1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "libadt/vectset.hpp"
  28 #include "memory/allocation.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/escape.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/rootnode.hpp"
  36 
  37 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
  38   uint v = (targIdx << EdgeShift) + ((uint) et);
  39   if (_edges == NULL) {
  40      Arena *a = Compile::current()->comp_arena();
  41     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
  42   }
  43   _edges->append_if_missing(v);
  44 }
  45 
  46 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
  47   uint v = (targIdx << EdgeShift) + ((uint) et);
  48 
  49   _edges->remove(v);
  50 }
  51 
  52 #ifndef PRODUCT
  53 static const char *node_type_names[] = {
  54   "UnknownType",
  55   "JavaObject",
  56   "LocalVar",
  57   "Field"
  58 };
  59 
  60 static const char *esc_names[] = {
  61   "UnknownEscape",
  62   "NoEscape",
  63   "ArgEscape",
  64   "GlobalEscape"
  65 };
  66 
  67 static const char *edge_type_suffix[] = {
  68  "?", // UnknownEdge
  69  "P", // PointsToEdge
  70  "D", // DeferredEdge
  71  "F"  // FieldEdge
  72 };
  73 
  74 void PointsToNode::dump(bool print_state) const {
  75   NodeType nt = node_type();
  76   tty->print("%s ", node_type_names[(int) nt]);
  77   if (print_state) {
  78     EscapeState es = escape_state();
  79     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
  80   }
  81   tty->print("[[");
  82   for (uint i = 0; i < edge_count(); i++) {
  83     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
  84   }
  85   tty->print("]]  ");
  86   if (_node == NULL)
  87     tty->print_cr("<null>");
  88   else
  89     _node->dump();
  90 }
  91 #endif
  92 
  93 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  94   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
  95   _processed(C->comp_arena()),
  96   pt_ptset(C->comp_arena()),
  97   pt_visited(C->comp_arena()),
  98   pt_worklist(C->comp_arena(), 4, 0, 0),
  99   _collecting(true),
 100   _progress(false),
 101   _compile(C),
 102   _igvn(igvn),
 103   _node_map(C->comp_arena()) {
 104 
 105   _phantom_object = C->top()->_idx,
 106   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
 107 
 108   // Add ConP(#NULL) and ConN(#NULL) nodes.
 109   Node* oop_null = igvn->zerocon(T_OBJECT);
 110   _oop_null = oop_null->_idx;
 111   assert(_oop_null < nodes_size(), "should be created already");
 112   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 113 
 114   if (UseCompressedOops) {
 115     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 116     _noop_null = noop_null->_idx;
 117     assert(_noop_null < nodes_size(), "should be created already");
 118     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 119   } else {
 120     _noop_null = _oop_null; // Should be initialized
 121   }
 122 }
 123 
 124 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
 125   PointsToNode *f = ptnode_adr(from_i);
 126   PointsToNode *t = ptnode_adr(to_i);
 127 
 128   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 129   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
 130   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
 131   add_edge(f, to_i, PointsToNode::PointsToEdge);
 132 }
 133 
 134 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
 135   PointsToNode *f = ptnode_adr(from_i);
 136   PointsToNode *t = ptnode_adr(to_i);
 137 
 138   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 139   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
 140   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
 141   // don't add a self-referential edge, this can occur during removal of
 142   // deferred edges
 143   if (from_i != to_i)
 144     add_edge(f, to_i, PointsToNode::DeferredEdge);
 145 }
 146 
 147 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
 148   const Type *adr_type = phase->type(adr);
 149   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
 150       adr->in(AddPNode::Address)->is_Proj() &&
 151       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
 152     // We are computing a raw address for a store captured by an Initialize
 153     // compute an appropriate address type. AddP cases #3 and #5 (see below).
 154     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 155     assert(offs != Type::OffsetBot ||
 156            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
 157            "offset must be a constant or it is initialization of array");
 158     return offs;
 159   }
 160   const TypePtr *t_ptr = adr_type->isa_ptr();
 161   assert(t_ptr != NULL, "must be a pointer type");
 162   return t_ptr->offset();
 163 }
 164 
 165 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
 166   PointsToNode *f = ptnode_adr(from_i);
 167   PointsToNode *t = ptnode_adr(to_i);
 168 
 169   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 170   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
 171   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
 172   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
 173   t->set_offset(offset);
 174 
 175   add_edge(f, to_i, PointsToNode::FieldEdge);
 176 }
 177 
 178 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
 179   // Don't change non-escaping state of NULL pointer.
 180   if (ni == _noop_null || ni == _oop_null)
 181     return;
 182   PointsToNode *npt = ptnode_adr(ni);
 183   PointsToNode::EscapeState old_es = npt->escape_state();
 184   if (es > old_es)
 185     npt->set_escape_state(es);
 186 }
 187 
 188 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
 189                                PointsToNode::EscapeState es, bool done) {
 190   PointsToNode* ptadr = ptnode_adr(n->_idx);
 191   ptadr->_node = n;
 192   ptadr->set_node_type(nt);
 193 
 194   // inline set_escape_state(idx, es);
 195   PointsToNode::EscapeState old_es = ptadr->escape_state();
 196   if (es > old_es)
 197     ptadr->set_escape_state(es);
 198 
 199   if (done)
 200     _processed.set(n->_idx);
 201 }
 202 
 203 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
 204   uint idx = n->_idx;
 205   PointsToNode::EscapeState es;
 206 
 207   // If we are still collecting or there were no non-escaping allocations
 208   // we don't know the answer yet
 209   if (_collecting)
 210     return PointsToNode::UnknownEscape;
 211 
 212   // if the node was created after the escape computation, return
 213   // UnknownEscape
 214   if (idx >= nodes_size())
 215     return PointsToNode::UnknownEscape;
 216 
 217   es = ptnode_adr(idx)->escape_state();
 218 
 219   // if we have already computed a value, return it
 220   if (es != PointsToNode::UnknownEscape &&
 221       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
 222     return es;
 223 
 224   // PointsTo() calls n->uncast() which can return a new ideal node.
 225   if (n->uncast()->_idx >= nodes_size())
 226     return PointsToNode::UnknownEscape;
 227 
 228   PointsToNode::EscapeState orig_es = es;
 229 
 230   // compute max escape state of anything this node could point to
 231   for(VectorSetI i(PointsTo(n)); i.test() && es != PointsToNode::GlobalEscape; ++i) {
 232     uint pt = i.elem;
 233     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
 234     if (pes > es)
 235       es = pes;
 236   }
 237   if (orig_es != es) {
 238     // cache the computed escape state
 239     assert(es > orig_es, "should have computed an escape state");
 240     set_escape_state(idx, es);
 241   } // orig_es could be PointsToNode::UnknownEscape
 242   return es;
 243 }
 244 
 245 VectorSet* ConnectionGraph::PointsTo(Node * n) {
 246   pt_ptset.Reset();
 247   pt_visited.Reset();
 248   pt_worklist.clear();
 249 
 250 #ifdef ASSERT
 251   Node *orig_n = n;
 252 #endif
 253 
 254   n = n->uncast();
 255   PointsToNode* npt = ptnode_adr(n->_idx);
 256 
 257   // If we have a JavaObject, return just that object
 258   if (npt->node_type() == PointsToNode::JavaObject) {
 259     pt_ptset.set(n->_idx);
 260     return &pt_ptset;
 261   }
 262 #ifdef ASSERT
 263   if (npt->_node == NULL) {
 264     if (orig_n != n)
 265       orig_n->dump();
 266     n->dump();
 267     assert(npt->_node != NULL, "unregistered node");
 268   }
 269 #endif
 270   pt_worklist.push(n->_idx);
 271   while(pt_worklist.length() > 0) {
 272     int ni = pt_worklist.pop();
 273     if (pt_visited.test_set(ni))
 274       continue;
 275 
 276     PointsToNode* pn = ptnode_adr(ni);
 277     // ensure that all inputs of a Phi have been processed
 278     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
 279 
 280     int edges_processed = 0;
 281     uint e_cnt = pn->edge_count();
 282     for (uint e = 0; e < e_cnt; e++) {
 283       uint etgt = pn->edge_target(e);
 284       PointsToNode::EdgeType et = pn->edge_type(e);
 285       if (et == PointsToNode::PointsToEdge) {
 286         pt_ptset.set(etgt);
 287         edges_processed++;
 288       } else if (et == PointsToNode::DeferredEdge) {
 289         pt_worklist.push(etgt);
 290         edges_processed++;
 291       } else {
 292         assert(false,"neither PointsToEdge or DeferredEdge");
 293       }
 294     }
 295     if (edges_processed == 0) {
 296       // no deferred or pointsto edges found.  Assume the value was set
 297       // outside this method.  Add the phantom object to the pointsto set.
 298       pt_ptset.set(_phantom_object);
 299     }
 300   }
 301   return &pt_ptset;
 302 }
 303 
 304 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
 305   // This method is most expensive during ConnectionGraph construction.
 306   // Reuse vectorSet and an additional growable array for deferred edges.
 307   deferred_edges->clear();
 308   visited->Reset();
 309 
 310   visited->set(ni);
 311   PointsToNode *ptn = ptnode_adr(ni);
 312 
 313   // Mark current edges as visited and move deferred edges to separate array.
 314   for (uint i = 0; i < ptn->edge_count(); ) {
 315     uint t = ptn->edge_target(i);
 316 #ifdef ASSERT
 317     assert(!visited->test_set(t), "expecting no duplications");
 318 #else
 319     visited->set(t);
 320 #endif
 321     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
 322       ptn->remove_edge(t, PointsToNode::DeferredEdge);
 323       deferred_edges->append(t);
 324     } else {
 325       i++;
 326     }
 327   }
 328   for (int next = 0; next < deferred_edges->length(); ++next) {
 329     uint t = deferred_edges->at(next);
 330     PointsToNode *ptt = ptnode_adr(t);
 331     uint e_cnt = ptt->edge_count();
 332     for (uint e = 0; e < e_cnt; e++) {
 333       uint etgt = ptt->edge_target(e);
 334       if (visited->test_set(etgt))
 335         continue;
 336 
 337       PointsToNode::EdgeType et = ptt->edge_type(e);
 338       if (et == PointsToNode::PointsToEdge) {
 339         add_pointsto_edge(ni, etgt);
 340         if(etgt == _phantom_object) {
 341           // Special case - field set outside (globally escaping).
 342           set_escape_state(ni, PointsToNode::GlobalEscape);
 343         }
 344       } else if (et == PointsToNode::DeferredEdge) {
 345         deferred_edges->append(etgt);
 346       } else {
 347         assert(false,"invalid connection graph");
 348       }
 349     }
 350   }
 351 }
 352 
 353 
 354 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
 355 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
 356 //  a pointsto edge is added if it is a JavaObject
 357 
 358 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
 359   PointsToNode* an = ptnode_adr(adr_i);
 360   PointsToNode* to = ptnode_adr(to_i);
 361   bool deferred = (to->node_type() == PointsToNode::LocalVar);
 362 
 363   for (uint fe = 0; fe < an->edge_count(); fe++) {
 364     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 365     int fi = an->edge_target(fe);
 366     PointsToNode* pf = ptnode_adr(fi);
 367     int po = pf->offset();
 368     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 369       if (deferred)
 370         add_deferred_edge(fi, to_i);
 371       else
 372         add_pointsto_edge(fi, to_i);
 373     }
 374   }
 375 }
 376 
 377 // Add a deferred  edge from node given by "from_i" to any field of adr_i
 378 // whose offset matches "offset".
 379 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
 380   PointsToNode* an = ptnode_adr(adr_i);
 381   bool is_alloc = an->_node->is_Allocate();
 382   for (uint fe = 0; fe < an->edge_count(); fe++) {
 383     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 384     int fi = an->edge_target(fe);
 385     PointsToNode* pf = ptnode_adr(fi);
 386     int offset = pf->offset();
 387     if (!is_alloc) {
 388       // Assume the field was set outside this method if it is not Allocation
 389       add_pointsto_edge(fi, _phantom_object);
 390     }
 391     if (offset == offs || offset == Type::OffsetBot || offs == Type::OffsetBot) {
 392       add_deferred_edge(from_i, fi);
 393     }
 394   }
 395 }
 396 
 397 // Helper functions
 398 
 399 static Node* get_addp_base(Node *addp) {
 400   assert(addp->is_AddP(), "must be AddP");
 401   //
 402   // AddP cases for Base and Address inputs:
 403   // case #1. Direct object's field reference:
 404   //     Allocate
 405   //       |
 406   //     Proj #5 ( oop result )
 407   //       |
 408   //     CheckCastPP (cast to instance type)
 409   //      | |
 410   //     AddP  ( base == address )
 411   //
 412   // case #2. Indirect object's field reference:
 413   //      Phi
 414   //       |
 415   //     CastPP (cast to instance type)
 416   //      | |
 417   //     AddP  ( base == address )
 418   //
 419   // case #3. Raw object's field reference for Initialize node:
 420   //      Allocate
 421   //        |
 422   //      Proj #5 ( oop result )
 423   //  top   |
 424   //     \  |
 425   //     AddP  ( base == top )
 426   //
 427   // case #4. Array's element reference:
 428   //   {CheckCastPP | CastPP}
 429   //     |  | |
 430   //     |  AddP ( array's element offset )
 431   //     |  |
 432   //     AddP ( array's offset )
 433   //
 434   // case #5. Raw object's field reference for arraycopy stub call:
 435   //          The inline_native_clone() case when the arraycopy stub is called
 436   //          after the allocation before Initialize and CheckCastPP nodes.
 437   //      Allocate
 438   //        |
 439   //      Proj #5 ( oop result )
 440   //       | |
 441   //       AddP  ( base == address )
 442   //
 443   // case #6. Constant Pool, ThreadLocal, CastX2P or
 444   //          Raw object's field reference:
 445   //      {ConP, ThreadLocal, CastX2P, raw Load}
 446   //  top   |
 447   //     \  |
 448   //     AddP  ( base == top )
 449   //
 450   // case #7. Klass's field reference.
 451   //      LoadKlass
 452   //       | |
 453   //       AddP  ( base == address )
 454   //
 455   // case #8. narrow Klass's field reference.
 456   //      LoadNKlass
 457   //       |
 458   //      DecodeN
 459   //       | |
 460   //       AddP  ( base == address )
 461   //
 462   Node *base = addp->in(AddPNode::Base)->uncast();
 463   if (base->is_top()) { // The AddP case #3 and #6.
 464     base = addp->in(AddPNode::Address)->uncast();
 465     while (base->is_AddP()) {
 466       // Case #6 (unsafe access) may have several chained AddP nodes.
 467       assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
 468       base = base->in(AddPNode::Address)->uncast();
 469     }
 470     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
 471            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
 472            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
 473            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
 474   }
 475   return base;
 476 }
 477 
 478 static Node* find_second_addp(Node* addp, Node* n) {
 479   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
 480 
 481   Node* addp2 = addp->raw_out(0);
 482   if (addp->outcnt() == 1 && addp2->is_AddP() &&
 483       addp2->in(AddPNode::Base) == n &&
 484       addp2->in(AddPNode::Address) == addp) {
 485 
 486     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
 487     //
 488     // Find array's offset to push it on worklist first and
 489     // as result process an array's element offset first (pushed second)
 490     // to avoid CastPP for the array's offset.
 491     // Otherwise the inserted CastPP (LocalVar) will point to what
 492     // the AddP (Field) points to. Which would be wrong since
 493     // the algorithm expects the CastPP has the same point as
 494     // as AddP's base CheckCastPP (LocalVar).
 495     //
 496     //    ArrayAllocation
 497     //     |
 498     //    CheckCastPP
 499     //     |
 500     //    memProj (from ArrayAllocation CheckCastPP)
 501     //     |  ||
 502     //     |  ||   Int (element index)
 503     //     |  ||    |   ConI (log(element size))
 504     //     |  ||    |   /
 505     //     |  ||   LShift
 506     //     |  ||  /
 507     //     |  AddP (array's element offset)
 508     //     |  |
 509     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
 510     //     | / /
 511     //     AddP (array's offset)
 512     //      |
 513     //     Load/Store (memory operation on array's element)
 514     //
 515     return addp2;
 516   }
 517   return NULL;
 518 }
 519 
 520 //
 521 // Adjust the type and inputs of an AddP which computes the
 522 // address of a field of an instance
 523 //
 524 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
 525   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
 526   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
 527   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
 528   if (t == NULL) {
 529     // We are computing a raw address for a store captured by an Initialize
 530     // compute an appropriate address type (cases #3 and #5).
 531     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
 532     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
 533     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
 534     assert(offs != Type::OffsetBot, "offset must be a constant");
 535     t = base_t->add_offset(offs)->is_oopptr();
 536   }
 537   int inst_id =  base_t->instance_id();
 538   assert(!t->is_known_instance() || t->instance_id() == inst_id,
 539                              "old type must be non-instance or match new type");
 540 
 541   // The type 't' could be subclass of 'base_t'.
 542   // As result t->offset() could be large then base_t's size and it will
 543   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
 544   // constructor verifies correctness of the offset.
 545   //
 546   // It could happened on subclass's branch (from the type profiling
 547   // inlining) which was not eliminated during parsing since the exactness
 548   // of the allocation type was not propagated to the subclass type check.
 549   //
 550   // Or the type 't' could be not related to 'base_t' at all.
 551   // It could happened when CHA type is different from MDO type on a dead path
 552   // (for example, from instanceof check) which is not collapsed during parsing.
 553   //
 554   // Do nothing for such AddP node and don't process its users since
 555   // this code branch will go away.
 556   //
 557   if (!t->is_known_instance() &&
 558       !base_t->klass()->is_subtype_of(t->klass())) {
 559      return false; // bail out
 560   }
 561 
 562   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
 563   // Do NOT remove the next line: ensure a new alias index is allocated
 564   // for the instance type. Note: C++ will not remove it since the call
 565   // has side effect.
 566   int alias_idx = _compile->get_alias_index(tinst);
 567   igvn->set_type(addp, tinst);
 568   // record the allocation in the node map
 569   assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
 570   set_map(addp->_idx, get_map(base->_idx));
 571 
 572   // Set addp's Base and Address to 'base'.
 573   Node *abase = addp->in(AddPNode::Base);
 574   Node *adr   = addp->in(AddPNode::Address);
 575   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
 576       adr->in(0)->_idx == (uint)inst_id) {
 577     // Skip AddP cases #3 and #5.
 578   } else {
 579     assert(!abase->is_top(), "sanity"); // AddP case #3
 580     if (abase != base) {
 581       igvn->hash_delete(addp);
 582       addp->set_req(AddPNode::Base, base);
 583       if (abase == adr) {
 584         addp->set_req(AddPNode::Address, base);
 585       } else {
 586         // AddP case #4 (adr is array's element offset AddP node)
 587 #ifdef ASSERT
 588         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
 589         assert(adr->is_AddP() && atype != NULL &&
 590                atype->instance_id() == inst_id, "array's element offset should be processed first");
 591 #endif
 592       }
 593       igvn->hash_insert(addp);
 594     }
 595   }
 596   // Put on IGVN worklist since at least addp's type was changed above.
 597   record_for_optimizer(addp);
 598   return true;
 599 }
 600 
 601 //
 602 // Create a new version of orig_phi if necessary. Returns either the newly
 603 // created phi or an existing phi.  Sets create_new to indicate whether a new
 604 // phi was created.  Cache the last newly created phi in the node map.
 605 //
 606 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
 607   Compile *C = _compile;
 608   new_created = false;
 609   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
 610   // nothing to do if orig_phi is bottom memory or matches alias_idx
 611   if (phi_alias_idx == alias_idx) {
 612     return orig_phi;
 613   }
 614   // Have we recently created a Phi for this alias index?
 615   PhiNode *result = get_map_phi(orig_phi->_idx);
 616   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
 617     return result;
 618   }
 619   // Previous check may fail when the same wide memory Phi was split into Phis
 620   // for different memory slices. Search all Phis for this region.
 621   if (result != NULL) {
 622     Node* region = orig_phi->in(0);
 623     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 624       Node* phi = region->fast_out(i);
 625       if (phi->is_Phi() &&
 626           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
 627         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
 628         return phi->as_Phi();
 629       }
 630     }
 631   }
 632   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
 633     if (C->do_escape_analysis() == true && !C->failing()) {
 634       // Retry compilation without escape analysis.
 635       // If this is the first failure, the sentinel string will "stick"
 636       // to the Compile object, and the C2Compiler will see it and retry.
 637       C->record_failure(C2Compiler::retry_no_escape_analysis());
 638     }
 639     return NULL;
 640   }
 641   orig_phi_worklist.append_if_missing(orig_phi);
 642   const TypePtr *atype = C->get_adr_type(alias_idx);
 643   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
 644   C->copy_node_notes_to(result, orig_phi);
 645   igvn->set_type(result, result->bottom_type());
 646   record_for_optimizer(result);
 647 
 648   debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
 649   assert(pn == NULL || pn == orig_phi, "wrong node");
 650   set_map(orig_phi->_idx, result);
 651   ptnode_adr(orig_phi->_idx)->_node = orig_phi;
 652 
 653   new_created = true;
 654   return result;
 655 }
 656 
 657 //
 658 // Return a new version of Memory Phi "orig_phi" with the inputs having the
 659 // specified alias index.
 660 //
 661 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
 662 
 663   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
 664   Compile *C = _compile;
 665   bool new_phi_created;
 666   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
 667   if (!new_phi_created) {
 668     return result;
 669   }
 670 
 671   GrowableArray<PhiNode *>  phi_list;
 672   GrowableArray<uint>  cur_input;
 673 
 674   PhiNode *phi = orig_phi;
 675   uint idx = 1;
 676   bool finished = false;
 677   while(!finished) {
 678     while (idx < phi->req()) {
 679       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
 680       if (mem != NULL && mem->is_Phi()) {
 681         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
 682         if (new_phi_created) {
 683           // found an phi for which we created a new split, push current one on worklist and begin
 684           // processing new one
 685           phi_list.push(phi);
 686           cur_input.push(idx);
 687           phi = mem->as_Phi();
 688           result = newphi;
 689           idx = 1;
 690           continue;
 691         } else {
 692           mem = newphi;
 693         }
 694       }
 695       if (C->failing()) {
 696         return NULL;
 697       }
 698       result->set_req(idx++, mem);
 699     }
 700 #ifdef ASSERT
 701     // verify that the new Phi has an input for each input of the original
 702     assert( phi->req() == result->req(), "must have same number of inputs.");
 703     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
 704 #endif
 705     // Check if all new phi's inputs have specified alias index.
 706     // Otherwise use old phi.
 707     for (uint i = 1; i < phi->req(); i++) {
 708       Node* in = result->in(i);
 709       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
 710     }
 711     // we have finished processing a Phi, see if there are any more to do
 712     finished = (phi_list.length() == 0 );
 713     if (!finished) {
 714       phi = phi_list.pop();
 715       idx = cur_input.pop();
 716       PhiNode *prev_result = get_map_phi(phi->_idx);
 717       prev_result->set_req(idx++, result);
 718       result = prev_result;
 719     }
 720   }
 721   return result;
 722 }
 723 
 724 
 725 //
 726 // The next methods are derived from methods in MemNode.
 727 //
 728 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
 729   Node *mem = mmem;
 730   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 731   // means an array I have not precisely typed yet.  Do not do any
 732   // alias stuff with it any time soon.
 733   if( toop->base() != Type::AnyPtr &&
 734       !(toop->klass() != NULL &&
 735         toop->klass()->is_java_lang_Object() &&
 736         toop->offset() == Type::OffsetBot) ) {
 737     mem = mmem->memory_at(alias_idx);
 738     // Update input if it is progress over what we have now
 739   }
 740   return mem;
 741 }
 742 
 743 //
 744 // Move memory users to their memory slices.
 745 //
 746 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *igvn) {
 747   Compile* C = _compile;
 748 
 749   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
 750   assert(tp != NULL, "ptr type");
 751   int alias_idx = C->get_alias_index(tp);
 752   int general_idx = C->get_general_index(alias_idx);
 753 
 754   // Move users first
 755   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 756     Node* use = n->fast_out(i);
 757     if (use->is_MergeMem()) {
 758       MergeMemNode* mmem = use->as_MergeMem();
 759       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
 760       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
 761         continue; // Nothing to do
 762       }
 763       // Replace previous general reference to mem node.
 764       uint orig_uniq = C->unique();
 765       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 766       assert(orig_uniq == C->unique(), "no new nodes");
 767       mmem->set_memory_at(general_idx, m);
 768       --imax;
 769       --i;
 770     } else if (use->is_MemBar()) {
 771       assert(!use->is_Initialize(), "initializing stores should not be moved");
 772       if (use->req() > MemBarNode::Precedent &&
 773           use->in(MemBarNode::Precedent) == n) {
 774         // Don't move related membars.
 775         record_for_optimizer(use);
 776         continue;
 777       }
 778       tp = use->as_MemBar()->adr_type()->isa_ptr();
 779       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
 780           alias_idx == general_idx) {
 781         continue; // Nothing to do
 782       }
 783       // Move to general memory slice.
 784       uint orig_uniq = C->unique();
 785       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 786       assert(orig_uniq == C->unique(), "no new nodes");
 787       igvn->hash_delete(use);
 788       imax -= use->replace_edge(n, m);
 789       igvn->hash_insert(use);
 790       record_for_optimizer(use);
 791       --i;
 792 #ifdef ASSERT
 793     } else if (use->is_Mem()) {
 794       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
 795         // Don't move related cardmark.
 796         continue;
 797       }
 798       // Memory nodes should have new memory input.
 799       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
 800       assert(tp != NULL, "ptr type");
 801       int idx = C->get_alias_index(tp);
 802       assert(get_map(use->_idx) != NULL || idx == alias_idx,
 803              "Following memory nodes should have new memory input or be on the same memory slice");
 804     } else if (use->is_Phi()) {
 805       // Phi nodes should be split and moved already.
 806       tp = use->as_Phi()->adr_type()->isa_ptr();
 807       assert(tp != NULL, "ptr type");
 808       int idx = C->get_alias_index(tp);
 809       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
 810     } else {
 811       use->dump();
 812       assert(false, "should not be here");
 813 #endif
 814     }
 815   }
 816 }
 817 
 818 //
 819 // Search memory chain of "mem" to find a MemNode whose address
 820 // is the specified alias index.
 821 //
 822 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
 823   if (orig_mem == NULL)
 824     return orig_mem;
 825   Compile* C = phase->C;
 826   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
 827   bool is_instance = (toop != NULL) && toop->is_known_instance();
 828   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 829   Node *prev = NULL;
 830   Node *result = orig_mem;
 831   while (prev != result) {
 832     prev = result;
 833     if (result == start_mem)
 834       break;  // hit one of our sentinels
 835     if (result->is_Mem()) {
 836       const Type *at = phase->type(result->in(MemNode::Address));
 837       if (at == Type::TOP)
 838         break; // Dead
 839       assert (at->isa_ptr() != NULL, "pointer type required.");
 840       int idx = C->get_alias_index(at->is_ptr());
 841       if (idx == alias_idx)
 842         break; // Found
 843       if (!is_instance && (at->isa_oopptr() == NULL ||
 844                            !at->is_oopptr()->is_known_instance())) {
 845         break; // Do not skip store to general memory slice.
 846       }
 847       result = result->in(MemNode::Memory);
 848     }
 849     if (!is_instance)
 850       continue;  // don't search further for non-instance types
 851     // skip over a call which does not affect this memory slice
 852     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 853       Node *proj_in = result->in(0);
 854       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
 855         break;  // hit one of our sentinels
 856       } else if (proj_in->is_Call()) {
 857         CallNode *call = proj_in->as_Call();
 858         if (!call->may_modify(toop, phase)) {
 859           result = call->in(TypeFunc::Memory);
 860         }
 861       } else if (proj_in->is_Initialize()) {
 862         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 863         // Stop if this is the initialization for the object instance which
 864         // which contains this memory slice, otherwise skip over it.
 865         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
 866           result = proj_in->in(TypeFunc::Memory);
 867         }
 868       } else if (proj_in->is_MemBar()) {
 869         result = proj_in->in(TypeFunc::Memory);
 870       }
 871     } else if (result->is_MergeMem()) {
 872       MergeMemNode *mmem = result->as_MergeMem();
 873       result = step_through_mergemem(mmem, alias_idx, toop);
 874       if (result == mmem->base_memory()) {
 875         // Didn't find instance memory, search through general slice recursively.
 876         result = mmem->memory_at(C->get_general_index(alias_idx));
 877         result = find_inst_mem(result, alias_idx, orig_phis, phase);
 878         if (C->failing()) {
 879           return NULL;
 880         }
 881         mmem->set_memory_at(alias_idx, result);
 882       }
 883     } else if (result->is_Phi() &&
 884                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
 885       Node *un = result->as_Phi()->unique_input(phase);
 886       if (un != NULL) {
 887         orig_phis.append_if_missing(result->as_Phi());
 888         result = un;
 889       } else {
 890         break;
 891       }
 892     } else if (result->is_ClearArray()) {
 893       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
 894         // Can not bypass initialization of the instance
 895         // we are looking for.
 896         break;
 897       }
 898       // Otherwise skip it (the call updated 'result' value).
 899     } else if (result->Opcode() == Op_SCMemProj) {
 900       assert(result->in(0)->is_LoadStore(), "sanity");
 901       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
 902       if (at != Type::TOP) {
 903         assert (at->isa_ptr() != NULL, "pointer type required.");
 904         int idx = C->get_alias_index(at->is_ptr());
 905         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
 906         break;
 907       }
 908       result = result->in(0)->in(MemNode::Memory);
 909     }
 910   }
 911   if (result->is_Phi()) {
 912     PhiNode *mphi = result->as_Phi();
 913     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 914     const TypePtr *t = mphi->adr_type();
 915     if (!is_instance) {
 916       // Push all non-instance Phis on the orig_phis worklist to update inputs
 917       // during Phase 4 if needed.
 918       orig_phis.append_if_missing(mphi);
 919     } else if (C->get_alias_index(t) != alias_idx) {
 920       // Create a new Phi with the specified alias index type.
 921       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
 922     }
 923   }
 924   // the result is either MemNode, PhiNode, InitializeNode.
 925   return result;
 926 }
 927 
 928 //
 929 //  Convert the types of unescaped object to instance types where possible,
 930 //  propagate the new type information through the graph, and update memory
 931 //  edges and MergeMem inputs to reflect the new type.
 932 //
 933 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
 934 //  The processing is done in 4 phases:
 935 //
 936 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
 937 //            types for the CheckCastPP for allocations where possible.
 938 //            Propagate the the new types through users as follows:
 939 //               casts and Phi:  push users on alloc_worklist
 940 //               AddP:  cast Base and Address inputs to the instance type
 941 //                      push any AddP users on alloc_worklist and push any memnode
 942 //                      users onto memnode_worklist.
 943 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
 944 //            search the Memory chain for a store with the appropriate type
 945 //            address type.  If a Phi is found, create a new version with
 946 //            the appropriate memory slices from each of the Phi inputs.
 947 //            For stores, process the users as follows:
 948 //               MemNode:  push on memnode_worklist
 949 //               MergeMem: push on mergemem_worklist
 950 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
 951 //            moving the first node encountered of each  instance type to the
 952 //            the input corresponding to its alias index.
 953 //            appropriate memory slice.
 954 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
 955 //
 956 // In the following example, the CheckCastPP nodes are the cast of allocation
 957 // results and the allocation of node 29 is unescaped and eligible to be an
 958 // instance type.
 959 //
 960 // We start with:
 961 //
 962 //     7 Parm #memory
 963 //    10  ConI  "12"
 964 //    19  CheckCastPP   "Foo"
 965 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 966 //    29  CheckCastPP   "Foo"
 967 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
 968 //
 969 //    40  StoreP  25   7  20   ... alias_index=4
 970 //    50  StoreP  35  40  30   ... alias_index=4
 971 //    60  StoreP  45  50  20   ... alias_index=4
 972 //    70  LoadP    _  60  30   ... alias_index=4
 973 //    80  Phi     75  50  60   Memory alias_index=4
 974 //    90  LoadP    _  80  30   ... alias_index=4
 975 //   100  LoadP    _  80  20   ... alias_index=4
 976 //
 977 //
 978 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
 979 // and creating a new alias index for node 30.  This gives:
 980 //
 981 //     7 Parm #memory
 982 //    10  ConI  "12"
 983 //    19  CheckCastPP   "Foo"
 984 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 985 //    29  CheckCastPP   "Foo"  iid=24
 986 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 987 //
 988 //    40  StoreP  25   7  20   ... alias_index=4
 989 //    50  StoreP  35  40  30   ... alias_index=6
 990 //    60  StoreP  45  50  20   ... alias_index=4
 991 //    70  LoadP    _  60  30   ... alias_index=6
 992 //    80  Phi     75  50  60   Memory alias_index=4
 993 //    90  LoadP    _  80  30   ... alias_index=6
 994 //   100  LoadP    _  80  20   ... alias_index=4
 995 //
 996 // In phase 2, new memory inputs are computed for the loads and stores,
 997 // And a new version of the phi is created.  In phase 4, the inputs to
 998 // node 80 are updated and then the memory nodes are updated with the
 999 // values computed in phase 2.  This results in:
1000 //
1001 //     7 Parm #memory
1002 //    10  ConI  "12"
1003 //    19  CheckCastPP   "Foo"
1004 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
1005 //    29  CheckCastPP   "Foo"  iid=24
1006 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
1007 //
1008 //    40  StoreP  25  7   20   ... alias_index=4
1009 //    50  StoreP  35  7   30   ... alias_index=6
1010 //    60  StoreP  45  40  20   ... alias_index=4
1011 //    70  LoadP    _  50  30   ... alias_index=6
1012 //    80  Phi     75  40  60   Memory alias_index=4
1013 //   120  Phi     75  50  50   Memory alias_index=6
1014 //    90  LoadP    _ 120  30   ... alias_index=6
1015 //   100  LoadP    _  80  20   ... alias_index=4
1016 //
1017 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
1018   GrowableArray<Node *>  memnode_worklist;
1019   GrowableArray<PhiNode *>  orig_phis;
1020 
1021   PhaseIterGVN  *igvn = _igvn;
1022   uint new_index_start = (uint) _compile->num_alias_types();
1023   Arena* arena = Thread::current()->resource_area();
1024   VectorSet visited(arena);
1025 
1026 
1027   //  Phase 1:  Process possible allocations from alloc_worklist.
1028   //  Create instance types for the CheckCastPP for allocations where possible.
1029   //
1030   // (Note: don't forget to change the order of the second AddP node on
1031   //  the alloc_worklist if the order of the worklist processing is changed,
1032   //  see the comment in find_second_addp().)
1033   //
1034   while (alloc_worklist.length() != 0) {
1035     Node *n = alloc_worklist.pop();
1036     uint ni = n->_idx;
1037     const TypeOopPtr* tinst = NULL;
1038     if (n->is_Call()) {
1039       CallNode *alloc = n->as_Call();
1040       // copy escape information to call node
1041       PointsToNode* ptn = ptnode_adr(alloc->_idx);
1042       PointsToNode::EscapeState es = escape_state(alloc);
1043       // We have an allocation or call which returns a Java object,
1044       // see if it is unescaped.
1045       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
1046         continue;
1047 
1048       // Find CheckCastPP for the allocate or for the return value of a call
1049       n = alloc->result_cast();
1050       if (n == NULL) {            // No uses except Initialize node
1051         if (alloc->is_Allocate()) {
1052           // Set the scalar_replaceable flag for allocation
1053           // so it could be eliminated if it has no uses.
1054           alloc->as_Allocate()->_is_scalar_replaceable = true;
1055         }
1056         continue;
1057       }
1058       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
1059         assert(!alloc->is_Allocate(), "allocation should have unique type");
1060         continue;
1061       }
1062 
1063       // The inline code for Object.clone() casts the allocation result to
1064       // java.lang.Object and then to the actual type of the allocated
1065       // object. Detect this case and use the second cast.
1066       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
1067       // the allocation result is cast to java.lang.Object and then
1068       // to the actual Array type.
1069       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
1070           && (alloc->is_AllocateArray() ||
1071               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
1072         Node *cast2 = NULL;
1073         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1074           Node *use = n->fast_out(i);
1075           if (use->is_CheckCastPP()) {
1076             cast2 = use;
1077             break;
1078           }
1079         }
1080         if (cast2 != NULL) {
1081           n = cast2;
1082         } else {
1083           // Non-scalar replaceable if the allocation type is unknown statically
1084           // (reflection allocation), the object can't be restored during
1085           // deoptimization without precise type.
1086           continue;
1087         }
1088       }
1089       if (alloc->is_Allocate()) {
1090         // Set the scalar_replaceable flag for allocation
1091         // so it could be eliminated.
1092         alloc->as_Allocate()->_is_scalar_replaceable = true;
1093       }
1094       set_escape_state(n->_idx, es); // CheckCastPP escape state
1095       // in order for an object to be scalar-replaceable, it must be:
1096       //   - a direct allocation (not a call returning an object)
1097       //   - non-escaping
1098       //   - eligible to be a unique type
1099       //   - not determined to be ineligible by escape analysis
1100       assert(ptnode_adr(alloc->_idx)->_node != NULL &&
1101              ptnode_adr(n->_idx)->_node != NULL, "should be registered");
1102       set_map(alloc->_idx, n);
1103       set_map(n->_idx, alloc);
1104       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
1105       if (t == NULL)
1106         continue;  // not a TypeOopPtr
1107       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
1108       igvn->hash_delete(n);
1109       igvn->set_type(n,  tinst);
1110       n->raise_bottom_type(tinst);
1111       igvn->hash_insert(n);
1112       record_for_optimizer(n);
1113       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
1114 
1115         // First, put on the worklist all Field edges from Connection Graph
1116         // which is more accurate then putting immediate users from Ideal Graph.
1117         for (uint e = 0; e < ptn->edge_count(); e++) {
1118           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
1119           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
1120                  "only AddP nodes are Field edges in CG");
1121           if (use->outcnt() > 0) { // Don't process dead nodes
1122             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
1123             if (addp2 != NULL) {
1124               assert(alloc->is_AllocateArray(),"array allocation was expected");
1125               alloc_worklist.append_if_missing(addp2);
1126             }
1127             alloc_worklist.append_if_missing(use);
1128           }
1129         }
1130 
1131         // An allocation may have an Initialize which has raw stores. Scan
1132         // the users of the raw allocation result and push AddP users
1133         // on alloc_worklist.
1134         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
1135         assert (raw_result != NULL, "must have an allocation result");
1136         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
1137           Node *use = raw_result->fast_out(i);
1138           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
1139             Node* addp2 = find_second_addp(use, raw_result);
1140             if (addp2 != NULL) {
1141               assert(alloc->is_AllocateArray(),"array allocation was expected");
1142               alloc_worklist.append_if_missing(addp2);
1143             }
1144             alloc_worklist.append_if_missing(use);
1145           } else if (use->is_MemBar()) {
1146             memnode_worklist.append_if_missing(use);
1147           }
1148         }
1149       }
1150     } else if (n->is_AddP()) {
1151       VectorSet* ptset = PointsTo(get_addp_base(n));
1152       assert(ptset->Size() == 1, "AddP address is unique");
1153       uint elem = ptset->getelem(); // Allocation node's index
1154       if (elem == _phantom_object) {
1155         assert(false, "escaped allocation");
1156         continue; // Assume the value was set outside this method.
1157       }
1158       Node *base = get_map(elem);  // CheckCastPP node
1159       if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
1160       tinst = igvn->type(base)->isa_oopptr();
1161     } else if (n->is_Phi() ||
1162                n->is_CheckCastPP() ||
1163                n->is_EncodeP() ||
1164                n->is_DecodeN() ||
1165                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
1166       if (visited.test_set(n->_idx)) {
1167         assert(n->is_Phi(), "loops only through Phi's");
1168         continue;  // already processed
1169       }
1170       VectorSet* ptset = PointsTo(n);
1171       if (ptset->Size() == 1) {
1172         uint elem = ptset->getelem(); // Allocation node's index
1173         if (elem == _phantom_object) {
1174           assert(false, "escaped allocation");
1175           continue; // Assume the value was set outside this method.
1176         }
1177         Node *val = get_map(elem);   // CheckCastPP node
1178         TypeNode *tn = n->as_Type();
1179         tinst = igvn->type(val)->isa_oopptr();
1180         assert(tinst != NULL && tinst->is_known_instance() &&
1181                (uint)tinst->instance_id() == elem , "instance type expected.");
1182 
1183         const Type *tn_type = igvn->type(tn);
1184         const TypeOopPtr *tn_t;
1185         if (tn_type->isa_narrowoop()) {
1186           tn_t = tn_type->make_ptr()->isa_oopptr();
1187         } else {
1188           tn_t = tn_type->isa_oopptr();
1189         }
1190 
1191         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
1192           if (tn_type->isa_narrowoop()) {
1193             tn_type = tinst->make_narrowoop();
1194           } else {
1195             tn_type = tinst;
1196           }
1197           igvn->hash_delete(tn);
1198           igvn->set_type(tn, tn_type);
1199           tn->set_type(tn_type);
1200           igvn->hash_insert(tn);
1201           record_for_optimizer(n);
1202         } else {
1203           assert(tn_type == TypePtr::NULL_PTR ||
1204                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
1205                  "unexpected type");
1206           continue; // Skip dead path with different type
1207         }
1208       }
1209     } else {
1210       debug_only(n->dump();)
1211       assert(false, "EA: unexpected node");
1212       continue;
1213     }
1214     // push allocation's users on appropriate worklist
1215     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1216       Node *use = n->fast_out(i);
1217       if(use->is_Mem() && use->in(MemNode::Address) == n) {
1218         // Load/store to instance's field
1219         memnode_worklist.append_if_missing(use);
1220       } else if (use->is_MemBar()) {
1221         memnode_worklist.append_if_missing(use);
1222       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
1223         Node* addp2 = find_second_addp(use, n);
1224         if (addp2 != NULL) {
1225           alloc_worklist.append_if_missing(addp2);
1226         }
1227         alloc_worklist.append_if_missing(use);
1228       } else if (use->is_Phi() ||
1229                  use->is_CheckCastPP() ||
1230                  use->is_EncodeP() ||
1231                  use->is_DecodeN() ||
1232                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
1233         alloc_worklist.append_if_missing(use);
1234 #ifdef ASSERT
1235       } else if (use->is_Mem()) {
1236         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
1237       } else if (use->is_MergeMem()) {
1238         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1239       } else if (use->is_SafePoint()) {
1240         // Look for MergeMem nodes for calls which reference unique allocation
1241         // (through CheckCastPP nodes) even for debug info.
1242         Node* m = use->in(TypeFunc::Memory);
1243         if (m->is_MergeMem()) {
1244           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1245         }
1246       } else {
1247         uint op = use->Opcode();
1248         if (!(op == Op_CmpP || op == Op_Conv2B ||
1249               op == Op_CastP2X || op == Op_StoreCM ||
1250               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
1251               op == Op_StrEquals || op == Op_StrIndexOf)) {
1252           n->dump();
1253           use->dump();
1254           assert(false, "EA: missing allocation reference path");
1255         }
1256 #endif
1257       }
1258     }
1259 
1260   }
1261   // New alias types were created in split_AddP().
1262   uint new_index_end = (uint) _compile->num_alias_types();
1263 
1264   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1265   //            compute new values for Memory inputs  (the Memory inputs are not
1266   //            actually updated until phase 4.)
1267   if (memnode_worklist.length() == 0)
1268     return;  // nothing to do
1269 
1270   while (memnode_worklist.length() != 0) {
1271     Node *n = memnode_worklist.pop();
1272     if (visited.test_set(n->_idx))
1273       continue;
1274     if (n->is_Phi() || n->is_ClearArray()) {
1275       // we don't need to do anything, but the users must be pushed
1276     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
1277       // we don't need to do anything, but the users must be pushed
1278       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
1279       if (n == NULL)
1280         continue;
1281     } else {
1282       assert(n->is_Mem(), "memory node required.");
1283       Node *addr = n->in(MemNode::Address);
1284       const Type *addr_t = igvn->type(addr);
1285       if (addr_t == Type::TOP)
1286         continue;
1287       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
1288       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
1289       assert ((uint)alias_idx < new_index_end, "wrong alias index");
1290       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
1291       if (_compile->failing()) {
1292         return;
1293       }
1294       if (mem != n->in(MemNode::Memory)) {
1295         // We delay the memory edge update since we need old one in
1296         // MergeMem code below when instances memory slices are separated.
1297         debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
1298         assert(pn == NULL || pn == n, "wrong node");
1299         set_map(n->_idx, mem);
1300         ptnode_adr(n->_idx)->_node = n;
1301       }
1302       if (n->is_Load()) {
1303         continue;  // don't push users
1304       } else if (n->is_LoadStore()) {
1305         // get the memory projection
1306         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1307           Node *use = n->fast_out(i);
1308           if (use->Opcode() == Op_SCMemProj) {
1309             n = use;
1310             break;
1311           }
1312         }
1313         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
1314       }
1315     }
1316     // push user on appropriate worklist
1317     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1318       Node *use = n->fast_out(i);
1319       if (use->is_Phi() || use->is_ClearArray()) {
1320         memnode_worklist.append_if_missing(use);
1321       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
1322         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
1323           continue;
1324         memnode_worklist.append_if_missing(use);
1325       } else if (use->is_MemBar()) {
1326         memnode_worklist.append_if_missing(use);
1327 #ifdef ASSERT
1328       } else if(use->is_Mem()) {
1329         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
1330       } else if (use->is_MergeMem()) {
1331         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1332       } else {
1333         uint op = use->Opcode();
1334         if (!(op == Op_StoreCM ||
1335               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
1336                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
1337               op == Op_AryEq || op == Op_StrComp ||
1338               op == Op_StrEquals || op == Op_StrIndexOf)) {
1339           n->dump();
1340           use->dump();
1341           assert(false, "EA: missing memory path");
1342         }
1343 #endif
1344       }
1345     }
1346   }
1347 
1348   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
1349   //            Walk each memory slice moving the first node encountered of each
1350   //            instance type to the the input corresponding to its alias index.
1351   uint length = _mergemem_worklist.length();
1352   for( uint next = 0; next < length; ++next ) {
1353     MergeMemNode* nmm = _mergemem_worklist.at(next);
1354     assert(!visited.test_set(nmm->_idx), "should not be visited before");
1355     // Note: we don't want to use MergeMemStream here because we only want to
1356     // scan inputs which exist at the start, not ones we add during processing.
1357     // Note 2: MergeMem may already contains instance memory slices added
1358     // during find_inst_mem() call when memory nodes were processed above.
1359     igvn->hash_delete(nmm);
1360     uint nslices = nmm->req();
1361     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
1362       Node* mem = nmm->in(i);
1363       Node* cur = NULL;
1364       if (mem == NULL || mem->is_top())
1365         continue;
1366       // First, update mergemem by moving memory nodes to corresponding slices
1367       // if their type became more precise since this mergemem was created.
1368       while (mem->is_Mem()) {
1369         const Type *at = igvn->type(mem->in(MemNode::Address));
1370         if (at != Type::TOP) {
1371           assert (at->isa_ptr() != NULL, "pointer type required.");
1372           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
1373           if (idx == i) {
1374             if (cur == NULL)
1375               cur = mem;
1376           } else {
1377             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
1378               nmm->set_memory_at(idx, mem);
1379             }
1380           }
1381         }
1382         mem = mem->in(MemNode::Memory);
1383       }
1384       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
1385       // Find any instance of the current type if we haven't encountered
1386       // already a memory slice of the instance along the memory chain.
1387       for (uint ni = new_index_start; ni < new_index_end; ni++) {
1388         if((uint)_compile->get_general_index(ni) == i) {
1389           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
1390           if (nmm->is_empty_memory(m)) {
1391             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
1392             if (_compile->failing()) {
1393               return;
1394             }
1395             nmm->set_memory_at(ni, result);
1396           }
1397         }
1398       }
1399     }
1400     // Find the rest of instances values
1401     for (uint ni = new_index_start; ni < new_index_end; ni++) {
1402       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
1403       Node* result = step_through_mergemem(nmm, ni, tinst);
1404       if (result == nmm->base_memory()) {
1405         // Didn't find instance memory, search through general slice recursively.
1406         result = nmm->memory_at(_compile->get_general_index(ni));
1407         result = find_inst_mem(result, ni, orig_phis, igvn);
1408         if (_compile->failing()) {
1409           return;
1410         }
1411         nmm->set_memory_at(ni, result);
1412       }
1413     }
1414     igvn->hash_insert(nmm);
1415     record_for_optimizer(nmm);
1416   }
1417 
1418   //  Phase 4:  Update the inputs of non-instance memory Phis and
1419   //            the Memory input of memnodes
1420   // First update the inputs of any non-instance Phi's from
1421   // which we split out an instance Phi.  Note we don't have
1422   // to recursively process Phi's encounted on the input memory
1423   // chains as is done in split_memory_phi() since they  will
1424   // also be processed here.
1425   for (int j = 0; j < orig_phis.length(); j++) {
1426     PhiNode *phi = orig_phis.at(j);
1427     int alias_idx = _compile->get_alias_index(phi->adr_type());
1428     igvn->hash_delete(phi);
1429     for (uint i = 1; i < phi->req(); i++) {
1430       Node *mem = phi->in(i);
1431       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
1432       if (_compile->failing()) {
1433         return;
1434       }
1435       if (mem != new_mem) {
1436         phi->set_req(i, new_mem);
1437       }
1438     }
1439     igvn->hash_insert(phi);
1440     record_for_optimizer(phi);
1441   }
1442 
1443   // Update the memory inputs of MemNodes with the value we computed
1444   // in Phase 2 and move stores memory users to corresponding memory slices.
1445 
1446   // Disable memory split verification code until the fix for 6984348.
1447   // Currently it produces false negative results since it does not cover all cases.
1448 #if 0 // ifdef ASSERT
1449   visited.Reset();
1450   Node_Stack old_mems(arena, _compile->unique() >> 2);
1451 #endif
1452   for (uint i = 0; i < nodes_size(); i++) {
1453     Node *nmem = get_map(i);
1454     if (nmem != NULL) {
1455       Node *n = ptnode_adr(i)->_node;
1456       assert(n != NULL, "sanity");
1457       if (n->is_Mem()) {
1458 #if 0 // ifdef ASSERT
1459         Node* old_mem = n->in(MemNode::Memory);
1460         if (!visited.test_set(old_mem->_idx)) {
1461           old_mems.push(old_mem, old_mem->outcnt());
1462         }
1463 #endif
1464         assert(n->in(MemNode::Memory) != nmem, "sanity");
1465         if (!n->is_Load()) {
1466           // Move memory users of a store first.
1467           move_inst_mem(n, orig_phis, igvn);
1468         }
1469         // Now update memory input
1470         igvn->hash_delete(n);
1471         n->set_req(MemNode::Memory, nmem);
1472         igvn->hash_insert(n);
1473         record_for_optimizer(n);
1474       } else {
1475         assert(n->is_Allocate() || n->is_CheckCastPP() ||
1476                n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
1477       }
1478     }
1479   }
1480 #if 0 // ifdef ASSERT
1481   // Verify that memory was split correctly
1482   while (old_mems.is_nonempty()) {
1483     Node* old_mem = old_mems.node();
1484     uint  old_cnt = old_mems.index();
1485     old_mems.pop();
1486     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
1487   }
1488 #endif
1489 }
1490 
1491 bool ConnectionGraph::has_candidates(Compile *C) {
1492   // EA brings benefits only when the code has allocations and/or locks which
1493   // are represented by ideal Macro nodes.
1494   int cnt = C->macro_count();
1495   for( int i=0; i < cnt; i++ ) {
1496     Node *n = C->macro_node(i);
1497     if ( n->is_Allocate() )
1498       return true;
1499     if( n->is_Lock() ) {
1500       Node* obj = n->as_Lock()->obj_node()->uncast();
1501       if( !(obj->is_Parm() || obj->is_Con()) )
1502         return true;
1503     }
1504   }
1505   return false;
1506 }
1507 
1508 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
1509   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
1510   // to create space for them in ConnectionGraph::_nodes[].
1511   Node* oop_null = igvn->zerocon(T_OBJECT);
1512   Node* noop_null = igvn->zerocon(T_NARROWOOP);
1513 
1514   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
1515   // Perform escape analysis
1516   if (congraph->compute_escape()) {
1517     // There are non escaping objects.
1518     C->set_congraph(congraph);
1519   }
1520 
1521   // Cleanup.
1522   if (oop_null->outcnt() == 0)
1523     igvn->hash_delete(oop_null);
1524   if (noop_null->outcnt() == 0)
1525     igvn->hash_delete(noop_null);
1526 }
1527 
1528 bool ConnectionGraph::compute_escape() {
1529   Compile* C = _compile;
1530 
1531   // 1. Populate Connection Graph (CG) with Ideal nodes.
1532 
1533   Unique_Node_List worklist_init;
1534   worklist_init.map(C->unique(), NULL);  // preallocate space
1535 
1536   // Initialize worklist
1537   if (C->root() != NULL) {
1538     worklist_init.push(C->root());
1539   }
1540 
1541   GrowableArray<Node*> alloc_worklist;
1542   GrowableArray<Node*> addp_worklist;
1543   PhaseGVN* igvn = _igvn;
1544   bool has_allocations = false;
1545 
1546   // Push all useful nodes onto CG list and set their type.
1547   for( uint next = 0; next < worklist_init.size(); ++next ) {
1548     Node* n = worklist_init.at(next);
1549     record_for_escape_analysis(n, igvn);
1550     // Only allocations and java static calls results are checked
1551     // for an escape status. See process_call_result() below.
1552     if (n->is_Allocate() || n->is_CallStaticJava() &&
1553         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
1554       has_allocations = true;
1555       if (n->is_Allocate())
1556         alloc_worklist.append(n);
1557     }
1558     if(n->is_AddP()) {
1559       // Collect address nodes. Use them during stage 3 below
1560       // to build initial connection graph field edges.
1561       addp_worklist.append(n);
1562     } else if (n->is_MergeMem()) {
1563       // Collect all MergeMem nodes to add memory slices for
1564       // scalar replaceable objects in split_unique_types().
1565       _mergemem_worklist.append(n->as_MergeMem());
1566     }
1567     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1568       Node* m = n->fast_out(i);   // Get user
1569       worklist_init.push(m);
1570     }
1571   }
1572 
1573   if (!has_allocations) {
1574     _collecting = false;
1575     return false; // Nothing to do.
1576   }
1577 
1578   // 2. First pass to create simple CG edges (doesn't require to walk CG).
1579   uint delayed_size = _delayed_worklist.size();
1580   for( uint next = 0; next < delayed_size; ++next ) {
1581     Node* n = _delayed_worklist.at(next);
1582     build_connection_graph(n, igvn);
1583   }
1584 
1585   // 3. Pass to create initial fields edges (JavaObject -F-> AddP)
1586   //    to reduce number of iterations during stage 4 below.
1587   uint addp_length = addp_worklist.length();
1588   for( uint next = 0; next < addp_length; ++next ) {
1589     Node* n = addp_worklist.at(next);
1590     Node* base = get_addp_base(n);
1591     if (base->is_Proj())
1592       base = base->in(0);
1593     PointsToNode::NodeType nt = ptnode_adr(base->_idx)->node_type();
1594     if (nt == PointsToNode::JavaObject) {
1595       build_connection_graph(n, igvn);
1596     }
1597   }
1598 
1599   GrowableArray<int> cg_worklist;
1600   cg_worklist.append(_phantom_object);
1601   GrowableArray<uint>  worklist;
1602 
1603   // 4. Build Connection Graph which need
1604   //    to walk the connection graph.
1605   _progress = false;
1606   for (uint ni = 0; ni < nodes_size(); ni++) {
1607     PointsToNode* ptn = ptnode_adr(ni);
1608     Node *n = ptn->_node;
1609     if (n != NULL) { // Call, AddP, LoadP, StoreP
1610       build_connection_graph(n, igvn);
1611       if (ptn->node_type() != PointsToNode::UnknownType)
1612         cg_worklist.append(n->_idx); // Collect CG nodes
1613       if (!_processed.test(n->_idx))
1614         worklist.append(n->_idx); // Collect C/A/L/S nodes
1615     }
1616   }
1617 
1618   // After IGVN user nodes may have smaller _idx than
1619   // their inputs so they will be processed first in
1620   // previous loop. Because of that not all Graph
1621   // edges will be created. Walk over interesting
1622   // nodes again until no new edges are created.
1623   //
1624   // Normally only 1-3 passes needed to build
1625   // Connection Graph depending on graph complexity.
1626   // Observed 8 passes in jvm2008 compiler.compiler.
1627   // Set limit to 20 to catch situation when something
1628   // did go wrong and recompile the method without EA.
1629 
1630 #define CG_BUILD_ITER_LIMIT 20
1631 
1632   uint length = worklist.length();
1633   int iterations = 0;
1634   while(_progress && (iterations++ < CG_BUILD_ITER_LIMIT)) {
1635     _progress = false;
1636     for( uint next = 0; next < length; ++next ) {
1637       int ni = worklist.at(next);
1638       PointsToNode* ptn = ptnode_adr(ni);
1639       Node* n = ptn->_node;
1640       assert(n != NULL, "should be known node");
1641       build_connection_graph(n, igvn);
1642     }
1643   }
1644   if (iterations >= CG_BUILD_ITER_LIMIT) {
1645     assert(iterations < CG_BUILD_ITER_LIMIT,
1646            err_msg("infinite EA connection graph build with %d nodes and worklist size %d",
1647            nodes_size(), length));
1648     // Possible infinite build_connection_graph loop,
1649     // retry compilation without escape analysis.
1650     C->record_failure(C2Compiler::retry_no_escape_analysis());
1651     _collecting = false;
1652     return false;
1653   }
1654 #undef CG_BUILD_ITER_LIMIT
1655 
1656   Arena* arena = Thread::current()->resource_area();
1657   VectorSet visited(arena);
1658 
1659   // 5. Find fields initializing values for not escaped allocations
1660   uint alloc_length = alloc_worklist.length();
1661   for (uint next = 0; next < alloc_length; ++next) {
1662     Node* n = alloc_worklist.at(next);
1663     if (ptnode_adr(n->_idx)->escape_state() == PointsToNode::NoEscape) {
1664       find_init_values(n, &visited, igvn);
1665     }
1666   }
1667 
1668   worklist.clear();
1669 
1670   // 6. Remove deferred edges from the graph.
1671   uint cg_length = cg_worklist.length();
1672   for (uint next = 0; next < cg_length; ++next) {
1673     int ni = cg_worklist.at(next);
1674     PointsToNode* ptn = ptnode_adr(ni);
1675     PointsToNode::NodeType nt = ptn->node_type();
1676     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
1677       remove_deferred(ni, &worklist, &visited);
1678       Node *n = ptn->_node;
1679     }
1680   }
1681 
1682   // 7. Adjust escape state of nonescaping objects.
1683   for (uint next = 0; next < addp_length; ++next) {
1684     Node* n = addp_worklist.at(next);
1685     adjust_escape_state(n);
1686   }
1687 
1688   // 8. Propagate escape states.
1689   worklist.clear();
1690 
1691   // mark all nodes reachable from GlobalEscape nodes
1692   (void)propagate_escape_state(&cg_worklist, &worklist, PointsToNode::GlobalEscape);
1693 
1694   // mark all nodes reachable from ArgEscape nodes
1695   bool has_non_escaping_obj = propagate_escape_state(&cg_worklist, &worklist, PointsToNode::ArgEscape);
1696 
1697   // push all NoEscape nodes on the worklist
1698   for( uint next = 0; next < cg_length; ++next ) {
1699     int nk = cg_worklist.at(next);
1700     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
1701       worklist.push(nk);
1702   }
1703   alloc_worklist.clear();
1704   // mark all nodes reachable from NoEscape nodes
1705   while(worklist.length() > 0) {
1706     uint nk = worklist.pop();
1707     PointsToNode* ptn = ptnode_adr(nk);
1708     if (ptn->node_type() == PointsToNode::JavaObject &&
1709         !(nk == _noop_null || nk == _oop_null))
1710       has_non_escaping_obj = true; // Non Escape
1711     Node* n = ptn->_node;
1712     bool scalar_replaceable = ptn->scalar_replaceable();
1713     if (n->is_Allocate() && scalar_replaceable) {
1714       // Push scalar replaceable allocations on alloc_worklist
1715       // for processing in split_unique_types(). Note,
1716       // following code may change scalar_replaceable value.
1717       alloc_worklist.append(n);
1718     }
1719     uint e_cnt = ptn->edge_count();
1720     for (uint ei = 0; ei < e_cnt; ei++) {
1721       uint npi = ptn->edge_target(ei);
1722       PointsToNode *np = ptnode_adr(npi);
1723       if (np->escape_state() < PointsToNode::NoEscape) {
1724         set_escape_state(npi, PointsToNode::NoEscape);
1725         if (!scalar_replaceable) {
1726           np->set_scalar_replaceable(false);
1727         }
1728         worklist.push(npi);
1729       } else if (np->scalar_replaceable() && !scalar_replaceable) {
1730         // Propagate scalar_replaceable value.
1731         np->set_scalar_replaceable(false);
1732         worklist.push(npi);
1733       }
1734     }
1735   }
1736 
1737   _collecting = false;
1738   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
1739 
1740   assert(ptnode_adr(_oop_null)->escape_state() == PointsToNode::NoEscape, "sanity");
1741   if (UseCompressedOops) {
1742     assert(ptnode_adr(_noop_null)->escape_state() == PointsToNode::NoEscape, "sanity");
1743   }
1744 
1745   if (EliminateLocks && has_non_escaping_obj) {
1746     // Mark locks before changing ideal graph.
1747     int cnt = C->macro_count();
1748     for( int i=0; i < cnt; i++ ) {
1749       Node *n = C->macro_node(i);
1750       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1751         AbstractLockNode* alock = n->as_AbstractLock();
1752         if (!alock->is_eliminated()) {
1753           PointsToNode::EscapeState es = escape_state(alock->obj_node());
1754           assert(es != PointsToNode::UnknownEscape, "should know");
1755           if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
1756             // Mark it eliminated
1757             alock->set_eliminated();
1758           }
1759         }
1760       }
1761     }
1762   }
1763 
1764 #ifndef PRODUCT
1765   if (PrintEscapeAnalysis) {
1766     dump(); // Dump ConnectionGraph
1767   }
1768 #endif
1769 
1770   bool has_scalar_replaceable_candidates = false;
1771   alloc_length = alloc_worklist.length();
1772   for (uint next = 0; next < alloc_length; ++next) {
1773     Node* n = alloc_worklist.at(next);
1774     PointsToNode* ptn = ptnode_adr(n->_idx);
1775     assert(ptn->escape_state() == PointsToNode::NoEscape, "sanity");
1776     if (ptn->scalar_replaceable()) {
1777       has_scalar_replaceable_candidates = true;
1778       break;
1779     }
1780   }
1781 
1782   if ( has_scalar_replaceable_candidates &&
1783        C->AliasLevel() >= 3 && EliminateAllocations ) {
1784 
1785     // Now use the escape information to create unique types for
1786     // scalar replaceable objects.
1787     split_unique_types(alloc_worklist);
1788 
1789     if (C->failing())  return false;
1790 
1791     C->print_method("After Escape Analysis", 2);
1792 
1793 #ifdef ASSERT
1794   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
1795     tty->print("=== No allocations eliminated for ");
1796     C->method()->print_short_name();
1797     if(!EliminateAllocations) {
1798       tty->print(" since EliminateAllocations is off ===");
1799     } else if(!has_scalar_replaceable_candidates) {
1800       tty->print(" since there are no scalar replaceable candidates ===");
1801     } else if(C->AliasLevel() < 3) {
1802       tty->print(" since AliasLevel < 3 ===");
1803     }
1804     tty->cr();
1805 #endif
1806   }
1807   return has_non_escaping_obj;
1808 }
1809 
1810 // Find fields initializing values for allocations.
1811 void ConnectionGraph::find_init_values(Node* alloc, VectorSet* visited, PhaseTransform* phase) {
1812   assert(alloc->is_Allocate(), "Should be called for Allocate nodes only");
1813   PointsToNode* pta = ptnode_adr(alloc->_idx);
1814   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1815   InitializeNode* ini = alloc->as_Allocate()->initialization();
1816 
1817   Compile* C = _compile;
1818   visited->Reset();
1819   // Check if a oop field's initializing value is recorded and add
1820   // a corresponding NULL field's value if it is not recorded.
1821   // Connection Graph does not record a default initialization by NULL
1822   // captured by Initialize node.
1823   //
1824   uint ae_cnt = pta->edge_count();
1825   for (uint ei = 0; ei < ae_cnt; ei++) {
1826     uint nidx = pta->edge_target(ei); // Field (AddP)
1827     PointsToNode* ptn = ptnode_adr(nidx);
1828     assert(ptn->_node->is_AddP(), "Should be AddP nodes only");
1829     int offset = ptn->offset();
1830     if (offset != Type::OffsetBot &&
1831         offset != oopDesc::klass_offset_in_bytes() &&
1832         !visited->test_set(offset)) {
1833 
1834       // Check only oop fields.
1835       const Type* adr_type = ptn->_node->as_AddP()->bottom_type();
1836       BasicType basic_field_type = T_INT;
1837       if (adr_type->isa_instptr()) {
1838         ciField* field = C->alias_type(adr_type->isa_instptr())->field();
1839         if (field != NULL) {
1840           basic_field_type = field->layout_type();
1841         } else {
1842           // Ignore non field load (for example, klass load)
1843         }
1844       } else if (adr_type->isa_aryptr()) {
1845         if (offset != arrayOopDesc::length_offset_in_bytes()) {
1846           const Type* elemtype = adr_type->isa_aryptr()->elem();
1847           basic_field_type = elemtype->array_element_basic_type();
1848         } else {
1849           // Ignore array length load
1850         }
1851 #ifdef ASSERT
1852       } else {
1853         // Raw pointers are used for initializing stores so skip it
1854         // since it should be recorded already
1855         Node* base = get_addp_base(ptn->_node);
1856         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1857                (base->in(0) == alloc),"unexpected pointer type");
1858 #endif
1859       }
1860       if (basic_field_type == T_OBJECT ||
1861           basic_field_type == T_NARROWOOP ||
1862           basic_field_type == T_ARRAY) {
1863         Node* value = NULL;
1864         if (ini != NULL) {
1865           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
1866           Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
1867           if (store != NULL && store->is_Store()) {
1868             value = store->in(MemNode::ValueIn);
1869           } else if (ptn->edge_count() > 0) { // Are there oop stores?
1870             // Check for a store which follows allocation without branches.
1871             // For example, a volatile field store is not collected
1872             // by Initialize node. TODO: it would be nice to use idom() here.
1873             //
1874             // Search all references to the same field which use different
1875             // AddP nodes, for example, in the next case:
1876             //
1877             //    Point p[] = new Point[1];
1878             //    if ( x ) { p[0] = new Point(); p[0].x = x; }
1879             //    if ( p[0] != null ) { y = p[0].x; } // has CastPP
1880             //
1881             for (uint next = ei; (next < ae_cnt) && (value == NULL); next++) {
1882               uint fpi = pta->edge_target(next); // Field (AddP)
1883               PointsToNode *ptf = ptnode_adr(fpi);
1884               if (ptf->offset() == offset) {
1885                 Node* nf = ptf->_node;
1886                 for (DUIterator_Fast imax, i = nf->fast_outs(imax); i < imax; i++) {
1887                   store = nf->fast_out(i);
1888                   if (store->is_Store() && store->in(0) != NULL) {
1889                     Node* ctrl = store->in(0);
1890                     while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
1891                             ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
1892                             ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
1893                        ctrl = ctrl->in(0);
1894                     }
1895                     if (ctrl == ini || ctrl == alloc) {
1896                       value = store->in(MemNode::ValueIn);
1897                       break;
1898                     }
1899                   }
1900                 }
1901               }
1902             }
1903           }
1904         }
1905         if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
1906           // A field's initializing value was not recorded. Add NULL.
1907           uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
1908           add_edge_from_fields(alloc->_idx, null_idx, offset);
1909         }
1910       }
1911     }
1912   }
1913 }
1914 
1915 // Adjust escape state after Connection Graph is built.
1916 void ConnectionGraph::adjust_escape_state(Node* n) {
1917   PointsToNode* ptn = ptnode_adr(n->_idx);
1918   assert(n->is_AddP(), "Should be called for AddP nodes only");
1919   // Search for objects which are not scalar replaceable
1920   // and mark them to propagate the state to referenced objects.
1921   //
1922 
1923   int offset = ptn->offset();
1924   Node* base = get_addp_base(n);
1925   VectorSet* ptset = PointsTo(base);
1926   int ptset_size = ptset->Size();
1927 
1928   // An object is not scalar replaceable if the field which may point
1929   // to it has unknown offset (unknown element of an array of objects).
1930   //
1931 
1932   if (offset == Type::OffsetBot) {
1933     uint e_cnt = ptn->edge_count();
1934     for (uint ei = 0; ei < e_cnt; ei++) {
1935       uint npi = ptn->edge_target(ei);
1936       ptnode_adr(npi)->set_scalar_replaceable(false);
1937     }
1938   }
1939 
1940   // Currently an object is not scalar replaceable if a LoadStore node
1941   // access its field since the field value is unknown after it.
1942   //
1943   bool has_LoadStore = false;
1944   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1945     Node *use = n->fast_out(i);
1946     if (use->is_LoadStore()) {
1947       has_LoadStore = true;
1948       break;
1949     }
1950   }
1951   // An object is not scalar replaceable if the address points
1952   // to unknown field (unknown element for arrays, offset is OffsetBot).
1953   //
1954   // Or the address may point to more then one object. This may produce
1955   // the false positive result (set not scalar replaceable)
1956   // since the flow-insensitive escape analysis can't separate
1957   // the case when stores overwrite the field's value from the case
1958   // when stores happened on different control branches.
1959   //
1960   // Note: it will disable scalar replacement in some cases:
1961   //
1962   //    Point p[] = new Point[1];
1963   //    p[0] = new Point(); // Will be not scalar replaced
1964   //
1965   // but it will save us from incorrect optimizations in next cases:
1966   //
1967   //    Point p[] = new Point[1];
1968   //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1969   //
1970   if (ptset_size > 1 || ptset_size != 0 &&
1971       (has_LoadStore || offset == Type::OffsetBot)) {
1972     for( VectorSetI j(ptset); j.test(); ++j ) {
1973       ptnode_adr(j.elem)->set_scalar_replaceable(false);
1974     }
1975   }
1976 }
1977 
1978 // Propagate escape states to referenced nodes.
1979 bool ConnectionGraph::propagate_escape_state(GrowableArray<int>* cg_worklist,
1980                                              GrowableArray<uint>* worklist,
1981                                              PointsToNode::EscapeState esc_state) {
1982   bool has_java_obj = false;
1983 
1984   // push all nodes with the same escape state on the worklist
1985   uint cg_length = cg_worklist->length();
1986   for (uint next = 0; next < cg_length; ++next) {
1987     int nk = cg_worklist->at(next);
1988     if (ptnode_adr(nk)->escape_state() == esc_state)
1989       worklist->push(nk);
1990   }
1991   // mark all reachable nodes
1992   while (worklist->length() > 0) {
1993     PointsToNode* ptn = ptnode_adr(worklist->pop());
1994     if (ptn->node_type() == PointsToNode::JavaObject) {
1995       has_java_obj = true;
1996     }
1997     uint e_cnt = ptn->edge_count();
1998     for (uint ei = 0; ei < e_cnt; ei++) {
1999       uint npi = ptn->edge_target(ei);
2000       PointsToNode *np = ptnode_adr(npi);
2001       if (np->escape_state() < esc_state) {
2002         set_escape_state(npi, esc_state);
2003         worklist->push(npi);
2004       }
2005     }
2006   }
2007   // Has not escaping java objects
2008   return has_java_obj && (esc_state < PointsToNode::GlobalEscape);
2009 }
2010 
2011 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
2012 
2013     switch (call->Opcode()) {
2014 #ifdef ASSERT
2015     case Op_Allocate:
2016     case Op_AllocateArray:
2017     case Op_Lock:
2018     case Op_Unlock:
2019       assert(false, "should be done already");
2020       break;
2021 #endif
2022     case Op_CallLeaf:
2023     case Op_CallLeafNoFP:
2024     {
2025       // Stub calls, objects do not escape but they are not scale replaceable.
2026       // Adjust escape state for outgoing arguments.
2027       const TypeTuple * d = call->tf()->domain();
2028       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2029         const Type* at = d->field_at(i);
2030         Node *arg = call->in(i)->uncast();
2031         const Type *aat = phase->type(arg);
2032         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
2033             ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
2034 
2035           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2036                  aat->isa_ptr() != NULL, "expecting an Ptr");
2037 #ifdef ASSERT
2038           if (!(call->Opcode() == Op_CallLeafNoFP &&
2039                 call->as_CallLeaf()->_name != NULL &&
2040                 (strstr(call->as_CallLeaf()->_name, "arraycopy")  != 0) ||
2041                 call->as_CallLeaf()->_name != NULL &&
2042                 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
2043                  strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
2044           ) {
2045             call->dump();
2046             assert(false, "EA: unexpected CallLeaf");
2047           }
2048 #endif
2049           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
2050           if (arg->is_AddP()) {
2051             //
2052             // The inline_native_clone() case when the arraycopy stub is called
2053             // after the allocation before Initialize and CheckCastPP nodes.
2054             //
2055             // Set AddP's base (Allocate) as not scalar replaceable since
2056             // pointer to the base (with offset) is passed as argument.
2057             //
2058             arg = get_addp_base(arg);
2059           }
2060           for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
2061             uint pt = j.elem;
2062             set_escape_state(pt, PointsToNode::ArgEscape);
2063           }
2064         }
2065       }
2066       break;
2067     }
2068 
2069     case Op_CallStaticJava:
2070     // For a static call, we know exactly what method is being called.
2071     // Use bytecode estimator to record the call's escape affects
2072     {
2073       ciMethod *meth = call->as_CallJava()->method();
2074       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
2075       // fall-through if not a Java method or no analyzer information
2076       if (call_analyzer != NULL) {
2077         const TypeTuple * d = call->tf()->domain();
2078         bool copy_dependencies = false;
2079         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2080           const Type* at = d->field_at(i);
2081           int k = i - TypeFunc::Parms;
2082           Node *arg = call->in(i)->uncast();
2083 
2084           if (at->isa_oopptr() != NULL &&
2085               ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
2086 
2087             bool global_escapes = false;
2088             bool fields_escapes = false;
2089             if (!call_analyzer->is_arg_stack(k)) {
2090               // The argument global escapes, mark everything it could point to
2091               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
2092               global_escapes = true;
2093             } else {
2094               if (!call_analyzer->is_arg_local(k)) {
2095                 // The argument itself doesn't escape, but any fields might
2096                 fields_escapes = true;
2097               }
2098               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
2099               copy_dependencies = true;
2100             }
2101 
2102             for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
2103               uint pt = j.elem;
2104               if (global_escapes) {
2105                 //The argument global escapes, mark everything it could point to
2106                 set_escape_state(pt, PointsToNode::GlobalEscape);
2107               } else {
2108                 if (fields_escapes) {
2109                   // The argument itself doesn't escape, but any fields might
2110                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
2111                 }
2112                 set_escape_state(pt, PointsToNode::ArgEscape);
2113               }
2114             }
2115           }
2116         }
2117         if (copy_dependencies)
2118           call_analyzer->copy_dependencies(_compile->dependencies());
2119         break;
2120       }
2121     }
2122 
2123     default:
2124     // Fall-through here if not a Java method or no analyzer information
2125     // or some other type of call, assume the worst case: all arguments
2126     // globally escape.
2127     {
2128       // adjust escape state for  outgoing arguments
2129       const TypeTuple * d = call->tf()->domain();
2130       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2131         const Type* at = d->field_at(i);
2132         if (at->isa_oopptr() != NULL) {
2133           Node *arg = call->in(i)->uncast();
2134           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
2135           for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
2136             uint pt = j.elem;
2137             set_escape_state(pt, PointsToNode::GlobalEscape);
2138           }
2139         }
2140       }
2141     }
2142   }
2143 }
2144 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
2145   CallNode   *call = resproj->in(0)->as_Call();
2146   uint    call_idx = call->_idx;
2147   uint resproj_idx = resproj->_idx;
2148 
2149   switch (call->Opcode()) {
2150     case Op_Allocate:
2151     {
2152       Node *k = call->in(AllocateNode::KlassNode);
2153       const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
2154       assert(kt != NULL, "TypeKlassPtr  required.");
2155       ciKlass* cik = kt->klass();
2156 
2157       PointsToNode::EscapeState es;
2158       uint edge_to;
2159       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
2160          !cik->is_instance_klass() || // StressReflectiveCode
2161           cik->as_instance_klass()->has_finalizer()) {
2162         es = PointsToNode::GlobalEscape;
2163         edge_to = _phantom_object; // Could not be worse
2164       } else {
2165         es = PointsToNode::NoEscape;
2166         edge_to = call_idx;
2167         assert(ptnode_adr(call_idx)->scalar_replaceable(), "sanity");
2168       }
2169       set_escape_state(call_idx, es);
2170       add_pointsto_edge(resproj_idx, edge_to);
2171       _processed.set(resproj_idx);
2172       break;
2173     }
2174 
2175     case Op_AllocateArray:
2176     {
2177 
2178       Node *k = call->in(AllocateNode::KlassNode);
2179       const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
2180       assert(kt != NULL, "TypeKlassPtr  required.");
2181       ciKlass* cik = kt->klass();
2182 
2183       PointsToNode::EscapeState es;
2184       uint edge_to;
2185       if (!cik->is_array_klass()) { // StressReflectiveCode
2186         es = PointsToNode::GlobalEscape;
2187         edge_to = _phantom_object;
2188       } else {
2189         es = PointsToNode::NoEscape;
2190         edge_to = call_idx;
2191         assert(ptnode_adr(call_idx)->scalar_replaceable(), "sanity");
2192         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
2193         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
2194           // Not scalar replaceable if the length is not constant or too big.
2195           ptnode_adr(call_idx)->set_scalar_replaceable(false);
2196         }
2197       }
2198       set_escape_state(call_idx, es);
2199       add_pointsto_edge(resproj_idx, edge_to);
2200       _processed.set(resproj_idx);
2201       break;
2202     }
2203 
2204     case Op_CallStaticJava:
2205     // For a static call, we know exactly what method is being called.
2206     // Use bytecode estimator to record whether the call's return value escapes
2207     {
2208       bool done = true;
2209       const TypeTuple *r = call->tf()->range();
2210       const Type* ret_type = NULL;
2211 
2212       if (r->cnt() > TypeFunc::Parms)
2213         ret_type = r->field_at(TypeFunc::Parms);
2214 
2215       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
2216       //        _multianewarray functions return a TypeRawPtr.
2217       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
2218         _processed.set(resproj_idx);
2219         break;  // doesn't return a pointer type
2220       }
2221       ciMethod *meth = call->as_CallJava()->method();
2222       const TypeTuple * d = call->tf()->domain();
2223       if (meth == NULL) {
2224         // not a Java method, assume global escape
2225         set_escape_state(call_idx, PointsToNode::GlobalEscape);
2226         add_pointsto_edge(resproj_idx, _phantom_object);
2227       } else {
2228         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
2229         bool copy_dependencies = false;
2230 
2231         if (call_analyzer->is_return_allocated()) {
2232           // Returns a newly allocated unescaped object, simply
2233           // update dependency information.
2234           // Mark it as NoEscape so that objects referenced by
2235           // it's fields will be marked as NoEscape at least.
2236           set_escape_state(call_idx, PointsToNode::NoEscape);
2237           ptnode_adr(call_idx)->set_scalar_replaceable(false);
2238           add_pointsto_edge(resproj_idx, call_idx);
2239           copy_dependencies = true;
2240         } else if (call_analyzer->is_return_local()) {
2241           // determine whether any arguments are returned
2242           set_escape_state(call_idx, PointsToNode::ArgEscape);
2243           bool ret_arg = false;
2244           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2245             const Type* at = d->field_at(i);
2246 
2247             if (at->isa_oopptr() != NULL) {
2248               Node *arg = call->in(i)->uncast();
2249 
2250               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2251                 ret_arg = true;
2252                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
2253                 if (arg_esp->node_type() == PointsToNode::UnknownType)
2254                   done = false;
2255                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
2256                   add_pointsto_edge(resproj_idx, arg->_idx);
2257                 else
2258                   add_deferred_edge(resproj_idx, arg->_idx);
2259               }
2260             }
2261           }
2262           if (done && !ret_arg) {
2263             // Returns unknown object.
2264             set_escape_state(call_idx, PointsToNode::GlobalEscape);
2265             add_pointsto_edge(resproj_idx, _phantom_object);
2266           }
2267           if (done) {
2268             copy_dependencies = true;
2269           }
2270         } else {
2271           set_escape_state(call_idx, PointsToNode::GlobalEscape);
2272           add_pointsto_edge(resproj_idx, _phantom_object);
2273         }
2274         if (copy_dependencies)
2275           call_analyzer->copy_dependencies(_compile->dependencies());
2276       }
2277       if (done)
2278         _processed.set(resproj_idx);
2279       break;
2280     }
2281 
2282     default:
2283     // Some other type of call, assume the worst case that the
2284     // returned value, if any, globally escapes.
2285     {
2286       const TypeTuple *r = call->tf()->range();
2287       if (r->cnt() > TypeFunc::Parms) {
2288         const Type* ret_type = r->field_at(TypeFunc::Parms);
2289 
2290         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
2291         //        _multianewarray functions return a TypeRawPtr.
2292         if (ret_type->isa_ptr() != NULL) {
2293           set_escape_state(call_idx, PointsToNode::GlobalEscape);
2294           add_pointsto_edge(resproj_idx, _phantom_object);
2295         }
2296       }
2297       _processed.set(resproj_idx);
2298     }
2299   }
2300 }
2301 
2302 // Populate Connection Graph with Ideal nodes and create simple
2303 // connection graph edges (do not need to check the node_type of inputs
2304 // or to call PointsTo() to walk the connection graph).
2305 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
2306   if (_processed.test(n->_idx))
2307     return; // No need to redefine node's state.
2308 
2309   if (n->is_Call()) {
2310     // Arguments to allocation and locking don't escape.
2311     if (n->is_Allocate()) {
2312       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
2313       record_for_optimizer(n);
2314     } else if (n->is_Lock() || n->is_Unlock()) {
2315       // Put Lock and Unlock nodes on IGVN worklist to process them during
2316       // the first IGVN optimization when escape information is still available.
2317       record_for_optimizer(n);
2318       _processed.set(n->_idx);
2319     } else {
2320       // Don't mark as processed since call's arguments have to be processed.
2321       PointsToNode::NodeType nt = PointsToNode::UnknownType;
2322       PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
2323 
2324       // Check if a call returns an object.
2325       const TypeTuple *r = n->as_Call()->tf()->range();
2326       if (r->cnt() > TypeFunc::Parms &&
2327           r->field_at(TypeFunc::Parms)->isa_ptr() &&
2328           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
2329         nt = PointsToNode::JavaObject;
2330         if (!n->is_CallStaticJava()) {
2331           // Since the called mathod is statically unknown assume
2332           // the worst case that the returned value globally escapes.
2333           es = PointsToNode::GlobalEscape;
2334         }
2335       }
2336       add_node(n, nt, es, false);
2337     }
2338     return;
2339   }
2340 
2341   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
2342   // ThreadLocal has RawPrt type.
2343   switch (n->Opcode()) {
2344     case Op_AddP:
2345     {
2346       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
2347       break;
2348     }
2349     case Op_CastX2P:
2350     { // "Unsafe" memory access.
2351       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2352       break;
2353     }
2354     case Op_CastPP:
2355     case Op_CheckCastPP:
2356     case Op_EncodeP:
2357     case Op_DecodeN:
2358     {
2359       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2360       int ti = n->in(1)->_idx;
2361       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2362       if (nt == PointsToNode::UnknownType) {
2363         _delayed_worklist.push(n); // Process it later.
2364         break;
2365       } else if (nt == PointsToNode::JavaObject) {
2366         add_pointsto_edge(n->_idx, ti);
2367       } else {
2368         add_deferred_edge(n->_idx, ti);
2369       }
2370       _processed.set(n->_idx);
2371       break;
2372     }
2373     case Op_ConP:
2374     {
2375       // assume all pointer constants globally escape except for null
2376       PointsToNode::EscapeState es;
2377       if (phase->type(n) == TypePtr::NULL_PTR)
2378         es = PointsToNode::NoEscape;
2379       else
2380         es = PointsToNode::GlobalEscape;
2381 
2382       add_node(n, PointsToNode::JavaObject, es, true);
2383       break;
2384     }
2385     case Op_ConN:
2386     {
2387       // assume all narrow oop constants globally escape except for null
2388       PointsToNode::EscapeState es;
2389       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
2390         es = PointsToNode::NoEscape;
2391       else
2392         es = PointsToNode::GlobalEscape;
2393 
2394       add_node(n, PointsToNode::JavaObject, es, true);
2395       break;
2396     }
2397     case Op_CreateEx:
2398     {
2399       // assume that all exception objects globally escape
2400       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2401       break;
2402     }
2403     case Op_LoadKlass:
2404     case Op_LoadNKlass:
2405     {
2406       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2407       break;
2408     }
2409     case Op_LoadP:
2410     case Op_LoadN:
2411     {
2412       const Type *t = phase->type(n);
2413       if (t->make_ptr() == NULL) {
2414         _processed.set(n->_idx);
2415         return;
2416       }
2417       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2418       break;
2419     }
2420     case Op_Parm:
2421     {
2422       _processed.set(n->_idx); // No need to redefine it state.
2423       uint con = n->as_Proj()->_con;
2424       if (con < TypeFunc::Parms)
2425         return;
2426       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
2427       if (t->isa_ptr() == NULL)
2428         return;
2429       // We have to assume all input parameters globally escape
2430       // (Note: passing 'false' since _processed is already set).
2431       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
2432       break;
2433     }
2434     case Op_Phi:
2435     {
2436       const Type *t = n->as_Phi()->type();
2437       if (t->make_ptr() == NULL) {
2438         // nothing to do if not an oop or narrow oop
2439         _processed.set(n->_idx);
2440         return;
2441       }
2442       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2443       uint i;
2444       for (i = 1; i < n->req() ; i++) {
2445         Node* in = n->in(i);
2446         if (in == NULL)
2447           continue;  // ignore NULL
2448         in = in->uncast();
2449         if (in->is_top() || in == n)
2450           continue;  // ignore top or inputs which go back this node
2451         int ti = in->_idx;
2452         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2453         if (nt == PointsToNode::UnknownType) {
2454           break;
2455         } else if (nt == PointsToNode::JavaObject) {
2456           add_pointsto_edge(n->_idx, ti);
2457         } else {
2458           add_deferred_edge(n->_idx, ti);
2459         }
2460       }
2461       if (i >= n->req())
2462         _processed.set(n->_idx);
2463       else
2464         _delayed_worklist.push(n);
2465       break;
2466     }
2467     case Op_Proj:
2468     {
2469       // we are only interested in the oop result projection from a call
2470       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2471         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
2472         assert(r->cnt() > TypeFunc::Parms, "sanity");
2473         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
2474           add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2475           int ti = n->in(0)->_idx;
2476           // The call may not be registered yet (since not all its inputs are registered)
2477           // if this is the projection from backbranch edge of Phi.
2478           if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
2479             process_call_result(n->as_Proj(), phase);
2480           }
2481           if (!_processed.test(n->_idx)) {
2482             // The call's result may need to be processed later if the call
2483             // returns it's argument and the argument is not processed yet.
2484             _delayed_worklist.push(n);
2485           }
2486           break;
2487         }
2488       }
2489       _processed.set(n->_idx);
2490       break;
2491     }
2492     case Op_Return:
2493     {
2494       if( n->req() > TypeFunc::Parms &&
2495           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2496         // Treat Return value as LocalVar with GlobalEscape escape state.
2497         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
2498         int ti = n->in(TypeFunc::Parms)->_idx;
2499         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2500         if (nt == PointsToNode::UnknownType) {
2501           _delayed_worklist.push(n); // Process it later.
2502           break;
2503         } else if (nt == PointsToNode::JavaObject) {
2504           add_pointsto_edge(n->_idx, ti);
2505         } else {
2506           add_deferred_edge(n->_idx, ti);
2507         }
2508       }
2509       _processed.set(n->_idx);
2510       break;
2511     }
2512     case Op_StoreP:
2513     case Op_StoreN:
2514     {
2515       const Type *adr_type = phase->type(n->in(MemNode::Address));
2516       adr_type = adr_type->make_ptr();
2517       if (adr_type->isa_oopptr()) {
2518         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2519       } else {
2520         Node* adr = n->in(MemNode::Address);
2521         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
2522             adr->in(AddPNode::Address)->is_Proj() &&
2523             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2524           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2525           // We are computing a raw address for a store captured
2526           // by an Initialize compute an appropriate address type.
2527           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2528           assert(offs != Type::OffsetBot, "offset must be a constant");
2529         } else {
2530           _processed.set(n->_idx);
2531           return;
2532         }
2533       }
2534       break;
2535     }
2536     case Op_StorePConditional:
2537     case Op_CompareAndSwapP:
2538     case Op_CompareAndSwapN:
2539     {
2540       const Type *adr_type = phase->type(n->in(MemNode::Address));
2541       adr_type = adr_type->make_ptr();
2542       if (adr_type->isa_oopptr()) {
2543         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2544       } else {
2545         _processed.set(n->_idx);
2546         return;
2547       }
2548       break;
2549     }
2550     case Op_AryEq:
2551     case Op_StrComp:
2552     case Op_StrEquals:
2553     case Op_StrIndexOf:
2554     {
2555       // char[] arrays passed to string intrinsics are not scalar replaceable.
2556       add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2557       break;
2558     }
2559     case Op_ThreadLocal:
2560     {
2561       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
2562       break;
2563     }
2564     default:
2565       ;
2566       // nothing to do
2567   }
2568   return;
2569 }
2570 
2571 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
2572   uint n_idx = n->_idx;
2573   assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
2574 
2575   // Don't set processed bit for AddP, LoadP, StoreP since
2576   // they may need more then one pass to process.
2577   // Also don't mark as processed Call nodes since their
2578   // arguments may need more then one pass to process.
2579   if (_processed.test(n_idx))
2580     return; // No need to redefine node's state.
2581 
2582   if (n->is_Call()) {
2583     CallNode *call = n->as_Call();
2584     process_call_arguments(call, phase);
2585     return;
2586   }
2587 
2588   switch (n->Opcode()) {
2589     case Op_AddP:
2590     {
2591       Node *base = get_addp_base(n);
2592       // Create a field edge to this node from everything base could point to.
2593       for( VectorSetI i(PointsTo(base)); i.test(); ++i ) {
2594         uint pt = i.elem;
2595         add_field_edge(pt, n_idx, address_offset(n, phase));
2596       }
2597       break;
2598     }
2599     case Op_CastX2P:
2600     {
2601       assert(false, "Op_CastX2P");
2602       break;
2603     }
2604     case Op_CastPP:
2605     case Op_CheckCastPP:
2606     case Op_EncodeP:
2607     case Op_DecodeN:
2608     {
2609       int ti = n->in(1)->_idx;
2610       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
2611       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2612         add_pointsto_edge(n_idx, ti);
2613       } else {
2614         add_deferred_edge(n_idx, ti);
2615       }
2616       _processed.set(n_idx);
2617       break;
2618     }
2619     case Op_ConP:
2620     {
2621       assert(false, "Op_ConP");
2622       break;
2623     }
2624     case Op_ConN:
2625     {
2626       assert(false, "Op_ConN");
2627       break;
2628     }
2629     case Op_CreateEx:
2630     {
2631       assert(false, "Op_CreateEx");
2632       break;
2633     }
2634     case Op_LoadKlass:
2635     case Op_LoadNKlass:
2636     {
2637       assert(false, "Op_LoadKlass");
2638       break;
2639     }
2640     case Op_LoadP:
2641     case Op_LoadN:
2642     {
2643       const Type *t = phase->type(n);
2644 #ifdef ASSERT
2645       if (t->make_ptr() == NULL)
2646         assert(false, "Op_LoadP");
2647 #endif
2648 
2649       Node* adr = n->in(MemNode::Address)->uncast();
2650       Node* adr_base;
2651       if (adr->is_AddP()) {
2652         adr_base = get_addp_base(adr);
2653       } else {
2654         adr_base = adr;
2655       }
2656 
2657       // For everything "adr_base" could point to, create a deferred edge from
2658       // this node to each field with the same offset.
2659       int offset = address_offset(adr, phase);
2660       for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
2661         uint pt = i.elem;
2662         add_deferred_edge_to_fields(n_idx, pt, offset);
2663       }
2664       break;
2665     }
2666     case Op_Parm:
2667     {
2668       assert(false, "Op_Parm");
2669       break;
2670     }
2671     case Op_Phi:
2672     {
2673 #ifdef ASSERT
2674       const Type *t = n->as_Phi()->type();
2675       if (t->make_ptr() == NULL)
2676         assert(false, "Op_Phi");
2677 #endif
2678       for (uint i = 1; i < n->req() ; i++) {
2679         Node* in = n->in(i);
2680         if (in == NULL)
2681           continue;  // ignore NULL
2682         in = in->uncast();
2683         if (in->is_top() || in == n)
2684           continue;  // ignore top or inputs which go back this node
2685         int ti = in->_idx;
2686         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2687         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
2688         if (nt == PointsToNode::JavaObject) {
2689           add_pointsto_edge(n_idx, ti);
2690         } else {
2691           add_deferred_edge(n_idx, ti);
2692         }
2693       }
2694       _processed.set(n_idx);
2695       break;
2696     }
2697     case Op_Proj:
2698     {
2699       // we are only interested in the oop result projection from a call
2700       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2701         assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
2702                "all nodes should be registered");
2703         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
2704         assert(r->cnt() > TypeFunc::Parms, "sanity");
2705         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
2706           process_call_result(n->as_Proj(), phase);
2707           assert(_processed.test(n_idx), "all call results should be processed");
2708           break;
2709         }
2710       }
2711       assert(false, "Op_Proj");
2712       break;
2713     }
2714     case Op_Return:
2715     {
2716 #ifdef ASSERT
2717       if( n->req() <= TypeFunc::Parms ||
2718           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2719         assert(false, "Op_Return");
2720       }
2721 #endif
2722       int ti = n->in(TypeFunc::Parms)->_idx;
2723       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
2724       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2725         add_pointsto_edge(n_idx, ti);
2726       } else {
2727         add_deferred_edge(n_idx, ti);
2728       }
2729       _processed.set(n_idx);
2730       break;
2731     }
2732     case Op_StoreP:
2733     case Op_StoreN:
2734     case Op_StorePConditional:
2735     case Op_CompareAndSwapP:
2736     case Op_CompareAndSwapN:
2737     {
2738       Node *adr = n->in(MemNode::Address);
2739       const Type *adr_type = phase->type(adr)->make_ptr();
2740 #ifdef ASSERT
2741       if (!adr_type->isa_oopptr())
2742         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
2743 #endif
2744 
2745       assert(adr->is_AddP(), "expecting an AddP");
2746       Node *adr_base = get_addp_base(adr);
2747       Node *val = n->in(MemNode::ValueIn)->uncast();
2748       // For everything "adr_base" could point to, create a deferred edge
2749       // to "val" from each field with the same offset.
2750       for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
2751         uint pt = i.elem;
2752         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
2753       }
2754       break;
2755     }
2756     case Op_AryEq:
2757     case Op_StrComp:
2758     case Op_StrEquals:
2759     case Op_StrIndexOf:
2760     {
2761       // char[] arrays passed to string intrinsic do not escape but
2762       // they are not scalar replaceable. Adjust escape state for them.
2763       // Start from in(2) edge since in(1) is memory edge.
2764       for (uint i = 2; i < n->req(); i++) {
2765         Node* adr = n->in(i)->uncast();
2766         const Type *at = phase->type(adr);
2767         if (!adr->is_top() && at->isa_ptr()) {
2768           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
2769                  at->isa_ptr() != NULL, "expecting an Ptr");
2770           if (adr->is_AddP()) {
2771             adr = get_addp_base(adr);
2772           }
2773           // Mark as ArgEscape everything "adr" could point to.
2774           set_escape_state(adr->_idx, PointsToNode::ArgEscape);
2775         }
2776       }
2777       _processed.set(n_idx);
2778       break;
2779     }
2780     case Op_ThreadLocal:
2781     {
2782       assert(false, "Op_ThreadLocal");
2783       break;
2784     }
2785     default:
2786       // This method should be called only for EA specific nodes.
2787       ShouldNotReachHere();
2788   }
2789 }
2790 
2791 #ifndef PRODUCT
2792 void ConnectionGraph::dump() {
2793   bool first = true;
2794 
2795   uint size = nodes_size();
2796   for (uint ni = 0; ni < size; ni++) {
2797     PointsToNode *ptn = ptnode_adr(ni);
2798     PointsToNode::NodeType ptn_type = ptn->node_type();
2799 
2800     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
2801       continue;
2802     PointsToNode::EscapeState es = escape_state(ptn->_node);
2803     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
2804       if (first) {
2805         tty->cr();
2806         tty->print("======== Connection graph for ");
2807         _compile->method()->print_short_name();
2808         tty->cr();
2809         first = false;
2810       }
2811       tty->print("%6d ", ni);
2812       ptn->dump();
2813       // Print all locals which reference this allocation
2814       for (uint li = ni; li < size; li++) {
2815         PointsToNode *ptn_loc = ptnode_adr(li);
2816         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
2817         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
2818              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
2819           ptnode_adr(li)->dump(false);
2820         }
2821       }
2822       if (Verbose) {
2823         // Print all fields which reference this allocation
2824         for (uint i = 0; i < ptn->edge_count(); i++) {
2825           uint ei = ptn->edge_target(i);
2826           ptnode_adr(ei)->dump(false);
2827         }
2828       }
2829       tty->cr();
2830     }
2831   }
2832 }
2833 #endif