1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/cfgnode.hpp"
  30 #include "opto/chaitin.hpp"
  31 #include "opto/loopnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "utilities/copy.hpp"
  37 
  38 // Optimization - Graph Style
  39 
  40 
  41 //-----------------------------------------------------------------------------
  42 void Block_Array::grow( uint i ) {
  43   assert(i >= Max(), "must be an overflow");
  44   debug_only(_limit = i+1);
  45   if( i < _size )  return;
  46   if( !_size ) {
  47     _size = 1;
  48     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
  49     _blocks[0] = NULL;
  50   }
  51   uint old = _size;
  52   while( i >= _size ) _size <<= 1;      // Double to fit
  53   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
  54   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
  55 }
  56 
  57 //=============================================================================
  58 void Block_List::remove(uint i) {
  59   assert(i < _cnt, "index out of bounds");
  60   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
  61   pop(); // shrink list by one block
  62 }
  63 
  64 void Block_List::insert(uint i, Block *b) {
  65   push(b); // grow list by one block
  66   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
  67   _blocks[i] = b;
  68 }
  69 
  70 #ifndef PRODUCT
  71 void Block_List::print() {
  72   for (uint i=0; i < size(); i++) {
  73     tty->print("B%d ", _blocks[i]->_pre_order);
  74   }
  75   tty->print("size = %d\n", size());
  76 }
  77 #endif
  78 
  79 //=============================================================================
  80 
  81 uint Block::code_alignment() {
  82   // Check for Root block
  83   if (_pre_order == 0) return CodeEntryAlignment;
  84   // Check for Start block
  85   if (_pre_order == 1) return InteriorEntryAlignment;
  86   // Check for loop alignment
  87   if (has_loop_alignment()) return loop_alignment();
  88 
  89   return relocInfo::addr_unit(); // no particular alignment
  90 }
  91 
  92 uint Block::compute_loop_alignment() {
  93   Node *h = head();
  94   int unit_sz = relocInfo::addr_unit();
  95   if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
  96     // Pre- and post-loops have low trip count so do not bother with
  97     // NOPs for align loop head.  The constants are hidden from tuning
  98     // but only because my "divide by 4" heuristic surely gets nearly
  99     // all possible gain (a "do not align at all" heuristic has a
 100     // chance of getting a really tiny gain).
 101     if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
 102                                 h->as_CountedLoop()->is_post_loop())) {
 103       return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
 104     }
 105     // Loops with low backedge frequency should not be aligned.
 106     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
 107     if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
 108       return unit_sz; // Loop does not loop, more often than not!
 109     }
 110     return OptoLoopAlignment; // Otherwise align loop head
 111   }
 112 
 113   return unit_sz; // no particular alignment
 114 }
 115 
 116 //-----------------------------------------------------------------------------
 117 // Compute the size of first 'inst_cnt' instructions in this block.
 118 // Return the number of instructions left to compute if the block has
 119 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
 120 // exceeds OptoLoopAlignment.
 121 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
 122                                     PhaseRegAlloc* ra) {
 123   uint last_inst = _nodes.size();
 124   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
 125     uint inst_size = _nodes[j]->size(ra);
 126     if( inst_size > 0 ) {
 127       inst_cnt--;
 128       uint sz = sum_size + inst_size;
 129       if( sz <= (uint)OptoLoopAlignment ) {
 130         // Compute size of instructions which fit into fetch buffer only
 131         // since all inst_cnt instructions will not fit even if we align them.
 132         sum_size = sz;
 133       } else {
 134         return 0;
 135       }
 136     }
 137   }
 138   return inst_cnt;
 139 }
 140 
 141 //-----------------------------------------------------------------------------
 142 uint Block::find_node( const Node *n ) const {
 143   for( uint i = 0; i < _nodes.size(); i++ ) {
 144     if( _nodes[i] == n )
 145       return i;
 146   }
 147   ShouldNotReachHere();
 148   return 0;
 149 }
 150 
 151 // Find and remove n from block list
 152 void Block::find_remove( const Node *n ) {
 153   _nodes.remove(find_node(n));
 154 }
 155 
 156 //------------------------------is_Empty---------------------------------------
 157 // Return empty status of a block.  Empty blocks contain only the head, other
 158 // ideal nodes, and an optional trailing goto.
 159 int Block::is_Empty() const {
 160 
 161   // Root or start block is not considered empty
 162   if (head()->is_Root() || head()->is_Start()) {
 163     return not_empty;
 164   }
 165 
 166   int success_result = completely_empty;
 167   int end_idx = _nodes.size()-1;
 168 
 169   // Check for ending goto
 170   if ((end_idx > 0) && (_nodes[end_idx]->is_MachGoto())) {
 171     success_result = empty_with_goto;
 172     end_idx--;
 173   }
 174 
 175   // Unreachable blocks are considered empty
 176   if (num_preds() <= 1) {
 177     return success_result;
 178   }
 179 
 180   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
 181   // turn directly into code, because only MachNodes have non-trivial
 182   // emit() functions.
 183   while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
 184     end_idx--;
 185   }
 186 
 187   // No room for any interesting instructions?
 188   if (end_idx == 0) {
 189     return success_result;
 190   }
 191 
 192   return not_empty;
 193 }
 194 
 195 //------------------------------has_uncommon_code------------------------------
 196 // Return true if the block's code implies that it is likely to be
 197 // executed infrequently.  Check to see if the block ends in a Halt or
 198 // a low probability call.
 199 bool Block::has_uncommon_code() const {
 200   Node* en = end();
 201 
 202   if (en->is_MachGoto())
 203     en = en->in(0);
 204   if (en->is_Catch())
 205     en = en->in(0);
 206   if (en->is_MachProj() && en->in(0)->is_MachCall()) {
 207     MachCallNode* call = en->in(0)->as_MachCall();
 208     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
 209       // This is true for slow-path stubs like new_{instance,array},
 210       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
 211       // The magic number corresponds to the probability of an uncommon_trap,
 212       // even though it is a count not a probability.
 213       return true;
 214     }
 215   }
 216 
 217   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
 218   return op == Op_Halt;
 219 }
 220 
 221 //------------------------------is_uncommon------------------------------------
 222 // True if block is low enough frequency or guarded by a test which
 223 // mostly does not go here.
 224 bool Block::is_uncommon( Block_Array &bbs ) const {
 225   // Initial blocks must never be moved, so are never uncommon.
 226   if (head()->is_Root() || head()->is_Start())  return false;
 227 
 228   // Check for way-low freq
 229   if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
 230 
 231   // Look for code shape indicating uncommon_trap or slow path
 232   if (has_uncommon_code()) return true;
 233 
 234   const float epsilon = 0.05f;
 235   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
 236   uint uncommon_preds = 0;
 237   uint freq_preds = 0;
 238   uint uncommon_for_freq_preds = 0;
 239 
 240   for( uint i=1; i<num_preds(); i++ ) {
 241     Block* guard = bbs[pred(i)->_idx];
 242     // Check to see if this block follows its guard 1 time out of 10000
 243     // or less.
 244     //
 245     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
 246     // we intend to be "uncommon", such as slow-path TLE allocation,
 247     // predicted call failure, and uncommon trap triggers.
 248     //
 249     // Use an epsilon value of 5% to allow for variability in frequency
 250     // predictions and floating point calculations. The net effect is
 251     // that guard_factor is set to 9500.
 252     //
 253     // Ignore low-frequency blocks.
 254     // The next check is (guard->_freq < 1.e-5 * 9500.).
 255     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
 256       uncommon_preds++;
 257     } else {
 258       freq_preds++;
 259       if( _freq < guard->_freq * guard_factor ) {
 260         uncommon_for_freq_preds++;
 261       }
 262     }
 263   }
 264   if( num_preds() > 1 &&
 265       // The block is uncommon if all preds are uncommon or
 266       (uncommon_preds == (num_preds()-1) ||
 267       // it is uncommon for all frequent preds.
 268        uncommon_for_freq_preds == freq_preds) ) {
 269     return true;
 270   }
 271   return false;
 272 }
 273 
 274 //------------------------------dump-------------------------------------------
 275 #ifndef PRODUCT
 276 void Block::dump_bidx(const Block* orig, outputStream* st) const {
 277   if (_pre_order) st->print("B%d",_pre_order);
 278   else st->print("N%d", head()->_idx);
 279 
 280   if (Verbose && orig != this) {
 281     // Dump the original block's idx
 282     st->print(" (");
 283     orig->dump_bidx(orig, st);
 284     st->print(")");
 285   }
 286 }
 287 
 288 void Block::dump_pred(const Block_Array *bbs, Block* orig, outputStream* st) const {
 289   if (is_connector()) {
 290     for (uint i=1; i<num_preds(); i++) {
 291       Block *p = ((*bbs)[pred(i)->_idx]);
 292       p->dump_pred(bbs, orig, st);
 293     }
 294   } else {
 295     dump_bidx(orig, st);
 296     st->print(" ");
 297   }
 298 }
 299 
 300 void Block::dump_head( const Block_Array *bbs, outputStream* st ) const {
 301   // Print the basic block
 302   dump_bidx(this, st);
 303   st->print(": #\t");
 304 
 305   // Print the incoming CFG edges and the outgoing CFG edges
 306   for( uint i=0; i<_num_succs; i++ ) {
 307     non_connector_successor(i)->dump_bidx(_succs[i], st);
 308     st->print(" ");
 309   }
 310   st->print("<- ");
 311   if( head()->is_block_start() ) {
 312     for (uint i=1; i<num_preds(); i++) {
 313       Node *s = pred(i);
 314       if (bbs) {
 315         Block *p = (*bbs)[s->_idx];
 316         p->dump_pred(bbs, p, st);
 317       } else {
 318         while (!s->is_block_start())
 319           s = s->in(0);
 320         st->print("N%d ", s->_idx );
 321       }
 322     }
 323   } else
 324     st->print("BLOCK HEAD IS JUNK  ");
 325 
 326   // Print loop, if any
 327   const Block *bhead = this;    // Head of self-loop
 328   Node *bh = bhead->head();
 329   if( bbs && bh->is_Loop() && !head()->is_Root() ) {
 330     LoopNode *loop = bh->as_Loop();
 331     const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
 332     while (bx->is_connector()) {
 333       bx = (*bbs)[bx->pred(1)->_idx];
 334     }
 335     st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
 336     // Dump any loop-specific bits, especially for CountedLoops.
 337     loop->dump_spec(st);
 338   } else if (has_loop_alignment()) {
 339     st->print(" top-of-loop");
 340   }
 341   st->print(" Freq: %g",_freq);
 342   if( Verbose || WizardMode ) {
 343     st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
 344     st->print(" RegPressure: %d",_reg_pressure);
 345     st->print(" IHRP Index: %d",_ihrp_index);
 346     st->print(" FRegPressure: %d",_freg_pressure);
 347     st->print(" FHRP Index: %d",_fhrp_index);
 348   }
 349   st->print_cr("");
 350 }
 351 
 352 void Block::dump() const { dump(NULL); }
 353 
 354 void Block::dump( const Block_Array *bbs ) const {
 355   dump_head(bbs);
 356   uint cnt = _nodes.size();
 357   for( uint i=0; i<cnt; i++ )
 358     _nodes[i]->dump();
 359   tty->print("\n");
 360 }
 361 #endif
 362 
 363 //=============================================================================
 364 //------------------------------PhaseCFG---------------------------------------
 365 PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
 366   Phase(CFG),
 367   _bbs(a),
 368   _root(r),
 369   _node_latency(NULL)
 370 #ifndef PRODUCT
 371   , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
 372 #endif
 373 #ifdef ASSERT
 374   , _raw_oops(a)
 375 #endif
 376 {
 377   ResourceMark rm;
 378   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
 379   // then Match it into a machine-specific Node.  Then clone the machine
 380   // Node on demand.
 381   Node *x = new (C, 1) GotoNode(NULL);
 382   x->init_req(0, x);
 383   _goto = m.match_tree(x);
 384   assert(_goto != NULL, "");
 385   _goto->set_req(0,_goto);
 386 
 387   // Build the CFG in Reverse Post Order
 388   _num_blocks = build_cfg();
 389   _broot = _bbs[_root->_idx];
 390 }
 391 
 392 //------------------------------build_cfg--------------------------------------
 393 // Build a proper looking CFG.  Make every block begin with either a StartNode
 394 // or a RegionNode.  Make every block end with either a Goto, If or Return.
 395 // The RootNode both starts and ends it's own block.  Do this with a recursive
 396 // backwards walk over the control edges.
 397 uint PhaseCFG::build_cfg() {
 398   Arena *a = Thread::current()->resource_area();
 399   VectorSet visited(a);
 400 
 401   // Allocate stack with enough space to avoid frequent realloc
 402   Node_Stack nstack(a, C->unique() >> 1);
 403   nstack.push(_root, 0);
 404   uint sum = 0;                 // Counter for blocks
 405 
 406   while (nstack.is_nonempty()) {
 407     // node and in's index from stack's top
 408     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
 409     // only nodes which point to the start of basic block (see below).
 410     Node *np = nstack.node();
 411     // idx > 0, except for the first node (_root) pushed on stack
 412     // at the beginning when idx == 0.
 413     // We will use the condition (idx == 0) later to end the build.
 414     uint idx = nstack.index();
 415     Node *proj = np->in(idx);
 416     const Node *x = proj->is_block_proj();
 417     // Does the block end with a proper block-ending Node?  One of Return,
 418     // If or Goto? (This check should be done for visited nodes also).
 419     if (x == NULL) {                    // Does not end right...
 420       Node *g = _goto->clone(); // Force it to end in a Goto
 421       g->set_req(0, proj);
 422       np->set_req(idx, g);
 423       x = proj = g;
 424     }
 425     if (!visited.test_set(x->_idx)) { // Visit this block once
 426       // Skip any control-pinned middle'in stuff
 427       Node *p = proj;
 428       do {
 429         proj = p;                   // Update pointer to last Control
 430         p = p->in(0);               // Move control forward
 431       } while( !p->is_block_proj() &&
 432                !p->is_block_start() );
 433       // Make the block begin with one of Region or StartNode.
 434       if( !p->is_block_start() ) {
 435         RegionNode *r = new (C, 2) RegionNode( 2 );
 436         r->init_req(1, p);         // Insert RegionNode in the way
 437         proj->set_req(0, r);        // Insert RegionNode in the way
 438         p = r;
 439       }
 440       // 'p' now points to the start of this basic block
 441 
 442       // Put self in array of basic blocks
 443       Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
 444       _bbs.map(p->_idx,bb);
 445       _bbs.map(x->_idx,bb);
 446       if( x != p ) {                // Only for root is x == p
 447         bb->_nodes.push((Node*)x);
 448       }
 449       // Now handle predecessors
 450       ++sum;                        // Count 1 for self block
 451       uint cnt = bb->num_preds();
 452       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
 453         Node *prevproj = p->in(i);  // Get prior input
 454         assert( !prevproj->is_Con(), "dead input not removed" );
 455         // Check to see if p->in(i) is a "control-dependent" CFG edge -
 456         // i.e., it splits at the source (via an IF or SWITCH) and merges
 457         // at the destination (via a many-input Region).
 458         // This breaks critical edges.  The RegionNode to start the block
 459         // will be added when <p,i> is pulled off the node stack
 460         if ( cnt > 2 ) {             // Merging many things?
 461           assert( prevproj== bb->pred(i),"");
 462           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
 463             // Force a block on the control-dependent edge
 464             Node *g = _goto->clone();       // Force it to end in a Goto
 465             g->set_req(0,prevproj);
 466             p->set_req(i,g);
 467           }
 468         }
 469         nstack.push(p, i);  // 'p' is RegionNode or StartNode
 470       }
 471     } else { // Post-processing visited nodes
 472       nstack.pop();                 // remove node from stack
 473       // Check if it the fist node pushed on stack at the beginning.
 474       if (idx == 0) break;          // end of the build
 475       // Find predecessor basic block
 476       Block *pb = _bbs[x->_idx];
 477       // Insert into nodes array, if not already there
 478       if( !_bbs.lookup(proj->_idx) ) {
 479         assert( x != proj, "" );
 480         // Map basic block of projection
 481         _bbs.map(proj->_idx,pb);
 482         pb->_nodes.push(proj);
 483       }
 484       // Insert self as a child of my predecessor block
 485       pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
 486       assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
 487               "too many control users, not a CFG?" );
 488     }
 489   }
 490   // Return number of basic blocks for all children and self
 491   return sum;
 492 }
 493 
 494 //------------------------------insert_goto_at---------------------------------
 495 // Inserts a goto & corresponding basic block between
 496 // block[block_no] and its succ_no'th successor block
 497 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
 498   // get block with block_no
 499   assert(block_no < _num_blocks, "illegal block number");
 500   Block* in  = _blocks[block_no];
 501   // get successor block succ_no
 502   assert(succ_no < in->_num_succs, "illegal successor number");
 503   Block* out = in->_succs[succ_no];
 504   // Compute frequency of the new block. Do this before inserting
 505   // new block in case succ_prob() needs to infer the probability from
 506   // surrounding blocks.
 507   float freq = in->_freq * in->succ_prob(succ_no);
 508   // get ProjNode corresponding to the succ_no'th successor of the in block
 509   ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
 510   // create region for basic block
 511   RegionNode* region = new (C, 2) RegionNode(2);
 512   region->init_req(1, proj);
 513   // setup corresponding basic block
 514   Block* block = new (_bbs._arena) Block(_bbs._arena, region);
 515   _bbs.map(region->_idx, block);
 516   C->regalloc()->set_bad(region->_idx);
 517   // add a goto node
 518   Node* gto = _goto->clone(); // get a new goto node
 519   gto->set_req(0, region);
 520   // add it to the basic block
 521   block->_nodes.push(gto);
 522   _bbs.map(gto->_idx, block);
 523   C->regalloc()->set_bad(gto->_idx);
 524   // hook up successor block
 525   block->_succs.map(block->_num_succs++, out);
 526   // remap successor's predecessors if necessary
 527   for (uint i = 1; i < out->num_preds(); i++) {
 528     if (out->pred(i) == proj) out->head()->set_req(i, gto);
 529   }
 530   // remap predecessor's successor to new block
 531   in->_succs.map(succ_no, block);
 532   // Set the frequency of the new block
 533   block->_freq = freq;
 534   // add new basic block to basic block list
 535   _blocks.insert(block_no + 1, block);
 536   _num_blocks++;
 537 }
 538 
 539 //------------------------------no_flip_branch---------------------------------
 540 // Does this block end in a multiway branch that cannot have the default case
 541 // flipped for another case?
 542 static bool no_flip_branch( Block *b ) {
 543   int branch_idx = b->_nodes.size() - b->_num_succs-1;
 544   if( branch_idx < 1 ) return false;
 545   Node *bra = b->_nodes[branch_idx];
 546   if( bra->is_Catch() )
 547     return true;
 548   if( bra->is_Mach() ) {
 549     if( bra->is_MachNullCheck() )
 550       return true;
 551     int iop = bra->as_Mach()->ideal_Opcode();
 552     if( iop == Op_FastLock || iop == Op_FastUnlock )
 553       return true;
 554   }
 555   return false;
 556 }
 557 
 558 //------------------------------convert_NeverBranch_to_Goto--------------------
 559 // Check for NeverBranch at block end.  This needs to become a GOTO to the
 560 // true target.  NeverBranch are treated as a conditional branch that always
 561 // goes the same direction for most of the optimizer and are used to give a
 562 // fake exit path to infinite loops.  At this late stage they need to turn
 563 // into Goto's so that when you enter the infinite loop you indeed hang.
 564 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
 565   // Find true target
 566   int end_idx = b->end_idx();
 567   int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
 568   Block *succ = b->_succs[idx];
 569   Node* gto = _goto->clone(); // get a new goto node
 570   gto->set_req(0, b->head());
 571   Node *bp = b->_nodes[end_idx];
 572   b->_nodes.map(end_idx,gto); // Slam over NeverBranch
 573   _bbs.map(gto->_idx, b);
 574   C->regalloc()->set_bad(gto->_idx);
 575   b->_nodes.pop();              // Yank projections
 576   b->_nodes.pop();              // Yank projections
 577   b->_succs.map(0,succ);        // Map only successor
 578   b->_num_succs = 1;
 579   // remap successor's predecessors if necessary
 580   uint j;
 581   for( j = 1; j < succ->num_preds(); j++)
 582     if( succ->pred(j)->in(0) == bp )
 583       succ->head()->set_req(j, gto);
 584   // Kill alternate exit path
 585   Block *dead = b->_succs[1-idx];
 586   for( j = 1; j < dead->num_preds(); j++)
 587     if( dead->pred(j)->in(0) == bp )
 588       break;
 589   // Scan through block, yanking dead path from
 590   // all regions and phis.
 591   dead->head()->del_req(j);
 592   for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
 593     dead->_nodes[k]->del_req(j);
 594 }
 595 
 596 //------------------------------move_to_next-----------------------------------
 597 // Helper function to move block bx to the slot following b_index. Return
 598 // true if the move is successful, otherwise false
 599 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
 600   if (bx == NULL) return false;
 601 
 602   // Return false if bx is already scheduled.
 603   uint bx_index = bx->_pre_order;
 604   if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
 605     return false;
 606   }
 607 
 608   // Find the current index of block bx on the block list
 609   bx_index = b_index + 1;
 610   while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
 611   assert(_blocks[bx_index] == bx, "block not found");
 612 
 613   // If the previous block conditionally falls into bx, return false,
 614   // because moving bx will create an extra jump.
 615   for(uint k = 1; k < bx->num_preds(); k++ ) {
 616     Block* pred = _bbs[bx->pred(k)->_idx];
 617     if (pred == _blocks[bx_index-1]) {
 618       if (pred->_num_succs != 1) {
 619         return false;
 620       }
 621     }
 622   }
 623 
 624   // Reinsert bx just past block 'b'
 625   _blocks.remove(bx_index);
 626   _blocks.insert(b_index + 1, bx);
 627   return true;
 628 }
 629 
 630 //------------------------------move_to_end------------------------------------
 631 // Move empty and uncommon blocks to the end.
 632 void PhaseCFG::move_to_end(Block *b, uint i) {
 633   int e = b->is_Empty();
 634   if (e != Block::not_empty) {
 635     if (e == Block::empty_with_goto) {
 636       // Remove the goto, but leave the block.
 637       b->_nodes.pop();
 638     }
 639     // Mark this block as a connector block, which will cause it to be
 640     // ignored in certain functions such as non_connector_successor().
 641     b->set_connector();
 642   }
 643   // Move the empty block to the end, and don't recheck.
 644   _blocks.remove(i);
 645   _blocks.push(b);
 646 }
 647 
 648 //---------------------------set_loop_alignment--------------------------------
 649 // Set loop alignment for every block
 650 void PhaseCFG::set_loop_alignment() {
 651   uint last = _num_blocks;
 652   assert( _blocks[0] == _broot, "" );
 653 
 654   for (uint i = 1; i < last; i++ ) {
 655     Block *b = _blocks[i];
 656     if (b->head()->is_Loop()) {
 657       b->set_loop_alignment(b);
 658     }
 659   }
 660 }
 661 
 662 //-----------------------------remove_empty------------------------------------
 663 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
 664 // to the end.
 665 void PhaseCFG::remove_empty() {
 666   // Move uncommon blocks to the end
 667   uint last = _num_blocks;
 668   assert( _blocks[0] == _broot, "" );
 669 
 670   for (uint i = 1; i < last; i++) {
 671     Block *b = _blocks[i];
 672     if (b->is_connector()) break;
 673 
 674     // Check for NeverBranch at block end.  This needs to become a GOTO to the
 675     // true target.  NeverBranch are treated as a conditional branch that
 676     // always goes the same direction for most of the optimizer and are used
 677     // to give a fake exit path to infinite loops.  At this late stage they
 678     // need to turn into Goto's so that when you enter the infinite loop you
 679     // indeed hang.
 680     if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
 681       convert_NeverBranch_to_Goto(b);
 682 
 683     // Look for uncommon blocks and move to end.
 684     if (!C->do_freq_based_layout()) {
 685       if( b->is_uncommon(_bbs) ) {
 686         move_to_end(b, i);
 687         last--;                   // No longer check for being uncommon!
 688         if( no_flip_branch(b) ) { // Fall-thru case must follow?
 689           b = _blocks[i];         // Find the fall-thru block
 690           move_to_end(b, i);
 691           last--;
 692         }
 693         i--;                      // backup block counter post-increment
 694       }
 695     }
 696   }
 697 
 698   // Move empty blocks to the end
 699   last = _num_blocks;
 700   for (uint i = 1; i < last; i++) {
 701     Block *b = _blocks[i];
 702     if (b->is_Empty() != Block::not_empty) {
 703       move_to_end(b, i);
 704       last--;
 705       i--;
 706     }
 707   } // End of for all blocks
 708 }
 709 
 710 //-----------------------------fixup_flow--------------------------------------
 711 // Fix up the final control flow for basic blocks.
 712 void PhaseCFG::fixup_flow() {
 713   // Fixup final control flow for the blocks.  Remove jump-to-next
 714   // block.  If neither arm of a IF follows the conditional branch, we
 715   // have to add a second jump after the conditional.  We place the
 716   // TRUE branch target in succs[0] for both GOTOs and IFs.
 717   for (uint i=0; i < _num_blocks; i++) {
 718     Block *b = _blocks[i];
 719     b->_pre_order = i;          // turn pre-order into block-index
 720 
 721     // Connector blocks need no further processing.
 722     if (b->is_connector()) {
 723       assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
 724              "All connector blocks should sink to the end");
 725       continue;
 726     }
 727     assert(b->is_Empty() != Block::completely_empty,
 728            "Empty blocks should be connectors");
 729 
 730     Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
 731     Block *bs0 = b->non_connector_successor(0);
 732 
 733     // Check for multi-way branches where I cannot negate the test to
 734     // exchange the true and false targets.
 735     if( no_flip_branch( b ) ) {
 736       // Find fall through case - if must fall into its target
 737       int branch_idx = b->_nodes.size() - b->_num_succs;
 738       for (uint j2 = 0; j2 < b->_num_succs; j2++) {
 739         const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
 740         if (p->_con == 0) {
 741           // successor j2 is fall through case
 742           if (b->non_connector_successor(j2) != bnext) {
 743             // but it is not the next block => insert a goto
 744             insert_goto_at(i, j2);
 745           }
 746           // Put taken branch in slot 0
 747           if( j2 == 0 && b->_num_succs == 2) {
 748             // Flip targets in succs map
 749             Block *tbs0 = b->_succs[0];
 750             Block *tbs1 = b->_succs[1];
 751             b->_succs.map( 0, tbs1 );
 752             b->_succs.map( 1, tbs0 );
 753           }
 754           break;
 755         }
 756       }
 757       // Remove all CatchProjs
 758       for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
 759 
 760     } else if (b->_num_succs == 1) {
 761       // Block ends in a Goto?
 762       if (bnext == bs0) {
 763         // We fall into next block; remove the Goto
 764         b->_nodes.pop();
 765       }
 766 
 767     } else if( b->_num_succs == 2 ) { // Block ends in a If?
 768       // Get opcode of 1st projection (matches _succs[0])
 769       // Note: Since this basic block has 2 exits, the last 2 nodes must
 770       //       be projections (in any order), the 3rd last node must be
 771       //       the IfNode (we have excluded other 2-way exits such as
 772       //       CatchNodes already).
 773       MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
 774       ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
 775       ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
 776 
 777       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 778       assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
 779       assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
 780 
 781       Block *bs1 = b->non_connector_successor(1);
 782 
 783       // Check for neither successor block following the current
 784       // block ending in a conditional. If so, move one of the
 785       // successors after the current one, provided that the
 786       // successor was previously unscheduled, but moveable
 787       // (i.e., all paths to it involve a branch).
 788       if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
 789         // Choose the more common successor based on the probability
 790         // of the conditional branch.
 791         Block *bx = bs0;
 792         Block *by = bs1;
 793 
 794         // _prob is the probability of taking the true path. Make
 795         // p the probability of taking successor #1.
 796         float p = iff->as_MachIf()->_prob;
 797         if( proj0->Opcode() == Op_IfTrue ) {
 798           p = 1.0 - p;
 799         }
 800 
 801         // Prefer successor #1 if p > 0.5
 802         if (p > PROB_FAIR) {
 803           bx = bs1;
 804           by = bs0;
 805         }
 806 
 807         // Attempt the more common successor first
 808         if (move_to_next(bx, i)) {
 809           bnext = bx;
 810         } else if (move_to_next(by, i)) {
 811           bnext = by;
 812         }
 813       }
 814 
 815       // Check for conditional branching the wrong way.  Negate
 816       // conditional, if needed, so it falls into the following block
 817       // and branches to the not-following block.
 818 
 819       // Check for the next block being in succs[0].  We are going to branch
 820       // to succs[0], so we want the fall-thru case as the next block in
 821       // succs[1].
 822       if (bnext == bs0) {
 823         // Fall-thru case in succs[0], so flip targets in succs map
 824         Block *tbs0 = b->_succs[0];
 825         Block *tbs1 = b->_succs[1];
 826         b->_succs.map( 0, tbs1 );
 827         b->_succs.map( 1, tbs0 );
 828         // Flip projection for each target
 829         { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
 830 
 831       } else if( bnext != bs1 ) {
 832         // Need a double-branch
 833         // The existing conditional branch need not change.
 834         // Add a unconditional branch to the false target.
 835         // Alas, it must appear in its own block and adding a
 836         // block this late in the game is complicated.  Sigh.
 837         insert_goto_at(i, 1);
 838       }
 839 
 840       // Make sure we TRUE branch to the target
 841       if( proj0->Opcode() == Op_IfFalse ) {
 842         iff->as_MachIf()->negate();
 843       }
 844 
 845       b->_nodes.pop();          // Remove IfFalse & IfTrue projections
 846       b->_nodes.pop();
 847 
 848     } else {
 849       // Multi-exit block, e.g. a switch statement
 850       // But we don't need to do anything here
 851     }
 852   } // End of for all blocks
 853 }
 854 
 855 
 856 //------------------------------dump-------------------------------------------
 857 #ifndef PRODUCT
 858 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
 859   const Node *x = end->is_block_proj();
 860   assert( x, "not a CFG" );
 861 
 862   // Do not visit this block again
 863   if( visited.test_set(x->_idx) ) return;
 864 
 865   // Skip through this block
 866   const Node *p = x;
 867   do {
 868     p = p->in(0);               // Move control forward
 869     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
 870   } while( !p->is_block_start() );
 871 
 872   // Recursively visit
 873   for( uint i=1; i<p->req(); i++ )
 874     _dump_cfg(p->in(i),visited);
 875 
 876   // Dump the block
 877   _bbs[p->_idx]->dump(&_bbs);
 878 }
 879 
 880 void PhaseCFG::dump( ) const {
 881   tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
 882   if( _blocks.size() ) {        // Did we do basic-block layout?
 883     for( uint i=0; i<_num_blocks; i++ )
 884       _blocks[i]->dump(&_bbs);
 885   } else {                      // Else do it with a DFS
 886     VectorSet visited(_bbs._arena);
 887     _dump_cfg(_root,visited);
 888   }
 889 }
 890 
 891 void PhaseCFG::dump_headers() {
 892   for( uint i = 0; i < _num_blocks; i++ ) {
 893     if( _blocks[i] == NULL ) continue;
 894     _blocks[i]->dump_head(&_bbs);
 895   }
 896 }
 897 
 898 void PhaseCFG::verify( ) const {
 899 #ifdef ASSERT
 900   // Verify sane CFG
 901   for( uint i = 0; i < _num_blocks; i++ ) {
 902     Block *b = _blocks[i];
 903     uint cnt = b->_nodes.size();
 904     uint j;
 905     for( j = 0; j < cnt; j++ ) {
 906       Node *n = b->_nodes[j];
 907       assert( _bbs[n->_idx] == b, "" );
 908       if( j >= 1 && n->is_Mach() &&
 909           n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
 910         assert( j == 1 || b->_nodes[j-1]->is_Phi(),
 911                 "CreateEx must be first instruction in block" );
 912       }
 913       for( uint k = 0; k < n->req(); k++ ) {
 914         Node *def = n->in(k);
 915         if( def && def != n ) {
 916           assert( _bbs[def->_idx] || def->is_Con(),
 917                   "must have block; constants for debug info ok" );
 918           // Verify that instructions in the block is in correct order.
 919           // Uses must follow their definition if they are at the same block.
 920           // Mostly done to check that MachSpillCopy nodes are placed correctly
 921           // when CreateEx node is moved in build_ifg_physical().
 922           if( _bbs[def->_idx] == b &&
 923               !(b->head()->is_Loop() && n->is_Phi()) &&
 924               // See (+++) comment in reg_split.cpp
 925               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k)) ) {
 926             bool is_loop = false;
 927             if (n->is_Phi()) {
 928               for( uint l = 1; l < def->req(); l++ ) {
 929                 if (n == def->in(l)) {
 930                   is_loop = true;
 931                   break; // Some kind of loop
 932                 }
 933               }
 934             }
 935             assert( is_loop || b->find_node(def) < j, "uses must follow definitions" );
 936           }
 937           if( def->is_SafePointScalarObject() ) {
 938             assert(_bbs[def->_idx] == b, "SafePointScalarObject Node should be at the same block as its SafePoint node");
 939             assert(_bbs[def->_idx] == _bbs[def->in(0)->_idx], "SafePointScalarObject Node should be at the same block as its control edge");
 940           }
 941         }
 942       }
 943     }
 944 
 945     j = b->end_idx();
 946     Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
 947     assert( bp, "last instruction must be a block proj" );
 948     assert( bp == b->_nodes[j], "wrong number of successors for this block" );
 949     if( bp->is_Catch() ) {
 950       while( b->_nodes[--j]->is_MachProj() ) ;
 951       assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
 952     }
 953     else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
 954       assert( b->_num_succs == 2, "Conditional branch must have two targets");
 955     }
 956   }
 957 #endif
 958 }
 959 #endif
 960 
 961 //=============================================================================
 962 //------------------------------UnionFind--------------------------------------
 963 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
 964   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
 965 }
 966 
 967 void UnionFind::extend( uint from_idx, uint to_idx ) {
 968   _nesting.check();
 969   if( from_idx >= _max ) {
 970     uint size = 16;
 971     while( size <= from_idx ) size <<=1;
 972     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
 973     _max = size;
 974   }
 975   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
 976   _indices[from_idx] = to_idx;
 977 }
 978 
 979 void UnionFind::reset( uint max ) {
 980   assert( max <= max_uint, "Must fit within uint" );
 981   // Force the Union-Find mapping to be at least this large
 982   extend(max,0);
 983   // Initialize to be the ID mapping.
 984   for( uint i=0; i<max; i++ ) map(i,i);
 985 }
 986 
 987 //------------------------------Find_compress----------------------------------
 988 // Straight out of Tarjan's union-find algorithm
 989 uint UnionFind::Find_compress( uint idx ) {
 990   uint cur  = idx;
 991   uint next = lookup(cur);
 992   while( next != cur ) {        // Scan chain of equivalences
 993     assert( next < cur, "always union smaller" );
 994     cur = next;                 // until find a fixed-point
 995     next = lookup(cur);
 996   }
 997   // Core of union-find algorithm: update chain of
 998   // equivalences to be equal to the root.
 999   while( idx != next ) {
1000     uint tmp = lookup(idx);
1001     map(idx, next);
1002     idx = tmp;
1003   }
1004   return idx;
1005 }
1006 
1007 //------------------------------Find_const-------------------------------------
1008 // Like Find above, but no path compress, so bad asymptotic behavior
1009 uint UnionFind::Find_const( uint idx ) const {
1010   if( idx == 0 ) return idx;    // Ignore the zero idx
1011   // Off the end?  This can happen during debugging dumps
1012   // when data structures have not finished being updated.
1013   if( idx >= _max ) return idx;
1014   uint next = lookup(idx);
1015   while( next != idx ) {        // Scan chain of equivalences
1016     idx = next;                 // until find a fixed-point
1017     next = lookup(idx);
1018   }
1019   return next;
1020 }
1021 
1022 //------------------------------Union------------------------------------------
1023 // union 2 sets together.
1024 void UnionFind::Union( uint idx1, uint idx2 ) {
1025   uint src = Find(idx1);
1026   uint dst = Find(idx2);
1027   assert( src, "" );
1028   assert( dst, "" );
1029   assert( src < _max, "oob" );
1030   assert( dst < _max, "oob" );
1031   assert( src < dst, "always union smaller" );
1032   map(dst,src);
1033 }
1034 
1035 #ifndef PRODUCT
1036 static void edge_dump(GrowableArray<CFGEdge *> *edges) {
1037   tty->print_cr("---- Edges ----");
1038   for (int i = 0; i < edges->length(); i++) {
1039     CFGEdge *e = edges->at(i);
1040     if (e != NULL) {
1041       edges->at(i)->dump();
1042     }
1043   }
1044 }
1045 
1046 static void trace_dump(Trace *traces[], int count) {
1047   tty->print_cr("---- Traces ----");
1048   for (int i = 0; i < count; i++) {
1049     Trace *tr = traces[i];
1050     if (tr != NULL) {
1051       tr->dump();
1052     }
1053   }
1054 }
1055 
1056 void Trace::dump( ) const {
1057   tty->print_cr("Trace (freq %f)", first_block()->_freq);
1058   for (Block *b = first_block(); b != NULL; b = next(b)) {
1059     tty->print("  B%d", b->_pre_order);
1060     if (b->head()->is_Loop()) {
1061       tty->print(" (L%d)", b->compute_loop_alignment());
1062     }
1063     if (b->has_loop_alignment()) {
1064       tty->print(" (T%d)", b->code_alignment());
1065     }
1066   }
1067   tty->cr();
1068 }
1069 
1070 void CFGEdge::dump( ) const {
1071   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1072              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1073   switch(state()) {
1074   case connected:
1075     tty->print("connected");
1076     break;
1077   case open:
1078     tty->print("open");
1079     break;
1080   case interior:
1081     tty->print("interior");
1082     break;
1083   }
1084   if (infrequent()) {
1085     tty->print("  infrequent");
1086   }
1087   tty->cr();
1088 }
1089 #endif
1090 
1091 //=============================================================================
1092 
1093 //------------------------------edge_order-------------------------------------
1094 // Comparison function for edges
1095 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1096   float freq0 = (*e0)->freq();
1097   float freq1 = (*e1)->freq();
1098   if (freq0 != freq1) {
1099     return freq0 > freq1 ? -1 : 1;
1100   }
1101 
1102   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1103   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1104 
1105   return dist1 - dist0;
1106 }
1107 
1108 //------------------------------trace_frequency_order--------------------------
1109 // Comparison function for edges
1110 static int trace_frequency_order(const void *p0, const void *p1) {
1111   Trace *tr0 = *(Trace **) p0;
1112   Trace *tr1 = *(Trace **) p1;
1113   Block *b0 = tr0->first_block();
1114   Block *b1 = tr1->first_block();
1115 
1116   // The trace of connector blocks goes at the end;
1117   // we only expect one such trace
1118   if (b0->is_connector() != b1->is_connector()) {
1119     return b1->is_connector() ? -1 : 1;
1120   }
1121 
1122   // Pull more frequently executed blocks to the beginning
1123   float freq0 = b0->_freq;
1124   float freq1 = b1->_freq;
1125   if (freq0 != freq1) {
1126     return freq0 > freq1 ? -1 : 1;
1127   }
1128 
1129   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1130 
1131   return diff;
1132 }
1133 
1134 //------------------------------find_edges-------------------------------------
1135 // Find edges of interest, i.e, those which can fall through. Presumes that
1136 // edges which don't fall through are of low frequency and can be generally
1137 // ignored.  Initialize the list of traces.
1138 void PhaseBlockLayout::find_edges()
1139 {
1140   // Walk the blocks, creating edges and Traces
1141   uint i;
1142   Trace *tr = NULL;
1143   for (i = 0; i < _cfg._num_blocks; i++) {
1144     Block *b = _cfg._blocks[i];
1145     tr = new Trace(b, next, prev);
1146     traces[tr->id()] = tr;
1147 
1148     // All connector blocks should be at the end of the list
1149     if (b->is_connector()) break;
1150 
1151     // If this block and the next one have a one-to-one successor
1152     // predecessor relationship, simply append the next block
1153     int nfallthru = b->num_fall_throughs();
1154     while (nfallthru == 1 &&
1155            b->succ_fall_through(0)) {
1156       Block *n = b->_succs[0];
1157 
1158       // Skip over single-entry connector blocks, we don't want to
1159       // add them to the trace.
1160       while (n->is_connector() && n->num_preds() == 1) {
1161         n = n->_succs[0];
1162       }
1163 
1164       // We see a merge point, so stop search for the next block
1165       if (n->num_preds() != 1) break;
1166 
1167       i++;
1168       assert(n = _cfg._blocks[i], "expecting next block");
1169       tr->append(n);
1170       uf->map(n->_pre_order, tr->id());
1171       traces[n->_pre_order] = NULL;
1172       nfallthru = b->num_fall_throughs();
1173       b = n;
1174     }
1175 
1176     if (nfallthru > 0) {
1177       // Create a CFGEdge for each outgoing
1178       // edge that could be a fall-through.
1179       for (uint j = 0; j < b->_num_succs; j++ ) {
1180         if (b->succ_fall_through(j)) {
1181           Block *target = b->non_connector_successor(j);
1182           float freq = b->_freq * b->succ_prob(j);
1183           int from_pct = (int) ((100 * freq) / b->_freq);
1184           int to_pct = (int) ((100 * freq) / target->_freq);
1185           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1186         }
1187       }
1188     }
1189   }
1190 
1191   // Group connector blocks into one trace
1192   for (i++; i < _cfg._num_blocks; i++) {
1193     Block *b = _cfg._blocks[i];
1194     assert(b->is_connector(), "connector blocks at the end");
1195     tr->append(b);
1196     uf->map(b->_pre_order, tr->id());
1197     traces[b->_pre_order] = NULL;
1198   }
1199 }
1200 
1201 //------------------------------union_traces----------------------------------
1202 // Union two traces together in uf, and null out the trace in the list
1203 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
1204 {
1205   uint old_id = old_trace->id();
1206   uint updated_id = updated_trace->id();
1207 
1208   uint lo_id = updated_id;
1209   uint hi_id = old_id;
1210 
1211   // If from is greater than to, swap values to meet
1212   // UnionFind guarantee.
1213   if (updated_id > old_id) {
1214     lo_id = old_id;
1215     hi_id = updated_id;
1216 
1217     // Fix up the trace ids
1218     traces[lo_id] = traces[updated_id];
1219     updated_trace->set_id(lo_id);
1220   }
1221 
1222   // Union the lower with the higher and remove the pointer
1223   // to the higher.
1224   uf->Union(lo_id, hi_id);
1225   traces[hi_id] = NULL;
1226 }
1227 
1228 //------------------------------grow_traces-------------------------------------
1229 // Append traces together via the most frequently executed edges
1230 void PhaseBlockLayout::grow_traces()
1231 {
1232   // Order the edges, and drive the growth of Traces via the most
1233   // frequently executed edges.
1234   edges->sort(edge_order);
1235   for (int i = 0; i < edges->length(); i++) {
1236     CFGEdge *e = edges->at(i);
1237 
1238     if (e->state() != CFGEdge::open) continue;
1239 
1240     Block *src_block = e->from();
1241     Block *targ_block = e->to();
1242 
1243     // Don't grow traces along backedges?
1244     if (!BlockLayoutRotateLoops) {
1245       if (targ_block->_rpo <= src_block->_rpo) {
1246         targ_block->set_loop_alignment(targ_block);
1247         continue;
1248       }
1249     }
1250 
1251     Trace *src_trace = trace(src_block);
1252     Trace *targ_trace = trace(targ_block);
1253 
1254     // If the edge in question can join two traces at their ends,
1255     // append one trace to the other.
1256    if (src_trace->last_block() == src_block) {
1257       if (src_trace == targ_trace) {
1258         e->set_state(CFGEdge::interior);
1259         if (targ_trace->backedge(e)) {
1260           // Reset i to catch any newly eligible edge
1261           // (Or we could remember the first "open" edge, and reset there)
1262           i = 0;
1263         }
1264       } else if (targ_trace->first_block() == targ_block) {
1265         e->set_state(CFGEdge::connected);
1266         src_trace->append(targ_trace);
1267         union_traces(src_trace, targ_trace);
1268       }
1269     }
1270   }
1271 }
1272 
1273 //------------------------------merge_traces-----------------------------------
1274 // Embed one trace into another, if the fork or join points are sufficiently
1275 // balanced.
1276 void PhaseBlockLayout::merge_traces(bool fall_thru_only)
1277 {
1278   // Walk the edge list a another time, looking at unprocessed edges.
1279   // Fold in diamonds
1280   for (int i = 0; i < edges->length(); i++) {
1281     CFGEdge *e = edges->at(i);
1282 
1283     if (e->state() != CFGEdge::open) continue;
1284     if (fall_thru_only) {
1285       if (e->infrequent()) continue;
1286     }
1287 
1288     Block *src_block = e->from();
1289     Trace *src_trace = trace(src_block);
1290     bool src_at_tail = src_trace->last_block() == src_block;
1291 
1292     Block *targ_block  = e->to();
1293     Trace *targ_trace  = trace(targ_block);
1294     bool targ_at_start = targ_trace->first_block() == targ_block;
1295 
1296     if (src_trace == targ_trace) {
1297       // This may be a loop, but we can't do much about it.
1298       e->set_state(CFGEdge::interior);
1299       continue;
1300     }
1301 
1302     if (fall_thru_only) {
1303       // If the edge links the middle of two traces, we can't do anything.
1304       // Mark the edge and continue.
1305       if (!src_at_tail & !targ_at_start) {
1306         continue;
1307       }
1308 
1309       // Don't grow traces along backedges?
1310       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1311           continue;
1312       }
1313 
1314       // If both ends of the edge are available, why didn't we handle it earlier?
1315       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1316 
1317       if (targ_at_start) {
1318         // Insert the "targ" trace in the "src" trace if the insertion point
1319         // is a two way branch.
1320         // Better profitability check possible, but may not be worth it.
1321         // Someday, see if the this "fork" has an associated "join";
1322         // then make a policy on merging this trace at the fork or join.
1323         // For example, other things being equal, it may be better to place this
1324         // trace at the join point if the "src" trace ends in a two-way, but
1325         // the insertion point is one-way.
1326         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1327         e->set_state(CFGEdge::connected);
1328         src_trace->insert_after(src_block, targ_trace);
1329         union_traces(src_trace, targ_trace);
1330       } else if (src_at_tail) {
1331         if (src_trace != trace(_cfg._broot)) {
1332           e->set_state(CFGEdge::connected);
1333           targ_trace->insert_before(targ_block, src_trace);
1334           union_traces(targ_trace, src_trace);
1335         }
1336       }
1337     } else if (e->state() == CFGEdge::open) {
1338       // Append traces, even without a fall-thru connection.
1339       // But leave root entry at the beginning of the block list.
1340       if (targ_trace != trace(_cfg._broot)) {
1341         e->set_state(CFGEdge::connected);
1342         src_trace->append(targ_trace);
1343         union_traces(src_trace, targ_trace);
1344       }
1345     }
1346   }
1347 }
1348 
1349 //----------------------------reorder_traces-----------------------------------
1350 // Order the sequence of the traces in some desirable way, and fixup the
1351 // jumps at the end of each block.
1352 void PhaseBlockLayout::reorder_traces(int count)
1353 {
1354   ResourceArea *area = Thread::current()->resource_area();
1355   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1356   Block_List worklist;
1357   int new_count = 0;
1358 
1359   // Compact the traces.
1360   for (int i = 0; i < count; i++) {
1361     Trace *tr = traces[i];
1362     if (tr != NULL) {
1363       new_traces[new_count++] = tr;
1364     }
1365   }
1366 
1367   // The entry block should be first on the new trace list.
1368   Trace *tr = trace(_cfg._broot);
1369   assert(tr == new_traces[0], "entry trace misplaced");
1370 
1371   // Sort the new trace list by frequency
1372   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1373 
1374   // Patch up the successor blocks
1375   _cfg._blocks.reset();
1376   _cfg._num_blocks = 0;
1377   for (int i = 0; i < new_count; i++) {
1378     Trace *tr = new_traces[i];
1379     if (tr != NULL) {
1380       tr->fixup_blocks(_cfg);
1381     }
1382   }
1383 }
1384 
1385 //------------------------------PhaseBlockLayout-------------------------------
1386 // Order basic blocks based on frequency
1387 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
1388   Phase(BlockLayout),
1389   _cfg(cfg)
1390 {
1391   ResourceMark rm;
1392   ResourceArea *area = Thread::current()->resource_area();
1393 
1394   // List of traces
1395   int size = _cfg._num_blocks + 1;
1396   traces = NEW_ARENA_ARRAY(area, Trace *, size);
1397   memset(traces, 0, size*sizeof(Trace*));
1398   next = NEW_ARENA_ARRAY(area, Block *, size);
1399   memset(next,   0, size*sizeof(Block *));
1400   prev = NEW_ARENA_ARRAY(area, Block *, size);
1401   memset(prev  , 0, size*sizeof(Block *));
1402 
1403   // List of edges
1404   edges = new GrowableArray<CFGEdge*>;
1405 
1406   // Mapping block index --> block_trace
1407   uf = new UnionFind(size);
1408   uf->reset(size);
1409 
1410   // Find edges and create traces.
1411   find_edges();
1412 
1413   // Grow traces at their ends via most frequent edges.
1414   grow_traces();
1415 
1416   // Merge one trace into another, but only at fall-through points.
1417   // This may make diamonds and other related shapes in a trace.
1418   merge_traces(true);
1419 
1420   // Run merge again, allowing two traces to be catenated, even if
1421   // one does not fall through into the other. This appends loosely
1422   // related traces to be near each other.
1423   merge_traces(false);
1424 
1425   // Re-order all the remaining traces by frequency
1426   reorder_traces(size);
1427 
1428   assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
1429 }
1430 
1431 
1432 //------------------------------backedge---------------------------------------
1433 // Edge e completes a loop in a trace. If the target block is head of the
1434 // loop, rotate the loop block so that the loop ends in a conditional branch.
1435 bool Trace::backedge(CFGEdge *e) {
1436   bool loop_rotated = false;
1437   Block *src_block  = e->from();
1438   Block *targ_block    = e->to();
1439 
1440   assert(last_block() == src_block, "loop discovery at back branch");
1441   if (first_block() == targ_block) {
1442     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1443       // Find the last block in the trace that has a conditional
1444       // branch.
1445       Block *b;
1446       for (b = last_block(); b != NULL; b = prev(b)) {
1447         if (b->num_fall_throughs() == 2) {
1448           break;
1449         }
1450       }
1451 
1452       if (b != last_block() && b != NULL) {
1453         loop_rotated = true;
1454 
1455         // Rotate the loop by doing two-part linked-list surgery.
1456         append(first_block());
1457         break_loop_after(b);
1458       }
1459     }
1460 
1461     // Backbranch to the top of a trace
1462     // Scroll forward through the trace from the targ_block. If we find
1463     // a loop head before another loop top, use the the loop head alignment.
1464     for (Block *b = targ_block; b != NULL; b = next(b)) {
1465       if (b->has_loop_alignment()) {
1466         break;
1467       }
1468       if (b->head()->is_Loop()) {
1469         targ_block = b;
1470         break;
1471       }
1472     }
1473 
1474     first_block()->set_loop_alignment(targ_block);
1475 
1476   } else {
1477     // Backbranch into the middle of a trace
1478     targ_block->set_loop_alignment(targ_block);
1479   }
1480 
1481   return loop_rotated;
1482 }
1483 
1484 //------------------------------fixup_blocks-----------------------------------
1485 // push blocks onto the CFG list
1486 // ensure that blocks have the correct two-way branch sense
1487 void Trace::fixup_blocks(PhaseCFG &cfg) {
1488   Block *last = last_block();
1489   for (Block *b = first_block(); b != NULL; b = next(b)) {
1490     cfg._blocks.push(b);
1491     cfg._num_blocks++;
1492     if (!b->is_connector()) {
1493       int nfallthru = b->num_fall_throughs();
1494       if (b != last) {
1495         if (nfallthru == 2) {
1496           // Ensure that the sense of the branch is correct
1497           Block *bnext = next(b);
1498           Block *bs0 = b->non_connector_successor(0);
1499 
1500           MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
1501           ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
1502           ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
1503 
1504           if (bnext == bs0) {
1505             // Fall-thru case in succs[0], should be in succs[1]
1506 
1507             // Flip targets in _succs map
1508             Block *tbs0 = b->_succs[0];
1509             Block *tbs1 = b->_succs[1];
1510             b->_succs.map( 0, tbs1 );
1511             b->_succs.map( 1, tbs0 );
1512 
1513             // Flip projections to match targets
1514             b->_nodes.map(b->_nodes.size()-2, proj1);
1515             b->_nodes.map(b->_nodes.size()-1, proj0);
1516           }
1517         }
1518       }
1519     }
1520   }
1521 }