1 //
   2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // tertiary op of a LoadP or StoreP encoding
 475 #define REGP_OP true
 476 
 477 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 478 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 479 static Register reg_to_register_object(int register_encoding);
 480 
 481 // Used by the DFA in dfa_sparc.cpp.
 482 // Check for being able to use a V9 branch-on-register.  Requires a
 483 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 484 // extended.  Doesn't work following an integer ADD, for example, because of
 485 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 486 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 487 // replace them with zero, which could become sign-extension in a different OS
 488 // release.  There's no obvious reason why an interrupt will ever fill these
 489 // bits with non-zero junk (the registers are reloaded with standard LD
 490 // instructions which either zero-fill or sign-fill).
 491 bool can_branch_register( Node *bol, Node *cmp ) {
 492   if( !BranchOnRegister ) return false;
 493 #ifdef _LP64
 494   if( cmp->Opcode() == Op_CmpP )
 495     return true;  // No problems with pointer compares
 496 #endif
 497   if( cmp->Opcode() == Op_CmpL )
 498     return true;  // No problems with long compares
 499 
 500   if( !SparcV9RegsHiBitsZero ) return false;
 501   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 502       bol->as_Bool()->_test._test != BoolTest::eq )
 503      return false;
 504 
 505   // Check for comparing against a 'safe' value.  Any operation which
 506   // clears out the high word is safe.  Thus, loads and certain shifts
 507   // are safe, as are non-negative constants.  Any operation which
 508   // preserves zero bits in the high word is safe as long as each of its
 509   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 510   // inputs are safe.  At present, the only important case to recognize
 511   // seems to be loads.  Constants should fold away, and shifts &
 512   // logicals can use the 'cc' forms.
 513   Node *x = cmp->in(1);
 514   if( x->is_Load() ) return true;
 515   if( x->is_Phi() ) {
 516     for( uint i = 1; i < x->req(); i++ )
 517       if( !x->in(i)->is_Load() )
 518         return false;
 519     return true;
 520   }
 521   return false;
 522 }
 523 
 524 // ****************************************************************************
 525 
 526 // REQUIRED FUNCTIONALITY
 527 
 528 // !!!!! Special hack to get all type of calls to specify the byte offset
 529 //       from the start of the call to the point where the return address
 530 //       will point.
 531 //       The "return address" is the address of the call instruction, plus 8.
 532 
 533 int MachCallStaticJavaNode::ret_addr_offset() {
 534   int offset = NativeCall::instruction_size;  // call; delay slot
 535   if (_method_handle_invoke)
 536     offset += 4;  // restore SP
 537   return offset;
 538 }
 539 
 540 int MachCallDynamicJavaNode::ret_addr_offset() {
 541   int vtable_index = this->_vtable_index;
 542   if (vtable_index < 0) {
 543     // must be invalid_vtable_index, not nonvirtual_vtable_index
 544     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 545     return (NativeMovConstReg::instruction_size +
 546            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 547   } else {
 548     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 549     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 550     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 551     int klass_load_size;
 552     if (UseCompressedOops) {
 553       assert(Universe::heap() != NULL, "java heap should be initialized");
 554       if (Universe::narrow_oop_base() == NULL)
 555         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 556       else
 557         klass_load_size = 3*BytesPerInstWord;
 558     } else {
 559       klass_load_size = 1*BytesPerInstWord;
 560     }
 561     if( Assembler::is_simm13(v_off) ) {
 562       return klass_load_size +
 563              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 564              NativeCall::instruction_size);  // call; delay slot
 565     } else {
 566       return klass_load_size +
 567              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 568              NativeCall::instruction_size);  // call; delay slot
 569     }
 570   }
 571 }
 572 
 573 int MachCallRuntimeNode::ret_addr_offset() {
 574 #ifdef _LP64
 575   if (MacroAssembler::is_far_target(entry_point())) {
 576     return NativeFarCall::instruction_size;
 577   } else {
 578     return NativeCall::instruction_size;
 579   }
 580 #else
 581   return NativeCall::instruction_size;  // call; delay slot
 582 #endif
 583 }
 584 
 585 // Indicate if the safepoint node needs the polling page as an input.
 586 // Since Sparc does not have absolute addressing, it does.
 587 bool SafePointNode::needs_polling_address_input() {
 588   return true;
 589 }
 590 
 591 // emit an interrupt that is caught by the debugger (for debugging compiler)
 592 void emit_break(CodeBuffer &cbuf) {
 593   MacroAssembler _masm(&cbuf);
 594   __ breakpoint_trap();
 595 }
 596 
 597 #ifndef PRODUCT
 598 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 599   st->print("TA");
 600 }
 601 #endif
 602 
 603 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 604   emit_break(cbuf);
 605 }
 606 
 607 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 608   return MachNode::size(ra_);
 609 }
 610 
 611 // Traceable jump
 612 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 613   MacroAssembler _masm(&cbuf);
 614   Register rdest = reg_to_register_object(jump_target);
 615   __ JMP(rdest, 0);
 616   __ delayed()->nop();
 617 }
 618 
 619 // Traceable jump and set exception pc
 620 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 621   MacroAssembler _masm(&cbuf);
 622   Register rdest = reg_to_register_object(jump_target);
 623   __ JMP(rdest, 0);
 624   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 625 }
 626 
 627 void emit_nop(CodeBuffer &cbuf) {
 628   MacroAssembler _masm(&cbuf);
 629   __ nop();
 630 }
 631 
 632 void emit_illtrap(CodeBuffer &cbuf) {
 633   MacroAssembler _masm(&cbuf);
 634   __ illtrap(0);
 635 }
 636 
 637 
 638 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 639   assert(n->rule() != loadUB_rule, "");
 640 
 641   intptr_t offset = 0;
 642   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 643   const Node* addr = n->get_base_and_disp(offset, adr_type);
 644   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 645   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 646   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 647   atype = atype->add_offset(offset);
 648   assert(disp32 == offset, "wrong disp32");
 649   return atype->_offset;
 650 }
 651 
 652 
 653 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 654   assert(n->rule() != loadUB_rule, "");
 655 
 656   intptr_t offset = 0;
 657   Node* addr = n->in(2);
 658   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 659   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 660     Node* a = addr->in(2/*AddPNode::Address*/);
 661     Node* o = addr->in(3/*AddPNode::Offset*/);
 662     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 663     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 664     assert(atype->isa_oop_ptr(), "still an oop");
 665   }
 666   offset = atype->is_ptr()->_offset;
 667   if (offset != Type::OffsetBot)  offset += disp32;
 668   return offset;
 669 }
 670 
 671 static inline jdouble replicate_immI(int con, int count, int width) {
 672   // Load a constant replicated "count" times with width "width"
 673   int bit_width = width * 8;
 674   jlong elt_val = con;
 675   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 676   jlong val = elt_val;
 677   for (int i = 0; i < count - 1; i++) {
 678     val <<= bit_width;
 679     val |= elt_val;
 680   }
 681   jdouble dval = *((jdouble*) &val);  // coerce to double type
 682   return dval;
 683 }
 684 
 685 // Standard Sparc opcode form2 field breakdown
 686 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 687   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 688   int op = (f30 << 30) |
 689            (f29 << 29) |
 690            (f25 << 25) |
 691            (f22 << 22) |
 692            (f20 << 20) |
 693            (f19 << 19) |
 694            (f0  <<  0);
 695   cbuf.insts()->emit_int32(op);
 696 }
 697 
 698 // Standard Sparc opcode form2 field breakdown
 699 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 700   f0 >>= 10;           // Drop 10 bits
 701   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 702   int op = (f30 << 30) |
 703            (f25 << 25) |
 704            (f22 << 22) |
 705            (f0  <<  0);
 706   cbuf.insts()->emit_int32(op);
 707 }
 708 
 709 // Standard Sparc opcode form3 field breakdown
 710 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 711   int op = (f30 << 30) |
 712            (f25 << 25) |
 713            (f19 << 19) |
 714            (f14 << 14) |
 715            (f5  <<  5) |
 716            (f0  <<  0);
 717   cbuf.insts()->emit_int32(op);
 718 }
 719 
 720 // Standard Sparc opcode form3 field breakdown
 721 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 722   simm13 &= (1<<13)-1; // Mask to 13 bits
 723   int op = (f30 << 30) |
 724            (f25 << 25) |
 725            (f19 << 19) |
 726            (f14 << 14) |
 727            (1   << 13) | // bit to indicate immediate-mode
 728            (simm13<<0);
 729   cbuf.insts()->emit_int32(op);
 730 }
 731 
 732 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 733   simm10 &= (1<<10)-1; // Mask to 10 bits
 734   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 735 }
 736 
 737 #ifdef ASSERT
 738 // Helper function for VerifyOops in emit_form3_mem_reg
 739 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 740   warning("VerifyOops encountered unexpected instruction:");
 741   n->dump(2);
 742   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 743 }
 744 #endif
 745 
 746 
 747 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 748                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 749 
 750 #ifdef ASSERT
 751   // The following code implements the +VerifyOops feature.
 752   // It verifies oop values which are loaded into or stored out of
 753   // the current method activation.  +VerifyOops complements techniques
 754   // like ScavengeALot, because it eagerly inspects oops in transit,
 755   // as they enter or leave the stack, as opposed to ScavengeALot,
 756   // which inspects oops "at rest", in the stack or heap, at safepoints.
 757   // For this reason, +VerifyOops can sometimes detect bugs very close
 758   // to their point of creation.  It can also serve as a cross-check
 759   // on the validity of oop maps, when used toegether with ScavengeALot.
 760 
 761   // It would be good to verify oops at other points, especially
 762   // when an oop is used as a base pointer for a load or store.
 763   // This is presently difficult, because it is hard to know when
 764   // a base address is biased or not.  (If we had such information,
 765   // it would be easy and useful to make a two-argument version of
 766   // verify_oop which unbiases the base, and performs verification.)
 767 
 768   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 769   bool is_verified_oop_base  = false;
 770   bool is_verified_oop_load  = false;
 771   bool is_verified_oop_store = false;
 772   int tmp_enc = -1;
 773   if (VerifyOops && src1_enc != R_SP_enc) {
 774     // classify the op, mainly for an assert check
 775     int st_op = 0, ld_op = 0;
 776     switch (primary) {
 777     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 778     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 779     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 780     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 781     case Assembler::std_op3:  st_op = Op_StoreL; break;
 782     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 783     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 784 
 785     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 786     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 787     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 788     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 789     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 790     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 791     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 792     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 793     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 794     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 795     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 796 
 797     default: ShouldNotReachHere();
 798     }
 799     if (tertiary == REGP_OP) {
 800       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 801       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 802       else                          ShouldNotReachHere();
 803       if (st_op) {
 804         // a store
 805         // inputs are (0:control, 1:memory, 2:address, 3:value)
 806         Node* n2 = n->in(3);
 807         if (n2 != NULL) {
 808           const Type* t = n2->bottom_type();
 809           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 810         }
 811       } else {
 812         // a load
 813         const Type* t = n->bottom_type();
 814         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 815       }
 816     }
 817 
 818     if (ld_op) {
 819       // a Load
 820       // inputs are (0:control, 1:memory, 2:address)
 821       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 822           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 823           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 824           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 825           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 826           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 827           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 828           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 829           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 830           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 831           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 832           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 833           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 834           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 835           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
 836           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
 837           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
 838           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
 839           !(n->rule() == loadUB_rule)) {
 840         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 841       }
 842     } else if (st_op) {
 843       // a Store
 844       // inputs are (0:control, 1:memory, 2:address, 3:value)
 845       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 846           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 847           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 848           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 849           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 850           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
 851           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
 852           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
 853           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 854         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 855       }
 856     }
 857 
 858     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 859       Node* addr = n->in(2);
 860       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 861         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 862         if (atype != NULL) {
 863           intptr_t offset = get_offset_from_base(n, atype, disp32);
 864           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 865           if (offset != offset_2) {
 866             get_offset_from_base(n, atype, disp32);
 867             get_offset_from_base_2(n, atype, disp32);
 868           }
 869           assert(offset == offset_2, "different offsets");
 870           if (offset == disp32) {
 871             // we now know that src1 is a true oop pointer
 872             is_verified_oop_base = true;
 873             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 874               if( primary == Assembler::ldd_op3 ) {
 875                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 876               } else {
 877                 tmp_enc = dst_enc;
 878                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 879                 assert(src1_enc != dst_enc, "");
 880               }
 881             }
 882           }
 883           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 884                        || offset == oopDesc::mark_offset_in_bytes())) {
 885                       // loading the mark should not be allowed either, but
 886                       // we don't check this since it conflicts with InlineObjectHash
 887                       // usage of LoadINode to get the mark. We could keep the
 888                       // check if we create a new LoadMarkNode
 889             // but do not verify the object before its header is initialized
 890             ShouldNotReachHere();
 891           }
 892         }
 893       }
 894     }
 895   }
 896 #endif
 897 
 898   uint instr;
 899   instr = (Assembler::ldst_op << 30)
 900         | (dst_enc        << 25)
 901         | (primary        << 19)
 902         | (src1_enc       << 14);
 903 
 904   uint index = src2_enc;
 905   int disp = disp32;
 906 
 907   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 908     disp += STACK_BIAS;
 909 
 910   // We should have a compiler bailout here rather than a guarantee.
 911   // Better yet would be some mechanism to handle variable-size matches correctly.
 912   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 913 
 914   if( disp == 0 ) {
 915     // use reg-reg form
 916     // bit 13 is already zero
 917     instr |= index;
 918   } else {
 919     // use reg-imm form
 920     instr |= 0x00002000;          // set bit 13 to one
 921     instr |= disp & 0x1FFF;
 922   }
 923 
 924   cbuf.insts()->emit_int32(instr);
 925 
 926 #ifdef ASSERT
 927   {
 928     MacroAssembler _masm(&cbuf);
 929     if (is_verified_oop_base) {
 930       __ verify_oop(reg_to_register_object(src1_enc));
 931     }
 932     if (is_verified_oop_store) {
 933       __ verify_oop(reg_to_register_object(dst_enc));
 934     }
 935     if (tmp_enc != -1) {
 936       __ mov(O7, reg_to_register_object(tmp_enc));
 937     }
 938     if (is_verified_oop_load) {
 939       __ verify_oop(reg_to_register_object(dst_enc));
 940     }
 941   }
 942 #endif
 943 }
 944 
 945 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 946   // The method which records debug information at every safepoint
 947   // expects the call to be the first instruction in the snippet as
 948   // it creates a PcDesc structure which tracks the offset of a call
 949   // from the start of the codeBlob. This offset is computed as
 950   // code_end() - code_begin() of the code which has been emitted
 951   // so far.
 952   // In this particular case we have skirted around the problem by
 953   // putting the "mov" instruction in the delay slot but the problem
 954   // may bite us again at some other point and a cleaner/generic
 955   // solution using relocations would be needed.
 956   MacroAssembler _masm(&cbuf);
 957   __ set_inst_mark();
 958 
 959   // We flush the current window just so that there is a valid stack copy
 960   // the fact that the current window becomes active again instantly is
 961   // not a problem there is nothing live in it.
 962 
 963 #ifdef ASSERT
 964   int startpos = __ offset();
 965 #endif /* ASSERT */
 966 
 967   __ call((address)entry_point, rtype);
 968 
 969   if (preserve_g2)   __ delayed()->mov(G2, L7);
 970   else __ delayed()->nop();
 971 
 972   if (preserve_g2)   __ mov(L7, G2);
 973 
 974 #ifdef ASSERT
 975   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 976 #ifdef _LP64
 977     // Trash argument dump slots.
 978     __ set(0xb0b8ac0db0b8ac0d, G1);
 979     __ mov(G1, G5);
 980     __ stx(G1, SP, STACK_BIAS + 0x80);
 981     __ stx(G1, SP, STACK_BIAS + 0x88);
 982     __ stx(G1, SP, STACK_BIAS + 0x90);
 983     __ stx(G1, SP, STACK_BIAS + 0x98);
 984     __ stx(G1, SP, STACK_BIAS + 0xA0);
 985     __ stx(G1, SP, STACK_BIAS + 0xA8);
 986 #else // _LP64
 987     // this is also a native call, so smash the first 7 stack locations,
 988     // and the various registers
 989 
 990     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
 991     // while [SP+0x44..0x58] are the argument dump slots.
 992     __ set((intptr_t)0xbaadf00d, G1);
 993     __ mov(G1, G5);
 994     __ sllx(G1, 32, G1);
 995     __ or3(G1, G5, G1);
 996     __ mov(G1, G5);
 997     __ stx(G1, SP, 0x40);
 998     __ stx(G1, SP, 0x48);
 999     __ stx(G1, SP, 0x50);
1000     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1001 #endif // _LP64
1002   }
1003 #endif /*ASSERT*/
1004 }
1005 
1006 //=============================================================================
1007 // REQUIRED FUNCTIONALITY for encoding
1008 void emit_lo(CodeBuffer &cbuf, int val) {  }
1009 void emit_hi(CodeBuffer &cbuf, int val) {  }
1010 
1011 
1012 //=============================================================================
1013 const bool Matcher::constant_table_absolute_addressing = false;
1014 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
1015 
1016 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1017   Compile* C = ra_->C;
1018   Compile::ConstantTable& constant_table = C->constant_table();
1019   MacroAssembler _masm(&cbuf);
1020 
1021   Register r = as_Register(ra_->get_encode(this));
1022   CodeSection* cs = __ code()->consts();
1023   int consts_size = cs->align_at_start(cs->size());
1024 
1025   if (UseRDPCForConstantTableBase) {
1026     // For the following RDPC logic to work correctly the consts
1027     // section must be allocated right before the insts section.  This
1028     // assert checks for that.  The layout and the SECT_* constants
1029     // are defined in src/share/vm/asm/codeBuffer.hpp.
1030     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1031     int offset = __ offset();
1032     int disp;
1033 
1034     // If the displacement from the current PC to the constant table
1035     // base fits into simm13 we set the constant table base to the
1036     // current PC.
1037     if (__ is_simm13(-(consts_size + offset))) {
1038       constant_table.set_table_base_offset(-(consts_size + offset));
1039       disp = 0;
1040     } else {
1041       // If the offset of the top constant (last entry in the table)
1042       // fits into simm13 we set the constant table base to the actual
1043       // table base.
1044       if (__ is_simm13(constant_table.top_offset())) {
1045         constant_table.set_table_base_offset(0);
1046         disp = consts_size + offset;
1047       } else {
1048         // Otherwise we set the constant table base in the middle of the
1049         // constant table.
1050         int half_consts_size = consts_size / 2;
1051         assert(half_consts_size * 2 == consts_size, "sanity");
1052         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
1053         disp = half_consts_size + offset;
1054       }
1055     }
1056 
1057     __ rdpc(r);
1058 
1059     if (disp != 0) {
1060       assert(r != O7, "need temporary");
1061       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1062     }
1063   }
1064   else {
1065     // Materialize the constant table base.
1066     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1067     address baseaddr = cs->start() + -(constant_table.table_base_offset());
1068     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1069     AddressLiteral base(baseaddr, rspec);
1070     __ set(base, r);
1071   }
1072 }
1073 
1074 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1075   if (UseRDPCForConstantTableBase) {
1076     // This is really the worst case but generally it's only 1 instruction.
1077     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1078   } else {
1079     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1080   }
1081 }
1082 
1083 #ifndef PRODUCT
1084 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1085   char reg[128];
1086   ra_->dump_register(this, reg);
1087   if (UseRDPCForConstantTableBase) {
1088     st->print("RDPC   %s\t! constant table base", reg);
1089   } else {
1090     st->print("SET    &constanttable,%s\t! constant table base", reg);
1091   }
1092 }
1093 #endif
1094 
1095 
1096 //=============================================================================
1097 
1098 #ifndef PRODUCT
1099 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1100   Compile* C = ra_->C;
1101 
1102   for (int i = 0; i < OptoPrologueNops; i++) {
1103     st->print_cr("NOP"); st->print("\t");
1104   }
1105 
1106   if( VerifyThread ) {
1107     st->print_cr("Verify_Thread"); st->print("\t");
1108   }
1109 
1110   size_t framesize = C->frame_slots() << LogBytesPerInt;
1111 
1112   // Calls to C2R adapters often do not accept exceptional returns.
1113   // We require that their callers must bang for them.  But be careful, because
1114   // some VM calls (such as call site linkage) can use several kilobytes of
1115   // stack.  But the stack safety zone should account for that.
1116   // See bugs 4446381, 4468289, 4497237.
1117   if (C->need_stack_bang(framesize)) {
1118     st->print_cr("! stack bang"); st->print("\t");
1119   }
1120 
1121   if (Assembler::is_simm13(-framesize)) {
1122     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1123   } else {
1124     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1125     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1126     st->print   ("SAVE   R_SP,R_G3,R_SP");
1127   }
1128 
1129 }
1130 #endif
1131 
1132 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1133   Compile* C = ra_->C;
1134   MacroAssembler _masm(&cbuf);
1135 
1136   for (int i = 0; i < OptoPrologueNops; i++) {
1137     __ nop();
1138   }
1139 
1140   __ verify_thread();
1141 
1142   size_t framesize = C->frame_slots() << LogBytesPerInt;
1143   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1144   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1145 
1146   // Calls to C2R adapters often do not accept exceptional returns.
1147   // We require that their callers must bang for them.  But be careful, because
1148   // some VM calls (such as call site linkage) can use several kilobytes of
1149   // stack.  But the stack safety zone should account for that.
1150   // See bugs 4446381, 4468289, 4497237.
1151   if (C->need_stack_bang(framesize)) {
1152     __ generate_stack_overflow_check(framesize);
1153   }
1154 
1155   if (Assembler::is_simm13(-framesize)) {
1156     __ save(SP, -framesize, SP);
1157   } else {
1158     __ sethi(-framesize & ~0x3ff, G3);
1159     __ add(G3, -framesize & 0x3ff, G3);
1160     __ save(SP, G3, SP);
1161   }
1162   C->set_frame_complete( __ offset() );
1163 }
1164 
1165 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1166   return MachNode::size(ra_);
1167 }
1168 
1169 int MachPrologNode::reloc() const {
1170   return 10; // a large enough number
1171 }
1172 
1173 //=============================================================================
1174 #ifndef PRODUCT
1175 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1176   Compile* C = ra_->C;
1177 
1178   if( do_polling() && ra_->C->is_method_compilation() ) {
1179     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1180 #ifdef _LP64
1181     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1182 #else
1183     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1184 #endif
1185   }
1186 
1187   if( do_polling() )
1188     st->print("RET\n\t");
1189 
1190   st->print("RESTORE");
1191 }
1192 #endif
1193 
1194 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1195   MacroAssembler _masm(&cbuf);
1196   Compile* C = ra_->C;
1197 
1198   __ verify_thread();
1199 
1200   // If this does safepoint polling, then do it here
1201   if( do_polling() && ra_->C->is_method_compilation() ) {
1202     AddressLiteral polling_page(os::get_polling_page());
1203     __ sethi(polling_page, L0);
1204     __ relocate(relocInfo::poll_return_type);
1205     __ ld_ptr( L0, 0, G0 );
1206   }
1207 
1208   // If this is a return, then stuff the restore in the delay slot
1209   if( do_polling() ) {
1210     __ ret();
1211     __ delayed()->restore();
1212   } else {
1213     __ restore();
1214   }
1215 }
1216 
1217 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1218   return MachNode::size(ra_);
1219 }
1220 
1221 int MachEpilogNode::reloc() const {
1222   return 16; // a large enough number
1223 }
1224 
1225 const Pipeline * MachEpilogNode::pipeline() const {
1226   return MachNode::pipeline_class();
1227 }
1228 
1229 int MachEpilogNode::safepoint_offset() const {
1230   assert( do_polling(), "no return for this epilog node");
1231   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1232 }
1233 
1234 //=============================================================================
1235 
1236 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1237 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1238 static enum RC rc_class( OptoReg::Name reg ) {
1239   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1240   if (OptoReg::is_stack(reg)) return rc_stack;
1241   VMReg r = OptoReg::as_VMReg(reg);
1242   if (r->is_Register()) return rc_int;
1243   assert(r->is_FloatRegister(), "must be");
1244   return rc_float;
1245 }
1246 
1247 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1248   if( cbuf ) {
1249     // Better yet would be some mechanism to handle variable-size matches correctly
1250     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1251       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1252     } else {
1253       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1254     }
1255   }
1256 #ifndef PRODUCT
1257   else if( !do_size ) {
1258     if( size != 0 ) st->print("\n\t");
1259     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1260     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1261   }
1262 #endif
1263   return size+4;
1264 }
1265 
1266 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1267   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1268 #ifndef PRODUCT
1269   else if( !do_size ) {
1270     if( size != 0 ) st->print("\n\t");
1271     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1272   }
1273 #endif
1274   return size+4;
1275 }
1276 
1277 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1278                                         PhaseRegAlloc *ra_,
1279                                         bool do_size,
1280                                         outputStream* st ) const {
1281   // Get registers to move
1282   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1283   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1284   OptoReg::Name dst_second = ra_->get_reg_second(this );
1285   OptoReg::Name dst_first = ra_->get_reg_first(this );
1286 
1287   enum RC src_second_rc = rc_class(src_second);
1288   enum RC src_first_rc = rc_class(src_first);
1289   enum RC dst_second_rc = rc_class(dst_second);
1290   enum RC dst_first_rc = rc_class(dst_first);
1291 
1292   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1293 
1294   // Generate spill code!
1295   int size = 0;
1296 
1297   if( src_first == dst_first && src_second == dst_second )
1298     return size;            // Self copy, no move
1299 
1300   // --------------------------------------
1301   // Check for mem-mem move.  Load into unused float registers and fall into
1302   // the float-store case.
1303   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1304     int offset = ra_->reg2offset(src_first);
1305     // Further check for aligned-adjacent pair, so we can use a double load
1306     if( (src_first&1)==0 && src_first+1 == src_second ) {
1307       src_second    = OptoReg::Name(R_F31_num);
1308       src_second_rc = rc_float;
1309       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1310     } else {
1311       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1312     }
1313     src_first    = OptoReg::Name(R_F30_num);
1314     src_first_rc = rc_float;
1315   }
1316 
1317   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1318     int offset = ra_->reg2offset(src_second);
1319     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1320     src_second    = OptoReg::Name(R_F31_num);
1321     src_second_rc = rc_float;
1322   }
1323 
1324   // --------------------------------------
1325   // Check for float->int copy; requires a trip through memory
1326   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1327     int offset = frame::register_save_words*wordSize;
1328     if (cbuf) {
1329       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1330       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1331       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1332       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1333     }
1334 #ifndef PRODUCT
1335     else if (!do_size) {
1336       if (size != 0) st->print("\n\t");
1337       st->print(  "SUB    R_SP,16,R_SP\n");
1338       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1339       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1340       st->print("\tADD    R_SP,16,R_SP\n");
1341     }
1342 #endif
1343     size += 16;
1344   }
1345 
1346   // Check for float->int copy on T4
1347   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1348     // Further check for aligned-adjacent pair, so we can use a double move
1349     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1350       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1351     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1352   }
1353   // Check for int->float copy on T4
1354   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1355     // Further check for aligned-adjacent pair, so we can use a double move
1356     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1357       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1358     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1359   }
1360 
1361   // --------------------------------------
1362   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1363   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1364   // hardware does the flop for me.  Doubles are always aligned, so no problem
1365   // there.  Misaligned sources only come from native-long-returns (handled
1366   // special below).
1367 #ifndef _LP64
1368   if( src_first_rc == rc_int &&     // source is already big-endian
1369       src_second_rc != rc_bad &&    // 64-bit move
1370       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1371     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1372     // Do the big-endian flop.
1373     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1374     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1375   }
1376 #endif
1377 
1378   // --------------------------------------
1379   // Check for integer reg-reg copy
1380   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1381 #ifndef _LP64
1382     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1383       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1384       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1385       //       operand contains the least significant word of the 64-bit value and vice versa.
1386       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1387       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1388       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1389       if( cbuf ) {
1390         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1391         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1392         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1393 #ifndef PRODUCT
1394       } else if( !do_size ) {
1395         if( size != 0 ) st->print("\n\t");
1396         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1397         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1398         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1399 #endif
1400       }
1401       return size+12;
1402     }
1403     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1404       // returning a long value in I0/I1
1405       // a SpillCopy must be able to target a return instruction's reg_class
1406       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1407       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1408       //       operand contains the least significant word of the 64-bit value and vice versa.
1409       OptoReg::Name tdest = dst_first;
1410 
1411       if (src_first == dst_first) {
1412         tdest = OptoReg::Name(R_O7_num);
1413         size += 4;
1414       }
1415 
1416       if( cbuf ) {
1417         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1418         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1419         // ShrL_reg_imm6
1420         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1421         // ShrR_reg_imm6  src, 0, dst
1422         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1423         if (tdest != dst_first) {
1424           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1425         }
1426       }
1427 #ifndef PRODUCT
1428       else if( !do_size ) {
1429         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1430         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1431         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1432         if (tdest != dst_first) {
1433           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1434         }
1435       }
1436 #endif // PRODUCT
1437       return size+8;
1438     }
1439 #endif // !_LP64
1440     // Else normal reg-reg copy
1441     assert( src_second != dst_first, "smashed second before evacuating it" );
1442     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1443     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1444     // This moves an aligned adjacent pair.
1445     // See if we are done.
1446     if( src_first+1 == src_second && dst_first+1 == dst_second )
1447       return size;
1448   }
1449 
1450   // Check for integer store
1451   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1452     int offset = ra_->reg2offset(dst_first);
1453     // Further check for aligned-adjacent pair, so we can use a double store
1454     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1455       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1456     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1457   }
1458 
1459   // Check for integer load
1460   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1461     int offset = ra_->reg2offset(src_first);
1462     // Further check for aligned-adjacent pair, so we can use a double load
1463     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1464       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1465     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1466   }
1467 
1468   // Check for float reg-reg copy
1469   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1470     // Further check for aligned-adjacent pair, so we can use a double move
1471     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1472       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1473     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1474   }
1475 
1476   // Check for float store
1477   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1478     int offset = ra_->reg2offset(dst_first);
1479     // Further check for aligned-adjacent pair, so we can use a double store
1480     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1481       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1482     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1483   }
1484 
1485   // Check for float load
1486   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1487     int offset = ra_->reg2offset(src_first);
1488     // Further check for aligned-adjacent pair, so we can use a double load
1489     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1490       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1491     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1492   }
1493 
1494   // --------------------------------------------------------------------
1495   // Check for hi bits still needing moving.  Only happens for misaligned
1496   // arguments to native calls.
1497   if( src_second == dst_second )
1498     return size;               // Self copy; no move
1499   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1500 
1501 #ifndef _LP64
1502   // In the LP64 build, all registers can be moved as aligned/adjacent
1503   // pairs, so there's never any need to move the high bits separately.
1504   // The 32-bit builds have to deal with the 32-bit ABI which can force
1505   // all sorts of silly alignment problems.
1506 
1507   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1508   // 32-bits of a 64-bit register, but are needed in low bits of another
1509   // register (else it's a hi-bits-to-hi-bits copy which should have
1510   // happened already as part of a 64-bit move)
1511   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1512     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1513     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1514     // Shift src_second down to dst_second's low bits.
1515     if( cbuf ) {
1516       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1517 #ifndef PRODUCT
1518     } else if( !do_size ) {
1519       if( size != 0 ) st->print("\n\t");
1520       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1521 #endif
1522     }
1523     return size+4;
1524   }
1525 
1526   // Check for high word integer store.  Must down-shift the hi bits
1527   // into a temp register, then fall into the case of storing int bits.
1528   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1529     // Shift src_second down to dst_second's low bits.
1530     if( cbuf ) {
1531       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1532 #ifndef PRODUCT
1533     } else if( !do_size ) {
1534       if( size != 0 ) st->print("\n\t");
1535       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1536 #endif
1537     }
1538     size+=4;
1539     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1540   }
1541 
1542   // Check for high word integer load
1543   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1544     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1545 
1546   // Check for high word integer store
1547   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1548     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1549 
1550   // Check for high word float store
1551   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1552     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1553 
1554 #endif // !_LP64
1555 
1556   Unimplemented();
1557 }
1558 
1559 #ifndef PRODUCT
1560 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1561   implementation( NULL, ra_, false, st );
1562 }
1563 #endif
1564 
1565 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1566   implementation( &cbuf, ra_, false, NULL );
1567 }
1568 
1569 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1570   return implementation( NULL, ra_, true, NULL );
1571 }
1572 
1573 //=============================================================================
1574 #ifndef PRODUCT
1575 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1576   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1577 }
1578 #endif
1579 
1580 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1581   MacroAssembler _masm(&cbuf);
1582   for(int i = 0; i < _count; i += 1) {
1583     __ nop();
1584   }
1585 }
1586 
1587 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1588   return 4 * _count;
1589 }
1590 
1591 
1592 //=============================================================================
1593 #ifndef PRODUCT
1594 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1595   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1596   int reg = ra_->get_reg_first(this);
1597   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1598 }
1599 #endif
1600 
1601 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1602   MacroAssembler _masm(&cbuf);
1603   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1604   int reg = ra_->get_encode(this);
1605 
1606   if (Assembler::is_simm13(offset)) {
1607      __ add(SP, offset, reg_to_register_object(reg));
1608   } else {
1609      __ set(offset, O7);
1610      __ add(SP, O7, reg_to_register_object(reg));
1611   }
1612 }
1613 
1614 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1615   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1616   assert(ra_ == ra_->C->regalloc(), "sanity");
1617   return ra_->C->scratch_emit_size(this);
1618 }
1619 
1620 //=============================================================================
1621 
1622 // emit call stub, compiled java to interpretor
1623 void emit_java_to_interp(CodeBuffer &cbuf ) {
1624 
1625   // Stub is fixed up when the corresponding call is converted from calling
1626   // compiled code to calling interpreted code.
1627   // set (empty), G5
1628   // jmp -1
1629 
1630   address mark = cbuf.insts_mark();  // get mark within main instrs section
1631 
1632   MacroAssembler _masm(&cbuf);
1633 
1634   address base =
1635   __ start_a_stub(Compile::MAX_stubs_size);
1636   if (base == NULL)  return;  // CodeBuffer::expand failed
1637 
1638   // static stub relocation stores the instruction address of the call
1639   __ relocate(static_stub_Relocation::spec(mark));
1640 
1641   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1642 
1643   __ set_inst_mark();
1644   AddressLiteral addrlit(-1);
1645   __ JUMP(addrlit, G3, 0);
1646 
1647   __ delayed()->nop();
1648 
1649   // Update current stubs pointer and restore code_end.
1650   __ end_a_stub();
1651 }
1652 
1653 // size of call stub, compiled java to interpretor
1654 uint size_java_to_interp() {
1655   // This doesn't need to be accurate but it must be larger or equal to
1656   // the real size of the stub.
1657   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1658           NativeJump::instruction_size + // sethi; jmp; nop
1659           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1660 }
1661 // relocation entries for call stub, compiled java to interpretor
1662 uint reloc_java_to_interp() {
1663   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1664 }
1665 
1666 
1667 //=============================================================================
1668 #ifndef PRODUCT
1669 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1670   st->print_cr("\nUEP:");
1671 #ifdef    _LP64
1672   if (UseCompressedOops) {
1673     assert(Universe::heap() != NULL, "java heap should be initialized");
1674     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1675     st->print_cr("\tSLL    R_G5,3,R_G5");
1676     if (Universe::narrow_oop_base() != NULL)
1677       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1678   } else {
1679     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1680   }
1681   st->print_cr("\tCMP    R_G5,R_G3" );
1682   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1683 #else  // _LP64
1684   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1685   st->print_cr("\tCMP    R_G5,R_G3" );
1686   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1687 #endif // _LP64
1688 }
1689 #endif
1690 
1691 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1692   MacroAssembler _masm(&cbuf);
1693   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1694   Register temp_reg   = G3;
1695   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1696 
1697   // Load klass from receiver
1698   __ load_klass(O0, temp_reg);
1699   // Compare against expected klass
1700   __ cmp(temp_reg, G5_ic_reg);
1701   // Branch to miss code, checks xcc or icc depending
1702   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1703 }
1704 
1705 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1706   return MachNode::size(ra_);
1707 }
1708 
1709 
1710 //=============================================================================
1711 
1712 uint size_exception_handler() {
1713   if (TraceJumps) {
1714     return (400); // just a guess
1715   }
1716   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1717 }
1718 
1719 uint size_deopt_handler() {
1720   if (TraceJumps) {
1721     return (400); // just a guess
1722   }
1723   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1724 }
1725 
1726 // Emit exception handler code.
1727 int emit_exception_handler(CodeBuffer& cbuf) {
1728   Register temp_reg = G3;
1729   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1730   MacroAssembler _masm(&cbuf);
1731 
1732   address base =
1733   __ start_a_stub(size_exception_handler());
1734   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1735 
1736   int offset = __ offset();
1737 
1738   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1739   __ delayed()->nop();
1740 
1741   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1742 
1743   __ end_a_stub();
1744 
1745   return offset;
1746 }
1747 
1748 int emit_deopt_handler(CodeBuffer& cbuf) {
1749   // Can't use any of the current frame's registers as we may have deopted
1750   // at a poll and everything (including G3) can be live.
1751   Register temp_reg = L0;
1752   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1753   MacroAssembler _masm(&cbuf);
1754 
1755   address base =
1756   __ start_a_stub(size_deopt_handler());
1757   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1758 
1759   int offset = __ offset();
1760   __ save_frame(0);
1761   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1762   __ delayed()->restore();
1763 
1764   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1765 
1766   __ end_a_stub();
1767   return offset;
1768 
1769 }
1770 
1771 // Given a register encoding, produce a Integer Register object
1772 static Register reg_to_register_object(int register_encoding) {
1773   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1774   return as_Register(register_encoding);
1775 }
1776 
1777 // Given a register encoding, produce a single-precision Float Register object
1778 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1779   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1780   return as_SingleFloatRegister(register_encoding);
1781 }
1782 
1783 // Given a register encoding, produce a double-precision Float Register object
1784 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1785   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1786   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1787   return as_DoubleFloatRegister(register_encoding);
1788 }
1789 
1790 const bool Matcher::match_rule_supported(int opcode) {
1791   if (!has_match_rule(opcode))
1792     return false;
1793 
1794   switch (opcode) {
1795   case Op_CountLeadingZerosI:
1796   case Op_CountLeadingZerosL:
1797   case Op_CountTrailingZerosI:
1798   case Op_CountTrailingZerosL:
1799     if (!UsePopCountInstruction)
1800       return false;
1801     break;
1802   }
1803 
1804   return true;  // Per default match rules are supported.
1805 }
1806 
1807 int Matcher::regnum_to_fpu_offset(int regnum) {
1808   return regnum - 32; // The FP registers are in the second chunk
1809 }
1810 
1811 #ifdef ASSERT
1812 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1813 #endif
1814 
1815 // Vector width in bytes
1816 const uint Matcher::vector_width_in_bytes(void) {
1817   return 8;
1818 }
1819 
1820 // Vector ideal reg
1821 const uint Matcher::vector_ideal_reg(void) {
1822   return Op_RegD;
1823 }
1824 
1825 // USII supports fxtof through the whole range of number, USIII doesn't
1826 const bool Matcher::convL2FSupported(void) {
1827   return VM_Version::has_fast_fxtof();
1828 }
1829 
1830 // Is this branch offset short enough that a short branch can be used?
1831 //
1832 // NOTE: If the platform does not provide any short branch variants, then
1833 //       this method should return false for offset 0.
1834 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1835   // The passed offset is relative to address of the branch.
1836   // Don't need to adjust the offset.
1837   return UseCBCond && Assembler::is_simm(offset, 12);
1838 }
1839 
1840 const bool Matcher::isSimpleConstant64(jlong value) {
1841   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1842   // Depends on optimizations in MacroAssembler::setx.
1843   int hi = (int)(value >> 32);
1844   int lo = (int)(value & ~0);
1845   return (hi == 0) || (hi == -1) || (lo == 0);
1846 }
1847 
1848 // No scaling for the parameter the ClearArray node.
1849 const bool Matcher::init_array_count_is_in_bytes = true;
1850 
1851 // Threshold size for cleararray.
1852 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1853 
1854 // Should the Matcher clone shifts on addressing modes, expecting them to
1855 // be subsumed into complex addressing expressions or compute them into
1856 // registers?  True for Intel but false for most RISCs
1857 const bool Matcher::clone_shift_expressions = false;
1858 
1859 // Do we need to mask the count passed to shift instructions or does
1860 // the cpu only look at the lower 5/6 bits anyway?
1861 const bool Matcher::need_masked_shift_count = false;
1862 
1863 bool Matcher::narrow_oop_use_complex_address() {
1864   NOT_LP64(ShouldNotCallThis());
1865   assert(UseCompressedOops, "only for compressed oops code");
1866   return false;
1867 }
1868 
1869 // Is it better to copy float constants, or load them directly from memory?
1870 // Intel can load a float constant from a direct address, requiring no
1871 // extra registers.  Most RISCs will have to materialize an address into a
1872 // register first, so they would do better to copy the constant from stack.
1873 const bool Matcher::rematerialize_float_constants = false;
1874 
1875 // If CPU can load and store mis-aligned doubles directly then no fixup is
1876 // needed.  Else we split the double into 2 integer pieces and move it
1877 // piece-by-piece.  Only happens when passing doubles into C code as the
1878 // Java calling convention forces doubles to be aligned.
1879 #ifdef _LP64
1880 const bool Matcher::misaligned_doubles_ok = true;
1881 #else
1882 const bool Matcher::misaligned_doubles_ok = false;
1883 #endif
1884 
1885 // No-op on SPARC.
1886 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1887 }
1888 
1889 // Advertise here if the CPU requires explicit rounding operations
1890 // to implement the UseStrictFP mode.
1891 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1892 
1893 // Are floats conerted to double when stored to stack during deoptimization?
1894 // Sparc does not handle callee-save floats.
1895 bool Matcher::float_in_double() { return false; }
1896 
1897 // Do ints take an entire long register or just half?
1898 // Note that we if-def off of _LP64.
1899 // The relevant question is how the int is callee-saved.  In _LP64
1900 // the whole long is written but de-opt'ing will have to extract
1901 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1902 #ifdef _LP64
1903 const bool Matcher::int_in_long = true;
1904 #else
1905 const bool Matcher::int_in_long = false;
1906 #endif
1907 
1908 // Return whether or not this register is ever used as an argument.  This
1909 // function is used on startup to build the trampoline stubs in generateOptoStub.
1910 // Registers not mentioned will be killed by the VM call in the trampoline, and
1911 // arguments in those registers not be available to the callee.
1912 bool Matcher::can_be_java_arg( int reg ) {
1913   // Standard sparc 6 args in registers
1914   if( reg == R_I0_num ||
1915       reg == R_I1_num ||
1916       reg == R_I2_num ||
1917       reg == R_I3_num ||
1918       reg == R_I4_num ||
1919       reg == R_I5_num ) return true;
1920 #ifdef _LP64
1921   // 64-bit builds can pass 64-bit pointers and longs in
1922   // the high I registers
1923   if( reg == R_I0H_num ||
1924       reg == R_I1H_num ||
1925       reg == R_I2H_num ||
1926       reg == R_I3H_num ||
1927       reg == R_I4H_num ||
1928       reg == R_I5H_num ) return true;
1929 
1930   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1931     return true;
1932   }
1933 
1934 #else
1935   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1936   // Longs cannot be passed in O regs, because O regs become I regs
1937   // after a 'save' and I regs get their high bits chopped off on
1938   // interrupt.
1939   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1940   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1941 #endif
1942   // A few float args in registers
1943   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1944 
1945   return false;
1946 }
1947 
1948 bool Matcher::is_spillable_arg( int reg ) {
1949   return can_be_java_arg(reg);
1950 }
1951 
1952 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1953   // Use hardware SDIVX instruction when it is
1954   // faster than a code which use multiply.
1955   return VM_Version::has_fast_idiv();
1956 }
1957 
1958 // Register for DIVI projection of divmodI
1959 RegMask Matcher::divI_proj_mask() {
1960   ShouldNotReachHere();
1961   return RegMask();
1962 }
1963 
1964 // Register for MODI projection of divmodI
1965 RegMask Matcher::modI_proj_mask() {
1966   ShouldNotReachHere();
1967   return RegMask();
1968 }
1969 
1970 // Register for DIVL projection of divmodL
1971 RegMask Matcher::divL_proj_mask() {
1972   ShouldNotReachHere();
1973   return RegMask();
1974 }
1975 
1976 // Register for MODL projection of divmodL
1977 RegMask Matcher::modL_proj_mask() {
1978   ShouldNotReachHere();
1979   return RegMask();
1980 }
1981 
1982 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1983   return L7_REGP_mask;
1984 }
1985 
1986 %}
1987 
1988 
1989 // The intptr_t operand types, defined by textual substitution.
1990 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1991 #ifdef _LP64
1992 #define immX      immL
1993 #define immX13    immL13
1994 #define immX13m7  immL13m7
1995 #define iRegX     iRegL
1996 #define g1RegX    g1RegL
1997 #else
1998 #define immX      immI
1999 #define immX13    immI13
2000 #define immX13m7  immI13m7
2001 #define iRegX     iRegI
2002 #define g1RegX    g1RegI
2003 #endif
2004 
2005 //----------ENCODING BLOCK-----------------------------------------------------
2006 // This block specifies the encoding classes used by the compiler to output
2007 // byte streams.  Encoding classes are parameterized macros used by
2008 // Machine Instruction Nodes in order to generate the bit encoding of the
2009 // instruction.  Operands specify their base encoding interface with the
2010 // interface keyword.  There are currently supported four interfaces,
2011 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2012 // operand to generate a function which returns its register number when
2013 // queried.   CONST_INTER causes an operand to generate a function which
2014 // returns the value of the constant when queried.  MEMORY_INTER causes an
2015 // operand to generate four functions which return the Base Register, the
2016 // Index Register, the Scale Value, and the Offset Value of the operand when
2017 // queried.  COND_INTER causes an operand to generate six functions which
2018 // return the encoding code (ie - encoding bits for the instruction)
2019 // associated with each basic boolean condition for a conditional instruction.
2020 //
2021 // Instructions specify two basic values for encoding.  Again, a function
2022 // is available to check if the constant displacement is an oop. They use the
2023 // ins_encode keyword to specify their encoding classes (which must be
2024 // a sequence of enc_class names, and their parameters, specified in
2025 // the encoding block), and they use the
2026 // opcode keyword to specify, in order, their primary, secondary, and
2027 // tertiary opcode.  Only the opcode sections which a particular instruction
2028 // needs for encoding need to be specified.
2029 encode %{
2030   enc_class enc_untested %{
2031 #ifdef ASSERT
2032     MacroAssembler _masm(&cbuf);
2033     __ untested("encoding");
2034 #endif
2035   %}
2036 
2037   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2038     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2039                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2040   %}
2041 
2042   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2043     emit_form3_mem_reg(cbuf, this, $primary, -1,
2044                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2045   %}
2046 
2047   enc_class form3_mem_prefetch_read( memory mem ) %{
2048     emit_form3_mem_reg(cbuf, this, $primary, -1,
2049                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2050   %}
2051 
2052   enc_class form3_mem_prefetch_write( memory mem ) %{
2053     emit_form3_mem_reg(cbuf, this, $primary, -1,
2054                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2055   %}
2056 
2057   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2058     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
2059     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
2060     guarantee($mem$$index == R_G0_enc, "double index?");
2061     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2062     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2063     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2064     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2065   %}
2066 
2067   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2068     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
2069     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
2070     guarantee($mem$$index == R_G0_enc, "double index?");
2071     // Load long with 2 instructions
2072     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2073     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2074   %}
2075 
2076   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2077   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2078     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2079     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2080   %}
2081 
2082   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2083     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2084     if( $rs2$$reg != $rd$$reg )
2085       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2086   %}
2087 
2088   // Target lo half of long
2089   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2090     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2091     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2092       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2093   %}
2094 
2095   // Source lo half of long
2096   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2097     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2098     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2099       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2100   %}
2101 
2102   // Target hi half of long
2103   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2104     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2105   %}
2106 
2107   // Source lo half of long, and leave it sign extended.
2108   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2109     // Sign extend low half
2110     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2111   %}
2112 
2113   // Source hi half of long, and leave it sign extended.
2114   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2115     // Shift high half to low half
2116     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2117   %}
2118 
2119   // Source hi half of long
2120   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2121     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2122     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2123       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2124   %}
2125 
2126   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2127     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2128   %}
2129 
2130   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2131     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2132     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2133   %}
2134 
2135   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2136     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2137     // clear if nothing else is happening
2138     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2139     // blt,a,pn done
2140     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2141     // mov dst,-1 in delay slot
2142     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2143   %}
2144 
2145   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2146     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2147   %}
2148 
2149   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2150     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2151   %}
2152 
2153   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2154     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2155   %}
2156 
2157   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2158     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2159   %}
2160 
2161   enc_class move_return_pc_to_o1() %{
2162     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2163   %}
2164 
2165 #ifdef _LP64
2166   /* %%% merge with enc_to_bool */
2167   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2168     MacroAssembler _masm(&cbuf);
2169 
2170     Register   src_reg = reg_to_register_object($src$$reg);
2171     Register   dst_reg = reg_to_register_object($dst$$reg);
2172     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2173   %}
2174 #endif
2175 
2176   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2177     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2178     MacroAssembler _masm(&cbuf);
2179 
2180     Register   p_reg = reg_to_register_object($p$$reg);
2181     Register   q_reg = reg_to_register_object($q$$reg);
2182     Register   y_reg = reg_to_register_object($y$$reg);
2183     Register tmp_reg = reg_to_register_object($tmp$$reg);
2184 
2185     __ subcc( p_reg, q_reg,   p_reg );
2186     __ add  ( p_reg, y_reg, tmp_reg );
2187     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2188   %}
2189 
2190   enc_class form_d2i_helper(regD src, regF dst) %{
2191     // fcmp %fcc0,$src,$src
2192     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2193     // branch %fcc0 not-nan, predict taken
2194     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2195     // fdtoi $src,$dst
2196     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2197     // fitos $dst,$dst (if nan)
2198     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2199     // clear $dst (if nan)
2200     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2201     // carry on here...
2202   %}
2203 
2204   enc_class form_d2l_helper(regD src, regD dst) %{
2205     // fcmp %fcc0,$src,$src  check for NAN
2206     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2207     // branch %fcc0 not-nan, predict taken
2208     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2209     // fdtox $src,$dst   convert in delay slot
2210     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2211     // fxtod $dst,$dst  (if nan)
2212     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2213     // clear $dst (if nan)
2214     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2215     // carry on here...
2216   %}
2217 
2218   enc_class form_f2i_helper(regF src, regF dst) %{
2219     // fcmps %fcc0,$src,$src
2220     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2221     // branch %fcc0 not-nan, predict taken
2222     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2223     // fstoi $src,$dst
2224     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2225     // fitos $dst,$dst (if nan)
2226     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2227     // clear $dst (if nan)
2228     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2229     // carry on here...
2230   %}
2231 
2232   enc_class form_f2l_helper(regF src, regD dst) %{
2233     // fcmps %fcc0,$src,$src
2234     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2235     // branch %fcc0 not-nan, predict taken
2236     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2237     // fstox $src,$dst
2238     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2239     // fxtod $dst,$dst (if nan)
2240     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2241     // clear $dst (if nan)
2242     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2243     // carry on here...
2244   %}
2245 
2246   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2247   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2248   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2249   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2250 
2251   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2252 
2253   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2254   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2255 
2256   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2257     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2258   %}
2259 
2260   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2261     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2262   %}
2263 
2264   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2265     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2266   %}
2267 
2268   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2269     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2270   %}
2271 
2272   enc_class form3_convI2F(regF rs2, regF rd) %{
2273     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2274   %}
2275 
2276   // Encloding class for traceable jumps
2277   enc_class form_jmpl(g3RegP dest) %{
2278     emit_jmpl(cbuf, $dest$$reg);
2279   %}
2280 
2281   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2282     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2283   %}
2284 
2285   enc_class form2_nop() %{
2286     emit_nop(cbuf);
2287   %}
2288 
2289   enc_class form2_illtrap() %{
2290     emit_illtrap(cbuf);
2291   %}
2292 
2293 
2294   // Compare longs and convert into -1, 0, 1.
2295   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2296     // CMP $src1,$src2
2297     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2298     // blt,a,pn done
2299     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2300     // mov dst,-1 in delay slot
2301     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2302     // bgt,a,pn done
2303     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2304     // mov dst,1 in delay slot
2305     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2306     // CLR    $dst
2307     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2308   %}
2309 
2310   enc_class enc_PartialSubtypeCheck() %{
2311     MacroAssembler _masm(&cbuf);
2312     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2313     __ delayed()->nop();
2314   %}
2315 
2316   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2317     MacroAssembler _masm(&cbuf);
2318     Label* L = $labl$$label;
2319     Assembler::Predict predict_taken =
2320       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2321 
2322     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2323     __ delayed()->nop();
2324   %}
2325 
2326   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2327     MacroAssembler _masm(&cbuf);
2328     Label* L = $labl$$label;
2329     Assembler::Predict predict_taken =
2330       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2331 
2332     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2333     __ delayed()->nop();
2334   %}
2335 
2336   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2337     int op = (Assembler::arith_op << 30) |
2338              ($dst$$reg << 25) |
2339              (Assembler::movcc_op3 << 19) |
2340              (1 << 18) |                    // cc2 bit for 'icc'
2341              ($cmp$$cmpcode << 14) |
2342              (0 << 13) |                    // select register move
2343              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2344              ($src$$reg << 0);
2345     cbuf.insts()->emit_int32(op);
2346   %}
2347 
2348   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2349     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2350     int op = (Assembler::arith_op << 30) |
2351              ($dst$$reg << 25) |
2352              (Assembler::movcc_op3 << 19) |
2353              (1 << 18) |                    // cc2 bit for 'icc'
2354              ($cmp$$cmpcode << 14) |
2355              (1 << 13) |                    // select immediate move
2356              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2357              (simm11 << 0);
2358     cbuf.insts()->emit_int32(op);
2359   %}
2360 
2361   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2362     int op = (Assembler::arith_op << 30) |
2363              ($dst$$reg << 25) |
2364              (Assembler::movcc_op3 << 19) |
2365              (0 << 18) |                    // cc2 bit for 'fccX'
2366              ($cmp$$cmpcode << 14) |
2367              (0 << 13) |                    // select register move
2368              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2369              ($src$$reg << 0);
2370     cbuf.insts()->emit_int32(op);
2371   %}
2372 
2373   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2374     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2375     int op = (Assembler::arith_op << 30) |
2376              ($dst$$reg << 25) |
2377              (Assembler::movcc_op3 << 19) |
2378              (0 << 18) |                    // cc2 bit for 'fccX'
2379              ($cmp$$cmpcode << 14) |
2380              (1 << 13) |                    // select immediate move
2381              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2382              (simm11 << 0);
2383     cbuf.insts()->emit_int32(op);
2384   %}
2385 
2386   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2387     int op = (Assembler::arith_op << 30) |
2388              ($dst$$reg << 25) |
2389              (Assembler::fpop2_op3 << 19) |
2390              (0 << 18) |
2391              ($cmp$$cmpcode << 14) |
2392              (1 << 13) |                    // select register move
2393              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2394              ($primary << 5) |              // select single, double or quad
2395              ($src$$reg << 0);
2396     cbuf.insts()->emit_int32(op);
2397   %}
2398 
2399   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2400     int op = (Assembler::arith_op << 30) |
2401              ($dst$$reg << 25) |
2402              (Assembler::fpop2_op3 << 19) |
2403              (0 << 18) |
2404              ($cmp$$cmpcode << 14) |
2405              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2406              ($primary << 5) |              // select single, double or quad
2407              ($src$$reg << 0);
2408     cbuf.insts()->emit_int32(op);
2409   %}
2410 
2411   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2412   // the condition comes from opcode-field instead of an argument.
2413   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2414     int op = (Assembler::arith_op << 30) |
2415              ($dst$$reg << 25) |
2416              (Assembler::movcc_op3 << 19) |
2417              (1 << 18) |                    // cc2 bit for 'icc'
2418              ($primary << 14) |
2419              (0 << 13) |                    // select register move
2420              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2421              ($src$$reg << 0);
2422     cbuf.insts()->emit_int32(op);
2423   %}
2424 
2425   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2426     int op = (Assembler::arith_op << 30) |
2427              ($dst$$reg << 25) |
2428              (Assembler::movcc_op3 << 19) |
2429              (6 << 16) |                    // cc2 bit for 'xcc'
2430              ($primary << 14) |
2431              (0 << 13) |                    // select register move
2432              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2433              ($src$$reg << 0);
2434     cbuf.insts()->emit_int32(op);
2435   %}
2436 
2437   enc_class Set13( immI13 src, iRegI rd ) %{
2438     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2439   %}
2440 
2441   enc_class SetHi22( immI src, iRegI rd ) %{
2442     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2443   %}
2444 
2445   enc_class Set32( immI src, iRegI rd ) %{
2446     MacroAssembler _masm(&cbuf);
2447     __ set($src$$constant, reg_to_register_object($rd$$reg));
2448   %}
2449 
2450   enc_class call_epilog %{
2451     if( VerifyStackAtCalls ) {
2452       MacroAssembler _masm(&cbuf);
2453       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2454       Register temp_reg = G3;
2455       __ add(SP, framesize, temp_reg);
2456       __ cmp(temp_reg, FP);
2457       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2458     }
2459   %}
2460 
2461   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2462   // to G1 so the register allocator will not have to deal with the misaligned register
2463   // pair.
2464   enc_class adjust_long_from_native_call %{
2465 #ifndef _LP64
2466     if (returns_long()) {
2467       //    sllx  O0,32,O0
2468       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2469       //    srl   O1,0,O1
2470       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2471       //    or    O0,O1,G1
2472       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2473     }
2474 #endif
2475   %}
2476 
2477   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2478     // CALL directly to the runtime
2479     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2480     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2481                     /*preserve_g2=*/true);
2482   %}
2483 
2484   enc_class preserve_SP %{
2485     MacroAssembler _masm(&cbuf);
2486     __ mov(SP, L7_mh_SP_save);
2487   %}
2488 
2489   enc_class restore_SP %{
2490     MacroAssembler _masm(&cbuf);
2491     __ mov(L7_mh_SP_save, SP);
2492   %}
2493 
2494   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2495     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2496     // who we intended to call.
2497     if ( !_method ) {
2498       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2499     } else if (_optimized_virtual) {
2500       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2501     } else {
2502       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2503     }
2504     if( _method ) {  // Emit stub for static call
2505       emit_java_to_interp(cbuf);
2506     }
2507   %}
2508 
2509   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2510     MacroAssembler _masm(&cbuf);
2511     __ set_inst_mark();
2512     int vtable_index = this->_vtable_index;
2513     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2514     if (vtable_index < 0) {
2515       // must be invalid_vtable_index, not nonvirtual_vtable_index
2516       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2517       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2518       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2519       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2520       // !!!!!
2521       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2522       // emit_call_dynamic_prologue( cbuf );
2523       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2524 
2525       address  virtual_call_oop_addr = __ inst_mark();
2526       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2527       // who we intended to call.
2528       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2529       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2530     } else {
2531       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2532       // Just go thru the vtable
2533       // get receiver klass (receiver already checked for non-null)
2534       // If we end up going thru a c2i adapter interpreter expects method in G5
2535       int off = __ offset();
2536       __ load_klass(O0, G3_scratch);
2537       int klass_load_size;
2538       if (UseCompressedOops) {
2539         assert(Universe::heap() != NULL, "java heap should be initialized");
2540         if (Universe::narrow_oop_base() == NULL)
2541           klass_load_size = 2*BytesPerInstWord;
2542         else
2543           klass_load_size = 3*BytesPerInstWord;
2544       } else {
2545         klass_load_size = 1*BytesPerInstWord;
2546       }
2547       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2548       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2549       if( __ is_simm13(v_off) ) {
2550         __ ld_ptr(G3, v_off, G5_method);
2551       } else {
2552         // Generate 2 instructions
2553         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2554         __ or3(G5_method, v_off & 0x3ff, G5_method);
2555         // ld_ptr, set_hi, set
2556         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2557                "Unexpected instruction size(s)");
2558         __ ld_ptr(G3, G5_method, G5_method);
2559       }
2560       // NOTE: for vtable dispatches, the vtable entry will never be null.
2561       // However it may very well end up in handle_wrong_method if the
2562       // method is abstract for the particular class.
2563       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2564       // jump to target (either compiled code or c2iadapter)
2565       __ jmpl(G3_scratch, G0, O7);
2566       __ delayed()->nop();
2567     }
2568   %}
2569 
2570   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2571     MacroAssembler _masm(&cbuf);
2572 
2573     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2574     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2575                               // we might be calling a C2I adapter which needs it.
2576 
2577     assert(temp_reg != G5_ic_reg, "conflicting registers");
2578     // Load nmethod
2579     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2580 
2581     // CALL to compiled java, indirect the contents of G3
2582     __ set_inst_mark();
2583     __ callr(temp_reg, G0);
2584     __ delayed()->nop();
2585   %}
2586 
2587 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2588     MacroAssembler _masm(&cbuf);
2589     Register Rdividend = reg_to_register_object($src1$$reg);
2590     Register Rdivisor = reg_to_register_object($src2$$reg);
2591     Register Rresult = reg_to_register_object($dst$$reg);
2592 
2593     __ sra(Rdivisor, 0, Rdivisor);
2594     __ sra(Rdividend, 0, Rdividend);
2595     __ sdivx(Rdividend, Rdivisor, Rresult);
2596 %}
2597 
2598 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2599     MacroAssembler _masm(&cbuf);
2600 
2601     Register Rdividend = reg_to_register_object($src1$$reg);
2602     int divisor = $imm$$constant;
2603     Register Rresult = reg_to_register_object($dst$$reg);
2604 
2605     __ sra(Rdividend, 0, Rdividend);
2606     __ sdivx(Rdividend, divisor, Rresult);
2607 %}
2608 
2609 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2610     MacroAssembler _masm(&cbuf);
2611     Register Rsrc1 = reg_to_register_object($src1$$reg);
2612     Register Rsrc2 = reg_to_register_object($src2$$reg);
2613     Register Rdst  = reg_to_register_object($dst$$reg);
2614 
2615     __ sra( Rsrc1, 0, Rsrc1 );
2616     __ sra( Rsrc2, 0, Rsrc2 );
2617     __ mulx( Rsrc1, Rsrc2, Rdst );
2618     __ srlx( Rdst, 32, Rdst );
2619 %}
2620 
2621 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2622     MacroAssembler _masm(&cbuf);
2623     Register Rdividend = reg_to_register_object($src1$$reg);
2624     Register Rdivisor = reg_to_register_object($src2$$reg);
2625     Register Rresult = reg_to_register_object($dst$$reg);
2626     Register Rscratch = reg_to_register_object($scratch$$reg);
2627 
2628     assert(Rdividend != Rscratch, "");
2629     assert(Rdivisor  != Rscratch, "");
2630 
2631     __ sra(Rdividend, 0, Rdividend);
2632     __ sra(Rdivisor, 0, Rdivisor);
2633     __ sdivx(Rdividend, Rdivisor, Rscratch);
2634     __ mulx(Rscratch, Rdivisor, Rscratch);
2635     __ sub(Rdividend, Rscratch, Rresult);
2636 %}
2637 
2638 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2639     MacroAssembler _masm(&cbuf);
2640 
2641     Register Rdividend = reg_to_register_object($src1$$reg);
2642     int divisor = $imm$$constant;
2643     Register Rresult = reg_to_register_object($dst$$reg);
2644     Register Rscratch = reg_to_register_object($scratch$$reg);
2645 
2646     assert(Rdividend != Rscratch, "");
2647 
2648     __ sra(Rdividend, 0, Rdividend);
2649     __ sdivx(Rdividend, divisor, Rscratch);
2650     __ mulx(Rscratch, divisor, Rscratch);
2651     __ sub(Rdividend, Rscratch, Rresult);
2652 %}
2653 
2654 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2655     MacroAssembler _masm(&cbuf);
2656 
2657     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2658     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2659 
2660     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2661 %}
2662 
2663 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2664     MacroAssembler _masm(&cbuf);
2665 
2666     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2667     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2668 
2669     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2670 %}
2671 
2672 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2673     MacroAssembler _masm(&cbuf);
2674 
2675     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2676     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2677 
2678     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2679 %}
2680 
2681 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2682     MacroAssembler _masm(&cbuf);
2683 
2684     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2685     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2686 
2687     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2688 %}
2689 
2690 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2691     MacroAssembler _masm(&cbuf);
2692 
2693     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2694     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2695 
2696     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2697 %}
2698 
2699 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2700     MacroAssembler _masm(&cbuf);
2701 
2702     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2703     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2704 
2705     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2706 %}
2707 
2708 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2709     MacroAssembler _masm(&cbuf);
2710 
2711     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2712     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2713 
2714     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2715 %}
2716 
2717 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2718     MacroAssembler _masm(&cbuf);
2719 
2720     Register Roop  = reg_to_register_object($oop$$reg);
2721     Register Rbox  = reg_to_register_object($box$$reg);
2722     Register Rscratch = reg_to_register_object($scratch$$reg);
2723     Register Rmark =    reg_to_register_object($scratch2$$reg);
2724 
2725     assert(Roop  != Rscratch, "");
2726     assert(Roop  != Rmark, "");
2727     assert(Rbox  != Rscratch, "");
2728     assert(Rbox  != Rmark, "");
2729 
2730     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2731 %}
2732 
2733 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2734     MacroAssembler _masm(&cbuf);
2735 
2736     Register Roop  = reg_to_register_object($oop$$reg);
2737     Register Rbox  = reg_to_register_object($box$$reg);
2738     Register Rscratch = reg_to_register_object($scratch$$reg);
2739     Register Rmark =    reg_to_register_object($scratch2$$reg);
2740 
2741     assert(Roop  != Rscratch, "");
2742     assert(Roop  != Rmark, "");
2743     assert(Rbox  != Rscratch, "");
2744     assert(Rbox  != Rmark, "");
2745 
2746     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2747   %}
2748 
2749   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2750     MacroAssembler _masm(&cbuf);
2751     Register Rmem = reg_to_register_object($mem$$reg);
2752     Register Rold = reg_to_register_object($old$$reg);
2753     Register Rnew = reg_to_register_object($new$$reg);
2754 
2755     // casx_under_lock picks 1 of 3 encodings:
2756     // For 32-bit pointers you get a 32-bit CAS
2757     // For 64-bit pointers you get a 64-bit CASX
2758     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2759     __ cmp( Rold, Rnew );
2760   %}
2761 
2762   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2763     Register Rmem = reg_to_register_object($mem$$reg);
2764     Register Rold = reg_to_register_object($old$$reg);
2765     Register Rnew = reg_to_register_object($new$$reg);
2766 
2767     MacroAssembler _masm(&cbuf);
2768     __ mov(Rnew, O7);
2769     __ casx(Rmem, Rold, O7);
2770     __ cmp( Rold, O7 );
2771   %}
2772 
2773   // raw int cas, used for compareAndSwap
2774   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2775     Register Rmem = reg_to_register_object($mem$$reg);
2776     Register Rold = reg_to_register_object($old$$reg);
2777     Register Rnew = reg_to_register_object($new$$reg);
2778 
2779     MacroAssembler _masm(&cbuf);
2780     __ mov(Rnew, O7);
2781     __ cas(Rmem, Rold, O7);
2782     __ cmp( Rold, O7 );
2783   %}
2784 
2785   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2786     Register Rres = reg_to_register_object($res$$reg);
2787 
2788     MacroAssembler _masm(&cbuf);
2789     __ mov(1, Rres);
2790     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2791   %}
2792 
2793   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2794     Register Rres = reg_to_register_object($res$$reg);
2795 
2796     MacroAssembler _masm(&cbuf);
2797     __ mov(1, Rres);
2798     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2799   %}
2800 
2801   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2802     MacroAssembler _masm(&cbuf);
2803     Register Rdst = reg_to_register_object($dst$$reg);
2804     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2805                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2806     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2807                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2808 
2809     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2810     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2811   %}
2812 
2813   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2814   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2815     MacroAssembler _masm(&cbuf);
2816     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2817     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2818     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2819   
2820     Label loop;
2821     __ mov(nof_bytes_arg, nof_bytes_tmp);
2822   
2823     // Loop and clear, walking backwards through the array.
2824     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2825     __ bind(loop);
2826     __ deccc(nof_bytes_tmp, 8);
2827     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2828     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2829     // %%%% this mini-loop must not cross a cache boundary!
2830   %}
2831 
2832 
2833   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2834     Label Ldone, Lloop;
2835     MacroAssembler _masm(&cbuf);
2836 
2837     Register   str1_reg = reg_to_register_object($str1$$reg);
2838     Register   str2_reg = reg_to_register_object($str2$$reg);
2839     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2840     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2841     Register result_reg = reg_to_register_object($result$$reg);
2842 
2843     assert(result_reg != str1_reg &&
2844            result_reg != str2_reg &&
2845            result_reg != cnt1_reg &&
2846            result_reg != cnt2_reg ,
2847            "need different registers");
2848 
2849     // Compute the minimum of the string lengths(str1_reg) and the
2850     // difference of the string lengths (stack)
2851 
2852     // See if the lengths are different, and calculate min in str1_reg.
2853     // Stash diff in O7 in case we need it for a tie-breaker.
2854     Label Lskip;
2855     __ subcc(cnt1_reg, cnt2_reg, O7);
2856     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2857     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2858     // cnt2 is shorter, so use its count:
2859     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2860     __ bind(Lskip);
2861 
2862     // reallocate cnt1_reg, cnt2_reg, result_reg
2863     // Note:  limit_reg holds the string length pre-scaled by 2
2864     Register limit_reg =   cnt1_reg;
2865     Register  chr2_reg =   cnt2_reg;
2866     Register  chr1_reg = result_reg;
2867     // str{12} are the base pointers
2868 
2869     // Is the minimum length zero?
2870     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2871     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2872     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2873 
2874     // Load first characters
2875     __ lduh(str1_reg, 0, chr1_reg);
2876     __ lduh(str2_reg, 0, chr2_reg);
2877 
2878     // Compare first characters
2879     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2880     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2881     assert(chr1_reg == result_reg, "result must be pre-placed");
2882     __ delayed()->nop();
2883 
2884     {
2885       // Check after comparing first character to see if strings are equivalent
2886       Label LSkip2;
2887       // Check if the strings start at same location
2888       __ cmp(str1_reg, str2_reg);
2889       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2890       __ delayed()->nop();
2891 
2892       // Check if the length difference is zero (in O7)
2893       __ cmp(G0, O7);
2894       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2895       __ delayed()->mov(G0, result_reg);  // result is zero
2896 
2897       // Strings might not be equal
2898       __ bind(LSkip2);
2899     }
2900 
2901     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2902     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2903     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2904 
2905     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2906     __ add(str1_reg, limit_reg, str1_reg);
2907     __ add(str2_reg, limit_reg, str2_reg);
2908     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2909 
2910     // Compare the rest of the characters
2911     __ lduh(str1_reg, limit_reg, chr1_reg);
2912     __ bind(Lloop);
2913     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2914     __ lduh(str2_reg, limit_reg, chr2_reg);
2915     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2916     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2917     assert(chr1_reg == result_reg, "result must be pre-placed");
2918     __ delayed()->inccc(limit_reg, sizeof(jchar));
2919     // annul LDUH if branch is not taken to prevent access past end of string
2920     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2921     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2922 
2923     // If strings are equal up to min length, return the length difference.
2924     __ mov(O7, result_reg);
2925 
2926     // Otherwise, return the difference between the first mismatched chars.
2927     __ bind(Ldone);
2928   %}
2929 
2930 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2931     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2932     MacroAssembler _masm(&cbuf);
2933 
2934     Register   str1_reg = reg_to_register_object($str1$$reg);
2935     Register   str2_reg = reg_to_register_object($str2$$reg);
2936     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2937     Register   tmp1_reg = O7;
2938     Register result_reg = reg_to_register_object($result$$reg);
2939 
2940     assert(result_reg != str1_reg &&
2941            result_reg != str2_reg &&
2942            result_reg !=  cnt_reg &&
2943            result_reg != tmp1_reg ,
2944            "need different registers");
2945 
2946     __ cmp(str1_reg, str2_reg); //same char[] ?
2947     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2948     __ delayed()->add(G0, 1, result_reg);
2949 
2950     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
2951     __ delayed()->add(G0, 1, result_reg); // count == 0
2952 
2953     //rename registers
2954     Register limit_reg =    cnt_reg;
2955     Register  chr1_reg = result_reg;
2956     Register  chr2_reg =   tmp1_reg;
2957 
2958     //check for alignment and position the pointers to the ends
2959     __ or3(str1_reg, str2_reg, chr1_reg);
2960     __ andcc(chr1_reg, 0x3, chr1_reg);
2961     // notZero means at least one not 4-byte aligned.
2962     // We could optimize the case when both arrays are not aligned
2963     // but it is not frequent case and it requires additional checks.
2964     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2965     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2966 
2967     // Compare char[] arrays aligned to 4 bytes.
2968     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2969                           chr1_reg, chr2_reg, Ldone);
2970     __ ba(Ldone);
2971     __ delayed()->add(G0, 1, result_reg);
2972 
2973     // char by char compare
2974     __ bind(Lchar);
2975     __ add(str1_reg, limit_reg, str1_reg);
2976     __ add(str2_reg, limit_reg, str2_reg);
2977     __ neg(limit_reg); //negate count
2978 
2979     __ lduh(str1_reg, limit_reg, chr1_reg);
2980     // Lchar_loop
2981     __ bind(Lchar_loop);
2982     __ lduh(str2_reg, limit_reg, chr2_reg);
2983     __ cmp(chr1_reg, chr2_reg);
2984     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2985     __ delayed()->mov(G0, result_reg); //not equal
2986     __ inccc(limit_reg, sizeof(jchar));
2987     // annul LDUH if branch is not taken to prevent access past end of string
2988     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
2989     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2990 
2991     __ add(G0, 1, result_reg);  //equal
2992 
2993     __ bind(Ldone);
2994   %}
2995 
2996 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
2997     Label Lvector, Ldone, Lloop;
2998     MacroAssembler _masm(&cbuf);
2999 
3000     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3001     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3002     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3003     Register   tmp2_reg = O7;
3004     Register result_reg = reg_to_register_object($result$$reg);
3005 
3006     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3007     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3008 
3009     // return true if the same array
3010     __ cmp(ary1_reg, ary2_reg);
3011     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3012     __ delayed()->add(G0, 1, result_reg); // equal
3013 
3014     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3015     __ delayed()->mov(G0, result_reg);    // not equal
3016 
3017     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3018     __ delayed()->mov(G0, result_reg);    // not equal
3019 
3020     //load the lengths of arrays
3021     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3022     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3023 
3024     // return false if the two arrays are not equal length
3025     __ cmp(tmp1_reg, tmp2_reg);
3026     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3027     __ delayed()->mov(G0, result_reg);     // not equal
3028 
3029     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3030     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3031 
3032     // load array addresses
3033     __ add(ary1_reg, base_offset, ary1_reg);
3034     __ add(ary2_reg, base_offset, ary2_reg);
3035 
3036     // renaming registers
3037     Register chr1_reg  =  result_reg; // for characters in ary1
3038     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3039     Register limit_reg =  tmp1_reg;   // length
3040 
3041     // set byte count
3042     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3043 
3044     // Compare char[] arrays aligned to 4 bytes.
3045     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3046                           chr1_reg, chr2_reg, Ldone);
3047     __ add(G0, 1, result_reg); // equals
3048 
3049     __ bind(Ldone);
3050   %}
3051 
3052   enc_class enc_rethrow() %{
3053     cbuf.set_insts_mark();
3054     Register temp_reg = G3;
3055     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3056     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3057     MacroAssembler _masm(&cbuf);
3058 #ifdef ASSERT
3059     __ save_frame(0);
3060     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3061     __ sethi(last_rethrow_addrlit, L1);
3062     Address addr(L1, last_rethrow_addrlit.low10());
3063     __ get_pc(L2);
3064     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3065     __ st_ptr(L2, addr);
3066     __ restore();
3067 #endif
3068     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3069     __ delayed()->nop();
3070   %}
3071 
3072   enc_class emit_mem_nop() %{
3073     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3074     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3075   %}
3076 
3077   enc_class emit_fadd_nop() %{
3078     // Generates the instruction FMOVS f31,f31
3079     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3080   %}
3081 
3082   enc_class emit_br_nop() %{
3083     // Generates the instruction BPN,PN .
3084     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3085   %}
3086 
3087   enc_class enc_membar_acquire %{
3088     MacroAssembler _masm(&cbuf);
3089     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3090   %}
3091 
3092   enc_class enc_membar_release %{
3093     MacroAssembler _masm(&cbuf);
3094     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3095   %}
3096 
3097   enc_class enc_membar_volatile %{
3098     MacroAssembler _masm(&cbuf);
3099     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3100   %}
3101 
3102   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3103     MacroAssembler _masm(&cbuf);
3104     Register src_reg = reg_to_register_object($src$$reg);
3105     Register dst_reg = reg_to_register_object($dst$$reg);
3106     __ sllx(src_reg, 56, dst_reg);
3107     __ srlx(dst_reg,  8, O7);
3108     __ or3 (dst_reg, O7, dst_reg);
3109     __ srlx(dst_reg, 16, O7);
3110     __ or3 (dst_reg, O7, dst_reg);
3111     __ srlx(dst_reg, 32, O7);
3112     __ or3 (dst_reg, O7, dst_reg);
3113   %}
3114 
3115   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3116     MacroAssembler _masm(&cbuf);
3117     Register src_reg = reg_to_register_object($src$$reg);
3118     Register dst_reg = reg_to_register_object($dst$$reg);
3119     __ sll(src_reg, 24, dst_reg);
3120     __ srl(dst_reg,  8, O7);
3121     __ or3(dst_reg, O7, dst_reg);
3122     __ srl(dst_reg, 16, O7);
3123     __ or3(dst_reg, O7, dst_reg);
3124   %}
3125 
3126   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3127     MacroAssembler _masm(&cbuf);
3128     Register src_reg = reg_to_register_object($src$$reg);
3129     Register dst_reg = reg_to_register_object($dst$$reg);
3130     __ sllx(src_reg, 48, dst_reg);
3131     __ srlx(dst_reg, 16, O7);
3132     __ or3 (dst_reg, O7, dst_reg);
3133     __ srlx(dst_reg, 32, O7);
3134     __ or3 (dst_reg, O7, dst_reg);
3135   %}
3136 
3137   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3138     MacroAssembler _masm(&cbuf);
3139     Register src_reg = reg_to_register_object($src$$reg);
3140     Register dst_reg = reg_to_register_object($dst$$reg);
3141     __ sllx(src_reg, 32, dst_reg);
3142     __ srlx(dst_reg, 32, O7);
3143     __ or3 (dst_reg, O7, dst_reg);
3144   %}
3145 
3146 %}
3147 
3148 //----------FRAME--------------------------------------------------------------
3149 // Definition of frame structure and management information.
3150 //
3151 //  S T A C K   L A Y O U T    Allocators stack-slot number
3152 //                             |   (to get allocators register number
3153 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3154 //  r   CALLER     |        |
3155 //  o     |        +--------+      pad to even-align allocators stack-slot
3156 //  w     V        |  pad0  |        numbers; owned by CALLER
3157 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3158 //  h     ^        |   in   |  5
3159 //        |        |  args  |  4   Holes in incoming args owned by SELF
3160 //  |     |        |        |  3
3161 //  |     |        +--------+
3162 //  V     |        | old out|      Empty on Intel, window on Sparc
3163 //        |    old |preserve|      Must be even aligned.
3164 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3165 //        |        |   in   |  3   area for Intel ret address
3166 //     Owned by    |preserve|      Empty on Sparc.
3167 //       SELF      +--------+
3168 //        |        |  pad2  |  2   pad to align old SP
3169 //        |        +--------+  1
3170 //        |        | locks  |  0
3171 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3172 //        |        |  pad1  | 11   pad to align new SP
3173 //        |        +--------+
3174 //        |        |        | 10
3175 //        |        | spills |  9   spills
3176 //        V        |        |  8   (pad0 slot for callee)
3177 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3178 //        ^        |  out   |  7
3179 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3180 //     Owned by    +--------+
3181 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3182 //        |    new |preserve|      Must be even-aligned.
3183 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3184 //        |        |        |
3185 //
3186 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3187 //         known from SELF's arguments and the Java calling convention.
3188 //         Region 6-7 is determined per call site.
3189 // Note 2: If the calling convention leaves holes in the incoming argument
3190 //         area, those holes are owned by SELF.  Holes in the outgoing area
3191 //         are owned by the CALLEE.  Holes should not be nessecary in the
3192 //         incoming area, as the Java calling convention is completely under
3193 //         the control of the AD file.  Doubles can be sorted and packed to
3194 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3195 //         varargs C calling conventions.
3196 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3197 //         even aligned with pad0 as needed.
3198 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3199 //         region 6-11 is even aligned; it may be padded out more so that
3200 //         the region from SP to FP meets the minimum stack alignment.
3201 
3202 frame %{
3203   // What direction does stack grow in (assumed to be same for native & Java)
3204   stack_direction(TOWARDS_LOW);
3205 
3206   // These two registers define part of the calling convention
3207   // between compiled code and the interpreter.
3208   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3209   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3210 
3211   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3212   cisc_spilling_operand_name(indOffset);
3213 
3214   // Number of stack slots consumed by a Monitor enter
3215 #ifdef _LP64
3216   sync_stack_slots(2);
3217 #else
3218   sync_stack_slots(1);
3219 #endif
3220 
3221   // Compiled code's Frame Pointer
3222   frame_pointer(R_SP);
3223 
3224   // Stack alignment requirement
3225   stack_alignment(StackAlignmentInBytes);
3226   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3227   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3228 
3229   // Number of stack slots between incoming argument block and the start of
3230   // a new frame.  The PROLOG must add this many slots to the stack.  The
3231   // EPILOG must remove this many slots.
3232   in_preserve_stack_slots(0);
3233 
3234   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3235   // for calls to C.  Supports the var-args backing area for register parms.
3236   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3237 #ifdef _LP64
3238   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3239   varargs_C_out_slots_killed(12);
3240 #else
3241   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3242   varargs_C_out_slots_killed( 7);
3243 #endif
3244 
3245   // The after-PROLOG location of the return address.  Location of
3246   // return address specifies a type (REG or STACK) and a number
3247   // representing the register number (i.e. - use a register name) or
3248   // stack slot.
3249   return_addr(REG R_I7);          // Ret Addr is in register I7
3250 
3251   // Body of function which returns an OptoRegs array locating
3252   // arguments either in registers or in stack slots for calling
3253   // java
3254   calling_convention %{
3255     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3256 
3257   %}
3258 
3259   // Body of function which returns an OptoRegs array locating
3260   // arguments either in registers or in stack slots for callin
3261   // C.
3262   c_calling_convention %{
3263     // This is obviously always outgoing
3264     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3265   %}
3266 
3267   // Location of native (C/C++) and interpreter return values.  This is specified to
3268   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3269   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3270   // to and from the register pairs is done by the appropriate call and epilog
3271   // opcodes.  This simplifies the register allocator.
3272   c_return_value %{
3273     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3274 #ifdef     _LP64
3275     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3276     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3277     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3278     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3279 #else  // !_LP64
3280     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3281     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3282     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3283     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3284 #endif
3285     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3286                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3287   %}
3288 
3289   // Location of compiled Java return values.  Same as C
3290   return_value %{
3291     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3292 #ifdef     _LP64
3293     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3294     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3295     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3296     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3297 #else  // !_LP64
3298     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3299     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3300     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3301     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3302 #endif
3303     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3304                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3305   %}
3306 
3307 %}
3308 
3309 
3310 //----------ATTRIBUTES---------------------------------------------------------
3311 //----------Operand Attributes-------------------------------------------------
3312 op_attrib op_cost(1);          // Required cost attribute
3313 
3314 //----------Instruction Attributes---------------------------------------------
3315 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3316 ins_attrib ins_size(32);           // Required size attribute (in bits)
3317 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3318 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3319                                    // non-matching short branch variant of some
3320                                                             // long branch?
3321 
3322 //----------OPERANDS-----------------------------------------------------------
3323 // Operand definitions must precede instruction definitions for correct parsing
3324 // in the ADLC because operands constitute user defined types which are used in
3325 // instruction definitions.
3326 
3327 //----------Simple Operands----------------------------------------------------
3328 // Immediate Operands
3329 // Integer Immediate: 32-bit
3330 operand immI() %{
3331   match(ConI);
3332 
3333   op_cost(0);
3334   // formats are generated automatically for constants and base registers
3335   format %{ %}
3336   interface(CONST_INTER);
3337 %}
3338 
3339 // Integer Immediate: 8-bit
3340 operand immI8() %{
3341   predicate(Assembler::is_simm(n->get_int(), 8));
3342   match(ConI);
3343   op_cost(0);
3344   format %{ %}
3345   interface(CONST_INTER);
3346 %}
3347 
3348 // Integer Immediate: 13-bit
3349 operand immI13() %{
3350   predicate(Assembler::is_simm13(n->get_int()));
3351   match(ConI);
3352   op_cost(0);
3353 
3354   format %{ %}
3355   interface(CONST_INTER);
3356 %}
3357 
3358 // Integer Immediate: 13-bit minus 7
3359 operand immI13m7() %{
3360   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3361   match(ConI);
3362   op_cost(0);
3363 
3364   format %{ %}
3365   interface(CONST_INTER);
3366 %}
3367 
3368 // Integer Immediate: 16-bit
3369 operand immI16() %{
3370   predicate(Assembler::is_simm(n->get_int(), 16));
3371   match(ConI);
3372   op_cost(0);
3373   format %{ %}
3374   interface(CONST_INTER);
3375 %}
3376 
3377 // Unsigned (positive) Integer Immediate: 13-bit
3378 operand immU13() %{
3379   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3380   match(ConI);
3381   op_cost(0);
3382 
3383   format %{ %}
3384   interface(CONST_INTER);
3385 %}
3386 
3387 // Integer Immediate: 6-bit
3388 operand immU6() %{
3389   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3390   match(ConI);
3391   op_cost(0);
3392   format %{ %}
3393   interface(CONST_INTER);
3394 %}
3395 
3396 // Integer Immediate: 11-bit
3397 operand immI11() %{
3398   predicate(Assembler::is_simm(n->get_int(),11));
3399   match(ConI);
3400   op_cost(0);
3401   format %{ %}
3402   interface(CONST_INTER);
3403 %}
3404 
3405 // Integer Immediate: 5-bit
3406 operand immI5() %{
3407   predicate(Assembler::is_simm(n->get_int(), 5));
3408   match(ConI);
3409   op_cost(0);
3410   format %{ %}
3411   interface(CONST_INTER);
3412 %}
3413 
3414 // Integer Immediate: 0-bit
3415 operand immI0() %{
3416   predicate(n->get_int() == 0);
3417   match(ConI);
3418   op_cost(0);
3419 
3420   format %{ %}
3421   interface(CONST_INTER);
3422 %}
3423 
3424 // Integer Immediate: the value 10
3425 operand immI10() %{
3426   predicate(n->get_int() == 10);
3427   match(ConI);
3428   op_cost(0);
3429 
3430   format %{ %}
3431   interface(CONST_INTER);
3432 %}
3433 
3434 // Integer Immediate: the values 0-31
3435 operand immU5() %{
3436   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3437   match(ConI);
3438   op_cost(0);
3439 
3440   format %{ %}
3441   interface(CONST_INTER);
3442 %}
3443 
3444 // Integer Immediate: the values 1-31
3445 operand immI_1_31() %{
3446   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3447   match(ConI);
3448   op_cost(0);
3449 
3450   format %{ %}
3451   interface(CONST_INTER);
3452 %}
3453 
3454 // Integer Immediate: the values 32-63
3455 operand immI_32_63() %{
3456   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3457   match(ConI);
3458   op_cost(0);
3459 
3460   format %{ %}
3461   interface(CONST_INTER);
3462 %}
3463 
3464 // Immediates for special shifts (sign extend)
3465 
3466 // Integer Immediate: the value 16
3467 operand immI_16() %{
3468   predicate(n->get_int() == 16);
3469   match(ConI);
3470   op_cost(0);
3471 
3472   format %{ %}
3473   interface(CONST_INTER);
3474 %}
3475 
3476 // Integer Immediate: the value 24
3477 operand immI_24() %{
3478   predicate(n->get_int() == 24);
3479   match(ConI);
3480   op_cost(0);
3481 
3482   format %{ %}
3483   interface(CONST_INTER);
3484 %}
3485 
3486 // Integer Immediate: the value 255
3487 operand immI_255() %{
3488   predicate( n->get_int() == 255 );
3489   match(ConI);
3490   op_cost(0);
3491 
3492   format %{ %}
3493   interface(CONST_INTER);
3494 %}
3495 
3496 // Integer Immediate: the value 65535
3497 operand immI_65535() %{
3498   predicate(n->get_int() == 65535);
3499   match(ConI);
3500   op_cost(0);
3501 
3502   format %{ %}
3503   interface(CONST_INTER);
3504 %}
3505 
3506 // Long Immediate: the value FF
3507 operand immL_FF() %{
3508   predicate( n->get_long() == 0xFFL );
3509   match(ConL);
3510   op_cost(0);
3511 
3512   format %{ %}
3513   interface(CONST_INTER);
3514 %}
3515 
3516 // Long Immediate: the value FFFF
3517 operand immL_FFFF() %{
3518   predicate( n->get_long() == 0xFFFFL );
3519   match(ConL);
3520   op_cost(0);
3521 
3522   format %{ %}
3523   interface(CONST_INTER);
3524 %}
3525 
3526 // Pointer Immediate: 32 or 64-bit
3527 operand immP() %{
3528   match(ConP);
3529 
3530   op_cost(5);
3531   // formats are generated automatically for constants and base registers
3532   format %{ %}
3533   interface(CONST_INTER);
3534 %}
3535 
3536 #ifdef _LP64
3537 // Pointer Immediate: 64-bit
3538 operand immP_set() %{
3539   predicate(!VM_Version::is_niagara_plus());
3540   match(ConP);
3541 
3542   op_cost(5);
3543   // formats are generated automatically for constants and base registers
3544   format %{ %}
3545   interface(CONST_INTER);
3546 %}
3547 
3548 // Pointer Immediate: 64-bit
3549 // From Niagara2 processors on a load should be better than materializing.
3550 operand immP_load() %{
3551   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3552   match(ConP);
3553 
3554   op_cost(5);
3555   // formats are generated automatically for constants and base registers
3556   format %{ %}
3557   interface(CONST_INTER);
3558 %}
3559 
3560 // Pointer Immediate: 64-bit
3561 operand immP_no_oop_cheap() %{
3562   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3563   match(ConP);
3564 
3565   op_cost(5);
3566   // formats are generated automatically for constants and base registers
3567   format %{ %}
3568   interface(CONST_INTER);
3569 %}
3570 #endif
3571 
3572 operand immP13() %{
3573   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3574   match(ConP);
3575   op_cost(0);
3576 
3577   format %{ %}
3578   interface(CONST_INTER);
3579 %}
3580 
3581 operand immP0() %{
3582   predicate(n->get_ptr() == 0);
3583   match(ConP);
3584   op_cost(0);
3585 
3586   format %{ %}
3587   interface(CONST_INTER);
3588 %}
3589 
3590 operand immP_poll() %{
3591   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3592   match(ConP);
3593 
3594   // formats are generated automatically for constants and base registers
3595   format %{ %}
3596   interface(CONST_INTER);
3597 %}
3598 
3599 // Pointer Immediate
3600 operand immN()
3601 %{
3602   match(ConN);
3603 
3604   op_cost(10);
3605   format %{ %}
3606   interface(CONST_INTER);
3607 %}
3608 
3609 // NULL Pointer Immediate
3610 operand immN0()
3611 %{
3612   predicate(n->get_narrowcon() == 0);
3613   match(ConN);
3614 
3615   op_cost(0);
3616   format %{ %}
3617   interface(CONST_INTER);
3618 %}
3619 
3620 operand immL() %{
3621   match(ConL);
3622   op_cost(40);
3623   // formats are generated automatically for constants and base registers
3624   format %{ %}
3625   interface(CONST_INTER);
3626 %}
3627 
3628 operand immL0() %{
3629   predicate(n->get_long() == 0L);
3630   match(ConL);
3631   op_cost(0);
3632   // formats are generated automatically for constants and base registers
3633   format %{ %}
3634   interface(CONST_INTER);
3635 %}
3636 
3637 // Integer Immediate: 5-bit
3638 operand immL5() %{
3639   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm((int)n->get_long(), 5));
3640   match(ConL);
3641   op_cost(0);
3642   format %{ %}
3643   interface(CONST_INTER);
3644 %}
3645 
3646 // Long Immediate: 13-bit
3647 operand immL13() %{
3648   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3649   match(ConL);
3650   op_cost(0);
3651 
3652   format %{ %}
3653   interface(CONST_INTER);
3654 %}
3655 
3656 // Long Immediate: 13-bit minus 7
3657 operand immL13m7() %{
3658   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3659   match(ConL);
3660   op_cost(0);
3661 
3662   format %{ %}
3663   interface(CONST_INTER);
3664 %}
3665 
3666 // Long Immediate: low 32-bit mask
3667 operand immL_32bits() %{
3668   predicate(n->get_long() == 0xFFFFFFFFL);
3669   match(ConL);
3670   op_cost(0);
3671 
3672   format %{ %}
3673   interface(CONST_INTER);
3674 %}
3675 
3676 // Long Immediate: cheap (materialize in <= 3 instructions)
3677 operand immL_cheap() %{
3678   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3679   match(ConL);
3680   op_cost(0);
3681 
3682   format %{ %}
3683   interface(CONST_INTER);
3684 %}
3685 
3686 // Long Immediate: expensive (materialize in > 3 instructions)
3687 operand immL_expensive() %{
3688   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3689   match(ConL);
3690   op_cost(0);
3691 
3692   format %{ %}
3693   interface(CONST_INTER);
3694 %}
3695 
3696 // Double Immediate
3697 operand immD() %{
3698   match(ConD);
3699 
3700   op_cost(40);
3701   format %{ %}
3702   interface(CONST_INTER);
3703 %}
3704 
3705 operand immD0() %{
3706 #ifdef _LP64
3707   // on 64-bit architectures this comparision is faster
3708   predicate(jlong_cast(n->getd()) == 0);
3709 #else
3710   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3711 #endif
3712   match(ConD);
3713 
3714   op_cost(0);
3715   format %{ %}
3716   interface(CONST_INTER);
3717 %}
3718 
3719 // Float Immediate
3720 operand immF() %{
3721   match(ConF);
3722 
3723   op_cost(20);
3724   format %{ %}
3725   interface(CONST_INTER);
3726 %}
3727 
3728 // Float Immediate: 0
3729 operand immF0() %{
3730   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3731   match(ConF);
3732 
3733   op_cost(0);
3734   format %{ %}
3735   interface(CONST_INTER);
3736 %}
3737 
3738 // Integer Register Operands
3739 // Integer Register
3740 operand iRegI() %{
3741   constraint(ALLOC_IN_RC(int_reg));
3742   match(RegI);
3743 
3744   match(notemp_iRegI);
3745   match(g1RegI);
3746   match(o0RegI);
3747   match(iRegIsafe);
3748 
3749   format %{ %}
3750   interface(REG_INTER);
3751 %}
3752 
3753 operand notemp_iRegI() %{
3754   constraint(ALLOC_IN_RC(notemp_int_reg));
3755   match(RegI);
3756 
3757   match(o0RegI);
3758 
3759   format %{ %}
3760   interface(REG_INTER);
3761 %}
3762 
3763 operand o0RegI() %{
3764   constraint(ALLOC_IN_RC(o0_regI));
3765   match(iRegI);
3766 
3767   format %{ %}
3768   interface(REG_INTER);
3769 %}
3770 
3771 // Pointer Register
3772 operand iRegP() %{
3773   constraint(ALLOC_IN_RC(ptr_reg));
3774   match(RegP);
3775 
3776   match(lock_ptr_RegP);
3777   match(g1RegP);
3778   match(g2RegP);
3779   match(g3RegP);
3780   match(g4RegP);
3781   match(i0RegP);
3782   match(o0RegP);
3783   match(o1RegP);
3784   match(l7RegP);
3785 
3786   format %{ %}
3787   interface(REG_INTER);
3788 %}
3789 
3790 operand sp_ptr_RegP() %{
3791   constraint(ALLOC_IN_RC(sp_ptr_reg));
3792   match(RegP);
3793   match(iRegP);
3794 
3795   format %{ %}
3796   interface(REG_INTER);
3797 %}
3798 
3799 operand lock_ptr_RegP() %{
3800   constraint(ALLOC_IN_RC(lock_ptr_reg));
3801   match(RegP);
3802   match(i0RegP);
3803   match(o0RegP);
3804   match(o1RegP);
3805   match(l7RegP);
3806 
3807   format %{ %}
3808   interface(REG_INTER);
3809 %}
3810 
3811 operand g1RegP() %{
3812   constraint(ALLOC_IN_RC(g1_regP));
3813   match(iRegP);
3814 
3815   format %{ %}
3816   interface(REG_INTER);
3817 %}
3818 
3819 operand g2RegP() %{
3820   constraint(ALLOC_IN_RC(g2_regP));
3821   match(iRegP);
3822 
3823   format %{ %}
3824   interface(REG_INTER);
3825 %}
3826 
3827 operand g3RegP() %{
3828   constraint(ALLOC_IN_RC(g3_regP));
3829   match(iRegP);
3830 
3831   format %{ %}
3832   interface(REG_INTER);
3833 %}
3834 
3835 operand g1RegI() %{
3836   constraint(ALLOC_IN_RC(g1_regI));
3837   match(iRegI);
3838 
3839   format %{ %}
3840   interface(REG_INTER);
3841 %}
3842 
3843 operand g3RegI() %{
3844   constraint(ALLOC_IN_RC(g3_regI));
3845   match(iRegI);
3846 
3847   format %{ %}
3848   interface(REG_INTER);
3849 %}
3850 
3851 operand g4RegI() %{
3852   constraint(ALLOC_IN_RC(g4_regI));
3853   match(iRegI);
3854 
3855   format %{ %}
3856   interface(REG_INTER);
3857 %}
3858 
3859 operand g4RegP() %{
3860   constraint(ALLOC_IN_RC(g4_regP));
3861   match(iRegP);
3862 
3863   format %{ %}
3864   interface(REG_INTER);
3865 %}
3866 
3867 operand i0RegP() %{
3868   constraint(ALLOC_IN_RC(i0_regP));
3869   match(iRegP);
3870 
3871   format %{ %}
3872   interface(REG_INTER);
3873 %}
3874 
3875 operand o0RegP() %{
3876   constraint(ALLOC_IN_RC(o0_regP));
3877   match(iRegP);
3878 
3879   format %{ %}
3880   interface(REG_INTER);
3881 %}
3882 
3883 operand o1RegP() %{
3884   constraint(ALLOC_IN_RC(o1_regP));
3885   match(iRegP);
3886 
3887   format %{ %}
3888   interface(REG_INTER);
3889 %}
3890 
3891 operand o2RegP() %{
3892   constraint(ALLOC_IN_RC(o2_regP));
3893   match(iRegP);
3894 
3895   format %{ %}
3896   interface(REG_INTER);
3897 %}
3898 
3899 operand o7RegP() %{
3900   constraint(ALLOC_IN_RC(o7_regP));
3901   match(iRegP);
3902 
3903   format %{ %}
3904   interface(REG_INTER);
3905 %}
3906 
3907 operand l7RegP() %{
3908   constraint(ALLOC_IN_RC(l7_regP));
3909   match(iRegP);
3910 
3911   format %{ %}
3912   interface(REG_INTER);
3913 %}
3914 
3915 operand o7RegI() %{
3916   constraint(ALLOC_IN_RC(o7_regI));
3917   match(iRegI);
3918 
3919   format %{ %}
3920   interface(REG_INTER);
3921 %}
3922 
3923 operand iRegN() %{
3924   constraint(ALLOC_IN_RC(int_reg));
3925   match(RegN);
3926 
3927   format %{ %}
3928   interface(REG_INTER);
3929 %}
3930 
3931 // Long Register
3932 operand iRegL() %{
3933   constraint(ALLOC_IN_RC(long_reg));
3934   match(RegL);
3935 
3936   format %{ %}
3937   interface(REG_INTER);
3938 %}
3939 
3940 operand o2RegL() %{
3941   constraint(ALLOC_IN_RC(o2_regL));
3942   match(iRegL);
3943 
3944   format %{ %}
3945   interface(REG_INTER);
3946 %}
3947 
3948 operand o7RegL() %{
3949   constraint(ALLOC_IN_RC(o7_regL));
3950   match(iRegL);
3951 
3952   format %{ %}
3953   interface(REG_INTER);
3954 %}
3955 
3956 operand g1RegL() %{
3957   constraint(ALLOC_IN_RC(g1_regL));
3958   match(iRegL);
3959 
3960   format %{ %}
3961   interface(REG_INTER);
3962 %}
3963 
3964 operand g3RegL() %{
3965   constraint(ALLOC_IN_RC(g3_regL));
3966   match(iRegL);
3967 
3968   format %{ %}
3969   interface(REG_INTER);
3970 %}
3971 
3972 // Int Register safe
3973 // This is 64bit safe
3974 operand iRegIsafe() %{
3975   constraint(ALLOC_IN_RC(long_reg));
3976 
3977   match(iRegI);
3978 
3979   format %{ %}
3980   interface(REG_INTER);
3981 %}
3982 
3983 // Condition Code Flag Register
3984 operand flagsReg() %{
3985   constraint(ALLOC_IN_RC(int_flags));
3986   match(RegFlags);
3987 
3988   format %{ "ccr" %} // both ICC and XCC
3989   interface(REG_INTER);
3990 %}
3991 
3992 // Condition Code Register, unsigned comparisons.
3993 operand flagsRegU() %{
3994   constraint(ALLOC_IN_RC(int_flags));
3995   match(RegFlags);
3996 
3997   format %{ "icc_U" %}
3998   interface(REG_INTER);
3999 %}
4000 
4001 // Condition Code Register, pointer comparisons.
4002 operand flagsRegP() %{
4003   constraint(ALLOC_IN_RC(int_flags));
4004   match(RegFlags);
4005 
4006 #ifdef _LP64
4007   format %{ "xcc_P" %}
4008 #else
4009   format %{ "icc_P" %}
4010 #endif
4011   interface(REG_INTER);
4012 %}
4013 
4014 // Condition Code Register, long comparisons.
4015 operand flagsRegL() %{
4016   constraint(ALLOC_IN_RC(int_flags));
4017   match(RegFlags);
4018 
4019   format %{ "xcc_L" %}
4020   interface(REG_INTER);
4021 %}
4022 
4023 // Condition Code Register, floating comparisons, unordered same as "less".
4024 operand flagsRegF() %{
4025   constraint(ALLOC_IN_RC(float_flags));
4026   match(RegFlags);
4027   match(flagsRegF0);
4028 
4029   format %{ %}
4030   interface(REG_INTER);
4031 %}
4032 
4033 operand flagsRegF0() %{
4034   constraint(ALLOC_IN_RC(float_flag0));
4035   match(RegFlags);
4036 
4037   format %{ %}
4038   interface(REG_INTER);
4039 %}
4040 
4041 
4042 // Condition Code Flag Register used by long compare
4043 operand flagsReg_long_LTGE() %{
4044   constraint(ALLOC_IN_RC(int_flags));
4045   match(RegFlags);
4046   format %{ "icc_LTGE" %}
4047   interface(REG_INTER);
4048 %}
4049 operand flagsReg_long_EQNE() %{
4050   constraint(ALLOC_IN_RC(int_flags));
4051   match(RegFlags);
4052   format %{ "icc_EQNE" %}
4053   interface(REG_INTER);
4054 %}
4055 operand flagsReg_long_LEGT() %{
4056   constraint(ALLOC_IN_RC(int_flags));
4057   match(RegFlags);
4058   format %{ "icc_LEGT" %}
4059   interface(REG_INTER);
4060 %}
4061 
4062 
4063 operand regD() %{
4064   constraint(ALLOC_IN_RC(dflt_reg));
4065   match(RegD);
4066 
4067   match(regD_low);
4068 
4069   format %{ %}
4070   interface(REG_INTER);
4071 %}
4072 
4073 operand regF() %{
4074   constraint(ALLOC_IN_RC(sflt_reg));
4075   match(RegF);
4076 
4077   format %{ %}
4078   interface(REG_INTER);
4079 %}
4080 
4081 operand regD_low() %{
4082   constraint(ALLOC_IN_RC(dflt_low_reg));
4083   match(regD);
4084 
4085   format %{ %}
4086   interface(REG_INTER);
4087 %}
4088 
4089 // Special Registers
4090 
4091 // Method Register
4092 operand inline_cache_regP(iRegP reg) %{
4093   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4094   match(reg);
4095   format %{ %}
4096   interface(REG_INTER);
4097 %}
4098 
4099 operand interpreter_method_oop_regP(iRegP reg) %{
4100   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4101   match(reg);
4102   format %{ %}
4103   interface(REG_INTER);
4104 %}
4105 
4106 
4107 //----------Complex Operands---------------------------------------------------
4108 // Indirect Memory Reference
4109 operand indirect(sp_ptr_RegP reg) %{
4110   constraint(ALLOC_IN_RC(sp_ptr_reg));
4111   match(reg);
4112 
4113   op_cost(100);
4114   format %{ "[$reg]" %}
4115   interface(MEMORY_INTER) %{
4116     base($reg);
4117     index(0x0);
4118     scale(0x0);
4119     disp(0x0);
4120   %}
4121 %}
4122 
4123 // Indirect with simm13 Offset
4124 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4125   constraint(ALLOC_IN_RC(sp_ptr_reg));
4126   match(AddP reg offset);
4127 
4128   op_cost(100);
4129   format %{ "[$reg + $offset]" %}
4130   interface(MEMORY_INTER) %{
4131     base($reg);
4132     index(0x0);
4133     scale(0x0);
4134     disp($offset);
4135   %}
4136 %}
4137 
4138 // Indirect with simm13 Offset minus 7
4139 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4140   constraint(ALLOC_IN_RC(sp_ptr_reg));
4141   match(AddP reg offset);
4142 
4143   op_cost(100);
4144   format %{ "[$reg + $offset]" %}
4145   interface(MEMORY_INTER) %{
4146     base($reg);
4147     index(0x0);
4148     scale(0x0);
4149     disp($offset);
4150   %}
4151 %}
4152 
4153 // Note:  Intel has a swapped version also, like this:
4154 //operand indOffsetX(iRegI reg, immP offset) %{
4155 //  constraint(ALLOC_IN_RC(int_reg));
4156 //  match(AddP offset reg);
4157 //
4158 //  op_cost(100);
4159 //  format %{ "[$reg + $offset]" %}
4160 //  interface(MEMORY_INTER) %{
4161 //    base($reg);
4162 //    index(0x0);
4163 //    scale(0x0);
4164 //    disp($offset);
4165 //  %}
4166 //%}
4167 //// However, it doesn't make sense for SPARC, since
4168 // we have no particularly good way to embed oops in
4169 // single instructions.
4170 
4171 // Indirect with Register Index
4172 operand indIndex(iRegP addr, iRegX index) %{
4173   constraint(ALLOC_IN_RC(ptr_reg));
4174   match(AddP addr index);
4175 
4176   op_cost(100);
4177   format %{ "[$addr + $index]" %}
4178   interface(MEMORY_INTER) %{
4179     base($addr);
4180     index($index);
4181     scale(0x0);
4182     disp(0x0);
4183   %}
4184 %}
4185 
4186 //----------Special Memory Operands--------------------------------------------
4187 // Stack Slot Operand - This operand is used for loading and storing temporary
4188 //                      values on the stack where a match requires a value to
4189 //                      flow through memory.
4190 operand stackSlotI(sRegI reg) %{
4191   constraint(ALLOC_IN_RC(stack_slots));
4192   op_cost(100);
4193   //match(RegI);
4194   format %{ "[$reg]" %}
4195   interface(MEMORY_INTER) %{
4196     base(0xE);   // R_SP
4197     index(0x0);
4198     scale(0x0);
4199     disp($reg);  // Stack Offset
4200   %}
4201 %}
4202 
4203 operand stackSlotP(sRegP reg) %{
4204   constraint(ALLOC_IN_RC(stack_slots));
4205   op_cost(100);
4206   //match(RegP);
4207   format %{ "[$reg]" %}
4208   interface(MEMORY_INTER) %{
4209     base(0xE);   // R_SP
4210     index(0x0);
4211     scale(0x0);
4212     disp($reg);  // Stack Offset
4213   %}
4214 %}
4215 
4216 operand stackSlotF(sRegF reg) %{
4217   constraint(ALLOC_IN_RC(stack_slots));
4218   op_cost(100);
4219   //match(RegF);
4220   format %{ "[$reg]" %}
4221   interface(MEMORY_INTER) %{
4222     base(0xE);   // R_SP
4223     index(0x0);
4224     scale(0x0);
4225     disp($reg);  // Stack Offset
4226   %}
4227 %}
4228 operand stackSlotD(sRegD reg) %{
4229   constraint(ALLOC_IN_RC(stack_slots));
4230   op_cost(100);
4231   //match(RegD);
4232   format %{ "[$reg]" %}
4233   interface(MEMORY_INTER) %{
4234     base(0xE);   // R_SP
4235     index(0x0);
4236     scale(0x0);
4237     disp($reg);  // Stack Offset
4238   %}
4239 %}
4240 operand stackSlotL(sRegL reg) %{
4241   constraint(ALLOC_IN_RC(stack_slots));
4242   op_cost(100);
4243   //match(RegL);
4244   format %{ "[$reg]" %}
4245   interface(MEMORY_INTER) %{
4246     base(0xE);   // R_SP
4247     index(0x0);
4248     scale(0x0);
4249     disp($reg);  // Stack Offset
4250   %}
4251 %}
4252 
4253 // Operands for expressing Control Flow
4254 // NOTE:  Label is a predefined operand which should not be redefined in
4255 //        the AD file.  It is generically handled within the ADLC.
4256 
4257 //----------Conditional Branch Operands----------------------------------------
4258 // Comparison Op  - This is the operation of the comparison, and is limited to
4259 //                  the following set of codes:
4260 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4261 //
4262 // Other attributes of the comparison, such as unsignedness, are specified
4263 // by the comparison instruction that sets a condition code flags register.
4264 // That result is represented by a flags operand whose subtype is appropriate
4265 // to the unsignedness (etc.) of the comparison.
4266 //
4267 // Later, the instruction which matches both the Comparison Op (a Bool) and
4268 // the flags (produced by the Cmp) specifies the coding of the comparison op
4269 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4270 
4271 operand cmpOp() %{
4272   match(Bool);
4273 
4274   format %{ "" %}
4275   interface(COND_INTER) %{
4276     equal(0x1);
4277     not_equal(0x9);
4278     less(0x3);
4279     greater_equal(0xB);
4280     less_equal(0x2);
4281     greater(0xA);
4282   %}
4283 %}
4284 
4285 // Comparison Op, unsigned
4286 operand cmpOpU() %{
4287   match(Bool);
4288 
4289   format %{ "u" %}
4290   interface(COND_INTER) %{
4291     equal(0x1);
4292     not_equal(0x9);
4293     less(0x5);
4294     greater_equal(0xD);
4295     less_equal(0x4);
4296     greater(0xC);
4297   %}
4298 %}
4299 
4300 // Comparison Op, pointer (same as unsigned)
4301 operand cmpOpP() %{
4302   match(Bool);
4303 
4304   format %{ "p" %}
4305   interface(COND_INTER) %{
4306     equal(0x1);
4307     not_equal(0x9);
4308     less(0x5);
4309     greater_equal(0xD);
4310     less_equal(0x4);
4311     greater(0xC);
4312   %}
4313 %}
4314 
4315 // Comparison Op, branch-register encoding
4316 operand cmpOp_reg() %{
4317   match(Bool);
4318 
4319   format %{ "" %}
4320   interface(COND_INTER) %{
4321     equal        (0x1);
4322     not_equal    (0x5);
4323     less         (0x3);
4324     greater_equal(0x7);
4325     less_equal   (0x2);
4326     greater      (0x6);
4327   %}
4328 %}
4329 
4330 // Comparison Code, floating, unordered same as less
4331 operand cmpOpF() %{
4332   match(Bool);
4333 
4334   format %{ "fl" %}
4335   interface(COND_INTER) %{
4336     equal(0x9);
4337     not_equal(0x1);
4338     less(0x3);
4339     greater_equal(0xB);
4340     less_equal(0xE);
4341     greater(0x6);
4342   %}
4343 %}
4344 
4345 // Used by long compare
4346 operand cmpOp_commute() %{
4347   match(Bool);
4348 
4349   format %{ "" %}
4350   interface(COND_INTER) %{
4351     equal(0x1);
4352     not_equal(0x9);
4353     less(0xA);
4354     greater_equal(0x2);
4355     less_equal(0xB);
4356     greater(0x3);
4357   %}
4358 %}
4359 
4360 //----------OPERAND CLASSES----------------------------------------------------
4361 // Operand Classes are groups of operands that are used to simplify
4362 // instruction definitions by not requiring the AD writer to specify separate
4363 // instructions for every form of operand when the instruction accepts
4364 // multiple operand types with the same basic encoding and format.  The classic
4365 // case of this is memory operands.
4366 opclass memory( indirect, indOffset13, indIndex );
4367 opclass indIndexMemory( indIndex );
4368 
4369 //----------PIPELINE-----------------------------------------------------------
4370 pipeline %{
4371 
4372 //----------ATTRIBUTES---------------------------------------------------------
4373 attributes %{
4374   fixed_size_instructions;           // Fixed size instructions
4375   branch_has_delay_slot;             // Branch has delay slot following
4376   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4377   instruction_unit_size = 4;         // An instruction is 4 bytes long
4378   instruction_fetch_unit_size = 16;  // The processor fetches one line
4379   instruction_fetch_units = 1;       // of 16 bytes
4380 
4381   // List of nop instructions
4382   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4383 %}
4384 
4385 //----------RESOURCES----------------------------------------------------------
4386 // Resources are the functional units available to the machine
4387 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4388 
4389 //----------PIPELINE DESCRIPTION-----------------------------------------------
4390 // Pipeline Description specifies the stages in the machine's pipeline
4391 
4392 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4393 
4394 //----------PIPELINE CLASSES---------------------------------------------------
4395 // Pipeline Classes describe the stages in which input and output are
4396 // referenced by the hardware pipeline.
4397 
4398 // Integer ALU reg-reg operation
4399 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4400     single_instruction;
4401     dst   : E(write);
4402     src1  : R(read);
4403     src2  : R(read);
4404     IALU  : R;
4405 %}
4406 
4407 // Integer ALU reg-reg long operation
4408 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4409     instruction_count(2);
4410     dst   : E(write);
4411     src1  : R(read);
4412     src2  : R(read);
4413     IALU  : R;
4414     IALU  : R;
4415 %}
4416 
4417 // Integer ALU reg-reg long dependent operation
4418 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4419     instruction_count(1); multiple_bundles;
4420     dst   : E(write);
4421     src1  : R(read);
4422     src2  : R(read);
4423     cr    : E(write);
4424     IALU  : R(2);
4425 %}
4426 
4427 // Integer ALU reg-imm operaion
4428 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4429     single_instruction;
4430     dst   : E(write);
4431     src1  : R(read);
4432     IALU  : R;
4433 %}
4434 
4435 // Integer ALU reg-reg operation with condition code
4436 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4437     single_instruction;
4438     dst   : E(write);
4439     cr    : E(write);
4440     src1  : R(read);
4441     src2  : R(read);
4442     IALU  : R;
4443 %}
4444 
4445 // Integer ALU reg-imm operation with condition code
4446 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4447     single_instruction;
4448     dst   : E(write);
4449     cr    : E(write);
4450     src1  : R(read);
4451     IALU  : R;
4452 %}
4453 
4454 // Integer ALU zero-reg operation
4455 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4456     single_instruction;
4457     dst   : E(write);
4458     src2  : R(read);
4459     IALU  : R;
4460 %}
4461 
4462 // Integer ALU zero-reg operation with condition code only
4463 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4464     single_instruction;
4465     cr    : E(write);
4466     src   : R(read);
4467     IALU  : R;
4468 %}
4469 
4470 // Integer ALU reg-reg operation with condition code only
4471 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4472     single_instruction;
4473     cr    : E(write);
4474     src1  : R(read);
4475     src2  : R(read);
4476     IALU  : R;
4477 %}
4478 
4479 // Integer ALU reg-imm operation with condition code only
4480 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4481     single_instruction;
4482     cr    : E(write);
4483     src1  : R(read);
4484     IALU  : R;
4485 %}
4486 
4487 // Integer ALU reg-reg-zero operation with condition code only
4488 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4489     single_instruction;
4490     cr    : E(write);
4491     src1  : R(read);
4492     src2  : R(read);
4493     IALU  : R;
4494 %}
4495 
4496 // Integer ALU reg-imm-zero operation with condition code only
4497 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4498     single_instruction;
4499     cr    : E(write);
4500     src1  : R(read);
4501     IALU  : R;
4502 %}
4503 
4504 // Integer ALU reg-reg operation with condition code, src1 modified
4505 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4506     single_instruction;
4507     cr    : E(write);
4508     src1  : E(write);
4509     src1  : R(read);
4510     src2  : R(read);
4511     IALU  : R;
4512 %}
4513 
4514 // Integer ALU reg-imm operation with condition code, src1 modified
4515 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4516     single_instruction;
4517     cr    : E(write);
4518     src1  : E(write);
4519     src1  : R(read);
4520     IALU  : R;
4521 %}
4522 
4523 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4524     multiple_bundles;
4525     dst   : E(write)+4;
4526     cr    : E(write);
4527     src1  : R(read);
4528     src2  : R(read);
4529     IALU  : R(3);
4530     BR    : R(2);
4531 %}
4532 
4533 // Integer ALU operation
4534 pipe_class ialu_none(iRegI dst) %{
4535     single_instruction;
4536     dst   : E(write);
4537     IALU  : R;
4538 %}
4539 
4540 // Integer ALU reg operation
4541 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4542     single_instruction; may_have_no_code;
4543     dst   : E(write);
4544     src   : R(read);
4545     IALU  : R;
4546 %}
4547 
4548 // Integer ALU reg conditional operation
4549 // This instruction has a 1 cycle stall, and cannot execute
4550 // in the same cycle as the instruction setting the condition
4551 // code. We kludge this by pretending to read the condition code
4552 // 1 cycle earlier, and by marking the functional units as busy
4553 // for 2 cycles with the result available 1 cycle later than
4554 // is really the case.
4555 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4556     single_instruction;
4557     op2_out : C(write);
4558     op1     : R(read);
4559     cr      : R(read);       // This is really E, with a 1 cycle stall
4560     BR      : R(2);
4561     MS      : R(2);
4562 %}
4563 
4564 #ifdef _LP64
4565 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4566     instruction_count(1); multiple_bundles;
4567     dst     : C(write)+1;
4568     src     : R(read)+1;
4569     IALU    : R(1);
4570     BR      : E(2);
4571     MS      : E(2);
4572 %}
4573 #endif
4574 
4575 // Integer ALU reg operation
4576 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4577     single_instruction; may_have_no_code;
4578     dst   : E(write);
4579     src   : R(read);
4580     IALU  : R;
4581 %}
4582 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4583     single_instruction; may_have_no_code;
4584     dst   : E(write);
4585     src   : R(read);
4586     IALU  : R;
4587 %}
4588 
4589 // Two integer ALU reg operations
4590 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4591     instruction_count(2);
4592     dst   : E(write);
4593     src   : R(read);
4594     A0    : R;
4595     A1    : R;
4596 %}
4597 
4598 // Two integer ALU reg operations
4599 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4600     instruction_count(2); may_have_no_code;
4601     dst   : E(write);
4602     src   : R(read);
4603     A0    : R;
4604     A1    : R;
4605 %}
4606 
4607 // Integer ALU imm operation
4608 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4609     single_instruction;
4610     dst   : E(write);
4611     IALU  : R;
4612 %}
4613 
4614 // Integer ALU reg-reg with carry operation
4615 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4616     single_instruction;
4617     dst   : E(write);
4618     src1  : R(read);
4619     src2  : R(read);
4620     IALU  : R;
4621 %}
4622 
4623 // Integer ALU cc operation
4624 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4625     single_instruction;
4626     dst   : E(write);
4627     cc    : R(read);
4628     IALU  : R;
4629 %}
4630 
4631 // Integer ALU cc / second IALU operation
4632 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4633     instruction_count(1); multiple_bundles;
4634     dst   : E(write)+1;
4635     src   : R(read);
4636     IALU  : R;
4637 %}
4638 
4639 // Integer ALU cc / second IALU operation
4640 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4641     instruction_count(1); multiple_bundles;
4642     dst   : E(write)+1;
4643     p     : R(read);
4644     q     : R(read);
4645     IALU  : R;
4646 %}
4647 
4648 // Integer ALU hi-lo-reg operation
4649 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4650     instruction_count(1); multiple_bundles;
4651     dst   : E(write)+1;
4652     IALU  : R(2);
4653 %}
4654 
4655 // Float ALU hi-lo-reg operation (with temp)
4656 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4657     instruction_count(1); multiple_bundles;
4658     dst   : E(write)+1;
4659     IALU  : R(2);
4660 %}
4661 
4662 // Long Constant
4663 pipe_class loadConL( iRegL dst, immL src ) %{
4664     instruction_count(2); multiple_bundles;
4665     dst   : E(write)+1;
4666     IALU  : R(2);
4667     IALU  : R(2);
4668 %}
4669 
4670 // Pointer Constant
4671 pipe_class loadConP( iRegP dst, immP src ) %{
4672     instruction_count(0); multiple_bundles;
4673     fixed_latency(6);
4674 %}
4675 
4676 // Polling Address
4677 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4678 #ifdef _LP64
4679     instruction_count(0); multiple_bundles;
4680     fixed_latency(6);
4681 #else
4682     dst   : E(write);
4683     IALU  : R;
4684 #endif
4685 %}
4686 
4687 // Long Constant small
4688 pipe_class loadConLlo( iRegL dst, immL src ) %{
4689     instruction_count(2);
4690     dst   : E(write);
4691     IALU  : R;
4692     IALU  : R;
4693 %}
4694 
4695 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4696 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4697     instruction_count(1); multiple_bundles;
4698     src   : R(read);
4699     dst   : M(write)+1;
4700     IALU  : R;
4701     MS    : E;
4702 %}
4703 
4704 // Integer ALU nop operation
4705 pipe_class ialu_nop() %{
4706     single_instruction;
4707     IALU  : R;
4708 %}
4709 
4710 // Integer ALU nop operation
4711 pipe_class ialu_nop_A0() %{
4712     single_instruction;
4713     A0    : R;
4714 %}
4715 
4716 // Integer ALU nop operation
4717 pipe_class ialu_nop_A1() %{
4718     single_instruction;
4719     A1    : R;
4720 %}
4721 
4722 // Integer Multiply reg-reg operation
4723 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4724     single_instruction;
4725     dst   : E(write);
4726     src1  : R(read);
4727     src2  : R(read);
4728     MS    : R(5);
4729 %}
4730 
4731 // Integer Multiply reg-imm operation
4732 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4733     single_instruction;
4734     dst   : E(write);
4735     src1  : R(read);
4736     MS    : R(5);
4737 %}
4738 
4739 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4740     single_instruction;
4741     dst   : E(write)+4;
4742     src1  : R(read);
4743     src2  : R(read);
4744     MS    : R(6);
4745 %}
4746 
4747 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4748     single_instruction;
4749     dst   : E(write)+4;
4750     src1  : R(read);
4751     MS    : R(6);
4752 %}
4753 
4754 // Integer Divide reg-reg
4755 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4756     instruction_count(1); multiple_bundles;
4757     dst   : E(write);
4758     temp  : E(write);
4759     src1  : R(read);
4760     src2  : R(read);
4761     temp  : R(read);
4762     MS    : R(38);
4763 %}
4764 
4765 // Integer Divide reg-imm
4766 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4767     instruction_count(1); multiple_bundles;
4768     dst   : E(write);
4769     temp  : E(write);
4770     src1  : R(read);
4771     temp  : R(read);
4772     MS    : R(38);
4773 %}
4774 
4775 // Long Divide
4776 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4777     dst  : E(write)+71;
4778     src1 : R(read);
4779     src2 : R(read)+1;
4780     MS   : R(70);
4781 %}
4782 
4783 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4784     dst  : E(write)+71;
4785     src1 : R(read);
4786     MS   : R(70);
4787 %}
4788 
4789 // Floating Point Add Float
4790 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4791     single_instruction;
4792     dst   : X(write);
4793     src1  : E(read);
4794     src2  : E(read);
4795     FA    : R;
4796 %}
4797 
4798 // Floating Point Add Double
4799 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4800     single_instruction;
4801     dst   : X(write);
4802     src1  : E(read);
4803     src2  : E(read);
4804     FA    : R;
4805 %}
4806 
4807 // Floating Point Conditional Move based on integer flags
4808 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4809     single_instruction;
4810     dst   : X(write);
4811     src   : E(read);
4812     cr    : R(read);
4813     FA    : R(2);
4814     BR    : R(2);
4815 %}
4816 
4817 // Floating Point Conditional Move based on integer flags
4818 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4819     single_instruction;
4820     dst   : X(write);
4821     src   : E(read);
4822     cr    : R(read);
4823     FA    : R(2);
4824     BR    : R(2);
4825 %}
4826 
4827 // Floating Point Multiply Float
4828 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4829     single_instruction;
4830     dst   : X(write);
4831     src1  : E(read);
4832     src2  : E(read);
4833     FM    : R;
4834 %}
4835 
4836 // Floating Point Multiply Double
4837 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4838     single_instruction;
4839     dst   : X(write);
4840     src1  : E(read);
4841     src2  : E(read);
4842     FM    : R;
4843 %}
4844 
4845 // Floating Point Divide Float
4846 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4847     single_instruction;
4848     dst   : X(write);
4849     src1  : E(read);
4850     src2  : E(read);
4851     FM    : R;
4852     FDIV  : C(14);
4853 %}
4854 
4855 // Floating Point Divide Double
4856 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4857     single_instruction;
4858     dst   : X(write);
4859     src1  : E(read);
4860     src2  : E(read);
4861     FM    : R;
4862     FDIV  : C(17);
4863 %}
4864 
4865 // Floating Point Move/Negate/Abs Float
4866 pipe_class faddF_reg(regF dst, regF src) %{
4867     single_instruction;
4868     dst   : W(write);
4869     src   : E(read);
4870     FA    : R(1);
4871 %}
4872 
4873 // Floating Point Move/Negate/Abs Double
4874 pipe_class faddD_reg(regD dst, regD src) %{
4875     single_instruction;
4876     dst   : W(write);
4877     src   : E(read);
4878     FA    : R;
4879 %}
4880 
4881 // Floating Point Convert F->D
4882 pipe_class fcvtF2D(regD dst, regF src) %{
4883     single_instruction;
4884     dst   : X(write);
4885     src   : E(read);
4886     FA    : R;
4887 %}
4888 
4889 // Floating Point Convert I->D
4890 pipe_class fcvtI2D(regD dst, regF src) %{
4891     single_instruction;
4892     dst   : X(write);
4893     src   : E(read);
4894     FA    : R;
4895 %}
4896 
4897 // Floating Point Convert LHi->D
4898 pipe_class fcvtLHi2D(regD dst, regD src) %{
4899     single_instruction;
4900     dst   : X(write);
4901     src   : E(read);
4902     FA    : R;
4903 %}
4904 
4905 // Floating Point Convert L->D
4906 pipe_class fcvtL2D(regD dst, regF src) %{
4907     single_instruction;
4908     dst   : X(write);
4909     src   : E(read);
4910     FA    : R;
4911 %}
4912 
4913 // Floating Point Convert L->F
4914 pipe_class fcvtL2F(regD dst, regF src) %{
4915     single_instruction;
4916     dst   : X(write);
4917     src   : E(read);
4918     FA    : R;
4919 %}
4920 
4921 // Floating Point Convert D->F
4922 pipe_class fcvtD2F(regD dst, regF src) %{
4923     single_instruction;
4924     dst   : X(write);
4925     src   : E(read);
4926     FA    : R;
4927 %}
4928 
4929 // Floating Point Convert I->L
4930 pipe_class fcvtI2L(regD dst, regF src) %{
4931     single_instruction;
4932     dst   : X(write);
4933     src   : E(read);
4934     FA    : R;
4935 %}
4936 
4937 // Floating Point Convert D->F
4938 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4939     instruction_count(1); multiple_bundles;
4940     dst   : X(write)+6;
4941     src   : E(read);
4942     FA    : R;
4943 %}
4944 
4945 // Floating Point Convert D->L
4946 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4947     instruction_count(1); multiple_bundles;
4948     dst   : X(write)+6;
4949     src   : E(read);
4950     FA    : R;
4951 %}
4952 
4953 // Floating Point Convert F->I
4954 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4955     instruction_count(1); multiple_bundles;
4956     dst   : X(write)+6;
4957     src   : E(read);
4958     FA    : R;
4959 %}
4960 
4961 // Floating Point Convert F->L
4962 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4963     instruction_count(1); multiple_bundles;
4964     dst   : X(write)+6;
4965     src   : E(read);
4966     FA    : R;
4967 %}
4968 
4969 // Floating Point Convert I->F
4970 pipe_class fcvtI2F(regF dst, regF src) %{
4971     single_instruction;
4972     dst   : X(write);
4973     src   : E(read);
4974     FA    : R;
4975 %}
4976 
4977 // Floating Point Compare
4978 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4979     single_instruction;
4980     cr    : X(write);
4981     src1  : E(read);
4982     src2  : E(read);
4983     FA    : R;
4984 %}
4985 
4986 // Floating Point Compare
4987 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4988     single_instruction;
4989     cr    : X(write);
4990     src1  : E(read);
4991     src2  : E(read);
4992     FA    : R;
4993 %}
4994 
4995 // Floating Add Nop
4996 pipe_class fadd_nop() %{
4997     single_instruction;
4998     FA  : R;
4999 %}
5000 
5001 // Integer Store to Memory
5002 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5003     single_instruction;
5004     mem   : R(read);
5005     src   : C(read);
5006     MS    : R;
5007 %}
5008 
5009 // Integer Store to Memory
5010 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5011     single_instruction;
5012     mem   : R(read);
5013     src   : C(read);
5014     MS    : R;
5015 %}
5016 
5017 // Integer Store Zero to Memory
5018 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5019     single_instruction;
5020     mem   : R(read);
5021     MS    : R;
5022 %}
5023 
5024 // Special Stack Slot Store
5025 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5026     single_instruction;
5027     stkSlot : R(read);
5028     src     : C(read);
5029     MS      : R;
5030 %}
5031 
5032 // Special Stack Slot Store
5033 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5034     instruction_count(2); multiple_bundles;
5035     stkSlot : R(read);
5036     src     : C(read);
5037     MS      : R(2);
5038 %}
5039 
5040 // Float Store
5041 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5042     single_instruction;
5043     mem : R(read);
5044     src : C(read);
5045     MS  : R;
5046 %}
5047 
5048 // Float Store
5049 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5050     single_instruction;
5051     mem : R(read);
5052     MS  : R;
5053 %}
5054 
5055 // Double Store
5056 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5057     instruction_count(1);
5058     mem : R(read);
5059     src : C(read);
5060     MS  : R;
5061 %}
5062 
5063 // Double Store
5064 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5065     single_instruction;
5066     mem : R(read);
5067     MS  : R;
5068 %}
5069 
5070 // Special Stack Slot Float Store
5071 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5072     single_instruction;
5073     stkSlot : R(read);
5074     src     : C(read);
5075     MS      : R;
5076 %}
5077 
5078 // Special Stack Slot Double Store
5079 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5080     single_instruction;
5081     stkSlot : R(read);
5082     src     : C(read);
5083     MS      : R;
5084 %}
5085 
5086 // Integer Load (when sign bit propagation not needed)
5087 pipe_class iload_mem(iRegI dst, memory mem) %{
5088     single_instruction;
5089     mem : R(read);
5090     dst : C(write);
5091     MS  : R;
5092 %}
5093 
5094 // Integer Load from stack operand
5095 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5096     single_instruction;
5097     mem : R(read);
5098     dst : C(write);
5099     MS  : R;
5100 %}
5101 
5102 // Integer Load (when sign bit propagation or masking is needed)
5103 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5104     single_instruction;
5105     mem : R(read);
5106     dst : M(write);
5107     MS  : R;
5108 %}
5109 
5110 // Float Load
5111 pipe_class floadF_mem(regF dst, memory mem) %{
5112     single_instruction;
5113     mem : R(read);
5114     dst : M(write);
5115     MS  : R;
5116 %}
5117 
5118 // Float Load
5119 pipe_class floadD_mem(regD dst, memory mem) %{
5120     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5121     mem : R(read);
5122     dst : M(write);
5123     MS  : R;
5124 %}
5125 
5126 // Float Load
5127 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5128     single_instruction;
5129     stkSlot : R(read);
5130     dst : M(write);
5131     MS  : R;
5132 %}
5133 
5134 // Float Load
5135 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5136     single_instruction;
5137     stkSlot : R(read);
5138     dst : M(write);
5139     MS  : R;
5140 %}
5141 
5142 // Memory Nop
5143 pipe_class mem_nop() %{
5144     single_instruction;
5145     MS  : R;
5146 %}
5147 
5148 pipe_class sethi(iRegP dst, immI src) %{
5149     single_instruction;
5150     dst  : E(write);
5151     IALU : R;
5152 %}
5153 
5154 pipe_class loadPollP(iRegP poll) %{
5155     single_instruction;
5156     poll : R(read);
5157     MS   : R;
5158 %}
5159 
5160 pipe_class br(Universe br, label labl) %{
5161     single_instruction_with_delay_slot;
5162     BR  : R;
5163 %}
5164 
5165 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5166     single_instruction_with_delay_slot;
5167     cr    : E(read);
5168     BR    : R;
5169 %}
5170 
5171 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5172     single_instruction_with_delay_slot;
5173     op1 : E(read);
5174     BR  : R;
5175     MS  : R;
5176 %}
5177 
5178 // Compare and branch
5179 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5180     instruction_count(2); has_delay_slot;
5181     cr    : E(write);
5182     src1  : R(read);
5183     src2  : R(read);
5184     IALU  : R;
5185     BR    : R;
5186 %}
5187 
5188 // Compare and branch
5189 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5190     instruction_count(2); has_delay_slot;
5191     cr    : E(write);
5192     src1  : R(read);
5193     IALU  : R;
5194     BR    : R;
5195 %}
5196 
5197 // Compare and branch using cbcond
5198 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5199     single_instruction;
5200     src1  : E(read);
5201     src2  : E(read);
5202     IALU  : R;
5203     BR    : R;
5204 %}
5205 
5206 // Compare and branch using cbcond
5207 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5208     single_instruction;
5209     src1  : E(read);
5210     IALU  : R;
5211     BR    : R;
5212 %}
5213 
5214 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5215     single_instruction_with_delay_slot;
5216     cr    : E(read);
5217     BR    : R;
5218 %}
5219 
5220 pipe_class br_nop() %{
5221     single_instruction;
5222     BR  : R;
5223 %}
5224 
5225 pipe_class simple_call(method meth) %{
5226     instruction_count(2); multiple_bundles; force_serialization;
5227     fixed_latency(100);
5228     BR  : R(1);
5229     MS  : R(1);
5230     A0  : R(1);
5231 %}
5232 
5233 pipe_class compiled_call(method meth) %{
5234     instruction_count(1); multiple_bundles; force_serialization;
5235     fixed_latency(100);
5236     MS  : R(1);
5237 %}
5238 
5239 pipe_class call(method meth) %{
5240     instruction_count(0); multiple_bundles; force_serialization;
5241     fixed_latency(100);
5242 %}
5243 
5244 pipe_class tail_call(Universe ignore, label labl) %{
5245     single_instruction; has_delay_slot;
5246     fixed_latency(100);
5247     BR  : R(1);
5248     MS  : R(1);
5249 %}
5250 
5251 pipe_class ret(Universe ignore) %{
5252     single_instruction; has_delay_slot;
5253     BR  : R(1);
5254     MS  : R(1);
5255 %}
5256 
5257 pipe_class ret_poll(g3RegP poll) %{
5258     instruction_count(3); has_delay_slot;
5259     poll : E(read);
5260     MS   : R;
5261 %}
5262 
5263 // The real do-nothing guy
5264 pipe_class empty( ) %{
5265     instruction_count(0);
5266 %}
5267 
5268 pipe_class long_memory_op() %{
5269     instruction_count(0); multiple_bundles; force_serialization;
5270     fixed_latency(25);
5271     MS  : R(1);
5272 %}
5273 
5274 // Check-cast
5275 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5276     array : R(read);
5277     match  : R(read);
5278     IALU   : R(2);
5279     BR     : R(2);
5280     MS     : R;
5281 %}
5282 
5283 // Convert FPU flags into +1,0,-1
5284 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5285     src1  : E(read);
5286     src2  : E(read);
5287     dst   : E(write);
5288     FA    : R;
5289     MS    : R(2);
5290     BR    : R(2);
5291 %}
5292 
5293 // Compare for p < q, and conditionally add y
5294 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5295     p     : E(read);
5296     q     : E(read);
5297     y     : E(read);
5298     IALU  : R(3)
5299 %}
5300 
5301 // Perform a compare, then move conditionally in a branch delay slot.
5302 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5303     src2   : E(read);
5304     srcdst : E(read);
5305     IALU   : R;
5306     BR     : R;
5307 %}
5308 
5309 // Define the class for the Nop node
5310 define %{
5311    MachNop = ialu_nop;
5312 %}
5313 
5314 %}
5315 
5316 //----------INSTRUCTIONS-------------------------------------------------------
5317 
5318 //------------Special Stack Slot instructions - no match rules-----------------
5319 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5320   // No match rule to avoid chain rule match.
5321   effect(DEF dst, USE src);
5322   ins_cost(MEMORY_REF_COST);
5323   size(4);
5324   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5325   opcode(Assembler::ldf_op3);
5326   ins_encode(simple_form3_mem_reg(src, dst));
5327   ins_pipe(floadF_stk);
5328 %}
5329 
5330 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5331   // No match rule to avoid chain rule match.
5332   effect(DEF dst, USE src);
5333   ins_cost(MEMORY_REF_COST);
5334   size(4);
5335   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5336   opcode(Assembler::lddf_op3);
5337   ins_encode(simple_form3_mem_reg(src, dst));
5338   ins_pipe(floadD_stk);
5339 %}
5340 
5341 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5342   // No match rule to avoid chain rule match.
5343   effect(DEF dst, USE src);
5344   ins_cost(MEMORY_REF_COST);
5345   size(4);
5346   format %{ "STF    $src,$dst\t! regF to stkI" %}
5347   opcode(Assembler::stf_op3);
5348   ins_encode(simple_form3_mem_reg(dst, src));
5349   ins_pipe(fstoreF_stk_reg);
5350 %}
5351 
5352 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5353   // No match rule to avoid chain rule match.
5354   effect(DEF dst, USE src);
5355   ins_cost(MEMORY_REF_COST);
5356   size(4);
5357   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5358   opcode(Assembler::stdf_op3);
5359   ins_encode(simple_form3_mem_reg(dst, src));
5360   ins_pipe(fstoreD_stk_reg);
5361 %}
5362 
5363 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5364   effect(DEF dst, USE src);
5365   ins_cost(MEMORY_REF_COST*2);
5366   size(8);
5367   format %{ "STW    $src,$dst.hi\t! long\n\t"
5368             "STW    R_G0,$dst.lo" %}
5369   opcode(Assembler::stw_op3);
5370   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5371   ins_pipe(lstoreI_stk_reg);
5372 %}
5373 
5374 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5375   // No match rule to avoid chain rule match.
5376   effect(DEF dst, USE src);
5377   ins_cost(MEMORY_REF_COST);
5378   size(4);
5379   format %{ "STX    $src,$dst\t! regL to stkD" %}
5380   opcode(Assembler::stx_op3);
5381   ins_encode(simple_form3_mem_reg( dst, src ) );
5382   ins_pipe(istore_stk_reg);
5383 %}
5384 
5385 //---------- Chain stack slots between similar types --------
5386 
5387 // Load integer from stack slot
5388 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5389   match(Set dst src);
5390   ins_cost(MEMORY_REF_COST);
5391 
5392   size(4);
5393   format %{ "LDUW   $src,$dst\t!stk" %}
5394   opcode(Assembler::lduw_op3);
5395   ins_encode(simple_form3_mem_reg( src, dst ) );
5396   ins_pipe(iload_mem);
5397 %}
5398 
5399 // Store integer to stack slot
5400 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5401   match(Set dst src);
5402   ins_cost(MEMORY_REF_COST);
5403 
5404   size(4);
5405   format %{ "STW    $src,$dst\t!stk" %}
5406   opcode(Assembler::stw_op3);
5407   ins_encode(simple_form3_mem_reg( dst, src ) );
5408   ins_pipe(istore_mem_reg);
5409 %}
5410 
5411 // Load long from stack slot
5412 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5413   match(Set dst src);
5414 
5415   ins_cost(MEMORY_REF_COST);
5416   size(4);
5417   format %{ "LDX    $src,$dst\t! long" %}
5418   opcode(Assembler::ldx_op3);
5419   ins_encode(simple_form3_mem_reg( src, dst ) );
5420   ins_pipe(iload_mem);
5421 %}
5422 
5423 // Store long to stack slot
5424 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5425   match(Set dst src);
5426 
5427   ins_cost(MEMORY_REF_COST);
5428   size(4);
5429   format %{ "STX    $src,$dst\t! long" %}
5430   opcode(Assembler::stx_op3);
5431   ins_encode(simple_form3_mem_reg( dst, src ) );
5432   ins_pipe(istore_mem_reg);
5433 %}
5434 
5435 #ifdef _LP64
5436 // Load pointer from stack slot, 64-bit encoding
5437 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5438   match(Set dst src);
5439   ins_cost(MEMORY_REF_COST);
5440   size(4);
5441   format %{ "LDX    $src,$dst\t!ptr" %}
5442   opcode(Assembler::ldx_op3);
5443   ins_encode(simple_form3_mem_reg( src, dst ) );
5444   ins_pipe(iload_mem);
5445 %}
5446 
5447 // Store pointer to stack slot
5448 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5449   match(Set dst src);
5450   ins_cost(MEMORY_REF_COST);
5451   size(4);
5452   format %{ "STX    $src,$dst\t!ptr" %}
5453   opcode(Assembler::stx_op3);
5454   ins_encode(simple_form3_mem_reg( dst, src ) );
5455   ins_pipe(istore_mem_reg);
5456 %}
5457 #else // _LP64
5458 // Load pointer from stack slot, 32-bit encoding
5459 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5460   match(Set dst src);
5461   ins_cost(MEMORY_REF_COST);
5462   format %{ "LDUW   $src,$dst\t!ptr" %}
5463   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5464   ins_encode(simple_form3_mem_reg( src, dst ) );
5465   ins_pipe(iload_mem);
5466 %}
5467 
5468 // Store pointer to stack slot
5469 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5470   match(Set dst src);
5471   ins_cost(MEMORY_REF_COST);
5472   format %{ "STW    $src,$dst\t!ptr" %}
5473   opcode(Assembler::stw_op3, Assembler::ldst_op);
5474   ins_encode(simple_form3_mem_reg( dst, src ) );
5475   ins_pipe(istore_mem_reg);
5476 %}
5477 #endif // _LP64
5478 
5479 //------------Special Nop instructions for bundling - no match rules-----------
5480 // Nop using the A0 functional unit
5481 instruct Nop_A0() %{
5482   ins_cost(0);
5483 
5484   format %{ "NOP    ! Alu Pipeline" %}
5485   opcode(Assembler::or_op3, Assembler::arith_op);
5486   ins_encode( form2_nop() );
5487   ins_pipe(ialu_nop_A0);
5488 %}
5489 
5490 // Nop using the A1 functional unit
5491 instruct Nop_A1( ) %{
5492   ins_cost(0);
5493 
5494   format %{ "NOP    ! Alu Pipeline" %}
5495   opcode(Assembler::or_op3, Assembler::arith_op);
5496   ins_encode( form2_nop() );
5497   ins_pipe(ialu_nop_A1);
5498 %}
5499 
5500 // Nop using the memory functional unit
5501 instruct Nop_MS( ) %{
5502   ins_cost(0);
5503 
5504   format %{ "NOP    ! Memory Pipeline" %}
5505   ins_encode( emit_mem_nop );
5506   ins_pipe(mem_nop);
5507 %}
5508 
5509 // Nop using the floating add functional unit
5510 instruct Nop_FA( ) %{
5511   ins_cost(0);
5512 
5513   format %{ "NOP    ! Floating Add Pipeline" %}
5514   ins_encode( emit_fadd_nop );
5515   ins_pipe(fadd_nop);
5516 %}
5517 
5518 // Nop using the branch functional unit
5519 instruct Nop_BR( ) %{
5520   ins_cost(0);
5521 
5522   format %{ "NOP    ! Branch Pipeline" %}
5523   ins_encode( emit_br_nop );
5524   ins_pipe(br_nop);
5525 %}
5526 
5527 //----------Load/Store/Move Instructions---------------------------------------
5528 //----------Load Instructions--------------------------------------------------
5529 // Load Byte (8bit signed)
5530 instruct loadB(iRegI dst, memory mem) %{
5531   match(Set dst (LoadB mem));
5532   ins_cost(MEMORY_REF_COST);
5533 
5534   size(4);
5535   format %{ "LDSB   $mem,$dst\t! byte" %}
5536   ins_encode %{
5537     __ ldsb($mem$$Address, $dst$$Register);
5538   %}
5539   ins_pipe(iload_mask_mem);
5540 %}
5541 
5542 // Load Byte (8bit signed) into a Long Register
5543 instruct loadB2L(iRegL dst, memory mem) %{
5544   match(Set dst (ConvI2L (LoadB mem)));
5545   ins_cost(MEMORY_REF_COST);
5546 
5547   size(4);
5548   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5549   ins_encode %{
5550     __ ldsb($mem$$Address, $dst$$Register);
5551   %}
5552   ins_pipe(iload_mask_mem);
5553 %}
5554 
5555 // Load Unsigned Byte (8bit UNsigned) into an int reg
5556 instruct loadUB(iRegI dst, memory mem) %{
5557   match(Set dst (LoadUB mem));
5558   ins_cost(MEMORY_REF_COST);
5559 
5560   size(4);
5561   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5562   ins_encode %{
5563     __ ldub($mem$$Address, $dst$$Register);
5564   %}
5565   ins_pipe(iload_mem);
5566 %}
5567 
5568 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5569 instruct loadUB2L(iRegL dst, memory mem) %{
5570   match(Set dst (ConvI2L (LoadUB mem)));
5571   ins_cost(MEMORY_REF_COST);
5572 
5573   size(4);
5574   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5575   ins_encode %{
5576     __ ldub($mem$$Address, $dst$$Register);
5577   %}
5578   ins_pipe(iload_mem);
5579 %}
5580 
5581 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5582 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5583   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5584   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5585 
5586   size(2*4);
5587   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5588             "AND    $dst,$mask,$dst" %}
5589   ins_encode %{
5590     __ ldub($mem$$Address, $dst$$Register);
5591     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5592   %}
5593   ins_pipe(iload_mem);
5594 %}
5595 
5596 // Load Short (16bit signed)
5597 instruct loadS(iRegI dst, memory mem) %{
5598   match(Set dst (LoadS mem));
5599   ins_cost(MEMORY_REF_COST);
5600 
5601   size(4);
5602   format %{ "LDSH   $mem,$dst\t! short" %}
5603   ins_encode %{
5604     __ ldsh($mem$$Address, $dst$$Register);
5605   %}
5606   ins_pipe(iload_mask_mem);
5607 %}
5608 
5609 // Load Short (16 bit signed) to Byte (8 bit signed)
5610 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5611   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5612   ins_cost(MEMORY_REF_COST);
5613 
5614   size(4);
5615 
5616   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5617   ins_encode %{
5618     __ ldsb($mem$$Address, $dst$$Register, 1);
5619   %}
5620   ins_pipe(iload_mask_mem);
5621 %}
5622 
5623 // Load Short (16bit signed) into a Long Register
5624 instruct loadS2L(iRegL dst, memory mem) %{
5625   match(Set dst (ConvI2L (LoadS mem)));
5626   ins_cost(MEMORY_REF_COST);
5627 
5628   size(4);
5629   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5630   ins_encode %{
5631     __ ldsh($mem$$Address, $dst$$Register);
5632   %}
5633   ins_pipe(iload_mask_mem);
5634 %}
5635 
5636 // Load Unsigned Short/Char (16bit UNsigned)
5637 instruct loadUS(iRegI dst, memory mem) %{
5638   match(Set dst (LoadUS mem));
5639   ins_cost(MEMORY_REF_COST);
5640 
5641   size(4);
5642   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5643   ins_encode %{
5644     __ lduh($mem$$Address, $dst$$Register);
5645   %}
5646   ins_pipe(iload_mem);
5647 %}
5648 
5649 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5650 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5651   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5652   ins_cost(MEMORY_REF_COST);
5653 
5654   size(4);
5655   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5656   ins_encode %{
5657     __ ldsb($mem$$Address, $dst$$Register, 1);
5658   %}
5659   ins_pipe(iload_mask_mem);
5660 %}
5661 
5662 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5663 instruct loadUS2L(iRegL dst, memory mem) %{
5664   match(Set dst (ConvI2L (LoadUS mem)));
5665   ins_cost(MEMORY_REF_COST);
5666 
5667   size(4);
5668   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5669   ins_encode %{
5670     __ lduh($mem$$Address, $dst$$Register);
5671   %}
5672   ins_pipe(iload_mem);
5673 %}
5674 
5675 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5676 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5677   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5678   ins_cost(MEMORY_REF_COST);
5679 
5680   size(4);
5681   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5682   ins_encode %{
5683     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5684   %}
5685   ins_pipe(iload_mem);
5686 %}
5687 
5688 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5689 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5690   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5691   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5692 
5693   size(2*4);
5694   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5695             "AND    $dst,$mask,$dst" %}
5696   ins_encode %{
5697     Register Rdst = $dst$$Register;
5698     __ lduh($mem$$Address, Rdst);
5699     __ and3(Rdst, $mask$$constant, Rdst);
5700   %}
5701   ins_pipe(iload_mem);
5702 %}
5703 
5704 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5705 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5706   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5707   effect(TEMP dst, TEMP tmp);
5708   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5709 
5710   size((3+1)*4);  // set may use two instructions.
5711   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5712             "SET    $mask,$tmp\n\t"
5713             "AND    $dst,$tmp,$dst" %}
5714   ins_encode %{
5715     Register Rdst = $dst$$Register;
5716     Register Rtmp = $tmp$$Register;
5717     __ lduh($mem$$Address, Rdst);
5718     __ set($mask$$constant, Rtmp);
5719     __ and3(Rdst, Rtmp, Rdst);
5720   %}
5721   ins_pipe(iload_mem);
5722 %}
5723 
5724 // Load Integer
5725 instruct loadI(iRegI dst, memory mem) %{
5726   match(Set dst (LoadI mem));
5727   ins_cost(MEMORY_REF_COST);
5728 
5729   size(4);
5730   format %{ "LDUW   $mem,$dst\t! int" %}
5731   ins_encode %{
5732     __ lduw($mem$$Address, $dst$$Register);
5733   %}
5734   ins_pipe(iload_mem);
5735 %}
5736 
5737 // Load Integer to Byte (8 bit signed)
5738 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5739   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5740   ins_cost(MEMORY_REF_COST);
5741 
5742   size(4);
5743 
5744   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5745   ins_encode %{
5746     __ ldsb($mem$$Address, $dst$$Register, 3);
5747   %}
5748   ins_pipe(iload_mask_mem);
5749 %}
5750 
5751 // Load Integer to Unsigned Byte (8 bit UNsigned)
5752 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5753   match(Set dst (AndI (LoadI mem) mask));
5754   ins_cost(MEMORY_REF_COST);
5755 
5756   size(4);
5757 
5758   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5759   ins_encode %{
5760     __ ldub($mem$$Address, $dst$$Register, 3);
5761   %}
5762   ins_pipe(iload_mask_mem);
5763 %}
5764 
5765 // Load Integer to Short (16 bit signed)
5766 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5767   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5768   ins_cost(MEMORY_REF_COST);
5769 
5770   size(4);
5771 
5772   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5773   ins_encode %{
5774     __ ldsh($mem$$Address, $dst$$Register, 2);
5775   %}
5776   ins_pipe(iload_mask_mem);
5777 %}
5778 
5779 // Load Integer to Unsigned Short (16 bit UNsigned)
5780 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5781   match(Set dst (AndI (LoadI mem) mask));
5782   ins_cost(MEMORY_REF_COST);
5783 
5784   size(4);
5785 
5786   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5787   ins_encode %{
5788     __ lduh($mem$$Address, $dst$$Register, 2);
5789   %}
5790   ins_pipe(iload_mask_mem);
5791 %}
5792 
5793 // Load Integer into a Long Register
5794 instruct loadI2L(iRegL dst, memory mem) %{
5795   match(Set dst (ConvI2L (LoadI mem)));
5796   ins_cost(MEMORY_REF_COST);
5797 
5798   size(4);
5799   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5800   ins_encode %{
5801     __ ldsw($mem$$Address, $dst$$Register);
5802   %}
5803   ins_pipe(iload_mask_mem);
5804 %}
5805 
5806 // Load Integer with mask 0xFF into a Long Register
5807 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5808   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5809   ins_cost(MEMORY_REF_COST);
5810 
5811   size(4);
5812   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5813   ins_encode %{
5814     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5815   %}
5816   ins_pipe(iload_mem);
5817 %}
5818 
5819 // Load Integer with mask 0xFFFF into a Long Register
5820 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5821   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5822   ins_cost(MEMORY_REF_COST);
5823 
5824   size(4);
5825   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5826   ins_encode %{
5827     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5828   %}
5829   ins_pipe(iload_mem);
5830 %}
5831 
5832 // Load Integer with a 13-bit mask into a Long Register
5833 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5834   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5835   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5836 
5837   size(2*4);
5838   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5839             "AND    $dst,$mask,$dst" %}
5840   ins_encode %{
5841     Register Rdst = $dst$$Register;
5842     __ lduw($mem$$Address, Rdst);
5843     __ and3(Rdst, $mask$$constant, Rdst);
5844   %}
5845   ins_pipe(iload_mem);
5846 %}
5847 
5848 // Load Integer with a 32-bit mask into a Long Register
5849 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5850   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5851   effect(TEMP dst, TEMP tmp);
5852   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5853 
5854   size((3+1)*4);  // set may use two instructions.
5855   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5856             "SET    $mask,$tmp\n\t"
5857             "AND    $dst,$tmp,$dst" %}
5858   ins_encode %{
5859     Register Rdst = $dst$$Register;
5860     Register Rtmp = $tmp$$Register;
5861     __ lduw($mem$$Address, Rdst);
5862     __ set($mask$$constant, Rtmp);
5863     __ and3(Rdst, Rtmp, Rdst);
5864   %}
5865   ins_pipe(iload_mem);
5866 %}
5867 
5868 // Load Unsigned Integer into a Long Register
5869 instruct loadUI2L(iRegL dst, memory mem) %{
5870   match(Set dst (LoadUI2L mem));
5871   ins_cost(MEMORY_REF_COST);
5872 
5873   size(4);
5874   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5875   ins_encode %{
5876     __ lduw($mem$$Address, $dst$$Register);
5877   %}
5878   ins_pipe(iload_mem);
5879 %}
5880 
5881 // Load Long - aligned
5882 instruct loadL(iRegL dst, memory mem ) %{
5883   match(Set dst (LoadL mem));
5884   ins_cost(MEMORY_REF_COST);
5885 
5886   size(4);
5887   format %{ "LDX    $mem,$dst\t! long" %}
5888   ins_encode %{
5889     __ ldx($mem$$Address, $dst$$Register);
5890   %}
5891   ins_pipe(iload_mem);
5892 %}
5893 
5894 // Load Long - UNaligned
5895 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5896   match(Set dst (LoadL_unaligned mem));
5897   effect(KILL tmp);
5898   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5899   size(16);
5900   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5901           "\tLDUW   $mem  ,$dst\n"
5902           "\tSLLX   #32, $dst, $dst\n"
5903           "\tOR     $dst, R_O7, $dst" %}
5904   opcode(Assembler::lduw_op3);
5905   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5906   ins_pipe(iload_mem);
5907 %}
5908 
5909 // Load Aligned Packed Byte into a Double Register
5910 instruct loadA8B(regD dst, memory mem) %{
5911   match(Set dst (Load8B mem));
5912   ins_cost(MEMORY_REF_COST);
5913   size(4);
5914   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5915   opcode(Assembler::lddf_op3);
5916   ins_encode(simple_form3_mem_reg( mem, dst ) );
5917   ins_pipe(floadD_mem);
5918 %}
5919 
5920 // Load Aligned Packed Char into a Double Register
5921 instruct loadA4C(regD dst, memory mem) %{
5922   match(Set dst (Load4C mem));
5923   ins_cost(MEMORY_REF_COST);
5924   size(4);
5925   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5926   opcode(Assembler::lddf_op3);
5927   ins_encode(simple_form3_mem_reg( mem, dst ) );
5928   ins_pipe(floadD_mem);
5929 %}
5930 
5931 // Load Aligned Packed Short into a Double Register
5932 instruct loadA4S(regD dst, memory mem) %{
5933   match(Set dst (Load4S mem));
5934   ins_cost(MEMORY_REF_COST);
5935   size(4);
5936   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5937   opcode(Assembler::lddf_op3);
5938   ins_encode(simple_form3_mem_reg( mem, dst ) );
5939   ins_pipe(floadD_mem);
5940 %}
5941 
5942 // Load Aligned Packed Int into a Double Register
5943 instruct loadA2I(regD dst, memory mem) %{
5944   match(Set dst (Load2I mem));
5945   ins_cost(MEMORY_REF_COST);
5946   size(4);
5947   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5948   opcode(Assembler::lddf_op3);
5949   ins_encode(simple_form3_mem_reg( mem, dst ) );
5950   ins_pipe(floadD_mem);
5951 %}
5952 
5953 // Load Range
5954 instruct loadRange(iRegI dst, memory mem) %{
5955   match(Set dst (LoadRange mem));
5956   ins_cost(MEMORY_REF_COST);
5957 
5958   size(4);
5959   format %{ "LDUW   $mem,$dst\t! range" %}
5960   opcode(Assembler::lduw_op3);
5961   ins_encode(simple_form3_mem_reg( mem, dst ) );
5962   ins_pipe(iload_mem);
5963 %}
5964 
5965 // Load Integer into %f register (for fitos/fitod)
5966 instruct loadI_freg(regF dst, memory mem) %{
5967   match(Set dst (LoadI mem));
5968   ins_cost(MEMORY_REF_COST);
5969   size(4);
5970 
5971   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5972   opcode(Assembler::ldf_op3);
5973   ins_encode(simple_form3_mem_reg( mem, dst ) );
5974   ins_pipe(floadF_mem);
5975 %}
5976 
5977 // Load Pointer
5978 instruct loadP(iRegP dst, memory mem) %{
5979   match(Set dst (LoadP mem));
5980   ins_cost(MEMORY_REF_COST);
5981   size(4);
5982 
5983 #ifndef _LP64
5984   format %{ "LDUW   $mem,$dst\t! ptr" %}
5985   ins_encode %{
5986     __ lduw($mem$$Address, $dst$$Register);
5987   %}
5988 #else
5989   format %{ "LDX    $mem,$dst\t! ptr" %}
5990   ins_encode %{
5991     __ ldx($mem$$Address, $dst$$Register);
5992   %}
5993 #endif
5994   ins_pipe(iload_mem);
5995 %}
5996 
5997 // Load Compressed Pointer
5998 instruct loadN(iRegN dst, memory mem) %{
5999   match(Set dst (LoadN mem));
6000   ins_cost(MEMORY_REF_COST);
6001   size(4);
6002 
6003   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
6004   ins_encode %{
6005     __ lduw($mem$$Address, $dst$$Register);
6006   %}
6007   ins_pipe(iload_mem);
6008 %}
6009 
6010 // Load Klass Pointer
6011 instruct loadKlass(iRegP dst, memory mem) %{
6012   match(Set dst (LoadKlass mem));
6013   ins_cost(MEMORY_REF_COST);
6014   size(4);
6015 
6016 #ifndef _LP64
6017   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
6018   ins_encode %{
6019     __ lduw($mem$$Address, $dst$$Register);
6020   %}
6021 #else
6022   format %{ "LDX    $mem,$dst\t! klass ptr" %}
6023   ins_encode %{
6024     __ ldx($mem$$Address, $dst$$Register);
6025   %}
6026 #endif
6027   ins_pipe(iload_mem);
6028 %}
6029 
6030 // Load narrow Klass Pointer
6031 instruct loadNKlass(iRegN dst, memory mem) %{
6032   match(Set dst (LoadNKlass mem));
6033   ins_cost(MEMORY_REF_COST);
6034   size(4);
6035 
6036   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6037   ins_encode %{
6038     __ lduw($mem$$Address, $dst$$Register);
6039   %}
6040   ins_pipe(iload_mem);
6041 %}
6042 
6043 // Load Double
6044 instruct loadD(regD dst, memory mem) %{
6045   match(Set dst (LoadD mem));
6046   ins_cost(MEMORY_REF_COST);
6047 
6048   size(4);
6049   format %{ "LDDF   $mem,$dst" %}
6050   opcode(Assembler::lddf_op3);
6051   ins_encode(simple_form3_mem_reg( mem, dst ) );
6052   ins_pipe(floadD_mem);
6053 %}
6054 
6055 // Load Double - UNaligned
6056 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6057   match(Set dst (LoadD_unaligned mem));
6058   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6059   size(8);
6060   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6061           "\tLDF    $mem+4,$dst.lo\t!" %}
6062   opcode(Assembler::ldf_op3);
6063   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6064   ins_pipe(iload_mem);
6065 %}
6066 
6067 // Load Float
6068 instruct loadF(regF dst, memory mem) %{
6069   match(Set dst (LoadF mem));
6070   ins_cost(MEMORY_REF_COST);
6071 
6072   size(4);
6073   format %{ "LDF    $mem,$dst" %}
6074   opcode(Assembler::ldf_op3);
6075   ins_encode(simple_form3_mem_reg( mem, dst ) );
6076   ins_pipe(floadF_mem);
6077 %}
6078 
6079 // Load Constant
6080 instruct loadConI( iRegI dst, immI src ) %{
6081   match(Set dst src);
6082   ins_cost(DEFAULT_COST * 3/2);
6083   format %{ "SET    $src,$dst" %}
6084   ins_encode( Set32(src, dst) );
6085   ins_pipe(ialu_hi_lo_reg);
6086 %}
6087 
6088 instruct loadConI13( iRegI dst, immI13 src ) %{
6089   match(Set dst src);
6090 
6091   size(4);
6092   format %{ "MOV    $src,$dst" %}
6093   ins_encode( Set13( src, dst ) );
6094   ins_pipe(ialu_imm);
6095 %}
6096 
6097 #ifndef _LP64
6098 instruct loadConP(iRegP dst, immP con) %{
6099   match(Set dst con);
6100   ins_cost(DEFAULT_COST * 3/2);
6101   format %{ "SET    $con,$dst\t!ptr" %}
6102   ins_encode %{
6103     // [RGV] This next line should be generated from ADLC
6104     if (_opnds[1]->constant_is_oop()) {
6105       intptr_t val = $con$$constant;
6106       __ set_oop_constant((jobject) val, $dst$$Register);
6107     } else {          // non-oop pointers, e.g. card mark base, heap top
6108       __ set($con$$constant, $dst$$Register);
6109     }
6110   %}
6111   ins_pipe(loadConP);
6112 %}
6113 #else
6114 instruct loadConP_set(iRegP dst, immP_set con) %{
6115   match(Set dst con);
6116   ins_cost(DEFAULT_COST * 3/2);
6117   format %{ "SET    $con,$dst\t! ptr" %}
6118   ins_encode %{
6119     // [RGV] This next line should be generated from ADLC
6120     if (_opnds[1]->constant_is_oop()) {
6121       intptr_t val = $con$$constant;
6122       __ set_oop_constant((jobject) val, $dst$$Register);
6123     } else {          // non-oop pointers, e.g. card mark base, heap top
6124       __ set($con$$constant, $dst$$Register);
6125     }
6126   %}
6127   ins_pipe(loadConP);
6128 %}
6129 
6130 instruct loadConP_load(iRegP dst, immP_load con) %{
6131   match(Set dst con);
6132   ins_cost(MEMORY_REF_COST);
6133   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6134   ins_encode %{
6135     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6136     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6137   %}
6138   ins_pipe(loadConP);
6139 %}
6140 
6141 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6142   match(Set dst con);
6143   ins_cost(DEFAULT_COST * 3/2);
6144   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6145   ins_encode %{
6146     __ set($con$$constant, $dst$$Register);
6147   %}
6148   ins_pipe(loadConP);
6149 %}
6150 #endif // _LP64
6151 
6152 instruct loadConP0(iRegP dst, immP0 src) %{
6153   match(Set dst src);
6154 
6155   size(4);
6156   format %{ "CLR    $dst\t!ptr" %}
6157   ins_encode %{
6158     __ clr($dst$$Register);
6159   %}
6160   ins_pipe(ialu_imm);
6161 %}
6162 
6163 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6164   match(Set dst src);
6165   ins_cost(DEFAULT_COST);
6166   format %{ "SET    $src,$dst\t!ptr" %}
6167   ins_encode %{
6168     AddressLiteral polling_page(os::get_polling_page());
6169     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6170   %}
6171   ins_pipe(loadConP_poll);
6172 %}
6173 
6174 instruct loadConN0(iRegN dst, immN0 src) %{
6175   match(Set dst src);
6176 
6177   size(4);
6178   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6179   ins_encode %{
6180     __ clr($dst$$Register);
6181   %}
6182   ins_pipe(ialu_imm);
6183 %}
6184 
6185 instruct loadConN(iRegN dst, immN src) %{
6186   match(Set dst src);
6187   ins_cost(DEFAULT_COST * 3/2);
6188   format %{ "SET    $src,$dst\t! compressed ptr" %}
6189   ins_encode %{
6190     Register dst = $dst$$Register;
6191     __ set_narrow_oop((jobject)$src$$constant, dst);
6192   %}
6193   ins_pipe(ialu_hi_lo_reg);
6194 %}
6195 
6196 // Materialize long value (predicated by immL_cheap).
6197 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6198   match(Set dst con);
6199   effect(KILL tmp);
6200   ins_cost(DEFAULT_COST * 3);
6201   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6202   ins_encode %{
6203     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6204   %}
6205   ins_pipe(loadConL);
6206 %}
6207 
6208 // Load long value from constant table (predicated by immL_expensive).
6209 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6210   match(Set dst con);
6211   ins_cost(MEMORY_REF_COST);
6212   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6213   ins_encode %{
6214       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6215     __ ldx($constanttablebase, con_offset, $dst$$Register);
6216   %}
6217   ins_pipe(loadConL);
6218 %}
6219 
6220 instruct loadConL0( iRegL dst, immL0 src ) %{
6221   match(Set dst src);
6222   ins_cost(DEFAULT_COST);
6223   size(4);
6224   format %{ "CLR    $dst\t! long" %}
6225   ins_encode( Set13( src, dst ) );
6226   ins_pipe(ialu_imm);
6227 %}
6228 
6229 instruct loadConL13( iRegL dst, immL13 src ) %{
6230   match(Set dst src);
6231   ins_cost(DEFAULT_COST * 2);
6232 
6233   size(4);
6234   format %{ "MOV    $src,$dst\t! long" %}
6235   ins_encode( Set13( src, dst ) );
6236   ins_pipe(ialu_imm);
6237 %}
6238 
6239 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6240   match(Set dst con);
6241   effect(KILL tmp);
6242   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6243   ins_encode %{
6244       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6245     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6246   %}
6247   ins_pipe(loadConFD);
6248 %}
6249 
6250 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6251   match(Set dst con);
6252   effect(KILL tmp);
6253   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6254   ins_encode %{
6255     // XXX This is a quick fix for 6833573.
6256     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6257     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6258     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6259   %}
6260   ins_pipe(loadConFD);
6261 %}
6262 
6263 // Prefetch instructions.
6264 // Must be safe to execute with invalid address (cannot fault).
6265 
6266 instruct prefetchr( memory mem ) %{
6267   match( PrefetchRead mem );
6268   ins_cost(MEMORY_REF_COST);
6269   size(4);
6270 
6271   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6272   opcode(Assembler::prefetch_op3);
6273   ins_encode( form3_mem_prefetch_read( mem ) );
6274   ins_pipe(iload_mem);
6275 %}
6276 
6277 instruct prefetchw( memory mem ) %{
6278   match( PrefetchWrite mem );
6279   ins_cost(MEMORY_REF_COST);
6280   size(4);
6281 
6282   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6283   opcode(Assembler::prefetch_op3);
6284   ins_encode( form3_mem_prefetch_write( mem ) );
6285   ins_pipe(iload_mem);
6286 %}
6287 
6288 // Prefetch instructions for allocation.
6289 
6290 instruct prefetchAlloc( memory mem ) %{
6291   predicate(AllocatePrefetchInstr == 0);
6292   match( PrefetchAllocation mem );
6293   ins_cost(MEMORY_REF_COST);
6294   size(4);
6295 
6296   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6297   opcode(Assembler::prefetch_op3);
6298   ins_encode( form3_mem_prefetch_write( mem ) );
6299   ins_pipe(iload_mem);
6300 %}
6301 
6302 // Use BIS instruction to prefetch for allocation.
6303 // Could fault, need space at the end of TLAB.
6304 instruct prefetchAlloc_bis( iRegP dst ) %{
6305   predicate(AllocatePrefetchInstr == 1);
6306   match( PrefetchAllocation dst );
6307   ins_cost(MEMORY_REF_COST);
6308   size(4);
6309 
6310   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6311   ins_encode %{
6312     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6313   %}
6314   ins_pipe(istore_mem_reg);
6315 %}
6316 
6317 // Next code is used for finding next cache line address to prefetch.
6318 
6319 instruct cacheLineAdr32( iRegP dst, iRegP src, immI13 mask ) %{
6320   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6321   ins_cost(DEFAULT_COST);
6322   size(4);
6323 
6324   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6325   ins_encode %{
6326     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6327   %}
6328   ins_pipe(ialu_reg_imm);
6329 %}
6330 
6331 instruct cacheLineAdr64( iRegP dst, iRegP src, immL13 mask ) %{
6332   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6333   ins_cost(DEFAULT_COST);
6334   size(4);
6335 
6336   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6337   ins_encode %{
6338     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6339   %}
6340   ins_pipe(ialu_reg_imm);
6341 %}
6342 
6343 //----------Store Instructions-------------------------------------------------
6344 // Store Byte
6345 instruct storeB(memory mem, iRegI src) %{
6346   match(Set mem (StoreB mem src));
6347   ins_cost(MEMORY_REF_COST);
6348 
6349   size(4);
6350   format %{ "STB    $src,$mem\t! byte" %}
6351   opcode(Assembler::stb_op3);
6352   ins_encode(simple_form3_mem_reg( mem, src ) );
6353   ins_pipe(istore_mem_reg);
6354 %}
6355 
6356 instruct storeB0(memory mem, immI0 src) %{
6357   match(Set mem (StoreB mem src));
6358   ins_cost(MEMORY_REF_COST);
6359 
6360   size(4);
6361   format %{ "STB    $src,$mem\t! byte" %}
6362   opcode(Assembler::stb_op3);
6363   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6364   ins_pipe(istore_mem_zero);
6365 %}
6366 
6367 instruct storeCM0(memory mem, immI0 src) %{
6368   match(Set mem (StoreCM mem src));
6369   ins_cost(MEMORY_REF_COST);
6370 
6371   size(4);
6372   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6373   opcode(Assembler::stb_op3);
6374   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6375   ins_pipe(istore_mem_zero);
6376 %}
6377 
6378 // Store Char/Short
6379 instruct storeC(memory mem, iRegI src) %{
6380   match(Set mem (StoreC mem src));
6381   ins_cost(MEMORY_REF_COST);
6382 
6383   size(4);
6384   format %{ "STH    $src,$mem\t! short" %}
6385   opcode(Assembler::sth_op3);
6386   ins_encode(simple_form3_mem_reg( mem, src ) );
6387   ins_pipe(istore_mem_reg);
6388 %}
6389 
6390 instruct storeC0(memory mem, immI0 src) %{
6391   match(Set mem (StoreC mem src));
6392   ins_cost(MEMORY_REF_COST);
6393 
6394   size(4);
6395   format %{ "STH    $src,$mem\t! short" %}
6396   opcode(Assembler::sth_op3);
6397   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6398   ins_pipe(istore_mem_zero);
6399 %}
6400 
6401 // Store Integer
6402 instruct storeI(memory mem, iRegI src) %{
6403   match(Set mem (StoreI mem src));
6404   ins_cost(MEMORY_REF_COST);
6405 
6406   size(4);
6407   format %{ "STW    $src,$mem" %}
6408   opcode(Assembler::stw_op3);
6409   ins_encode(simple_form3_mem_reg( mem, src ) );
6410   ins_pipe(istore_mem_reg);
6411 %}
6412 
6413 // Store Long
6414 instruct storeL(memory mem, iRegL src) %{
6415   match(Set mem (StoreL mem src));
6416   ins_cost(MEMORY_REF_COST);
6417   size(4);
6418   format %{ "STX    $src,$mem\t! long" %}
6419   opcode(Assembler::stx_op3);
6420   ins_encode(simple_form3_mem_reg( mem, src ) );
6421   ins_pipe(istore_mem_reg);
6422 %}
6423 
6424 instruct storeI0(memory mem, immI0 src) %{
6425   match(Set mem (StoreI mem src));
6426   ins_cost(MEMORY_REF_COST);
6427 
6428   size(4);
6429   format %{ "STW    $src,$mem" %}
6430   opcode(Assembler::stw_op3);
6431   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6432   ins_pipe(istore_mem_zero);
6433 %}
6434 
6435 instruct storeL0(memory mem, immL0 src) %{
6436   match(Set mem (StoreL mem src));
6437   ins_cost(MEMORY_REF_COST);
6438 
6439   size(4);
6440   format %{ "STX    $src,$mem" %}
6441   opcode(Assembler::stx_op3);
6442   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6443   ins_pipe(istore_mem_zero);
6444 %}
6445 
6446 // Store Integer from float register (used after fstoi)
6447 instruct storeI_Freg(memory mem, regF src) %{
6448   match(Set mem (StoreI mem src));
6449   ins_cost(MEMORY_REF_COST);
6450 
6451   size(4);
6452   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6453   opcode(Assembler::stf_op3);
6454   ins_encode(simple_form3_mem_reg( mem, src ) );
6455   ins_pipe(fstoreF_mem_reg);
6456 %}
6457 
6458 // Store Pointer
6459 instruct storeP(memory dst, sp_ptr_RegP src) %{
6460   match(Set dst (StoreP dst src));
6461   ins_cost(MEMORY_REF_COST);
6462   size(4);
6463 
6464 #ifndef _LP64
6465   format %{ "STW    $src,$dst\t! ptr" %}
6466   opcode(Assembler::stw_op3, 0, REGP_OP);
6467 #else
6468   format %{ "STX    $src,$dst\t! ptr" %}
6469   opcode(Assembler::stx_op3, 0, REGP_OP);
6470 #endif
6471   ins_encode( form3_mem_reg( dst, src ) );
6472   ins_pipe(istore_mem_spORreg);
6473 %}
6474 
6475 instruct storeP0(memory dst, immP0 src) %{
6476   match(Set dst (StoreP dst src));
6477   ins_cost(MEMORY_REF_COST);
6478   size(4);
6479 
6480 #ifndef _LP64
6481   format %{ "STW    $src,$dst\t! ptr" %}
6482   opcode(Assembler::stw_op3, 0, REGP_OP);
6483 #else
6484   format %{ "STX    $src,$dst\t! ptr" %}
6485   opcode(Assembler::stx_op3, 0, REGP_OP);
6486 #endif
6487   ins_encode( form3_mem_reg( dst, R_G0 ) );
6488   ins_pipe(istore_mem_zero);
6489 %}
6490 
6491 // Store Compressed Pointer
6492 instruct storeN(memory dst, iRegN src) %{
6493    match(Set dst (StoreN dst src));
6494    ins_cost(MEMORY_REF_COST);
6495    size(4);
6496 
6497    format %{ "STW    $src,$dst\t! compressed ptr" %}
6498    ins_encode %{
6499      Register base = as_Register($dst$$base);
6500      Register index = as_Register($dst$$index);
6501      Register src = $src$$Register;
6502      if (index != G0) {
6503        __ stw(src, base, index);
6504      } else {
6505        __ stw(src, base, $dst$$disp);
6506      }
6507    %}
6508    ins_pipe(istore_mem_spORreg);
6509 %}
6510 
6511 instruct storeN0(memory dst, immN0 src) %{
6512    match(Set dst (StoreN dst src));
6513    ins_cost(MEMORY_REF_COST);
6514    size(4);
6515 
6516    format %{ "STW    $src,$dst\t! compressed ptr" %}
6517    ins_encode %{
6518      Register base = as_Register($dst$$base);
6519      Register index = as_Register($dst$$index);
6520      if (index != G0) {
6521        __ stw(0, base, index);
6522      } else {
6523        __ stw(0, base, $dst$$disp);
6524      }
6525    %}
6526    ins_pipe(istore_mem_zero);
6527 %}
6528 
6529 // Store Double
6530 instruct storeD( memory mem, regD src) %{
6531   match(Set mem (StoreD mem src));
6532   ins_cost(MEMORY_REF_COST);
6533 
6534   size(4);
6535   format %{ "STDF   $src,$mem" %}
6536   opcode(Assembler::stdf_op3);
6537   ins_encode(simple_form3_mem_reg( mem, src ) );
6538   ins_pipe(fstoreD_mem_reg);
6539 %}
6540 
6541 instruct storeD0( memory mem, immD0 src) %{
6542   match(Set mem (StoreD mem src));
6543   ins_cost(MEMORY_REF_COST);
6544 
6545   size(4);
6546   format %{ "STX    $src,$mem" %}
6547   opcode(Assembler::stx_op3);
6548   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6549   ins_pipe(fstoreD_mem_zero);
6550 %}
6551 
6552 // Store Float
6553 instruct storeF( memory mem, regF src) %{
6554   match(Set mem (StoreF mem src));
6555   ins_cost(MEMORY_REF_COST);
6556 
6557   size(4);
6558   format %{ "STF    $src,$mem" %}
6559   opcode(Assembler::stf_op3);
6560   ins_encode(simple_form3_mem_reg( mem, src ) );
6561   ins_pipe(fstoreF_mem_reg);
6562 %}
6563 
6564 instruct storeF0( memory mem, immF0 src) %{
6565   match(Set mem (StoreF mem src));
6566   ins_cost(MEMORY_REF_COST);
6567 
6568   size(4);
6569   format %{ "STW    $src,$mem\t! storeF0" %}
6570   opcode(Assembler::stw_op3);
6571   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6572   ins_pipe(fstoreF_mem_zero);
6573 %}
6574 
6575 // Store Aligned Packed Bytes in Double register to memory
6576 instruct storeA8B(memory mem, regD src) %{
6577   match(Set mem (Store8B mem src));
6578   ins_cost(MEMORY_REF_COST);
6579   size(4);
6580   format %{ "STDF   $src,$mem\t! packed8B" %}
6581   opcode(Assembler::stdf_op3);
6582   ins_encode(simple_form3_mem_reg( mem, src ) );
6583   ins_pipe(fstoreD_mem_reg);
6584 %}
6585 
6586 // Convert oop pointer into compressed form
6587 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6588   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6589   match(Set dst (EncodeP src));
6590   format %{ "encode_heap_oop $src, $dst" %}
6591   ins_encode %{
6592     __ encode_heap_oop($src$$Register, $dst$$Register);
6593   %}
6594   ins_pipe(ialu_reg);
6595 %}
6596 
6597 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6598   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6599   match(Set dst (EncodeP src));
6600   format %{ "encode_heap_oop_not_null $src, $dst" %}
6601   ins_encode %{
6602     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6603   %}
6604   ins_pipe(ialu_reg);
6605 %}
6606 
6607 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6608   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6609             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6610   match(Set dst (DecodeN src));
6611   format %{ "decode_heap_oop $src, $dst" %}
6612   ins_encode %{
6613     __ decode_heap_oop($src$$Register, $dst$$Register);
6614   %}
6615   ins_pipe(ialu_reg);
6616 %}
6617 
6618 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6619   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6620             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6621   match(Set dst (DecodeN src));
6622   format %{ "decode_heap_oop_not_null $src, $dst" %}
6623   ins_encode %{
6624     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6625   %}
6626   ins_pipe(ialu_reg);
6627 %}
6628 
6629 
6630 // Store Zero into Aligned Packed Bytes
6631 instruct storeA8B0(memory mem, immI0 zero) %{
6632   match(Set mem (Store8B mem zero));
6633   ins_cost(MEMORY_REF_COST);
6634   size(4);
6635   format %{ "STX    $zero,$mem\t! packed8B" %}
6636   opcode(Assembler::stx_op3);
6637   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6638   ins_pipe(fstoreD_mem_zero);
6639 %}
6640 
6641 // Store Aligned Packed Chars/Shorts in Double register to memory
6642 instruct storeA4C(memory mem, regD src) %{
6643   match(Set mem (Store4C mem src));
6644   ins_cost(MEMORY_REF_COST);
6645   size(4);
6646   format %{ "STDF   $src,$mem\t! packed4C" %}
6647   opcode(Assembler::stdf_op3);
6648   ins_encode(simple_form3_mem_reg( mem, src ) );
6649   ins_pipe(fstoreD_mem_reg);
6650 %}
6651 
6652 // Store Zero into Aligned Packed Chars/Shorts
6653 instruct storeA4C0(memory mem, immI0 zero) %{
6654   match(Set mem (Store4C mem (Replicate4C zero)));
6655   ins_cost(MEMORY_REF_COST);
6656   size(4);
6657   format %{ "STX    $zero,$mem\t! packed4C" %}
6658   opcode(Assembler::stx_op3);
6659   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6660   ins_pipe(fstoreD_mem_zero);
6661 %}
6662 
6663 // Store Aligned Packed Ints in Double register to memory
6664 instruct storeA2I(memory mem, regD src) %{
6665   match(Set mem (Store2I mem src));
6666   ins_cost(MEMORY_REF_COST);
6667   size(4);
6668   format %{ "STDF   $src,$mem\t! packed2I" %}
6669   opcode(Assembler::stdf_op3);
6670   ins_encode(simple_form3_mem_reg( mem, src ) );
6671   ins_pipe(fstoreD_mem_reg);
6672 %}
6673 
6674 // Store Zero into Aligned Packed Ints
6675 instruct storeA2I0(memory mem, immI0 zero) %{
6676   match(Set mem (Store2I mem zero));
6677   ins_cost(MEMORY_REF_COST);
6678   size(4);
6679   format %{ "STX    $zero,$mem\t! packed2I" %}
6680   opcode(Assembler::stx_op3);
6681   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6682   ins_pipe(fstoreD_mem_zero);
6683 %}
6684 
6685 
6686 //----------MemBar Instructions-----------------------------------------------
6687 // Memory barrier flavors
6688 
6689 instruct membar_acquire() %{
6690   match(MemBarAcquire);
6691   ins_cost(4*MEMORY_REF_COST);
6692 
6693   size(0);
6694   format %{ "MEMBAR-acquire" %}
6695   ins_encode( enc_membar_acquire );
6696   ins_pipe(long_memory_op);
6697 %}
6698 
6699 instruct membar_acquire_lock() %{
6700   match(MemBarAcquireLock);
6701   ins_cost(0);
6702 
6703   size(0);
6704   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6705   ins_encode( );
6706   ins_pipe(empty);
6707 %}
6708 
6709 instruct membar_release() %{
6710   match(MemBarRelease);
6711   ins_cost(4*MEMORY_REF_COST);
6712 
6713   size(0);
6714   format %{ "MEMBAR-release" %}
6715   ins_encode( enc_membar_release );
6716   ins_pipe(long_memory_op);
6717 %}
6718 
6719 instruct membar_release_lock() %{
6720   match(MemBarReleaseLock);
6721   ins_cost(0);
6722 
6723   size(0);
6724   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6725   ins_encode( );
6726   ins_pipe(empty);
6727 %}
6728 
6729 instruct membar_volatile() %{
6730   match(MemBarVolatile);
6731   ins_cost(4*MEMORY_REF_COST);
6732 
6733   size(4);
6734   format %{ "MEMBAR-volatile" %}
6735   ins_encode( enc_membar_volatile );
6736   ins_pipe(long_memory_op);
6737 %}
6738 
6739 instruct unnecessary_membar_volatile() %{
6740   match(MemBarVolatile);
6741   predicate(Matcher::post_store_load_barrier(n));
6742   ins_cost(0);
6743 
6744   size(0);
6745   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6746   ins_encode( );
6747   ins_pipe(empty);
6748 %}
6749 
6750 //----------Register Move Instructions-----------------------------------------
6751 instruct roundDouble_nop(regD dst) %{
6752   match(Set dst (RoundDouble dst));
6753   ins_cost(0);
6754   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6755   ins_encode( );
6756   ins_pipe(empty);
6757 %}
6758 
6759 
6760 instruct roundFloat_nop(regF dst) %{
6761   match(Set dst (RoundFloat dst));
6762   ins_cost(0);
6763   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6764   ins_encode( );
6765   ins_pipe(empty);
6766 %}
6767 
6768 
6769 // Cast Index to Pointer for unsafe natives
6770 instruct castX2P(iRegX src, iRegP dst) %{
6771   match(Set dst (CastX2P src));
6772 
6773   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6774   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6775   ins_pipe(ialu_reg);
6776 %}
6777 
6778 // Cast Pointer to Index for unsafe natives
6779 instruct castP2X(iRegP src, iRegX dst) %{
6780   match(Set dst (CastP2X src));
6781 
6782   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6783   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6784   ins_pipe(ialu_reg);
6785 %}
6786 
6787 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6788   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6789   match(Set stkSlot src);   // chain rule
6790   ins_cost(MEMORY_REF_COST);
6791   format %{ "STDF   $src,$stkSlot\t!stk" %}
6792   opcode(Assembler::stdf_op3);
6793   ins_encode(simple_form3_mem_reg(stkSlot, src));
6794   ins_pipe(fstoreD_stk_reg);
6795 %}
6796 
6797 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6798   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6799   match(Set dst stkSlot);   // chain rule
6800   ins_cost(MEMORY_REF_COST);
6801   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6802   opcode(Assembler::lddf_op3);
6803   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6804   ins_pipe(floadD_stk);
6805 %}
6806 
6807 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6808   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6809   match(Set stkSlot src);   // chain rule
6810   ins_cost(MEMORY_REF_COST);
6811   format %{ "STF   $src,$stkSlot\t!stk" %}
6812   opcode(Assembler::stf_op3);
6813   ins_encode(simple_form3_mem_reg(stkSlot, src));
6814   ins_pipe(fstoreF_stk_reg);
6815 %}
6816 
6817 //----------Conditional Move---------------------------------------------------
6818 // Conditional move
6819 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6820   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6821   ins_cost(150);
6822   format %{ "MOV$cmp $pcc,$src,$dst" %}
6823   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6824   ins_pipe(ialu_reg);
6825 %}
6826 
6827 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6828   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6829   ins_cost(140);
6830   format %{ "MOV$cmp $pcc,$src,$dst" %}
6831   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6832   ins_pipe(ialu_imm);
6833 %}
6834 
6835 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6836   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6837   ins_cost(150);
6838   size(4);
6839   format %{ "MOV$cmp  $icc,$src,$dst" %}
6840   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6841   ins_pipe(ialu_reg);
6842 %}
6843 
6844 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6845   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6846   ins_cost(140);
6847   size(4);
6848   format %{ "MOV$cmp  $icc,$src,$dst" %}
6849   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6850   ins_pipe(ialu_imm);
6851 %}
6852 
6853 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6854   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6855   ins_cost(150);
6856   size(4);
6857   format %{ "MOV$cmp  $icc,$src,$dst" %}
6858   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6859   ins_pipe(ialu_reg);
6860 %}
6861 
6862 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6863   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6864   ins_cost(140);
6865   size(4);
6866   format %{ "MOV$cmp  $icc,$src,$dst" %}
6867   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6868   ins_pipe(ialu_imm);
6869 %}
6870 
6871 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6872   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6873   ins_cost(150);
6874   size(4);
6875   format %{ "MOV$cmp $fcc,$src,$dst" %}
6876   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6877   ins_pipe(ialu_reg);
6878 %}
6879 
6880 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6881   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6882   ins_cost(140);
6883   size(4);
6884   format %{ "MOV$cmp $fcc,$src,$dst" %}
6885   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6886   ins_pipe(ialu_imm);
6887 %}
6888 
6889 // Conditional move for RegN. Only cmov(reg,reg).
6890 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6891   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6892   ins_cost(150);
6893   format %{ "MOV$cmp $pcc,$src,$dst" %}
6894   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6895   ins_pipe(ialu_reg);
6896 %}
6897 
6898 // This instruction also works with CmpN so we don't need cmovNN_reg.
6899 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6900   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6901   ins_cost(150);
6902   size(4);
6903   format %{ "MOV$cmp  $icc,$src,$dst" %}
6904   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6905   ins_pipe(ialu_reg);
6906 %}
6907 
6908 // This instruction also works with CmpN so we don't need cmovNN_reg.
6909 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6910   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6911   ins_cost(150);
6912   size(4);
6913   format %{ "MOV$cmp  $icc,$src,$dst" %}
6914   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6915   ins_pipe(ialu_reg);
6916 %}
6917 
6918 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6919   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6920   ins_cost(150);
6921   size(4);
6922   format %{ "MOV$cmp $fcc,$src,$dst" %}
6923   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6924   ins_pipe(ialu_reg);
6925 %}
6926 
6927 // Conditional move
6928 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6929   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6930   ins_cost(150);
6931   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6932   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6933   ins_pipe(ialu_reg);
6934 %}
6935 
6936 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6937   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6938   ins_cost(140);
6939   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6940   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6941   ins_pipe(ialu_imm);
6942 %}
6943 
6944 // This instruction also works with CmpN so we don't need cmovPN_reg.
6945 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6946   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6947   ins_cost(150);
6948 
6949   size(4);
6950   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6951   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6952   ins_pipe(ialu_reg);
6953 %}
6954 
6955 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6956   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6957   ins_cost(150);
6958 
6959   size(4);
6960   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6961   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6962   ins_pipe(ialu_reg);
6963 %}
6964 
6965 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6966   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6967   ins_cost(140);
6968 
6969   size(4);
6970   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6971   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6972   ins_pipe(ialu_imm);
6973 %}
6974 
6975 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6976   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6977   ins_cost(140);
6978 
6979   size(4);
6980   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6981   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6982   ins_pipe(ialu_imm);
6983 %}
6984 
6985 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6986   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6987   ins_cost(150);
6988   size(4);
6989   format %{ "MOV$cmp $fcc,$src,$dst" %}
6990   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6991   ins_pipe(ialu_imm);
6992 %}
6993 
6994 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6995   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6996   ins_cost(140);
6997   size(4);
6998   format %{ "MOV$cmp $fcc,$src,$dst" %}
6999   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
7000   ins_pipe(ialu_imm);
7001 %}
7002 
7003 // Conditional move
7004 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
7005   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
7006   ins_cost(150);
7007   opcode(0x101);
7008   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7009   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7010   ins_pipe(int_conditional_float_move);
7011 %}
7012 
7013 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
7014   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7015   ins_cost(150);
7016 
7017   size(4);
7018   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7019   opcode(0x101);
7020   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7021   ins_pipe(int_conditional_float_move);
7022 %}
7023 
7024 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
7025   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7026   ins_cost(150);
7027 
7028   size(4);
7029   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7030   opcode(0x101);
7031   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7032   ins_pipe(int_conditional_float_move);
7033 %}
7034 
7035 // Conditional move,
7036 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7037   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7038   ins_cost(150);
7039   size(4);
7040   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7041   opcode(0x1);
7042   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7043   ins_pipe(int_conditional_double_move);
7044 %}
7045 
7046 // Conditional move
7047 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7048   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7049   ins_cost(150);
7050   size(4);
7051   opcode(0x102);
7052   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7053   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7054   ins_pipe(int_conditional_double_move);
7055 %}
7056 
7057 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7058   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7059   ins_cost(150);
7060 
7061   size(4);
7062   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7063   opcode(0x102);
7064   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7065   ins_pipe(int_conditional_double_move);
7066 %}
7067 
7068 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7069   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7070   ins_cost(150);
7071 
7072   size(4);
7073   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7074   opcode(0x102);
7075   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7076   ins_pipe(int_conditional_double_move);
7077 %}
7078 
7079 // Conditional move,
7080 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7081   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7082   ins_cost(150);
7083   size(4);
7084   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7085   opcode(0x2);
7086   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7087   ins_pipe(int_conditional_double_move);
7088 %}
7089 
7090 // Conditional move
7091 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7092   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7093   ins_cost(150);
7094   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7095   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7096   ins_pipe(ialu_reg);
7097 %}
7098 
7099 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7100   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7101   ins_cost(140);
7102   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7103   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7104   ins_pipe(ialu_imm);
7105 %}
7106 
7107 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7108   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7109   ins_cost(150);
7110 
7111   size(4);
7112   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7113   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7114   ins_pipe(ialu_reg);
7115 %}
7116 
7117 
7118 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7119   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7120   ins_cost(150);
7121 
7122   size(4);
7123   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7124   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7125   ins_pipe(ialu_reg);
7126 %}
7127 
7128 
7129 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7130   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7131   ins_cost(150);
7132 
7133   size(4);
7134   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7135   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7136   ins_pipe(ialu_reg);
7137 %}
7138 
7139 
7140 
7141 //----------OS and Locking Instructions----------------------------------------
7142 
7143 // This name is KNOWN by the ADLC and cannot be changed.
7144 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7145 // for this guy.
7146 instruct tlsLoadP(g2RegP dst) %{
7147   match(Set dst (ThreadLocal));
7148 
7149   size(0);
7150   ins_cost(0);
7151   format %{ "# TLS is in G2" %}
7152   ins_encode( /*empty encoding*/ );
7153   ins_pipe(ialu_none);
7154 %}
7155 
7156 instruct checkCastPP( iRegP dst ) %{
7157   match(Set dst (CheckCastPP dst));
7158 
7159   size(0);
7160   format %{ "# checkcastPP of $dst" %}
7161   ins_encode( /*empty encoding*/ );
7162   ins_pipe(empty);
7163 %}
7164 
7165 
7166 instruct castPP( iRegP dst ) %{
7167   match(Set dst (CastPP dst));
7168   format %{ "# castPP of $dst" %}
7169   ins_encode( /*empty encoding*/ );
7170   ins_pipe(empty);
7171 %}
7172 
7173 instruct castII( iRegI dst ) %{
7174   match(Set dst (CastII dst));
7175   format %{ "# castII of $dst" %}
7176   ins_encode( /*empty encoding*/ );
7177   ins_cost(0);
7178   ins_pipe(empty);
7179 %}
7180 
7181 //----------Arithmetic Instructions--------------------------------------------
7182 // Addition Instructions
7183 // Register Addition
7184 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7185   match(Set dst (AddI src1 src2));
7186 
7187   size(4);
7188   format %{ "ADD    $src1,$src2,$dst" %}
7189   ins_encode %{
7190     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7191   %}
7192   ins_pipe(ialu_reg_reg);
7193 %}
7194 
7195 // Immediate Addition
7196 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7197   match(Set dst (AddI src1 src2));
7198 
7199   size(4);
7200   format %{ "ADD    $src1,$src2,$dst" %}
7201   opcode(Assembler::add_op3, Assembler::arith_op);
7202   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7203   ins_pipe(ialu_reg_imm);
7204 %}
7205 
7206 // Pointer Register Addition
7207 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7208   match(Set dst (AddP src1 src2));
7209 
7210   size(4);
7211   format %{ "ADD    $src1,$src2,$dst" %}
7212   opcode(Assembler::add_op3, Assembler::arith_op);
7213   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7214   ins_pipe(ialu_reg_reg);
7215 %}
7216 
7217 // Pointer Immediate Addition
7218 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7219   match(Set dst (AddP src1 src2));
7220 
7221   size(4);
7222   format %{ "ADD    $src1,$src2,$dst" %}
7223   opcode(Assembler::add_op3, Assembler::arith_op);
7224   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7225   ins_pipe(ialu_reg_imm);
7226 %}
7227 
7228 // Long Addition
7229 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7230   match(Set dst (AddL src1 src2));
7231 
7232   size(4);
7233   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7234   opcode(Assembler::add_op3, Assembler::arith_op);
7235   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7236   ins_pipe(ialu_reg_reg);
7237 %}
7238 
7239 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7240   match(Set dst (AddL src1 con));
7241 
7242   size(4);
7243   format %{ "ADD    $src1,$con,$dst" %}
7244   opcode(Assembler::add_op3, Assembler::arith_op);
7245   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7246   ins_pipe(ialu_reg_imm);
7247 %}
7248 
7249 //----------Conditional_store--------------------------------------------------
7250 // Conditional-store of the updated heap-top.
7251 // Used during allocation of the shared heap.
7252 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7253 
7254 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7255 instruct loadPLocked(iRegP dst, memory mem) %{
7256   match(Set dst (LoadPLocked mem));
7257   ins_cost(MEMORY_REF_COST);
7258 
7259 #ifndef _LP64
7260   size(4);
7261   format %{ "LDUW   $mem,$dst\t! ptr" %}
7262   opcode(Assembler::lduw_op3, 0, REGP_OP);
7263 #else
7264   format %{ "LDX    $mem,$dst\t! ptr" %}
7265   opcode(Assembler::ldx_op3, 0, REGP_OP);
7266 #endif
7267   ins_encode( form3_mem_reg( mem, dst ) );
7268   ins_pipe(iload_mem);
7269 %}
7270 
7271 // LoadL-locked.  Same as a regular long load when used with a compare-swap
7272 instruct loadLLocked(iRegL dst, memory mem) %{
7273   match(Set dst (LoadLLocked mem));
7274   ins_cost(MEMORY_REF_COST);
7275   size(4);
7276   format %{ "LDX    $mem,$dst\t! long" %}
7277   opcode(Assembler::ldx_op3);
7278   ins_encode(simple_form3_mem_reg( mem, dst ) );
7279   ins_pipe(iload_mem);
7280 %}
7281 
7282 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7283   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7284   effect( KILL newval );
7285   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7286             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7287   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7288   ins_pipe( long_memory_op );
7289 %}
7290 
7291 // Conditional-store of an int value.
7292 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7293   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7294   effect( KILL newval );
7295   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7296             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7297   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7298   ins_pipe( long_memory_op );
7299 %}
7300 
7301 // Conditional-store of a long value.
7302 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7303   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7304   effect( KILL newval );
7305   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7306             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7307   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7308   ins_pipe( long_memory_op );
7309 %}
7310 
7311 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7312 
7313 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7314   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7315   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7316   format %{
7317             "MOV    $newval,O7\n\t"
7318             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7319             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7320             "MOV    1,$res\n\t"
7321             "MOVne  xcc,R_G0,$res"
7322   %}
7323   ins_encode( enc_casx(mem_ptr, oldval, newval),
7324               enc_lflags_ne_to_boolean(res) );
7325   ins_pipe( long_memory_op );
7326 %}
7327 
7328 
7329 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7330   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7331   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7332   format %{
7333             "MOV    $newval,O7\n\t"
7334             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7335             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7336             "MOV    1,$res\n\t"
7337             "MOVne  icc,R_G0,$res"
7338   %}
7339   ins_encode( enc_casi(mem_ptr, oldval, newval),
7340               enc_iflags_ne_to_boolean(res) );
7341   ins_pipe( long_memory_op );
7342 %}
7343 
7344 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7345   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7346   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7347   format %{
7348             "MOV    $newval,O7\n\t"
7349             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7350             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7351             "MOV    1,$res\n\t"
7352             "MOVne  xcc,R_G0,$res"
7353   %}
7354 #ifdef _LP64
7355   ins_encode( enc_casx(mem_ptr, oldval, newval),
7356               enc_lflags_ne_to_boolean(res) );
7357 #else
7358   ins_encode( enc_casi(mem_ptr, oldval, newval),
7359               enc_iflags_ne_to_boolean(res) );
7360 #endif
7361   ins_pipe( long_memory_op );
7362 %}
7363 
7364 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7365   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7366   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7367   format %{
7368             "MOV    $newval,O7\n\t"
7369             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7370             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7371             "MOV    1,$res\n\t"
7372             "MOVne  icc,R_G0,$res"
7373   %}
7374   ins_encode( enc_casi(mem_ptr, oldval, newval),
7375               enc_iflags_ne_to_boolean(res) );
7376   ins_pipe( long_memory_op );
7377 %}
7378 
7379 //---------------------
7380 // Subtraction Instructions
7381 // Register Subtraction
7382 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7383   match(Set dst (SubI src1 src2));
7384 
7385   size(4);
7386   format %{ "SUB    $src1,$src2,$dst" %}
7387   opcode(Assembler::sub_op3, Assembler::arith_op);
7388   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7389   ins_pipe(ialu_reg_reg);
7390 %}
7391 
7392 // Immediate Subtraction
7393 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7394   match(Set dst (SubI src1 src2));
7395 
7396   size(4);
7397   format %{ "SUB    $src1,$src2,$dst" %}
7398   opcode(Assembler::sub_op3, Assembler::arith_op);
7399   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7400   ins_pipe(ialu_reg_imm);
7401 %}
7402 
7403 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7404   match(Set dst (SubI zero src2));
7405 
7406   size(4);
7407   format %{ "NEG    $src2,$dst" %}
7408   opcode(Assembler::sub_op3, Assembler::arith_op);
7409   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7410   ins_pipe(ialu_zero_reg);
7411 %}
7412 
7413 // Long subtraction
7414 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7415   match(Set dst (SubL src1 src2));
7416 
7417   size(4);
7418   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7419   opcode(Assembler::sub_op3, Assembler::arith_op);
7420   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7421   ins_pipe(ialu_reg_reg);
7422 %}
7423 
7424 // Immediate Subtraction
7425 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7426   match(Set dst (SubL src1 con));
7427 
7428   size(4);
7429   format %{ "SUB    $src1,$con,$dst\t! long" %}
7430   opcode(Assembler::sub_op3, Assembler::arith_op);
7431   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7432   ins_pipe(ialu_reg_imm);
7433 %}
7434 
7435 // Long negation
7436 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7437   match(Set dst (SubL zero src2));
7438 
7439   size(4);
7440   format %{ "NEG    $src2,$dst\t! long" %}
7441   opcode(Assembler::sub_op3, Assembler::arith_op);
7442   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7443   ins_pipe(ialu_zero_reg);
7444 %}
7445 
7446 // Multiplication Instructions
7447 // Integer Multiplication
7448 // Register Multiplication
7449 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7450   match(Set dst (MulI src1 src2));
7451 
7452   size(4);
7453   format %{ "MULX   $src1,$src2,$dst" %}
7454   opcode(Assembler::mulx_op3, Assembler::arith_op);
7455   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7456   ins_pipe(imul_reg_reg);
7457 %}
7458 
7459 // Immediate Multiplication
7460 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7461   match(Set dst (MulI src1 src2));
7462 
7463   size(4);
7464   format %{ "MULX   $src1,$src2,$dst" %}
7465   opcode(Assembler::mulx_op3, Assembler::arith_op);
7466   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7467   ins_pipe(imul_reg_imm);
7468 %}
7469 
7470 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7471   match(Set dst (MulL src1 src2));
7472   ins_cost(DEFAULT_COST * 5);
7473   size(4);
7474   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7475   opcode(Assembler::mulx_op3, Assembler::arith_op);
7476   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7477   ins_pipe(mulL_reg_reg);
7478 %}
7479 
7480 // Immediate Multiplication
7481 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7482   match(Set dst (MulL src1 src2));
7483   ins_cost(DEFAULT_COST * 5);
7484   size(4);
7485   format %{ "MULX   $src1,$src2,$dst" %}
7486   opcode(Assembler::mulx_op3, Assembler::arith_op);
7487   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7488   ins_pipe(mulL_reg_imm);
7489 %}
7490 
7491 // Integer Division
7492 // Register Division
7493 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7494   match(Set dst (DivI src1 src2));
7495   ins_cost((2+71)*DEFAULT_COST);
7496 
7497   format %{ "SRA     $src2,0,$src2\n\t"
7498             "SRA     $src1,0,$src1\n\t"
7499             "SDIVX   $src1,$src2,$dst" %}
7500   ins_encode( idiv_reg( src1, src2, dst ) );
7501   ins_pipe(sdiv_reg_reg);
7502 %}
7503 
7504 // Immediate Division
7505 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7506   match(Set dst (DivI src1 src2));
7507   ins_cost((2+71)*DEFAULT_COST);
7508 
7509   format %{ "SRA     $src1,0,$src1\n\t"
7510             "SDIVX   $src1,$src2,$dst" %}
7511   ins_encode( idiv_imm( src1, src2, dst ) );
7512   ins_pipe(sdiv_reg_imm);
7513 %}
7514 
7515 //----------Div-By-10-Expansion------------------------------------------------
7516 // Extract hi bits of a 32x32->64 bit multiply.
7517 // Expand rule only, not matched
7518 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7519   effect( DEF dst, USE src1, USE src2 );
7520   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7521             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7522   ins_encode( enc_mul_hi(dst,src1,src2));
7523   ins_pipe(sdiv_reg_reg);
7524 %}
7525 
7526 // Magic constant, reciprocal of 10
7527 instruct loadConI_x66666667(iRegIsafe dst) %{
7528   effect( DEF dst );
7529 
7530   size(8);
7531   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7532   ins_encode( Set32(0x66666667, dst) );
7533   ins_pipe(ialu_hi_lo_reg);
7534 %}
7535 
7536 // Register Shift Right Arithmetic Long by 32-63
7537 instruct sra_31( iRegI dst, iRegI src ) %{
7538   effect( DEF dst, USE src );
7539   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7540   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7541   ins_pipe(ialu_reg_reg);
7542 %}
7543 
7544 // Arithmetic Shift Right by 8-bit immediate
7545 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7546   effect( DEF dst, USE src );
7547   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7548   opcode(Assembler::sra_op3, Assembler::arith_op);
7549   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7550   ins_pipe(ialu_reg_imm);
7551 %}
7552 
7553 // Integer DIV with 10
7554 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7555   match(Set dst (DivI src div));
7556   ins_cost((6+6)*DEFAULT_COST);
7557   expand %{
7558     iRegIsafe tmp1;               // Killed temps;
7559     iRegIsafe tmp2;               // Killed temps;
7560     iRegI tmp3;                   // Killed temps;
7561     iRegI tmp4;                   // Killed temps;
7562     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7563     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7564     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7565     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7566     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7567   %}
7568 %}
7569 
7570 // Register Long Division
7571 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7572   match(Set dst (DivL src1 src2));
7573   ins_cost(DEFAULT_COST*71);
7574   size(4);
7575   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7576   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7577   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7578   ins_pipe(divL_reg_reg);
7579 %}
7580 
7581 // Register Long Division
7582 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7583   match(Set dst (DivL src1 src2));
7584   ins_cost(DEFAULT_COST*71);
7585   size(4);
7586   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7587   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7588   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7589   ins_pipe(divL_reg_imm);
7590 %}
7591 
7592 // Integer Remainder
7593 // Register Remainder
7594 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7595   match(Set dst (ModI src1 src2));
7596   effect( KILL ccr, KILL temp);
7597 
7598   format %{ "SREM   $src1,$src2,$dst" %}
7599   ins_encode( irem_reg(src1, src2, dst, temp) );
7600   ins_pipe(sdiv_reg_reg);
7601 %}
7602 
7603 // Immediate Remainder
7604 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7605   match(Set dst (ModI src1 src2));
7606   effect( KILL ccr, KILL temp);
7607 
7608   format %{ "SREM   $src1,$src2,$dst" %}
7609   ins_encode( irem_imm(src1, src2, dst, temp) );
7610   ins_pipe(sdiv_reg_imm);
7611 %}
7612 
7613 // Register Long Remainder
7614 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7615   effect(DEF dst, USE src1, USE src2);
7616   size(4);
7617   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7618   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7619   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7620   ins_pipe(divL_reg_reg);
7621 %}
7622 
7623 // Register Long Division
7624 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7625   effect(DEF dst, USE src1, USE src2);
7626   size(4);
7627   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7628   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7629   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7630   ins_pipe(divL_reg_imm);
7631 %}
7632 
7633 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7634   effect(DEF dst, USE src1, USE src2);
7635   size(4);
7636   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7637   opcode(Assembler::mulx_op3, Assembler::arith_op);
7638   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7639   ins_pipe(mulL_reg_reg);
7640 %}
7641 
7642 // Immediate Multiplication
7643 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7644   effect(DEF dst, USE src1, USE src2);
7645   size(4);
7646   format %{ "MULX   $src1,$src2,$dst" %}
7647   opcode(Assembler::mulx_op3, Assembler::arith_op);
7648   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7649   ins_pipe(mulL_reg_imm);
7650 %}
7651 
7652 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7653   effect(DEF dst, USE src1, USE src2);
7654   size(4);
7655   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7656   opcode(Assembler::sub_op3, Assembler::arith_op);
7657   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7658   ins_pipe(ialu_reg_reg);
7659 %}
7660 
7661 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7662   effect(DEF dst, USE src1, USE src2);
7663   size(4);
7664   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7665   opcode(Assembler::sub_op3, Assembler::arith_op);
7666   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7667   ins_pipe(ialu_reg_reg);
7668 %}
7669 
7670 // Register Long Remainder
7671 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7672   match(Set dst (ModL src1 src2));
7673   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7674   expand %{
7675     iRegL tmp1;
7676     iRegL tmp2;
7677     divL_reg_reg_1(tmp1, src1, src2);
7678     mulL_reg_reg_1(tmp2, tmp1, src2);
7679     subL_reg_reg_1(dst,  src1, tmp2);
7680   %}
7681 %}
7682 
7683 // Register Long Remainder
7684 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7685   match(Set dst (ModL src1 src2));
7686   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7687   expand %{
7688     iRegL tmp1;
7689     iRegL tmp2;
7690     divL_reg_imm13_1(tmp1, src1, src2);
7691     mulL_reg_imm13_1(tmp2, tmp1, src2);
7692     subL_reg_reg_2  (dst,  src1, tmp2);
7693   %}
7694 %}
7695 
7696 // Integer Shift Instructions
7697 // Register Shift Left
7698 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7699   match(Set dst (LShiftI src1 src2));
7700 
7701   size(4);
7702   format %{ "SLL    $src1,$src2,$dst" %}
7703   opcode(Assembler::sll_op3, Assembler::arith_op);
7704   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7705   ins_pipe(ialu_reg_reg);
7706 %}
7707 
7708 // Register Shift Left Immediate
7709 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7710   match(Set dst (LShiftI src1 src2));
7711 
7712   size(4);
7713   format %{ "SLL    $src1,$src2,$dst" %}
7714   opcode(Assembler::sll_op3, Assembler::arith_op);
7715   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7716   ins_pipe(ialu_reg_imm);
7717 %}
7718 
7719 // Register Shift Left
7720 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7721   match(Set dst (LShiftL src1 src2));
7722 
7723   size(4);
7724   format %{ "SLLX   $src1,$src2,$dst" %}
7725   opcode(Assembler::sllx_op3, Assembler::arith_op);
7726   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7727   ins_pipe(ialu_reg_reg);
7728 %}
7729 
7730 // Register Shift Left Immediate
7731 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7732   match(Set dst (LShiftL src1 src2));
7733 
7734   size(4);
7735   format %{ "SLLX   $src1,$src2,$dst" %}
7736   opcode(Assembler::sllx_op3, Assembler::arith_op);
7737   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7738   ins_pipe(ialu_reg_imm);
7739 %}
7740 
7741 // Register Arithmetic Shift Right
7742 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7743   match(Set dst (RShiftI src1 src2));
7744   size(4);
7745   format %{ "SRA    $src1,$src2,$dst" %}
7746   opcode(Assembler::sra_op3, Assembler::arith_op);
7747   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7748   ins_pipe(ialu_reg_reg);
7749 %}
7750 
7751 // Register Arithmetic Shift Right Immediate
7752 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7753   match(Set dst (RShiftI src1 src2));
7754 
7755   size(4);
7756   format %{ "SRA    $src1,$src2,$dst" %}
7757   opcode(Assembler::sra_op3, Assembler::arith_op);
7758   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7759   ins_pipe(ialu_reg_imm);
7760 %}
7761 
7762 // Register Shift Right Arithmatic Long
7763 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7764   match(Set dst (RShiftL src1 src2));
7765 
7766   size(4);
7767   format %{ "SRAX   $src1,$src2,$dst" %}
7768   opcode(Assembler::srax_op3, Assembler::arith_op);
7769   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7770   ins_pipe(ialu_reg_reg);
7771 %}
7772 
7773 // Register Shift Left Immediate
7774 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7775   match(Set dst (RShiftL src1 src2));
7776 
7777   size(4);
7778   format %{ "SRAX   $src1,$src2,$dst" %}
7779   opcode(Assembler::srax_op3, Assembler::arith_op);
7780   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7781   ins_pipe(ialu_reg_imm);
7782 %}
7783 
7784 // Register Shift Right
7785 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7786   match(Set dst (URShiftI src1 src2));
7787 
7788   size(4);
7789   format %{ "SRL    $src1,$src2,$dst" %}
7790   opcode(Assembler::srl_op3, Assembler::arith_op);
7791   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7792   ins_pipe(ialu_reg_reg);
7793 %}
7794 
7795 // Register Shift Right Immediate
7796 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7797   match(Set dst (URShiftI src1 src2));
7798 
7799   size(4);
7800   format %{ "SRL    $src1,$src2,$dst" %}
7801   opcode(Assembler::srl_op3, Assembler::arith_op);
7802   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7803   ins_pipe(ialu_reg_imm);
7804 %}
7805 
7806 // Register Shift Right
7807 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7808   match(Set dst (URShiftL src1 src2));
7809 
7810   size(4);
7811   format %{ "SRLX   $src1,$src2,$dst" %}
7812   opcode(Assembler::srlx_op3, Assembler::arith_op);
7813   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7814   ins_pipe(ialu_reg_reg);
7815 %}
7816 
7817 // Register Shift Right Immediate
7818 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7819   match(Set dst (URShiftL src1 src2));
7820 
7821   size(4);
7822   format %{ "SRLX   $src1,$src2,$dst" %}
7823   opcode(Assembler::srlx_op3, Assembler::arith_op);
7824   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7825   ins_pipe(ialu_reg_imm);
7826 %}
7827 
7828 // Register Shift Right Immediate with a CastP2X
7829 #ifdef _LP64
7830 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7831   match(Set dst (URShiftL (CastP2X src1) src2));
7832   size(4);
7833   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7834   opcode(Assembler::srlx_op3, Assembler::arith_op);
7835   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7836   ins_pipe(ialu_reg_imm);
7837 %}
7838 #else
7839 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7840   match(Set dst (URShiftI (CastP2X src1) src2));
7841   size(4);
7842   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7843   opcode(Assembler::srl_op3, Assembler::arith_op);
7844   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7845   ins_pipe(ialu_reg_imm);
7846 %}
7847 #endif
7848 
7849 
7850 //----------Floating Point Arithmetic Instructions-----------------------------
7851 
7852 //  Add float single precision
7853 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7854   match(Set dst (AddF src1 src2));
7855 
7856   size(4);
7857   format %{ "FADDS  $src1,$src2,$dst" %}
7858   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7859   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7860   ins_pipe(faddF_reg_reg);
7861 %}
7862 
7863 //  Add float double precision
7864 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7865   match(Set dst (AddD src1 src2));
7866 
7867   size(4);
7868   format %{ "FADDD  $src1,$src2,$dst" %}
7869   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7870   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7871   ins_pipe(faddD_reg_reg);
7872 %}
7873 
7874 //  Sub float single precision
7875 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7876   match(Set dst (SubF src1 src2));
7877 
7878   size(4);
7879   format %{ "FSUBS  $src1,$src2,$dst" %}
7880   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7881   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7882   ins_pipe(faddF_reg_reg);
7883 %}
7884 
7885 //  Sub float double precision
7886 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7887   match(Set dst (SubD src1 src2));
7888 
7889   size(4);
7890   format %{ "FSUBD  $src1,$src2,$dst" %}
7891   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7892   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7893   ins_pipe(faddD_reg_reg);
7894 %}
7895 
7896 //  Mul float single precision
7897 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7898   match(Set dst (MulF src1 src2));
7899 
7900   size(4);
7901   format %{ "FMULS  $src1,$src2,$dst" %}
7902   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7903   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7904   ins_pipe(fmulF_reg_reg);
7905 %}
7906 
7907 //  Mul float double precision
7908 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7909   match(Set dst (MulD src1 src2));
7910 
7911   size(4);
7912   format %{ "FMULD  $src1,$src2,$dst" %}
7913   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7914   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7915   ins_pipe(fmulD_reg_reg);
7916 %}
7917 
7918 //  Div float single precision
7919 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7920   match(Set dst (DivF src1 src2));
7921 
7922   size(4);
7923   format %{ "FDIVS  $src1,$src2,$dst" %}
7924   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7925   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7926   ins_pipe(fdivF_reg_reg);
7927 %}
7928 
7929 //  Div float double precision
7930 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7931   match(Set dst (DivD src1 src2));
7932 
7933   size(4);
7934   format %{ "FDIVD  $src1,$src2,$dst" %}
7935   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7936   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7937   ins_pipe(fdivD_reg_reg);
7938 %}
7939 
7940 //  Absolute float double precision
7941 instruct absD_reg(regD dst, regD src) %{
7942   match(Set dst (AbsD src));
7943 
7944   format %{ "FABSd  $src,$dst" %}
7945   ins_encode(fabsd(dst, src));
7946   ins_pipe(faddD_reg);
7947 %}
7948 
7949 //  Absolute float single precision
7950 instruct absF_reg(regF dst, regF src) %{
7951   match(Set dst (AbsF src));
7952 
7953   format %{ "FABSs  $src,$dst" %}
7954   ins_encode(fabss(dst, src));
7955   ins_pipe(faddF_reg);
7956 %}
7957 
7958 instruct negF_reg(regF dst, regF src) %{
7959   match(Set dst (NegF src));
7960 
7961   size(4);
7962   format %{ "FNEGs  $src,$dst" %}
7963   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7964   ins_encode(form3_opf_rs2F_rdF(src, dst));
7965   ins_pipe(faddF_reg);
7966 %}
7967 
7968 instruct negD_reg(regD dst, regD src) %{
7969   match(Set dst (NegD src));
7970 
7971   format %{ "FNEGd  $src,$dst" %}
7972   ins_encode(fnegd(dst, src));
7973   ins_pipe(faddD_reg);
7974 %}
7975 
7976 //  Sqrt float double precision
7977 instruct sqrtF_reg_reg(regF dst, regF src) %{
7978   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7979 
7980   size(4);
7981   format %{ "FSQRTS $src,$dst" %}
7982   ins_encode(fsqrts(dst, src));
7983   ins_pipe(fdivF_reg_reg);
7984 %}
7985 
7986 //  Sqrt float double precision
7987 instruct sqrtD_reg_reg(regD dst, regD src) %{
7988   match(Set dst (SqrtD src));
7989 
7990   size(4);
7991   format %{ "FSQRTD $src,$dst" %}
7992   ins_encode(fsqrtd(dst, src));
7993   ins_pipe(fdivD_reg_reg);
7994 %}
7995 
7996 //----------Logical Instructions-----------------------------------------------
7997 // And Instructions
7998 // Register And
7999 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8000   match(Set dst (AndI src1 src2));
8001 
8002   size(4);
8003   format %{ "AND    $src1,$src2,$dst" %}
8004   opcode(Assembler::and_op3, Assembler::arith_op);
8005   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8006   ins_pipe(ialu_reg_reg);
8007 %}
8008 
8009 // Immediate And
8010 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8011   match(Set dst (AndI src1 src2));
8012 
8013   size(4);
8014   format %{ "AND    $src1,$src2,$dst" %}
8015   opcode(Assembler::and_op3, Assembler::arith_op);
8016   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8017   ins_pipe(ialu_reg_imm);
8018 %}
8019 
8020 // Register And Long
8021 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8022   match(Set dst (AndL src1 src2));
8023 
8024   ins_cost(DEFAULT_COST);
8025   size(4);
8026   format %{ "AND    $src1,$src2,$dst\t! long" %}
8027   opcode(Assembler::and_op3, Assembler::arith_op);
8028   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8029   ins_pipe(ialu_reg_reg);
8030 %}
8031 
8032 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8033   match(Set dst (AndL src1 con));
8034 
8035   ins_cost(DEFAULT_COST);
8036   size(4);
8037   format %{ "AND    $src1,$con,$dst\t! long" %}
8038   opcode(Assembler::and_op3, Assembler::arith_op);
8039   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8040   ins_pipe(ialu_reg_imm);
8041 %}
8042 
8043 // Or Instructions
8044 // Register Or
8045 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8046   match(Set dst (OrI src1 src2));
8047 
8048   size(4);
8049   format %{ "OR     $src1,$src2,$dst" %}
8050   opcode(Assembler::or_op3, Assembler::arith_op);
8051   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8052   ins_pipe(ialu_reg_reg);
8053 %}
8054 
8055 // Immediate Or
8056 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8057   match(Set dst (OrI src1 src2));
8058 
8059   size(4);
8060   format %{ "OR     $src1,$src2,$dst" %}
8061   opcode(Assembler::or_op3, Assembler::arith_op);
8062   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8063   ins_pipe(ialu_reg_imm);
8064 %}
8065 
8066 // Register Or Long
8067 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8068   match(Set dst (OrL src1 src2));
8069 
8070   ins_cost(DEFAULT_COST);
8071   size(4);
8072   format %{ "OR     $src1,$src2,$dst\t! long" %}
8073   opcode(Assembler::or_op3, Assembler::arith_op);
8074   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8075   ins_pipe(ialu_reg_reg);
8076 %}
8077 
8078 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8079   match(Set dst (OrL src1 con));
8080   ins_cost(DEFAULT_COST*2);
8081 
8082   ins_cost(DEFAULT_COST);
8083   size(4);
8084   format %{ "OR     $src1,$con,$dst\t! long" %}
8085   opcode(Assembler::or_op3, Assembler::arith_op);
8086   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8087   ins_pipe(ialu_reg_imm);
8088 %}
8089 
8090 #ifndef _LP64
8091 
8092 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8093 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8094   match(Set dst (OrI src1 (CastP2X src2)));
8095 
8096   size(4);
8097   format %{ "OR     $src1,$src2,$dst" %}
8098   opcode(Assembler::or_op3, Assembler::arith_op);
8099   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8100   ins_pipe(ialu_reg_reg);
8101 %}
8102 
8103 #else
8104 
8105 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8106   match(Set dst (OrL src1 (CastP2X src2)));
8107 
8108   ins_cost(DEFAULT_COST);
8109   size(4);
8110   format %{ "OR     $src1,$src2,$dst\t! long" %}
8111   opcode(Assembler::or_op3, Assembler::arith_op);
8112   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8113   ins_pipe(ialu_reg_reg);
8114 %}
8115 
8116 #endif
8117 
8118 // Xor Instructions
8119 // Register Xor
8120 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8121   match(Set dst (XorI src1 src2));
8122 
8123   size(4);
8124   format %{ "XOR    $src1,$src2,$dst" %}
8125   opcode(Assembler::xor_op3, Assembler::arith_op);
8126   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8127   ins_pipe(ialu_reg_reg);
8128 %}
8129 
8130 // Immediate Xor
8131 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8132   match(Set dst (XorI src1 src2));
8133 
8134   size(4);
8135   format %{ "XOR    $src1,$src2,$dst" %}
8136   opcode(Assembler::xor_op3, Assembler::arith_op);
8137   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8138   ins_pipe(ialu_reg_imm);
8139 %}
8140 
8141 // Register Xor Long
8142 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8143   match(Set dst (XorL src1 src2));
8144 
8145   ins_cost(DEFAULT_COST);
8146   size(4);
8147   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8148   opcode(Assembler::xor_op3, Assembler::arith_op);
8149   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8150   ins_pipe(ialu_reg_reg);
8151 %}
8152 
8153 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8154   match(Set dst (XorL src1 con));
8155 
8156   ins_cost(DEFAULT_COST);
8157   size(4);
8158   format %{ "XOR    $src1,$con,$dst\t! long" %}
8159   opcode(Assembler::xor_op3, Assembler::arith_op);
8160   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8161   ins_pipe(ialu_reg_imm);
8162 %}
8163 
8164 //----------Convert to Boolean-------------------------------------------------
8165 // Nice hack for 32-bit tests but doesn't work for
8166 // 64-bit pointers.
8167 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8168   match(Set dst (Conv2B src));
8169   effect( KILL ccr );
8170   ins_cost(DEFAULT_COST*2);
8171   format %{ "CMP    R_G0,$src\n\t"
8172             "ADDX   R_G0,0,$dst" %}
8173   ins_encode( enc_to_bool( src, dst ) );
8174   ins_pipe(ialu_reg_ialu);
8175 %}
8176 
8177 #ifndef _LP64
8178 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8179   match(Set dst (Conv2B src));
8180   effect( KILL ccr );
8181   ins_cost(DEFAULT_COST*2);
8182   format %{ "CMP    R_G0,$src\n\t"
8183             "ADDX   R_G0,0,$dst" %}
8184   ins_encode( enc_to_bool( src, dst ) );
8185   ins_pipe(ialu_reg_ialu);
8186 %}
8187 #else
8188 instruct convP2B( iRegI dst, iRegP src ) %{
8189   match(Set dst (Conv2B src));
8190   ins_cost(DEFAULT_COST*2);
8191   format %{ "MOV    $src,$dst\n\t"
8192             "MOVRNZ $src,1,$dst" %}
8193   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8194   ins_pipe(ialu_clr_and_mover);
8195 %}
8196 #endif
8197 
8198 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8199   match(Set dst (CmpLTMask src zero));
8200   effect(KILL ccr);
8201   size(4);
8202   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8203   ins_encode %{
8204     __ sra($src$$Register, 31, $dst$$Register);
8205   %}
8206   ins_pipe(ialu_reg_imm);
8207 %}
8208 
8209 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8210   match(Set dst (CmpLTMask p q));
8211   effect( KILL ccr );
8212   ins_cost(DEFAULT_COST*4);
8213   format %{ "CMP    $p,$q\n\t"
8214             "MOV    #0,$dst\n\t"
8215             "BLT,a  .+8\n\t"
8216             "MOV    #-1,$dst" %}
8217   ins_encode( enc_ltmask(p,q,dst) );
8218   ins_pipe(ialu_reg_reg_ialu);
8219 %}
8220 
8221 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8222   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8223   effect(KILL ccr, TEMP tmp);
8224   ins_cost(DEFAULT_COST*3);
8225 
8226   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8227             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8228             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8229   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8230   ins_pipe( cadd_cmpltmask );
8231 %}
8232 
8233 
8234 //-----------------------------------------------------------------
8235 // Direct raw moves between float and general registers using VIS3.
8236 
8237 //  ins_pipe(faddF_reg);
8238 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8239   predicate(UseVIS >= 3);
8240   match(Set dst (MoveF2I src));
8241 
8242   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8243   ins_encode %{
8244     __ movstouw($src$$FloatRegister, $dst$$Register);
8245   %}
8246   ins_pipe(ialu_reg_reg);
8247 %}
8248 
8249 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8250   predicate(UseVIS >= 3);
8251   match(Set dst (MoveI2F src));
8252 
8253   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8254   ins_encode %{
8255     __ movwtos($src$$Register, $dst$$FloatRegister);
8256   %}
8257   ins_pipe(ialu_reg_reg);
8258 %}
8259 
8260 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8261   predicate(UseVIS >= 3);
8262   match(Set dst (MoveD2L src));
8263 
8264   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8265   ins_encode %{
8266     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8267   %}
8268   ins_pipe(ialu_reg_reg);
8269 %}
8270 
8271 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8272   predicate(UseVIS >= 3);
8273   match(Set dst (MoveL2D src));
8274 
8275   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8276   ins_encode %{
8277     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8278   %}
8279   ins_pipe(ialu_reg_reg);
8280 %}
8281 
8282 
8283 // Raw moves between float and general registers using stack.
8284 
8285 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8286   match(Set dst (MoveF2I src));
8287   effect(DEF dst, USE src);
8288   ins_cost(MEMORY_REF_COST);
8289 
8290   size(4);
8291   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8292   opcode(Assembler::lduw_op3);
8293   ins_encode(simple_form3_mem_reg( src, dst ) );
8294   ins_pipe(iload_mem);
8295 %}
8296 
8297 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8298   match(Set dst (MoveI2F src));
8299   effect(DEF dst, USE src);
8300   ins_cost(MEMORY_REF_COST);
8301 
8302   size(4);
8303   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8304   opcode(Assembler::ldf_op3);
8305   ins_encode(simple_form3_mem_reg(src, dst));
8306   ins_pipe(floadF_stk);
8307 %}
8308 
8309 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8310   match(Set dst (MoveD2L src));
8311   effect(DEF dst, USE src);
8312   ins_cost(MEMORY_REF_COST);
8313 
8314   size(4);
8315   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8316   opcode(Assembler::ldx_op3);
8317   ins_encode(simple_form3_mem_reg( src, dst ) );
8318   ins_pipe(iload_mem);
8319 %}
8320 
8321 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8322   match(Set dst (MoveL2D src));
8323   effect(DEF dst, USE src);
8324   ins_cost(MEMORY_REF_COST);
8325 
8326   size(4);
8327   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8328   opcode(Assembler::lddf_op3);
8329   ins_encode(simple_form3_mem_reg(src, dst));
8330   ins_pipe(floadD_stk);
8331 %}
8332 
8333 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8334   match(Set dst (MoveF2I src));
8335   effect(DEF dst, USE src);
8336   ins_cost(MEMORY_REF_COST);
8337 
8338   size(4);
8339   format %{ "STF   $src,$dst\t! MoveF2I" %}
8340   opcode(Assembler::stf_op3);
8341   ins_encode(simple_form3_mem_reg(dst, src));
8342   ins_pipe(fstoreF_stk_reg);
8343 %}
8344 
8345 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8346   match(Set dst (MoveI2F src));
8347   effect(DEF dst, USE src);
8348   ins_cost(MEMORY_REF_COST);
8349 
8350   size(4);
8351   format %{ "STW    $src,$dst\t! MoveI2F" %}
8352   opcode(Assembler::stw_op3);
8353   ins_encode(simple_form3_mem_reg( dst, src ) );
8354   ins_pipe(istore_mem_reg);
8355 %}
8356 
8357 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8358   match(Set dst (MoveD2L src));
8359   effect(DEF dst, USE src);
8360   ins_cost(MEMORY_REF_COST);
8361 
8362   size(4);
8363   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8364   opcode(Assembler::stdf_op3);
8365   ins_encode(simple_form3_mem_reg(dst, src));
8366   ins_pipe(fstoreD_stk_reg);
8367 %}
8368 
8369 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8370   match(Set dst (MoveL2D src));
8371   effect(DEF dst, USE src);
8372   ins_cost(MEMORY_REF_COST);
8373 
8374   size(4);
8375   format %{ "STX    $src,$dst\t! MoveL2D" %}
8376   opcode(Assembler::stx_op3);
8377   ins_encode(simple_form3_mem_reg( dst, src ) );
8378   ins_pipe(istore_mem_reg);
8379 %}
8380 
8381 
8382 //----------Arithmetic Conversion Instructions---------------------------------
8383 // The conversions operations are all Alpha sorted.  Please keep it that way!
8384 
8385 instruct convD2F_reg(regF dst, regD src) %{
8386   match(Set dst (ConvD2F src));
8387   size(4);
8388   format %{ "FDTOS  $src,$dst" %}
8389   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8390   ins_encode(form3_opf_rs2D_rdF(src, dst));
8391   ins_pipe(fcvtD2F);
8392 %}
8393 
8394 
8395 // Convert a double to an int in a float register.
8396 // If the double is a NAN, stuff a zero in instead.
8397 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8398   effect(DEF dst, USE src, KILL fcc0);
8399   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8400             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8401             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8402             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8403             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8404       "skip:" %}
8405   ins_encode(form_d2i_helper(src,dst));
8406   ins_pipe(fcvtD2I);
8407 %}
8408 
8409 instruct convD2I_stk(stackSlotI dst, regD src) %{
8410   match(Set dst (ConvD2I src));
8411   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8412   expand %{
8413     regF tmp;
8414     convD2I_helper(tmp, src);
8415     regF_to_stkI(dst, tmp);
8416   %}
8417 %}
8418 
8419 instruct convD2I_reg(iRegI dst, regD src) %{
8420   predicate(UseVIS >= 3);
8421   match(Set dst (ConvD2I src));
8422   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8423   expand %{
8424     regF tmp;
8425     convD2I_helper(tmp, src);
8426     MoveF2I_reg_reg(dst, tmp);
8427   %}
8428 %}
8429 
8430 
8431 // Convert a double to a long in a double register.
8432 // If the double is a NAN, stuff a zero in instead.
8433 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8434   effect(DEF dst, USE src, KILL fcc0);
8435   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8436             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8437             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8438             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8439             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8440       "skip:" %}
8441   ins_encode(form_d2l_helper(src,dst));
8442   ins_pipe(fcvtD2L);
8443 %}
8444 
8445 instruct convD2L_stk(stackSlotL dst, regD src) %{
8446   match(Set dst (ConvD2L src));
8447   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8448   expand %{
8449     regD tmp;
8450     convD2L_helper(tmp, src);
8451     regD_to_stkL(dst, tmp);
8452   %}
8453 %}
8454 
8455 instruct convD2L_reg(iRegL dst, regD src) %{
8456   predicate(UseVIS >= 3);
8457   match(Set dst (ConvD2L src));
8458   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8459   expand %{
8460     regD tmp;
8461     convD2L_helper(tmp, src);
8462     MoveD2L_reg_reg(dst, tmp);
8463   %}
8464 %}
8465 
8466 
8467 instruct convF2D_reg(regD dst, regF src) %{
8468   match(Set dst (ConvF2D src));
8469   format %{ "FSTOD  $src,$dst" %}
8470   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8471   ins_encode(form3_opf_rs2F_rdD(src, dst));
8472   ins_pipe(fcvtF2D);
8473 %}
8474 
8475 
8476 // Convert a float to an int in a float register.
8477 // If the float is a NAN, stuff a zero in instead.
8478 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8479   effect(DEF dst, USE src, KILL fcc0);
8480   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8481             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8482             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8483             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8484             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8485       "skip:" %}
8486   ins_encode(form_f2i_helper(src,dst));
8487   ins_pipe(fcvtF2I);
8488 %}
8489 
8490 instruct convF2I_stk(stackSlotI dst, regF src) %{
8491   match(Set dst (ConvF2I src));
8492   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8493   expand %{
8494     regF tmp;
8495     convF2I_helper(tmp, src);
8496     regF_to_stkI(dst, tmp);
8497   %}
8498 %}
8499 
8500 instruct convF2I_reg(iRegI dst, regF src) %{
8501   predicate(UseVIS >= 3);
8502   match(Set dst (ConvF2I src));
8503   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8504   expand %{
8505     regF tmp;
8506     convF2I_helper(tmp, src);
8507     MoveF2I_reg_reg(dst, tmp);
8508   %}
8509 %}
8510 
8511 
8512 // Convert a float to a long in a float register.
8513 // If the float is a NAN, stuff a zero in instead.
8514 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8515   effect(DEF dst, USE src, KILL fcc0);
8516   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8517             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8518             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8519             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8520             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8521       "skip:" %}
8522   ins_encode(form_f2l_helper(src,dst));
8523   ins_pipe(fcvtF2L);
8524 %}
8525 
8526 instruct convF2L_stk(stackSlotL dst, regF src) %{
8527   match(Set dst (ConvF2L src));
8528   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8529   expand %{
8530     regD tmp;
8531     convF2L_helper(tmp, src);
8532     regD_to_stkL(dst, tmp);
8533   %}
8534 %}
8535 
8536 instruct convF2L_reg(iRegL dst, regF src) %{
8537   predicate(UseVIS >= 3);
8538   match(Set dst (ConvF2L src));
8539   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8540   expand %{
8541     regD tmp;
8542     convF2L_helper(tmp, src);
8543     MoveD2L_reg_reg(dst, tmp);
8544   %}
8545 %}
8546 
8547 
8548 instruct convI2D_helper(regD dst, regF tmp) %{
8549   effect(USE tmp, DEF dst);
8550   format %{ "FITOD  $tmp,$dst" %}
8551   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8552   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8553   ins_pipe(fcvtI2D);
8554 %}
8555 
8556 instruct convI2D_stk(stackSlotI src, regD dst) %{
8557   match(Set dst (ConvI2D src));
8558   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8559   expand %{
8560     regF tmp;
8561     stkI_to_regF(tmp, src);
8562     convI2D_helper(dst, tmp);
8563   %}
8564 %}
8565 
8566 instruct convI2D_reg(regD_low dst, iRegI src) %{
8567   predicate(UseVIS >= 3);
8568   match(Set dst (ConvI2D src));
8569   expand %{
8570     regF tmp;
8571     MoveI2F_reg_reg(tmp, src);
8572     convI2D_helper(dst, tmp);
8573   %}
8574 %}
8575 
8576 instruct convI2D_mem(regD_low dst, memory mem) %{
8577   match(Set dst (ConvI2D (LoadI mem)));
8578   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8579   size(8);
8580   format %{ "LDF    $mem,$dst\n\t"
8581             "FITOD  $dst,$dst" %}
8582   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8583   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8584   ins_pipe(floadF_mem);
8585 %}
8586 
8587 
8588 instruct convI2F_helper(regF dst, regF tmp) %{
8589   effect(DEF dst, USE tmp);
8590   format %{ "FITOS  $tmp,$dst" %}
8591   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8592   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8593   ins_pipe(fcvtI2F);
8594 %}
8595 
8596 instruct convI2F_stk(regF dst, stackSlotI src) %{
8597   match(Set dst (ConvI2F src));
8598   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8599   expand %{
8600     regF tmp;
8601     stkI_to_regF(tmp,src);
8602     convI2F_helper(dst, tmp);
8603   %}
8604 %}
8605 
8606 instruct convI2F_reg(regF dst, iRegI src) %{
8607   predicate(UseVIS >= 3);
8608   match(Set dst (ConvI2F src));
8609   ins_cost(DEFAULT_COST);
8610   expand %{
8611     regF tmp;
8612     MoveI2F_reg_reg(tmp, src);
8613     convI2F_helper(dst, tmp);
8614   %}
8615 %}
8616 
8617 instruct convI2F_mem( regF dst, memory mem ) %{
8618   match(Set dst (ConvI2F (LoadI mem)));
8619   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8620   size(8);
8621   format %{ "LDF    $mem,$dst\n\t"
8622             "FITOS  $dst,$dst" %}
8623   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8624   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8625   ins_pipe(floadF_mem);
8626 %}
8627 
8628 
8629 instruct convI2L_reg(iRegL dst, iRegI src) %{
8630   match(Set dst (ConvI2L src));
8631   size(4);
8632   format %{ "SRA    $src,0,$dst\t! int->long" %}
8633   opcode(Assembler::sra_op3, Assembler::arith_op);
8634   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8635   ins_pipe(ialu_reg_reg);
8636 %}
8637 
8638 // Zero-extend convert int to long
8639 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8640   match(Set dst (AndL (ConvI2L src) mask) );
8641   size(4);
8642   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8643   opcode(Assembler::srl_op3, Assembler::arith_op);
8644   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8645   ins_pipe(ialu_reg_reg);
8646 %}
8647 
8648 // Zero-extend long
8649 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8650   match(Set dst (AndL src mask) );
8651   size(4);
8652   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8653   opcode(Assembler::srl_op3, Assembler::arith_op);
8654   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8655   ins_pipe(ialu_reg_reg);
8656 %}
8657 
8658 
8659 //-----------
8660 // Long to Double conversion using V8 opcodes.
8661 // Still useful because cheetah traps and becomes
8662 // amazingly slow for some common numbers.
8663 
8664 // Magic constant, 0x43300000
8665 instruct loadConI_x43300000(iRegI dst) %{
8666   effect(DEF dst);
8667   size(4);
8668   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8669   ins_encode(SetHi22(0x43300000, dst));
8670   ins_pipe(ialu_none);
8671 %}
8672 
8673 // Magic constant, 0x41f00000
8674 instruct loadConI_x41f00000(iRegI dst) %{
8675   effect(DEF dst);
8676   size(4);
8677   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8678   ins_encode(SetHi22(0x41f00000, dst));
8679   ins_pipe(ialu_none);
8680 %}
8681 
8682 // Construct a double from two float halves
8683 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8684   effect(DEF dst, USE src1, USE src2);
8685   size(8);
8686   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8687             "FMOVS  $src2.lo,$dst.lo" %}
8688   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8689   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8690   ins_pipe(faddD_reg_reg);
8691 %}
8692 
8693 // Convert integer in high half of a double register (in the lower half of
8694 // the double register file) to double
8695 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8696   effect(DEF dst, USE src);
8697   size(4);
8698   format %{ "FITOD  $src,$dst" %}
8699   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8700   ins_encode(form3_opf_rs2D_rdD(src, dst));
8701   ins_pipe(fcvtLHi2D);
8702 %}
8703 
8704 // Add float double precision
8705 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8706   effect(DEF dst, USE src1, USE src2);
8707   size(4);
8708   format %{ "FADDD  $src1,$src2,$dst" %}
8709   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8710   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8711   ins_pipe(faddD_reg_reg);
8712 %}
8713 
8714 // Sub float double precision
8715 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8716   effect(DEF dst, USE src1, USE src2);
8717   size(4);
8718   format %{ "FSUBD  $src1,$src2,$dst" %}
8719   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8720   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8721   ins_pipe(faddD_reg_reg);
8722 %}
8723 
8724 // Mul float double precision
8725 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8726   effect(DEF dst, USE src1, USE src2);
8727   size(4);
8728   format %{ "FMULD  $src1,$src2,$dst" %}
8729   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8730   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8731   ins_pipe(fmulD_reg_reg);
8732 %}
8733 
8734 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8735   match(Set dst (ConvL2D src));
8736   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8737 
8738   expand %{
8739     regD_low   tmpsrc;
8740     iRegI      ix43300000;
8741     iRegI      ix41f00000;
8742     stackSlotL lx43300000;
8743     stackSlotL lx41f00000;
8744     regD_low   dx43300000;
8745     regD       dx41f00000;
8746     regD       tmp1;
8747     regD_low   tmp2;
8748     regD       tmp3;
8749     regD       tmp4;
8750 
8751     stkL_to_regD(tmpsrc, src);
8752 
8753     loadConI_x43300000(ix43300000);
8754     loadConI_x41f00000(ix41f00000);
8755     regI_to_stkLHi(lx43300000, ix43300000);
8756     regI_to_stkLHi(lx41f00000, ix41f00000);
8757     stkL_to_regD(dx43300000, lx43300000);
8758     stkL_to_regD(dx41f00000, lx41f00000);
8759 
8760     convI2D_regDHi_regD(tmp1, tmpsrc);
8761     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8762     subD_regD_regD(tmp3, tmp2, dx43300000);
8763     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8764     addD_regD_regD(dst, tmp3, tmp4);
8765   %}
8766 %}
8767 
8768 // Long to Double conversion using fast fxtof
8769 instruct convL2D_helper(regD dst, regD tmp) %{
8770   effect(DEF dst, USE tmp);
8771   size(4);
8772   format %{ "FXTOD  $tmp,$dst" %}
8773   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8774   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8775   ins_pipe(fcvtL2D);
8776 %}
8777 
8778 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8779   predicate(VM_Version::has_fast_fxtof());
8780   match(Set dst (ConvL2D src));
8781   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8782   expand %{
8783     regD tmp;
8784     stkL_to_regD(tmp, src);
8785     convL2D_helper(dst, tmp);
8786   %}
8787 %}
8788 
8789 instruct convL2D_reg(regD dst, iRegL src) %{
8790   predicate(UseVIS >= 3);
8791   match(Set dst (ConvL2D src));
8792   expand %{
8793     regD tmp;
8794     MoveL2D_reg_reg(tmp, src);
8795     convL2D_helper(dst, tmp);
8796   %}
8797 %}
8798 
8799 // Long to Float conversion using fast fxtof
8800 instruct convL2F_helper(regF dst, regD tmp) %{
8801   effect(DEF dst, USE tmp);
8802   size(4);
8803   format %{ "FXTOS  $tmp,$dst" %}
8804   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8805   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8806   ins_pipe(fcvtL2F);
8807 %}
8808 
8809 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8810   match(Set dst (ConvL2F src));
8811   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8812   expand %{
8813     regD tmp;
8814     stkL_to_regD(tmp, src);
8815     convL2F_helper(dst, tmp);
8816   %}
8817 %}
8818 
8819 instruct convL2F_reg(regF dst, iRegL src) %{
8820   predicate(UseVIS >= 3);
8821   match(Set dst (ConvL2F src));
8822   ins_cost(DEFAULT_COST);
8823   expand %{
8824     regD tmp;
8825     MoveL2D_reg_reg(tmp, src);
8826     convL2F_helper(dst, tmp);
8827   %}
8828 %}
8829 
8830 //-----------
8831 
8832 instruct convL2I_reg(iRegI dst, iRegL src) %{
8833   match(Set dst (ConvL2I src));
8834 #ifndef _LP64
8835   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8836   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8837   ins_pipe(ialu_move_reg_I_to_L);
8838 #else
8839   size(4);
8840   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8841   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8842   ins_pipe(ialu_reg);
8843 #endif
8844 %}
8845 
8846 // Register Shift Right Immediate
8847 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8848   match(Set dst (ConvL2I (RShiftL src cnt)));
8849 
8850   size(4);
8851   format %{ "SRAX   $src,$cnt,$dst" %}
8852   opcode(Assembler::srax_op3, Assembler::arith_op);
8853   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8854   ins_pipe(ialu_reg_imm);
8855 %}
8856 
8857 // Replicate scalar to packed byte values in Double register
8858 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8859   effect(DEF dst, USE src);
8860   format %{ "SLLX  $src,56,$dst\n\t"
8861             "SRLX  $dst, 8,O7\n\t"
8862             "OR    $dst,O7,$dst\n\t"
8863             "SRLX  $dst,16,O7\n\t"
8864             "OR    $dst,O7,$dst\n\t"
8865             "SRLX  $dst,32,O7\n\t"
8866             "OR    $dst,O7,$dst\t! replicate8B" %}
8867   ins_encode( enc_repl8b(src, dst));
8868   ins_pipe(ialu_reg);
8869 %}
8870 
8871 // Replicate scalar to packed byte values in Double register
8872 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8873   match(Set dst (Replicate8B src));
8874   expand %{
8875     iRegL tmp;
8876     Repl8B_reg_helper(tmp, src);
8877     regL_to_stkD(dst, tmp);
8878   %}
8879 %}
8880 
8881 // Replicate scalar constant to packed byte values in Double register
8882 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
8883   match(Set dst (Replicate8B con));
8884   effect(KILL tmp);
8885   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
8886   ins_encode %{
8887     // XXX This is a quick fix for 6833573.
8888     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
8889     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
8890     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8891   %}
8892   ins_pipe(loadConFD);
8893 %}
8894 
8895 // Replicate scalar to packed char values into stack slot
8896 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8897   effect(DEF dst, USE src);
8898   format %{ "SLLX  $src,48,$dst\n\t"
8899             "SRLX  $dst,16,O7\n\t"
8900             "OR    $dst,O7,$dst\n\t"
8901             "SRLX  $dst,32,O7\n\t"
8902             "OR    $dst,O7,$dst\t! replicate4C" %}
8903   ins_encode( enc_repl4s(src, dst) );
8904   ins_pipe(ialu_reg);
8905 %}
8906 
8907 // Replicate scalar to packed char values into stack slot
8908 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8909   match(Set dst (Replicate4C src));
8910   expand %{
8911     iRegL tmp;
8912     Repl4C_reg_helper(tmp, src);
8913     regL_to_stkD(dst, tmp);
8914   %}
8915 %}
8916 
8917 // Replicate scalar constant to packed char values in Double register
8918 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
8919   match(Set dst (Replicate4C con));
8920   effect(KILL tmp);
8921   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
8922   ins_encode %{
8923     // XXX This is a quick fix for 6833573.
8924     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8925     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8926     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8927   %}
8928   ins_pipe(loadConFD);
8929 %}
8930 
8931 // Replicate scalar to packed short values into stack slot
8932 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8933   effect(DEF dst, USE src);
8934   format %{ "SLLX  $src,48,$dst\n\t"
8935             "SRLX  $dst,16,O7\n\t"
8936             "OR    $dst,O7,$dst\n\t"
8937             "SRLX  $dst,32,O7\n\t"
8938             "OR    $dst,O7,$dst\t! replicate4S" %}
8939   ins_encode( enc_repl4s(src, dst) );
8940   ins_pipe(ialu_reg);
8941 %}
8942 
8943 // Replicate scalar to packed short values into stack slot
8944 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8945   match(Set dst (Replicate4S src));
8946   expand %{
8947     iRegL tmp;
8948     Repl4S_reg_helper(tmp, src);
8949     regL_to_stkD(dst, tmp);
8950   %}
8951 %}
8952 
8953 // Replicate scalar constant to packed short values in Double register
8954 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
8955   match(Set dst (Replicate4S con));
8956   effect(KILL tmp);
8957   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
8958   ins_encode %{
8959     // XXX This is a quick fix for 6833573.
8960     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8961     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8962     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8963   %}
8964   ins_pipe(loadConFD);
8965 %}
8966 
8967 // Replicate scalar to packed int values in Double register
8968 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8969   effect(DEF dst, USE src);
8970   format %{ "SLLX  $src,32,$dst\n\t"
8971             "SRLX  $dst,32,O7\n\t"
8972             "OR    $dst,O7,$dst\t! replicate2I" %}
8973   ins_encode( enc_repl2i(src, dst));
8974   ins_pipe(ialu_reg);
8975 %}
8976 
8977 // Replicate scalar to packed int values in Double register
8978 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8979   match(Set dst (Replicate2I src));
8980   expand %{
8981     iRegL tmp;
8982     Repl2I_reg_helper(tmp, src);
8983     regL_to_stkD(dst, tmp);
8984   %}
8985 %}
8986 
8987 // Replicate scalar zero constant to packed int values in Double register
8988 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
8989   match(Set dst (Replicate2I con));
8990   effect(KILL tmp);
8991   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
8992   ins_encode %{
8993     // XXX This is a quick fix for 6833573.
8994     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
8995     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
8996     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8997   %}
8998   ins_pipe(loadConFD);
8999 %}
9000 
9001 //----------Control Flow Instructions------------------------------------------
9002 // Compare Instructions
9003 // Compare Integers
9004 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
9005   match(Set icc (CmpI op1 op2));
9006   effect( DEF icc, USE op1, USE op2 );
9007 
9008   size(4);
9009   format %{ "CMP    $op1,$op2" %}
9010   opcode(Assembler::subcc_op3, Assembler::arith_op);
9011   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9012   ins_pipe(ialu_cconly_reg_reg);
9013 %}
9014 
9015 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
9016   match(Set icc (CmpU op1 op2));
9017 
9018   size(4);
9019   format %{ "CMP    $op1,$op2\t! unsigned" %}
9020   opcode(Assembler::subcc_op3, Assembler::arith_op);
9021   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9022   ins_pipe(ialu_cconly_reg_reg);
9023 %}
9024 
9025 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
9026   match(Set icc (CmpI op1 op2));
9027   effect( DEF icc, USE op1 );
9028 
9029   size(4);
9030   format %{ "CMP    $op1,$op2" %}
9031   opcode(Assembler::subcc_op3, Assembler::arith_op);
9032   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9033   ins_pipe(ialu_cconly_reg_imm);
9034 %}
9035 
9036 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
9037   match(Set icc (CmpI (AndI op1 op2) zero));
9038 
9039   size(4);
9040   format %{ "BTST   $op2,$op1" %}
9041   opcode(Assembler::andcc_op3, Assembler::arith_op);
9042   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9043   ins_pipe(ialu_cconly_reg_reg_zero);
9044 %}
9045 
9046 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
9047   match(Set icc (CmpI (AndI op1 op2) zero));
9048 
9049   size(4);
9050   format %{ "BTST   $op2,$op1" %}
9051   opcode(Assembler::andcc_op3, Assembler::arith_op);
9052   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9053   ins_pipe(ialu_cconly_reg_imm_zero);
9054 %}
9055 
9056 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
9057   match(Set xcc (CmpL op1 op2));
9058   effect( DEF xcc, USE op1, USE op2 );
9059 
9060   size(4);
9061   format %{ "CMP    $op1,$op2\t\t! long" %}
9062   opcode(Assembler::subcc_op3, Assembler::arith_op);
9063   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9064   ins_pipe(ialu_cconly_reg_reg);
9065 %}
9066 
9067 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
9068   match(Set xcc (CmpL op1 con));
9069   effect( DEF xcc, USE op1, USE con );
9070 
9071   size(4);
9072   format %{ "CMP    $op1,$con\t\t! long" %}
9073   opcode(Assembler::subcc_op3, Assembler::arith_op);
9074   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9075   ins_pipe(ialu_cconly_reg_reg);
9076 %}
9077 
9078 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
9079   match(Set xcc (CmpL (AndL op1 op2) zero));
9080   effect( DEF xcc, USE op1, USE op2 );
9081 
9082   size(4);
9083   format %{ "BTST   $op1,$op2\t\t! long" %}
9084   opcode(Assembler::andcc_op3, Assembler::arith_op);
9085   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9086   ins_pipe(ialu_cconly_reg_reg);
9087 %}
9088 
9089 // useful for checking the alignment of a pointer:
9090 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
9091   match(Set xcc (CmpL (AndL op1 con) zero));
9092   effect( DEF xcc, USE op1, USE con );
9093 
9094   size(4);
9095   format %{ "BTST   $op1,$con\t\t! long" %}
9096   opcode(Assembler::andcc_op3, Assembler::arith_op);
9097   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9098   ins_pipe(ialu_cconly_reg_reg);
9099 %}
9100 
9101 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
9102   match(Set icc (CmpU op1 op2));
9103 
9104   size(4);
9105   format %{ "CMP    $op1,$op2\t! unsigned" %}
9106   opcode(Assembler::subcc_op3, Assembler::arith_op);
9107   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9108   ins_pipe(ialu_cconly_reg_imm);
9109 %}
9110 
9111 // Compare Pointers
9112 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
9113   match(Set pcc (CmpP op1 op2));
9114 
9115   size(4);
9116   format %{ "CMP    $op1,$op2\t! ptr" %}
9117   opcode(Assembler::subcc_op3, Assembler::arith_op);
9118   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9119   ins_pipe(ialu_cconly_reg_reg);
9120 %}
9121 
9122 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9123   match(Set pcc (CmpP op1 op2));
9124 
9125   size(4);
9126   format %{ "CMP    $op1,$op2\t! ptr" %}
9127   opcode(Assembler::subcc_op3, Assembler::arith_op);
9128   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9129   ins_pipe(ialu_cconly_reg_imm);
9130 %}
9131 
9132 // Compare Narrow oops
9133 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9134   match(Set icc (CmpN op1 op2));
9135 
9136   size(4);
9137   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9138   opcode(Assembler::subcc_op3, Assembler::arith_op);
9139   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9140   ins_pipe(ialu_cconly_reg_reg);
9141 %}
9142 
9143 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9144   match(Set icc (CmpN op1 op2));
9145 
9146   size(4);
9147   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9148   opcode(Assembler::subcc_op3, Assembler::arith_op);
9149   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9150   ins_pipe(ialu_cconly_reg_imm);
9151 %}
9152 
9153 //----------Max and Min--------------------------------------------------------
9154 // Min Instructions
9155 // Conditional move for min
9156 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9157   effect( USE_DEF op2, USE op1, USE icc );
9158 
9159   size(4);
9160   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9161   opcode(Assembler::less);
9162   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9163   ins_pipe(ialu_reg_flags);
9164 %}
9165 
9166 // Min Register with Register.
9167 instruct minI_eReg(iRegI op1, iRegI op2) %{
9168   match(Set op2 (MinI op1 op2));
9169   ins_cost(DEFAULT_COST*2);
9170   expand %{
9171     flagsReg icc;
9172     compI_iReg(icc,op1,op2);
9173     cmovI_reg_lt(op2,op1,icc);
9174   %}
9175 %}
9176 
9177 // Max Instructions
9178 // Conditional move for max
9179 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9180   effect( USE_DEF op2, USE op1, USE icc );
9181   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9182   opcode(Assembler::greater);
9183   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9184   ins_pipe(ialu_reg_flags);
9185 %}
9186 
9187 // Max Register with Register
9188 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9189   match(Set op2 (MaxI op1 op2));
9190   ins_cost(DEFAULT_COST*2);
9191   expand %{
9192     flagsReg icc;
9193     compI_iReg(icc,op1,op2);
9194     cmovI_reg_gt(op2,op1,icc);
9195   %}
9196 %}
9197 
9198 
9199 //----------Float Compares----------------------------------------------------
9200 // Compare floating, generate condition code
9201 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9202   match(Set fcc (CmpF src1 src2));
9203 
9204   size(4);
9205   format %{ "FCMPs  $fcc,$src1,$src2" %}
9206   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9207   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9208   ins_pipe(faddF_fcc_reg_reg_zero);
9209 %}
9210 
9211 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9212   match(Set fcc (CmpD src1 src2));
9213 
9214   size(4);
9215   format %{ "FCMPd  $fcc,$src1,$src2" %}
9216   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9217   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9218   ins_pipe(faddD_fcc_reg_reg_zero);
9219 %}
9220 
9221 
9222 // Compare floating, generate -1,0,1
9223 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9224   match(Set dst (CmpF3 src1 src2));
9225   effect(KILL fcc0);
9226   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9227   format %{ "fcmpl  $dst,$src1,$src2" %}
9228   // Primary = float
9229   opcode( true );
9230   ins_encode( floating_cmp( dst, src1, src2 ) );
9231   ins_pipe( floating_cmp );
9232 %}
9233 
9234 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9235   match(Set dst (CmpD3 src1 src2));
9236   effect(KILL fcc0);
9237   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9238   format %{ "dcmpl  $dst,$src1,$src2" %}
9239   // Primary = double (not float)
9240   opcode( false );
9241   ins_encode( floating_cmp( dst, src1, src2 ) );
9242   ins_pipe( floating_cmp );
9243 %}
9244 
9245 //----------Branches---------------------------------------------------------
9246 // Jump
9247 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9248 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9249   match(Jump switch_val);
9250 
9251   ins_cost(350);
9252 
9253   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9254              "LD     [O7 + $switch_val], O7\n\t"
9255              "JUMP   O7"
9256          %}
9257   ins_encode %{
9258     // Calculate table address into a register.
9259     Register table_reg;
9260     Register label_reg = O7;
9261     if (constant_offset() == 0) {
9262       table_reg = $constanttablebase;
9263     } else {
9264       table_reg = O7;
9265       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9266       __ add($constanttablebase, con_offset, table_reg);
9267     }
9268 
9269     // Jump to base address + switch value
9270     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9271     __ jmp(label_reg, G0);
9272     __ delayed()->nop();
9273   %}
9274   ins_pipe(ialu_reg_reg);
9275 %}
9276 
9277 // Direct Branch.  Use V8 version with longer range.
9278 instruct branch(label labl) %{
9279   match(Goto);
9280   effect(USE labl);
9281 
9282   size(8);
9283   ins_cost(BRANCH_COST);
9284   format %{ "BA     $labl" %}
9285   ins_encode %{
9286     Label* L = $labl$$label;
9287     __ ba(*L);
9288     __ delayed()->nop();
9289   %}
9290   ins_pipe(br);
9291 %}
9292 
9293 // Direct Branch, short with no delay slot
9294 instruct branch_short(label labl) %{
9295   match(Goto);
9296   predicate(UseCBCond);
9297   effect(USE labl);
9298 
9299   size(4);
9300   ins_cost(BRANCH_COST);
9301   format %{ "BA     $labl\t! short branch" %}
9302   ins_encode %{ 
9303     Label* L = $labl$$label;
9304     assert(__ use_cbcond(*L), "back to back cbcond");
9305     __ ba_short(*L);
9306   %}
9307   ins_short_branch(1);
9308   ins_avoid_back_to_back(1);
9309   ins_pipe(cbcond_reg_imm);
9310 %}
9311 
9312 // Conditional Direct Branch
9313 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9314   match(If cmp icc);
9315   effect(USE labl);
9316 
9317   size(8);
9318   ins_cost(BRANCH_COST);
9319   format %{ "BP$cmp   $icc,$labl" %}
9320   // Prim = bits 24-22, Secnd = bits 31-30
9321   ins_encode( enc_bp( labl, cmp, icc ) );
9322   ins_pipe(br_cc);
9323 %}
9324 
9325 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9326   match(If cmp icc);
9327   effect(USE labl);
9328 
9329   ins_cost(BRANCH_COST);
9330   format %{ "BP$cmp  $icc,$labl" %}
9331   // Prim = bits 24-22, Secnd = bits 31-30
9332   ins_encode( enc_bp( labl, cmp, icc ) );
9333   ins_pipe(br_cc);
9334 %}
9335 
9336 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9337   match(If cmp pcc);
9338   effect(USE labl);
9339 
9340   size(8);
9341   ins_cost(BRANCH_COST);
9342   format %{ "BP$cmp  $pcc,$labl" %}
9343   ins_encode %{
9344     Label* L = $labl$$label;
9345     Assembler::Predict predict_taken =
9346       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9347 
9348     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9349     __ delayed()->nop();
9350   %}
9351   ins_pipe(br_cc);
9352 %}
9353 
9354 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9355   match(If cmp fcc);
9356   effect(USE labl);
9357 
9358   size(8);
9359   ins_cost(BRANCH_COST);
9360   format %{ "FBP$cmp $fcc,$labl" %}
9361   ins_encode %{
9362     Label* L = $labl$$label;
9363     Assembler::Predict predict_taken =
9364       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9365 
9366     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9367     __ delayed()->nop();
9368   %}
9369   ins_pipe(br_fcc);
9370 %}
9371 
9372 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9373   match(CountedLoopEnd cmp icc);
9374   effect(USE labl);
9375 
9376   size(8);
9377   ins_cost(BRANCH_COST);
9378   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9379   // Prim = bits 24-22, Secnd = bits 31-30
9380   ins_encode( enc_bp( labl, cmp, icc ) );
9381   ins_pipe(br_cc);
9382 %}
9383 
9384 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9385   match(CountedLoopEnd cmp icc);
9386   effect(USE labl);
9387 
9388   size(8);
9389   ins_cost(BRANCH_COST);
9390   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9391   // Prim = bits 24-22, Secnd = bits 31-30
9392   ins_encode( enc_bp( labl, cmp, icc ) );
9393   ins_pipe(br_cc);
9394 %}
9395 
9396 // Compare and branch instructions
9397 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9398   match(If cmp (CmpI op1 op2));
9399   effect(USE labl, KILL icc);
9400 
9401   size(12);
9402   ins_cost(BRANCH_COST);
9403   format %{ "CMP    $op1,$op2\t! int\n\t"
9404             "BP$cmp   $labl" %}
9405   ins_encode %{
9406     Label* L = $labl$$label;
9407     Assembler::Predict predict_taken =
9408       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9409     __ cmp($op1$$Register, $op2$$Register);
9410     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9411     __ delayed()->nop();
9412   %}
9413   ins_pipe(cmp_br_reg_reg);
9414 %}
9415 
9416 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9417   match(If cmp (CmpI op1 op2));
9418   effect(USE labl, KILL icc);
9419 
9420   size(12);
9421   ins_cost(BRANCH_COST);
9422   format %{ "CMP    $op1,$op2\t! int\n\t"
9423             "BP$cmp   $labl" %}
9424   ins_encode %{
9425     Label* L = $labl$$label;
9426     Assembler::Predict predict_taken =
9427       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9428     __ cmp($op1$$Register, $op2$$constant);
9429     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9430     __ delayed()->nop();
9431   %}
9432   ins_pipe(cmp_br_reg_imm);
9433 %}
9434 
9435 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9436   match(If cmp (CmpU op1 op2));
9437   effect(USE labl, KILL icc);
9438 
9439   size(12);
9440   ins_cost(BRANCH_COST);
9441   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9442             "BP$cmp  $labl" %}
9443   ins_encode %{
9444     Label* L = $labl$$label;
9445     Assembler::Predict predict_taken =
9446       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9447     __ cmp($op1$$Register, $op2$$Register);
9448     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9449     __ delayed()->nop();
9450   %}
9451   ins_pipe(cmp_br_reg_reg);
9452 %}
9453 
9454 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9455   match(If cmp (CmpU op1 op2));
9456   effect(USE labl, KILL icc);
9457 
9458   size(12);
9459   ins_cost(BRANCH_COST);
9460   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9461             "BP$cmp  $labl" %}
9462   ins_encode %{
9463     Label* L = $labl$$label;
9464     Assembler::Predict predict_taken =
9465       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9466     __ cmp($op1$$Register, $op2$$constant);
9467     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9468     __ delayed()->nop();
9469   %}
9470   ins_pipe(cmp_br_reg_imm);
9471 %}
9472 
9473 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9474   match(If cmp (CmpL op1 op2));
9475   effect(USE labl, KILL xcc);
9476 
9477   size(12);
9478   ins_cost(BRANCH_COST);
9479   format %{ "CMP    $op1,$op2\t! long\n\t"
9480             "BP$cmp   $labl" %}
9481   ins_encode %{
9482     Label* L = $labl$$label;
9483     Assembler::Predict predict_taken =
9484       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9485     __ cmp($op1$$Register, $op2$$Register);
9486     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9487     __ delayed()->nop();
9488   %}
9489   ins_pipe(cmp_br_reg_reg);
9490 %}
9491 
9492 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9493   match(If cmp (CmpL op1 op2));
9494   effect(USE labl, KILL xcc);
9495 
9496   size(12);
9497   ins_cost(BRANCH_COST);
9498   format %{ "CMP    $op1,$op2\t! long\n\t"
9499             "BP$cmp   $labl" %}
9500   ins_encode %{
9501     Label* L = $labl$$label;
9502     Assembler::Predict predict_taken =
9503       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9504     __ cmp($op1$$Register, $op2$$constant);
9505     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9506     __ delayed()->nop();
9507   %}
9508   ins_pipe(cmp_br_reg_imm);
9509 %}
9510 
9511 // Compare Pointers and branch
9512 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9513   match(If cmp (CmpP op1 op2));
9514   effect(USE labl, KILL pcc);
9515 
9516   size(12);
9517   ins_cost(BRANCH_COST);
9518   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9519             "B$cmp   $labl" %}
9520   ins_encode %{
9521     Label* L = $labl$$label;
9522     Assembler::Predict predict_taken =
9523       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9524     __ cmp($op1$$Register, $op2$$Register);
9525     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9526     __ delayed()->nop();
9527   %}
9528   ins_pipe(cmp_br_reg_reg);
9529 %}
9530 
9531 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9532   match(If cmp (CmpP op1 null));
9533   effect(USE labl, KILL pcc);
9534 
9535   size(12);
9536   ins_cost(BRANCH_COST);
9537   format %{ "CMP    $op1,0\t! ptr\n\t"
9538             "B$cmp   $labl" %}
9539   ins_encode %{
9540     Label* L = $labl$$label;
9541     Assembler::Predict predict_taken =
9542       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9543     __ cmp($op1$$Register, G0);
9544     // bpr() is not used here since it has shorter distance.
9545     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9546     __ delayed()->nop();
9547   %}
9548   ins_pipe(cmp_br_reg_reg);
9549 %}
9550 
9551 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9552   match(If cmp (CmpN op1 op2));
9553   effect(USE labl, KILL icc);
9554 
9555   size(12);
9556   ins_cost(BRANCH_COST);
9557   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9558             "BP$cmp   $labl" %}
9559   ins_encode %{
9560     Label* L = $labl$$label;
9561     Assembler::Predict predict_taken =
9562       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9563     __ cmp($op1$$Register, $op2$$Register);
9564     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9565     __ delayed()->nop();
9566   %}
9567   ins_pipe(cmp_br_reg_reg);
9568 %}
9569 
9570 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9571   match(If cmp (CmpN op1 null));
9572   effect(USE labl, KILL icc);
9573 
9574   size(12);
9575   ins_cost(BRANCH_COST);
9576   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9577             "BP$cmp   $labl" %}
9578   ins_encode %{
9579     Label* L = $labl$$label;
9580     Assembler::Predict predict_taken =
9581       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9582     __ cmp($op1$$Register, G0);
9583     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9584     __ delayed()->nop();
9585   %}
9586   ins_pipe(cmp_br_reg_reg);
9587 %}
9588 
9589 // Loop back branch
9590 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9591   match(CountedLoopEnd cmp (CmpI op1 op2));
9592   effect(USE labl, KILL icc);
9593 
9594   size(12);
9595   ins_cost(BRANCH_COST);
9596   format %{ "CMP    $op1,$op2\t! int\n\t"
9597             "BP$cmp   $labl\t! Loop end" %}
9598   ins_encode %{
9599     Label* L = $labl$$label;
9600     Assembler::Predict predict_taken =
9601       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9602     __ cmp($op1$$Register, $op2$$Register);
9603     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9604     __ delayed()->nop();
9605   %}
9606   ins_pipe(cmp_br_reg_reg);
9607 %}
9608 
9609 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9610   match(CountedLoopEnd cmp (CmpI op1 op2));
9611   effect(USE labl, KILL icc);
9612 
9613   size(12);
9614   ins_cost(BRANCH_COST);
9615   format %{ "CMP    $op1,$op2\t! int\n\t"
9616             "BP$cmp   $labl\t! Loop end" %}
9617   ins_encode %{
9618     Label* L = $labl$$label;
9619     Assembler::Predict predict_taken =
9620       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9621     __ cmp($op1$$Register, $op2$$constant);
9622     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9623     __ delayed()->nop();
9624   %}
9625   ins_pipe(cmp_br_reg_imm);
9626 %}
9627 
9628 // Short compare and branch instructions
9629 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9630   match(If cmp (CmpI op1 op2));
9631   predicate(UseCBCond);
9632   effect(USE labl, KILL icc);
9633 
9634   size(4);
9635   ins_cost(BRANCH_COST);
9636   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9637   ins_encode %{
9638     Label* L = $labl$$label;
9639     assert(__ use_cbcond(*L), "back to back cbcond");
9640     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9641   %}
9642   ins_short_branch(1);
9643   ins_avoid_back_to_back(1);
9644   ins_pipe(cbcond_reg_reg);
9645 %}
9646 
9647 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9648   match(If cmp (CmpI op1 op2));
9649   predicate(UseCBCond);
9650   effect(USE labl, KILL icc);
9651 
9652   size(4);
9653   ins_cost(BRANCH_COST);
9654   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9655   ins_encode %{
9656     Label* L = $labl$$label;
9657     assert(__ use_cbcond(*L), "back to back cbcond");
9658     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9659   %}
9660   ins_short_branch(1);
9661   ins_avoid_back_to_back(1);
9662   ins_pipe(cbcond_reg_imm);
9663 %}
9664 
9665 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9666   match(If cmp (CmpU op1 op2));
9667   predicate(UseCBCond);
9668   effect(USE labl, KILL icc);
9669 
9670   size(4);
9671   ins_cost(BRANCH_COST);
9672   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9673   ins_encode %{
9674     Label* L = $labl$$label;
9675     assert(__ use_cbcond(*L), "back to back cbcond");
9676     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9677   %}
9678   ins_short_branch(1);
9679   ins_avoid_back_to_back(1);
9680   ins_pipe(cbcond_reg_reg);
9681 %}
9682 
9683 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9684   match(If cmp (CmpU op1 op2));
9685   predicate(UseCBCond);
9686   effect(USE labl, KILL icc);
9687 
9688   size(4);
9689   ins_cost(BRANCH_COST);
9690   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9691   ins_encode %{
9692     Label* L = $labl$$label;
9693     assert(__ use_cbcond(*L), "back to back cbcond");
9694     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9695   %}
9696   ins_short_branch(1);
9697   ins_avoid_back_to_back(1);
9698   ins_pipe(cbcond_reg_imm);
9699 %}
9700 
9701 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9702   match(If cmp (CmpL op1 op2));
9703   predicate(UseCBCond);
9704   effect(USE labl, KILL xcc);
9705 
9706   size(4);
9707   ins_cost(BRANCH_COST);
9708   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9709   ins_encode %{
9710     Label* L = $labl$$label;
9711     assert(__ use_cbcond(*L), "back to back cbcond");
9712     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9713   %}
9714   ins_short_branch(1);
9715   ins_avoid_back_to_back(1);
9716   ins_pipe(cbcond_reg_reg);
9717 %}
9718 
9719 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9720   match(If cmp (CmpL op1 op2));
9721   predicate(UseCBCond);
9722   effect(USE labl, KILL xcc);
9723 
9724   size(4);
9725   ins_cost(BRANCH_COST);
9726   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9727   ins_encode %{
9728     Label* L = $labl$$label;
9729     assert(__ use_cbcond(*L), "back to back cbcond");
9730     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9731   %}
9732   ins_short_branch(1);
9733   ins_avoid_back_to_back(1);
9734   ins_pipe(cbcond_reg_imm);
9735 %}
9736 
9737 // Compare Pointers and branch
9738 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9739   match(If cmp (CmpP op1 op2));
9740   predicate(UseCBCond);
9741   effect(USE labl, KILL pcc);
9742 
9743   size(4);
9744   ins_cost(BRANCH_COST);
9745 #ifdef _LP64
9746   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9747 #else
9748   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9749 #endif
9750   ins_encode %{
9751     Label* L = $labl$$label;
9752     assert(__ use_cbcond(*L), "back to back cbcond");
9753     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9754   %}
9755   ins_short_branch(1);
9756   ins_avoid_back_to_back(1);
9757   ins_pipe(cbcond_reg_reg);
9758 %}
9759 
9760 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9761   match(If cmp (CmpP op1 null));
9762   predicate(UseCBCond);
9763   effect(USE labl, KILL pcc);
9764 
9765   size(4);
9766   ins_cost(BRANCH_COST);
9767 #ifdef _LP64
9768   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9769 #else
9770   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9771 #endif
9772   ins_encode %{
9773     Label* L = $labl$$label;
9774     assert(__ use_cbcond(*L), "back to back cbcond");
9775     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9776   %}
9777   ins_short_branch(1);
9778   ins_avoid_back_to_back(1);
9779   ins_pipe(cbcond_reg_reg);
9780 %}
9781 
9782 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9783   match(If cmp (CmpN op1 op2));
9784   predicate(UseCBCond);
9785   effect(USE labl, KILL icc);
9786 
9787   size(4);
9788   ins_cost(BRANCH_COST);
9789   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9790   ins_encode %{
9791     Label* L = $labl$$label;
9792     assert(__ use_cbcond(*L), "back to back cbcond");
9793     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9794   %}
9795   ins_short_branch(1);
9796   ins_avoid_back_to_back(1);
9797   ins_pipe(cbcond_reg_reg);
9798 %}
9799 
9800 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9801   match(If cmp (CmpN op1 null));
9802   predicate(UseCBCond);
9803   effect(USE labl, KILL icc);
9804 
9805   size(4);
9806   ins_cost(BRANCH_COST);
9807   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9808   ins_encode %{
9809     Label* L = $labl$$label;
9810     assert(__ use_cbcond(*L), "back to back cbcond");
9811     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9812   %}
9813   ins_short_branch(1);
9814   ins_avoid_back_to_back(1);
9815   ins_pipe(cbcond_reg_reg);
9816 %}
9817 
9818 // Loop back branch
9819 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9820   match(CountedLoopEnd cmp (CmpI op1 op2));
9821   predicate(UseCBCond);
9822   effect(USE labl, KILL icc);
9823 
9824   size(4);
9825   ins_cost(BRANCH_COST);
9826   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9827   ins_encode %{
9828     Label* L = $labl$$label;
9829     assert(__ use_cbcond(*L), "back to back cbcond");
9830     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9831   %}
9832   ins_short_branch(1);
9833   ins_avoid_back_to_back(1);
9834   ins_pipe(cbcond_reg_reg);
9835 %}
9836 
9837 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9838   match(CountedLoopEnd cmp (CmpI op1 op2));
9839   predicate(UseCBCond);
9840   effect(USE labl, KILL icc);
9841 
9842   size(4);
9843   ins_cost(BRANCH_COST);
9844   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9845   ins_encode %{
9846     Label* L = $labl$$label;
9847     assert(__ use_cbcond(*L), "back to back cbcond");
9848     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9849   %}
9850   ins_short_branch(1);
9851   ins_avoid_back_to_back(1);
9852   ins_pipe(cbcond_reg_imm);
9853 %}
9854 
9855 // Branch-on-register tests all 64 bits.  We assume that values
9856 // in 64-bit registers always remains zero or sign extended
9857 // unless our code munges the high bits.  Interrupts can chop
9858 // the high order bits to zero or sign at any time.
9859 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9860   match(If cmp (CmpI op1 zero));
9861   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9862   effect(USE labl);
9863 
9864   size(8);
9865   ins_cost(BRANCH_COST);
9866   format %{ "BR$cmp   $op1,$labl" %}
9867   ins_encode( enc_bpr( labl, cmp, op1 ) );
9868   ins_pipe(br_reg);
9869 %}
9870 
9871 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9872   match(If cmp (CmpP op1 null));
9873   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9874   effect(USE labl);
9875 
9876   size(8);
9877   ins_cost(BRANCH_COST);
9878   format %{ "BR$cmp   $op1,$labl" %}
9879   ins_encode( enc_bpr( labl, cmp, op1 ) );
9880   ins_pipe(br_reg);
9881 %}
9882 
9883 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9884   match(If cmp (CmpL op1 zero));
9885   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9886   effect(USE labl);
9887 
9888   size(8);
9889   ins_cost(BRANCH_COST);
9890   format %{ "BR$cmp   $op1,$labl" %}
9891   ins_encode( enc_bpr( labl, cmp, op1 ) );
9892   ins_pipe(br_reg);
9893 %}
9894 
9895 
9896 // ============================================================================
9897 // Long Compare
9898 //
9899 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9900 // is tricky.  The flavor of compare used depends on whether we are testing
9901 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9902 // The GE test is the negated LT test.  The LE test can be had by commuting
9903 // the operands (yielding a GE test) and then negating; negate again for the
9904 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9905 // NE test is negated from that.
9906 
9907 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9908 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9909 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9910 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9911 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9912 // foo match ends up with the wrong leaf.  One fix is to not match both
9913 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9914 // both forms beat the trinary form of long-compare and both are very useful
9915 // on Intel which has so few registers.
9916 
9917 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9918   match(If cmp xcc);
9919   effect(USE labl);
9920 
9921   size(8);
9922   ins_cost(BRANCH_COST);
9923   format %{ "BP$cmp   $xcc,$labl" %}
9924   ins_encode %{
9925     Label* L = $labl$$label;
9926     Assembler::Predict predict_taken =
9927       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9928 
9929     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9930     __ delayed()->nop();
9931   %}
9932   ins_pipe(br_cc);
9933 %}
9934 
9935 // Manifest a CmpL3 result in an integer register.  Very painful.
9936 // This is the test to avoid.
9937 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9938   match(Set dst (CmpL3 src1 src2) );
9939   effect( KILL ccr );
9940   ins_cost(6*DEFAULT_COST);
9941   size(24);
9942   format %{ "CMP    $src1,$src2\t\t! long\n"
9943           "\tBLT,a,pn done\n"
9944           "\tMOV    -1,$dst\t! delay slot\n"
9945           "\tBGT,a,pn done\n"
9946           "\tMOV    1,$dst\t! delay slot\n"
9947           "\tCLR    $dst\n"
9948     "done:"     %}
9949   ins_encode( cmpl_flag(src1,src2,dst) );
9950   ins_pipe(cmpL_reg);
9951 %}
9952 
9953 // Conditional move
9954 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9955   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9956   ins_cost(150);
9957   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9958   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9959   ins_pipe(ialu_reg);
9960 %}
9961 
9962 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9963   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9964   ins_cost(140);
9965   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9966   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9967   ins_pipe(ialu_imm);
9968 %}
9969 
9970 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9971   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9972   ins_cost(150);
9973   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9974   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9975   ins_pipe(ialu_reg);
9976 %}
9977 
9978 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9979   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9980   ins_cost(140);
9981   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9982   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9983   ins_pipe(ialu_imm);
9984 %}
9985 
9986 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9987   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9988   ins_cost(150);
9989   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9990   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9991   ins_pipe(ialu_reg);
9992 %}
9993 
9994 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9995   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9996   ins_cost(150);
9997   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9998   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9999   ins_pipe(ialu_reg);
10000 %}
10001 
10002 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
10003   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
10004   ins_cost(140);
10005   format %{ "MOV$cmp  $xcc,$src,$dst" %}
10006   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
10007   ins_pipe(ialu_imm);
10008 %}
10009 
10010 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
10011   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
10012   ins_cost(150);
10013   opcode(0x101);
10014   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
10015   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
10016   ins_pipe(int_conditional_float_move);
10017 %}
10018 
10019 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
10020   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
10021   ins_cost(150);
10022   opcode(0x102);
10023   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
10024   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
10025   ins_pipe(int_conditional_float_move);
10026 %}
10027 
10028 // ============================================================================
10029 // Safepoint Instruction
10030 instruct safePoint_poll(iRegP poll) %{
10031   match(SafePoint poll);
10032   effect(USE poll);
10033 
10034   size(4);
10035 #ifdef _LP64
10036   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
10037 #else
10038   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
10039 #endif
10040   ins_encode %{
10041     __ relocate(relocInfo::poll_type);
10042     __ ld_ptr($poll$$Register, 0, G0);
10043   %}
10044   ins_pipe(loadPollP);
10045 %}
10046 
10047 // ============================================================================
10048 // Call Instructions
10049 // Call Java Static Instruction
10050 instruct CallStaticJavaDirect( method meth ) %{
10051   match(CallStaticJava);
10052   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
10053   effect(USE meth);
10054 
10055   size(8);
10056   ins_cost(CALL_COST);
10057   format %{ "CALL,static  ; NOP ==> " %}
10058   ins_encode( Java_Static_Call( meth ), call_epilog );
10059   ins_pipe(simple_call);
10060 %}
10061 
10062 // Call Java Static Instruction (method handle version)
10063 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
10064   match(CallStaticJava);
10065   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
10066   effect(USE meth, KILL l7_mh_SP_save);
10067 
10068   size(8);
10069   ins_cost(CALL_COST);
10070   format %{ "CALL,static/MethodHandle" %}
10071   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
10072   ins_pipe(simple_call);
10073 %}
10074 
10075 // Call Java Dynamic Instruction
10076 instruct CallDynamicJavaDirect( method meth ) %{
10077   match(CallDynamicJava);
10078   effect(USE meth);
10079 
10080   ins_cost(CALL_COST);
10081   format %{ "SET    (empty),R_G5\n\t"
10082             "CALL,dynamic  ; NOP ==> " %}
10083   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
10084   ins_pipe(call);
10085 %}
10086 
10087 // Call Runtime Instruction
10088 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
10089   match(CallRuntime);
10090   effect(USE meth, KILL l7);
10091   ins_cost(CALL_COST);
10092   format %{ "CALL,runtime" %}
10093   ins_encode( Java_To_Runtime( meth ),
10094               call_epilog, adjust_long_from_native_call );
10095   ins_pipe(simple_call);
10096 %}
10097 
10098 // Call runtime without safepoint - same as CallRuntime
10099 instruct CallLeafDirect(method meth, l7RegP l7) %{
10100   match(CallLeaf);
10101   effect(USE meth, KILL l7);
10102   ins_cost(CALL_COST);
10103   format %{ "CALL,runtime leaf" %}
10104   ins_encode( Java_To_Runtime( meth ),
10105               call_epilog,
10106               adjust_long_from_native_call );
10107   ins_pipe(simple_call);
10108 %}
10109 
10110 // Call runtime without safepoint - same as CallLeaf
10111 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
10112   match(CallLeafNoFP);
10113   effect(USE meth, KILL l7);
10114   ins_cost(CALL_COST);
10115   format %{ "CALL,runtime leaf nofp" %}
10116   ins_encode( Java_To_Runtime( meth ),
10117               call_epilog,
10118               adjust_long_from_native_call );
10119   ins_pipe(simple_call);
10120 %}
10121 
10122 // Tail Call; Jump from runtime stub to Java code.
10123 // Also known as an 'interprocedural jump'.
10124 // Target of jump will eventually return to caller.
10125 // TailJump below removes the return address.
10126 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
10127   match(TailCall jump_target method_oop );
10128 
10129   ins_cost(CALL_COST);
10130   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
10131   ins_encode(form_jmpl(jump_target));
10132   ins_pipe(tail_call);
10133 %}
10134 
10135 
10136 // Return Instruction
10137 instruct Ret() %{
10138   match(Return);
10139 
10140   // The epilogue node did the ret already.
10141   size(0);
10142   format %{ "! return" %}
10143   ins_encode();
10144   ins_pipe(empty);
10145 %}
10146 
10147 
10148 // Tail Jump; remove the return address; jump to target.
10149 // TailCall above leaves the return address around.
10150 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10151 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10152 // "restore" before this instruction (in Epilogue), we need to materialize it
10153 // in %i0.
10154 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10155   match( TailJump jump_target ex_oop );
10156   ins_cost(CALL_COST);
10157   format %{ "! discard R_O7\n\t"
10158             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10159   ins_encode(form_jmpl_set_exception_pc(jump_target));
10160   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10161   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10162   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10163   ins_pipe(tail_call);
10164 %}
10165 
10166 // Create exception oop: created by stack-crawling runtime code.
10167 // Created exception is now available to this handler, and is setup
10168 // just prior to jumping to this handler.  No code emitted.
10169 instruct CreateException( o0RegP ex_oop )
10170 %{
10171   match(Set ex_oop (CreateEx));
10172   ins_cost(0);
10173 
10174   size(0);
10175   // use the following format syntax
10176   format %{ "! exception oop is in R_O0; no code emitted" %}
10177   ins_encode();
10178   ins_pipe(empty);
10179 %}
10180 
10181 
10182 // Rethrow exception:
10183 // The exception oop will come in the first argument position.
10184 // Then JUMP (not call) to the rethrow stub code.
10185 instruct RethrowException()
10186 %{
10187   match(Rethrow);
10188   ins_cost(CALL_COST);
10189 
10190   // use the following format syntax
10191   format %{ "Jmp    rethrow_stub" %}
10192   ins_encode(enc_rethrow);
10193   ins_pipe(tail_call);
10194 %}
10195 
10196 
10197 // Die now
10198 instruct ShouldNotReachHere( )
10199 %{
10200   match(Halt);
10201   ins_cost(CALL_COST);
10202 
10203   size(4);
10204   // Use the following format syntax
10205   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10206   ins_encode( form2_illtrap() );
10207   ins_pipe(tail_call);
10208 %}
10209 
10210 // ============================================================================
10211 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10212 // array for an instance of the superklass.  Set a hidden internal cache on a
10213 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10214 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10215 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10216   match(Set index (PartialSubtypeCheck sub super));
10217   effect( KILL pcc, KILL o7 );
10218   ins_cost(DEFAULT_COST*10);
10219   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10220   ins_encode( enc_PartialSubtypeCheck() );
10221   ins_pipe(partial_subtype_check_pipe);
10222 %}
10223 
10224 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10225   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10226   effect( KILL idx, KILL o7 );
10227   ins_cost(DEFAULT_COST*10);
10228   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10229   ins_encode( enc_PartialSubtypeCheck() );
10230   ins_pipe(partial_subtype_check_pipe);
10231 %}
10232 
10233 
10234 // ============================================================================
10235 // inlined locking and unlocking
10236 
10237 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
10238   match(Set pcc (FastLock object box));
10239 
10240   effect(KILL scratch, TEMP scratch2);
10241   ins_cost(100);
10242 
10243   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
10244   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10245   ins_pipe(long_memory_op);
10246 %}
10247 
10248 
10249 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
10250   match(Set pcc (FastUnlock object box));
10251   effect(KILL scratch, TEMP scratch2);
10252   ins_cost(100);
10253 
10254   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
10255   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10256   ins_pipe(long_memory_op);
10257 %}
10258 
10259 // Count and Base registers are fixed because the allocator cannot
10260 // kill unknown registers.  The encodings are generic.
10261 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10262   match(Set dummy (ClearArray cnt base));
10263   effect(TEMP temp, KILL ccr);
10264   ins_cost(300);
10265   format %{ "MOV    $cnt,$temp\n"
10266     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10267     "        BRge   loop\t\t! Clearing loop\n"
10268     "        STX    G0,[$base+$temp]\t! delay slot" %}
10269   ins_encode( enc_Clear_Array(cnt, base, temp) );
10270   ins_pipe(long_memory_op);
10271 %}
10272 
10273 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10274                         o7RegI tmp, flagsReg ccr) %{
10275   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10276   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10277   ins_cost(300);
10278   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10279   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10280   ins_pipe(long_memory_op);
10281 %}
10282 
10283 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10284                        o7RegI tmp, flagsReg ccr) %{
10285   match(Set result (StrEquals (Binary str1 str2) cnt));
10286   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10287   ins_cost(300);
10288   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10289   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10290   ins_pipe(long_memory_op);
10291 %}
10292 
10293 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10294                       o7RegI tmp2, flagsReg ccr) %{
10295   match(Set result (AryEq ary1 ary2));
10296   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10297   ins_cost(300);
10298   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10299   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10300   ins_pipe(long_memory_op);
10301 %}
10302 
10303 
10304 //---------- Zeros Count Instructions ------------------------------------------
10305 
10306 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
10307   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10308   match(Set dst (CountLeadingZerosI src));
10309   effect(TEMP dst, TEMP tmp, KILL cr);
10310 
10311   // x |= (x >> 1);
10312   // x |= (x >> 2);
10313   // x |= (x >> 4);
10314   // x |= (x >> 8);
10315   // x |= (x >> 16);
10316   // return (WORDBITS - popc(x));
10317   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10318             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10319             "OR      $dst,$tmp,$dst\n\t"
10320             "SRL     $dst,2,$tmp\n\t"
10321             "OR      $dst,$tmp,$dst\n\t"
10322             "SRL     $dst,4,$tmp\n\t"
10323             "OR      $dst,$tmp,$dst\n\t"
10324             "SRL     $dst,8,$tmp\n\t"
10325             "OR      $dst,$tmp,$dst\n\t"
10326             "SRL     $dst,16,$tmp\n\t"
10327             "OR      $dst,$tmp,$dst\n\t"
10328             "POPC    $dst,$dst\n\t"
10329             "MOV     32,$tmp\n\t"
10330             "SUB     $tmp,$dst,$dst" %}
10331   ins_encode %{
10332     Register Rdst = $dst$$Register;
10333     Register Rsrc = $src$$Register;
10334     Register Rtmp = $tmp$$Register;
10335     __ srl(Rsrc, 1,    Rtmp);
10336     __ srl(Rsrc, 0,    Rdst);
10337     __ or3(Rdst, Rtmp, Rdst);
10338     __ srl(Rdst, 2,    Rtmp);
10339     __ or3(Rdst, Rtmp, Rdst);
10340     __ srl(Rdst, 4,    Rtmp);
10341     __ or3(Rdst, Rtmp, Rdst);
10342     __ srl(Rdst, 8,    Rtmp);
10343     __ or3(Rdst, Rtmp, Rdst);
10344     __ srl(Rdst, 16,   Rtmp);
10345     __ or3(Rdst, Rtmp, Rdst);
10346     __ popc(Rdst, Rdst);
10347     __ mov(BitsPerInt, Rtmp);
10348     __ sub(Rtmp, Rdst, Rdst);
10349   %}
10350   ins_pipe(ialu_reg);
10351 %}
10352 
10353 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10354   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10355   match(Set dst (CountLeadingZerosL src));
10356   effect(TEMP dst, TEMP tmp, KILL cr);
10357 
10358   // x |= (x >> 1);
10359   // x |= (x >> 2);
10360   // x |= (x >> 4);
10361   // x |= (x >> 8);
10362   // x |= (x >> 16);
10363   // x |= (x >> 32);
10364   // return (WORDBITS - popc(x));
10365   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10366             "OR      $src,$tmp,$dst\n\t"
10367             "SRLX    $dst,2,$tmp\n\t"
10368             "OR      $dst,$tmp,$dst\n\t"
10369             "SRLX    $dst,4,$tmp\n\t"
10370             "OR      $dst,$tmp,$dst\n\t"
10371             "SRLX    $dst,8,$tmp\n\t"
10372             "OR      $dst,$tmp,$dst\n\t"
10373             "SRLX    $dst,16,$tmp\n\t"
10374             "OR      $dst,$tmp,$dst\n\t"
10375             "SRLX    $dst,32,$tmp\n\t"
10376             "OR      $dst,$tmp,$dst\n\t"
10377             "POPC    $dst,$dst\n\t"
10378             "MOV     64,$tmp\n\t"
10379             "SUB     $tmp,$dst,$dst" %}
10380   ins_encode %{
10381     Register Rdst = $dst$$Register;
10382     Register Rsrc = $src$$Register;
10383     Register Rtmp = $tmp$$Register;
10384     __ srlx(Rsrc, 1,    Rtmp);
10385     __ or3( Rsrc, Rtmp, Rdst);
10386     __ srlx(Rdst, 2,    Rtmp);
10387     __ or3( Rdst, Rtmp, Rdst);
10388     __ srlx(Rdst, 4,    Rtmp);
10389     __ or3( Rdst, Rtmp, Rdst);
10390     __ srlx(Rdst, 8,    Rtmp);
10391     __ or3( Rdst, Rtmp, Rdst);
10392     __ srlx(Rdst, 16,   Rtmp);
10393     __ or3( Rdst, Rtmp, Rdst);
10394     __ srlx(Rdst, 32,   Rtmp);
10395     __ or3( Rdst, Rtmp, Rdst);
10396     __ popc(Rdst, Rdst);
10397     __ mov(BitsPerLong, Rtmp);
10398     __ sub(Rtmp, Rdst, Rdst);
10399   %}
10400   ins_pipe(ialu_reg);
10401 %}
10402 
10403 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
10404   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10405   match(Set dst (CountTrailingZerosI src));
10406   effect(TEMP dst, KILL cr);
10407 
10408   // return popc(~x & (x - 1));
10409   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10410             "ANDN    $dst,$src,$dst\n\t"
10411             "SRL     $dst,R_G0,$dst\n\t"
10412             "POPC    $dst,$dst" %}
10413   ins_encode %{
10414     Register Rdst = $dst$$Register;
10415     Register Rsrc = $src$$Register;
10416     __ sub(Rsrc, 1, Rdst);
10417     __ andn(Rdst, Rsrc, Rdst);
10418     __ srl(Rdst, G0, Rdst);
10419     __ popc(Rdst, Rdst);
10420   %}
10421   ins_pipe(ialu_reg);
10422 %}
10423 
10424 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
10425   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10426   match(Set dst (CountTrailingZerosL src));
10427   effect(TEMP dst, KILL cr);
10428 
10429   // return popc(~x & (x - 1));
10430   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10431             "ANDN    $dst,$src,$dst\n\t"
10432             "POPC    $dst,$dst" %}
10433   ins_encode %{
10434     Register Rdst = $dst$$Register;
10435     Register Rsrc = $src$$Register;
10436     __ sub(Rsrc, 1, Rdst);
10437     __ andn(Rdst, Rsrc, Rdst);
10438     __ popc(Rdst, Rdst);
10439   %}
10440   ins_pipe(ialu_reg);
10441 %}
10442 
10443 
10444 //---------- Population Count Instructions -------------------------------------
10445 
10446 instruct popCountI(iRegI dst, iRegI src) %{
10447   predicate(UsePopCountInstruction);
10448   match(Set dst (PopCountI src));
10449 
10450   format %{ "POPC   $src, $dst" %}
10451   ins_encode %{
10452     __ popc($src$$Register, $dst$$Register);
10453   %}
10454   ins_pipe(ialu_reg);
10455 %}
10456 
10457 // Note: Long.bitCount(long) returns an int.
10458 instruct popCountL(iRegI dst, iRegL src) %{
10459   predicate(UsePopCountInstruction);
10460   match(Set dst (PopCountL src));
10461 
10462   format %{ "POPC   $src, $dst" %}
10463   ins_encode %{
10464     __ popc($src$$Register, $dst$$Register);
10465   %}
10466   ins_pipe(ialu_reg);
10467 %}
10468 
10469 
10470 // ============================================================================
10471 //------------Bytes reverse--------------------------------------------------
10472 
10473 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10474   match(Set dst (ReverseBytesI src));
10475 
10476   // Op cost is artificially doubled to make sure that load or store
10477   // instructions are preferred over this one which requires a spill
10478   // onto a stack slot.
10479   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10480   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10481 
10482   ins_encode %{
10483     __ set($src$$disp + STACK_BIAS, O7);
10484     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10485   %}
10486   ins_pipe( iload_mem );
10487 %}
10488 
10489 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10490   match(Set dst (ReverseBytesL src));
10491 
10492   // Op cost is artificially doubled to make sure that load or store
10493   // instructions are preferred over this one which requires a spill
10494   // onto a stack slot.
10495   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10496   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10497 
10498   ins_encode %{
10499     __ set($src$$disp + STACK_BIAS, O7);
10500     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10501   %}
10502   ins_pipe( iload_mem );
10503 %}
10504 
10505 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10506   match(Set dst (ReverseBytesUS src));
10507 
10508   // Op cost is artificially doubled to make sure that load or store
10509   // instructions are preferred over this one which requires a spill
10510   // onto a stack slot.
10511   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10512   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10513 
10514   ins_encode %{
10515     // the value was spilled as an int so bias the load
10516     __ set($src$$disp + STACK_BIAS + 2, O7);
10517     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10518   %}
10519   ins_pipe( iload_mem );
10520 %}
10521 
10522 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10523   match(Set dst (ReverseBytesS src));
10524 
10525   // Op cost is artificially doubled to make sure that load or store
10526   // instructions are preferred over this one which requires a spill
10527   // onto a stack slot.
10528   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10529   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10530 
10531   ins_encode %{
10532     // the value was spilled as an int so bias the load
10533     __ set($src$$disp + STACK_BIAS + 2, O7);
10534     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10535   %}
10536   ins_pipe( iload_mem );
10537 %}
10538 
10539 // Load Integer reversed byte order
10540 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10541   match(Set dst (ReverseBytesI (LoadI src)));
10542 
10543   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10544   size(4);
10545   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10546 
10547   ins_encode %{
10548     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10549   %}
10550   ins_pipe(iload_mem);
10551 %}
10552 
10553 // Load Long - aligned and reversed
10554 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10555   match(Set dst (ReverseBytesL (LoadL src)));
10556 
10557   ins_cost(MEMORY_REF_COST);
10558   size(4);
10559   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10560 
10561   ins_encode %{
10562     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10563   %}
10564   ins_pipe(iload_mem);
10565 %}
10566 
10567 // Load unsigned short / char reversed byte order
10568 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10569   match(Set dst (ReverseBytesUS (LoadUS src)));
10570 
10571   ins_cost(MEMORY_REF_COST);
10572   size(4);
10573   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10574 
10575   ins_encode %{
10576     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10577   %}
10578   ins_pipe(iload_mem);
10579 %}
10580 
10581 // Load short reversed byte order
10582 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10583   match(Set dst (ReverseBytesS (LoadS src)));
10584 
10585   ins_cost(MEMORY_REF_COST);
10586   size(4);
10587   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10588 
10589   ins_encode %{
10590     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10591   %}
10592   ins_pipe(iload_mem);
10593 %}
10594 
10595 // Store Integer reversed byte order
10596 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10597   match(Set dst (StoreI dst (ReverseBytesI src)));
10598 
10599   ins_cost(MEMORY_REF_COST);
10600   size(4);
10601   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10602 
10603   ins_encode %{
10604     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10605   %}
10606   ins_pipe(istore_mem_reg);
10607 %}
10608 
10609 // Store Long reversed byte order
10610 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10611   match(Set dst (StoreL dst (ReverseBytesL src)));
10612 
10613   ins_cost(MEMORY_REF_COST);
10614   size(4);
10615   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10616 
10617   ins_encode %{
10618     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10619   %}
10620   ins_pipe(istore_mem_reg);
10621 %}
10622 
10623 // Store unsighed short/char reversed byte order
10624 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10625   match(Set dst (StoreC dst (ReverseBytesUS src)));
10626 
10627   ins_cost(MEMORY_REF_COST);
10628   size(4);
10629   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10630 
10631   ins_encode %{
10632     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10633   %}
10634   ins_pipe(istore_mem_reg);
10635 %}
10636 
10637 // Store short reversed byte order
10638 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10639   match(Set dst (StoreC dst (ReverseBytesS src)));
10640 
10641   ins_cost(MEMORY_REF_COST);
10642   size(4);
10643   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10644 
10645   ins_encode %{
10646     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10647   %}
10648   ins_pipe(istore_mem_reg);
10649 %}
10650 
10651 //----------PEEPHOLE RULES-----------------------------------------------------
10652 // These must follow all instruction definitions as they use the names
10653 // defined in the instructions definitions.
10654 //
10655 // peepmatch ( root_instr_name [preceding_instruction]* );
10656 //
10657 // peepconstraint %{
10658 // (instruction_number.operand_name relational_op instruction_number.operand_name
10659 //  [, ...] );
10660 // // instruction numbers are zero-based using left to right order in peepmatch
10661 //
10662 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10663 // // provide an instruction_number.operand_name for each operand that appears
10664 // // in the replacement instruction's match rule
10665 //
10666 // ---------VM FLAGS---------------------------------------------------------
10667 //
10668 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10669 //
10670 // Each peephole rule is given an identifying number starting with zero and
10671 // increasing by one in the order seen by the parser.  An individual peephole
10672 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10673 // on the command-line.
10674 //
10675 // ---------CURRENT LIMITATIONS----------------------------------------------
10676 //
10677 // Only match adjacent instructions in same basic block
10678 // Only equality constraints
10679 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10680 // Only one replacement instruction
10681 //
10682 // ---------EXAMPLE----------------------------------------------------------
10683 //
10684 // // pertinent parts of existing instructions in architecture description
10685 // instruct movI(eRegI dst, eRegI src) %{
10686 //   match(Set dst (CopyI src));
10687 // %}
10688 //
10689 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10690 //   match(Set dst (AddI dst src));
10691 //   effect(KILL cr);
10692 // %}
10693 //
10694 // // Change (inc mov) to lea
10695 // peephole %{
10696 //   // increment preceeded by register-register move
10697 //   peepmatch ( incI_eReg movI );
10698 //   // require that the destination register of the increment
10699 //   // match the destination register of the move
10700 //   peepconstraint ( 0.dst == 1.dst );
10701 //   // construct a replacement instruction that sets
10702 //   // the destination to ( move's source register + one )
10703 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10704 // %}
10705 //
10706 
10707 // // Change load of spilled value to only a spill
10708 // instruct storeI(memory mem, eRegI src) %{
10709 //   match(Set mem (StoreI mem src));
10710 // %}
10711 //
10712 // instruct loadI(eRegI dst, memory mem) %{
10713 //   match(Set dst (LoadI mem));
10714 // %}
10715 //
10716 // peephole %{
10717 //   peepmatch ( loadI storeI );
10718 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10719 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10720 // %}
10721 
10722 //----------SMARTSPILL RULES---------------------------------------------------
10723 // These must follow all instruction definitions as they use the names
10724 // defined in the instructions definitions.
10725 //
10726 // SPARC will probably not have any of these rules due to RISC instruction set.
10727 
10728 //----------PIPELINE-----------------------------------------------------------
10729 // Rules which define the behavior of the target architectures pipeline.