // The only problem we have here when offset == min_int
1571       // since (0-min_int) == min_int. It may be fine for stride > 0
1572       // but for stride < 0 X will be < original_limit. To avoid it
1573       // max(pre_limit, original_limit) is used in do_range_check().
1574     }
1575     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1576     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
1577 
1578   } else { // stride_con*scale_con < 0
1579     // For negative stride*scale pre-loop checks for overflow and
1580     // post-loop for underflow.
1581     //
1582     // The overflow limit: scale*I+offset < upper_limit
1583     // For pre-loop compute
1584     //   NOT(scale*I+offset < upper_limit)
1585     //   scale*I+offset >= upper_limit
1586     //   scale*I+offset+1 > upper_limit
1587     //   ( if (scale < 0) /* and stride > 0 */
1588     //       I < (upper_limit-(offset+1))/scale
1589     //     else /* scale > 0 and stride < 0 */
1590     //       I > (upper_limit-(offset+1))/scale
1591     //   )
1592     //
1593     // (upper_limit-offset-1) may underflow or overflow.
1594     // To avoid it min(pre_limit, original_limit) is used
1595     // in do_range_check() for stride > 0 and max() for < 0.
1596     Node *one  = _igvn.intcon(1);
1597     set_ctrl(one, C->root());
1598 
1599     Node *plus_one = new (C, 3) AddINode(offset, one);
1600     register_new_node( plus_one, pre_ctrl );
1601     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1602     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
1603 
1604     if (low_limit->get_int() == -max_jint) {
1605       if (!RangeLimitCheck) return;
1606       // We need this guard when scale*main_limit+offset >= limit
1607       // due to underflow. So we need execute main-loop while
1608       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
1609       // underflow when (offset+1) > 0 and X will be < main_limit
1610       // when scale < 0 (and stride > 0). To avoid it we replace
1611       // positive (offset+1) with 0.
1612       //
1613       // Also (min_int+1 == -max_int) is used instead of min_int here
1614       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1615       Node* shift = _igvn.intcon(31);
1616       set_ctrl(shift, C->root());
1617       Node* sign = new (C, 3) RShiftINode(plus_one, shift);
1618       register_new_node(sign, pre_ctrl);
1619       plus_one = new (C, 3) AndINode(plus_one, sign);
1620       register_new_node(plus_one, pre_ctrl);
1621     } else {
1622       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1623       // The only problem we have here when offset == max_int
1624       // since (max_int+1) == min_int and (0-min_int) == min_int.
1625       // But it is fine since main loop will either have
1626       // less iterations or will be skipped in such case.
1627     }
1628     // The underflow limit: low_limit <= scale*I+offset.
1629     // For main-loop compute
1630     //   scale*I+offset+1 > low_limit
1631     //   ( if (scale < 0) /* and stride > 0 */
1632     //       I < (low_limit-(offset+1))/scale
1633     //     else /* scale > 0 and stride < 0 */
1634     //       I > (low_limit-(offset+1))/scale
1635     //   )
1636 
1637     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
1638   }
1639 }
1640 
1641 
1642 //------------------------------is_scaled_iv---------------------------------
1643 // Return true if exp is a constant times an induction var
1644 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
1645   if (exp == iv) {
1646     if (p_scale != NULL) {
1647       *p_scale = 1;
1648     }
1649     return true;
1650   }
1651   int opc = exp->Opcode();
1652   if (opc == Op_MulI) {
1653     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1654       if (p_scale != NULL) {
1655         *p_scale = exp->in(2)->get_int();
1656       }
1657       return true;
1658     }
1659     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
1660       if (p_scale != NULL) {
1661         *p_scale = exp->in(1)->get_int();
1662       }
1663       return true;
1664     }
1665   } else if (opc == Op_LShiftI) {
1666     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1667       if (p_scale != NULL) {
1668         *p_scale = 1 << exp->in(2)->get_int();
1669       }
1670       return true;
1671     }
1672   }
1673   return false;
1674 }
1675 
1676 //-----------------------------is_scaled_iv_plus_offset------------------------------
1677 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
1678 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
1679   if (is_scaled_iv(exp, iv, p_scale)) {
1680     if (p_offset != NULL) {
1681       Node *zero = _igvn.intcon(0);
1682       set_ctrl(zero, C->root());
1683       *p_offset = zero;
1684     }
1685     return true;
1686   }
1687   int opc = exp->Opcode();
1688   if (opc == Op_AddI) {
1689     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1690       if (p_offset != NULL) {
1691         *p_offset = exp->in(2);
1692       }
1693       return true;
1694     }
1695     if (exp->in(2)->is_Con()) {
1696       Node* offset2 = NULL;
1697       if (depth < 2 &&
1698           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
1699                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
1700         if (p_offset != NULL) {
1701           Node *ctrl_off2 = get_ctrl(offset2);
1702           Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
1703           register_new_node(offset, ctrl_off2);
1704           *p_offset = offset;
1705         }
1706         return true;
1707       }
1708     }
1709   } else if (opc == Op_SubI) {
1710     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1711       if (p_offset != NULL) {
1712         Node *zero = _igvn.intcon(0);
1713         set_ctrl(zero, C->root());
1714         Node *ctrl_off = get_ctrl(exp->in(2));
1715         Node* offset = new (C, 3) SubINode(zero, exp->in(2));
1716         register_new_node(offset, ctrl_off);
1717         *p_offset = offset;
1718       }
1719       return true;
1720     }
1721     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
1722       if (p_offset != NULL) {
1723         *p_scale *= -1;
1724         *p_offset = exp->in(1);
1725       }
1726       return true;
1727     }
1728   }
1729   return false;
1730 }
1731 
1732 //------------------------------do_range_check---------------------------------
1733 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1734 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
1735 #ifndef PRODUCT
1736   if (PrintOpto && VerifyLoopOptimizations) {
1737     tty->print("Range Check Elimination ");
1738     loop->dump_head();
1739   } else if (TraceLoopOpts) {
1740     tty->print("RangeCheck   ");
1741     loop->dump_head();
1742   }
1743 #endif
1744   assert(RangeCheckElimination, "");
1745   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1746   assert(cl->is_main_loop(), "");
1747 
1748   // protect against stride not being a constant
1749   if (!cl->stride_is_con())
1750     return;
1751 
1752   // Find the trip counter; we are iteration splitting based on it
1753   Node *trip_counter = cl->phi();
1754   // Find the main loop limit; we will trim it's iterations
1755   // to not ever trip end tests
1756   Node *main_limit = cl->limit();
1757 
1758   // Need to find the main-loop zero-trip guard
1759   Node *ctrl  = cl->in(LoopNode::EntryControl);
1760   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
1761   Node *iffm = ctrl->in(0);
1762   assert(iffm->Opcode() == Op_If, "");
1763   Node *bolzm = iffm->in(1);
1764   assert(bolzm->Opcode() == Op_Bool, "");
1765   Node *cmpzm = bolzm->in(1);
1766   assert(cmpzm->is_Cmp(), "");
1767   Node *opqzm = cmpzm->in(2);
1768   // Can not optimize a loop if zero-trip Opaque1 node is optimized
1769   // away and then another round of loop opts attempted.
1770   if (opqzm->Opcode() != Op_Opaque1)
1771     return;
1772   assert(opqzm->in(1) == main_limit, "do not understand situation");
1773 
1774   // Find the pre-loop limit; we will expand it's iterations to
1775   // not ever trip low tests.
1776   Node *p_f = iffm->in(0);
1777   assert(p_f->Opcode() == Op_IfFalse, "");
1778   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
1779   assert(pre_end->loopnode()->is_pre_loop(), "");
1780   Node *pre_opaq1 = pre_end->limit();
1781   // Occasionally it's possible for a pre-loop Opaque1 node to be
1782   // optimized away and then another round of loop opts attempted.
1783   // We can not optimize this particular loop in that case.
1784   if (pre_opaq1->Opcode() != Op_Opaque1)
1785     return;
1786   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
1787   Node *pre_limit = pre_opaq->in(1);
1788 
1789   // Where do we put new limit calculations
1790   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
1791 
1792   // Ensure the original loop limit is available from the
1793   // pre-loop Opaque1 node.
1794   Node *orig_limit = pre_opaq->original_loop_limit();
1795   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
1796     return;
1797 
1798   // Must know if its a count-up or count-down loop
1799 
1800   int stride_con = cl->stride_con();
1801   Node *zero = _igvn.intcon(0);
1802   Node *one  = _igvn.intcon(1);
1803   // Use symmetrical int range [-max_jint,max_jint]
1804   Node *mini = _igvn.intcon(-max_jint);
1805   set_ctrl(zero, C->root());
1806   set_ctrl(one,  C->root());
1807   set_ctrl(mini, C->root());
1808 
1809   // Range checks that do not dominate the loop backedge (ie.
1810   // conditionally executed) can lengthen the pre loop limit beyond
1811   // the original loop limit. To prevent this, the pre limit is
1812   // (for stride > 0) MINed with the original loop limit (MAXed
1813   // stride < 0) when some range_check (rc) is conditionally
1814   // executed.
1815   bool conditional_rc = false;
1816 
1817   // Check loop body for tests of trip-counter plus loop-invariant vs
1818   // loop-invariant.
1819   for( uint i = 0; i < loop->_body.size(); i++ ) {
1820     Node *iff = loop->_body[i];
1821     if( iff->Opcode() == Op_If ) { // Test?
1822 
1823       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
1824       // we need loop unswitching instead of iteration splitting.
1825       Node *exit = loop->is_loop_exit(iff);
1826       if( !exit ) continue;
1827       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
1828 
1829       // Get boolean condition to test
1830       Node *i1 = iff->in(1);
1831       if( !i1->is_Bool() ) continue;
1832       BoolNode *bol = i1->as_Bool();
1833       BoolTest b_test = bol->_test;
1834       // Flip sense of test if exit condition is flipped
1835       if( flip )
1836         b_test = b_test.negate();
1837 
1838       // Get compare
1839       Node *cmp = bol->in(1);
1840 
1841       // Look for trip_counter + offset vs limit
1842       Node *rc_exp = cmp->in(1);
1843       Node *limit  = cmp->in(2);
1844       jint scale_con= 1;        // Assume trip counter not scaled
1845 
1846       Node *limit_c = get_ctrl(limit);
1847       if( loop->is_member(get_loop(limit_c) ) ) {
1848         // Compare might have operands swapped; commute them
1849         b_test = b_test.commute();
1850         rc_exp = cmp->in(2);
1851         limit  = cmp->in(1);
1852         limit_c = get_ctrl(limit);
1853         if( loop->is_member(get_loop(limit_c) ) )
1854           continue;             // Both inputs are loop varying; cannot RCE
1855       }
1856       // Here we know 'limit' is loop invariant
1857 
1858       // 'limit' maybe pinned below the zero trip test (probably from a
1859       // previous round of rce), in which case, it can't be used in the
1860       // zero trip test expression which must occur before the zero test's if.
1861       if( limit_c == ctrl ) {
1862         continue;  // Don't rce this check but continue looking for other candidates.
1863       }
1864 
1865       // Check for scaled induction variable plus an offset
1866       Node *offset = NULL;
1867 
1868       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
1869         continue;
1870       }
1871 
1872       Node *offset_c = get_ctrl(offset);
1873       if( loop->is_member( get_loop(offset_c) ) )
1874         continue;               // Offset is not really loop invariant
1875       // Here we know 'offset' is loop invariant.
1876 
1877       // As above for the 'limit', the 'offset' maybe pinned below the
1878       // zero trip test.
1879       if( offset_c == ctrl ) {
1880         continue; // Don't rce this check but continue looking for other candidates.
1881       }
1882 #ifdef ASSERT
1883       if (TraceRangeLimitCheck) {
1884         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
1885         bol->dump(2);
1886       }
1887 #endif
1888       // At this point we have the expression as:
1889       //   scale_con * trip_counter + offset :: limit
1890       // where scale_con, offset and limit are loop invariant.  Trip_counter
1891       // monotonically increases by stride_con, a constant.  Both (or either)
1892       // stride_con and scale_con can be negative which will flip about the
1893       // sense of the test.
1894 
1895       // Adjust pre and main loop limits to guard the correct iteration set
1896       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
1897         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
1898           // The underflow and overflow limits: 0 <= scale*I+offset < limit
1899           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
1900           if (!conditional_rc) {
1901             // (0-offset)/scale could be outside of loop iterations range.
1902             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
1903           }
1904         } else {
1905 #ifndef PRODUCT
1906           if( PrintOpto )
1907             tty->print_cr("missed RCE opportunity");
1908 #endif
1909           continue;             // In release mode, ignore it
1910         }
1911       } else {                  // Otherwise work on normal compares
1912         switch( b_test._test ) {
1913         case BoolTest::gt:
1914           // Fall into GE case
1915         case BoolTest::ge:
1916           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
1917           scale_con = -scale_con;
1918           offset = new (C, 3) SubINode( zero, offset );
1919           register_new_node( offset, pre_ctrl );
1920           limit  = new (C, 3) SubINode( zero, limit  );
1921           register_new_node( limit, pre_ctrl );
1922           // Fall into LE case
1923         case BoolTest::le:
1924           if (b_test._test != BoolTest::gt) {
1925             // Convert X <= Y to X < Y+1
1926             limit = new (C, 3) AddINode( limit, one );
1927             register_new_node( limit, pre_ctrl );
1928           }
1929           // Fall into LT case
1930         case BoolTest::lt:
1931           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
1932           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
1933           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
1934           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
1935           if (!conditional_rc) {
1936             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
1937             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
1938             // still be outside of loop range.
1939             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
1940           }
1941           break;
1942         default:
1943 #ifndef PRODUCT
1944           if( PrintOpto )
1945             tty->print_cr("missed RCE opportunity");
1946 #endif
1947           continue;             // Unhandled case
1948         }
1949       }
1950 
1951       // Kill the eliminated test
1952       C->set_major_progress();
1953       Node *kill_con = _igvn.intcon( 1-flip );
1954       set_ctrl(kill_con, C->root());
1955       _igvn.hash_delete(iff);
1956       iff->set_req(1, kill_con);
1957       _igvn._worklist.push(iff);
1958       // Find surviving projection
1959       assert(iff->is_If(), "");
1960       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
1961       // Find loads off the surviving projection; remove their control edge
1962       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
1963         Node* cd = dp->fast_out(i); // Control-dependent node
1964         if( cd->is_Load() ) {   // Loads can now float around in the loop
1965           _igvn.hash_delete(cd);
1966           // Allow the load to float around in the loop, or before it
1967           // but NOT before the pre-loop.
1968           cd->set_req(0, ctrl);   // ctrl, not NULL
1969           _igvn._worklist.push(cd);
1970           --i;
1971           --imax;
1972         }
1973       }
1974 
1975     } // End of is IF
1976 
1977   }
1978 
1979   // Update loop limits
1980   if (conditional_rc) {
1981     pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
1982                                  : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
1983     register_new_node(pre_limit, pre_ctrl);
1984   }
1985   _igvn.hash_delete(pre_opaq);
1986   pre_opaq->set_req(1, pre_limit);
1987 
1988   // Note:: we are making the main loop limit no longer precise;
1989   // need to round up based on stride.
1990   cl->set_nonexact_trip_count();
1991   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
1992     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
1993     // Hopefully, compiler will optimize for powers of 2.
1994     Node *ctrl = get_ctrl(main_limit);
1995     Node *stride = cl->stride();
1996     Node *init = cl->init_trip();
1997     Node *span = new (C, 3) SubINode(main_limit,init);
1998     register_new_node(span,ctrl);
1999     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
2000     Node *add = new (C, 3) AddINode(span,rndup);
2001     register_new_node(add,ctrl);
2002     Node *div = new (C, 3) DivINode(0,add,stride);
2003     register_new_node(div,ctrl);
2004     Node *mul = new (C, 3) MulINode(div,stride);
2005     register_new_node(mul,ctrl);
2006     Node *newlim = new (C, 3) AddINode(mul,init);
2007     register_new_node(newlim,ctrl);
2008     main_limit = newlim;
2009   }
2010 
2011   Node *main_cle = cl->loopexit();
2012   Node *main_bol = main_cle->in(1);
2013   // Hacking loop bounds; need private copies of exit test
2014   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
2015     _igvn.hash_delete(main_cle);
2016     main_bol = main_bol->clone();// Clone a private BoolNode
2017     register_new_node( main_bol, main_cle->in(0) );
2018     main_cle->set_req(1,main_bol);
2019   }
2020   Node *main_cmp = main_bol->in(1);
2021   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
2022     _igvn.hash_delete(main_bol);
2023     main_cmp = main_cmp->clone();// Clone a private CmpNode
2024     register_new_node( main_cmp, main_cle->in(0) );
2025     main_bol->set_req(1,main_cmp);
2026   }
2027   // Hack the now-private loop bounds
2028   _igvn.hash_delete(main_cmp);
2029   main_cmp->set_req(2, main_limit);
2030   _igvn._worklist.push(main_cmp);
2031   // The OpaqueNode is unshared by design
2032   _igvn.hash_delete(opqzm);
2033   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
2034   opqzm->set_req(1,main_limit);
2035   _igvn._worklist.push(opqzm);
2036 }
2037 
2038 //------------------------------DCE_loop_body----------------------------------
2039 // Remove simplistic dead code from loop body
2040 void IdealLoopTree::DCE_loop_body() {
2041   for( uint i = 0; i < _body.size(); i++ )
2042     if( _body.at(i)->outcnt() == 0 )
2043       _body.map( i--, _body.pop() );
2044 }
2045 
2046 
2047 //------------------------------adjust_loop_exit_prob--------------------------
2048 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
2049 // Replace with a 1-in-10 exit guess.
2050 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
2051   Node *test = tail();
2052   while( test != _head ) {
2053     uint top = test->Opcode();
2054     if( top == Op_IfTrue || top == Op_IfFalse ) {
2055       int test_con = ((ProjNode*)test)->_con;
2056       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
2057       IfNode *iff = test->in(0)->as_If();
2058       if( iff->outcnt() == 2 ) {        // Ignore dead tests
2059         Node *bol = iff->in(1);
2060         if( bol && bol->req() > 1 && bol->in(1) &&
2061             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
2062              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
2063              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
2064              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
2065              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
2066              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
2067              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
2068           return;               // Allocation loops RARELY take backedge
2069         // Find the OTHER exit path from the IF
2070         Node* ex = iff->proj_out(1-test_con);
2071         float p = iff->_prob;
2072         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
2073           if( top == Op_IfTrue ) {
2074             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
2075               iff->_prob = PROB_STATIC_FREQUENT;
2076             }
2077           } else {
2078             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
2079               iff->_prob = PROB_STATIC_INFREQUENT;
2080             }
2081           }
2082         }
2083       }
2084     }
2085     test = phase->idom(test);
2086   }
2087 }
2088 
2089 
2090 //------------------------------policy_do_remove_empty_loop--------------------
2091 // Micro-benchmark spamming.  Policy is to always remove empty loops.
2092 // The 'DO' part is to replace the trip counter with the value it will
2093 // have on the last iteration.  This will break the loop.
2094 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
2095   // Minimum size must be empty loop
2096   if (_body.size() > EMPTY_LOOP_SIZE)
2097     return false;
2098 
2099   if (!_head->is_CountedLoop())
2100     return false;     // Dead loop
2101   CountedLoopNode *cl = _head->as_CountedLoop();
2102   if (!cl->loopexit())
2103     return false; // Malformed loop
2104   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
2105     return false;             // Infinite loop
2106 
2107 #ifdef ASSERT
2108   // Ensure only one phi which is the iv.
2109   Node* iv = NULL;
2110   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
2111     Node* n = cl->fast_out(i);
2112     if (n->Opcode() == Op_Phi) {
2113       assert(iv == NULL, "Too many phis" );
2114       iv = n;
2115     }
2116   }
2117   assert(iv == cl->phi(), "Wrong phi" );
2118 #endif
2119 
2120   // main and post loops have explicitly created zero trip guard
2121   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
2122   if (needs_guard) {
2123     // Skip guard if values not overlap.
2124     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
2125     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
2126     int  stride_con = cl->stride_con();
2127     if (stride_con > 0) {
2128       needs_guard = (init_t->_hi >= limit_t->_lo);
2129     } else {
2130       needs_guard = (init_t->_lo <= limit_t->_hi);
2131     }
2132   }
2133   if (needs_guard) {
2134     // Check for an obvious zero trip guard.
2135     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
2136     if (inctrl->Opcode() == Op_IfTrue) {
2137       // The test should look like just the backedge of a CountedLoop
2138       Node* iff = inctrl->in(0);
2139       if (iff->is_If()) {
2140         Node* bol = iff->in(1);
2141         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
2142           Node* cmp = bol->in(1);
2143           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
2144             needs_guard = false;
2145           }
2146         }
2147       }
2148     }
2149   }
2150 
2151 #ifndef PRODUCT
2152   if (PrintOpto) {
2153     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
2154     this->dump_head();
2155   } else if (TraceLoopOpts) {
2156     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
2157     this->dump_head();
2158   }
2159 #endif
2160 
2161   if (needs_guard) {
2162     // Peel the loop to ensure there's a zero trip guard
2163     Node_List old_new;
2164     phase->do_peeling(this, old_new);
2165   }
2166 
2167   // Replace the phi at loop head with the final value of the last
2168   // iteration.  Then the CountedLoopEnd will collapse (backedge never
2169   // taken) and all loop-invariant uses of the exit values will be correct.
2170   Node *phi = cl->phi();
2171   Node *exact_limit = phase->exact_limit(this);
2172   if (exact_limit != cl->limit()) {
2173     // We also need to replace the original limit to collapse loop exit.
2174     Node* cmp = cl->loopexit()->cmp_node();
2175     assert(cl->limit() == cmp->in(2), "sanity");
2176     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
2177     phase->_igvn.hash_delete(cmp);
2178     cmp->set_req(2, exact_limit);
2179     phase->_igvn._worklist.push(cmp);        // put cmp on worklist
2180   }
2181   // Note: the final value after increment should not overflow since
2182   // counted loop has limit check predicate.
2183   Node *final = new (phase->C, 3) SubINode( exact_limit, cl->stride() );
2184   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
2185   phase->_igvn.replace_node(phi,final);
2186   phase->C->set_major_progress();
2187   return true;
2188 }
2189 
2190 //------------------------------policy_do_one_iteration_loop-------------------
2191 // Convert one iteration loop into normal code.
2192 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
2193   if (!_head->as_Loop()->is_valid_counted_loop())
2194     return false; // Only for counted loop
2195 
2196   CountedLoopNode *cl = _head->as_CountedLoop();
2197   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
2198     return false;
2199   }
2200 
2201 #ifndef PRODUCT
2202   if(TraceLoopOpts) {
2203     tty->print("OneIteration ");
2204     this->dump_head();
2205   }
2206 #endif
2207 
2208   Node *init_n = cl->init_trip();
2209 #ifdef ASSERT
2210   // Loop boundaries should be constant since trip count is exact.
2211   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
2212 #endif
2213   // Replace the phi at loop head with the value of the init_trip.
2214   // Then the CountedLoopEnd will collapse (backedge will not be taken)
2215   // and all loop-invariant uses of the exit values will be correct.
2216   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
2217   phase->C->set_major_progress();
2218   return true;
2219 }
2220 
2221 //=============================================================================
2222 //------------------------------iteration_split_impl---------------------------
2223 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
2224   // Compute exact loop trip count if possible.
2225   compute_exact_trip_count(phase);
2226 
2227   // Convert one iteration loop into normal code.
2228   if (policy_do_one_iteration_loop(phase))
2229     return true;
2230 
2231   // Check and remove empty loops (spam micro-benchmarks)
2232   if (policy_do_remove_empty_loop(phase))
2233     return true;  // Here we removed an empty loop
2234 
2235   bool should_peel = policy_peeling(phase); // Should we peel?
2236 
2237   bool should_unswitch = policy_unswitching(phase);
2238 
2239   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
2240   // This removes loop-invariant tests (usually null checks).
2241   if (!_head->is_CountedLoop()) { // Non-counted loop
2242     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
2243       // Partial peel succeeded so terminate this round of loop opts
2244       return false;
2245     }
2246     if (should_peel) {            // Should we peel?
2247 #ifndef PRODUCT
2248       if (PrintOpto) tty->print_cr("should_peel");
2249 #endif
2250       phase->do_peeling(this,old_new);
2251     } else if (should_unswitch) {
2252       phase->do_unswitching(this, old_new);
2253     }
2254     return true;
2255   }
2256   CountedLoopNode *cl = _head->as_CountedLoop();
2257 
2258   if (!cl->loopexit()) return true; // Ignore various kinds of broken loops
2259 
2260   // Do nothing special to pre- and post- loops
2261   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
2262 
2263   // Compute loop trip count from profile data
2264   compute_profile_trip_cnt(phase);
2265 
2266   // Before attempting fancy unrolling, RCE or alignment, see if we want
2267   // to completely unroll this loop or do loop unswitching.
2268   if (cl->is_normal_loop()) {
2269     if (should_unswitch) {
2270       phase->do_unswitching(this, old_new);
2271       return true;
2272     }
2273     bool should_maximally_unroll =  policy_maximally_unroll(phase);
2274     if (should_maximally_unroll) {
2275       // Here we did some unrolling and peeling.  Eventually we will
2276       // completely unroll this loop and it will no longer be a loop.
2277       phase->do_maximally_unroll(this,old_new);
2278       return true;
2279     }
2280   }
2281 
2282   // Skip next optimizations if running low on nodes. Note that
2283   // policy_unswitching and policy_maximally_unroll have this check.
2284   uint nodes_left = MaxNodeLimit - phase->C->unique();
2285   if ((2 * _body.size()) > nodes_left) {
2286     return true;
2287   }
2288 
2289   // Counted loops may be peeled, may need some iterations run up
2290   // front for RCE, and may want to align loop refs to a cache
2291   // line.  Thus we clone a full loop up front whose trip count is
2292   // at least 1 (if peeling), but may be several more.
2293 
2294   // The main loop will start cache-line aligned with at least 1
2295   // iteration of the unrolled body (zero-trip test required) and
2296   // will have some range checks removed.
2297 
2298   // A post-loop will finish any odd iterations (leftover after
2299   // unrolling), plus any needed for RCE purposes.
2300 
2301   bool should_unroll = policy_unroll(phase);
2302 
2303   bool should_rce = policy_range_check(phase);
2304 
2305   bool should_align = policy_align(phase);
2306 
2307   // If not RCE'ing (iteration splitting) or Aligning, then we do not
2308   // need a pre-loop.  We may still need to peel an initial iteration but
2309   // we will not be needing an unknown number of pre-iterations.
2310   //
2311   // Basically, if may_rce_align reports FALSE first time through,
2312   // we will not be able to later do RCE or Aligning on this loop.
2313   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
2314 
2315   // If we have any of these conditions (RCE, alignment, unrolling) met, then
2316   // we switch to the pre-/main-/post-loop model.  This model also covers
2317   // peeling.
2318   if (should_rce || should_align || should_unroll) {
2319     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
2320       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
2321 
2322     // Adjust the pre- and main-loop limits to let the pre and post loops run
2323     // with full checks, but the main-loop with no checks.  Remove said
2324     // checks from the main body.
2325     if (should_rce)
2326       phase->do_range_check(this,old_new);
2327 
2328     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
2329     // twice as many iterations as before) and the main body limit (only do
2330     // an even number of trips).  If we are peeling, we might enable some RCE
2331     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
2332     // peeling.
2333     if (should_unroll && !should_peel)
2334       phase->do_unroll(this,old_new, true);
2335 
2336     // Adjust the pre-loop limits to align the main body
2337     // iterations.
2338     if (should_align)
2339       Unimplemented();
2340 
2341   } else {                      // Else we have an unchanged counted loop
2342     if (should_peel)           // Might want to peel but do nothing else
2343       phase->do_peeling(this,old_new);
2344   }
2345   return true;
2346 }
2347 
2348 
2349 //=============================================================================
2350 //------------------------------iteration_split--------------------------------
2351 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
2352   // Recursively iteration split nested loops
2353   if (_child && !_child->iteration_split(phase, old_new))
2354     return false;
2355 
2356   // Clean out prior deadwood
2357   DCE_loop_body();
2358 
2359 
2360   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
2361   // Replace with a 1-in-10 exit guess.
2362   if (_parent /*not the root loop*/ &&
2363       !_irreducible &&
2364       // Also ignore the occasional dead backedge
2365       !tail()->is_top()) {
2366     adjust_loop_exit_prob(phase);
2367   }
2368 
2369   // Gate unrolling, RCE and peeling efforts.
2370   if (!_child &&                // If not an inner loop, do not split
2371       !_irreducible &&
2372       _allow_optimizations &&
2373       !tail()->is_top()) {     // Also ignore the occasional dead backedge
2374     if (!_has_call) {
2375         if (!iteration_split_impl(phase, old_new)) {
2376           return false;
2377         }
2378     } else if (policy_unswitching(phase)) {
2379       phase->do_unswitching(this, old_new);
2380     }
2381   }
2382 
2383   // Minor offset re-organization to remove loop-fallout uses of
2384   // trip counter when there was no major reshaping.
2385   phase->reorg_offsets(this);
2386 
2387   if (_next && !_next->iteration_split(phase, old_new))
2388     return false;
2389   return true;
2390 }
2391 
2392 
2393 //=============================================================================
2394 // Process all the loops in the loop tree and replace any fill
2395 // patterns with an intrisc version.
2396 bool PhaseIdealLoop::do_intrinsify_fill() {
2397   bool changed = false;
2398   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2399     IdealLoopTree* lpt = iter.current();
2400     changed |= intrinsify_fill(lpt);
2401   }
2402   return changed;
2403 }
2404 
2405 
2406 // Examine an inner loop looking for a a single store of an invariant
2407 // value in a unit stride loop,
2408 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
2409                                      Node*& shift, Node*& con) {
2410   const char* msg = NULL;
2411   Node* msg_node = NULL;
2412 
2413   store_value = NULL;
2414   con = NULL;
2415   shift = NULL;
2416 
2417   // Process the loop looking for stores.  If there are multiple
2418   // stores or extra control flow give at this point.
2419   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2420   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2421     Node* n = lpt->_body.at(i);
2422     if (n->outcnt() == 0) continue; // Ignore dead
2423     if (n->is_Store()) {
2424       if (store != NULL) {
2425         msg = "multiple stores";
2426         break;
2427       }
2428       int opc = n->Opcode();
2429       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
2430         msg = "oop fills not handled";
2431         break;
2432       }
2433       Node* value = n->in(MemNode::ValueIn);
2434       if (!lpt->is_invariant(value)) {
2435         msg  = "variant store value";
2436       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
2437         msg = "not array address";
2438       }
2439       store = n;
2440       store_value = value;
2441     } else if (n->is_If() && n != head->loopexit()) {
2442       msg = "extra control flow";
2443       msg_node = n;
2444     }
2445   }
2446 
2447   if (store == NULL) {
2448     // No store in loop
2449     return false;
2450   }
2451 
2452   if (msg == NULL && head->stride_con() != 1) {
2453     // could handle negative strides too
2454     if (head->stride_con() < 0) {
2455       msg = "negative stride";
2456     } else {
2457       msg = "non-unit stride";
2458     }
2459   }
2460 
2461   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
2462     msg = "can't handle store address";
2463     msg_node = store->in(MemNode::Address);
2464   }
2465 
2466   if (msg == NULL &&
2467       (!store->in(MemNode::Memory)->is_Phi() ||
2468        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
2469     msg = "store memory isn't proper phi";
2470     msg_node = store->in(MemNode::Memory);
2471   }
2472 
2473   // Make sure there is an appropriate fill routine
2474   BasicType t = store->as_Mem()->memory_type();
2475   const char* fill_name;
2476   if (msg == NULL &&
2477       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
2478     msg = "unsupported store";
2479     msg_node = store;
2480   }
2481 
2482   if (msg != NULL) {
2483 #ifndef PRODUCT
2484     if (TraceOptimizeFill) {
2485       tty->print_cr("not fill intrinsic candidate: %s", msg);
2486       if (msg_node != NULL) msg_node->dump();
2487     }
2488 #endif
2489     return false;
2490   }
2491 
2492   // Make sure the address expression can be handled.  It should be
2493   // head->phi * elsize + con.  head->phi might have a ConvI2L.
2494   Node* elements[4];
2495   Node* conv = NULL;
2496   bool found_index = false;
2497   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
2498   for (int e = 0; e < count; e++) {
2499     Node* n = elements[e];
2500     if (n->is_Con() && con == NULL) {
2501       con = n;
2502     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
2503       Node* value = n->in(1);
2504 #ifdef _LP64
2505       if (value->Opcode() == Op_ConvI2L) {
2506         conv = value;
2507         value = value->in(1);
2508       }
2509 #endif
2510       if (value != head->phi()) {
2511         msg = "unhandled shift in address";
2512       } else {
2513         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
2514           msg = "scale doesn't match";
2515         } else {
2516           found_index = true;
2517           shift = n;
2518         }
2519       }
2520     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
2521       if (n->in(1) == head->phi()) {
2522         found_index = true;
2523         conv = n;
2524       } else {
2525         msg = "unhandled input to ConvI2L";
2526       }
2527     } else if (n == head->phi()) {
2528       // no shift, check below for allowed cases
2529       found_index = true;
2530     } else {
2531       msg = "unhandled node in address";
2532       msg_node = n;
2533     }
2534   }
2535 
2536   if (count == -1) {
2537     msg = "malformed address expression";
2538     msg_node = store;
2539   }
2540 
2541   if (!found_index) {
2542     msg = "missing use of index";
2543   }
2544 
2545   // byte sized items won't have a shift
2546   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
2547     msg = "can't find shift";
2548     msg_node = store;
2549   }
2550 
2551   if (msg != NULL) {
2552 #ifndef PRODUCT
2553     if (TraceOptimizeFill) {
2554       tty->print_cr("not fill intrinsic: %s", msg);
2555       if (msg_node != NULL) msg_node->dump();
2556     }
2557 #endif
2558     return false;
2559   }
2560 
2561   // No make sure all the other nodes in the loop can be handled
2562   VectorSet ok(Thread::current()->resource_area());
2563 
2564   // store related values are ok
2565   ok.set(store->_idx);
2566   ok.set(store->in(MemNode::Memory)->_idx);
2567 
2568   // Loop structure is ok
2569   ok.set(head->_idx);
2570   ok.set(head->loopexit()->_idx);
2571   ok.set(head->phi()->_idx);
2572   ok.set(head->incr()->_idx);
2573   ok.set(head->loopexit()->cmp_node()->_idx);
2574   ok.set(head->loopexit()->in(1)->_idx);
2575 
2576   // Address elements are ok
2577   if (con)   ok.set(con->_idx);
2578   if (shift) ok.set(shift->_idx);
2579   if (conv)  ok.set(conv->_idx);
2580 
2581   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2582     Node* n = lpt->_body.at(i);
2583     if (n->outcnt() == 0) continue; // Ignore dead
2584     if (ok.test(n->_idx)) continue;
2585     // Backedge projection is ok
2586     if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
2587     if (!n->is_AddP()) {
2588       msg = "unhandled node";
2589       msg_node = n;
2590       break;
2591     }
2592   }
2593 
2594   // Make sure no unexpected values are used outside the loop
2595   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2596     Node* n = lpt->_body.at(i);
2597     // These values can be replaced with other nodes if they are used
2598     // outside the loop.
2599     if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
2600     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
2601       Node* use = iter.get();
2602       if (!lpt->_body.contains(use)) {
2603         msg = "node is used outside loop";
2604         // lpt->_body.dump();
2605         msg_node = n;
2606         break;
2607       }
2608     }
2609   }
2610 
2611 #ifdef ASSERT
2612   if (TraceOptimizeFill) {
2613     if (msg != NULL) {
2614       tty->print_cr("no fill intrinsic: %s", msg);
2615       if (msg_node != NULL) msg_node->dump();
2616     } else {
2617       tty->print_cr("fill intrinsic for:");
2618     }
2619     store->dump();
2620     if (Verbose) {
2621       lpt->_body.dump();
2622     }
2623   }
2624 #endif
2625 
2626   return msg == NULL;
2627 }
2628 
2629 
2630 
2631 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
2632   // Only for counted inner loops
2633   if (!lpt->is_counted() || !lpt->is_inner()) {
2634     return false;
2635   }
2636 
2637   // Must have constant stride
2638   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2639   if (!head->stride_is_con() || !head->is_normal_loop()) {
2640     return false;
2641   }
2642 
2643   // Check that the body only contains a store of a loop invariant
2644   // value that is indexed by the loop phi.
2645   Node* store = NULL;
2646   Node* store_value = NULL;
2647   Node* shift = NULL;
2648   Node* offset = NULL;
2649   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
2650     return false;
2651   }
2652 
2653 #ifndef PRODUCT
2654   if (TraceLoopOpts) {
2655     tty->print("ArrayFill    ");
2656     lpt->dump_head();
2657   }
2658 #endif
2659 
2660   // Now replace the whole loop body by a call to a fill routine that
2661   // covers the same region as the loop.
2662   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
2663 
2664   // Build an expression for the beginning of the copy region
2665   Node* index = head->init_trip();
2666 #ifdef _LP64
2667   index = new (C, 2) ConvI2LNode(index);
2668   _igvn.register_new_node_with_optimizer(index);
2669 #endif
2670   if (shift != NULL) {
2671     // byte arrays don't require a shift but others do.
2672     index = new (C, 3) LShiftXNode(index, shift->in(2));
2673     _igvn.register_new_node_with_optimizer(index);
2674   }
2675   index = new (C, 4) AddPNode(base, base, index);
2676   _igvn.register_new_node_with_optimizer(index);
2677   Node* from = new (C, 4) AddPNode(base, index, offset);
2678   _igvn.register_new_node_with_optimizer(from);
2679   // Compute the number of elements to copy
2680   Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
2681   _igvn.register_new_node_with_optimizer(len);
2682 
2683   BasicType t = store->as_Mem()->memory_type();
2684   bool aligned = false;
2685   if (offset != NULL && head->init_trip()->is_Con()) {
2686     int element_size = type2aelembytes(t);
2687     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
2688   }
2689 
2690   // Build a call to the fill routine
2691   const char* fill_name;
2692   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
2693   assert(fill != NULL, "what?");
2694 
2695   // Convert float/double to int/long for fill routines
2696   if (t == T_FLOAT) {
2697     store_value = new (C, 2) MoveF2INode(store_value);
2698     _igvn.register_new_node_with_optimizer(store_value);
2699   } else if (t == T_DOUBLE) {
2700     store_value = new (C, 2) MoveD2LNode(store_value);
2701     _igvn.register_new_node_with_optimizer(store_value);
2702   }
2703 
2704   Node* mem_phi = store->in(MemNode::Memory);
2705   Node* result_ctrl;
2706   Node* result_mem;
2707   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
2708   int size = call_type->domain()->cnt();
2709   CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
2710                                                       fill_name, TypeAryPtr::get_array_body_type(t));
2711   call->init_req(TypeFunc::Parms+0, from);
2712   call->init_req(TypeFunc::Parms+1, store_value);
2713 #ifdef _LP64
2714   len = new (C, 2) ConvI2LNode(len);
2715   _igvn.register_new_node_with_optimizer(len);
2716 #endif
2717   call->init_req(TypeFunc::Parms+2, len);
2718 #ifdef _LP64
2719   call->init_req(TypeFunc::Parms+3, C->top());
2720 #endif
2721   call->init_req( TypeFunc::Control, head->init_control());
2722   call->init_req( TypeFunc::I_O    , C->top() )        ;   // does no i/o
2723   call->init_req( TypeFunc::Memory ,  mem_phi->in(LoopNode::EntryControl) );
2724   call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
2725   call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
2726   _igvn.register_new_node_with_optimizer(call);
2727   result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
2728   _igvn.register_new_node_with_optimizer(result_ctrl);
2729   result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
2730   _igvn.register_new_node_with_optimizer(result_mem);
2731 
2732   // If this fill is tightly coupled to an allocation and overwrites
2733   // the whole body, allow it to take over the zeroing.
2734   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
2735   if (alloc != NULL && alloc->is_AllocateArray()) {
2736     Node* length = alloc->as_AllocateArray()->Ideal_length();
2737     if (head->limit() == length &&
2738         head->init_trip() == _igvn.intcon(0)) {
2739       if (TraceOptimizeFill) {
2740         tty->print_cr("Eliminated zeroing in allocation");
2741       }
2742       alloc->maybe_set_complete(&_igvn);
2743     } else {
2744 #ifdef ASSERT
2745       if (TraceOptimizeFill) {
2746         tty->print_cr("filling array but bounds don't match");
2747         alloc->dump();
2748         head->init_trip()->dump();
2749         head->limit()->dump();
2750         length->dump();
2751       }
2752 #endif
2753     }
2754   }
2755 
2756   // Redirect the old control and memory edges that are outside the loop.
2757   Node* exit = head->loopexit()->proj_out(0);
2758   // Sometimes the memory phi of the head is used as the outgoing
2759   // state of the loop.  It's safe in this case to replace it with the
2760   // result_mem.
2761   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
2762   _igvn.replace_node(exit, result_ctrl);
2763   _igvn.replace_node(store, result_mem);
2764   // Any uses the increment outside of the loop become the loop limit.
2765   _igvn.replace_node(head->incr(), head->limit());
2766 
2767   // Disconnect the head from the loop.
2768   for (uint i = 0; i < lpt->_body.size(); i++) {
2769     Node* n = lpt->_body.at(i);
2770     _igvn.replace_node(n, C->top());
2771   }
2772 
2773   return true;
2774 }