1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/chaitin.hpp"
  28 #include "opto/machnode.hpp"
  29 
  30 // see if this register kind does not requires two registers
  31 static bool is_single_register(uint x) {
  32 #ifdef _LP64
  33   return (x != Op_RegD && x != Op_RegL && x != Op_RegP);
  34 #else
  35   return (x != Op_RegD && x != Op_RegL);
  36 #endif
  37 }
  38 
  39 //---------------------------may_be_copy_of_callee-----------------------------
  40 // Check to see if we can possibly be a copy of a callee-save value.
  41 bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
  42   // Short circuit if there are no callee save registers
  43   if (_matcher.number_of_saved_registers() == 0) return false;
  44 
  45   // Expect only a spill-down and reload on exit for callee-save spills.
  46   // Chains of copies cannot be deep.
  47   // 5008997 - This is wishful thinking. Register allocator seems to
  48   // be splitting live ranges for callee save registers to such
  49   // an extent that in large methods the chains can be very long
  50   // (50+). The conservative answer is to return true if we don't
  51   // know as this prevents optimizations from occurring.
  52 
  53   const int limit = 60;
  54   int i;
  55   for( i=0; i < limit; i++ ) {
  56     if( def->is_Proj() && def->in(0)->is_Start() &&
  57         _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
  58       return true;              // Direct use of callee-save proj
  59     if( def->is_Copy() )        // Copies carry value through
  60       def = def->in(def->is_Copy());
  61     else if( def->is_Phi() )    // Phis can merge it from any direction
  62       def = def->in(1);
  63     else
  64       break;
  65     guarantee(def != NULL, "must not resurrect dead copy");
  66   }
  67   // If we reached the end and didn't find a callee save proj
  68   // then this may be a callee save proj so we return true
  69   // as the conservative answer. If we didn't reach then end
  70   // we must have discovered that it was not a callee save
  71   // else we would have returned.
  72   return i == limit;
  73 }
  74 
  75 //------------------------------yank-----------------------------------
  76 // Helper function for yank_if_dead
  77 int PhaseChaitin::yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
  78   int blk_adjust=0;
  79   Block *oldb = _cfg._bbs[old->_idx];
  80   oldb->find_remove(old);
  81   // Count 1 if deleting an instruction from the current block
  82   if( oldb == current_block ) blk_adjust++;
  83   _cfg._bbs.map(old->_idx,NULL);
  84   OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
  85   if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
  86     value->map(old_reg,NULL);  // Yank from value/regnd maps
  87     regnd->map(old_reg,NULL);  // This register's value is now unknown
  88   }
  89   return blk_adjust;
  90 }
  91 
  92 //------------------------------yank_if_dead-----------------------------------
  93 // Removed an edge from 'old'.  Yank if dead.  Return adjustment counts to
  94 // iterators in the current block.
  95 int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
  96   int blk_adjust=0;
  97   while (old->outcnt() == 0 && old != C->top()) {
  98     blk_adjust += yank(old, current_block, value, regnd);
  99 
 100     Node *tmp = NULL;
 101     for (uint i = 1; i < old->req(); i++) {
 102       if (old->in(i)->is_MachTemp()) {
 103         Node* machtmp = old->in(i);
 104         assert(machtmp->outcnt() == 1, "expected for a MachTemp");
 105         blk_adjust += yank(machtmp, current_block, value, regnd);
 106         machtmp->disconnect_inputs(NULL);
 107       } else {
 108         assert(tmp == NULL, "can't handle more non MachTemp inputs");
 109         tmp = old->in(i);
 110       }
 111     }
 112     old->disconnect_inputs(NULL);
 113     if( !tmp ) break;
 114     old = tmp;
 115   }
 116   return blk_adjust;
 117 }
 118 
 119 //------------------------------use_prior_register-----------------------------
 120 // Use the prior value instead of the current value, in an effort to make
 121 // the current value go dead.  Return block iterator adjustment, in case
 122 // we yank some instructions from this block.
 123 int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
 124   // No effect?
 125   if( def == n->in(idx) ) return 0;
 126   // Def is currently dead and can be removed?  Do not resurrect
 127   if( def->outcnt() == 0 ) return 0;
 128 
 129   // Not every pair of physical registers are assignment compatible,
 130   // e.g. on sparc floating point registers are not assignable to integer
 131   // registers.
 132   const LRG &def_lrg = lrgs(n2lidx(def));
 133   OptoReg::Name def_reg = def_lrg.reg();
 134   const RegMask &use_mask = n->in_RegMask(idx);
 135   bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
 136                                                    : (use_mask.is_AllStack() != 0));
 137   // Check for a copy to or from a misaligned pair.
 138   can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair();
 139 
 140   if (!can_use)
 141     return 0;
 142 
 143   // Capture the old def in case it goes dead...
 144   Node *old = n->in(idx);
 145 
 146   // Save-on-call copies can only be elided if the entire copy chain can go
 147   // away, lest we get the same callee-save value alive in 2 locations at
 148   // once.  We check for the obvious trivial case here.  Although it can
 149   // sometimes be elided with cooperation outside our scope, here we will just
 150   // miss the opportunity.  :-(
 151   if( may_be_copy_of_callee(def) ) {
 152     if( old->outcnt() > 1 ) return 0; // We're the not last user
 153     int idx = old->is_Copy();
 154     assert( idx, "chain of copies being removed" );
 155     Node *old2 = old->in(idx);  // Chain of copies
 156     if( old2->outcnt() > 1 ) return 0; // old is not the last user
 157     int idx2 = old2->is_Copy();
 158     if( !idx2 ) return 0;       // Not a chain of 2 copies
 159     if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
 160   }
 161 
 162   // Use the new def
 163   n->set_req(idx,def);
 164   _post_alloc++;
 165 
 166   // Is old def now dead?  We successfully yanked a copy?
 167   return yank_if_dead(old,current_block,&value,&regnd);
 168 }
 169 
 170 
 171 //------------------------------skip_copies------------------------------------
 172 // Skip through any number of copies (that don't mod oop-i-ness)
 173 Node *PhaseChaitin::skip_copies( Node *c ) {
 174   int idx = c->is_Copy();
 175   uint is_oop = lrgs(n2lidx(c))._is_oop;
 176   while (idx != 0) {
 177     guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
 178     if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
 179       break;  // casting copy, not the same value
 180     c = c->in(idx);
 181     idx = c->is_Copy();
 182   }
 183   return c;
 184 }
 185 
 186 //------------------------------elide_copy-------------------------------------
 187 // Remove (bypass) copies along Node n, edge k.
 188 int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
 189   int blk_adjust = 0;
 190 
 191   uint nk_idx = n2lidx(n->in(k));
 192   OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
 193 
 194   // Remove obvious same-register copies
 195   Node *x = n->in(k);
 196   int idx;
 197   while( (idx=x->is_Copy()) != 0 ) {
 198     Node *copy = x->in(idx);
 199     guarantee(copy != NULL, "must not resurrect dead copy");
 200     if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
 201     blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
 202     if( n->in(k) != copy ) break; // Failed for some cutout?
 203     x = copy;                   // Progress, try again
 204   }
 205 
 206   // Phis and 2-address instructions cannot change registers so easily - their
 207   // outputs must match their input.
 208   if( !can_change_regs )
 209     return blk_adjust;          // Only check stupid copies!
 210 
 211   // Loop backedges won't have a value-mapping yet
 212   if( &value == NULL ) return blk_adjust;
 213 
 214   // Skip through all copies to the _value_ being used.  Do not change from
 215   // int to pointer.  This attempts to jump through a chain of copies, where
 216   // intermediate copies might be illegal, i.e., value is stored down to stack
 217   // then reloaded BUT survives in a register the whole way.
 218   Node *val = skip_copies(n->in(k));
 219 
 220   if (val == x && nk_idx != 0 &&
 221       regnd[nk_reg] != NULL && regnd[nk_reg] != x &&
 222       n2lidx(x) == n2lidx(regnd[nk_reg])) {
 223     // When rematerialzing nodes and stretching lifetimes, the
 224     // allocator will reuse the original def for multidef LRG instead
 225     // of the current reaching def because it can't know it's safe to
 226     // do so.  After allocation completes if they are in the same LRG
 227     // then it should use the current reaching def instead.
 228     n->set_req(k, regnd[nk_reg]);
 229     blk_adjust += yank_if_dead(val, current_block, &value, &regnd);
 230     val = skip_copies(n->in(k));
 231   }
 232 
 233   if( val == x ) return blk_adjust; // No progress?
 234 
 235   bool single = is_single_register(val->ideal_reg());
 236   uint val_idx = n2lidx(val);
 237   OptoReg::Name val_reg = lrgs(val_idx).reg();
 238 
 239   // See if it happens to already be in the correct register!
 240   // (either Phi's direct register, or the common case of the name
 241   // never-clobbered original-def register)
 242   if( value[val_reg] == val &&
 243       // Doubles check both halves
 244       ( single || value[val_reg-1] == val ) ) {
 245     blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
 246     if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
 247       return blk_adjust;
 248   }
 249 
 250   // See if we can skip the copy by changing registers.  Don't change from
 251   // using a register to using the stack unless we know we can remove a
 252   // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
 253   // ops reading from memory instead of just loading once and using the
 254   // register.
 255 
 256   // Also handle duplicate copies here.
 257   const Type *t = val->is_Con() ? val->bottom_type() : NULL;
 258 
 259   // Scan all registers to see if this value is around already
 260   for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
 261     if (reg == (uint)nk_reg) {
 262       // Found ourselves so check if there is only one user of this
 263       // copy and keep on searching for a better copy if so.
 264       bool ignore_self = true;
 265       x = n->in(k);
 266       DUIterator_Fast imax, i = x->fast_outs(imax);
 267       Node* first = x->fast_out(i); i++;
 268       while (i < imax && ignore_self) {
 269         Node* use = x->fast_out(i); i++;
 270         if (use != first) ignore_self = false;
 271       }
 272       if (ignore_self) continue;
 273     }
 274 
 275     Node *vv = value[reg];
 276     if( !single ) {             // Doubles check for aligned-adjacent pair
 277       if( (reg&1)==0 ) continue;  // Wrong half of a pair
 278       if( vv != value[reg-1] ) continue; // Not a complete pair
 279     }
 280     if( vv == val ||            // Got a direct hit?
 281         (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
 282          vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
 283       assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
 284       if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
 285           OptoReg::is_reg(reg) || // turning into a register use OR
 286           regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
 287         blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
 288         if( n->in(k) == regnd[reg] ) // Success!  Quit trying
 289           return blk_adjust;
 290       } // End of if not degrading to a stack
 291     } // End of if found value in another register
 292   } // End of scan all machine registers
 293   return blk_adjust;
 294 }
 295 
 296 
 297 //
 298 // Check if nreg already contains the constant value val.  Normal copy
 299 // elimination doesn't doesn't work on constants because multiple
 300 // nodes can represent the same constant so the type and rule of the
 301 // MachNode must be checked to ensure equivalence.
 302 //
 303 bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
 304                                               Block *current_block,
 305                                               Node_List& value, Node_List& regnd,
 306                                               OptoReg::Name nreg, OptoReg::Name nreg2) {
 307   if (value[nreg] != val && val->is_Con() &&
 308       value[nreg] != NULL && value[nreg]->is_Con() &&
 309       (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
 310       value[nreg]->bottom_type() == val->bottom_type() &&
 311       value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
 312     // This code assumes that two MachNodes representing constants
 313     // which have the same rule and the same bottom type will produce
 314     // identical effects into a register.  This seems like it must be
 315     // objectively true unless there are hidden inputs to the nodes
 316     // but if that were to change this code would need to updated.
 317     // Since they are equivalent the second one if redundant and can
 318     // be removed.
 319     //
 320     // n will be replaced with the old value but n might have
 321     // kills projections associated with it so remove them now so that
 322     // yank_if_dead will be able to eliminate the copy once the uses
 323     // have been transferred to the old[value].
 324     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 325       Node* use = n->fast_out(i);
 326       if (use->is_Proj() && use->outcnt() == 0) {
 327         // Kill projections have no users and one input
 328         use->set_req(0, C->top());
 329         yank_if_dead(use, current_block, &value, &regnd);
 330         --i; --imax;
 331       }
 332     }
 333     _post_alloc++;
 334     return true;
 335   }
 336   return false;
 337 }
 338 
 339 
 340 //------------------------------post_allocate_copy_removal---------------------
 341 // Post-Allocation peephole copy removal.  We do this in 1 pass over the
 342 // basic blocks.  We maintain a mapping of registers to Nodes (an  array of
 343 // Nodes indexed by machine register or stack slot number).  NULL means that a
 344 // register is not mapped to any Node.  We can (want to have!) have several
 345 // registers map to the same Node.  We walk forward over the instructions
 346 // updating the mapping as we go.  At merge points we force a NULL if we have
 347 // to merge 2 different Nodes into the same register.  Phi functions will give
 348 // us a new Node if there is a proper value merging.  Since the blocks are
 349 // arranged in some RPO, we will visit all parent blocks before visiting any
 350 // successor blocks (except at loops).
 351 //
 352 // If we find a Copy we look to see if the Copy's source register is a stack
 353 // slot and that value has already been loaded into some machine register; if
 354 // so we use machine register directly.  This turns a Load into a reg-reg
 355 // Move.  We also look for reloads of identical constants.
 356 //
 357 // When we see a use from a reg-reg Copy, we will attempt to use the copy's
 358 // source directly and make the copy go dead.
 359 void PhaseChaitin::post_allocate_copy_removal() {
 360   NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
 361   ResourceMark rm;
 362 
 363   // Need a mapping from basic block Node_Lists.  We need a Node_List to
 364   // map from register number to value-producing Node.
 365   Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
 366   memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
 367   // Need a mapping from basic block Node_Lists.  We need a Node_List to
 368   // map from register number to register-defining Node.
 369   Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
 370   memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
 371 
 372   // We keep unused Node_Lists on a free_list to avoid wasting
 373   // memory.
 374   GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
 375 
 376   // For all blocks
 377   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 378     uint j;
 379     Block *b = _cfg._blocks[i];
 380 
 381     // Count of Phis in block
 382     uint phi_dex;
 383     for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
 384       Node *phi = b->_nodes[phi_dex];
 385       if( !phi->is_Phi() )
 386         break;
 387     }
 388 
 389     // If any predecessor has not been visited, we do not know the state
 390     // of registers at the start.  Check for this, while updating copies
 391     // along Phi input edges
 392     bool missing_some_inputs = false;
 393     Block *freed = NULL;
 394     for( j = 1; j < b->num_preds(); j++ ) {
 395       Block *pb = _cfg._bbs[b->pred(j)->_idx];
 396       // Remove copies along phi edges
 397       for( uint k=1; k<phi_dex; k++ )
 398         elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
 399       if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
 400         // See if this predecessor's mappings have been used by everybody
 401         // who wants them.  If so, free 'em.
 402         uint k;
 403         for( k=0; k<pb->_num_succs; k++ ) {
 404           Block *pbsucc = pb->_succs[k];
 405           if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
 406             break;              // Found a future user
 407         }
 408         if( k >= pb->_num_succs ) { // No more uses, free!
 409           freed = pb;           // Record last block freed
 410           free_list.push(blk2value[pb->_pre_order]);
 411           free_list.push(blk2regnd[pb->_pre_order]);
 412         }
 413       } else {                  // This block has unvisited (loopback) inputs
 414         missing_some_inputs = true;
 415       }
 416     }
 417 
 418 
 419     // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
 420     // 'freed's blocks off the list
 421     Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
 422     Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
 423     assert( !freed || blk2value[freed->_pre_order] == &value, "" );
 424     value.map(_max_reg,NULL);
 425     regnd.map(_max_reg,NULL);
 426     // Set mappings as OUR mappings
 427     blk2value[b->_pre_order] = &value;
 428     blk2regnd[b->_pre_order] = &regnd;
 429 
 430     // Initialize value & regnd for this block
 431     if( missing_some_inputs ) {
 432       // Some predecessor has not yet been visited; zap map to empty
 433       for( uint k = 0; k < (uint)_max_reg; k++ ) {
 434         value.map(k,NULL);
 435         regnd.map(k,NULL);
 436       }
 437     } else {
 438       if( !freed ) {            // Didn't get a freebie prior block
 439         // Must clone some data
 440         freed = _cfg._bbs[b->pred(1)->_idx];
 441         Node_List &f_value = *blk2value[freed->_pre_order];
 442         Node_List &f_regnd = *blk2regnd[freed->_pre_order];
 443         for( uint k = 0; k < (uint)_max_reg; k++ ) {
 444           value.map(k,f_value[k]);
 445           regnd.map(k,f_regnd[k]);
 446         }
 447       }
 448       // Merge all inputs together, setting to NULL any conflicts.
 449       for( j = 1; j < b->num_preds(); j++ ) {
 450         Block *pb = _cfg._bbs[b->pred(j)->_idx];
 451         if( pb == freed ) continue; // Did self already via freelist
 452         Node_List &p_regnd = *blk2regnd[pb->_pre_order];
 453         for( uint k = 0; k < (uint)_max_reg; k++ ) {
 454           if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
 455             value.map(k,NULL); // Then no value handy
 456             regnd.map(k,NULL);
 457           }
 458         }
 459       }
 460     }
 461 
 462     // For all Phi's
 463     for( j = 1; j < phi_dex; j++ ) {
 464       uint k;
 465       Node *phi = b->_nodes[j];
 466       uint pidx = n2lidx(phi);
 467       OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
 468 
 469       // Remove copies remaining on edges.  Check for junk phi.
 470       Node *u = NULL;
 471       for( k=1; k<phi->req(); k++ ) {
 472         Node *x = phi->in(k);
 473         if( phi != x && u != x ) // Found a different input
 474           u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
 475       }
 476       if( u != NodeSentinel ) {    // Junk Phi.  Remove
 477         b->_nodes.remove(j--); phi_dex--;
 478         _cfg._bbs.map(phi->_idx,NULL);
 479         phi->replace_by(u);
 480         phi->disconnect_inputs(NULL);
 481         continue;
 482       }
 483       // Note that if value[pidx] exists, then we merged no new values here
 484       // and the phi is useless.  This can happen even with the above phi
 485       // removal for complex flows.  I cannot keep the better known value here
 486       // because locally the phi appears to define a new merged value.  If I
 487       // keep the better value then a copy of the phi, being unable to use the
 488       // global flow analysis, can't "peek through" the phi to the original
 489       // reaching value and so will act like it's defining a new value.  This
 490       // can lead to situations where some uses are from the old and some from
 491       // the new values.  Not illegal by itself but throws the over-strong
 492       // assert in scheduling.
 493       if( pidx ) {
 494         value.map(preg,phi);
 495         regnd.map(preg,phi);
 496         OptoReg::Name preg_lo = OptoReg::add(preg,-1);
 497         if( !is_single_register(phi->ideal_reg()) ) {
 498           value.map(preg_lo,phi);
 499           regnd.map(preg_lo,phi);
 500         }
 501       }
 502     }
 503 
 504     // For all remaining instructions
 505     for( j = phi_dex; j < b->_nodes.size(); j++ ) {
 506       Node *n = b->_nodes[j];
 507 
 508       if( n->outcnt() == 0 &&   // Dead?
 509           n != C->top() &&      // (ignore TOP, it has no du info)
 510           !n->is_Proj() ) {     // fat-proj kills
 511         j -= yank_if_dead(n,b,&value,&regnd);
 512         continue;
 513       }
 514 
 515       // Improve reaching-def info.  Occasionally post-alloc's liveness gives
 516       // up (at loop backedges, because we aren't doing a full flow pass).
 517       // The presence of a live use essentially asserts that the use's def is
 518       // alive and well at the use (or else the allocator fubar'd).  Take
 519       // advantage of this info to set a reaching def for the use-reg.
 520       uint k;
 521       for( k = 1; k < n->req(); k++ ) {
 522         Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
 523         guarantee(def != NULL, "no disconnected nodes at this point");
 524         uint useidx = n2lidx(def); // useidx is the live range index for this USE
 525 
 526         if( useidx ) {
 527           OptoReg::Name ureg = lrgs(useidx).reg();
 528           if( !value[ureg] ) {
 529             int idx;            // Skip occasional useless copy
 530             while( (idx=def->is_Copy()) != 0 &&
 531                    def->in(idx) != NULL &&  // NULL should not happen
 532                    ureg == lrgs(n2lidx(def->in(idx))).reg() )
 533               def = def->in(idx);
 534             Node *valdef = skip_copies(def); // tighten up val through non-useless copies
 535             value.map(ureg,valdef); // record improved reaching-def info
 536             regnd.map(ureg,   def);
 537             // Record other half of doubles
 538             OptoReg::Name ureg_lo = OptoReg::add(ureg,-1);
 539             if( !is_single_register(def->ideal_reg()) &&
 540                 ( !RegMask::can_represent(ureg_lo) ||
 541                   lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent
 542                 !value[ureg_lo] ) {
 543               value.map(ureg_lo,valdef); // record improved reaching-def info
 544               regnd.map(ureg_lo,   def);
 545             }
 546           }
 547         }
 548       }
 549 
 550       const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
 551 
 552       // Remove copies along input edges
 553       for( k = 1; k < n->req(); k++ )
 554         j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
 555 
 556       // Unallocated Nodes define no registers
 557       uint lidx = n2lidx(n);
 558       if( !lidx ) continue;
 559 
 560       // Update the register defined by this instruction
 561       OptoReg::Name nreg = lrgs(lidx).reg();
 562       // Skip through all copies to the _value_ being defined.
 563       // Do not change from int to pointer
 564       Node *val = skip_copies(n);
 565 
 566       // Clear out a dead definition before starting so that the
 567       // elimination code doesn't have to guard against it.  The
 568       // definition could in fact be a kill projection with a count of
 569       // 0 which is safe but since those are uninteresting for copy
 570       // elimination just delete them as well.
 571       if (regnd[nreg] != NULL && regnd[nreg]->outcnt() == 0) {
 572         regnd.map(nreg, NULL);
 573         value.map(nreg, NULL);
 574       }
 575 
 576       uint n_ideal_reg = n->ideal_reg();
 577       if( is_single_register(n_ideal_reg) ) {
 578         // If Node 'n' does not change the value mapped by the register,
 579         // then 'n' is a useless copy.  Do not update the register->node
 580         // mapping so 'n' will go dead.
 581         if( value[nreg] != val ) {
 582           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) {
 583             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 584           } else {
 585             // Update the mapping: record new Node defined by the register
 586             regnd.map(nreg,n);
 587             // Update mapping for defined *value*, which is the defined
 588             // Node after skipping all copies.
 589             value.map(nreg,val);
 590           }
 591         } else if( !may_be_copy_of_callee(n) ) {
 592           assert( n->is_Copy(), "" );
 593           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 594         }
 595       } else {
 596         // If the value occupies a register pair, record same info
 597         // in both registers.
 598         OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
 599         if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
 600             !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
 601           // Sparc occasionally has non-adjacent pairs.
 602           // Find the actual other value
 603           RegMask tmp = lrgs(lidx).mask();
 604           tmp.Remove(nreg);
 605           nreg_lo = tmp.find_first_elem();
 606         }
 607         if( value[nreg] != val || value[nreg_lo] != val ) {
 608           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) {
 609             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 610           } else {
 611             regnd.map(nreg   , n );
 612             regnd.map(nreg_lo, n );
 613             value.map(nreg   ,val);
 614             value.map(nreg_lo,val);
 615           }
 616         } else if( !may_be_copy_of_callee(n) ) {
 617           assert( n->is_Copy(), "" );
 618           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 619         }
 620       }
 621 
 622       // Fat projections kill many registers
 623       if( n_ideal_reg == MachProjNode::fat_proj ) {
 624         RegMask rm = n->out_RegMask();
 625         // wow, what an expensive iterator...
 626         nreg = rm.find_first_elem();
 627         while( OptoReg::is_valid(nreg)) {
 628           rm.Remove(nreg);
 629           value.map(nreg,n);
 630           regnd.map(nreg,n);
 631           nreg = rm.find_first_elem();
 632         }
 633       }
 634 
 635     } // End of for all instructions in the block
 636 
 637   } // End for all blocks
 638 }