1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "assembler_x86.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "runtime/java.hpp"
  29 #include "runtime/stubCodeGenerator.hpp"
  30 #include "vm_version_x86.hpp"
  31 #ifdef TARGET_OS_FAMILY_linux
  32 # include "os_linux.inline.hpp"
  33 #endif
  34 #ifdef TARGET_OS_FAMILY_solaris
  35 # include "os_solaris.inline.hpp"
  36 #endif
  37 #ifdef TARGET_OS_FAMILY_windows
  38 # include "os_windows.inline.hpp"
  39 #endif
  40 
  41 
  42 int VM_Version::_cpu;
  43 int VM_Version::_model;
  44 int VM_Version::_stepping;
  45 int VM_Version::_cpuFeatures;
  46 const char*           VM_Version::_features_str = "";
  47 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
  48 
  49 static BufferBlob* stub_blob;
  50 static const int stub_size = 400;
  51 
  52 extern "C" {
  53   typedef void (*getPsrInfo_stub_t)(void*);
  54 }
  55 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
  56 
  57 
  58 class VM_Version_StubGenerator: public StubCodeGenerator {
  59  public:
  60 
  61   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
  62 
  63   address generate_getPsrInfo() {
  64     // Flags to test CPU type.
  65     const uint32_t EFL_AC           = 0x40000;
  66     const uint32_t EFL_ID           = 0x200000;
  67     // Values for when we don't have a CPUID instruction.
  68     const int      CPU_FAMILY_SHIFT = 8;
  69     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
  70     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
  71 
  72     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
  73     Label ext_cpuid1, ext_cpuid5, done;
  74 
  75     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
  76 #   define __ _masm->
  77 
  78     address start = __ pc();
  79 
  80     //
  81     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
  82     //
  83     // LP64: rcx and rdx are first and second argument registers on windows
  84 
  85     __ push(rbp);
  86 #ifdef _LP64
  87     __ mov(rbp, c_rarg0); // cpuid_info address
  88 #else
  89     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
  90 #endif
  91     __ push(rbx);
  92     __ push(rsi);
  93     __ pushf();          // preserve rbx, and flags
  94     __ pop(rax);
  95     __ push(rax);
  96     __ mov(rcx, rax);
  97     //
  98     // if we are unable to change the AC flag, we have a 386
  99     //
 100     __ xorl(rax, EFL_AC);
 101     __ push(rax);
 102     __ popf();
 103     __ pushf();
 104     __ pop(rax);
 105     __ cmpptr(rax, rcx);
 106     __ jccb(Assembler::notEqual, detect_486);
 107 
 108     __ movl(rax, CPU_FAMILY_386);
 109     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 110     __ jmp(done);
 111 
 112     //
 113     // If we are unable to change the ID flag, we have a 486 which does
 114     // not support the "cpuid" instruction.
 115     //
 116     __ bind(detect_486);
 117     __ mov(rax, rcx);
 118     __ xorl(rax, EFL_ID);
 119     __ push(rax);
 120     __ popf();
 121     __ pushf();
 122     __ pop(rax);
 123     __ cmpptr(rcx, rax);
 124     __ jccb(Assembler::notEqual, detect_586);
 125 
 126     __ bind(cpu486);
 127     __ movl(rax, CPU_FAMILY_486);
 128     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 129     __ jmp(done);
 130 
 131     //
 132     // At this point, we have a chip which supports the "cpuid" instruction
 133     //
 134     __ bind(detect_586);
 135     __ xorl(rax, rax);
 136     __ cpuid();
 137     __ orl(rax, rax);
 138     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
 139                                         // value of at least 1, we give up and
 140                                         // assume a 486
 141     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 142     __ movl(Address(rsi, 0), rax);
 143     __ movl(Address(rsi, 4), rbx);
 144     __ movl(Address(rsi, 8), rcx);
 145     __ movl(Address(rsi,12), rdx);
 146 
 147     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
 148     __ jccb(Assembler::belowEqual, std_cpuid4);
 149 
 150     //
 151     // cpuid(0xB) Processor Topology
 152     //
 153     __ movl(rax, 0xb);
 154     __ xorl(rcx, rcx);   // Threads level
 155     __ cpuid();
 156 
 157     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
 158     __ movl(Address(rsi, 0), rax);
 159     __ movl(Address(rsi, 4), rbx);
 160     __ movl(Address(rsi, 8), rcx);
 161     __ movl(Address(rsi,12), rdx);
 162 
 163     __ movl(rax, 0xb);
 164     __ movl(rcx, 1);     // Cores level
 165     __ cpuid();
 166     __ push(rax);
 167     __ andl(rax, 0x1f);  // Determine if valid topology level
 168     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 169     __ andl(rax, 0xffff);
 170     __ pop(rax);
 171     __ jccb(Assembler::equal, std_cpuid4);
 172 
 173     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
 174     __ movl(Address(rsi, 0), rax);
 175     __ movl(Address(rsi, 4), rbx);
 176     __ movl(Address(rsi, 8), rcx);
 177     __ movl(Address(rsi,12), rdx);
 178 
 179     __ movl(rax, 0xb);
 180     __ movl(rcx, 2);     // Packages level
 181     __ cpuid();
 182     __ push(rax);
 183     __ andl(rax, 0x1f);  // Determine if valid topology level
 184     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 185     __ andl(rax, 0xffff);
 186     __ pop(rax);
 187     __ jccb(Assembler::equal, std_cpuid4);
 188 
 189     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
 190     __ movl(Address(rsi, 0), rax);
 191     __ movl(Address(rsi, 4), rbx);
 192     __ movl(Address(rsi, 8), rcx);
 193     __ movl(Address(rsi,12), rdx);
 194 
 195     //
 196     // cpuid(0x4) Deterministic cache params
 197     //
 198     __ bind(std_cpuid4);
 199     __ movl(rax, 4);
 200     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
 201     __ jccb(Assembler::greater, std_cpuid1);
 202 
 203     __ xorl(rcx, rcx);   // L1 cache
 204     __ cpuid();
 205     __ push(rax);
 206     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
 207     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
 208     __ pop(rax);
 209     __ jccb(Assembler::equal, std_cpuid1);
 210 
 211     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
 212     __ movl(Address(rsi, 0), rax);
 213     __ movl(Address(rsi, 4), rbx);
 214     __ movl(Address(rsi, 8), rcx);
 215     __ movl(Address(rsi,12), rdx);
 216 
 217     //
 218     // Standard cpuid(0x1)
 219     //
 220     __ bind(std_cpuid1);
 221     __ movl(rax, 1);
 222     __ cpuid();
 223     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 224     __ movl(Address(rsi, 0), rax);
 225     __ movl(Address(rsi, 4), rbx);
 226     __ movl(Address(rsi, 8), rcx);
 227     __ movl(Address(rsi,12), rdx);
 228 
 229     __ movl(rax, 0x80000000);
 230     __ cpuid();
 231     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
 232     __ jcc(Assembler::belowEqual, done);
 233     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
 234     __ jccb(Assembler::belowEqual, ext_cpuid1);
 235     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
 236     __ jccb(Assembler::belowEqual, ext_cpuid5);
 237     //
 238     // Extended cpuid(0x80000008)
 239     //
 240     __ movl(rax, 0x80000008);
 241     __ cpuid();
 242     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
 243     __ movl(Address(rsi, 0), rax);
 244     __ movl(Address(rsi, 4), rbx);
 245     __ movl(Address(rsi, 8), rcx);
 246     __ movl(Address(rsi,12), rdx);
 247 
 248     //
 249     // Extended cpuid(0x80000005)
 250     //
 251     __ bind(ext_cpuid5);
 252     __ movl(rax, 0x80000005);
 253     __ cpuid();
 254     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
 255     __ movl(Address(rsi, 0), rax);
 256     __ movl(Address(rsi, 4), rbx);
 257     __ movl(Address(rsi, 8), rcx);
 258     __ movl(Address(rsi,12), rdx);
 259 
 260     //
 261     // Extended cpuid(0x80000001)
 262     //
 263     __ bind(ext_cpuid1);
 264     __ movl(rax, 0x80000001);
 265     __ cpuid();
 266     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
 267     __ movl(Address(rsi, 0), rax);
 268     __ movl(Address(rsi, 4), rbx);
 269     __ movl(Address(rsi, 8), rcx);
 270     __ movl(Address(rsi,12), rdx);
 271 
 272     //
 273     // return
 274     //
 275     __ bind(done);
 276     __ popf();
 277     __ pop(rsi);
 278     __ pop(rbx);
 279     __ pop(rbp);
 280     __ ret(0);
 281 
 282 #   undef __
 283 
 284     return start;
 285   };
 286 };
 287 
 288 
 289 void VM_Version::get_processor_features() {
 290 
 291   _cpu = 4; // 486 by default
 292   _model = 0;
 293   _stepping = 0;
 294   _cpuFeatures = 0;
 295   _logical_processors_per_package = 1;
 296 
 297   if (!Use486InstrsOnly) {
 298     // Get raw processor info
 299     getPsrInfo_stub(&_cpuid_info);
 300     assert_is_initialized();
 301     _cpu = extended_cpu_family();
 302     _model = extended_cpu_model();
 303     _stepping = cpu_stepping();
 304 
 305     if (cpu_family() > 4) { // it supports CPUID
 306       _cpuFeatures = feature_flags();
 307       // Logical processors are only available on P4s and above,
 308       // and only if hyperthreading is available.
 309       _logical_processors_per_package = logical_processor_count();
 310     }
 311   }
 312 
 313   _supports_cx8 = supports_cmpxchg8();
 314 
 315 #ifdef _LP64
 316   // OS should support SSE for x64 and hardware should support at least SSE2.
 317   if (!VM_Version::supports_sse2()) {
 318     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
 319   }
 320   // in 64 bit the use of SSE2 is the minimum
 321   if (UseSSE < 2) UseSSE = 2;
 322 #endif
 323 
 324 #ifdef AMD64
 325   // flush_icache_stub have to be generated first.
 326   // That is why Icache line size is hard coded in ICache class,
 327   // see icache_x86.hpp. It is also the reason why we can't use
 328   // clflush instruction in 32-bit VM since it could be running
 329   // on CPU which does not support it.
 330   //
 331   // The only thing we can do is to verify that flushed
 332   // ICache::line_size has correct value.
 333   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
 334   // clflush_size is size in quadwords (8 bytes).
 335   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
 336 #endif
 337 
 338   // If the OS doesn't support SSE, we can't use this feature even if the HW does
 339   if (!os::supports_sse())
 340     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
 341 
 342   if (UseSSE < 4) {
 343     _cpuFeatures &= ~CPU_SSE4_1;
 344     _cpuFeatures &= ~CPU_SSE4_2;
 345   }
 346 
 347   if (UseSSE < 3) {
 348     _cpuFeatures &= ~CPU_SSE3;
 349     _cpuFeatures &= ~CPU_SSSE3;
 350     _cpuFeatures &= ~CPU_SSE4A;
 351   }
 352 
 353   if (UseSSE < 2)
 354     _cpuFeatures &= ~CPU_SSE2;
 355 
 356   if (UseSSE < 1)
 357     _cpuFeatures &= ~CPU_SSE;
 358 
 359   if (logical_processors_per_package() == 1) {
 360     // HT processor could be installed on a system which doesn't support HT.
 361     _cpuFeatures &= ~CPU_HT;
 362   }
 363 
 364   char buf[256];
 365   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
 366                cores_per_cpu(), threads_per_core(),
 367                cpu_family(), _model, _stepping,
 368                (supports_cmov() ? ", cmov" : ""),
 369                (supports_cmpxchg8() ? ", cx8" : ""),
 370                (supports_fxsr() ? ", fxsr" : ""),
 371                (supports_mmx()  ? ", mmx"  : ""),
 372                (supports_sse()  ? ", sse"  : ""),
 373                (supports_sse2() ? ", sse2" : ""),
 374                (supports_sse3() ? ", sse3" : ""),
 375                (supports_ssse3()? ", ssse3": ""),
 376                (supports_sse4_1() ? ", sse4.1" : ""),
 377                (supports_sse4_2() ? ", sse4.2" : ""),
 378                (supports_popcnt() ? ", popcnt" : ""),
 379                (supports_mmx_ext() ? ", mmxext" : ""),
 380                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
 381                (supports_lzcnt()   ? ", lzcnt": ""),
 382                (supports_sse4a()   ? ", sse4a": ""),
 383                (supports_ht() ? ", ht": ""));
 384   _features_str = strdup(buf);
 385 
 386   // UseSSE is set to the smaller of what hardware supports and what
 387   // the command line requires.  I.e., you cannot set UseSSE to 2 on
 388   // older Pentiums which do not support it.
 389   if( UseSSE > 4 ) UseSSE=4;
 390   if( UseSSE < 0 ) UseSSE=0;
 391   if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
 392     UseSSE = MIN2((intx)3,UseSSE);
 393   if( !supports_sse3() ) // Drop to 2 if no SSE3 support
 394     UseSSE = MIN2((intx)2,UseSSE);
 395   if( !supports_sse2() ) // Drop to 1 if no SSE2 support
 396     UseSSE = MIN2((intx)1,UseSSE);
 397   if( !supports_sse () ) // Drop to 0 if no SSE  support
 398     UseSSE = 0;
 399 
 400   // On new cpus instructions which update whole XMM register should be used
 401   // to prevent partial register stall due to dependencies on high half.
 402   //
 403   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
 404   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
 405   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
 406   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
 407 
 408   if( is_amd() ) { // AMD cpus specific settings
 409     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
 410       // Use it on new AMD cpus starting from Opteron.
 411       UseAddressNop = true;
 412     }
 413     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
 414       // Use it on new AMD cpus starting from Opteron.
 415       UseNewLongLShift = true;
 416     }
 417     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
 418       if( supports_sse4a() ) {
 419         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
 420       } else {
 421         UseXmmLoadAndClearUpper = false;
 422       }
 423     }
 424     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
 425       if( supports_sse4a() ) {
 426         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
 427       } else {
 428         UseXmmRegToRegMoveAll = false;
 429       }
 430     }
 431     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
 432       if( supports_sse4a() ) {
 433         UseXmmI2F = true;
 434       } else {
 435         UseXmmI2F = false;
 436       }
 437     }
 438     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
 439       if( supports_sse4a() ) {
 440         UseXmmI2D = true;
 441       } else {
 442         UseXmmI2D = false;
 443       }
 444     }
 445     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
 446       if( supports_sse4_2() && UseSSE >= 4 ) {
 447         UseSSE42Intrinsics = true;
 448       }
 449     }
 450 
 451     // Use count leading zeros count instruction if available.
 452     if (supports_lzcnt()) {
 453       if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
 454         UseCountLeadingZerosInstruction = true;
 455       }
 456     }
 457 
 458     // some defaults for AMD family 15h
 459     if ( cpu_family() == 0x15 ) {
 460       // On family 15h processors default is no sw prefetch
 461       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
 462         AllocatePrefetchStyle = 0;
 463       }
 464       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
 465       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
 466         AllocatePrefetchInstr = 3;
 467       }
 468       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
 469       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
 470         UseXMMForArrayCopy = true;
 471       }
 472       if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
 473         UseUnalignedLoadStores = true;
 474       }
 475     }
 476 
 477   }
 478 
 479   if( is_intel() ) { // Intel cpus specific settings
 480     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
 481       UseStoreImmI16 = false; // don't use it on Intel cpus
 482     }
 483     if( cpu_family() == 6 || cpu_family() == 15 ) {
 484       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
 485         // Use it on all Intel cpus starting from PentiumPro
 486         UseAddressNop = true;
 487       }
 488     }
 489     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
 490       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
 491     }
 492     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
 493       if( supports_sse3() ) {
 494         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
 495       } else {
 496         UseXmmRegToRegMoveAll = false;
 497       }
 498     }
 499     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
 500 #ifdef COMPILER2
 501       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
 502         // For new Intel cpus do the next optimization:
 503         // don't align the beginning of a loop if there are enough instructions
 504         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
 505         // in current fetch line (OptoLoopAlignment) or the padding
 506         // is big (> MaxLoopPad).
 507         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
 508         // generated NOP instructions. 11 is the largest size of one
 509         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
 510         MaxLoopPad = 11;
 511       }
 512 #endif // COMPILER2
 513       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
 514         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
 515       }
 516       if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
 517         if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
 518           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
 519         }
 520       }
 521       if( supports_sse4_2() && UseSSE >= 4 ) {
 522         if( FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
 523           UseSSE42Intrinsics = true;
 524         }
 525       }
 526     }
 527   }
 528 
 529   // Use population count instruction if available.
 530   if (supports_popcnt()) {
 531     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
 532       UsePopCountInstruction = true;
 533     }
 534   }
 535 
 536 #ifdef COMPILER2
 537   if (UseFPUForSpilling) {
 538     if (UseSSE < 2) {
 539       // Only supported with SSE2+
 540       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
 541     }
 542   }
 543 #endif
 544 
 545   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
 546   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
 547 
 548   // set valid Prefetch instruction
 549   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
 550   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
 551   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
 552   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
 553 
 554   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
 555   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
 556   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
 557   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
 558 
 559   // Allocation prefetch settings
 560   intx cache_line_size = prefetch_data_size();
 561   if( cache_line_size > AllocatePrefetchStepSize )
 562     AllocatePrefetchStepSize = cache_line_size;
 563 
 564   assert(AllocatePrefetchLines > 0, "invalid value");
 565   if( AllocatePrefetchLines < 1 )     // set valid value in product VM
 566     AllocatePrefetchLines = 3;
 567   assert(AllocateInstancePrefetchLines > 0, "invalid value");
 568   if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
 569     AllocateInstancePrefetchLines = 1;
 570 
 571   AllocatePrefetchDistance = allocate_prefetch_distance();
 572   AllocatePrefetchStyle    = allocate_prefetch_style();
 573 
 574   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
 575     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
 576 #ifdef _LP64
 577       AllocatePrefetchDistance = 384;
 578 #else
 579       AllocatePrefetchDistance = 320;
 580 #endif
 581     }
 582     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
 583       AllocatePrefetchDistance = 192;
 584       AllocatePrefetchLines = 4;
 585 #ifdef COMPILER2
 586       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
 587         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
 588       }
 589 #endif
 590     }
 591   }
 592   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
 593 
 594 #ifdef _LP64
 595   // Prefetch settings
 596   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
 597   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
 598   PrefetchFieldsAhead         = prefetch_fields_ahead();
 599 #endif
 600 
 601 #ifndef PRODUCT
 602   if (PrintMiscellaneous && Verbose) {
 603     tty->print_cr("Logical CPUs per core: %u",
 604                   logical_processors_per_package());
 605     tty->print_cr("UseSSE=%d",UseSSE);
 606     tty->print("Allocation");
 607     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
 608       tty->print_cr(": no prefetching");
 609     } else {
 610       tty->print(" prefetching: ");
 611       if (UseSSE == 0 && supports_3dnow_prefetch()) {
 612         tty->print("PREFETCHW");
 613       } else if (UseSSE >= 1) {
 614         if (AllocatePrefetchInstr == 0) {
 615           tty->print("PREFETCHNTA");
 616         } else if (AllocatePrefetchInstr == 1) {
 617           tty->print("PREFETCHT0");
 618         } else if (AllocatePrefetchInstr == 2) {
 619           tty->print("PREFETCHT2");
 620         } else if (AllocatePrefetchInstr == 3) {
 621           tty->print("PREFETCHW");
 622         }
 623       }
 624       if (AllocatePrefetchLines > 1) {
 625         tty->print_cr(" at distance %d, %d lines of %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
 626       } else {
 627         tty->print_cr(" at distance %d, one line of %d bytes", AllocatePrefetchDistance, AllocatePrefetchStepSize);
 628       }
 629     }
 630 
 631     if (PrefetchCopyIntervalInBytes > 0) {
 632       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
 633     }
 634     if (PrefetchScanIntervalInBytes > 0) {
 635       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
 636     }
 637     if (PrefetchFieldsAhead > 0) {
 638       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
 639     }
 640   }
 641 #endif // !PRODUCT
 642 }
 643 
 644 void VM_Version::initialize() {
 645   ResourceMark rm;
 646   // Making this stub must be FIRST use of assembler
 647 
 648   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
 649   if (stub_blob == NULL) {
 650     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
 651   }
 652   CodeBuffer c(stub_blob);
 653   VM_Version_StubGenerator g(&c);
 654   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
 655                                    g.generate_getPsrInfo());
 656 
 657   get_processor_features();
 658 }