1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 class AbstractLockNode;
  39 class AddNode;
  40 class AddPNode;
  41 class AliasInfo;
  42 class AllocateArrayNode;
  43 class AllocateNode;
  44 class Block;
  45 class Block_Array;
  46 class BoolNode;
  47 class BoxLockNode;
  48 class CMoveNode;
  49 class CallDynamicJavaNode;
  50 class CallJavaNode;
  51 class CallLeafNode;
  52 class CallNode;
  53 class CallRuntimeNode;
  54 class CallStaticJavaNode;
  55 class CatchNode;
  56 class CatchProjNode;
  57 class CheckCastPPNode;
  58 class ClearArrayNode;
  59 class CmpNode;
  60 class CodeBuffer;
  61 class ConstraintCastNode;
  62 class ConNode;
  63 class CountedLoopNode;
  64 class CountedLoopEndNode;
  65 class DecodeNNode;
  66 class EncodePNode;
  67 class FastLockNode;
  68 class FastUnlockNode;
  69 class IfNode;
  70 class IfFalseNode;
  71 class IfTrueNode;
  72 class InitializeNode;
  73 class JVMState;
  74 class JumpNode;
  75 class JumpProjNode;
  76 class LoadNode;
  77 class LoadStoreNode;
  78 class LockNode;
  79 class LoopNode;
  80 class MachCallDynamicJavaNode;
  81 class MachCallJavaNode;
  82 class MachCallLeafNode;
  83 class MachCallNode;
  84 class MachCallRuntimeNode;
  85 class MachCallStaticJavaNode;
  86 class MachConstantBaseNode;
  87 class MachConstantNode;
  88 class MachGotoNode;
  89 class MachIfNode;
  90 class MachNode;
  91 class MachNullCheckNode;
  92 class MachProjNode;
  93 class MachReturnNode;
  94 class MachSafePointNode;
  95 class MachSpillCopyNode;
  96 class MachTempNode;
  97 class Matcher;
  98 class MemBarNode;
  99 class MemNode;
 100 class MergeMemNode;
 101 class MultiNode;
 102 class MultiBranchNode;
 103 class NeverBranchNode;
 104 class Node;
 105 class Node_Array;
 106 class Node_List;
 107 class Node_Stack;
 108 class NullCheckNode;
 109 class OopMap;
 110 class ParmNode;
 111 class PCTableNode;
 112 class PhaseCCP;
 113 class PhaseGVN;
 114 class PhaseIterGVN;
 115 class PhaseRegAlloc;
 116 class PhaseTransform;
 117 class PhaseValues;
 118 class PhiNode;
 119 class Pipeline;
 120 class ProjNode;
 121 class RegMask;
 122 class RegionNode;
 123 class RootNode;
 124 class SafePointNode;
 125 class SafePointScalarObjectNode;
 126 class StartNode;
 127 class State;
 128 class StoreNode;
 129 class SubNode;
 130 class Type;
 131 class TypeNode;
 132 class UnlockNode;
 133 class VectorNode;
 134 class VectorLoadNode;
 135 class VectorStoreNode;
 136 class VectorSet;
 137 typedef void (*NFunc)(Node&,void*);
 138 extern "C" {
 139   typedef int (*C_sort_func_t)(const void *, const void *);
 140 }
 141 
 142 // The type of all node counts and indexes.
 143 // It must hold at least 16 bits, but must also be fast to load and store.
 144 // This type, if less than 32 bits, could limit the number of possible nodes.
 145 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 146 typedef unsigned int node_idx_t;
 147 
 148 
 149 #ifndef OPTO_DU_ITERATOR_ASSERT
 150 #ifdef ASSERT
 151 #define OPTO_DU_ITERATOR_ASSERT 1
 152 #else
 153 #define OPTO_DU_ITERATOR_ASSERT 0
 154 #endif
 155 #endif //OPTO_DU_ITERATOR_ASSERT
 156 
 157 #if OPTO_DU_ITERATOR_ASSERT
 158 class DUIterator;
 159 class DUIterator_Fast;
 160 class DUIterator_Last;
 161 #else
 162 typedef uint   DUIterator;
 163 typedef Node** DUIterator_Fast;
 164 typedef Node** DUIterator_Last;
 165 #endif
 166 
 167 // Node Sentinel
 168 #define NodeSentinel (Node*)-1
 169 
 170 // Unknown count frequency
 171 #define COUNT_UNKNOWN (-1.0f)
 172 
 173 //------------------------------Node-------------------------------------------
 174 // Nodes define actions in the program.  They create values, which have types.
 175 // They are both vertices in a directed graph and program primitives.  Nodes
 176 // are labeled; the label is the "opcode", the primitive function in the lambda
 177 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 178 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 179 // the Node's function.  These inputs also define a Type equation for the Node.
 180 // Solving these Type equations amounts to doing dataflow analysis.
 181 // Control and data are uniformly represented in the graph.  Finally, Nodes
 182 // have a unique dense integer index which is used to index into side arrays
 183 // whenever I have phase-specific information.
 184 
 185 class Node {
 186   // Lots of restrictions on cloning Nodes
 187   Node(const Node&);            // not defined; linker error to use these
 188   Node &operator=(const Node &rhs);
 189 
 190 public:
 191   friend class Compile;
 192   #if OPTO_DU_ITERATOR_ASSERT
 193   friend class DUIterator_Common;
 194   friend class DUIterator;
 195   friend class DUIterator_Fast;
 196   friend class DUIterator_Last;
 197   #endif
 198 
 199   // Because Nodes come and go, I define an Arena of Node structures to pull
 200   // from.  This should allow fast access to node creation & deletion.  This
 201   // field is a local cache of a value defined in some "program fragment" for
 202   // which these Nodes are just a part of.
 203 
 204   // New Operator that takes a Compile pointer, this will eventually
 205   // be the "new" New operator.
 206   inline void* operator new( size_t x, Compile* C) {
 207     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 208 #ifdef ASSERT
 209     n->_in = (Node**)n; // magic cookie for assertion check
 210 #endif
 211     n->_out = (Node**)C;
 212     return (void*)n;
 213   }
 214 
 215   // New Operator that takes a Compile pointer, this will eventually
 216   // be the "new" New operator.
 217   inline void* operator new( size_t x, Compile* C, int y) {
 218     Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
 219     n->_in = (Node**)(((char*)n) + x);
 220 #ifdef ASSERT
 221     n->_in[y-1] = n; // magic cookie for assertion check
 222 #endif
 223     n->_out = (Node**)C;
 224     return (void*)n;
 225   }
 226 
 227   // Delete is a NOP
 228   void operator delete( void *ptr ) {}
 229   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 230   void destruct();
 231 
 232   // Create a new Node.  Required is the number is of inputs required for
 233   // semantic correctness.
 234   Node( uint required );
 235 
 236   // Create a new Node with given input edges.
 237   // This version requires use of the "edge-count" new.
 238   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 239   Node( Node *n0 );
 240   Node( Node *n0, Node *n1 );
 241   Node( Node *n0, Node *n1, Node *n2 );
 242   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 243   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 244   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 245   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 246             Node *n4, Node *n5, Node *n6 );
 247 
 248   // Clone an inherited Node given only the base Node type.
 249   Node* clone() const;
 250 
 251   // Clone a Node, immediately supplying one or two new edges.
 252   // The first and second arguments, if non-null, replace in(1) and in(2),
 253   // respectively.
 254   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 255     Node* nn = clone();
 256     if (in1 != NULL)  nn->set_req(1, in1);
 257     if (in2 != NULL)  nn->set_req(2, in2);
 258     return nn;
 259   }
 260 
 261 private:
 262   // Shared setup for the above constructors.
 263   // Handles all interactions with Compile::current.
 264   // Puts initial values in all Node fields except _idx.
 265   // Returns the initial value for _idx, which cannot
 266   // be initialized by assignment.
 267   inline int Init(int req, Compile* C);
 268 
 269 //----------------- input edge handling
 270 protected:
 271   friend class PhaseCFG;        // Access to address of _in array elements
 272   Node **_in;                   // Array of use-def references to Nodes
 273   Node **_out;                  // Array of def-use references to Nodes
 274 
 275   // Input edges are split into two categories.  Required edges are required
 276   // for semantic correctness; order is important and NULLs are allowed.
 277   // Precedence edges are used to help determine execution order and are
 278   // added, e.g., for scheduling purposes.  They are unordered and not
 279   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 280   // are required, from _cnt to _max-1 are precedence edges.
 281   node_idx_t _cnt;              // Total number of required Node inputs.
 282 
 283   node_idx_t _max;              // Actual length of input array.
 284 
 285   // Output edges are an unordered list of def-use edges which exactly
 286   // correspond to required input edges which point from other nodes
 287   // to this one.  Thus the count of the output edges is the number of
 288   // users of this node.
 289   node_idx_t _outcnt;           // Total number of Node outputs.
 290 
 291   node_idx_t _outmax;           // Actual length of output array.
 292 
 293   // Grow the actual input array to the next larger power-of-2 bigger than len.
 294   void grow( uint len );
 295   // Grow the output array to the next larger power-of-2 bigger than len.
 296   void out_grow( uint len );
 297 
 298  public:
 299   // Each Node is assigned a unique small/dense number.  This number is used
 300   // to index into auxiliary arrays of data and bitvectors.
 301   // It is declared const to defend against inadvertant assignment,
 302   // since it is used by clients as a naked field.
 303   const node_idx_t _idx;
 304 
 305   // Get the (read-only) number of input edges
 306   uint req() const { return _cnt; }
 307   uint len() const { return _max; }
 308   // Get the (read-only) number of output edges
 309   uint outcnt() const { return _outcnt; }
 310 
 311 #if OPTO_DU_ITERATOR_ASSERT
 312   // Iterate over the out-edges of this node.  Deletions are illegal.
 313   inline DUIterator outs() const;
 314   // Use this when the out array might have changed to suppress asserts.
 315   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 316   // Does the node have an out at this position?  (Used for iteration.)
 317   inline bool has_out(DUIterator& i) const;
 318   inline Node*    out(DUIterator& i) const;
 319   // Iterate over the out-edges of this node.  All changes are illegal.
 320   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 321   inline Node*    fast_out(DUIterator_Fast& i) const;
 322   // Iterate over the out-edges of this node, deleting one at a time.
 323   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 324   inline Node*    last_out(DUIterator_Last& i) const;
 325   // The inline bodies of all these methods are after the iterator definitions.
 326 #else
 327   // Iterate over the out-edges of this node.  Deletions are illegal.
 328   // This iteration uses integral indexes, to decouple from array reallocations.
 329   DUIterator outs() const  { return 0; }
 330   // Use this when the out array might have changed to suppress asserts.
 331   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 332 
 333   // Reference to the i'th output Node.  Error if out of bounds.
 334   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 335   // Does the node have an out at this position?  (Used for iteration.)
 336   bool has_out(DUIterator i) const { return i < _outcnt; }
 337 
 338   // Iterate over the out-edges of this node.  All changes are illegal.
 339   // This iteration uses a pointer internal to the out array.
 340   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 341     Node** out = _out;
 342     // Assign a limit pointer to the reference argument:
 343     max = out + (ptrdiff_t)_outcnt;
 344     // Return the base pointer:
 345     return out;
 346   }
 347   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 348   // Iterate over the out-edges of this node, deleting one at a time.
 349   // This iteration uses a pointer internal to the out array.
 350   DUIterator_Last last_outs(DUIterator_Last& min) const {
 351     Node** out = _out;
 352     // Assign a limit pointer to the reference argument:
 353     min = out;
 354     // Return the pointer to the start of the iteration:
 355     return out + (ptrdiff_t)_outcnt - 1;
 356   }
 357   Node*    last_out(DUIterator_Last i) const  { return *i; }
 358 #endif
 359 
 360   // Reference to the i'th input Node.  Error if out of bounds.
 361   Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
 362   // Reference to the i'th output Node.  Error if out of bounds.
 363   // Use this accessor sparingly.  We are going trying to use iterators instead.
 364   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 365   // Return the unique out edge.
 366   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 367   // Delete out edge at position 'i' by moving last out edge to position 'i'
 368   void  raw_del_out(uint i) {
 369     assert(i < _outcnt,"oob");
 370     assert(_outcnt > 0,"oob");
 371     #if OPTO_DU_ITERATOR_ASSERT
 372     // Record that a change happened here.
 373     debug_only(_last_del = _out[i]; ++_del_tick);
 374     #endif
 375     _out[i] = _out[--_outcnt];
 376     // Smash the old edge so it can't be used accidentally.
 377     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 378   }
 379 
 380 #ifdef ASSERT
 381   bool is_dead() const;
 382 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 383 #endif
 384 
 385   // Set a required input edge, also updates corresponding output edge
 386   void add_req( Node *n ); // Append a NEW required input
 387   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 388   void del_req( uint idx ); // Delete required edge & compact
 389   void ins_req( uint i, Node *n ); // Insert a NEW required input
 390   void set_req( uint i, Node *n ) {
 391     assert( is_not_dead(n), "can not use dead node");
 392     assert( i < _cnt, "oob");
 393     assert( !VerifyHashTableKeys || _hash_lock == 0,
 394             "remove node from hash table before modifying it");
 395     Node** p = &_in[i];    // cache this._in, across the del_out call
 396     if (*p != NULL)  (*p)->del_out((Node *)this);
 397     (*p) = n;
 398     if (n != NULL)      n->add_out((Node *)this);
 399   }
 400   // Light version of set_req() to init inputs after node creation.
 401   void init_req( uint i, Node *n ) {
 402     assert( i == 0 && this == n ||
 403             is_not_dead(n), "can not use dead node");
 404     assert( i < _cnt, "oob");
 405     assert( !VerifyHashTableKeys || _hash_lock == 0,
 406             "remove node from hash table before modifying it");
 407     assert( _in[i] == NULL, "sanity");
 408     _in[i] = n;
 409     if (n != NULL)      n->add_out((Node *)this);
 410   }
 411   // Find first occurrence of n among my edges:
 412   int find_edge(Node* n);
 413   int replace_edge(Node* old, Node* neww);
 414   // NULL out all inputs to eliminate incoming Def-Use edges.
 415   // Return the number of edges between 'n' and 'this'
 416   int  disconnect_inputs(Node *n);
 417 
 418   // Quickly, return true if and only if I am Compile::current()->top().
 419   bool is_top() const {
 420     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 421     return (_out == NULL);
 422   }
 423   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 424   void setup_is_top();
 425 
 426   // Strip away casting.  (It is depth-limited.)
 427   Node* uncast() const;
 428 
 429 private:
 430   static Node* uncast_helper(const Node* n);
 431 
 432   // Add an output edge to the end of the list
 433   void add_out( Node *n ) {
 434     if (is_top())  return;
 435     if( _outcnt == _outmax ) out_grow(_outcnt);
 436     _out[_outcnt++] = n;
 437   }
 438   // Delete an output edge
 439   void del_out( Node *n ) {
 440     if (is_top())  return;
 441     Node** outp = &_out[_outcnt];
 442     // Find and remove n
 443     do {
 444       assert(outp > _out, "Missing Def-Use edge");
 445     } while (*--outp != n);
 446     *outp = _out[--_outcnt];
 447     // Smash the old edge so it can't be used accidentally.
 448     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 449     // Record that a change happened here.
 450     #if OPTO_DU_ITERATOR_ASSERT
 451     debug_only(_last_del = n; ++_del_tick);
 452     #endif
 453   }
 454 
 455 public:
 456   // Globally replace this node by a given new node, updating all uses.
 457   void replace_by(Node* new_node);
 458   // Globally replace this node by a given new node, updating all uses
 459   // and cutting input edges of old node.
 460   void subsume_by(Node* new_node) {
 461     replace_by(new_node);
 462     disconnect_inputs(NULL);
 463   }
 464   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 465   // Find the one non-null required input.  RegionNode only
 466   Node *nonnull_req() const;
 467   // Add or remove precedence edges
 468   void add_prec( Node *n );
 469   void rm_prec( uint i );
 470   void set_prec( uint i, Node *n ) {
 471     assert( is_not_dead(n), "can not use dead node");
 472     assert( i >= _cnt, "not a precedence edge");
 473     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 474     _in[i] = n;
 475     if (n != NULL) n->add_out((Node *)this);
 476   }
 477   // Set this node's index, used by cisc_version to replace current node
 478   void set_idx(uint new_idx) {
 479     const node_idx_t* ref = &_idx;
 480     *(node_idx_t*)ref = new_idx;
 481   }
 482   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 483   void swap_edges(uint i1, uint i2) {
 484     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 485     // Def-Use info is unchanged
 486     Node* n1 = in(i1);
 487     Node* n2 = in(i2);
 488     _in[i1] = n2;
 489     _in[i2] = n1;
 490     // If this node is in the hash table, make sure it doesn't need a rehash.
 491     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 492   }
 493 
 494   // Iterators over input Nodes for a Node X are written as:
 495   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 496   // NOTE: Required edges can contain embedded NULL pointers.
 497 
 498 //----------------- Other Node Properties
 499 
 500   // Generate class id for some ideal nodes to avoid virtual query
 501   // methods is_<Node>().
 502   // Class id is the set of bits corresponded to the node class and all its
 503   // super classes so that queries for super classes are also valid.
 504   // Subclasses of the same super class have different assigned bit
 505   // (the third parameter in the macro DEFINE_CLASS_ID).
 506   // Classes with deeper hierarchy are declared first.
 507   // Classes with the same hierarchy depth are sorted by usage frequency.
 508   //
 509   // The query method masks the bits to cut off bits of subclasses
 510   // and then compare the result with the class id
 511   // (see the macro DEFINE_CLASS_QUERY below).
 512   //
 513   //  Class_MachCall=30, ClassMask_MachCall=31
 514   // 12               8               4               0
 515   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 516   //                                  |   |   |   |
 517   //                                  |   |   |   Bit_Mach=2
 518   //                                  |   |   Bit_MachReturn=4
 519   //                                  |   Bit_MachSafePoint=8
 520   //                                  Bit_MachCall=16
 521   //
 522   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 523   // 12               8               4               0
 524   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 525   //                              |   |   |
 526   //                              |   |   Bit_Region=8
 527   //                              |   Bit_Loop=16
 528   //                              Bit_CountedLoop=32
 529 
 530   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 531   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 532   Class_##cl = Class_##supcl + Bit_##cl , \
 533   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 534 
 535   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 536   // so that it's values fits into 16 bits.
 537   enum NodeClasses {
 538     Bit_Node   = 0x0000,
 539     Class_Node = 0x0000,
 540     ClassMask_Node = 0xFFFF,
 541 
 542     DEFINE_CLASS_ID(Multi, Node, 0)
 543       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 544         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 545           DEFINE_CLASS_ID(CallJava,         Call, 0)
 546             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 547             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 548           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 549             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 550           DEFINE_CLASS_ID(Allocate,         Call, 2)
 551             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 552           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 553             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 554             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 555       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 556         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 557           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 558           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 559         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 560           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 561         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 562       DEFINE_CLASS_ID(Start,       Multi, 2)
 563       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 564         DEFINE_CLASS_ID(Initialize,    MemBar, 0)
 565 
 566     DEFINE_CLASS_ID(Mach,  Node, 1)
 567       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 568         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 569           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 570             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 571               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 572               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 573             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 574               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 575       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 1)
 576       DEFINE_CLASS_ID(MachNullCheck,    Mach, 2)
 577       DEFINE_CLASS_ID(MachIf,           Mach, 3)
 578       DEFINE_CLASS_ID(MachTemp,         Mach, 4)
 579       DEFINE_CLASS_ID(MachConstantBase, Mach, 5)
 580       DEFINE_CLASS_ID(MachConstant,     Mach, 6)
 581       DEFINE_CLASS_ID(MachGoto,         Mach, 7)
 582 
 583     DEFINE_CLASS_ID(Type,  Node, 2)
 584       DEFINE_CLASS_ID(Phi,   Type, 0)
 585       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 586       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 587       DEFINE_CLASS_ID(CMove, Type, 3)
 588       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 589       DEFINE_CLASS_ID(DecodeN, Type, 5)
 590       DEFINE_CLASS_ID(EncodeP, Type, 6)
 591 
 592     DEFINE_CLASS_ID(Proj,  Node, 3)
 593       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 594       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 595       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 596       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 597       DEFINE_CLASS_ID(Parm,      Proj, 4)
 598       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 599 
 600     DEFINE_CLASS_ID(Mem,   Node, 4)
 601       DEFINE_CLASS_ID(Load,  Mem, 0)
 602         DEFINE_CLASS_ID(VectorLoad,  Load, 0)
 603       DEFINE_CLASS_ID(Store, Mem, 1)
 604         DEFINE_CLASS_ID(VectorStore, Store, 0)
 605       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 606 
 607     DEFINE_CLASS_ID(Region, Node, 5)
 608       DEFINE_CLASS_ID(Loop, Region, 0)
 609         DEFINE_CLASS_ID(Root,        Loop, 0)
 610         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 611 
 612     DEFINE_CLASS_ID(Sub,   Node, 6)
 613       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 614         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 615         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 616 
 617     DEFINE_CLASS_ID(MergeMem, Node, 7)
 618     DEFINE_CLASS_ID(Bool,     Node, 8)
 619     DEFINE_CLASS_ID(AddP,     Node, 9)
 620     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 621     DEFINE_CLASS_ID(Add,      Node, 11)
 622     DEFINE_CLASS_ID(Vector,   Node, 12)
 623     DEFINE_CLASS_ID(ClearArray, Node, 13)
 624 
 625     _max_classes  = ClassMask_ClearArray
 626   };
 627   #undef DEFINE_CLASS_ID
 628 
 629   // Flags are sorted by usage frequency.
 630   enum NodeFlags {
 631     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
 632     Flag_rematerialize       = Flag_is_Copy << 1,
 633     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 634     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
 635     Flag_is_Con              = Flag_is_macro << 1,
 636     Flag_is_cisc_alternate   = Flag_is_Con << 1,
 637     Flag_is_Branch           = Flag_is_cisc_alternate << 1,
 638     Flag_is_dead_loop_safe   = Flag_is_Branch << 1,
 639     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
 640     Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
 641     _max_flags = (Flag_avoid_back_to_back << 1) - 1 // allow flags combination
 642   };
 643 
 644 private:
 645   jushort _class_id;
 646   jushort _flags;
 647 
 648 protected:
 649   // These methods should be called from constructors only.
 650   void init_class_id(jushort c) {
 651     assert(c <= _max_classes, "invalid node class");
 652     _class_id = c; // cast out const
 653   }
 654   void init_flags(jushort fl) {
 655     assert(fl <= _max_flags, "invalid node flag");
 656     _flags |= fl;
 657   }
 658   void clear_flag(jushort fl) {
 659     assert(fl <= _max_flags, "invalid node flag");
 660     _flags &= ~fl;
 661   }
 662 
 663 public:
 664   const jushort class_id() const { return _class_id; }
 665 
 666   const jushort flags() const { return _flags; }
 667 
 668   // Return a dense integer opcode number
 669   virtual int Opcode() const;
 670 
 671   // Virtual inherited Node size
 672   virtual uint size_of() const;
 673 
 674   // Other interesting Node properties
 675   #define DEFINE_CLASS_QUERY(type)                           \
 676   bool is_##type() const {                                   \
 677     return ((_class_id & ClassMask_##type) == Class_##type); \
 678   }                                                          \
 679   type##Node *as_##type() const {                            \
 680     assert(is_##type(), "invalid node class");               \
 681     return (type##Node*)this;                                \
 682   }                                                          \
 683   type##Node* isa_##type() const {                           \
 684     return (is_##type()) ? as_##type() : NULL;               \
 685   }
 686 
 687   DEFINE_CLASS_QUERY(AbstractLock)
 688   DEFINE_CLASS_QUERY(Add)
 689   DEFINE_CLASS_QUERY(AddP)
 690   DEFINE_CLASS_QUERY(Allocate)
 691   DEFINE_CLASS_QUERY(AllocateArray)
 692   DEFINE_CLASS_QUERY(Bool)
 693   DEFINE_CLASS_QUERY(BoxLock)
 694   DEFINE_CLASS_QUERY(Call)
 695   DEFINE_CLASS_QUERY(CallDynamicJava)
 696   DEFINE_CLASS_QUERY(CallJava)
 697   DEFINE_CLASS_QUERY(CallLeaf)
 698   DEFINE_CLASS_QUERY(CallRuntime)
 699   DEFINE_CLASS_QUERY(CallStaticJava)
 700   DEFINE_CLASS_QUERY(Catch)
 701   DEFINE_CLASS_QUERY(CatchProj)
 702   DEFINE_CLASS_QUERY(CheckCastPP)
 703   DEFINE_CLASS_QUERY(ConstraintCast)
 704   DEFINE_CLASS_QUERY(ClearArray)
 705   DEFINE_CLASS_QUERY(CMove)
 706   DEFINE_CLASS_QUERY(Cmp)
 707   DEFINE_CLASS_QUERY(CountedLoop)
 708   DEFINE_CLASS_QUERY(CountedLoopEnd)
 709   DEFINE_CLASS_QUERY(DecodeN)
 710   DEFINE_CLASS_QUERY(EncodeP)
 711   DEFINE_CLASS_QUERY(FastLock)
 712   DEFINE_CLASS_QUERY(FastUnlock)
 713   DEFINE_CLASS_QUERY(If)
 714   DEFINE_CLASS_QUERY(IfFalse)
 715   DEFINE_CLASS_QUERY(IfTrue)
 716   DEFINE_CLASS_QUERY(Initialize)
 717   DEFINE_CLASS_QUERY(Jump)
 718   DEFINE_CLASS_QUERY(JumpProj)
 719   DEFINE_CLASS_QUERY(Load)
 720   DEFINE_CLASS_QUERY(LoadStore)
 721   DEFINE_CLASS_QUERY(Lock)
 722   DEFINE_CLASS_QUERY(Loop)
 723   DEFINE_CLASS_QUERY(Mach)
 724   DEFINE_CLASS_QUERY(MachCall)
 725   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 726   DEFINE_CLASS_QUERY(MachCallJava)
 727   DEFINE_CLASS_QUERY(MachCallLeaf)
 728   DEFINE_CLASS_QUERY(MachCallRuntime)
 729   DEFINE_CLASS_QUERY(MachCallStaticJava)
 730   DEFINE_CLASS_QUERY(MachConstantBase)
 731   DEFINE_CLASS_QUERY(MachConstant)
 732   DEFINE_CLASS_QUERY(MachGoto)
 733   DEFINE_CLASS_QUERY(MachIf)
 734   DEFINE_CLASS_QUERY(MachNullCheck)
 735   DEFINE_CLASS_QUERY(MachProj)
 736   DEFINE_CLASS_QUERY(MachReturn)
 737   DEFINE_CLASS_QUERY(MachSafePoint)
 738   DEFINE_CLASS_QUERY(MachSpillCopy)
 739   DEFINE_CLASS_QUERY(MachTemp)
 740   DEFINE_CLASS_QUERY(Mem)
 741   DEFINE_CLASS_QUERY(MemBar)
 742   DEFINE_CLASS_QUERY(MergeMem)
 743   DEFINE_CLASS_QUERY(Multi)
 744   DEFINE_CLASS_QUERY(MultiBranch)
 745   DEFINE_CLASS_QUERY(Parm)
 746   DEFINE_CLASS_QUERY(PCTable)
 747   DEFINE_CLASS_QUERY(Phi)
 748   DEFINE_CLASS_QUERY(Proj)
 749   DEFINE_CLASS_QUERY(Region)
 750   DEFINE_CLASS_QUERY(Root)
 751   DEFINE_CLASS_QUERY(SafePoint)
 752   DEFINE_CLASS_QUERY(SafePointScalarObject)
 753   DEFINE_CLASS_QUERY(Start)
 754   DEFINE_CLASS_QUERY(Store)
 755   DEFINE_CLASS_QUERY(Sub)
 756   DEFINE_CLASS_QUERY(Type)
 757   DEFINE_CLASS_QUERY(Vector)
 758   DEFINE_CLASS_QUERY(VectorLoad)
 759   DEFINE_CLASS_QUERY(VectorStore)
 760   DEFINE_CLASS_QUERY(Unlock)
 761 
 762   #undef DEFINE_CLASS_QUERY
 763 
 764   // duplicate of is_MachSpillCopy()
 765   bool is_SpillCopy () const {
 766     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 767   }
 768 
 769   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 770   // The data node which is safe to leave in dead loop during IGVN optimization.
 771   bool is_dead_loop_safe() const {
 772     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 773            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 774             (!is_Proj() || !in(0)->is_Allocate()));
 775   }
 776 
 777   // is_Copy() returns copied edge index (0 or 1)
 778   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 779 
 780   virtual bool is_CFG() const { return false; }
 781 
 782   // If this node is control-dependent on a test, can it be
 783   // rerouted to a dominating equivalent test?  This is usually
 784   // true of non-CFG nodes, but can be false for operations which
 785   // depend for their correct sequencing on more than one test.
 786   // (In that case, hoisting to a dominating test may silently
 787   // skip some other important test.)
 788   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 789 
 790   // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd' | 'Jump'
 791   bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
 792 
 793   // When building basic blocks, I need to have a notion of block beginning
 794   // Nodes, next block selector Nodes (block enders), and next block
 795   // projections.  These calls need to work on their machine equivalents.  The
 796   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 797   bool is_block_start() const {
 798     if ( is_Region() )
 799       return this == (const Node*)in(0);
 800     else
 801       return is_Start();
 802   }
 803 
 804   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 805   // Goto and Return.  This call also returns the block ending Node.
 806   virtual const Node *is_block_proj() const;
 807 
 808   // The node is a "macro" node which needs to be expanded before matching
 809   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 810 
 811 //----------------- Optimization
 812 
 813   // Get the worst-case Type output for this Node.
 814   virtual const class Type *bottom_type() const;
 815 
 816   // If we find a better type for a node, try to record it permanently.
 817   // Return true if this node actually changed.
 818   // Be sure to do the hash_delete game in the "rehash" variant.
 819   void raise_bottom_type(const Type* new_type);
 820 
 821   // Get the address type with which this node uses and/or defs memory,
 822   // or NULL if none.  The address type is conservatively wide.
 823   // Returns non-null for calls, membars, loads, stores, etc.
 824   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 825   virtual const class TypePtr *adr_type() const { return NULL; }
 826 
 827   // Return an existing node which computes the same function as this node.
 828   // The optimistic combined algorithm requires this to return a Node which
 829   // is a small number of steps away (e.g., one of my inputs).
 830   virtual Node *Identity( PhaseTransform *phase );
 831 
 832   // Return the set of values this Node can take on at runtime.
 833   virtual const Type *Value( PhaseTransform *phase ) const;
 834 
 835   // Return a node which is more "ideal" than the current node.
 836   // The invariants on this call are subtle.  If in doubt, read the
 837   // treatise in node.cpp above the default implemention AND TEST WITH
 838   // +VerifyIterativeGVN!
 839   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 840 
 841   // Some nodes have specific Ideal subgraph transformations only if they are
 842   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 843   // for the transformations to happen.
 844   bool has_special_unique_user() const;
 845 
 846   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 847   Node* find_exact_control(Node* ctrl);
 848 
 849   // Check if 'this' node dominates or equal to 'sub'.
 850   bool dominates(Node* sub, Node_List &nlist);
 851 
 852 protected:
 853   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 854 public:
 855 
 856   // Idealize graph, using DU info.  Done after constant propagation
 857   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
 858 
 859   // See if there is valid pipeline info
 860   static  const Pipeline *pipeline_class();
 861   virtual const Pipeline *pipeline() const;
 862 
 863   // Compute the latency from the def to this instruction of the ith input node
 864   uint latency(uint i);
 865 
 866   // Hash & compare functions, for pessimistic value numbering
 867 
 868   // If the hash function returns the special sentinel value NO_HASH,
 869   // the node is guaranteed never to compare equal to any other node.
 870   // If we accidentally generate a hash with value NO_HASH the node
 871   // won't go into the table and we'll lose a little optimization.
 872   enum { NO_HASH = 0 };
 873   virtual uint hash() const;
 874   virtual uint cmp( const Node &n ) const;
 875 
 876   // Operation appears to be iteratively computed (such as an induction variable)
 877   // It is possible for this operation to return false for a loop-varying
 878   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 879   bool is_iteratively_computed();
 880 
 881   // Determine if a node is Counted loop induction variable.
 882   // The method is defined in loopnode.cpp.
 883   const Node* is_loop_iv() const;
 884 
 885   // Return a node with opcode "opc" and same inputs as "this" if one can
 886   // be found; Otherwise return NULL;
 887   Node* find_similar(int opc);
 888 
 889   // Return the unique control out if only one. Null if none or more than one.
 890   Node* unique_ctrl_out();
 891 
 892 //----------------- Code Generation
 893 
 894   // Ideal register class for Matching.  Zero means unmatched instruction
 895   // (these are cloned instead of converted to machine nodes).
 896   virtual uint ideal_reg() const;
 897 
 898   static const uint NotAMachineReg;   // must be > max. machine register
 899 
 900   // Do we Match on this edge index or not?  Generally false for Control
 901   // and true for everything else.  Weird for calls & returns.
 902   virtual uint match_edge(uint idx) const;
 903 
 904   // Register class output is returned in
 905   virtual const RegMask &out_RegMask() const;
 906   // Register class input is expected in
 907   virtual const RegMask &in_RegMask(uint) const;
 908   // Should we clone rather than spill this instruction?
 909   bool rematerialize() const;
 910 
 911   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 912   virtual JVMState* jvms() const;
 913 
 914   // Print as assembly
 915   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 916   // Emit bytes starting at parameter 'ptr'
 917   // Bump 'ptr' by the number of output bytes
 918   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 919   // Size of instruction in bytes
 920   virtual uint size(PhaseRegAlloc *ra_) const;
 921 
 922   // Convenience function to extract an integer constant from a node.
 923   // If it is not an integer constant (either Con, CastII, or Mach),
 924   // return value_if_unknown.
 925   jint find_int_con(jint value_if_unknown) const {
 926     const TypeInt* t = find_int_type();
 927     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 928   }
 929   // Return the constant, knowing it is an integer constant already
 930   jint get_int() const {
 931     const TypeInt* t = find_int_type();
 932     guarantee(t != NULL, "must be con");
 933     return t->get_con();
 934   }
 935   // Here's where the work is done.  Can produce non-constant int types too.
 936   const TypeInt* find_int_type() const;
 937 
 938   // Same thing for long (and intptr_t, via type.hpp):
 939   jlong get_long() const {
 940     const TypeLong* t = find_long_type();
 941     guarantee(t != NULL, "must be con");
 942     return t->get_con();
 943   }
 944   jlong find_long_con(jint value_if_unknown) const {
 945     const TypeLong* t = find_long_type();
 946     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 947   }
 948   const TypeLong* find_long_type() const;
 949 
 950   // These guys are called by code generated by ADLC:
 951   intptr_t get_ptr() const;
 952   intptr_t get_narrowcon() const;
 953   jdouble getd() const;
 954   jfloat getf() const;
 955 
 956   // Nodes which are pinned into basic blocks
 957   virtual bool pinned() const { return false; }
 958 
 959   // Nodes which use memory without consuming it, hence need antidependences
 960   // More specifically, needs_anti_dependence_check returns true iff the node
 961   // (a) does a load, and (b) does not perform a store (except perhaps to a
 962   // stack slot or some other unaliased location).
 963   bool needs_anti_dependence_check() const;
 964 
 965   // Return which operand this instruction may cisc-spill. In other words,
 966   // return operand position that can convert from reg to memory access
 967   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
 968   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
 969 
 970 //----------------- Graph walking
 971 public:
 972   // Walk and apply member functions recursively.
 973   // Supplied (this) pointer is root.
 974   void walk(NFunc pre, NFunc post, void *env);
 975   static void nop(Node &, void*); // Dummy empty function
 976   static void packregion( Node &n, void* );
 977 private:
 978   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
 979 
 980 //----------------- Printing, etc
 981 public:
 982 #ifndef PRODUCT
 983   Node* find(int idx) const;         // Search the graph for the given idx.
 984   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
 985   void dump() const;                 // Print this node,
 986   void dump(int depth) const;        // Print this node, recursively to depth d
 987   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
 988   virtual void dump_req() const;     // Print required-edge info
 989   virtual void dump_prec() const;    // Print precedence-edge info
 990   virtual void dump_out() const;     // Print the output edge info
 991   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
 992   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
 993   void verify() const;               // Check Def-Use info for my subgraph
 994   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
 995 
 996   // This call defines a class-unique string used to identify class instances
 997   virtual const char *Name() const;
 998 
 999   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1000   // RegMask Print Functions
1001   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1002   void dump_out_regmask() { out_RegMask().dump(); }
1003   static int _in_dump_cnt;
1004   static bool in_dump() { return _in_dump_cnt > 0; }
1005   void fast_dump() const {
1006     tty->print("%4d: %-17s", _idx, Name());
1007     for (uint i = 0; i < len(); i++)
1008       if (in(i))
1009         tty->print(" %4d", in(i)->_idx);
1010       else
1011         tty->print(" NULL");
1012     tty->print("\n");
1013   }
1014 #endif
1015 #ifdef ASSERT
1016   void verify_construction();
1017   bool verify_jvms(const JVMState* jvms) const;
1018   int  _debug_idx;                     // Unique value assigned to every node.
1019   int   debug_idx() const              { return _debug_idx; }
1020   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1021 
1022   Node* _debug_orig;                   // Original version of this, if any.
1023   Node*  debug_orig() const            { return _debug_orig; }
1024   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1025 
1026   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1027   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1028   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1029 
1030   static void init_NodeProperty();
1031 
1032   #if OPTO_DU_ITERATOR_ASSERT
1033   const Node* _last_del;               // The last deleted node.
1034   uint        _del_tick;               // Bumped when a deletion happens..
1035   #endif
1036 #endif
1037 };
1038 
1039 //-----------------------------------------------------------------------------
1040 // Iterators over DU info, and associated Node functions.
1041 
1042 #if OPTO_DU_ITERATOR_ASSERT
1043 
1044 // Common code for assertion checking on DU iterators.
1045 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1046 #ifdef ASSERT
1047  protected:
1048   bool         _vdui;               // cached value of VerifyDUIterators
1049   const Node*  _node;               // the node containing the _out array
1050   uint         _outcnt;             // cached node->_outcnt
1051   uint         _del_tick;           // cached node->_del_tick
1052   Node*        _last;               // last value produced by the iterator
1053 
1054   void sample(const Node* node);    // used by c'tor to set up for verifies
1055   void verify(const Node* node, bool at_end_ok = false);
1056   void verify_resync();
1057   void reset(const DUIterator_Common& that);
1058 
1059 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1060   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1061 #else
1062   #define I_VDUI_ONLY(i,x) { }
1063 #endif //ASSERT
1064 };
1065 
1066 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1067 
1068 // Default DU iterator.  Allows appends onto the out array.
1069 // Allows deletion from the out array only at the current point.
1070 // Usage:
1071 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1072 //    Node* y = x->out(i);
1073 //    ...
1074 //  }
1075 // Compiles in product mode to a unsigned integer index, which indexes
1076 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1077 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1078 // before continuing the loop.  You must delete only the last-produced
1079 // edge.  You must delete only a single copy of the last-produced edge,
1080 // or else you must delete all copies at once (the first time the edge
1081 // is produced by the iterator).
1082 class DUIterator : public DUIterator_Common {
1083   friend class Node;
1084 
1085   // This is the index which provides the product-mode behavior.
1086   // Whatever the product-mode version of the system does to the
1087   // DUI index is done to this index.  All other fields in
1088   // this class are used only for assertion checking.
1089   uint         _idx;
1090 
1091   #ifdef ASSERT
1092   uint         _refresh_tick;    // Records the refresh activity.
1093 
1094   void sample(const Node* node); // Initialize _refresh_tick etc.
1095   void verify(const Node* node, bool at_end_ok = false);
1096   void verify_increment();       // Verify an increment operation.
1097   void verify_resync();          // Verify that we can back up over a deletion.
1098   void verify_finish();          // Verify that the loop terminated properly.
1099   void refresh();                // Resample verification info.
1100   void reset(const DUIterator& that);  // Resample after assignment.
1101   #endif
1102 
1103   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1104     { _idx = 0;                         debug_only(sample(node)); }
1105 
1106  public:
1107   // initialize to garbage; clear _vdui to disable asserts
1108   DUIterator()
1109     { /*initialize to garbage*/         debug_only(_vdui = false); }
1110 
1111   void operator++(int dummy_to_specify_postfix_op)
1112     { _idx++;                           VDUI_ONLY(verify_increment()); }
1113 
1114   void operator--()
1115     { VDUI_ONLY(verify_resync());       --_idx; }
1116 
1117   ~DUIterator()
1118     { VDUI_ONLY(verify_finish()); }
1119 
1120   void operator=(const DUIterator& that)
1121     { _idx = that._idx;                 debug_only(reset(that)); }
1122 };
1123 
1124 DUIterator Node::outs() const
1125   { return DUIterator(this, 0); }
1126 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1127   { I_VDUI_ONLY(i, i.refresh());        return i; }
1128 bool Node::has_out(DUIterator& i) const
1129   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1130 Node*    Node::out(DUIterator& i) const
1131   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1132 
1133 
1134 // Faster DU iterator.  Disallows insertions into the out array.
1135 // Allows deletion from the out array only at the current point.
1136 // Usage:
1137 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1138 //    Node* y = x->fast_out(i);
1139 //    ...
1140 //  }
1141 // Compiles in product mode to raw Node** pointer arithmetic, with
1142 // no reloading of pointers from the original node x.  If you delete,
1143 // you must perform "--i; --imax" just before continuing the loop.
1144 // If you delete multiple copies of the same edge, you must decrement
1145 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1146 class DUIterator_Fast : public DUIterator_Common {
1147   friend class Node;
1148   friend class DUIterator_Last;
1149 
1150   // This is the pointer which provides the product-mode behavior.
1151   // Whatever the product-mode version of the system does to the
1152   // DUI pointer is done to this pointer.  All other fields in
1153   // this class are used only for assertion checking.
1154   Node**       _outp;
1155 
1156   #ifdef ASSERT
1157   void verify(const Node* node, bool at_end_ok = false);
1158   void verify_limit();
1159   void verify_resync();
1160   void verify_relimit(uint n);
1161   void reset(const DUIterator_Fast& that);
1162   #endif
1163 
1164   // Note:  offset must be signed, since -1 is sometimes passed
1165   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1166     { _outp = node->_out + offset;      debug_only(sample(node)); }
1167 
1168  public:
1169   // initialize to garbage; clear _vdui to disable asserts
1170   DUIterator_Fast()
1171     { /*initialize to garbage*/         debug_only(_vdui = false); }
1172 
1173   void operator++(int dummy_to_specify_postfix_op)
1174     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1175 
1176   void operator--()
1177     { VDUI_ONLY(verify_resync());       --_outp; }
1178 
1179   void operator-=(uint n)   // applied to the limit only
1180     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1181 
1182   bool operator<(DUIterator_Fast& limit) {
1183     I_VDUI_ONLY(*this, this->verify(_node, true));
1184     I_VDUI_ONLY(limit, limit.verify_limit());
1185     return _outp < limit._outp;
1186   }
1187 
1188   void operator=(const DUIterator_Fast& that)
1189     { _outp = that._outp;               debug_only(reset(that)); }
1190 };
1191 
1192 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1193   // Assign a limit pointer to the reference argument:
1194   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1195   // Return the base pointer:
1196   return DUIterator_Fast(this, 0);
1197 }
1198 Node* Node::fast_out(DUIterator_Fast& i) const {
1199   I_VDUI_ONLY(i, i.verify(this));
1200   return debug_only(i._last=) *i._outp;
1201 }
1202 
1203 
1204 // Faster DU iterator.  Requires each successive edge to be removed.
1205 // Does not allow insertion of any edges.
1206 // Usage:
1207 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1208 //    Node* y = x->last_out(i);
1209 //    ...
1210 //  }
1211 // Compiles in product mode to raw Node** pointer arithmetic, with
1212 // no reloading of pointers from the original node x.
1213 class DUIterator_Last : private DUIterator_Fast {
1214   friend class Node;
1215 
1216   #ifdef ASSERT
1217   void verify(const Node* node, bool at_end_ok = false);
1218   void verify_limit();
1219   void verify_step(uint num_edges);
1220   #endif
1221 
1222   // Note:  offset must be signed, since -1 is sometimes passed
1223   DUIterator_Last(const Node* node, ptrdiff_t offset)
1224     : DUIterator_Fast(node, offset) { }
1225 
1226   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1227   void operator<(int)                              {} // do not use
1228 
1229  public:
1230   DUIterator_Last() { }
1231   // initialize to garbage
1232 
1233   void operator--()
1234     { _outp--;              VDUI_ONLY(verify_step(1));  }
1235 
1236   void operator-=(uint n)
1237     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1238 
1239   bool operator>=(DUIterator_Last& limit) {
1240     I_VDUI_ONLY(*this, this->verify(_node, true));
1241     I_VDUI_ONLY(limit, limit.verify_limit());
1242     return _outp >= limit._outp;
1243   }
1244 
1245   void operator=(const DUIterator_Last& that)
1246     { DUIterator_Fast::operator=(that); }
1247 };
1248 
1249 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1250   // Assign a limit pointer to the reference argument:
1251   imin = DUIterator_Last(this, 0);
1252   // Return the initial pointer:
1253   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1254 }
1255 Node* Node::last_out(DUIterator_Last& i) const {
1256   I_VDUI_ONLY(i, i.verify(this));
1257   return debug_only(i._last=) *i._outp;
1258 }
1259 
1260 #endif //OPTO_DU_ITERATOR_ASSERT
1261 
1262 #undef I_VDUI_ONLY
1263 #undef VDUI_ONLY
1264 
1265 // An Iterator that truly follows the iterator pattern.  Doesn't
1266 // support deletion but could be made to.
1267 //
1268 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1269 //     Node* m = i.get();
1270 //
1271 class SimpleDUIterator : public StackObj {
1272  private:
1273   Node* node;
1274   DUIterator_Fast i;
1275   DUIterator_Fast imax;
1276  public:
1277   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1278   bool has_next() { return i < imax; }
1279   void next() { i++; }
1280   Node* get() { return node->fast_out(i); }
1281 };
1282 
1283 
1284 //-----------------------------------------------------------------------------
1285 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1286 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1287 // Note that the constructor just zeros things, and since I use Arena
1288 // allocation I do not need a destructor to reclaim storage.
1289 class Node_Array : public ResourceObj {
1290 protected:
1291   Arena *_a;                    // Arena to allocate in
1292   uint   _max;
1293   Node **_nodes;
1294   void   grow( uint i );        // Grow array node to fit
1295 public:
1296   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1297     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1298     for( int i = 0; i < OptoNodeListSize; i++ ) {
1299       _nodes[i] = NULL;
1300     }
1301   }
1302 
1303   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1304   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1305   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1306   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1307   Node **adr() { return _nodes; }
1308   // Extend the mapping: index i maps to Node *n.
1309   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1310   void insert( uint i, Node *n );
1311   void remove( uint i );        // Remove, preserving order
1312   void sort( C_sort_func_t func);
1313   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1314   void clear();                 // Set all entries to NULL, keep storage
1315   uint Size() const { return _max; }
1316   void dump() const;
1317 };
1318 
1319 class Node_List : public Node_Array {
1320   uint _cnt;
1321 public:
1322   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1323   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1324   bool contains(Node* n) {
1325     for (uint e = 0; e < size(); e++) {
1326       if (at(e) == n) return true;
1327     }
1328     return false;
1329   }
1330   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1331   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1332   void push( Node *b ) { map(_cnt++,b); }
1333   void yank( Node *n );         // Find and remove
1334   Node *pop() { return _nodes[--_cnt]; }
1335   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1336   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1337   uint size() const { return _cnt; }
1338   void dump() const;
1339 };
1340 
1341 //------------------------------Unique_Node_List-------------------------------
1342 class Unique_Node_List : public Node_List {
1343   VectorSet _in_worklist;
1344   uint _clock_index;            // Index in list where to pop from next
1345 public:
1346   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1347   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1348 
1349   void remove( Node *n );
1350   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1351   VectorSet &member_set(){ return _in_worklist; }
1352 
1353   void push( Node *b ) {
1354     if( !_in_worklist.test_set(b->_idx) )
1355       Node_List::push(b);
1356   }
1357   Node *pop() {
1358     if( _clock_index >= size() ) _clock_index = 0;
1359     Node *b = at(_clock_index);
1360     map( _clock_index, Node_List::pop());
1361     if (size() != 0) _clock_index++; // Always start from 0
1362     _in_worklist >>= b->_idx;
1363     return b;
1364   }
1365   Node *remove( uint i ) {
1366     Node *b = Node_List::at(i);
1367     _in_worklist >>= b->_idx;
1368     map(i,Node_List::pop());
1369     return b;
1370   }
1371   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1372   void  clear() {
1373     _in_worklist.Clear();        // Discards storage but grows automatically
1374     Node_List::clear();
1375     _clock_index = 0;
1376   }
1377 
1378   // Used after parsing to remove useless nodes before Iterative GVN
1379   void remove_useless_nodes(VectorSet &useful);
1380 
1381 #ifndef PRODUCT
1382   void print_set() const { _in_worklist.print(); }
1383 #endif
1384 };
1385 
1386 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1387 inline void Compile::record_for_igvn(Node* n) {
1388   _for_igvn->push(n);
1389 }
1390 
1391 //------------------------------Node_Stack-------------------------------------
1392 class Node_Stack {
1393 protected:
1394   struct INode {
1395     Node *node; // Processed node
1396     uint  indx; // Index of next node's child
1397   };
1398   INode *_inode_top; // tos, stack grows up
1399   INode *_inode_max; // End of _inodes == _inodes + _max
1400   INode *_inodes;    // Array storage for the stack
1401   Arena *_a;         // Arena to allocate in
1402   void grow();
1403 public:
1404   Node_Stack(int size) {
1405     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1406     _a = Thread::current()->resource_area();
1407     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1408     _inode_max = _inodes + max;
1409     _inode_top = _inodes - 1; // stack is empty
1410   }
1411 
1412   Node_Stack(Arena *a, int size) : _a(a) {
1413     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1414     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1415     _inode_max = _inodes + max;
1416     _inode_top = _inodes - 1; // stack is empty
1417   }
1418 
1419   void pop() {
1420     assert(_inode_top >= _inodes, "node stack underflow");
1421     --_inode_top;
1422   }
1423   void push(Node *n, uint i) {
1424     ++_inode_top;
1425     if (_inode_top >= _inode_max) grow();
1426     INode *top = _inode_top; // optimization
1427     top->node = n;
1428     top->indx = i;
1429   }
1430   Node *node() const {
1431     return _inode_top->node;
1432   }
1433   Node* node_at(uint i) const {
1434     assert(_inodes + i <= _inode_top, "in range");
1435     return _inodes[i].node;
1436   }
1437   uint index() const {
1438     return _inode_top->indx;
1439   }
1440   uint index_at(uint i) const {
1441     assert(_inodes + i <= _inode_top, "in range");
1442     return _inodes[i].indx;
1443   }
1444   void set_node(Node *n) {
1445     _inode_top->node = n;
1446   }
1447   void set_index(uint i) {
1448     _inode_top->indx = i;
1449   }
1450   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1451   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1452   bool is_nonempty() const { return (_inode_top >= _inodes); }
1453   bool is_empty() const { return (_inode_top < _inodes); }
1454   void clear() { _inode_top = _inodes - 1; } // retain storage
1455 
1456   // Node_Stack is used to map nodes.
1457   Node* find(uint idx) const;
1458 };
1459 
1460 
1461 //-----------------------------Node_Notes--------------------------------------
1462 // Debugging or profiling annotations loosely and sparsely associated
1463 // with some nodes.  See Compile::node_notes_at for the accessor.
1464 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1465   JVMState* _jvms;
1466 
1467 public:
1468   Node_Notes(JVMState* jvms = NULL) {
1469     _jvms = jvms;
1470   }
1471 
1472   JVMState* jvms()            { return _jvms; }
1473   void  set_jvms(JVMState* x) {        _jvms = x; }
1474 
1475   // True if there is nothing here.
1476   bool is_clear() {
1477     return (_jvms == NULL);
1478   }
1479 
1480   // Make there be nothing here.
1481   void clear() {
1482     _jvms = NULL;
1483   }
1484 
1485   // Make a new, clean node notes.
1486   static Node_Notes* make(Compile* C) {
1487     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1488     nn->clear();
1489     return nn;
1490   }
1491 
1492   Node_Notes* clone(Compile* C) {
1493     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1494     (*nn) = (*this);
1495     return nn;
1496   }
1497 
1498   // Absorb any information from source.
1499   bool update_from(Node_Notes* source) {
1500     bool changed = false;
1501     if (source != NULL) {
1502       if (source->jvms() != NULL) {
1503         set_jvms(source->jvms());
1504         changed = true;
1505       }
1506     }
1507     return changed;
1508   }
1509 };
1510 
1511 // Inlined accessors for Compile::node_nodes that require the preceding class:
1512 inline Node_Notes*
1513 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1514                            int idx, bool can_grow) {
1515   assert(idx >= 0, "oob");
1516   int block_idx = (idx >> _log2_node_notes_block_size);
1517   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1518   if (grow_by >= 0) {
1519     if (!can_grow)  return NULL;
1520     grow_node_notes(arr, grow_by + 1);
1521   }
1522   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1523   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1524 }
1525 
1526 inline bool
1527 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1528   if (value == NULL || value->is_clear())
1529     return false;  // nothing to write => write nothing
1530   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1531   assert(loc != NULL, "");
1532   return loc->update_from(value);
1533 }
1534 
1535 
1536 //------------------------------TypeNode---------------------------------------
1537 // Node with a Type constant.
1538 class TypeNode : public Node {
1539 protected:
1540   virtual uint hash() const;    // Check the type
1541   virtual uint cmp( const Node &n ) const;
1542   virtual uint size_of() const; // Size is bigger
1543   const Type* const _type;
1544 public:
1545   void set_type(const Type* t) {
1546     assert(t != NULL, "sanity");
1547     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1548     *(const Type**)&_type = t;   // cast away const-ness
1549     // If this node is in the hash table, make sure it doesn't need a rehash.
1550     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1551   }
1552   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1553   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1554     init_class_id(Class_Type);
1555   }
1556   virtual const Type *Value( PhaseTransform *phase ) const;
1557   virtual const Type *bottom_type() const;
1558   virtual       uint  ideal_reg() const;
1559 #ifndef PRODUCT
1560   virtual void dump_spec(outputStream *st) const;
1561 #endif
1562 };
1563 
1564 #endif // SHARE_VM_OPTO_NODE_HPP