1 /*
   2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // output_c.cpp - Class CPP file output routines for architecture definition
  26 
  27 #include "adlc.hpp"
  28 
  29 // Utilities to characterize effect statements
  30 static bool is_def(int usedef) {
  31   switch(usedef) {
  32   case Component::DEF:
  33   case Component::USE_DEF: return true; break;
  34   }
  35   return false;
  36 }
  37 
  38 static bool is_use(int usedef) {
  39   switch(usedef) {
  40   case Component::USE:
  41   case Component::USE_DEF:
  42   case Component::USE_KILL: return true; break;
  43   }
  44   return false;
  45 }
  46 
  47 static bool is_kill(int usedef) {
  48   switch(usedef) {
  49   case Component::KILL:
  50   case Component::USE_KILL: return true; break;
  51   }
  52   return false;
  53 }
  54 
  55 // Define  an array containing the machine register names, strings.
  56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
  57   if (registers) {
  58     fprintf(fp,"\n");
  59     fprintf(fp,"// An array of character pointers to machine register names.\n");
  60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
  61 
  62     // Output the register name for each register in the allocation classes
  63     RegDef *reg_def = NULL;
  64     RegDef *next = NULL;
  65     registers->reset_RegDefs();
  66     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
  67       next = registers->iter_RegDefs();
  68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  69       fprintf(fp,"  \"%s\"%s\n",
  70                  reg_def->_regname, comma );
  71     }
  72 
  73     // Finish defining enumeration
  74     fprintf(fp,"};\n");
  75 
  76     fprintf(fp,"\n");
  77     fprintf(fp,"// An array of character pointers to machine register names.\n");
  78     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
  79     reg_def = NULL;
  80     next = NULL;
  81     registers->reset_RegDefs();
  82     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
  83       next = registers->iter_RegDefs();
  84       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  85       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma );
  86     }
  87     // Finish defining array
  88     fprintf(fp,"\t};\n");
  89     fprintf(fp,"\n");
  90 
  91     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
  92 
  93   }
  94 }
  95 
  96 // Define an array containing the machine register encoding values
  97 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  98   if (registers) {
  99     fprintf(fp,"\n");
 100     fprintf(fp,"// An array of the machine register encode values\n");
 101     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
 102 
 103     // Output the register encoding for each register in the allocation classes
 104     RegDef *reg_def = NULL;
 105     RegDef *next    = NULL;
 106     registers->reset_RegDefs();
 107     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
 108       next = registers->iter_RegDefs();
 109       const char* register_encode = reg_def->register_encode();
 110       const char *comma = (next != NULL) ? "," : " // no trailing comma";
 111       int encval;
 112       if (!ADLParser::is_int_token(register_encode, encval)) {
 113         fprintf(fp,"  %s%s  // %s\n",
 114                 register_encode, comma, reg_def->_regname );
 115       } else {
 116         // Output known constants in hex char format (backward compatibility).
 117         assert(encval < 256, "Exceeded supported width for register encoding");
 118         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n",
 119                 encval,          comma, reg_def->_regname );
 120       }
 121     }
 122     // Finish defining enumeration
 123     fprintf(fp,"};\n");
 124 
 125   } // Done defining array
 126 }
 127 
 128 // Output an enumeration of register class names
 129 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
 130   if (registers) {
 131     // Output an enumeration of register class names
 132     fprintf(fp,"\n");
 133     fprintf(fp,"// Enumeration of register class names\n");
 134     fprintf(fp, "enum machRegisterClass {\n");
 135     registers->_rclasses.reset();
 136     for( const char *class_name = NULL;
 137          (class_name = registers->_rclasses.iter()) != NULL; ) {
 138       fprintf(fp,"  %s,\n", toUpper( class_name ));
 139     }
 140     // Finish defining enumeration
 141     fprintf(fp, "  _last_Mach_Reg_Class\n");
 142     fprintf(fp, "};\n");
 143   }
 144 }
 145 
 146 // Declare an enumeration of user-defined register classes
 147 // and a list of register masks, one for each class.
 148 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
 149   const char  *rc_name;
 150 
 151   if( _register ) {
 152     // Build enumeration of user-defined register classes.
 153     defineRegClassEnum(fp_hpp, _register);
 154 
 155     // Generate a list of register masks, one for each class.
 156     fprintf(fp_hpp,"\n");
 157     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
 158     _register->_rclasses.reset();
 159     for( rc_name = NULL;
 160          (rc_name = _register->_rclasses.iter()) != NULL; ) {
 161       const char *prefix    = "";
 162       RegClass   *reg_class = _register->getRegClass(rc_name);
 163       assert( reg_class, "Using an undefined register class");
 164 
 165       int len = RegisterForm::RegMask_Size();
 166       fprintf(fp_hpp, "extern const RegMask %s%s_mask;\n", prefix, toUpper( rc_name ) );
 167 
 168       if( reg_class->_stack_or_reg ) {
 169         fprintf(fp_hpp, "extern const RegMask %sSTACK_OR_%s_mask;\n", prefix, toUpper( rc_name ) );
 170       }
 171     }
 172   }
 173 }
 174 
 175 // Generate an enumeration of user-defined register classes
 176 // and a list of register masks, one for each class.
 177 void ArchDesc::build_register_masks(FILE *fp_cpp) {
 178   const char  *rc_name;
 179 
 180   if( _register ) {
 181     // Generate a list of register masks, one for each class.
 182     fprintf(fp_cpp,"\n");
 183     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
 184     _register->_rclasses.reset();
 185     for( rc_name = NULL;
 186          (rc_name = _register->_rclasses.iter()) != NULL; ) {
 187       const char *prefix    = "";
 188       RegClass   *reg_class = _register->getRegClass(rc_name);
 189       assert( reg_class, "Using an undefined register class");
 190 
 191       int len = RegisterForm::RegMask_Size();
 192       fprintf(fp_cpp, "const RegMask %s%s_mask(", prefix, toUpper( rc_name ) );
 193       { int i;
 194         for( i = 0; i < len-1; i++ )
 195           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,false));
 196         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,false));
 197       }
 198 
 199       if( reg_class->_stack_or_reg ) {
 200         int i;
 201         fprintf(fp_cpp, "const RegMask %sSTACK_OR_%s_mask(", prefix, toUpper( rc_name ) );
 202         for( i = 0; i < len-1; i++ )
 203           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,true));
 204         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,true));
 205       }
 206     }
 207   }
 208 }
 209 
 210 // Compute an index for an array in the pipeline_reads_NNN arrays
 211 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
 212 {
 213   int templen = 1;
 214   int paramcount = 0;
 215   const char *paramname;
 216 
 217   if (pipeclass->_parameters.count() == 0)
 218     return -1;
 219 
 220   pipeclass->_parameters.reset();
 221   paramname = pipeclass->_parameters.iter();
 222   const PipeClassOperandForm *pipeopnd =
 223     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 224   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 225     pipeclass->_parameters.reset();
 226 
 227   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 228     const PipeClassOperandForm *tmppipeopnd =
 229         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 230 
 231     if (tmppipeopnd)
 232       templen += 10 + (int)strlen(tmppipeopnd->_stage);
 233     else
 234       templen += 19;
 235 
 236     paramcount++;
 237   }
 238 
 239   // See if the count is zero
 240   if (paramcount == 0) {
 241     return -1;
 242   }
 243 
 244   char *operand_stages = new char [templen];
 245   operand_stages[0] = 0;
 246   int i = 0;
 247   templen = 0;
 248 
 249   pipeclass->_parameters.reset();
 250   paramname = pipeclass->_parameters.iter();
 251   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 252   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 253     pipeclass->_parameters.reset();
 254 
 255   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 256     const PipeClassOperandForm *tmppipeopnd =
 257         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 258     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
 259       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
 260       (++i < paramcount ? ',' : ' ') );
 261   }
 262 
 263   // See if the same string is in the table
 264   int ndx = pipeline_reads.index(operand_stages);
 265 
 266   // No, add it to the table
 267   if (ndx < 0) {
 268     pipeline_reads.addName(operand_stages);
 269     ndx = pipeline_reads.index(operand_stages);
 270 
 271     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
 272       ndx+1, paramcount, operand_stages);
 273   }
 274   else
 275     delete [] operand_stages;
 276 
 277   return (ndx);
 278 }
 279 
 280 // Compute an index for an array in the pipeline_res_stages_NNN arrays
 281 static int pipeline_res_stages_initializer(
 282   FILE *fp_cpp,
 283   PipelineForm *pipeline,
 284   NameList &pipeline_res_stages,
 285   PipeClassForm *pipeclass)
 286 {
 287   const PipeClassResourceForm *piperesource;
 288   int * res_stages = new int [pipeline->_rescount];
 289   int i;
 290 
 291   for (i = 0; i < pipeline->_rescount; i++)
 292      res_stages[i] = 0;
 293 
 294   for (pipeclass->_resUsage.reset();
 295        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 296     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 297     for (i = 0; i < pipeline->_rescount; i++)
 298       if ((1 << i) & used_mask) {
 299         int stage = pipeline->_stages.index(piperesource->_stage);
 300         if (res_stages[i] < stage+1)
 301           res_stages[i] = stage+1;
 302       }
 303   }
 304 
 305   // Compute the length needed for the resource list
 306   int commentlen = 0;
 307   int max_stage = 0;
 308   for (i = 0; i < pipeline->_rescount; i++) {
 309     if (res_stages[i] == 0) {
 310       if (max_stage < 9)
 311         max_stage = 9;
 312     }
 313     else {
 314       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
 315       if (max_stage < stagelen)
 316         max_stage = stagelen;
 317     }
 318 
 319     commentlen += (int)strlen(pipeline->_reslist.name(i));
 320   }
 321 
 322   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
 323 
 324   // Allocate space for the resource list
 325   char * resource_stages = new char [templen];
 326 
 327   templen = 0;
 328   for (i = 0; i < pipeline->_rescount; i++) {
 329     const char * const resname =
 330       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
 331 
 332     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
 333       resname, max_stage - (int)strlen(resname) + 1,
 334       (i < pipeline->_rescount-1) ? "," : "",
 335       pipeline->_reslist.name(i));
 336   }
 337 
 338   // See if the same string is in the table
 339   int ndx = pipeline_res_stages.index(resource_stages);
 340 
 341   // No, add it to the table
 342   if (ndx < 0) {
 343     pipeline_res_stages.addName(resource_stages);
 344     ndx = pipeline_res_stages.index(resource_stages);
 345 
 346     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
 347       ndx+1, pipeline->_rescount, resource_stages);
 348   }
 349   else
 350     delete [] resource_stages;
 351 
 352   delete [] res_stages;
 353 
 354   return (ndx);
 355 }
 356 
 357 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
 358 static int pipeline_res_cycles_initializer(
 359   FILE *fp_cpp,
 360   PipelineForm *pipeline,
 361   NameList &pipeline_res_cycles,
 362   PipeClassForm *pipeclass)
 363 {
 364   const PipeClassResourceForm *piperesource;
 365   int * res_cycles = new int [pipeline->_rescount];
 366   int i;
 367 
 368   for (i = 0; i < pipeline->_rescount; i++)
 369      res_cycles[i] = 0;
 370 
 371   for (pipeclass->_resUsage.reset();
 372        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 373     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 374     for (i = 0; i < pipeline->_rescount; i++)
 375       if ((1 << i) & used_mask) {
 376         int cycles = piperesource->_cycles;
 377         if (res_cycles[i] < cycles)
 378           res_cycles[i] = cycles;
 379       }
 380   }
 381 
 382   // Pre-compute the string length
 383   int templen;
 384   int cyclelen = 0, commentlen = 0;
 385   int max_cycles = 0;
 386   char temp[32];
 387 
 388   for (i = 0; i < pipeline->_rescount; i++) {
 389     if (max_cycles < res_cycles[i])
 390       max_cycles = res_cycles[i];
 391     templen = sprintf(temp, "%d", res_cycles[i]);
 392     if (cyclelen < templen)
 393       cyclelen = templen;
 394     commentlen += (int)strlen(pipeline->_reslist.name(i));
 395   }
 396 
 397   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
 398 
 399   // Allocate space for the resource list
 400   char * resource_cycles = new char [templen];
 401 
 402   templen = 0;
 403 
 404   for (i = 0; i < pipeline->_rescount; i++) {
 405     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
 406       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
 407   }
 408 
 409   // See if the same string is in the table
 410   int ndx = pipeline_res_cycles.index(resource_cycles);
 411 
 412   // No, add it to the table
 413   if (ndx < 0) {
 414     pipeline_res_cycles.addName(resource_cycles);
 415     ndx = pipeline_res_cycles.index(resource_cycles);
 416 
 417     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
 418       ndx+1, pipeline->_rescount, resource_cycles);
 419   }
 420   else
 421     delete [] resource_cycles;
 422 
 423   delete [] res_cycles;
 424 
 425   return (ndx);
 426 }
 427 
 428 //typedef unsigned long long uint64_t;
 429 
 430 // Compute an index for an array in the pipeline_res_mask_NNN arrays
 431 static int pipeline_res_mask_initializer(
 432   FILE *fp_cpp,
 433   PipelineForm *pipeline,
 434   NameList &pipeline_res_mask,
 435   NameList &pipeline_res_args,
 436   PipeClassForm *pipeclass)
 437 {
 438   const PipeClassResourceForm *piperesource;
 439   const uint rescount      = pipeline->_rescount;
 440   const uint maxcycleused  = pipeline->_maxcycleused;
 441   const uint cyclemasksize = (maxcycleused + 31) >> 5;
 442 
 443   int i, j;
 444   int element_count = 0;
 445   uint *res_mask = new uint [cyclemasksize];
 446   uint resources_used             = 0;
 447   uint resources_used_exclusively = 0;
 448 
 449   for (pipeclass->_resUsage.reset();
 450        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; )
 451     element_count++;
 452 
 453   // Pre-compute the string length
 454   int templen;
 455   int commentlen = 0;
 456   int max_cycles = 0;
 457 
 458   int cyclelen = ((maxcycleused + 3) >> 2);
 459   int masklen = (rescount + 3) >> 2;
 460 
 461   int cycledigit = 0;
 462   for (i = maxcycleused; i > 0; i /= 10)
 463     cycledigit++;
 464 
 465   int maskdigit = 0;
 466   for (i = rescount; i > 0; i /= 10)
 467     maskdigit++;
 468 
 469   static const char * pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
 470   static const char * pipeline_use_element    = "Pipeline_Use_Element";
 471 
 472   templen = 1 +
 473     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
 474      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
 475 
 476   // Allocate space for the resource list
 477   char * resource_mask = new char [templen];
 478   char * last_comma = NULL;
 479 
 480   templen = 0;
 481 
 482   for (pipeclass->_resUsage.reset();
 483        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 484     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 485 
 486     if (!used_mask)
 487       fprintf(stderr, "*** used_mask is 0 ***\n");
 488 
 489     resources_used |= used_mask;
 490 
 491     uint lb, ub;
 492 
 493     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
 494     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
 495 
 496     if (lb == ub)
 497       resources_used_exclusively |= used_mask;
 498 
 499     int formatlen =
 500       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
 501         pipeline_use_element,
 502         masklen, used_mask,
 503         cycledigit, lb, cycledigit, ub,
 504         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
 505         pipeline_use_cycle_mask);
 506 
 507     templen += formatlen;
 508 
 509     memset(res_mask, 0, cyclemasksize * sizeof(uint));
 510 
 511     int cycles = piperesource->_cycles;
 512     uint stage          = pipeline->_stages.index(piperesource->_stage);
 513     uint upper_limit    = stage+cycles-1;
 514     uint lower_limit    = stage-1;
 515     uint upper_idx      = upper_limit >> 5;
 516     uint lower_idx      = lower_limit >> 5;
 517     uint upper_position = upper_limit & 0x1f;
 518     uint lower_position = lower_limit & 0x1f;
 519 
 520     uint mask = (((uint)1) << upper_position) - 1;
 521 
 522     while ( upper_idx > lower_idx ) {
 523       res_mask[upper_idx--] |= mask;
 524       mask = (uint)-1;
 525     }
 526 
 527     mask -= (((uint)1) << lower_position) - 1;
 528     res_mask[upper_idx] |= mask;
 529 
 530     for (j = cyclemasksize-1; j >= 0; j--) {
 531       formatlen =
 532         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
 533       templen += formatlen;
 534     }
 535 
 536     resource_mask[templen++] = ')';
 537     resource_mask[templen++] = ')';
 538     last_comma = &resource_mask[templen];
 539     resource_mask[templen++] = ',';
 540     resource_mask[templen++] = '\n';
 541   }
 542 
 543   resource_mask[templen] = 0;
 544   if (last_comma)
 545     last_comma[0] = ' ';
 546 
 547   // See if the same string is in the table
 548   int ndx = pipeline_res_mask.index(resource_mask);
 549 
 550   // No, add it to the table
 551   if (ndx < 0) {
 552     pipeline_res_mask.addName(resource_mask);
 553     ndx = pipeline_res_mask.index(resource_mask);
 554 
 555     if (strlen(resource_mask) > 0)
 556       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
 557         ndx+1, element_count, resource_mask);
 558 
 559     char * args = new char [9 + 2*masklen + maskdigit];
 560 
 561     sprintf(args, "0x%0*x, 0x%0*x, %*d",
 562       masklen, resources_used,
 563       masklen, resources_used_exclusively,
 564       maskdigit, element_count);
 565 
 566     pipeline_res_args.addName(args);
 567   }
 568   else
 569     delete [] resource_mask;
 570 
 571   delete [] res_mask;
 572 //delete [] res_masks;
 573 
 574   return (ndx);
 575 }
 576 
 577 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
 578   const char *classname;
 579   const char *resourcename;
 580   int resourcenamelen = 0;
 581   NameList pipeline_reads;
 582   NameList pipeline_res_stages;
 583   NameList pipeline_res_cycles;
 584   NameList pipeline_res_masks;
 585   NameList pipeline_res_args;
 586   const int default_latency = 1;
 587   const int non_operand_latency = 0;
 588   const int node_latency = 0;
 589 
 590   if (!_pipeline) {
 591     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
 592     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 593     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
 594     fprintf(fp_cpp, "}\n");
 595     return;
 596   }
 597 
 598   fprintf(fp_cpp, "\n");
 599   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
 600   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 601   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
 602   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
 603   fprintf(fp_cpp, "    \"undefined\"");
 604 
 605   for (int s = 0; s < _pipeline->_stagecnt; s++)
 606     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
 607 
 608   fprintf(fp_cpp, "\n  };\n\n");
 609   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
 610     _pipeline->_stagecnt);
 611   fprintf(fp_cpp, "}\n");
 612   fprintf(fp_cpp, "#endif\n\n");
 613 
 614   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
 615   fprintf(fp_cpp, "  // See if the functional units overlap\n");
 616 #if 0
 617   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 618   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 619   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
 620   fprintf(fp_cpp, "  }\n");
 621   fprintf(fp_cpp, "#endif\n\n");
 622 #endif
 623   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
 624   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
 625 #if 0
 626   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 627   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 628   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
 629   fprintf(fp_cpp, "  }\n");
 630   fprintf(fp_cpp, "#endif\n\n");
 631 #endif
 632   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
 633   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
 634   fprintf(fp_cpp, "    if (predUse->multiple())\n");
 635   fprintf(fp_cpp, "      continue;\n\n");
 636   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
 637   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
 638   fprintf(fp_cpp, "      if (currUse->multiple())\n");
 639   fprintf(fp_cpp, "        continue;\n\n");
 640   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
 641   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
 642   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
 643   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
 644   fprintf(fp_cpp, "          y <<= 1;\n");
 645   fprintf(fp_cpp, "      }\n");
 646   fprintf(fp_cpp, "    }\n");
 647   fprintf(fp_cpp, "  }\n\n");
 648   fprintf(fp_cpp, "  // There is the potential for overlap\n");
 649   fprintf(fp_cpp, "  return (start);\n");
 650   fprintf(fp_cpp, "}\n\n");
 651   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
 652   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
 653   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
 654   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
 655   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 656   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 657   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 658   fprintf(fp_cpp, "      uint min_delay = %d;\n",
 659     _pipeline->_maxcycleused+1);
 660   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 661   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 662   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 663   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
 664   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 665   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 666   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 667   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
 668   fprintf(fp_cpp, "            y <<= 1;\n");
 669   fprintf(fp_cpp, "        }\n");
 670   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
 671   fprintf(fp_cpp, "      }\n");
 672   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
 673   fprintf(fp_cpp, "    }\n");
 674   fprintf(fp_cpp, "    else {\n");
 675   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 676   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 677   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 678   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 679   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 680   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
 681   fprintf(fp_cpp, "            y <<= 1;\n");
 682   fprintf(fp_cpp, "        }\n");
 683   fprintf(fp_cpp, "      }\n");
 684   fprintf(fp_cpp, "    }\n");
 685   fprintf(fp_cpp, "  }\n\n");
 686   fprintf(fp_cpp, "  return (delay);\n");
 687   fprintf(fp_cpp, "}\n\n");
 688   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
 689   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 690   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 691   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 692   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 693   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 694   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 695   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
 696   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
 697   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
 698   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
 699   fprintf(fp_cpp, "          break;\n");
 700   fprintf(fp_cpp, "        }\n");
 701   fprintf(fp_cpp, "      }\n");
 702   fprintf(fp_cpp, "    }\n");
 703   fprintf(fp_cpp, "    else {\n");
 704   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 705   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 706   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
 707   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
 708   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
 709   fprintf(fp_cpp, "      }\n");
 710   fprintf(fp_cpp, "    }\n");
 711   fprintf(fp_cpp, "  }\n");
 712   fprintf(fp_cpp, "}\n\n");
 713 
 714   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
 715   fprintf(fp_cpp, "  int const default_latency = 1;\n");
 716   fprintf(fp_cpp, "\n");
 717 #if 0
 718   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 719   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 720   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
 721   fprintf(fp_cpp, "  }\n");
 722   fprintf(fp_cpp, "#endif\n\n");
 723 #endif
 724   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
 725   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
 726   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
 727   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
 728   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
 729   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
 730   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
 731 #if 0
 732   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 733   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 734   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
 735   fprintf(fp_cpp, "  }\n");
 736   fprintf(fp_cpp, "#endif\n\n");
 737 #endif
 738   fprintf(fp_cpp, "\n");
 739   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
 740   fprintf(fp_cpp, "    return (default_latency);\n");
 741   fprintf(fp_cpp, "\n");
 742   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
 743   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
 744 #if 0
 745   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 746   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 747   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
 748   fprintf(fp_cpp, "  }\n");
 749   fprintf(fp_cpp, "#endif\n\n");
 750 #endif
 751   fprintf(fp_cpp, "  return (delta);\n");
 752   fprintf(fp_cpp, "}\n\n");
 753 
 754   if (!_pipeline)
 755     /* Do Nothing */;
 756 
 757   else if (_pipeline->_maxcycleused <=
 758 #ifdef SPARC
 759     64
 760 #else
 761     32
 762 #endif
 763       ) {
 764     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 765     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
 766     fprintf(fp_cpp, "}\n\n");
 767     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 768     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
 769     fprintf(fp_cpp, "}\n\n");
 770   }
 771   else {
 772     uint l;
 773     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 774     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 775     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 776     for (l = 1; l <= masklen; l++)
 777       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
 778     fprintf(fp_cpp, ");\n");
 779     fprintf(fp_cpp, "}\n\n");
 780     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 781     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 782     for (l = 1; l <= masklen; l++)
 783       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
 784     fprintf(fp_cpp, ");\n");
 785     fprintf(fp_cpp, "}\n\n");
 786     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
 787     for (l = 1; l <= masklen; l++)
 788       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
 789     fprintf(fp_cpp, "\n}\n\n");
 790   }
 791 
 792   /* Get the length of all the resource names */
 793   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
 794        (resourcename = _pipeline->_reslist.iter()) != NULL;
 795        resourcenamelen += (int)strlen(resourcename));
 796 
 797   // Create the pipeline class description
 798 
 799   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 800   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 801 
 802   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
 803   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
 804     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
 805     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 806     for (int i2 = masklen-1; i2 >= 0; i2--)
 807       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
 808     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
 809   }
 810   fprintf(fp_cpp, "};\n\n");
 811 
 812   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
 813     _pipeline->_rescount);
 814 
 815   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
 816     fprintf(fp_cpp, "\n");
 817     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
 818     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
 819     int maxWriteStage = -1;
 820     int maxMoreInstrs = 0;
 821     int paramcount = 0;
 822     int i = 0;
 823     const char *paramname;
 824     int resource_count = (_pipeline->_rescount + 3) >> 2;
 825 
 826     // Scan the operands, looking for last output stage and number of inputs
 827     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
 828       const PipeClassOperandForm *pipeopnd =
 829           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 830       if (pipeopnd) {
 831         if (pipeopnd->_iswrite) {
 832            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
 833            int moreinsts = pipeopnd->_more_instrs;
 834           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
 835             maxWriteStage = stagenum;
 836             maxMoreInstrs = moreinsts;
 837           }
 838         }
 839       }
 840 
 841       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
 842         paramcount++;
 843     }
 844 
 845     // Create the list of stages for the operands that are read
 846     // Note that we will build a NameList to reduce the number of copies
 847 
 848     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
 849 
 850     int pipeline_res_stages_index = pipeline_res_stages_initializer(
 851       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
 852 
 853     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
 854       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
 855 
 856     int pipeline_res_mask_index = pipeline_res_mask_initializer(
 857       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
 858 
 859 #if 0
 860     // Process the Resources
 861     const PipeClassResourceForm *piperesource;
 862 
 863     unsigned resources_used = 0;
 864     unsigned exclusive_resources_used = 0;
 865     unsigned resource_groups = 0;
 866     for (pipeclass->_resUsage.reset();
 867          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 868       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 869       if (used_mask)
 870         resource_groups++;
 871       resources_used |= used_mask;
 872       if ((used_mask & (used_mask-1)) == 0)
 873         exclusive_resources_used |= used_mask;
 874     }
 875 
 876     if (resource_groups > 0) {
 877       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
 878         pipeclass->_num, resource_groups);
 879       for (pipeclass->_resUsage.reset(), i = 1;
 880            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
 881            i++ ) {
 882         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 883         if (used_mask) {
 884           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
 885         }
 886       }
 887       fprintf(fp_cpp, "};\n\n");
 888     }
 889 #endif
 890 
 891     // Create the pipeline class description
 892     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
 893       pipeclass->_num);
 894     if (maxWriteStage < 0)
 895       fprintf(fp_cpp, "(uint)stage_undefined");
 896     else if (maxMoreInstrs == 0)
 897       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
 898     else
 899       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
 900     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
 901       paramcount,
 902       pipeclass->hasFixedLatency() ? "true" : "false",
 903       pipeclass->fixedLatency(),
 904       pipeclass->InstructionCount(),
 905       pipeclass->hasBranchDelay() ? "true" : "false",
 906       pipeclass->hasMultipleBundles() ? "true" : "false",
 907       pipeclass->forceSerialization() ? "true" : "false",
 908       pipeclass->mayHaveNoCode() ? "true" : "false" );
 909     if (paramcount > 0) {
 910       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
 911         pipeline_reads_index+1);
 912     }
 913     else
 914       fprintf(fp_cpp, " NULL,");
 915     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
 916       pipeline_res_stages_index+1);
 917     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
 918       pipeline_res_cycles_index+1);
 919     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
 920       pipeline_res_args.name(pipeline_res_mask_index));
 921     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
 922       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
 923         pipeline_res_mask_index+1);
 924     else
 925       fprintf(fp_cpp, "NULL");
 926     fprintf(fp_cpp, "));\n");
 927   }
 928 
 929   // Generate the Node::latency method if _pipeline defined
 930   fprintf(fp_cpp, "\n");
 931   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
 932   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
 933   if (_pipeline) {
 934 #if 0
 935     fprintf(fp_cpp, "#ifndef PRODUCT\n");
 936     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
 937     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
 938     fprintf(fp_cpp, " }\n");
 939     fprintf(fp_cpp, "#endif\n");
 940 #endif
 941     fprintf(fp_cpp, "  uint j;\n");
 942     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
 943     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
 944     fprintf(fp_cpp, "  // verify input is not null\n");
 945     fprintf(fp_cpp, "  Node *pred = in(i);\n");
 946     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
 947       non_operand_latency);
 948     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
 949     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
 950     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
 951     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
 952     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
 953     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
 954     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
 955     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
 956       node_latency);
 957     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
 958     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
 959     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
 960       non_operand_latency);
 961     fprintf(fp_cpp, "  // determine which operand this is in\n");
 962     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
 963     fprintf(fp_cpp, "  int delta = %d;\n\n",
 964       non_operand_latency);
 965     fprintf(fp_cpp, "  uint k;\n");
 966     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
 967     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
 968     fprintf(fp_cpp, "    if (i < j)\n");
 969     fprintf(fp_cpp, "      break;\n");
 970     fprintf(fp_cpp, "  }\n");
 971     fprintf(fp_cpp, "  if (k < n)\n");
 972     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
 973     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
 974   }
 975   else {
 976     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 977     fprintf(fp_cpp, "  return %d;\n",
 978       non_operand_latency);
 979   }
 980   fprintf(fp_cpp, "}\n\n");
 981 
 982   // Output the list of nop nodes
 983   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
 984   const char *nop;
 985   int nopcnt = 0;
 986   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
 987 
 988   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
 989   int i = 0;
 990   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
 991     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
 992   }
 993   fprintf(fp_cpp, "};\n\n");
 994   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 995   fprintf(fp_cpp, "void Bundle::dump() const {\n");
 996   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
 997   fprintf(fp_cpp, "    \"\",\n");
 998   fprintf(fp_cpp, "    \"use nop delay\",\n");
 999   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
1000   fprintf(fp_cpp, "    \"use conditional delay\",\n");
1001   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
1002   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
1003   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
1004   fprintf(fp_cpp, "  };\n\n");
1005 
1006   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
1007   for (i = 0; i < _pipeline->_rescount; i++)
1008     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
1009   fprintf(fp_cpp, "};\n\n");
1010 
1011   // See if the same string is in the table
1012   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
1013   fprintf(fp_cpp, "  if (_flags) {\n");
1014   fprintf(fp_cpp, "    tty->print(\"%%s\", bundle_flags[_flags]);\n");
1015   fprintf(fp_cpp, "    needs_comma = true;\n");
1016   fprintf(fp_cpp, "  };\n");
1017   fprintf(fp_cpp, "  if (instr_count()) {\n");
1018   fprintf(fp_cpp, "    tty->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
1019   fprintf(fp_cpp, "    needs_comma = true;\n");
1020   fprintf(fp_cpp, "  };\n");
1021   fprintf(fp_cpp, "  uint r = resources_used();\n");
1022   fprintf(fp_cpp, "  if (r) {\n");
1023   fprintf(fp_cpp, "    tty->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
1024   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
1025   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
1026   fprintf(fp_cpp, "        tty->print(\" %%s\", resource_names[i]);\n");
1027   fprintf(fp_cpp, "    needs_comma = true;\n");
1028   fprintf(fp_cpp, "  };\n");
1029   fprintf(fp_cpp, "  tty->print(\"\\n\");\n");
1030   fprintf(fp_cpp, "}\n");
1031   fprintf(fp_cpp, "#endif\n");
1032 }
1033 
1034 // ---------------------------------------------------------------------------
1035 //------------------------------Utilities to build Instruction Classes--------
1036 // ---------------------------------------------------------------------------
1037 
1038 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1039   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1040           node, regMask);
1041 }
1042 
1043 // Scan the peepmatch and output a test for each instruction
1044 static void check_peepmatch_instruction_tree(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1045   int         parent        = -1;
1046   int         inst_position = 0;
1047   const char* inst_name     = NULL;
1048   int         input         = 0;
1049   fprintf(fp, "      // Check instruction sub-tree\n");
1050   pmatch->reset();
1051   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1052        inst_name != NULL;
1053        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1054     // If this is not a placeholder
1055     if( ! pmatch->is_placeholder() ) {
1056       // Define temporaries 'inst#', based on parent and parent's input index
1057       if( parent != -1 ) {                // root was initialized
1058         fprintf(fp, "  inst%d = inst%d->in(%d);\n",
1059                 inst_position, parent, input);
1060       }
1061 
1062       // When not the root
1063       // Test we have the correct instruction by comparing the rule
1064       if( parent != -1 ) {
1065         fprintf(fp, "  matches = matches &&  ( inst%d->rule() == %s_rule );",
1066                 inst_position, inst_name);
1067       }
1068     } else {
1069       // Check that user did not try to constrain a placeholder
1070       assert( ! pconstraint->constrains_instruction(inst_position),
1071               "fatal(): Can not constrain a placeholder instruction");
1072     }
1073   }
1074 }
1075 
1076 static void print_block_index(FILE *fp, int inst_position) {
1077   assert( inst_position >= 0, "Instruction number less than zero");
1078   fprintf(fp, "block_index");
1079   if( inst_position != 0 ) {
1080     fprintf(fp, " - %d", inst_position);
1081   }
1082 }
1083 
1084 // Scan the peepmatch and output a test for each instruction
1085 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1086   int         parent        = -1;
1087   int         inst_position = 0;
1088   const char* inst_name     = NULL;
1089   int         input         = 0;
1090   fprintf(fp, "  // Check instruction sub-tree\n");
1091   pmatch->reset();
1092   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1093        inst_name != NULL;
1094        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1095     // If this is not a placeholder
1096     if( ! pmatch->is_placeholder() ) {
1097       // Define temporaries 'inst#', based on parent and parent's input index
1098       if( parent != -1 ) {                // root was initialized
1099         fprintf(fp, "  // Identify previous instruction if inside this block\n");
1100         fprintf(fp, "  if( ");
1101         print_block_index(fp, inst_position);
1102         fprintf(fp, " > 0 ) {\n    Node *n = block->_nodes.at(");
1103         print_block_index(fp, inst_position);
1104         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1105         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1106       }
1107 
1108       // When not the root
1109       // Test we have the correct instruction by comparing the rule.
1110       if( parent != -1 ) {
1111         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1112                 inst_position, inst_position, inst_name);
1113       }
1114     } else {
1115       // Check that user did not try to constrain a placeholder
1116       assert( ! pconstraint->constrains_instruction(inst_position),
1117               "fatal(): Can not constrain a placeholder instruction");
1118     }
1119   }
1120 }
1121 
1122 // Build mapping for register indices, num_edges to input
1123 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1124   int         parent        = -1;
1125   int         inst_position = 0;
1126   const char* inst_name     = NULL;
1127   int         input         = 0;
1128   fprintf(fp, "      // Build map to register info\n");
1129   pmatch->reset();
1130   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1131        inst_name != NULL;
1132        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1133     // If this is not a placeholder
1134     if( ! pmatch->is_placeholder() ) {
1135       // Define temporaries 'inst#', based on self's inst_position
1136       InstructForm *inst = globals[inst_name]->is_instruction();
1137       if( inst != NULL ) {
1138         char inst_prefix[]  = "instXXXX_";
1139         sprintf(inst_prefix, "inst%d_",   inst_position);
1140         char receiver[]     = "instXXXX->";
1141         sprintf(receiver,    "inst%d->", inst_position);
1142         inst->index_temps( fp, globals, inst_prefix, receiver );
1143       }
1144     }
1145   }
1146 }
1147 
1148 // Generate tests for the constraints
1149 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1150   fprintf(fp, "\n");
1151   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1152 
1153   // Build mapping from num_edges to local variables
1154   build_instruction_index_mapping( fp, globals, pmatch );
1155 
1156   // Build constraint tests
1157   if( pconstraint != NULL ) {
1158     fprintf(fp, "      matches = matches &&");
1159     bool   first_constraint = true;
1160     while( pconstraint != NULL ) {
1161       // indentation and connecting '&&'
1162       const char *indentation = "      ";
1163       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1164 
1165       // Only have '==' relation implemented
1166       if( strcmp(pconstraint->_relation,"==") != 0 ) {
1167         assert( false, "Unimplemented()" );
1168       }
1169 
1170       // LEFT
1171       int left_index       = pconstraint->_left_inst;
1172       const char *left_op  = pconstraint->_left_op;
1173       // Access info on the instructions whose operands are compared
1174       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1175       assert( inst_left, "Parser should guaranty this is an instruction");
1176       int left_op_base  = inst_left->oper_input_base(globals);
1177       // Access info on the operands being compared
1178       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1179       if( left_op_index == -1 ) {
1180         left_op_index = inst_left->operand_position(left_op, Component::DEF);
1181         if( left_op_index == -1 ) {
1182           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1183         }
1184       }
1185       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1186       ComponentList components_left = inst_left->_components;
1187       const char *left_comp_type = components_left.at(left_op_index)->_type;
1188       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1189       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1190 
1191 
1192       // RIGHT
1193       int right_op_index = -1;
1194       int right_index      = pconstraint->_right_inst;
1195       const char *right_op = pconstraint->_right_op;
1196       if( right_index != -1 ) { // Match operand
1197         // Access info on the instructions whose operands are compared
1198         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1199         assert( inst_right, "Parser should guaranty this is an instruction");
1200         int right_op_base = inst_right->oper_input_base(globals);
1201         // Access info on the operands being compared
1202         right_op_index = inst_right->operand_position(right_op, Component::USE);
1203         if( right_op_index == -1 ) {
1204           right_op_index = inst_right->operand_position(right_op, Component::DEF);
1205           if( right_op_index == -1 ) {
1206             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1207           }
1208         }
1209         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1210         ComponentList components_right = inst_right->_components;
1211         const char *right_comp_type = components_right.at(right_op_index)->_type;
1212         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1213         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1214         assert( right_interface_type == left_interface_type, "Both must be same interface");
1215 
1216       } else {                  // Else match register
1217         // assert( false, "should be a register" );
1218       }
1219 
1220       //
1221       // Check for equivalence
1222       //
1223       // fprintf(fp, "phase->eqv( ");
1224       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1225       //         left_index,  left_op_base,  left_op_index,  left_op,
1226       //         right_index, right_op_base, right_op_index, right_op );
1227       // fprintf(fp, ")");
1228       //
1229       switch( left_interface_type ) {
1230       case Form::register_interface: {
1231         // Check that they are allocated to the same register
1232         // Need parameter for index position if not result operand
1233         char left_reg_index[] = ",instXXXX_idxXXXX";
1234         if( left_op_index != 0 ) {
1235           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1236           // Must have index into operands
1237           sprintf(left_reg_index,",inst%d_idx%d", left_index, left_op_index);
1238         } else {
1239           strcpy(left_reg_index, "");
1240         }
1241         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1242                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1243         fprintf(fp, " == ");
1244 
1245         if( right_index != -1 ) {
1246           char right_reg_index[18] = ",instXXXX_idxXXXX";
1247           if( right_op_index != 0 ) {
1248             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1249             // Must have index into operands
1250             sprintf(right_reg_index,",inst%d_idx%d", right_index, right_op_index);
1251           } else {
1252             strcpy(right_reg_index, "");
1253           }
1254           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1255                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1256         } else {
1257           fprintf(fp, "%s_enc", right_op );
1258         }
1259         fprintf(fp,")");
1260         break;
1261       }
1262       case Form::constant_interface: {
1263         // Compare the '->constant()' values
1264         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1265                 left_index,  left_op_index,  left_index, left_op );
1266         fprintf(fp, " == ");
1267         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1268                 right_index, right_op, right_index, right_op_index );
1269         break;
1270       }
1271       case Form::memory_interface: {
1272         // Compare 'base', 'index', 'scale', and 'disp'
1273         // base
1274         fprintf(fp, "( \n");
1275         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1276           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1277         fprintf(fp, " == ");
1278         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1279                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1280         // index
1281         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1282                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1283         fprintf(fp, " == ");
1284         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1285                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1286         // scale
1287         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1288                 left_index,  left_op_index,  left_index, left_op );
1289         fprintf(fp, " == ");
1290         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1291                 right_index, right_op, right_index, right_op_index );
1292         // disp
1293         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1294                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1295         fprintf(fp, " == ");
1296         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1297                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1298         fprintf(fp, ") \n");
1299         break;
1300       }
1301       case Form::conditional_interface: {
1302         // Compare the condition code being tested
1303         assert( false, "Unimplemented()" );
1304         break;
1305       }
1306       default: {
1307         assert( false, "ShouldNotReachHere()" );
1308         break;
1309       }
1310       }
1311 
1312       // Advance to next constraint
1313       pconstraint = pconstraint->next();
1314       first_constraint = false;
1315     }
1316 
1317     fprintf(fp, ";\n");
1318   }
1319 }
1320 
1321 // // EXPERIMENTAL -- TEMPORARY code
1322 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1323 //   int op_index = instr->operand_position(op_name, Component::USE);
1324 //   if( op_index == -1 ) {
1325 //     op_index = instr->operand_position(op_name, Component::DEF);
1326 //     if( op_index == -1 ) {
1327 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
1328 //     }
1329 //   }
1330 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1331 //
1332 //   ComponentList components_right = instr->_components;
1333 //   char *right_comp_type = components_right.at(op_index)->_type;
1334 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1335 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1336 //
1337 //   return;
1338 // }
1339 
1340 // Construct the new sub-tree
1341 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1342   fprintf(fp, "      // IF instructions and constraints matched\n");
1343   fprintf(fp, "      if( matches ) {\n");
1344   fprintf(fp, "        // generate the new sub-tree\n");
1345   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1346   if( preplace != NULL ) {
1347     // Get the root of the new sub-tree
1348     const char *root_inst = NULL;
1349     preplace->next_instruction(root_inst);
1350     InstructForm *root_form = globals[root_inst]->is_instruction();
1351     assert( root_form != NULL, "Replacement instruction was not previously defined");
1352     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
1353 
1354     int         inst_num;
1355     const char *op_name;
1356     int         opnds_index = 0;            // define result operand
1357     // Then install the use-operands for the new sub-tree
1358     // preplace->reset();             // reset breaks iteration
1359     for( preplace->next_operand( inst_num, op_name );
1360          op_name != NULL;
1361          preplace->next_operand( inst_num, op_name ) ) {
1362       InstructForm *inst_form;
1363       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1364       assert( inst_form, "Parser should guaranty this is an instruction");
1365       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1366       if( inst_op_num == NameList::Not_in_list )
1367         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1368       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1369       // find the name of the OperandForm from the local name
1370       const Form *form   = inst_form->_localNames[op_name];
1371       OperandForm  *op_form = form->is_operand();
1372       if( opnds_index == 0 ) {
1373         // Initial setup of new instruction
1374         fprintf(fp, "        // ----- Initial setup -----\n");
1375         //
1376         // Add control edge for this node
1377         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1378         // Add unmatched edges from root of match tree
1379         int op_base = root_form->oper_input_base(globals);
1380         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1381           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1382                                           inst_num, unmatched_edge);
1383         }
1384         // If new instruction captures bottom type
1385         if( root_form->captures_bottom_type(globals) ) {
1386           // Get bottom type from instruction whose result we are replacing
1387           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1388         }
1389         // Define result register and result operand
1390         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1391         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1392         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1393         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
1394         fprintf(fp, "        // ----- Done with initial setup -----\n");
1395       } else {
1396         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1397           // Do not have ideal edges for constants after matching
1398           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1399                   inst_op_num, inst_num, inst_op_num,
1400                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1401           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1402                   inst_num, inst_op_num );
1403         } else {
1404           fprintf(fp, "        // no ideal edge for constants after matching\n");
1405         }
1406         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
1407                 opnds_index, inst_num, inst_op_num );
1408       }
1409       ++opnds_index;
1410     }
1411   }else {
1412     // Replacing subtree with empty-tree
1413     assert( false, "ShouldNotReachHere();");
1414   }
1415 
1416   // Return the new sub-tree
1417   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1418   fprintf(fp, "        return root;  // return new root;\n");
1419   fprintf(fp, "      }\n");
1420 }
1421 
1422 
1423 // Define the Peephole method for an instruction node
1424 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1425   // Generate Peephole function header
1426   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
1427   fprintf(fp, "  bool  matches = true;\n");
1428 
1429   // Identify the maximum instruction position,
1430   // generate temporaries that hold current instruction
1431   //
1432   //   MachNode  *inst0 = NULL;
1433   //   ...
1434   //   MachNode  *instMAX = NULL;
1435   //
1436   int max_position = 0;
1437   Peephole *peep;
1438   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1439     PeepMatch *pmatch = peep->match();
1440     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1441     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1442   }
1443   for( int i = 0; i <= max_position; ++i ) {
1444     if( i == 0 ) {
1445       fprintf(fp, "  MachNode *inst0 = this;\n");
1446     } else {
1447       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1448     }
1449   }
1450 
1451   // For each peephole rule in architecture description
1452   //   Construct a test for the desired instruction sub-tree
1453   //   then check the constraints
1454   //   If these match, Generate the new subtree
1455   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1456     int         peephole_number = peep->peephole_number();
1457     PeepMatch      *pmatch      = peep->match();
1458     PeepConstraint *pconstraint = peep->constraints();
1459     PeepReplace    *preplace    = peep->replacement();
1460 
1461     // Root of this peephole is the current MachNode
1462     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1463             "root of PeepMatch does not match instruction");
1464 
1465     // Make each peephole rule individually selectable
1466     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1467     fprintf(fp, "    matches = true;\n");
1468     // Scan the peepmatch and output a test for each instruction
1469     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1470 
1471     // Check constraints and build replacement inside scope
1472     fprintf(fp, "    // If instruction subtree matches\n");
1473     fprintf(fp, "    if( matches ) {\n");
1474 
1475     // Generate tests for the constraints
1476     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1477 
1478     // Construct the new sub-tree
1479     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1480 
1481     // End of scope for this peephole's constraints
1482     fprintf(fp, "    }\n");
1483     // Closing brace '}' to make each peephole rule individually selectable
1484     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1485     fprintf(fp, "\n");
1486   }
1487 
1488   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1489   fprintf(fp, "}\n");
1490   fprintf(fp, "\n");
1491 }
1492 
1493 // Define the Expand method for an instruction node
1494 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1495   unsigned      cnt  = 0;          // Count nodes we have expand into
1496   unsigned      i;
1497 
1498   // Generate Expand function header
1499   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1500   fprintf(fp, "  Compile* C = Compile::current();\n");
1501   // Generate expand code
1502   if( node->expands() ) {
1503     const char   *opid;
1504     int           new_pos, exp_pos;
1505     const char   *new_id   = NULL;
1506     const Form   *frm      = NULL;
1507     InstructForm *new_inst = NULL;
1508     OperandForm  *new_oper = NULL;
1509     unsigned      numo     = node->num_opnds() +
1510                                 node->_exprule->_newopers.count();
1511 
1512     // If necessary, generate any operands created in expand rule
1513     if (node->_exprule->_newopers.count()) {
1514       for(node->_exprule->_newopers.reset();
1515           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1516         frm = node->_localNames[new_id];
1517         assert(frm, "Invalid entry in new operands list of expand rule");
1518         new_oper = frm->is_operand();
1519         char *tmp = (char *)node->_exprule->_newopconst[new_id];
1520         if (tmp == NULL) {
1521           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
1522                   cnt, new_oper->_ident);
1523         }
1524         else {
1525           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
1526                   cnt, new_oper->_ident, tmp);
1527         }
1528       }
1529     }
1530     cnt = 0;
1531     // Generate the temps to use for DAG building
1532     for(i = 0; i < numo; i++) {
1533       if (i < node->num_opnds()) {
1534         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1535       }
1536       else {
1537         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1538       }
1539     }
1540     // Build mapping from num_edges to local variables
1541     fprintf(fp,"  unsigned num0 = 0;\n");
1542     for( i = 1; i < node->num_opnds(); i++ ) {
1543       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1544     }
1545 
1546     // Build a mapping from operand index to input edges
1547     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1548 
1549     // The order in which the memory input is added to a node is very
1550     // strange.  Store nodes get a memory input before Expand is
1551     // called and other nodes get it afterwards or before depending on
1552     // match order so oper_input_base is wrong during expansion.  This
1553     // code adjusts it so that expansion will work correctly.
1554     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1555     if (has_memory_edge) {
1556       fprintf(fp,"  if (mem == (Node*)1) {\n");
1557       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1558       fprintf(fp,"  }\n");
1559     }
1560 
1561     for( i = 0; i < node->num_opnds(); i++ ) {
1562       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1563               i+1,i,i);
1564     }
1565 
1566     // Declare variable to hold root of expansion
1567     fprintf(fp,"  MachNode *result = NULL;\n");
1568 
1569     // Iterate over the instructions 'node' expands into
1570     ExpandRule  *expand       = node->_exprule;
1571     NameAndList *expand_instr = NULL;
1572     for(expand->reset_instructions();
1573         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1574       new_id = expand_instr->name();
1575 
1576       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1577       if (expand_instruction->has_temps()) {
1578         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
1579                              node->_ident, new_id);
1580       }
1581 
1582       // Build the node for the instruction
1583       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
1584       // Add control edge for this node
1585       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1586       // Build the operand for the value this node defines.
1587       Form *form = (Form*)_globalNames[new_id];
1588       assert( form, "'new_id' must be a defined form name");
1589       // Grab the InstructForm for the new instruction
1590       new_inst = form->is_instruction();
1591       assert( new_inst, "'new_id' must be an instruction name");
1592       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
1593         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
1594         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
1595       }
1596 
1597       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
1598         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
1599       }
1600 
1601       const char *resultOper = new_inst->reduce_result();
1602       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
1603               cnt, machOperEnum(resultOper));
1604 
1605       // get the formal operand NameList
1606       NameList *formal_lst = &new_inst->_parameters;
1607       formal_lst->reset();
1608 
1609       // Handle any memory operand
1610       int memory_operand = new_inst->memory_operand(_globalNames);
1611       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1612         int node_mem_op = node->memory_operand(_globalNames);
1613         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1614                 "expand rule member needs memory but top-level inst doesn't have any" );
1615         if (has_memory_edge) {
1616           // Copy memory edge
1617           fprintf(fp,"  if (mem != (Node*)1) {\n");
1618           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1619           fprintf(fp,"  }\n");
1620         }
1621       }
1622 
1623       // Iterate over the new instruction's operands
1624       int prev_pos = -1;
1625       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1626         // Use 'parameter' at current position in list of new instruction's formals
1627         // instead of 'opid' when looking up info internal to new_inst
1628         const char *parameter = formal_lst->iter();
1629         // Check for an operand which is created in the expand rule
1630         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1631           new_pos = new_inst->operand_position(parameter,Component::USE);
1632           exp_pos += node->num_opnds();
1633           // If there is no use of the created operand, just skip it
1634           if (new_pos != -1) {
1635             //Copy the operand from the original made above
1636             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
1637                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
1638             // Check for who defines this operand & add edge if needed
1639             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1640             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1641           }
1642         }
1643         else {
1644           // Use operand name to get an index into instruction component list
1645           // ins = (InstructForm *) _globalNames[new_id];
1646           exp_pos = node->operand_position_format(opid);
1647           assert(exp_pos != -1, "Bad expand rule");
1648           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1649             // For the add_req calls below to work correctly they need
1650             // to added in the same order that a match would add them.
1651             // This means that they would need to be in the order of
1652             // the components list instead of the formal parameters.
1653             // This is a sort of hidden invariant that previously
1654             // wasn't checked and could lead to incorrectly
1655             // constructed nodes.
1656             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1657                        node->_ident, new_inst->_ident);
1658           }
1659           prev_pos = exp_pos;
1660 
1661           new_pos = new_inst->operand_position(parameter,Component::USE);
1662           if (new_pos != -1) {
1663             // Copy the operand from the ExpandNode to the new node
1664             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1665                     cnt, new_pos, exp_pos, opid);
1666             // For each operand add appropriate input edges by looking at tmp's
1667             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1668             // Grab corresponding edges from ExpandNode and insert them here
1669             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1670             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1671             fprintf(fp,"    }\n");
1672             fprintf(fp,"  }\n");
1673             // This value is generated by one of the new instructions
1674             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1675           }
1676         }
1677 
1678         // Update the DAG tmp's for values defined by this instruction
1679         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1680         Effect *eform = (Effect *)new_inst->_effects[parameter];
1681         // If this operand is a definition in either an effects rule
1682         // or a match rule
1683         if((eform) && (is_def(eform->_use_def))) {
1684           // Update the temp associated with this operand
1685           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1686         }
1687         else if( new_def_pos != -1 ) {
1688           // Instruction defines a value but user did not declare it
1689           // in the 'effect' clause
1690           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1691         }
1692       } // done iterating over a new instruction's operands
1693 
1694       // Invoke Expand() for the newly created instruction.
1695       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
1696       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1697     } // done iterating over new instructions
1698     fprintf(fp,"\n");
1699   } // done generating expand rule
1700 
1701   // Generate projections for instruction's additional DEFs and KILLs
1702   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1703     // Get string representing the MachNode that projections point at
1704     const char *machNode = "this";
1705     // Generate the projections
1706     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1707 
1708     // Examine each component to see if it is a DEF or KILL
1709     node->_components.reset();
1710     // Skip the first component, if already handled as (SET dst (...))
1711     Component *comp = NULL;
1712     // For kills, the choice of projection numbers is arbitrary
1713     int proj_no = 1;
1714     bool declared_def  = false;
1715     bool declared_kill = false;
1716 
1717     while( (comp = node->_components.iter()) != NULL ) {
1718       // Lookup register class associated with operand type
1719       Form        *form = (Form*)_globalNames[comp->_type];
1720       assert( form, "component type must be a defined form");
1721       OperandForm *op   = form->is_operand();
1722 
1723       if (comp->is(Component::TEMP)) {
1724         fprintf(fp, "  // TEMP %s\n", comp->_name);
1725         if (!declared_def) {
1726           // Define the variable "def" to hold new MachProjNodes
1727           fprintf(fp, "  MachTempNode *def;\n");
1728           declared_def = true;
1729         }
1730         if (op && op->_interface && op->_interface->is_RegInterface()) {
1731           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
1732                   machOperEnum(op->_ident));
1733           fprintf(fp,"  add_req(def);\n");
1734           // The operand for TEMP is already constructed during
1735           // this mach node construction, see buildMachNode().
1736           //
1737           // int idx  = node->operand_position_format(comp->_name);
1738           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
1739           //         idx, machOperEnum(op->_ident));
1740         } else {
1741           assert(false, "can't have temps which aren't registers");
1742         }
1743       } else if (comp->isa(Component::KILL)) {
1744         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1745 
1746         if (!declared_kill) {
1747           // Define the variable "kill" to hold new MachProjNodes
1748           fprintf(fp, "  MachProjNode *kill;\n");
1749           declared_kill = true;
1750         }
1751 
1752         assert( op, "Support additional KILLS for base operands");
1753         const char *regmask    = reg_mask(*op);
1754         const char *ideal_type = op->ideal_type(_globalNames, _register);
1755 
1756         if (!op->is_bound_register()) {
1757           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1758                      node->_ident, comp->_type, comp->_name);
1759         }
1760 
1761         fprintf(fp,"  kill = ");
1762         fprintf(fp,"new (C, 1) MachProjNode( %s, %d, (%s), Op_%s );\n",
1763                 machNode, proj_no++, regmask, ideal_type);
1764         fprintf(fp,"  proj_list.push(kill);\n");
1765       }
1766     }
1767   }
1768 
1769   if( !node->expands() && node->_matrule != NULL ) {
1770     // Remove duplicated operands and inputs which use the same name.
1771     // Seach through match operands for the same name usage.
1772     uint cur_num_opnds = node->num_opnds();
1773     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
1774       Component *comp = NULL;
1775       // Build mapping from num_edges to local variables
1776       fprintf(fp,"  unsigned num0 = 0;\n");
1777       for( i = 1; i < cur_num_opnds; i++ ) {
1778         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1779       }
1780       // Build a mapping from operand index to input edges
1781       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1782       for( i = 0; i < cur_num_opnds; i++ ) {
1783         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1784                 i+1,i,i);
1785       }
1786 
1787       uint new_num_opnds = 1;
1788       node->_components.reset();
1789       // Skip first unique operands.
1790       for( i = 1; i < cur_num_opnds; i++ ) {
1791         comp = node->_components.iter();
1792         if( (int)i != node->unique_opnds_idx(i) ) {
1793           break;
1794         }
1795         new_num_opnds++;
1796       }
1797       // Replace not unique operands with next unique operands.
1798       for( ; i < cur_num_opnds; i++ ) {
1799         comp = node->_components.iter();
1800         int j = node->unique_opnds_idx(i);
1801         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1802         if( j != node->unique_opnds_idx(j) ) {
1803           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1804                   new_num_opnds, i, comp->_name);
1805           // delete not unique edges here
1806           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
1807           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1808           fprintf(fp,"  }\n");
1809           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
1810           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1811           new_num_opnds++;
1812         }
1813       }
1814       // delete the rest of edges
1815       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1816       fprintf(fp,"    del_req(i);\n");
1817       fprintf(fp,"  }\n");
1818       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
1819       assert(new_num_opnds == node->num_unique_opnds(), "what?");
1820     }
1821   }
1822 
1823   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1824   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1825   if (node->is_mach_constant()) {
1826     fprintf(fp,"  add_req(C->mach_constant_base_node());\n");
1827   }
1828 
1829   fprintf(fp,"\n");
1830   if( node->expands() ) {
1831     fprintf(fp,"  return result;\n");
1832   } else {
1833     fprintf(fp,"  return this;\n");
1834   }
1835   fprintf(fp,"}\n");
1836   fprintf(fp,"\n");
1837 }
1838 
1839 
1840 //------------------------------Emit Routines----------------------------------
1841 // Special classes and routines for defining node emit routines which output
1842 // target specific instruction object encodings.
1843 // Define the ___Node::emit() routine
1844 //
1845 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1846 // (2)   // ...  encoding defined by user
1847 // (3)
1848 // (4) }
1849 //
1850 
1851 class DefineEmitState {
1852 private:
1853   enum reloc_format { RELOC_NONE        = -1,
1854                       RELOC_IMMEDIATE   =  0,
1855                       RELOC_DISP        =  1,
1856                       RELOC_CALL_DISP   =  2 };
1857   enum literal_status{ LITERAL_NOT_SEEN  = 0,
1858                        LITERAL_SEEN      = 1,
1859                        LITERAL_ACCESSED  = 2,
1860                        LITERAL_OUTPUT    = 3 };
1861   // Temporaries that describe current operand
1862   bool          _cleared;
1863   OpClassForm  *_opclass;
1864   OperandForm  *_operand;
1865   int           _operand_idx;
1866   const char   *_local_name;
1867   const char   *_operand_name;
1868   bool          _doing_disp;
1869   bool          _doing_constant;
1870   Form::DataType _constant_type;
1871   DefineEmitState::literal_status _constant_status;
1872   DefineEmitState::literal_status _reg_status;
1873   bool          _doing_emit8;
1874   bool          _doing_emit_d32;
1875   bool          _doing_emit_d16;
1876   bool          _doing_emit_hi;
1877   bool          _doing_emit_lo;
1878   bool          _may_reloc;
1879   bool          _must_reloc;
1880   reloc_format  _reloc_form;
1881   const char *  _reloc_type;
1882   bool          _processing_noninput;
1883 
1884   NameList      _strings_to_emit;
1885 
1886   // Stable state, set by constructor
1887   ArchDesc     &_AD;
1888   FILE         *_fp;
1889   EncClass     &_encoding;
1890   InsEncode    &_ins_encode;
1891   InstructForm &_inst;
1892 
1893 public:
1894   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1895                   InsEncode &ins_encode, InstructForm &inst)
1896     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1897       clear();
1898   }
1899 
1900   void clear() {
1901     _cleared       = true;
1902     _opclass       = NULL;
1903     _operand       = NULL;
1904     _operand_idx   = 0;
1905     _local_name    = "";
1906     _operand_name  = "";
1907     _doing_disp    = false;
1908     _doing_constant= false;
1909     _constant_type = Form::none;
1910     _constant_status = LITERAL_NOT_SEEN;
1911     _reg_status      = LITERAL_NOT_SEEN;
1912     _doing_emit8   = false;
1913     _doing_emit_d32= false;
1914     _doing_emit_d16= false;
1915     _doing_emit_hi = false;
1916     _doing_emit_lo = false;
1917     _may_reloc     = false;
1918     _must_reloc    = false;
1919     _reloc_form    = RELOC_NONE;
1920     _reloc_type    = AdlcVMDeps::none_reloc_type();
1921     _strings_to_emit.clear();
1922   }
1923 
1924   // Track necessary state when identifying a replacement variable
1925   void update_state(const char *rep_var) {
1926     // A replacement variable or one of its subfields
1927     // Obtain replacement variable from list
1928     if ( (*rep_var) != '$' ) {
1929       // A replacement variable, '$' prefix
1930       // check_rep_var( rep_var );
1931       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1932         // No state needed.
1933         assert( _opclass == NULL,
1934                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1935       }
1936       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1937                (strcmp(rep_var, "constantoffset")    == 0) ||
1938                (strcmp(rep_var, "constantaddress")   == 0)) {
1939         if (!_inst.is_mach_constant()) {
1940           _AD.syntax_err(_encoding._linenum,
1941                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode).\n",
1942                          rep_var, _encoding._name);
1943         }
1944       }
1945       else {
1946         // Lookup its position in parameter list
1947         int   param_no  = _encoding.rep_var_index(rep_var);
1948         if ( param_no == -1 ) {
1949           _AD.syntax_err( _encoding._linenum,
1950                           "Replacement variable %s not found in enc_class %s.\n",
1951                           rep_var, _encoding._name);
1952         }
1953 
1954         // Lookup the corresponding ins_encode parameter
1955         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1956         if (inst_rep_var == NULL) {
1957           _AD.syntax_err( _ins_encode._linenum,
1958                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
1959                           rep_var, _encoding._name, _inst._ident);
1960         }
1961 
1962         // Check if instruction's actual parameter is a local name in the instruction
1963         const Form  *local     = _inst._localNames[inst_rep_var];
1964         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1965         // Note: assert removed to allow constant and symbolic parameters
1966         // assert( opc, "replacement variable was not found in local names");
1967         // Lookup the index position iff the replacement variable is a localName
1968         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1969 
1970         if ( idx != -1 ) {
1971           // This is a local in the instruction
1972           // Update local state info.
1973           _opclass        = opc;
1974           _operand_idx    = idx;
1975           _local_name     = rep_var;
1976           _operand_name   = inst_rep_var;
1977 
1978           // !!!!!
1979           // Do not support consecutive operands.
1980           assert( _operand == NULL, "Unimplemented()");
1981           _operand = opc->is_operand();
1982         }
1983         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1984           // Instruction provided a constant expression
1985           // Check later that encoding specifies $$$constant to resolve as constant
1986           _constant_status   = LITERAL_SEEN;
1987         }
1988         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1989           // Instruction provided an opcode: "primary", "secondary", "tertiary"
1990           // Check later that encoding specifies $$$constant to resolve as constant
1991           _constant_status   = LITERAL_SEEN;
1992         }
1993         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1994           // Instruction provided a literal register name for this parameter
1995           // Check that encoding specifies $$$reg to resolve.as register.
1996           _reg_status        = LITERAL_SEEN;
1997         }
1998         else {
1999           // Check for unimplemented functionality before hard failure
2000           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2001           assert( false, "ShouldNotReachHere()");
2002         }
2003       } // done checking which operand this is.
2004     } else {
2005       //
2006       // A subfield variable, '$$' prefix
2007       // Check for fields that may require relocation information.
2008       // Then check that literal register parameters are accessed with 'reg' or 'constant'
2009       //
2010       if ( strcmp(rep_var,"$disp") == 0 ) {
2011         _doing_disp = true;
2012         assert( _opclass, "Must use operand or operand class before '$disp'");
2013         if( _operand == NULL ) {
2014           // Only have an operand class, generate run-time check for relocation
2015           _may_reloc    = true;
2016           _reloc_form   = RELOC_DISP;
2017           _reloc_type   = AdlcVMDeps::oop_reloc_type();
2018         } else {
2019           // Do precise check on operand: is it a ConP or not
2020           //
2021           // Check interface for value of displacement
2022           assert( ( _operand->_interface != NULL ),
2023                   "$disp can only follow memory interface operand");
2024           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
2025           assert( mem_interface != NULL,
2026                   "$disp can only follow memory interface operand");
2027           const char *disp = mem_interface->_disp;
2028 
2029           if( disp != NULL && (*disp == '$') ) {
2030             // MemInterface::disp contains a replacement variable,
2031             // Check if this matches a ConP
2032             //
2033             // Lookup replacement variable, in operand's component list
2034             const char *rep_var_name = disp + 1; // Skip '$'
2035             const Component *comp = _operand->_components.search(rep_var_name);
2036             assert( comp != NULL,"Replacement variable not found in components");
2037             const char      *type = comp->_type;
2038             // Lookup operand form for replacement variable's type
2039             const Form *form = _AD.globalNames()[type];
2040             assert( form != NULL, "Replacement variable's type not found");
2041             OperandForm *op = form->is_operand();
2042             assert( op, "Attempting to emit a non-register or non-constant");
2043             // Check if this is a constant
2044             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2045               // Check which constant this name maps to: _c0, _c1, ..., _cn
2046               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2047               // assert( idx != -1, "Constant component not found in operand");
2048               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2049               if ( dtype == Form::idealP ) {
2050                 _may_reloc    = true;
2051                 // No longer true that idealP is always an oop
2052                 _reloc_form   = RELOC_DISP;
2053                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
2054               }
2055             }
2056 
2057             else if( _operand->is_user_name_for_sReg() != Form::none ) {
2058               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2059               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2060               _may_reloc   = false;
2061             } else {
2062               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2063             }
2064           }
2065         } // finished with precise check of operand for relocation.
2066       } // finished with subfield variable
2067       else if ( strcmp(rep_var,"$constant") == 0 ) {
2068         _doing_constant = true;
2069         if ( _constant_status == LITERAL_NOT_SEEN ) {
2070           // Check operand for type of constant
2071           assert( _operand, "Must use operand before '$$constant'");
2072           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2073           _constant_type = dtype;
2074           if ( dtype == Form::idealP ) {
2075             _may_reloc    = true;
2076             // No longer true that idealP is always an oop
2077             // // _must_reloc   = true;
2078             _reloc_form   = RELOC_IMMEDIATE;
2079             _reloc_type   = AdlcVMDeps::oop_reloc_type();
2080           } else {
2081             // No relocation information needed
2082           }
2083         } else {
2084           // User-provided literals may not require relocation information !!!!!
2085           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2086         }
2087       }
2088       else if ( strcmp(rep_var,"$label") == 0 ) {
2089         // Calls containing labels require relocation
2090         if ( _inst.is_ideal_call() )  {
2091           _may_reloc    = true;
2092           // !!!!! !!!!!
2093           _reloc_type   = AdlcVMDeps::none_reloc_type();
2094         }
2095       }
2096 
2097       // literal register parameter must be accessed as a 'reg' field.
2098       if ( _reg_status != LITERAL_NOT_SEEN ) {
2099         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2100         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2101           _reg_status  = LITERAL_ACCESSED;
2102         } else {
2103           assert( false, "invalid access to literal register parameter");
2104         }
2105       }
2106       // literal constant parameters must be accessed as a 'constant' field
2107       if ( _constant_status != LITERAL_NOT_SEEN ) {
2108         assert( _constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2109         if( strcmp(rep_var,"$constant") == 0 ) {
2110           _constant_status  = LITERAL_ACCESSED;
2111         } else {
2112           assert( false, "invalid access to literal constant parameter");
2113         }
2114       }
2115     } // end replacement and/or subfield
2116 
2117   }
2118 
2119   void add_rep_var(const char *rep_var) {
2120     // Handle subfield and replacement variables.
2121     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2122       // Check for emit prefix, '$$emit32'
2123       assert( _cleared, "Can not nest $$$emit32");
2124       if ( strcmp(rep_var,"$$emit32") == 0 ) {
2125         _doing_emit_d32 = true;
2126       }
2127       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2128         _doing_emit_d16 = true;
2129       }
2130       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2131         _doing_emit_hi  = true;
2132       }
2133       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2134         _doing_emit_lo  = true;
2135       }
2136       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2137         _doing_emit8    = true;
2138       }
2139       else {
2140         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2141         assert( false, "fatal();");
2142       }
2143     }
2144     else {
2145       // Update state for replacement variables
2146       update_state( rep_var );
2147       _strings_to_emit.addName(rep_var);
2148     }
2149     _cleared  = false;
2150   }
2151 
2152   void emit_replacement() {
2153     // A replacement variable or one of its subfields
2154     // Obtain replacement variable from list
2155     // const char *ec_rep_var = encoding->_rep_vars.iter();
2156     const char *rep_var;
2157     _strings_to_emit.reset();
2158     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2159 
2160       if ( (*rep_var) == '$' ) {
2161         // A subfield variable, '$$' prefix
2162         emit_field( rep_var );
2163       } else {
2164         if (_strings_to_emit.peek() != NULL &&
2165             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2166           fprintf(_fp, "Address::make_raw(");
2167 
2168           emit_rep_var( rep_var );
2169           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2170 
2171           _reg_status = LITERAL_ACCESSED;
2172           emit_rep_var( rep_var );
2173           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2174 
2175           _reg_status = LITERAL_ACCESSED;
2176           emit_rep_var( rep_var );
2177           fprintf(_fp,"->scale(), ");
2178 
2179           _reg_status = LITERAL_ACCESSED;
2180           emit_rep_var( rep_var );
2181           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2182           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2183             fprintf(_fp,"->disp(ra_,this,0), ");
2184           } else {
2185             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2186           }
2187 
2188           _reg_status = LITERAL_ACCESSED;
2189           emit_rep_var( rep_var );
2190           fprintf(_fp,"->disp_is_oop())");
2191 
2192           // skip trailing $Address
2193           _strings_to_emit.iter();
2194         } else {
2195           // A replacement variable, '$' prefix
2196           const char* next = _strings_to_emit.peek();
2197           const char* next2 = _strings_to_emit.peek(2);
2198           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2199               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2200             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2201             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2202             fprintf(_fp, "as_Register(");
2203             // emit the operand reference
2204             emit_rep_var( rep_var );
2205             rep_var = _strings_to_emit.iter();
2206             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2207             // handle base or index
2208             emit_field(rep_var);
2209             rep_var = _strings_to_emit.iter();
2210             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2211             // close up the parens
2212             fprintf(_fp, ")");
2213           } else {
2214             emit_rep_var( rep_var );
2215           }
2216         }
2217       } // end replacement and/or subfield
2218     }
2219   }
2220 
2221   void emit_reloc_type(const char* type) {
2222     fprintf(_fp, "%s", type)
2223       ;
2224   }
2225 
2226 
2227   void gen_emit_x_reloc(const char *d32_lo_hi ) {
2228     fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_lo_hi );
2229     emit_replacement();             fprintf(_fp,", ");
2230     emit_reloc_type( _reloc_type ); fprintf(_fp,", ");
2231     fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2232   }
2233 
2234 
2235   void emit() {
2236     //
2237     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2238     //
2239     // Emit the function name when generating an emit function
2240     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2241       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2242       // In general, relocatable isn't known at compiler compile time.
2243       // Check results of prior scan
2244       if ( ! _may_reloc ) {
2245         // Definitely don't need relocation information
2246         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2247         emit_replacement(); fprintf(_fp, ")");
2248       }
2249       else if ( _must_reloc ) {
2250         // Must emit relocation information
2251         gen_emit_x_reloc( d32_hi_lo );
2252       }
2253       else {
2254         // Emit RUNTIME CHECK to see if value needs relocation info
2255         // If emitting a relocatable address, use 'emit_d32_reloc'
2256         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2257         assert( (_doing_disp || _doing_constant)
2258                 && !(_doing_disp && _doing_constant),
2259                 "Must be emitting either a displacement or a constant");
2260         fprintf(_fp,"\n");
2261         fprintf(_fp,"if ( opnd_array(%d)->%s_is_oop() ) {\n",
2262                 _operand_idx, disp_constant);
2263         fprintf(_fp,"  ");
2264         gen_emit_x_reloc( d32_hi_lo ); fprintf(_fp,"\n");
2265         fprintf(_fp,"} else {\n");
2266         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2267         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2268       }
2269     }
2270     else if ( _doing_emit_d16 ) {
2271       // Relocation of 16-bit values is not supported
2272       fprintf(_fp,"emit_d16(cbuf, ");
2273       emit_replacement(); fprintf(_fp, ")");
2274       // No relocation done for 16-bit values
2275     }
2276     else if ( _doing_emit8 ) {
2277       // Relocation of 8-bit values is not supported
2278       fprintf(_fp,"emit_d8(cbuf, ");
2279       emit_replacement(); fprintf(_fp, ")");
2280       // No relocation done for 8-bit values
2281     }
2282     else {
2283       // Not an emit# command, just output the replacement string.
2284       emit_replacement();
2285     }
2286 
2287     // Get ready for next state collection.
2288     clear();
2289   }
2290 
2291 private:
2292 
2293   // recognizes names which represent MacroAssembler register types
2294   // and return the conversion function to build them from OptoReg
2295   const char* reg_conversion(const char* rep_var) {
2296     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2297     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2298 #if defined(IA32) || defined(AMD64)
2299     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2300 #endif
2301     return NULL;
2302   }
2303 
2304   void emit_field(const char *rep_var) {
2305     const char* reg_convert = reg_conversion(rep_var);
2306 
2307     // A subfield variable, '$$subfield'
2308     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2309       // $reg form or the $Register MacroAssembler type conversions
2310       assert( _operand_idx != -1,
2311               "Must use this subfield after operand");
2312       if( _reg_status == LITERAL_NOT_SEEN ) {
2313         if (_processing_noninput) {
2314           const Form  *local     = _inst._localNames[_operand_name];
2315           OperandForm *oper      = local->is_operand();
2316           const RegDef* first = oper->get_RegClass()->find_first_elem();
2317           if (reg_convert != NULL) {
2318             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2319           } else {
2320             fprintf(_fp, "%s_enc", first->_regname);
2321           }
2322         } else {
2323           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2324           // Add parameter for index position, if not result operand
2325           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2326           fprintf(_fp,")");
2327         }
2328       } else {
2329         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2330         // Register literal has already been sent to output file, nothing more needed
2331       }
2332     }
2333     else if ( strcmp(rep_var,"$base") == 0 ) {
2334       assert( _operand_idx != -1,
2335               "Must use this subfield after operand");
2336       assert( ! _may_reloc, "UnImplemented()");
2337       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2338     }
2339     else if ( strcmp(rep_var,"$index") == 0 ) {
2340       assert( _operand_idx != -1,
2341               "Must use this subfield after operand");
2342       assert( ! _may_reloc, "UnImplemented()");
2343       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2344     }
2345     else if ( strcmp(rep_var,"$scale") == 0 ) {
2346       assert( ! _may_reloc, "UnImplemented()");
2347       fprintf(_fp,"->scale()");
2348     }
2349     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2350       assert( ! _may_reloc, "UnImplemented()");
2351       fprintf(_fp,"->ccode()");
2352     }
2353     else if ( strcmp(rep_var,"$constant") == 0 ) {
2354       if( _constant_status == LITERAL_NOT_SEEN ) {
2355         if ( _constant_type == Form::idealD ) {
2356           fprintf(_fp,"->constantD()");
2357         } else if ( _constant_type == Form::idealF ) {
2358           fprintf(_fp,"->constantF()");
2359         } else if ( _constant_type == Form::idealL ) {
2360           fprintf(_fp,"->constantL()");
2361         } else {
2362           fprintf(_fp,"->constant()");
2363         }
2364       } else {
2365         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2366         // Cosntant literal has already been sent to output file, nothing more needed
2367       }
2368     }
2369     else if ( strcmp(rep_var,"$disp") == 0 ) {
2370       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2371       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2372         fprintf(_fp,"->disp(ra_,this,0)");
2373       } else {
2374         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2375       }
2376     }
2377     else if ( strcmp(rep_var,"$label") == 0 ) {
2378       fprintf(_fp,"->label()");
2379     }
2380     else if ( strcmp(rep_var,"$method") == 0 ) {
2381       fprintf(_fp,"->method()");
2382     }
2383     else {
2384       printf("emit_field: %s\n",rep_var);
2385       assert( false, "UnImplemented()");
2386     }
2387   }
2388 
2389 
2390   void emit_rep_var(const char *rep_var) {
2391     _processing_noninput = false;
2392     // A replacement variable, originally '$'
2393     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2394       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2395         // Missing opcode
2396         _AD.syntax_err( _inst._linenum,
2397                         "Missing $%s opcode definition in %s, used by encoding %s\n",
2398                         rep_var, _inst._ident, _encoding._name);
2399       }
2400     }
2401     else if (strcmp(rep_var, "constanttablebase") == 0) {
2402       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2403     }
2404     else if (strcmp(rep_var, "constantoffset") == 0) {
2405       fprintf(_fp, "constant_offset()");
2406     }
2407     else if (strcmp(rep_var, "constantaddress") == 0) {
2408       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2409     }
2410     else {
2411       // Lookup its position in parameter list
2412       int   param_no  = _encoding.rep_var_index(rep_var);
2413       if ( param_no == -1 ) {
2414         _AD.syntax_err( _encoding._linenum,
2415                         "Replacement variable %s not found in enc_class %s.\n",
2416                         rep_var, _encoding._name);
2417       }
2418       // Lookup the corresponding ins_encode parameter
2419       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2420 
2421       // Check if instruction's actual parameter is a local name in the instruction
2422       const Form  *local     = _inst._localNames[inst_rep_var];
2423       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2424       // Note: assert removed to allow constant and symbolic parameters
2425       // assert( opc, "replacement variable was not found in local names");
2426       // Lookup the index position iff the replacement variable is a localName
2427       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2428       if( idx != -1 ) {
2429         if (_inst.is_noninput_operand(idx)) {
2430           // This operand isn't a normal input so printing it is done
2431           // specially.
2432           _processing_noninput = true;
2433         } else {
2434           // Output the emit code for this operand
2435           fprintf(_fp,"opnd_array(%d)",idx);
2436         }
2437         assert( _operand == opc->is_operand(),
2438                 "Previous emit $operand does not match current");
2439       }
2440       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2441         // else check if it is a constant expression
2442         // Removed following assert to allow primitive C types as arguments to encodings
2443         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2444         fprintf(_fp,"(%s)", inst_rep_var);
2445         _constant_status = LITERAL_OUTPUT;
2446       }
2447       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2448         // else check if "primary", "secondary", "tertiary"
2449         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2450         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2451           // Missing opcode
2452           _AD.syntax_err( _inst._linenum,
2453                           "Missing $%s opcode definition in %s\n",
2454                           rep_var, _inst._ident);
2455 
2456         }
2457         _constant_status = LITERAL_OUTPUT;
2458       }
2459       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2460         // Instruction provided a literal register name for this parameter
2461         // Check that encoding specifies $$$reg to resolve.as register.
2462         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2463         fprintf(_fp,"(%s_enc)", inst_rep_var);
2464         _reg_status = LITERAL_OUTPUT;
2465       }
2466       else {
2467         // Check for unimplemented functionality before hard failure
2468         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2469         assert( false, "ShouldNotReachHere()");
2470       }
2471       // all done
2472     }
2473   }
2474 
2475 };  // end class DefineEmitState
2476 
2477 
2478 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2479 
2480   //(1)
2481   // Output instruction's emit prototype
2482   fprintf(fp,"uint  %sNode::size(PhaseRegAlloc *ra_) const {\n",
2483           inst._ident);
2484 
2485   fprintf(fp, " assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2486 
2487   //(2)
2488   // Print the size
2489   fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2490 
2491   // (3) and (4)
2492   fprintf(fp,"}\n");
2493 }
2494 
2495 // defineEmit -----------------------------------------------------------------
2496 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2497   InsEncode* encode = inst._insencode;
2498 
2499   // (1)
2500   // Output instruction's emit prototype
2501   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2502 
2503   // If user did not define an encode section,
2504   // provide stub that does not generate any machine code.
2505   if( (_encode == NULL) || (encode == NULL) ) {
2506     fprintf(fp, "  // User did not define an encode section.\n");
2507     fprintf(fp, "}\n");
2508     return;
2509   }
2510 
2511   // Save current instruction's starting address (helps with relocation).
2512   fprintf(fp, "  cbuf.set_insts_mark();\n");
2513 
2514   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2515   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2516     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2517   }
2518 
2519   // Output each operand's offset into the array of registers.
2520   inst.index_temps(fp, _globalNames);
2521 
2522   // Output this instruction's encodings
2523   const char *ec_name;
2524   bool        user_defined = false;
2525   encode->reset();
2526   while ((ec_name = encode->encode_class_iter()) != NULL) {
2527     fprintf(fp, "  {\n");
2528     // Output user-defined encoding
2529     user_defined           = true;
2530 
2531     const char *ec_code    = NULL;
2532     const char *ec_rep_var = NULL;
2533     EncClass   *encoding   = _encode->encClass(ec_name);
2534     if (encoding == NULL) {
2535       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2536       abort();
2537     }
2538 
2539     if (encode->current_encoding_num_args() != encoding->num_args()) {
2540       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2541                            inst._ident, encode->current_encoding_num_args(),
2542                            ec_name, encoding->num_args());
2543     }
2544 
2545     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2546     encoding->_code.reset();
2547     encoding->_rep_vars.reset();
2548     // Process list of user-defined strings,
2549     // and occurrences of replacement variables.
2550     // Replacement Vars are pushed into a list and then output
2551     while ((ec_code = encoding->_code.iter()) != NULL) {
2552       if (!encoding->_code.is_signal(ec_code)) {
2553         // Emit pending code
2554         pending.emit();
2555         pending.clear();
2556         // Emit this code section
2557         fprintf(fp, "%s", ec_code);
2558       } else {
2559         // A replacement variable or one of its subfields
2560         // Obtain replacement variable from list
2561         ec_rep_var  = encoding->_rep_vars.iter();
2562         pending.add_rep_var(ec_rep_var);
2563       }
2564     }
2565     // Emit pending code
2566     pending.emit();
2567     pending.clear();
2568     fprintf(fp, "  }\n");
2569   } // end while instruction's encodings
2570 
2571   // Check if user stated which encoding to user
2572   if ( user_defined == false ) {
2573     fprintf(fp, "  // User did not define which encode class to use.\n");
2574   }
2575 
2576   // (3) and (4)
2577   fprintf(fp, "}\n");
2578 }
2579 
2580 // defineEvalConstant ---------------------------------------------------------
2581 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2582   InsEncode* encode = inst._constant;
2583 
2584   // (1)
2585   // Output instruction's emit prototype
2586   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2587 
2588   // For ideal jump nodes, allocate a jump table.
2589   if (inst.is_ideal_jump()) {
2590     fprintf(fp, "  _constant = C->constant_table().allocate_jump_table(this);\n");
2591   }
2592 
2593   // If user did not define an encode section,
2594   // provide stub that does not generate any machine code.
2595   if ((_encode == NULL) || (encode == NULL)) {
2596     fprintf(fp, "  // User did not define an encode section.\n");
2597     fprintf(fp, "}\n");
2598     return;
2599   }
2600 
2601   // Output this instruction's encodings
2602   const char *ec_name;
2603   bool        user_defined = false;
2604   encode->reset();
2605   while ((ec_name = encode->encode_class_iter()) != NULL) {
2606     fprintf(fp, "  {\n");
2607     // Output user-defined encoding
2608     user_defined           = true;
2609 
2610     const char *ec_code    = NULL;
2611     const char *ec_rep_var = NULL;
2612     EncClass   *encoding   = _encode->encClass(ec_name);
2613     if (encoding == NULL) {
2614       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2615       abort();
2616     }
2617 
2618     if (encode->current_encoding_num_args() != encoding->num_args()) {
2619       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2620                            inst._ident, encode->current_encoding_num_args(),
2621                            ec_name, encoding->num_args());
2622     }
2623 
2624     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2625     encoding->_code.reset();
2626     encoding->_rep_vars.reset();
2627     // Process list of user-defined strings,
2628     // and occurrences of replacement variables.
2629     // Replacement Vars are pushed into a list and then output
2630     while ((ec_code = encoding->_code.iter()) != NULL) {
2631       if (!encoding->_code.is_signal(ec_code)) {
2632         // Emit pending code
2633         pending.emit();
2634         pending.clear();
2635         // Emit this code section
2636         fprintf(fp, "%s", ec_code);
2637       } else {
2638         // A replacement variable or one of its subfields
2639         // Obtain replacement variable from list
2640         ec_rep_var  = encoding->_rep_vars.iter();
2641         pending.add_rep_var(ec_rep_var);
2642       }
2643     }
2644     // Emit pending code
2645     pending.emit();
2646     pending.clear();
2647     fprintf(fp, "  }\n");
2648   } // end while instruction's encodings
2649 
2650   // Check if user stated which encoding to user
2651   if (user_defined == false) {
2652     fprintf(fp, "  // User did not define which encode class to use.\n");
2653   }
2654 
2655   // (3) and (4)
2656   fprintf(fp, "}\n");
2657 }
2658 
2659 // ---------------------------------------------------------------------------
2660 //--------Utilities to build MachOper and MachNode derived Classes------------
2661 // ---------------------------------------------------------------------------
2662 
2663 //------------------------------Utilities to build Operand Classes------------
2664 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2665   uint num_edges = oper.num_edges(globals);
2666   if( num_edges != 0 ) {
2667     // Method header
2668     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2669             oper._ident);
2670 
2671     // Assert that the index is in range.
2672     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2673             num_edges);
2674 
2675     // Figure out if all RegMasks are the same.
2676     const char* first_reg_class = oper.in_reg_class(0, globals);
2677     bool all_same = true;
2678     assert(first_reg_class != NULL, "did not find register mask");
2679 
2680     for (uint index = 1; all_same && index < num_edges; index++) {
2681       const char* some_reg_class = oper.in_reg_class(index, globals);
2682       assert(some_reg_class != NULL, "did not find register mask");
2683       if (strcmp(first_reg_class, some_reg_class) != 0) {
2684         all_same = false;
2685       }
2686     }
2687 
2688     if (all_same) {
2689       // Return the sole RegMask.
2690       if (strcmp(first_reg_class, "stack_slots") == 0) {
2691         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2692       } else {
2693         fprintf(fp,"  return &%s_mask;\n", toUpper(first_reg_class));
2694       }
2695     } else {
2696       // Build a switch statement to return the desired mask.
2697       fprintf(fp,"  switch (index) {\n");
2698 
2699       for (uint index = 0; index < num_edges; index++) {
2700         const char *reg_class = oper.in_reg_class(index, globals);
2701         assert(reg_class != NULL, "did not find register mask");
2702         if( !strcmp(reg_class, "stack_slots") ) {
2703           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2704         } else {
2705           fprintf(fp, "  case %d: return &%s_mask;\n", index, toUpper(reg_class));
2706         }
2707       }
2708       fprintf(fp,"  }\n");
2709       fprintf(fp,"  ShouldNotReachHere();\n");
2710       fprintf(fp,"  return NULL;\n");
2711     }
2712 
2713     // Method close
2714     fprintf(fp, "}\n\n");
2715   }
2716 }
2717 
2718 // generate code to create a clone for a class derived from MachOper
2719 //
2720 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
2721 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
2722 // (2)  }
2723 //
2724 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2725   fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper._ident);
2726   // Check for constants that need to be copied over
2727   const int  num_consts    = oper.num_consts(globalNames);
2728   const bool is_ideal_bool = oper.is_ideal_bool();
2729   if( (num_consts > 0) ) {
2730     fprintf(fp,"  return  new (C) %sOper(", oper._ident);
2731     // generate parameters for constants
2732     int i = 0;
2733     fprintf(fp,"_c%d", i);
2734     for( i = 1; i < num_consts; ++i) {
2735       fprintf(fp,", _c%d", i);
2736     }
2737     // finish line (1)
2738     fprintf(fp,");\n");
2739   }
2740   else {
2741     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2742     fprintf(fp,"  return  new (C) %sOper();\n", oper._ident);
2743   }
2744   // finish method
2745   fprintf(fp,"}\n");
2746 }
2747 
2748 static void define_hash(FILE *fp, char *operand) {
2749   fprintf(fp,"uint %sOper::hash() const { return 5; }\n", operand);
2750 }
2751 
2752 static void define_cmp(FILE *fp, char *operand) {
2753   fprintf(fp,"uint %sOper::cmp( const MachOper &oper ) const { return opcode() == oper.opcode(); }\n", operand);
2754 }
2755 
2756 
2757 // Helper functions for bug 4796752, abstracted with minimal modification
2758 // from define_oper_interface()
2759 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2760   OperandForm *op = NULL;
2761   // Check for replacement variable
2762   if( *encoding == '$' ) {
2763     // Replacement variable
2764     const char *rep_var = encoding + 1;
2765     // Lookup replacement variable, rep_var, in operand's component list
2766     const Component *comp = oper._components.search(rep_var);
2767     assert( comp != NULL, "Replacement variable not found in components");
2768     // Lookup operand form for replacement variable's type
2769     const char      *type = comp->_type;
2770     Form            *form = (Form*)globals[type];
2771     assert( form != NULL, "Replacement variable's type not found");
2772     op = form->is_operand();
2773     assert( op, "Attempting to emit a non-register or non-constant");
2774   }
2775 
2776   return op;
2777 }
2778 
2779 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2780   int idx = -1;
2781   // Check for replacement variable
2782   if( *encoding == '$' ) {
2783     // Replacement variable
2784     const char *rep_var = encoding + 1;
2785     // Lookup replacement variable, rep_var, in operand's component list
2786     const Component *comp = oper._components.search(rep_var);
2787     assert( comp != NULL, "Replacement variable not found in components");
2788     // Lookup operand form for replacement variable's type
2789     const char      *type = comp->_type;
2790     Form            *form = (Form*)globals[type];
2791     assert( form != NULL, "Replacement variable's type not found");
2792     OperandForm *op = form->is_operand();
2793     assert( op, "Attempting to emit a non-register or non-constant");
2794     // Check that this is a constant and find constant's index:
2795     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2796       idx  = oper.constant_position(globals, comp);
2797     }
2798   }
2799 
2800   return idx;
2801 }
2802 
2803 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2804   bool is_regI = false;
2805 
2806   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2807   if( op != NULL ) {
2808     // Check that this is a register
2809     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2810       // Register
2811       const char* ideal  = op->ideal_type(globals);
2812       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2813     }
2814   }
2815 
2816   return is_regI;
2817 }
2818 
2819 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2820   bool is_conP = false;
2821 
2822   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2823   if( op != NULL ) {
2824     // Check that this is a constant pointer
2825     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2826       // Constant
2827       Form::DataType dtype = op->is_base_constant(globals);
2828       is_conP = (dtype == Form::idealP);
2829     }
2830   }
2831 
2832   return is_conP;
2833 }
2834 
2835 
2836 // Define a MachOper interface methods
2837 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2838                                      const char *name, const char *encoding) {
2839   bool emit_position = false;
2840   int position = -1;
2841 
2842   fprintf(fp,"  virtual int            %s", name);
2843   // Generate access method for base, index, scale, disp, ...
2844   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2845     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2846     emit_position = true;
2847   } else if ( (strcmp(name,"disp") == 0) ) {
2848     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2849   } else {
2850     fprintf(fp,"() const { ");
2851   }
2852 
2853   // Check for hexadecimal value OR replacement variable
2854   if( *encoding == '$' ) {
2855     // Replacement variable
2856     const char *rep_var = encoding + 1;
2857     fprintf(fp,"// Replacement variable: %s\n", encoding+1);
2858     // Lookup replacement variable, rep_var, in operand's component list
2859     const Component *comp = oper._components.search(rep_var);
2860     assert( comp != NULL, "Replacement variable not found in components");
2861     // Lookup operand form for replacement variable's type
2862     const char      *type = comp->_type;
2863     Form            *form = (Form*)globals[type];
2864     assert( form != NULL, "Replacement variable's type not found");
2865     OperandForm *op = form->is_operand();
2866     assert( op, "Attempting to emit a non-register or non-constant");
2867     // Check that this is a register or a constant and generate code:
2868     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2869       // Register
2870       int idx_offset = oper.register_position( globals, rep_var);
2871       position = idx_offset;
2872       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
2873       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
2874       fprintf(fp,"));\n");
2875     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2876       // StackSlot for an sReg comes either from input node or from self, when idx==0
2877       fprintf(fp,"    if( idx != 0 ) {\n");
2878       fprintf(fp,"      // Access register number for input operand\n");
2879       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2880       fprintf(fp,"    }\n");
2881       fprintf(fp,"    // Access register number from myself\n");
2882       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2883     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2884       // Constant
2885       // Check which constant this name maps to: _c0, _c1, ..., _cn
2886       const int idx = oper.constant_position(globals, comp);
2887       assert( idx != -1, "Constant component not found in operand");
2888       // Output code for this constant, type dependent.
2889       fprintf(fp,"    return (int)" );
2890       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2891       fprintf(fp,";\n");
2892     } else {
2893       assert( false, "Attempting to emit a non-register or non-constant");
2894     }
2895   }
2896   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2897     // Hex value
2898     fprintf(fp,"return %s;", encoding);
2899   } else {
2900     assert( false, "Do not support octal or decimal encode constants");
2901   }
2902   fprintf(fp,"  }\n");
2903 
2904   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2905     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
2906     MemInterface *mem_interface = oper._interface->is_MemInterface();
2907     const char *base = mem_interface->_base;
2908     const char *disp = mem_interface->_disp;
2909     if( emit_position && (strcmp(name,"base") == 0)
2910         && base != NULL && is_regI(base, oper, globals)
2911         && disp != NULL && is_conP(disp, oper, globals) ) {
2912       // Found a memory access using a constant pointer for a displacement
2913       // and a base register containing an integer offset.
2914       // In this case the base and disp are reversed with respect to what
2915       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
2916       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
2917       // to correctly compute the access type for alias analysis.
2918       //
2919       // See BugId 4796752, operand indOffset32X in i486.ad
2920       int idx = rep_var_to_constant_index(disp, oper, globals);
2921       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
2922     }
2923   }
2924 }
2925 
2926 //
2927 // Construct the method to copy _idx, inputs and operands to new node.
2928 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
2929   fprintf(fp_cpp, "\n");
2930   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
2931   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
2932   if( !used ) {
2933     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
2934     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
2935     fprintf(fp_cpp, "}\n");
2936   } else {
2937     // New node must use same node index for access through allocator's tables
2938     fprintf(fp_cpp, "  // New node must use same node index\n");
2939     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
2940     // Copy machine-independent inputs
2941     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
2942     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
2943     fprintf(fp_cpp, "    node->add_req(in(j));\n");
2944     fprintf(fp_cpp, "  }\n");
2945     // Copy machine operands to new MachNode
2946     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
2947     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
2948     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
2949     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
2950     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
2951     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
2952     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
2953     fprintf(fp_cpp, "  }\n");
2954     fprintf(fp_cpp, "}\n");
2955   }
2956   fprintf(fp_cpp, "\n");
2957 }
2958 
2959 //------------------------------defineClasses----------------------------------
2960 // Define members of MachNode and MachOper classes based on
2961 // operand and instruction lists
2962 void ArchDesc::defineClasses(FILE *fp) {
2963 
2964   // Define the contents of an array containing the machine register names
2965   defineRegNames(fp, _register);
2966   // Define an array containing the machine register encoding values
2967   defineRegEncodes(fp, _register);
2968   // Generate an enumeration of user-defined register classes
2969   // and a list of register masks, one for each class.
2970   // Only define the RegMask value objects in the expand file.
2971   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
2972   declare_register_masks(_HPP_file._fp);
2973   // build_register_masks(fp);
2974   build_register_masks(_CPP_EXPAND_file._fp);
2975   // Define the pipe_classes
2976   build_pipe_classes(_CPP_PIPELINE_file._fp);
2977 
2978   // Generate Machine Classes for each operand defined in AD file
2979   fprintf(fp,"\n");
2980   fprintf(fp,"\n");
2981   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
2982   // Iterate through all operands
2983   _operands.reset();
2984   OperandForm *oper;
2985   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
2986     // Ensure this is a machine-world instruction
2987     if ( oper->ideal_only() ) continue;
2988     // !!!!!
2989     // The declaration of labelOper is in machine-independent file: machnode
2990     if ( strcmp(oper->_ident,"label") == 0 ) {
2991       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
2992 
2993       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
2994       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
2995       fprintf(fp,"}\n");
2996 
2997       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
2998               oper->_ident, machOperEnum(oper->_ident));
2999       // // Currently all XXXOper::Hash() methods are identical (990820)
3000       // define_hash(fp, oper->_ident);
3001       // // Currently all XXXOper::Cmp() methods are identical (990820)
3002       // define_cmp(fp, oper->_ident);
3003       fprintf(fp,"\n");
3004 
3005       continue;
3006     }
3007 
3008     // The declaration of methodOper is in machine-independent file: machnode
3009     if ( strcmp(oper->_ident,"method") == 0 ) {
3010       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3011 
3012       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
3013       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
3014       fprintf(fp,"}\n");
3015 
3016       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3017               oper->_ident, machOperEnum(oper->_ident));
3018       // // Currently all XXXOper::Hash() methods are identical (990820)
3019       // define_hash(fp, oper->_ident);
3020       // // Currently all XXXOper::Cmp() methods are identical (990820)
3021       // define_cmp(fp, oper->_ident);
3022       fprintf(fp,"\n");
3023 
3024       continue;
3025     }
3026 
3027     defineIn_RegMask(fp, _globalNames, *oper);
3028     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3029     // // Currently all XXXOper::Hash() methods are identical (990820)
3030     // define_hash(fp, oper->_ident);
3031     // // Currently all XXXOper::Cmp() methods are identical (990820)
3032     // define_cmp(fp, oper->_ident);
3033 
3034     // side-call to generate output that used to be in the header file:
3035     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3036     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3037 
3038   }
3039 
3040 
3041   // Generate Machine Classes for each instruction defined in AD file
3042   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3043   // Output the definitions for out_RegMask() // & kill_RegMask()
3044   _instructions.reset();
3045   InstructForm *instr;
3046   MachNodeForm *machnode;
3047   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3048     // Ensure this is a machine-world instruction
3049     if ( instr->ideal_only() ) continue;
3050 
3051     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3052   }
3053 
3054   bool used = false;
3055   // Output the definitions for expand rules & peephole rules
3056   _instructions.reset();
3057   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3058     // Ensure this is a machine-world instruction
3059     if ( instr->ideal_only() ) continue;
3060     // If there are multiple defs/kills, or an explicit expand rule, build rule
3061     if( instr->expands() || instr->needs_projections() ||
3062         instr->has_temps() ||
3063         instr->is_mach_constant() ||
3064         instr->_matrule != NULL &&
3065         instr->num_opnds() != instr->num_unique_opnds() )
3066       defineExpand(_CPP_EXPAND_file._fp, instr);
3067     // If there is an explicit peephole rule, build it
3068     if ( instr->peepholes() )
3069       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3070 
3071     // Output code to convert to the cisc version, if applicable
3072     used |= instr->define_cisc_version(*this, fp);
3073 
3074     // Output code to convert to the short branch version, if applicable
3075     used |= instr->define_short_branch_methods(*this, fp);
3076   }
3077 
3078   // Construct the method called by cisc_version() to copy inputs and operands.
3079   define_fill_new_machnode(used, fp);
3080 
3081   // Output the definitions for labels
3082   _instructions.reset();
3083   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3084     // Ensure this is a machine-world instruction
3085     if ( instr->ideal_only() ) continue;
3086 
3087     // Access the fields for operand Label
3088     int label_position = instr->label_position();
3089     if( label_position != -1 ) {
3090       // Set the label
3091       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3092       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3093               label_position );
3094       fprintf(fp,"  oper->_label     = label;\n");
3095       fprintf(fp,"  oper->_block_num = block_num;\n");
3096       fprintf(fp,"}\n");
3097     }
3098   }
3099 
3100   // Output the definitions for methods
3101   _instructions.reset();
3102   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3103     // Ensure this is a machine-world instruction
3104     if ( instr->ideal_only() ) continue;
3105 
3106     // Access the fields for operand Label
3107     int method_position = instr->method_position();
3108     if( method_position != -1 ) {
3109       // Access the method's address
3110       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3111       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
3112               method_position );
3113       fprintf(fp,"}\n");
3114       fprintf(fp,"\n");
3115     }
3116   }
3117 
3118   // Define this instruction's number of relocation entries, base is '0'
3119   _instructions.reset();
3120   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3121     // Output the definition for number of relocation entries
3122     uint reloc_size = instr->reloc(_globalNames);
3123     if ( reloc_size != 0 ) {
3124       fprintf(fp,"int  %sNode::reloc()   const {\n", instr->_ident);
3125       fprintf(fp,  "  return  %d;\n", reloc_size );
3126       fprintf(fp,"}\n");
3127       fprintf(fp,"\n");
3128     }
3129   }
3130   fprintf(fp,"\n");
3131 
3132   // Output the definitions for code generation
3133   //
3134   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3135   //   // ...  encoding defined by user
3136   //   return ptr;
3137   // }
3138   //
3139   _instructions.reset();
3140   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3141     // Ensure this is a machine-world instruction
3142     if ( instr->ideal_only() ) continue;
3143 
3144     if (instr->_insencode)         defineEmit        (fp, *instr);
3145     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3146     if (instr->_size)              defineSize        (fp, *instr);
3147 
3148     // side-call to generate output that used to be in the header file:
3149     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3150     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3151   }
3152 
3153   // Output the definitions for alias analysis
3154   _instructions.reset();
3155   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3156     // Ensure this is a machine-world instruction
3157     if ( instr->ideal_only() ) continue;
3158 
3159     // Analyze machine instructions that either USE or DEF memory.
3160     int memory_operand = instr->memory_operand(_globalNames);
3161     // Some guys kill all of memory
3162     if ( instr->is_wide_memory_kill(_globalNames) ) {
3163       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
3164     }
3165 
3166     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3167       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3168         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3169         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3170       } else {
3171         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3172   }
3173     }
3174   }
3175 
3176   // Get the length of the longest identifier
3177   int max_ident_len = 0;
3178   _instructions.reset();
3179 
3180   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3181     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3182       int ident_len = (int)strlen(instr->_ident);
3183       if( max_ident_len < ident_len )
3184         max_ident_len = ident_len;
3185     }
3186   }
3187 
3188   // Emit specifically for Node(s)
3189   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3190     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3191   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3192     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3193   fprintf(_CPP_PIPELINE_file._fp, "\n");
3194 
3195   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3196     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3197   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3198     max_ident_len, "MachNode");
3199   fprintf(_CPP_PIPELINE_file._fp, "\n");
3200 
3201   // Output the definitions for machine node specific pipeline data
3202   _machnodes.reset();
3203 
3204   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3205     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3206       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3207   }
3208 
3209   fprintf(_CPP_PIPELINE_file._fp, "\n");
3210 
3211   // Output the definitions for instruction pipeline static data references
3212   _instructions.reset();
3213 
3214   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3215     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3216       fprintf(_CPP_PIPELINE_file._fp, "\n");
3217       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3218         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3219       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3220         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3221     }
3222   }
3223 }
3224 
3225 
3226 // -------------------------------- maps ------------------------------------
3227 
3228 // Information needed to generate the ReduceOp mapping for the DFA
3229 class OutputReduceOp : public OutputMap {
3230 public:
3231   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3232     : OutputMap(hpp, cpp, globals, AD) {};
3233 
3234   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
3235   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
3236   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3237                        OutputMap::closing();
3238   }
3239   void map(OpClassForm &opc)  {
3240     const char *reduce = opc._ident;
3241     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3242     else          fprintf(_cpp, "  0");
3243   }
3244   void map(OperandForm &oper) {
3245     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3246     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3247     // operand stackSlot does not have a match rule, but produces a stackSlot
3248     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3249     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3250     else          fprintf(_cpp, "  0");
3251   }
3252   void map(InstructForm &inst) {
3253     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3254     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3255     else          fprintf(_cpp, "  0");
3256   }
3257   void map(char         *reduce) {
3258     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3259     else          fprintf(_cpp, "  0");
3260   }
3261 };
3262 
3263 // Information needed to generate the LeftOp mapping for the DFA
3264 class OutputLeftOp : public OutputMap {
3265 public:
3266   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3267     : OutputMap(hpp, cpp, globals, AD) {};
3268 
3269   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
3270   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
3271   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3272                        OutputMap::closing();
3273   }
3274   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3275   void map(OperandForm &oper) {
3276     const char *reduce = oper.reduce_left(_globals);
3277     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3278     else          fprintf(_cpp, "  0");
3279   }
3280   void map(char        *name) {
3281     const char *reduce = _AD.reduceLeft(name);
3282     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3283     else          fprintf(_cpp, "  0");
3284   }
3285   void map(InstructForm &inst) {
3286     const char *reduce = inst.reduce_left(_globals);
3287     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3288     else          fprintf(_cpp, "  0");
3289   }
3290 };
3291 
3292 
3293 // Information needed to generate the RightOp mapping for the DFA
3294 class OutputRightOp : public OutputMap {
3295 public:
3296   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3297     : OutputMap(hpp, cpp, globals, AD) {};
3298 
3299   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
3300   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
3301   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3302                        OutputMap::closing();
3303   }
3304   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3305   void map(OperandForm &oper) {
3306     const char *reduce = oper.reduce_right(_globals);
3307     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3308     else          fprintf(_cpp, "  0");
3309   }
3310   void map(char        *name) {
3311     const char *reduce = _AD.reduceRight(name);
3312     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3313     else          fprintf(_cpp, "  0");
3314   }
3315   void map(InstructForm &inst) {
3316     const char *reduce = inst.reduce_right(_globals);
3317     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3318     else          fprintf(_cpp, "  0");
3319   }
3320 };
3321 
3322 
3323 // Information needed to generate the Rule names for the DFA
3324 class OutputRuleName : public OutputMap {
3325 public:
3326   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3327     : OutputMap(hpp, cpp, globals, AD) {};
3328 
3329   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3330   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
3331   void closing()     { fprintf(_cpp, "  \"no trailing comma\"\n");
3332                        OutputMap::closing();
3333   }
3334   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
3335   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
3336   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
3337   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3338 };
3339 
3340 
3341 // Information needed to generate the swallowed mapping for the DFA
3342 class OutputSwallowed : public OutputMap {
3343 public:
3344   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3345     : OutputMap(hpp, cpp, globals, AD) {};
3346 
3347   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
3348   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
3349   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3350                        OutputMap::closing();
3351   }
3352   void map(OperandForm &oper) { // Generate the entry for this opcode
3353     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3354     fprintf(_cpp, "  %s", swallowed);
3355   }
3356   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
3357   void map(char        *name) { fprintf(_cpp, "  false"); }
3358   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3359 };
3360 
3361 
3362 // Information needed to generate the decision array for instruction chain rule
3363 class OutputInstChainRule : public OutputMap {
3364 public:
3365   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3366     : OutputMap(hpp, cpp, globals, AD) {};
3367 
3368   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
3369   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
3370   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3371                        OutputMap::closing();
3372   }
3373   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
3374   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
3375   void map(char        *name)  { fprintf(_cpp, "  false"); }
3376   void map(InstructForm &inst) { // Check for simple chain rule
3377     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3378     fprintf(_cpp, "  %s", chain);
3379   }
3380 };
3381 
3382 
3383 //---------------------------build_map------------------------------------
3384 // Build  mapping from enumeration for densely packed operands
3385 // TO result and child types.
3386 void ArchDesc::build_map(OutputMap &map) {
3387   FILE         *fp_hpp = map.decl_file();
3388   FILE         *fp_cpp = map.def_file();
3389   int           idx    = 0;
3390   OperandForm  *op;
3391   OpClassForm  *opc;
3392   InstructForm *inst;
3393 
3394   // Construct this mapping
3395   map.declaration();
3396   fprintf(fp_cpp,"\n");
3397   map.definition();
3398 
3399   // Output the mapping for operands
3400   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3401   _operands.reset();
3402   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3403     // Ensure this is a machine-world instruction
3404     if ( op->ideal_only() )  continue;
3405 
3406     // Generate the entry for this opcode
3407     map.map(*op);    fprintf(fp_cpp, ", // %d\n", idx);
3408     ++idx;
3409   };
3410   fprintf(fp_cpp, "  // last operand\n");
3411 
3412   // Place all user-defined operand classes into the mapping
3413   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3414   _opclass.reset();
3415   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3416     map.map(*opc);    fprintf(fp_cpp, ", // %d\n", idx);
3417     ++idx;
3418   };
3419   fprintf(fp_cpp, "  // last operand class\n");
3420 
3421   // Place all internally defined operands into the mapping
3422   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3423   _internalOpNames.reset();
3424   char *name = NULL;
3425   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3426     map.map(name);    fprintf(fp_cpp, ", // %d\n", idx);
3427     ++idx;
3428   };
3429   fprintf(fp_cpp, "  // last internally defined operand\n");
3430 
3431   // Place all user-defined instructions into the mapping
3432   if( map.do_instructions() ) {
3433     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3434     // Output all simple instruction chain rules first
3435     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3436     {
3437       _instructions.reset();
3438       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3439         // Ensure this is a machine-world instruction
3440         if ( inst->ideal_only() )  continue;
3441         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3442         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3443 
3444         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
3445         ++idx;
3446       };
3447       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3448       _instructions.reset();
3449       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3450         // Ensure this is a machine-world instruction
3451         if ( inst->ideal_only() )  continue;
3452         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3453         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3454 
3455         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
3456         ++idx;
3457       };
3458       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3459     }
3460     // Output all instructions that are NOT simple chain rules
3461     {
3462       _instructions.reset();
3463       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3464         // Ensure this is a machine-world instruction
3465         if ( inst->ideal_only() )  continue;
3466         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3467         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3468 
3469         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
3470         ++idx;
3471       };
3472       map.record_position(OutputMap::END_REMATERIALIZE, idx );
3473       _instructions.reset();
3474       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3475         // Ensure this is a machine-world instruction
3476         if ( inst->ideal_only() )  continue;
3477         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3478         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3479 
3480         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
3481         ++idx;
3482       };
3483     }
3484     fprintf(fp_cpp, "  // last instruction\n");
3485     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3486   }
3487   // Finish defining table
3488   map.closing();
3489 };
3490 
3491 
3492 // Helper function for buildReduceMaps
3493 char reg_save_policy(const char *calling_convention) {
3494   char callconv;
3495 
3496   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3497   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3498   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3499   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3500   else                                         callconv = 'Z';
3501 
3502   return callconv;
3503 }
3504 
3505 //---------------------------generate_assertion_checks-------------------
3506 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3507   fprintf(fp_cpp, "\n");
3508 
3509   fprintf(fp_cpp, "#ifndef PRODUCT\n");
3510   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3511   globalDefs().print_asserts(fp_cpp);
3512   fprintf(fp_cpp, "}\n");
3513   fprintf(fp_cpp, "#endif\n");
3514   fprintf(fp_cpp, "\n");
3515 }
3516 
3517 //---------------------------addSourceBlocks-----------------------------
3518 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3519   if (_source.count() > 0)
3520     _source.output(fp_cpp);
3521 
3522   generate_adlc_verification(fp_cpp);
3523 }
3524 //---------------------------addHeaderBlocks-----------------------------
3525 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3526   if (_header.count() > 0)
3527     _header.output(fp_hpp);
3528 }
3529 //-------------------------addPreHeaderBlocks----------------------------
3530 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3531   // Output #defines from definition block
3532   globalDefs().print_defines(fp_hpp);
3533 
3534   if (_pre_header.count() > 0)
3535     _pre_header.output(fp_hpp);
3536 }
3537 
3538 //---------------------------buildReduceMaps-----------------------------
3539 // Build  mapping from enumeration for densely packed operands
3540 // TO result and child types.
3541 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3542   RegDef       *rdef;
3543   RegDef       *next;
3544 
3545   // The emit bodies currently require functions defined in the source block.
3546 
3547   // Build external declarations for mappings
3548   fprintf(fp_hpp, "\n");
3549   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3550   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3551   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3552   fprintf(fp_hpp, "\n");
3553 
3554   // Construct Save-Policy array
3555   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3556   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3557   _register->reset_RegDefs();
3558   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3559     next              = _register->iter_RegDefs();
3560     char policy       = reg_save_policy(rdef->_callconv);
3561     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3562     fprintf(fp_cpp, "  '%c'%s\n", policy, comma);
3563   }
3564   fprintf(fp_cpp, "};\n\n");
3565 
3566   // Construct Native Save-Policy array
3567   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3568   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3569   _register->reset_RegDefs();
3570   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3571     next        = _register->iter_RegDefs();
3572     char policy = reg_save_policy(rdef->_c_conv);
3573     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3574     fprintf(fp_cpp, "  '%c'%s\n", policy, comma);
3575   }
3576   fprintf(fp_cpp, "};\n\n");
3577 
3578   // Construct Register Save Type array
3579   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3580   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3581   _register->reset_RegDefs();
3582   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3583     next = _register->iter_RegDefs();
3584     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3585     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3586   }
3587   fprintf(fp_cpp, "};\n\n");
3588 
3589   // Construct the table for reduceOp
3590   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3591   build_map(output_reduce_op);
3592   // Construct the table for leftOp
3593   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3594   build_map(output_left_op);
3595   // Construct the table for rightOp
3596   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3597   build_map(output_right_op);
3598   // Construct the table of rule names
3599   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3600   build_map(output_rule_name);
3601   // Construct the boolean table for subsumed operands
3602   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3603   build_map(output_swallowed);
3604   // // // Preserve in case we decide to use this table instead of another
3605   //// Construct the boolean table for instruction chain rules
3606   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3607   //build_map(output_inst_chain);
3608 
3609 }
3610 
3611 
3612 //---------------------------buildMachOperGenerator---------------------------
3613 
3614 // Recurse through match tree, building path through corresponding state tree,
3615 // Until we reach the constant we are looking for.
3616 static void path_to_constant(FILE *fp, FormDict &globals,
3617                              MatchNode *mnode, uint idx) {
3618   if ( ! mnode) return;
3619 
3620   unsigned    position = 0;
3621   const char *result   = NULL;
3622   const char *name     = NULL;
3623   const char *optype   = NULL;
3624 
3625   // Base Case: access constant in ideal node linked to current state node
3626   // Each type of constant has its own access function
3627   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3628        && mnode->base_operand(position, globals, result, name, optype) ) {
3629     if (         strcmp(optype,"ConI") == 0 ) {
3630       fprintf(fp, "_leaf->get_int()");
3631     } else if ( (strcmp(optype,"ConP") == 0) ) {
3632       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3633     } else if ( (strcmp(optype,"ConN") == 0) ) {
3634       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3635     } else if ( (strcmp(optype,"ConF") == 0) ) {
3636       fprintf(fp, "_leaf->getf()");
3637     } else if ( (strcmp(optype,"ConD") == 0) ) {
3638       fprintf(fp, "_leaf->getd()");
3639     } else if ( (strcmp(optype,"ConL") == 0) ) {
3640       fprintf(fp, "_leaf->get_long()");
3641     } else if ( (strcmp(optype,"Con")==0) ) {
3642       // !!!!! - Update if adding a machine-independent constant type
3643       fprintf(fp, "_leaf->get_int()");
3644       assert( false, "Unsupported constant type, pointer or indefinite");
3645     } else if ( (strcmp(optype,"Bool") == 0) ) {
3646       fprintf(fp, "_leaf->as_Bool()->_test._test");
3647     } else {
3648       assert( false, "Unsupported constant type");
3649     }
3650     return;
3651   }
3652 
3653   // If constant is in left child, build path and recurse
3654   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3655   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3656   if ( (mnode->_lChild) && (lConsts > idx) ) {
3657     fprintf(fp, "_kids[0]->");
3658     path_to_constant(fp, globals, mnode->_lChild, idx);
3659     return;
3660   }
3661   // If constant is in right child, build path and recurse
3662   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3663     idx = idx - lConsts;
3664     fprintf(fp, "_kids[1]->");
3665     path_to_constant(fp, globals, mnode->_rChild, idx);
3666     return;
3667   }
3668   assert( false, "ShouldNotReachHere()");
3669 }
3670 
3671 // Generate code that is executed when generating a specific Machine Operand
3672 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3673                             OperandForm &op) {
3674   const char *opName         = op._ident;
3675   const char *opEnumName     = AD.machOperEnum(opName);
3676   uint        num_consts     = op.num_consts(globalNames);
3677 
3678   // Generate the case statement for this opcode
3679   fprintf(fp, "  case %s:", opEnumName);
3680   fprintf(fp, "\n    return new (C) %sOper(", opName);
3681   // Access parameters for constructor from the stat object
3682   //
3683   // Build access to condition code value
3684   if ( (num_consts > 0) ) {
3685     uint i = 0;
3686     path_to_constant(fp, globalNames, op._matrule, i);
3687     for ( i = 1; i < num_consts; ++i ) {
3688       fprintf(fp, ", ");
3689       path_to_constant(fp, globalNames, op._matrule, i);
3690     }
3691   }
3692   fprintf(fp, " );\n");
3693 }
3694 
3695 
3696 // Build switch to invoke "new" MachNode or MachOper
3697 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3698   int idx = 0;
3699 
3700   // Build switch to invoke 'new' for a specific MachOper
3701   fprintf(fp_cpp, "\n");
3702   fprintf(fp_cpp, "\n");
3703   fprintf(fp_cpp,
3704           "//------------------------- MachOper Generator ---------------\n");
3705   fprintf(fp_cpp,
3706           "// A switch statement on the dense-packed user-defined type system\n"
3707           "// that invokes 'new' on the corresponding class constructor.\n");
3708   fprintf(fp_cpp, "\n");
3709   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3710   fprintf(fp_cpp, "(int opcode, Compile* C)");
3711   fprintf(fp_cpp, "{\n");
3712   fprintf(fp_cpp, "\n");
3713   fprintf(fp_cpp, "  switch(opcode) {\n");
3714 
3715   // Place all user-defined operands into the mapping
3716   _operands.reset();
3717   int  opIndex = 0;
3718   OperandForm *op;
3719   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3720     // Ensure this is a machine-world instruction
3721     if ( op->ideal_only() )  continue;
3722 
3723     genMachOperCase(fp_cpp, _globalNames, *this, *op);
3724   };
3725 
3726   // Do not iterate over operand classes for the  operand generator!!!
3727 
3728   // Place all internal operands into the mapping
3729   _internalOpNames.reset();
3730   const char *iopn;
3731   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3732     const char *opEnumName = machOperEnum(iopn);
3733     // Generate the case statement for this opcode
3734     fprintf(fp_cpp, "  case %s:", opEnumName);
3735     fprintf(fp_cpp, "    return NULL;\n");
3736   };
3737 
3738   // Generate the default case for switch(opcode)
3739   fprintf(fp_cpp, "  \n");
3740   fprintf(fp_cpp, "  default:\n");
3741   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3742   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3743   fprintf(fp_cpp, "    break;\n");
3744   fprintf(fp_cpp, "  }\n");
3745 
3746   // Generate the closing for method Matcher::MachOperGenerator
3747   fprintf(fp_cpp, "  return NULL;\n");
3748   fprintf(fp_cpp, "};\n");
3749 }
3750 
3751 
3752 //---------------------------buildMachNode-------------------------------------
3753 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
3754 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3755   const char *opType  = NULL;
3756   const char *opClass = inst->_ident;
3757 
3758   // Create the MachNode object
3759   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
3760 
3761   if ( (inst->num_post_match_opnds() != 0) ) {
3762     // Instruction that contains operands which are not in match rule.
3763     //
3764     // Check if the first post-match component may be an interesting def
3765     bool           dont_care = false;
3766     ComponentList &comp_list = inst->_components;
3767     Component     *comp      = NULL;
3768     comp_list.reset();
3769     if ( comp_list.match_iter() != NULL )    dont_care = true;
3770 
3771     // Insert operands that are not in match-rule.
3772     // Only insert a DEF if the do_care flag is set
3773     comp_list.reset();
3774     while ( comp = comp_list.post_match_iter() ) {
3775       // Check if we don't care about DEFs or KILLs that are not USEs
3776       if ( dont_care && (! comp->isa(Component::USE)) ) {
3777         continue;
3778       }
3779       dont_care = true;
3780       // For each operand not in the match rule, call MachOperGenerator
3781       // with the enum for the opcode that needs to be built.
3782       ComponentList clist = inst->_components;
3783       int         index  = clist.operand_position(comp->_name, comp->_usedef);
3784       const char *opcode = machOperEnum(comp->_type);
3785       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3786       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
3787       }
3788   }
3789   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3790     // An instruction that chains from a constant!
3791     // In this case, we need to subsume the constant into the node
3792     // at operand position, oper_input_base().
3793     //
3794     // Fill in the constant
3795     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3796             inst->oper_input_base(_globalNames));
3797     // #####
3798     // Check for multiple constants and then fill them in.
3799     // Just like MachOperGenerator
3800     const char *opName = inst->_matrule->_rChild->_opType;
3801     fprintf(fp_cpp, "new (C) %sOper(", opName);
3802     // Grab operand form
3803     OperandForm *op = (_globalNames[opName])->is_operand();
3804     // Look up the number of constants
3805     uint num_consts = op->num_consts(_globalNames);
3806     if ( (num_consts > 0) ) {
3807       uint i = 0;
3808       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3809       for ( i = 1; i < num_consts; ++i ) {
3810         fprintf(fp_cpp, ", ");
3811         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3812       }
3813     }
3814     fprintf(fp_cpp, " );\n");
3815     // #####
3816   }
3817 
3818   // Fill in the bottom_type where requested
3819   if ( inst->captures_bottom_type(_globalNames) ) {
3820     fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3821   }
3822   if( inst->is_ideal_if() ) {
3823     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3824     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3825   }
3826   if( inst->is_ideal_fastlock() ) {
3827     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3828   }
3829 
3830 }
3831 
3832 //---------------------------declare_cisc_version------------------------------
3833 // Build CISC version of this instruction
3834 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3835   if( AD.can_cisc_spill() ) {
3836     InstructForm *inst_cisc = cisc_spill_alternate();
3837     if (inst_cisc != NULL) {
3838       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3839       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
3840       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
3841       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3842     }
3843   }
3844 }
3845 
3846 //---------------------------define_cisc_version-------------------------------
3847 // Build CISC version of this instruction
3848 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3849   InstructForm *inst_cisc = this->cisc_spill_alternate();
3850   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3851     const char   *name      = inst_cisc->_ident;
3852     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3853     OperandForm *cisc_oper = AD.cisc_spill_operand();
3854     assert( cisc_oper != NULL, "insanity check");
3855     const char *cisc_oper_name  = cisc_oper->_ident;
3856     assert( cisc_oper_name != NULL, "insanity check");
3857     //
3858     // Set the correct reg_mask_or_stack for the cisc operand
3859     fprintf(fp_cpp, "\n");
3860     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3861     // Lookup the correct reg_mask_or_stack
3862     const char *reg_mask_name = cisc_reg_mask_name();
3863     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3864     fprintf(fp_cpp, "}\n");
3865     //
3866     // Construct CISC version of this instruction
3867     fprintf(fp_cpp, "\n");
3868     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3869     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
3870     // Create the MachNode object
3871     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
3872     // Fill in the bottom_type where requested
3873     if ( this->captures_bottom_type(AD.globalNames()) ) {
3874       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3875     }
3876 
3877     uint cur_num_opnds = num_opnds();
3878     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
3879       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
3880     }
3881 
3882     fprintf(fp_cpp, "\n");
3883     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3884     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
3885     // Construct operand to access [stack_pointer + offset]
3886     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
3887     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
3888     fprintf(fp_cpp, "\n");
3889 
3890     // Return result and exit scope
3891     fprintf(fp_cpp, "  return node;\n");
3892     fprintf(fp_cpp, "}\n");
3893     fprintf(fp_cpp, "\n");
3894     return true;
3895   }
3896   return false;
3897 }
3898 
3899 //---------------------------declare_short_branch_methods----------------------
3900 // Build prototypes for short branch methods
3901 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
3902   if (has_short_branch_form()) {
3903     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
3904   }
3905 }
3906 
3907 //---------------------------define_short_branch_methods-----------------------
3908 // Build definitions for short branch methods
3909 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
3910   if (has_short_branch_form()) {
3911     InstructForm *short_branch = short_branch_form();
3912     const char   *name         = short_branch->_ident;
3913 
3914     // Construct short_branch_version() method.
3915     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
3916     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
3917     // Create the MachNode object
3918     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
3919     if( is_ideal_if() ) {
3920       fprintf(fp_cpp, "  node->_prob = _prob;\n");
3921       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
3922     }
3923     // Fill in the bottom_type where requested
3924     if ( this->captures_bottom_type(AD.globalNames()) ) {
3925       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3926     }
3927 
3928     fprintf(fp_cpp, "\n");
3929     // Short branch version must use same node index for access
3930     // through allocator's tables
3931     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3932     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
3933 
3934     // Return result and exit scope
3935     fprintf(fp_cpp, "  return node;\n");
3936     fprintf(fp_cpp, "}\n");
3937     fprintf(fp_cpp,"\n");
3938     return true;
3939   }
3940   return false;
3941 }
3942 
3943 
3944 //---------------------------buildMachNodeGenerator----------------------------
3945 // Build switch to invoke appropriate "new" MachNode for an opcode
3946 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
3947 
3948   // Build switch to invoke 'new' for a specific MachNode
3949   fprintf(fp_cpp, "\n");
3950   fprintf(fp_cpp, "\n");
3951   fprintf(fp_cpp,
3952           "//------------------------- MachNode Generator ---------------\n");
3953   fprintf(fp_cpp,
3954           "// A switch statement on the dense-packed user-defined type system\n"
3955           "// that invokes 'new' on the corresponding class constructor.\n");
3956   fprintf(fp_cpp, "\n");
3957   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
3958   fprintf(fp_cpp, "(int opcode, Compile* C)");
3959   fprintf(fp_cpp, "{\n");
3960   fprintf(fp_cpp, "  switch(opcode) {\n");
3961 
3962   // Provide constructor for all user-defined instructions
3963   _instructions.reset();
3964   int  opIndex = operandFormCount();
3965   InstructForm *inst;
3966   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3967     // Ensure that matrule is defined.
3968     if ( inst->_matrule == NULL ) continue;
3969 
3970     int         opcode  = opIndex++;
3971     const char *opClass = inst->_ident;
3972     char       *opType  = NULL;
3973 
3974     // Generate the case statement for this instruction
3975     fprintf(fp_cpp, "  case %s_rule:", opClass);
3976 
3977     // Start local scope
3978     fprintf(fp_cpp, "  {\n");
3979     // Generate code to construct the new MachNode
3980     buildMachNode(fp_cpp, inst, "     ");
3981     // Return result and exit scope
3982     fprintf(fp_cpp, "      return node;\n");
3983     fprintf(fp_cpp, "    }\n");
3984   }
3985 
3986   // Generate the default case for switch(opcode)
3987   fprintf(fp_cpp, "  \n");
3988   fprintf(fp_cpp, "  default:\n");
3989   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
3990   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3991   fprintf(fp_cpp, "    break;\n");
3992   fprintf(fp_cpp, "  };\n");
3993 
3994   // Generate the closing for method Matcher::MachNodeGenerator
3995   fprintf(fp_cpp, "  return NULL;\n");
3996   fprintf(fp_cpp, "}\n");
3997 }
3998 
3999 
4000 //---------------------------buildInstructMatchCheck--------------------------
4001 // Output the method to Matcher which checks whether or not a specific
4002 // instruction has a matching rule for the host architecture.
4003 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4004   fprintf(fp_cpp, "\n\n");
4005   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4006   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4007   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
4008   fprintf(fp_cpp, "}\n\n");
4009 
4010   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4011   int i;
4012   for (i = 0; i < _last_opcode - 1; i++) {
4013     fprintf(fp_cpp, "    %-5s,  // %s\n",
4014             _has_match_rule[i] ? "true" : "false",
4015             NodeClassNames[i]);
4016   }
4017   fprintf(fp_cpp, "    %-5s   // %s\n",
4018           _has_match_rule[i] ? "true" : "false",
4019           NodeClassNames[i]);
4020   fprintf(fp_cpp, "};\n");
4021 }
4022 
4023 //---------------------------buildFrameMethods---------------------------------
4024 // Output the methods to Matcher which specify frame behavior
4025 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4026   fprintf(fp_cpp,"\n\n");
4027   // Stack Direction
4028   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4029           _frame->_direction ? "true" : "false");
4030   // Sync Stack Slots
4031   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4032           _frame->_sync_stack_slots);
4033   // Java Stack Alignment
4034   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4035           _frame->_alignment);
4036   // Java Return Address Location
4037   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4038   if (_frame->_return_addr_loc) {
4039     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4040             _frame->_return_addr);
4041   }
4042   else {
4043     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4044             _frame->_return_addr);
4045   }
4046   // Java Stack Slot Preservation
4047   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4048   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4049   // Top Of Stack Slot Preservation, for both Java and C
4050   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4051   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4052   // varargs C out slots killed
4053   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4054   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4055   // Java Argument Position
4056   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4057   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4058   fprintf(fp_cpp,"}\n\n");
4059   // Native Argument Position
4060   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4061   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4062   fprintf(fp_cpp,"}\n\n");
4063   // Java Return Value Location
4064   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
4065   fprintf(fp_cpp,"%s\n", _frame->_return_value);
4066   fprintf(fp_cpp,"}\n\n");
4067   // Native Return Value Location
4068   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
4069   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4070   fprintf(fp_cpp,"}\n\n");
4071 
4072   // Inline Cache Register, mask definition, and encoding
4073   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4074   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4075           _frame->_inline_cache_reg);
4076   fprintf(fp_cpp,"const RegMask &Matcher::inline_cache_reg_mask() {");
4077   fprintf(fp_cpp," return INLINE_CACHE_REG_mask; }\n\n");
4078   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4079   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4080 
4081   // Interpreter's Method Oop Register, mask definition, and encoding
4082   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4083   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4084           _frame->_interpreter_method_oop_reg);
4085   fprintf(fp_cpp,"const RegMask &Matcher::interpreter_method_oop_reg_mask() {");
4086   fprintf(fp_cpp," return INTERPRETER_METHOD_OOP_REG_mask; }\n\n");
4087   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4088   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4089 
4090   // Interpreter's Frame Pointer Register, mask definition, and encoding
4091   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4092   if (_frame->_interpreter_frame_pointer_reg == NULL)
4093     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4094   else
4095     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4096             _frame->_interpreter_frame_pointer_reg);
4097   fprintf(fp_cpp,"const RegMask &Matcher::interpreter_frame_pointer_reg_mask() {");
4098   if (_frame->_interpreter_frame_pointer_reg == NULL)
4099     fprintf(fp_cpp," static RegMask dummy; return dummy; }\n\n");
4100   else
4101     fprintf(fp_cpp," return INTERPRETER_FRAME_POINTER_REG_mask; }\n\n");
4102 
4103   // Frame Pointer definition
4104   /* CNC - I can not contemplate having a different frame pointer between
4105      Java and native code; makes my head hurt to think about it.
4106   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4107   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4108           _frame->_frame_pointer);
4109   */
4110   // (Native) Frame Pointer definition
4111   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4112   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4113           _frame->_frame_pointer);
4114 
4115   // Number of callee-save + always-save registers for calling convention
4116   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4117   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4118   RegDef *rdef;
4119   int nof_saved_registers = 0;
4120   _register->reset_RegDefs();
4121   while( (rdef = _register->iter_RegDefs()) != NULL ) {
4122     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4123       ++nof_saved_registers;
4124   }
4125   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4126   fprintf(fp_cpp, "};\n\n");
4127 }
4128 
4129 
4130 
4131 
4132 static int PrintAdlcCisc = 0;
4133 //---------------------------identify_cisc_spilling----------------------------
4134 // Get info for the CISC_oracle and MachNode::cisc_version()
4135 void ArchDesc::identify_cisc_spill_instructions() {
4136 
4137   // Find the user-defined operand for cisc-spilling
4138   if( _frame->_cisc_spilling_operand_name != NULL ) {
4139     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4140     OperandForm *oper = form ? form->is_operand() : NULL;
4141     // Verify the user's suggestion
4142     if( oper != NULL ) {
4143       // Ensure that match field is defined.
4144       if ( oper->_matrule != NULL )  {
4145         MatchRule &mrule = *oper->_matrule;
4146         if( strcmp(mrule._opType,"AddP") == 0 ) {
4147           MatchNode *left = mrule._lChild;
4148           MatchNode *right= mrule._rChild;
4149           if( left != NULL && right != NULL ) {
4150             const Form *left_op  = _globalNames[left->_opType]->is_operand();
4151             const Form *right_op = _globalNames[right->_opType]->is_operand();
4152             if(  (left_op != NULL && right_op != NULL)
4153               && (left_op->interface_type(_globalNames) == Form::register_interface)
4154               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4155               // Successfully verified operand
4156               set_cisc_spill_operand( oper );
4157               if( _cisc_spill_debug ) {
4158                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4159              }
4160             }
4161           }
4162         }
4163       }
4164     }
4165   }
4166 
4167   if( cisc_spill_operand() != NULL ) {
4168     // N^2 comparison of instructions looking for a cisc-spilling version
4169     _instructions.reset();
4170     InstructForm *instr;
4171     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4172       // Ensure that match field is defined.
4173       if ( instr->_matrule == NULL )  continue;
4174 
4175       MatchRule &mrule = *instr->_matrule;
4176       Predicate *pred  =  instr->build_predicate();
4177 
4178       // Grab the machine type of the operand
4179       const char *rootOp = instr->_ident;
4180       mrule._machType    = rootOp;
4181 
4182       // Find result type for match
4183       const char *result = instr->reduce_result();
4184 
4185       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4186       bool  found_cisc_alternate = false;
4187       _instructions.reset2();
4188       InstructForm *instr2;
4189       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4190         // Ensure that match field is defined.
4191         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4192         if ( instr2->_matrule != NULL
4193             && (instr != instr2 )                // Skip self
4194             && (instr2->reduce_result() != NULL) // want same result
4195             && (strcmp(result, instr2->reduce_result()) == 0)) {
4196           MatchRule &mrule2 = *instr2->_matrule;
4197           Predicate *pred2  =  instr2->build_predicate();
4198           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4199         }
4200       }
4201     }
4202   }
4203 }
4204 
4205 //---------------------------build_cisc_spilling-------------------------------
4206 // Get info for the CISC_oracle and MachNode::cisc_version()
4207 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4208   // Output the table for cisc spilling
4209   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4210   _instructions.reset();
4211   InstructForm *inst = NULL;
4212   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4213     // Ensure this is a machine-world instruction
4214     if ( inst->ideal_only() )  continue;
4215     const char *inst_name = inst->_ident;
4216     int   operand   = inst->cisc_spill_operand();
4217     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4218       InstructForm *inst2 = inst->cisc_spill_alternate();
4219       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4220     }
4221   }
4222   fprintf(fp_cpp, "\n\n");
4223 }
4224 
4225 //---------------------------identify_short_branches----------------------------
4226 // Get info for our short branch replacement oracle.
4227 void ArchDesc::identify_short_branches() {
4228   // Walk over all instructions, checking to see if they match a short
4229   // branching alternate.
4230   _instructions.reset();
4231   InstructForm *instr;
4232   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4233     // The instruction must have a match rule.
4234     if (instr->_matrule != NULL &&
4235         instr->is_short_branch()) {
4236 
4237       _instructions.reset2();
4238       InstructForm *instr2;
4239       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4240         instr2->check_branch_variant(*this, instr);
4241       }
4242     }
4243   }
4244 }
4245 
4246 
4247 //---------------------------identify_unique_operands---------------------------
4248 // Identify unique operands.
4249 void ArchDesc::identify_unique_operands() {
4250   // Walk over all instructions.
4251   _instructions.reset();
4252   InstructForm *instr;
4253   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4254     // Ensure this is a machine-world instruction
4255     if (!instr->ideal_only()) {
4256       instr->set_unique_opnds();
4257     }
4258   }
4259 }