1 /*
   2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/superword.hpp"
  39 
  40 //=============================================================================
  41 //------------------------------is_loop_iv-------------------------------------
  42 // Determine if a node is Counted loop induction variable.
  43 // The method is declared in node.hpp.
  44 const Node* Node::is_loop_iv() const {
  45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
  46       this->as_Phi()->region()->is_CountedLoop() &&
  47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
  48     return this;
  49   } else {
  50     return NULL;
  51   }
  52 }
  53 
  54 //=============================================================================
  55 //------------------------------dump_spec--------------------------------------
  56 // Dump special per-node info
  57 #ifndef PRODUCT
  58 void LoopNode::dump_spec(outputStream *st) const {
  59   if (is_inner_loop()) st->print( "inner " );
  60   if (is_partial_peel_loop()) st->print( "partial_peel " );
  61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  62 }
  63 #endif
  64 
  65 //------------------------------is_valid_counted_loop-------------------------
  66 bool LoopNode::is_valid_counted_loop() const {
  67   if (is_CountedLoop()) {
  68     CountedLoopNode*    l  = as_CountedLoop();
  69     CountedLoopEndNode* le = l->loopexit();
  70     if (le != NULL &&
  71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  72       Node* phi  = l->phi();
  73       Node* exit = le->proj_out(0 /* false */);
  74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
  75           phi != NULL && phi->is_Phi() &&
  76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  77           le->loopnode() == l && le->stride_is_con()) {
  78         return true;
  79       }
  80     }
  81   }
  82   return false;
  83 }
  84 
  85 //------------------------------get_early_ctrl---------------------------------
  86 // Compute earliest legal control
  87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  89   uint i;
  90   Node *early;
  91   if( n->in(0) ) {
  92     early = n->in(0);
  93     if( !early->is_CFG() ) // Might be a non-CFG multi-def
  94       early = get_ctrl(early);        // So treat input as a straight data input
  95     i = 1;
  96   } else {
  97     early = get_ctrl(n->in(1));
  98     i = 2;
  99   }
 100   uint e_d = dom_depth(early);
 101   assert( early, "" );
 102   for( ; i < n->req(); i++ ) {
 103     Node *cin = get_ctrl(n->in(i));
 104     assert( cin, "" );
 105     // Keep deepest dominator depth
 106     uint c_d = dom_depth(cin);
 107     if( c_d > e_d ) {           // Deeper guy?
 108       early = cin;              // Keep deepest found so far
 109       e_d = c_d;
 110     } else if( c_d == e_d &&    // Same depth?
 111                early != cin ) { // If not equal, must use slower algorithm
 112       // If same depth but not equal, one _must_ dominate the other
 113       // and we want the deeper (i.e., dominated) guy.
 114       Node *n1 = early;
 115       Node *n2 = cin;
 116       while( 1 ) {
 117         n1 = idom(n1);          // Walk up until break cycle
 118         n2 = idom(n2);
 119         if( n1 == cin ||        // Walked early up to cin
 120             dom_depth(n2) < c_d )
 121           break;                // early is deeper; keep him
 122         if( n2 == early ||      // Walked cin up to early
 123             dom_depth(n1) < c_d ) {
 124           early = cin;          // cin is deeper; keep him
 125           break;
 126         }
 127       }
 128       e_d = dom_depth(early);   // Reset depth register cache
 129     }
 130   }
 131 
 132   // Return earliest legal location
 133   assert(early == find_non_split_ctrl(early), "unexpected early control");
 134 
 135   return early;
 136 }
 137 
 138 //------------------------------set_early_ctrl---------------------------------
 139 // Set earliest legal control
 140 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
 141   Node *early = get_early_ctrl(n);
 142 
 143   // Record earliest legal location
 144   set_ctrl(n, early);
 145 }
 146 
 147 //------------------------------set_subtree_ctrl-------------------------------
 148 // set missing _ctrl entries on new nodes
 149 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
 150   // Already set?  Get out.
 151   if( _nodes[n->_idx] ) return;
 152   // Recursively set _nodes array to indicate where the Node goes
 153   uint i;
 154   for( i = 0; i < n->req(); ++i ) {
 155     Node *m = n->in(i);
 156     if( m && m != C->root() )
 157       set_subtree_ctrl( m );
 158   }
 159 
 160   // Fixup self
 161   set_early_ctrl( n );
 162 }
 163 
 164 //------------------------------is_counted_loop--------------------------------
 165 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
 166   PhaseGVN *gvn = &_igvn;
 167 
 168   // Counted loop head must be a good RegionNode with only 3 not NULL
 169   // control input edges: Self, Entry, LoopBack.
 170   if (x->in(LoopNode::Self) == NULL || x->req() != 3)
 171     return false;
 172 
 173   Node *init_control = x->in(LoopNode::EntryControl);
 174   Node *back_control = x->in(LoopNode::LoopBackControl);
 175   if (init_control == NULL || back_control == NULL)    // Partially dead
 176     return false;
 177   // Must also check for TOP when looking for a dead loop
 178   if (init_control->is_top() || back_control->is_top())
 179     return false;
 180 
 181   // Allow funny placement of Safepoint
 182   if (back_control->Opcode() == Op_SafePoint)
 183     back_control = back_control->in(TypeFunc::Control);
 184 
 185   // Controlling test for loop
 186   Node *iftrue = back_control;
 187   uint iftrue_op = iftrue->Opcode();
 188   if (iftrue_op != Op_IfTrue &&
 189       iftrue_op != Op_IfFalse)
 190     // I have a weird back-control.  Probably the loop-exit test is in
 191     // the middle of the loop and I am looking at some trailing control-flow
 192     // merge point.  To fix this I would have to partially peel the loop.
 193     return false; // Obscure back-control
 194 
 195   // Get boolean guarding loop-back test
 196   Node *iff = iftrue->in(0);
 197   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
 198     return false;
 199   BoolNode *test = iff->in(1)->as_Bool();
 200   BoolTest::mask bt = test->_test._test;
 201   float cl_prob = iff->as_If()->_prob;
 202   if (iftrue_op == Op_IfFalse) {
 203     bt = BoolTest(bt).negate();
 204     cl_prob = 1.0 - cl_prob;
 205   }
 206   // Get backedge compare
 207   Node *cmp = test->in(1);
 208   int cmp_op = cmp->Opcode();
 209   if (cmp_op != Op_CmpI)
 210     return false;                // Avoid pointer & float compares
 211 
 212   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 213   Node *incr  = cmp->in(1);
 214   Node *limit = cmp->in(2);
 215 
 216   // ---------
 217   // need 'loop()' test to tell if limit is loop invariant
 218   // ---------
 219 
 220   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 221     Node *tmp = incr;            // Then reverse order into the CmpI
 222     incr = limit;
 223     limit = tmp;
 224     bt = BoolTest(bt).commute(); // And commute the exit test
 225   }
 226   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
 227     return false;
 228   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 229     return false;
 230 
 231   Node* phi_incr = NULL;
 232   // Trip-counter increment must be commutative & associative.
 233   if (incr->is_Phi()) {
 234     if (incr->as_Phi()->region() != x || incr->req() != 3)
 235       return false; // Not simple trip counter expression
 236     phi_incr = incr;
 237     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 238     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 239       return false;
 240   }
 241 
 242   Node* trunc1 = NULL;
 243   Node* trunc2 = NULL;
 244   const TypeInt* iv_trunc_t = NULL;
 245   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
 246     return false; // Funny increment opcode
 247   }
 248   assert(incr->Opcode() == Op_AddI, "wrong increment code");
 249 
 250   // Get merge point
 251   Node *xphi = incr->in(1);
 252   Node *stride = incr->in(2);
 253   if (!stride->is_Con()) {     // Oops, swap these
 254     if (!xphi->is_Con())       // Is the other guy a constant?
 255       return false;             // Nope, unknown stride, bail out
 256     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
 257     xphi = stride;
 258     stride = tmp;
 259   }
 260   // Stride must be constant
 261   int stride_con = stride->get_int();
 262   if (stride_con == 0)
 263     return false; // missed some peephole opt
 264 
 265   if (!xphi->is_Phi())
 266     return false; // Too much math on the trip counter
 267   if (phi_incr != NULL && phi_incr != xphi)
 268     return false;
 269   PhiNode *phi = xphi->as_Phi();
 270 
 271   // Phi must be of loop header; backedge must wrap to increment
 272   if (phi->region() != x)
 273     return false;
 274   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
 275       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
 276     return false;
 277   }
 278   Node *init_trip = phi->in(LoopNode::EntryControl);
 279 
 280   // If iv trunc type is smaller than int, check for possible wrap.
 281   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
 282     assert(trunc1 != NULL, "must have found some truncation");
 283 
 284     // Get a better type for the phi (filtered thru if's)
 285     const TypeInt* phi_ft = filtered_type(phi);
 286 
 287     // Can iv take on a value that will wrap?
 288     //
 289     // Ensure iv's limit is not within "stride" of the wrap value.
 290     //
 291     // Example for "short" type
 292     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
 293     //    If the stride is +10, then the last value of the induction
 294     //    variable before the increment (phi_ft->_hi) must be
 295     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
 296     //    ensure no truncation occurs after the increment.
 297 
 298     if (stride_con > 0) {
 299       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
 300           iv_trunc_t->_lo > phi_ft->_lo) {
 301         return false;  // truncation may occur
 302       }
 303     } else if (stride_con < 0) {
 304       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
 305           iv_trunc_t->_hi < phi_ft->_hi) {
 306         return false;  // truncation may occur
 307       }
 308     }
 309     // No possibility of wrap so truncation can be discarded
 310     // Promote iv type to Int
 311   } else {
 312     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
 313   }
 314 
 315   // If the condition is inverted and we will be rolling
 316   // through MININT to MAXINT, then bail out.
 317   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 318       // Odd stride
 319       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
 320       // Count down loop rolls through MAXINT
 321       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
 322       // Count up loop rolls through MININT
 323       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
 324     return false; // Bail out
 325   }
 326 
 327   const TypeInt* init_t = gvn->type(init_trip)->is_int();
 328   const TypeInt* limit_t = gvn->type(limit)->is_int();
 329 
 330   if (stride_con > 0) {
 331     long init_p = (long)init_t->_lo + stride_con;
 332     if (init_p > (long)max_jint || init_p > (long)limit_t->_hi)
 333       return false; // cyclic loop or this loop trips only once
 334   } else {
 335     long init_p = (long)init_t->_hi + stride_con;
 336     if (init_p < (long)min_jint || init_p < (long)limit_t->_lo)
 337       return false; // cyclic loop or this loop trips only once
 338   }
 339 
 340   // =================================================
 341   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
 342   //
 343   assert(x->Opcode() == Op_Loop, "regular loops only");
 344   C->print_method("Before CountedLoop", 3);
 345 
 346   Node *hook = new (C, 6) Node(6);
 347 
 348   if (LoopLimitCheck) {
 349 
 350   // ===================================================
 351   // Generate loop limit check to avoid integer overflow
 352   // in cases like next (cyclic loops):
 353   //
 354   // for (i=0; i <= max_jint; i++) {}
 355   // for (i=0; i <  max_jint; i+=2) {}
 356   //
 357   //
 358   // Limit check predicate depends on the loop test:
 359   //
 360   // for(;i != limit; i++)       --> limit <= (max_jint)
 361   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
 362   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
 363   //
 364 
 365   // Check if limit is excluded to do more precise int overflow check.
 366   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
 367   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
 368 
 369   // If compare points directly to the phi we need to adjust
 370   // the compare so that it points to the incr. Limit have
 371   // to be adjusted to keep trip count the same and the
 372   // adjusted limit should be checked for int overflow.
 373   if (phi_incr != NULL) {
 374     stride_m  += stride_con;
 375   }
 376 
 377   if (limit->is_Con()) {
 378     int limit_con = limit->get_int();
 379     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
 380         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
 381       // Bailout: it could be integer overflow.
 382       return false;
 383     }
 384   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
 385              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
 386       // Limit's type may satisfy the condition, for example,
 387       // when it is an array length.
 388   } else {
 389     // Generate loop's limit check.
 390     // Loop limit check predicate should be near the loop.
 391     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
 392     if (!limit_check_proj) {
 393       // The limit check predicate is not generated if this method trapped here before.
 394 #ifdef ASSERT
 395       if (TraceLoopLimitCheck) {
 396         tty->print("missing loop limit check:");
 397         loop->dump_head();
 398         x->dump(1);
 399       }
 400 #endif
 401       return false;
 402     }
 403 
 404     IfNode* check_iff = limit_check_proj->in(0)->as_If();
 405     Node* cmp_limit;
 406     Node* bol;
 407 
 408     if (stride_con > 0) {
 409       cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
 410       bol = new (C, 2) BoolNode(cmp_limit, BoolTest::le);
 411     } else {
 412       cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
 413       bol = new (C, 2) BoolNode(cmp_limit, BoolTest::ge);
 414     }
 415     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 416     bol = _igvn.register_new_node_with_optimizer(bol);
 417     set_subtree_ctrl(bol);
 418 
 419     // Replace condition in original predicate but preserve Opaque node
 420     // so that previous predicates could be found.
 421     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
 422            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
 423     Node* opq = check_iff->in(1)->in(1);
 424     _igvn.hash_delete(opq);
 425     opq->set_req(1, bol);
 426     // Update ctrl.
 427     set_ctrl(opq, check_iff->in(0));
 428     set_ctrl(check_iff->in(1), check_iff->in(0));
 429 
 430 #ifndef PRODUCT
 431     // report that the loop predication has been actually performed
 432     // for this loop
 433     if (TraceLoopLimitCheck) {
 434       tty->print_cr("Counted Loop Limit Check generated:");
 435       debug_only( bol->dump(2); )
 436     }
 437 #endif
 438   }
 439 
 440   if (phi_incr != NULL) {
 441     // If compare points directly to the phi we need to adjust
 442     // the compare so that it points to the incr. Limit have
 443     // to be adjusted to keep trip count the same and we
 444     // should avoid int overflow.
 445     //
 446     //   i = init; do {} while(i++ < limit);
 447     // is converted to
 448     //   i = init; do {} while(++i < limit+1);
 449     //
 450     limit = gvn->transform(new (C, 3) AddINode(limit, stride));
 451   }
 452 
 453   // Now we need to canonicalize loop condition.
 454   if (bt == BoolTest::ne) {
 455     assert(stride_con == 1 || stride_con == -1, "simple increment only");
 456     // 'ne' can be replaced with 'lt' only when init < limit.
 457     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
 458       bt = BoolTest::lt;
 459     // 'ne' can be replaced with 'gt' only when init > limit.
 460     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
 461       bt = BoolTest::gt;
 462   }
 463 
 464   if (incl_limit) {
 465     // The limit check guaranties that 'limit <= (max_jint - stride)' so
 466     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
 467     //
 468     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
 469     limit = gvn->transform(new (C, 3) AddINode(limit, one));
 470     if (bt == BoolTest::le)
 471       bt = BoolTest::lt;
 472     else if (bt == BoolTest::ge)
 473       bt = BoolTest::gt;
 474     else
 475       ShouldNotReachHere();
 476   }
 477   set_subtree_ctrl( limit );
 478 
 479   } else { // LoopLimitCheck
 480 
 481   // If compare points to incr, we are ok.  Otherwise the compare
 482   // can directly point to the phi; in this case adjust the compare so that
 483   // it points to the incr by adjusting the limit.
 484   if (cmp->in(1) == phi || cmp->in(2) == phi)
 485     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
 486 
 487   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
 488   // Final value for iterator should be: trip_count * stride + init_trip.
 489   Node *one_p = gvn->intcon( 1);
 490   Node *one_m = gvn->intcon(-1);
 491 
 492   Node *trip_count = NULL;
 493   switch( bt ) {
 494   case BoolTest::eq:
 495     ShouldNotReachHere();
 496   case BoolTest::ne:            // Ahh, the case we desire
 497     if (stride_con == 1)
 498       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
 499     else if (stride_con == -1)
 500       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
 501     else
 502       ShouldNotReachHere();
 503     set_subtree_ctrl(trip_count);
 504     //_loop.map(trip_count->_idx,loop(limit));
 505     break;
 506   case BoolTest::le:            // Maybe convert to '<' case
 507     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
 508     set_subtree_ctrl( limit );
 509     hook->init_req(4, limit);
 510 
 511     bt = BoolTest::lt;
 512     // Make the new limit be in the same loop nest as the old limit
 513     //_loop.map(limit->_idx,limit_loop);
 514     // Fall into next case
 515   case BoolTest::lt: {          // Maybe convert to '!=' case
 516     if (stride_con < 0) // Count down loop rolls through MAXINT
 517       ShouldNotReachHere();
 518     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
 519     set_subtree_ctrl( range );
 520     hook->init_req(0, range);
 521 
 522     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
 523     set_subtree_ctrl( bias );
 524     hook->init_req(1, bias);
 525 
 526     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
 527     set_subtree_ctrl( bias1 );
 528     hook->init_req(2, bias1);
 529 
 530     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
 531     set_subtree_ctrl( trip_count );
 532     hook->init_req(3, trip_count);
 533     break;
 534   }
 535 
 536   case BoolTest::ge:            // Maybe convert to '>' case
 537     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
 538     set_subtree_ctrl( limit );
 539     hook->init_req(4 ,limit);
 540 
 541     bt = BoolTest::gt;
 542     // Make the new limit be in the same loop nest as the old limit
 543     //_loop.map(limit->_idx,limit_loop);
 544     // Fall into next case
 545   case BoolTest::gt: {          // Maybe convert to '!=' case
 546     if (stride_con > 0) // count up loop rolls through MININT
 547       ShouldNotReachHere();
 548     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
 549     set_subtree_ctrl( range );
 550     hook->init_req(0, range);
 551 
 552     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
 553     set_subtree_ctrl( bias );
 554     hook->init_req(1, bias);
 555 
 556     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
 557     set_subtree_ctrl( bias1 );
 558     hook->init_req(2, bias1);
 559 
 560     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
 561     set_subtree_ctrl( trip_count );
 562     hook->init_req(3, trip_count);
 563     break;
 564   }
 565   } // switch( bt )
 566 
 567   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
 568   set_subtree_ctrl( span );
 569   hook->init_req(5, span);
 570 
 571   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
 572   set_subtree_ctrl( limit );
 573 
 574   } // LoopLimitCheck
 575 
 576   // Check for SafePoint on backedge and remove
 577   Node *sfpt = x->in(LoopNode::LoopBackControl);
 578   if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
 579     lazy_replace( sfpt, iftrue );
 580     loop->_tail = iftrue;
 581   }
 582 
 583   // Build a canonical trip test.
 584   // Clone code, as old values may be in use.
 585   incr = incr->clone();
 586   incr->set_req(1,phi);
 587   incr->set_req(2,stride);
 588   incr = _igvn.register_new_node_with_optimizer(incr);
 589   set_early_ctrl( incr );
 590   _igvn.hash_delete(phi);
 591   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
 592 
 593   // If phi type is more restrictive than Int, raise to
 594   // Int to prevent (almost) infinite recursion in igvn
 595   // which can only handle integer types for constants or minint..maxint.
 596   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
 597     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
 598     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
 599     nphi = _igvn.register_new_node_with_optimizer(nphi);
 600     set_ctrl(nphi, get_ctrl(phi));
 601     _igvn.replace_node(phi, nphi);
 602     phi = nphi->as_Phi();
 603   }
 604   cmp = cmp->clone();
 605   cmp->set_req(1,incr);
 606   cmp->set_req(2,limit);
 607   cmp = _igvn.register_new_node_with_optimizer(cmp);
 608   set_ctrl(cmp, iff->in(0));
 609 
 610   test = test->clone()->as_Bool();
 611   (*(BoolTest*)&test->_test)._test = bt;
 612   test->set_req(1,cmp);
 613   _igvn.register_new_node_with_optimizer(test);
 614   set_ctrl(test, iff->in(0));
 615 
 616   // Replace the old IfNode with a new LoopEndNode
 617   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
 618   IfNode *le = lex->as_If();
 619   uint dd = dom_depth(iff);
 620   set_idom(le, le->in(0), dd); // Update dominance for loop exit
 621   set_loop(le, loop);
 622 
 623   // Get the loop-exit control
 624   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
 625 
 626   // Need to swap loop-exit and loop-back control?
 627   if (iftrue_op == Op_IfFalse) {
 628     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
 629     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
 630 
 631     loop->_tail = back_control = ift2;
 632     set_loop(ift2, loop);
 633     set_loop(iff2, get_loop(iffalse));
 634 
 635     // Lazy update of 'get_ctrl' mechanism.
 636     lazy_replace_proj( iffalse, iff2 );
 637     lazy_replace_proj( iftrue,  ift2 );
 638 
 639     // Swap names
 640     iffalse = iff2;
 641     iftrue  = ift2;
 642   } else {
 643     _igvn.hash_delete(iffalse);
 644     _igvn.hash_delete(iftrue);
 645     iffalse->set_req_X( 0, le, &_igvn );
 646     iftrue ->set_req_X( 0, le, &_igvn );
 647   }
 648 
 649   set_idom(iftrue,  le, dd+1);
 650   set_idom(iffalse, le, dd+1);
 651   assert(iff->outcnt() == 0, "should be dead now");
 652   lazy_replace( iff, le ); // fix 'get_ctrl'
 653 
 654   // Now setup a new CountedLoopNode to replace the existing LoopNode
 655   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
 656   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
 657   // The following assert is approximately true, and defines the intention
 658   // of can_be_counted_loop.  It fails, however, because phase->type
 659   // is not yet initialized for this loop and its parts.
 660   //assert(l->can_be_counted_loop(this), "sanity");
 661   _igvn.register_new_node_with_optimizer(l);
 662   set_loop(l, loop);
 663   loop->_head = l;
 664   // Fix all data nodes placed at the old loop head.
 665   // Uses the lazy-update mechanism of 'get_ctrl'.
 666   lazy_replace( x, l );
 667   set_idom(l, init_control, dom_depth(x));
 668 
 669   // Check for immediately preceding SafePoint and remove
 670   Node *sfpt2 = le->in(0);
 671   if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
 672     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
 673 
 674   // Free up intermediate goo
 675   _igvn.remove_dead_node(hook);
 676 
 677 #ifdef ASSERT
 678   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
 679   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
 680 #endif
 681 #ifndef PRODUCT
 682   if (TraceLoopOpts) {
 683     tty->print("Counted      ");
 684     loop->dump_head();
 685   }
 686 #endif
 687 
 688   C->print_method("After CountedLoop", 3);
 689 
 690   return true;
 691 }
 692 
 693 //----------------------exact_limit-------------------------------------------
 694 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
 695   assert(loop->_head->is_CountedLoop(), "");
 696   CountedLoopNode *cl = loop->_head->as_CountedLoop();
 697   assert(cl->is_valid_counted_loop(), "");
 698 
 699   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
 700       cl->limit()->Opcode() == Op_LoopLimit) {
 701     // Old code has exact limit (it could be incorrect in case of int overflow).
 702     // Loop limit is exact with stride == 1. And loop may already have exact limit.
 703     return cl->limit();
 704   }
 705   Node *limit = NULL;
 706 #ifdef ASSERT
 707   BoolTest::mask bt = cl->loopexit()->test_trip();
 708   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
 709 #endif
 710   if (cl->has_exact_trip_count()) {
 711     // Simple case: loop has constant boundaries.
 712     // Use longs to avoid integer overflow.
 713     int stride_con = cl->stride_con();
 714     long  init_con = cl->init_trip()->get_int();
 715     long limit_con = cl->limit()->get_int();
 716     julong trip_cnt = cl->trip_count();
 717     long final_con = init_con + trip_cnt*stride_con;
 718     final_con -= stride_con;
 719     int final_int = (int)final_con;
 720     // The final value should be in integer range since the loop
 721     // is counted and the limit was checked for overflow.
 722     assert(final_con == (long)final_int, "final value should be integer");
 723     limit = _igvn.intcon(final_int);
 724   } else {
 725     // Create new LoopLimit node to get exact limit (final iv value).
 726     limit = new (C, 4) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
 727     register_new_node(limit, cl->in(LoopNode::EntryControl));
 728   }
 729   assert(limit != NULL, "sanity");
 730   return limit;
 731 }
 732 
 733 //------------------------------Ideal------------------------------------------
 734 // Return a node which is more "ideal" than the current node.
 735 // Attempt to convert into a counted-loop.
 736 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 737   if (!can_be_counted_loop(phase)) {
 738     phase->C->set_major_progress();
 739   }
 740   return RegionNode::Ideal(phase, can_reshape);
 741 }
 742 
 743 
 744 //=============================================================================
 745 //------------------------------Ideal------------------------------------------
 746 // Return a node which is more "ideal" than the current node.
 747 // Attempt to convert into a counted-loop.
 748 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 749   return RegionNode::Ideal(phase, can_reshape);
 750 }
 751 
 752 //------------------------------dump_spec--------------------------------------
 753 // Dump special per-node info
 754 #ifndef PRODUCT
 755 void CountedLoopNode::dump_spec(outputStream *st) const {
 756   LoopNode::dump_spec(st);
 757   if (stride_is_con()) {
 758     st->print("stride: %d ",stride_con());
 759   }
 760   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
 761   if (is_main_loop()) st->print("main of N%d", _idx);
 762   if (is_post_loop()) st->print("post of N%d", _main_idx);
 763 }
 764 #endif
 765 
 766 //=============================================================================
 767 int CountedLoopEndNode::stride_con() const {
 768   return stride()->bottom_type()->is_int()->get_con();
 769 }
 770 
 771 //=============================================================================
 772 //------------------------------Value-----------------------------------------
 773 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
 774   const Type* init_t   = phase->type(in(Init));
 775   const Type* limit_t  = phase->type(in(Limit));
 776   const Type* stride_t = phase->type(in(Stride));
 777   // Either input is TOP ==> the result is TOP
 778   if (init_t   == Type::TOP) return Type::TOP;
 779   if (limit_t  == Type::TOP) return Type::TOP;
 780   if (stride_t == Type::TOP) return Type::TOP;
 781 
 782   int stride_con = stride_t->is_int()->get_con();
 783   if (stride_con == 1)
 784     return NULL;  // Identity
 785 
 786   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
 787     // Use longs to avoid integer overflow.
 788     long init_con   =  init_t->is_int()->get_con();
 789     long limit_con  = limit_t->is_int()->get_con();
 790     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
 791     long trip_count = (limit_con - init_con + stride_m)/stride_con;
 792     long final_con  = init_con + stride_con*trip_count;
 793     int final_int = (int)final_con;
 794     // The final value should be in integer range since the loop
 795     // is counted and the limit was checked for overflow.
 796     assert(final_con == (long)final_int, "final value should be integer");
 797     return TypeInt::make(final_int);
 798   }
 799 
 800   return bottom_type(); // TypeInt::INT
 801 }
 802 
 803 //------------------------------Ideal------------------------------------------
 804 // Return a node which is more "ideal" than the current node.
 805 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 806   if (phase->type(in(Init))   == Type::TOP ||
 807       phase->type(in(Limit))  == Type::TOP ||
 808       phase->type(in(Stride)) == Type::TOP)
 809     return NULL;  // Dead
 810 
 811   int stride_con = phase->type(in(Stride))->is_int()->get_con();
 812   if (stride_con == 1)
 813     return NULL;  // Identity
 814 
 815   if (in(Init)->is_Con() && in(Limit)->is_Con())
 816     return NULL;  // Value
 817 
 818   // Delay following optimizations until all loop optimizations
 819   // done to keep Ideal graph simple.
 820   if (!can_reshape || phase->C->major_progress())
 821     return NULL;
 822 
 823   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
 824   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
 825   int stride_p;
 826   long lim, ini;
 827   julong max;
 828   if (stride_con > 0) {
 829     stride_p = stride_con;
 830     lim = limit_t->_hi;
 831     ini = init_t->_lo;
 832     max = (julong)max_jint;
 833   } else {
 834     stride_p = -stride_con;
 835     lim = init_t->_hi;
 836     ini = limit_t->_lo;
 837     max = (julong)min_jint;
 838   }
 839   julong range = lim - ini + stride_p;
 840   if (range <= max) {
 841     // Convert to integer expression if it is not overflow.
 842     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
 843     Node *range = phase->transform(new (phase->C, 3) SubINode(in(Limit), in(Init)));
 844     Node *bias  = phase->transform(new (phase->C, 3) AddINode(range, stride_m));
 845     Node *trip  = phase->transform(new (phase->C, 3) DivINode(0, bias, in(Stride)));
 846     Node *span  = phase->transform(new (phase->C, 3) MulINode(trip, in(Stride)));
 847     return new (phase->C, 3) AddINode(span, in(Init)); // exact limit
 848   }
 849 
 850   if (is_power_of_2(stride_p) ||                // divisor is 2^n
 851       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
 852     // Convert to long expression to avoid integer overflow
 853     // and let igvn optimizer convert this division.
 854     //
 855     Node*   init   = phase->transform( new (phase->C, 2) ConvI2LNode(in(Init)));
 856     Node*  limit   = phase->transform( new (phase->C, 2) ConvI2LNode(in(Limit)));
 857     Node* stride   = phase->longcon(stride_con);
 858     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
 859 
 860     Node *range = phase->transform(new (phase->C, 3) SubLNode(limit, init));
 861     Node *bias  = phase->transform(new (phase->C, 3) AddLNode(range, stride_m));
 862     Node *span;
 863     if (stride_con > 0 && is_power_of_2(stride_p)) {
 864       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
 865       // and avoid generating rounding for division. Zero trip guard should
 866       // guarantee that init < limit but sometimes the guard is missing and
 867       // we can get situation when init > limit. Note, for the empty loop
 868       // optimization zero trip guard is generated explicitly which leaves
 869       // only RCE predicate where exact limit is used and the predicate
 870       // will simply fail forcing recompilation.
 871       Node* neg_stride   = phase->longcon(-stride_con);
 872       span = phase->transform(new (phase->C, 3) AndLNode(bias, neg_stride));
 873     } else {
 874       Node *trip  = phase->transform(new (phase->C, 3) DivLNode(0, bias, stride));
 875       span = phase->transform(new (phase->C, 3) MulLNode(trip, stride));
 876     }
 877     // Convert back to int
 878     Node *span_int = phase->transform(new (phase->C, 2) ConvL2INode(span));
 879     return new (phase->C, 3) AddINode(span_int, in(Init)); // exact limit
 880   }
 881 
 882   return NULL;    // No progress
 883 }
 884 
 885 //------------------------------Identity---------------------------------------
 886 // If stride == 1 return limit node.
 887 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
 888   int stride_con = phase->type(in(Stride))->is_int()->get_con();
 889   if (stride_con == 1 || stride_con == -1)
 890     return in(Limit);
 891   return this;
 892 }
 893 
 894 //=============================================================================
 895 //----------------------match_incr_with_optional_truncation--------------------
 896 // Match increment with optional truncation:
 897 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
 898 // Return NULL for failure. Success returns the increment node.
 899 Node* CountedLoopNode::match_incr_with_optional_truncation(
 900                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
 901   // Quick cutouts:
 902   if (expr == NULL || expr->req() != 3)  return false;
 903 
 904   Node *t1 = NULL;
 905   Node *t2 = NULL;
 906   const TypeInt* trunc_t = TypeInt::INT;
 907   Node* n1 = expr;
 908   int   n1op = n1->Opcode();
 909 
 910   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
 911   if (n1op == Op_AndI &&
 912       n1->in(2)->is_Con() &&
 913       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
 914     // %%% This check should match any mask of 2**K-1.
 915     t1 = n1;
 916     n1 = t1->in(1);
 917     n1op = n1->Opcode();
 918     trunc_t = TypeInt::CHAR;
 919   } else if (n1op == Op_RShiftI &&
 920              n1->in(1) != NULL &&
 921              n1->in(1)->Opcode() == Op_LShiftI &&
 922              n1->in(2) == n1->in(1)->in(2) &&
 923              n1->in(2)->is_Con()) {
 924     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
 925     // %%% This check should match any shift in [1..31].
 926     if (shift == 16 || shift == 8) {
 927       t1 = n1;
 928       t2 = t1->in(1);
 929       n1 = t2->in(1);
 930       n1op = n1->Opcode();
 931       if (shift == 16) {
 932         trunc_t = TypeInt::SHORT;
 933       } else if (shift == 8) {
 934         trunc_t = TypeInt::BYTE;
 935       }
 936     }
 937   }
 938 
 939   // If (maybe after stripping) it is an AddI, we won:
 940   if (n1op == Op_AddI) {
 941     *trunc1 = t1;
 942     *trunc2 = t2;
 943     *trunc_type = trunc_t;
 944     return n1;
 945   }
 946 
 947   // failed
 948   return NULL;
 949 }
 950 
 951 
 952 //------------------------------filtered_type--------------------------------
 953 // Return a type based on condition control flow
 954 // A successful return will be a type that is restricted due
 955 // to a series of dominating if-tests, such as:
 956 //    if (i < 10) {
 957 //       if (i > 0) {
 958 //          here: "i" type is [1..10)
 959 //       }
 960 //    }
 961 // or a control flow merge
 962 //    if (i < 10) {
 963 //       do {
 964 //          phi( , ) -- at top of loop type is [min_int..10)
 965 //         i = ?
 966 //       } while ( i < 10)
 967 //
 968 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
 969   assert(n && n->bottom_type()->is_int(), "must be int");
 970   const TypeInt* filtered_t = NULL;
 971   if (!n->is_Phi()) {
 972     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
 973     filtered_t = filtered_type_from_dominators(n, n_ctrl);
 974 
 975   } else {
 976     Node* phi    = n->as_Phi();
 977     Node* region = phi->in(0);
 978     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
 979     if (region && region != C->top()) {
 980       for (uint i = 1; i < phi->req(); i++) {
 981         Node* val   = phi->in(i);
 982         Node* use_c = region->in(i);
 983         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
 984         if (val_t != NULL) {
 985           if (filtered_t == NULL) {
 986             filtered_t = val_t;
 987           } else {
 988             filtered_t = filtered_t->meet(val_t)->is_int();
 989           }
 990         }
 991       }
 992     }
 993   }
 994   const TypeInt* n_t = _igvn.type(n)->is_int();
 995   if (filtered_t != NULL) {
 996     n_t = n_t->join(filtered_t)->is_int();
 997   }
 998   return n_t;
 999 }
1000 
1001 
1002 //------------------------------filtered_type_from_dominators--------------------------------
1003 // Return a possibly more restrictive type for val based on condition control flow of dominators
1004 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
1005   if (val->is_Con()) {
1006      return val->bottom_type()->is_int();
1007   }
1008   uint if_limit = 10; // Max number of dominating if's visited
1009   const TypeInt* rtn_t = NULL;
1010 
1011   if (use_ctrl && use_ctrl != C->top()) {
1012     Node* val_ctrl = get_ctrl(val);
1013     uint val_dom_depth = dom_depth(val_ctrl);
1014     Node* pred = use_ctrl;
1015     uint if_cnt = 0;
1016     while (if_cnt < if_limit) {
1017       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
1018         if_cnt++;
1019         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
1020         if (if_t != NULL) {
1021           if (rtn_t == NULL) {
1022             rtn_t = if_t;
1023           } else {
1024             rtn_t = rtn_t->join(if_t)->is_int();
1025           }
1026         }
1027       }
1028       pred = idom(pred);
1029       if (pred == NULL || pred == C->top()) {
1030         break;
1031       }
1032       // Stop if going beyond definition block of val
1033       if (dom_depth(pred) < val_dom_depth) {
1034         break;
1035       }
1036     }
1037   }
1038   return rtn_t;
1039 }
1040 
1041 
1042 //------------------------------dump_spec--------------------------------------
1043 // Dump special per-node info
1044 #ifndef PRODUCT
1045 void CountedLoopEndNode::dump_spec(outputStream *st) const {
1046   if( in(TestValue)->is_Bool() ) {
1047     BoolTest bt( test_trip()); // Added this for g++.
1048 
1049     st->print("[");
1050     bt.dump_on(st);
1051     st->print("]");
1052   }
1053   st->print(" ");
1054   IfNode::dump_spec(st);
1055 }
1056 #endif
1057 
1058 //=============================================================================
1059 //------------------------------is_member--------------------------------------
1060 // Is 'l' a member of 'this'?
1061 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
1062   while( l->_nest > _nest ) l = l->_parent;
1063   return l == this;
1064 }
1065 
1066 //------------------------------set_nest---------------------------------------
1067 // Set loop tree nesting depth.  Accumulate _has_call bits.
1068 int IdealLoopTree::set_nest( uint depth ) {
1069   _nest = depth;
1070   int bits = _has_call;
1071   if( _child ) bits |= _child->set_nest(depth+1);
1072   if( bits ) _has_call = 1;
1073   if( _next  ) bits |= _next ->set_nest(depth  );
1074   return bits;
1075 }
1076 
1077 //------------------------------split_fall_in----------------------------------
1078 // Split out multiple fall-in edges from the loop header.  Move them to a
1079 // private RegionNode before the loop.  This becomes the loop landing pad.
1080 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
1081   PhaseIterGVN &igvn = phase->_igvn;
1082   uint i;
1083 
1084   // Make a new RegionNode to be the landing pad.
1085   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
1086   phase->set_loop(landing_pad,_parent);
1087   // Gather all the fall-in control paths into the landing pad
1088   uint icnt = fall_in_cnt;
1089   uint oreq = _head->req();
1090   for( i = oreq-1; i>0; i-- )
1091     if( !phase->is_member( this, _head->in(i) ) )
1092       landing_pad->set_req(icnt--,_head->in(i));
1093 
1094   // Peel off PhiNode edges as well
1095   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1096     Node *oj = _head->fast_out(j);
1097     if( oj->is_Phi() ) {
1098       PhiNode* old_phi = oj->as_Phi();
1099       assert( old_phi->region() == _head, "" );
1100       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
1101       Node *p = PhiNode::make_blank(landing_pad, old_phi);
1102       uint icnt = fall_in_cnt;
1103       for( i = oreq-1; i>0; i-- ) {
1104         if( !phase->is_member( this, _head->in(i) ) ) {
1105           p->init_req(icnt--, old_phi->in(i));
1106           // Go ahead and clean out old edges from old phi
1107           old_phi->del_req(i);
1108         }
1109       }
1110       // Search for CSE's here, because ZKM.jar does a lot of
1111       // loop hackery and we need to be a little incremental
1112       // with the CSE to avoid O(N^2) node blow-up.
1113       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
1114       if( p2 ) {                // Found CSE
1115         p->destruct();          // Recover useless new node
1116         p = p2;                 // Use old node
1117       } else {
1118         igvn.register_new_node_with_optimizer(p, old_phi);
1119       }
1120       // Make old Phi refer to new Phi.
1121       old_phi->add_req(p);
1122       // Check for the special case of making the old phi useless and
1123       // disappear it.  In JavaGrande I have a case where this useless
1124       // Phi is the loop limit and prevents recognizing a CountedLoop
1125       // which in turn prevents removing an empty loop.
1126       Node *id_old_phi = old_phi->Identity( &igvn );
1127       if( id_old_phi != old_phi ) { // Found a simple identity?
1128         // Note that I cannot call 'replace_node' here, because
1129         // that will yank the edge from old_phi to the Region and
1130         // I'm mid-iteration over the Region's uses.
1131         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
1132           Node* use = old_phi->last_out(i);
1133           igvn.hash_delete(use);
1134           igvn._worklist.push(use);
1135           uint uses_found = 0;
1136           for (uint j = 0; j < use->len(); j++) {
1137             if (use->in(j) == old_phi) {
1138               if (j < use->req()) use->set_req (j, id_old_phi);
1139               else                use->set_prec(j, id_old_phi);
1140               uses_found++;
1141             }
1142           }
1143           i -= uses_found;    // we deleted 1 or more copies of this edge
1144         }
1145       }
1146       igvn._worklist.push(old_phi);
1147     }
1148   }
1149   // Finally clean out the fall-in edges from the RegionNode
1150   for( i = oreq-1; i>0; i-- ) {
1151     if( !phase->is_member( this, _head->in(i) ) ) {
1152       _head->del_req(i);
1153     }
1154   }
1155   // Transform landing pad
1156   igvn.register_new_node_with_optimizer(landing_pad, _head);
1157   // Insert landing pad into the header
1158   _head->add_req(landing_pad);
1159 }
1160 
1161 //------------------------------split_outer_loop-------------------------------
1162 // Split out the outermost loop from this shared header.
1163 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
1164   PhaseIterGVN &igvn = phase->_igvn;
1165 
1166   // Find index of outermost loop; it should also be my tail.
1167   uint outer_idx = 1;
1168   while( _head->in(outer_idx) != _tail ) outer_idx++;
1169 
1170   // Make a LoopNode for the outermost loop.
1171   Node *ctl = _head->in(LoopNode::EntryControl);
1172   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
1173   outer = igvn.register_new_node_with_optimizer(outer, _head);
1174   phase->set_created_loop_node();
1175 
1176   // Outermost loop falls into '_head' loop
1177   _head->set_req(LoopNode::EntryControl, outer);
1178   _head->del_req(outer_idx);
1179   // Split all the Phis up between '_head' loop and 'outer' loop.
1180   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1181     Node *out = _head->fast_out(j);
1182     if( out->is_Phi() ) {
1183       PhiNode *old_phi = out->as_Phi();
1184       assert( old_phi->region() == _head, "" );
1185       Node *phi = PhiNode::make_blank(outer, old_phi);
1186       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
1187       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
1188       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
1189       // Make old Phi point to new Phi on the fall-in path
1190       igvn.hash_delete(old_phi);
1191       old_phi->set_req(LoopNode::EntryControl, phi);
1192       old_phi->del_req(outer_idx);
1193       igvn._worklist.push(old_phi);
1194     }
1195   }
1196 
1197   // Use the new loop head instead of the old shared one
1198   _head = outer;
1199   phase->set_loop(_head, this);
1200 }
1201 
1202 //------------------------------fix_parent-------------------------------------
1203 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
1204   loop->_parent = parent;
1205   if( loop->_child ) fix_parent( loop->_child, loop   );
1206   if( loop->_next  ) fix_parent( loop->_next , parent );
1207 }
1208 
1209 //------------------------------estimate_path_freq-----------------------------
1210 static float estimate_path_freq( Node *n ) {
1211   // Try to extract some path frequency info
1212   IfNode *iff;
1213   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
1214     uint nop = n->Opcode();
1215     if( nop == Op_SafePoint ) {   // Skip any safepoint
1216       n = n->in(0);
1217       continue;
1218     }
1219     if( nop == Op_CatchProj ) {   // Get count from a prior call
1220       // Assume call does not always throw exceptions: means the call-site
1221       // count is also the frequency of the fall-through path.
1222       assert( n->is_CatchProj(), "" );
1223       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
1224         return 0.0f;            // Assume call exception path is rare
1225       Node *call = n->in(0)->in(0)->in(0);
1226       assert( call->is_Call(), "expect a call here" );
1227       const JVMState *jvms = ((CallNode*)call)->jvms();
1228       ciMethodData* methodData = jvms->method()->method_data();
1229       if (!methodData->is_mature())  return 0.0f; // No call-site data
1230       ciProfileData* data = methodData->bci_to_data(jvms->bci());
1231       if ((data == NULL) || !data->is_CounterData()) {
1232         // no call profile available, try call's control input
1233         n = n->in(0);
1234         continue;
1235       }
1236       return data->as_CounterData()->count()/FreqCountInvocations;
1237     }
1238     // See if there's a gating IF test
1239     Node *n_c = n->in(0);
1240     if( !n_c->is_If() ) break;       // No estimate available
1241     iff = n_c->as_If();
1242     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
1243       // Compute how much count comes on this path
1244       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
1245     // Have no count info.  Skip dull uncommon-trap like branches.
1246     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
1247         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
1248       break;
1249     // Skip through never-taken branch; look for a real loop exit.
1250     n = iff->in(0);
1251   }
1252   return 0.0f;                  // No estimate available
1253 }
1254 
1255 //------------------------------merge_many_backedges---------------------------
1256 // Merge all the backedges from the shared header into a private Region.
1257 // Feed that region as the one backedge to this loop.
1258 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
1259   uint i;
1260 
1261   // Scan for the top 2 hottest backedges
1262   float hotcnt = 0.0f;
1263   float warmcnt = 0.0f;
1264   uint hot_idx = 0;
1265   // Loop starts at 2 because slot 1 is the fall-in path
1266   for( i = 2; i < _head->req(); i++ ) {
1267     float cnt = estimate_path_freq(_head->in(i));
1268     if( cnt > hotcnt ) {       // Grab hottest path
1269       warmcnt = hotcnt;
1270       hotcnt = cnt;
1271       hot_idx = i;
1272     } else if( cnt > warmcnt ) { // And 2nd hottest path
1273       warmcnt = cnt;
1274     }
1275   }
1276 
1277   // See if the hottest backedge is worthy of being an inner loop
1278   // by being much hotter than the next hottest backedge.
1279   if( hotcnt <= 0.0001 ||
1280       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
1281 
1282   // Peel out the backedges into a private merge point; peel
1283   // them all except optionally hot_idx.
1284   PhaseIterGVN &igvn = phase->_igvn;
1285 
1286   Node *hot_tail = NULL;
1287   // Make a Region for the merge point
1288   Node *r = new (phase->C, 1) RegionNode(1);
1289   for( i = 2; i < _head->req(); i++ ) {
1290     if( i != hot_idx )
1291       r->add_req( _head->in(i) );
1292     else hot_tail = _head->in(i);
1293   }
1294   igvn.register_new_node_with_optimizer(r, _head);
1295   // Plug region into end of loop _head, followed by hot_tail
1296   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
1297   _head->set_req(2, r);
1298   if( hot_idx ) _head->add_req(hot_tail);
1299 
1300   // Split all the Phis up between '_head' loop and the Region 'r'
1301   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1302     Node *out = _head->fast_out(j);
1303     if( out->is_Phi() ) {
1304       PhiNode* n = out->as_Phi();
1305       igvn.hash_delete(n);      // Delete from hash before hacking edges
1306       Node *hot_phi = NULL;
1307       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
1308       // Check all inputs for the ones to peel out
1309       uint j = 1;
1310       for( uint i = 2; i < n->req(); i++ ) {
1311         if( i != hot_idx )
1312           phi->set_req( j++, n->in(i) );
1313         else hot_phi = n->in(i);
1314       }
1315       // Register the phi but do not transform until whole place transforms
1316       igvn.register_new_node_with_optimizer(phi, n);
1317       // Add the merge phi to the old Phi
1318       while( n->req() > 3 ) n->del_req( n->req()-1 );
1319       n->set_req(2, phi);
1320       if( hot_idx ) n->add_req(hot_phi);
1321     }
1322   }
1323 
1324 
1325   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
1326   // of self loop tree.  Turn self into a loop headed by _head and with
1327   // tail being the new merge point.
1328   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
1329   phase->set_loop(_tail,ilt);   // Adjust tail
1330   _tail = r;                    // Self's tail is new merge point
1331   phase->set_loop(r,this);
1332   ilt->_child = _child;         // New guy has my children
1333   _child = ilt;                 // Self has new guy as only child
1334   ilt->_parent = this;          // new guy has self for parent
1335   ilt->_nest = _nest;           // Same nesting depth (for now)
1336 
1337   // Starting with 'ilt', look for child loop trees using the same shared
1338   // header.  Flatten these out; they will no longer be loops in the end.
1339   IdealLoopTree **pilt = &_child;
1340   while( ilt ) {
1341     if( ilt->_head == _head ) {
1342       uint i;
1343       for( i = 2; i < _head->req(); i++ )
1344         if( _head->in(i) == ilt->_tail )
1345           break;                // Still a loop
1346       if( i == _head->req() ) { // No longer a loop
1347         // Flatten ilt.  Hang ilt's "_next" list from the end of
1348         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
1349         IdealLoopTree **cp = &ilt->_child;
1350         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
1351         *cp = ilt->_next;       // Hang next list at end of child list
1352         *pilt = ilt->_child;    // Move child up to replace ilt
1353         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
1354         ilt = ilt->_child;      // Repeat using new ilt
1355         continue;               // do not advance over ilt->_child
1356       }
1357       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
1358       phase->set_loop(_head,ilt);
1359     }
1360     pilt = &ilt->_child;        // Advance to next
1361     ilt = *pilt;
1362   }
1363 
1364   if( _child ) fix_parent( _child, this );
1365 }
1366 
1367 //------------------------------beautify_loops---------------------------------
1368 // Split shared headers and insert loop landing pads.
1369 // Insert a LoopNode to replace the RegionNode.
1370 // Return TRUE if loop tree is structurally changed.
1371 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
1372   bool result = false;
1373   // Cache parts in locals for easy
1374   PhaseIterGVN &igvn = phase->_igvn;
1375 
1376   igvn.hash_delete(_head);      // Yank from hash before hacking edges
1377 
1378   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
1379   int fall_in_cnt = 0;
1380   for( uint i = 1; i < _head->req(); i++ )
1381     if( !phase->is_member( this, _head->in(i) ) )
1382       fall_in_cnt++;
1383   assert( fall_in_cnt, "at least 1 fall-in path" );
1384   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
1385     split_fall_in( phase, fall_in_cnt );
1386 
1387   // Swap inputs to the _head and all Phis to move the fall-in edge to
1388   // the left.
1389   fall_in_cnt = 1;
1390   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
1391     fall_in_cnt++;
1392   if( fall_in_cnt > 1 ) {
1393     // Since I am just swapping inputs I do not need to update def-use info
1394     Node *tmp = _head->in(1);
1395     _head->set_req( 1, _head->in(fall_in_cnt) );
1396     _head->set_req( fall_in_cnt, tmp );
1397     // Swap also all Phis
1398     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
1399       Node* phi = _head->fast_out(i);
1400       if( phi->is_Phi() ) {
1401         igvn.hash_delete(phi); // Yank from hash before hacking edges
1402         tmp = phi->in(1);
1403         phi->set_req( 1, phi->in(fall_in_cnt) );
1404         phi->set_req( fall_in_cnt, tmp );
1405       }
1406     }
1407   }
1408   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
1409   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
1410 
1411   // If I am a shared header (multiple backedges), peel off the many
1412   // backedges into a private merge point and use the merge point as
1413   // the one true backedge.
1414   if( _head->req() > 3 ) {
1415     // Merge the many backedges into a single backedge but leave
1416     // the hottest backedge as separate edge for the following peel.
1417     merge_many_backedges( phase );
1418     result = true;
1419   }
1420 
1421   // If I have one hot backedge, peel off myself loop.
1422   // I better be the outermost loop.
1423   if( _head->req() > 3 ) {
1424     split_outer_loop( phase );
1425     result = true;
1426 
1427   } else if( !_head->is_Loop() && !_irreducible ) {
1428     // Make a new LoopNode to replace the old loop head
1429     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
1430     l = igvn.register_new_node_with_optimizer(l, _head);
1431     phase->set_created_loop_node();
1432     // Go ahead and replace _head
1433     phase->_igvn.replace_node( _head, l );
1434     _head = l;
1435     phase->set_loop(_head, this);
1436   }
1437 
1438   // Now recursively beautify nested loops
1439   if( _child ) result |= _child->beautify_loops( phase );
1440   if( _next  ) result |= _next ->beautify_loops( phase );
1441   return result;
1442 }
1443 
1444 //------------------------------allpaths_check_safepts----------------------------
1445 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
1446 // encountered.  Helper for check_safepts.
1447 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
1448   assert(stack.size() == 0, "empty stack");
1449   stack.push(_tail);
1450   visited.Clear();
1451   visited.set(_tail->_idx);
1452   while (stack.size() > 0) {
1453     Node* n = stack.pop();
1454     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1455       // Terminate this path
1456     } else if (n->Opcode() == Op_SafePoint) {
1457       if (_phase->get_loop(n) != this) {
1458         if (_required_safept == NULL) _required_safept = new Node_List();
1459         _required_safept->push(n);  // save the one closest to the tail
1460       }
1461       // Terminate this path
1462     } else {
1463       uint start = n->is_Region() ? 1 : 0;
1464       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
1465       for (uint i = start; i < end; i++) {
1466         Node* in = n->in(i);
1467         assert(in->is_CFG(), "must be");
1468         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
1469           stack.push(in);
1470         }
1471       }
1472     }
1473   }
1474 }
1475 
1476 //------------------------------check_safepts----------------------------
1477 // Given dominators, try to find loops with calls that must always be
1478 // executed (call dominates loop tail).  These loops do not need non-call
1479 // safepoints (ncsfpt).
1480 //
1481 // A complication is that a safepoint in a inner loop may be needed
1482 // by an outer loop. In the following, the inner loop sees it has a
1483 // call (block 3) on every path from the head (block 2) to the
1484 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
1485 // in block 2, _but_ this leaves the outer loop without a safepoint.
1486 //
1487 //          entry  0
1488 //                 |
1489 //                 v
1490 // outer 1,2    +->1
1491 //              |  |
1492 //              |  v
1493 //              |  2<---+  ncsfpt in 2
1494 //              |_/|\   |
1495 //                 | v  |
1496 // inner 2,3      /  3  |  call in 3
1497 //               /   |  |
1498 //              v    +--+
1499 //        exit  4
1500 //
1501 //
1502 // This method creates a list (_required_safept) of ncsfpt nodes that must
1503 // be protected is created for each loop. When a ncsfpt maybe deleted, it
1504 // is first looked for in the lists for the outer loops of the current loop.
1505 //
1506 // The insights into the problem:
1507 //  A) counted loops are okay
1508 //  B) innermost loops are okay (only an inner loop can delete
1509 //     a ncsfpt needed by an outer loop)
1510 //  C) a loop is immune from an inner loop deleting a safepoint
1511 //     if the loop has a call on the idom-path
1512 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
1513 //     idom-path that is not in a nested loop
1514 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
1515 //     loop needs to be prevented from deletion by an inner loop
1516 //
1517 // There are two analyses:
1518 //  1) The first, and cheaper one, scans the loop body from
1519 //     tail to head following the idom (immediate dominator)
1520 //     chain, looking for the cases (C,D,E) above.
1521 //     Since inner loops are scanned before outer loops, there is summary
1522 //     information about inner loops.  Inner loops can be skipped over
1523 //     when the tail of an inner loop is encountered.
1524 //
1525 //  2) The second, invoked if the first fails to find a call or ncsfpt on
1526 //     the idom path (which is rare), scans all predecessor control paths
1527 //     from the tail to the head, terminating a path when a call or sfpt
1528 //     is encountered, to find the ncsfpt's that are closest to the tail.
1529 //
1530 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
1531   // Bottom up traversal
1532   IdealLoopTree* ch = _child;
1533   while (ch != NULL) {
1534     ch->check_safepts(visited, stack);
1535     ch = ch->_next;
1536   }
1537 
1538   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
1539     bool  has_call         = false; // call on dom-path
1540     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
1541     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
1542     // Scan the dom-path nodes from tail to head
1543     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
1544       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1545         has_call = true;
1546         _has_sfpt = 1;          // Then no need for a safept!
1547         break;
1548       } else if (n->Opcode() == Op_SafePoint) {
1549         if (_phase->get_loop(n) == this) {
1550           has_local_ncsfpt = true;
1551           break;
1552         }
1553         if (nonlocal_ncsfpt == NULL) {
1554           nonlocal_ncsfpt = n; // save the one closest to the tail
1555         }
1556       } else {
1557         IdealLoopTree* nlpt = _phase->get_loop(n);
1558         if (this != nlpt) {
1559           // If at an inner loop tail, see if the inner loop has already
1560           // recorded seeing a call on the dom-path (and stop.)  If not,
1561           // jump to the head of the inner loop.
1562           assert(is_member(nlpt), "nested loop");
1563           Node* tail = nlpt->_tail;
1564           if (tail->in(0)->is_If()) tail = tail->in(0);
1565           if (n == tail) {
1566             // If inner loop has call on dom-path, so does outer loop
1567             if (nlpt->_has_sfpt) {
1568               has_call = true;
1569               _has_sfpt = 1;
1570               break;
1571             }
1572             // Skip to head of inner loop
1573             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
1574             n = nlpt->_head;
1575           }
1576         }
1577       }
1578     }
1579     // Record safept's that this loop needs preserved when an
1580     // inner loop attempts to delete it's safepoints.
1581     if (_child != NULL && !has_call && !has_local_ncsfpt) {
1582       if (nonlocal_ncsfpt != NULL) {
1583         if (_required_safept == NULL) _required_safept = new Node_List();
1584         _required_safept->push(nonlocal_ncsfpt);
1585       } else {
1586         // Failed to find a suitable safept on the dom-path.  Now use
1587         // an all paths walk from tail to head, looking for safepoints to preserve.
1588         allpaths_check_safepts(visited, stack);
1589       }
1590     }
1591   }
1592 }
1593 
1594 //---------------------------is_deleteable_safept----------------------------
1595 // Is safept not required by an outer loop?
1596 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
1597   assert(sfpt->Opcode() == Op_SafePoint, "");
1598   IdealLoopTree* lp = get_loop(sfpt)->_parent;
1599   while (lp != NULL) {
1600     Node_List* sfpts = lp->_required_safept;
1601     if (sfpts != NULL) {
1602       for (uint i = 0; i < sfpts->size(); i++) {
1603         if (sfpt == sfpts->at(i))
1604           return false;
1605       }
1606     }
1607     lp = lp->_parent;
1608   }
1609   return true;
1610 }
1611 
1612 //---------------------------replace_parallel_iv-------------------------------
1613 // Replace parallel induction variable (parallel to trip counter)
1614 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
1615   assert(loop->_head->is_CountedLoop(), "");
1616   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1617   if (!cl->is_valid_counted_loop())
1618     return;         // skip malformed counted loop
1619   Node *incr = cl->incr();
1620   if (incr == NULL)
1621     return;         // Dead loop?
1622   Node *init = cl->init_trip();
1623   Node *phi  = cl->phi();
1624   int stride_con = cl->stride_con();
1625 
1626   // Visit all children, looking for Phis
1627   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
1628     Node *out = cl->out(i);
1629     // Look for other phis (secondary IVs). Skip dead ones
1630     if (!out->is_Phi() || out == phi || !has_node(out))
1631       continue;
1632     PhiNode* phi2 = out->as_Phi();
1633     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
1634     // Look for induction variables of the form:  X += constant
1635     if (phi2->region() != loop->_head ||
1636         incr2->req() != 3 ||
1637         incr2->in(1) != phi2 ||
1638         incr2 == incr ||
1639         incr2->Opcode() != Op_AddI ||
1640         !incr2->in(2)->is_Con())
1641       continue;
1642 
1643     // Check for parallel induction variable (parallel to trip counter)
1644     // via an affine function.  In particular, count-down loops with
1645     // count-up array indices are common. We only RCE references off
1646     // the trip-counter, so we need to convert all these to trip-counter
1647     // expressions.
1648     Node *init2 = phi2->in( LoopNode::EntryControl );
1649     int stride_con2 = incr2->in(2)->get_int();
1650 
1651     // The general case here gets a little tricky.  We want to find the
1652     // GCD of all possible parallel IV's and make a new IV using this
1653     // GCD for the loop.  Then all possible IVs are simple multiples of
1654     // the GCD.  In practice, this will cover very few extra loops.
1655     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
1656     // where +/-1 is the common case, but other integer multiples are
1657     // also easy to handle.
1658     int ratio_con = stride_con2/stride_con;
1659 
1660     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
1661 #ifndef PRODUCT
1662       if (TraceLoopOpts) {
1663         tty->print("Parallel IV: %d ", phi2->_idx);
1664         loop->dump_head();
1665       }
1666 #endif
1667       // Convert to using the trip counter.  The parallel induction
1668       // variable differs from the trip counter by a loop-invariant
1669       // amount, the difference between their respective initial values.
1670       // It is scaled by the 'ratio_con'.
1671       Node* ratio = _igvn.intcon(ratio_con);
1672       set_ctrl(ratio, C->root());
1673       Node* ratio_init = new (C, 3) MulINode(init, ratio);
1674       _igvn.register_new_node_with_optimizer(ratio_init, init);
1675       set_early_ctrl(ratio_init);
1676       Node* diff = new (C, 3) SubINode(init2, ratio_init);
1677       _igvn.register_new_node_with_optimizer(diff, init2);
1678       set_early_ctrl(diff);
1679       Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
1680       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
1681       set_ctrl(ratio_idx, cl);
1682       Node* add = new (C, 3) AddINode(ratio_idx, diff);
1683       _igvn.register_new_node_with_optimizer(add);
1684       set_ctrl(add, cl);
1685       _igvn.replace_node( phi2, add );
1686       // Sometimes an induction variable is unused
1687       if (add->outcnt() == 0) {
1688         _igvn.remove_dead_node(add);
1689       }
1690       --i; // deleted this phi; rescan starting with next position
1691       continue;
1692     }
1693   }
1694 }
1695 
1696 //------------------------------counted_loop-----------------------------------
1697 // Convert to counted loops where possible
1698 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
1699 
1700   // For grins, set the inner-loop flag here
1701   if (!_child) {
1702     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
1703   }
1704 
1705   if (_head->is_CountedLoop() ||
1706       phase->is_counted_loop(_head, this)) {
1707     _has_sfpt = 1;              // Indicate we do not need a safepoint here
1708 
1709     // Look for a safepoint to remove
1710     for (Node* n = tail(); n != _head; n = phase->idom(n))
1711       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
1712           phase->is_deleteable_safept(n))
1713         phase->lazy_replace(n,n->in(TypeFunc::Control));
1714 
1715     // Look for induction variables
1716     phase->replace_parallel_iv(this);
1717 
1718   } else if (_parent != NULL && !_irreducible) {
1719     // Not a counted loop.
1720     // Look for a safepoint on the idom-path to remove, preserving the first one
1721     bool found = false;
1722     Node* n = tail();
1723     for (; n != _head && !found; n = phase->idom(n)) {
1724       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
1725         found = true; // Found one
1726     }
1727     // Skip past it and delete the others
1728     for (; n != _head; n = phase->idom(n)) {
1729       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
1730           phase->is_deleteable_safept(n))
1731         phase->lazy_replace(n,n->in(TypeFunc::Control));
1732     }
1733   }
1734 
1735   // Recursively
1736   if (_child) _child->counted_loop( phase );
1737   if (_next)  _next ->counted_loop( phase );
1738 }
1739 
1740 #ifndef PRODUCT
1741 //------------------------------dump_head--------------------------------------
1742 // Dump 1 liner for loop header info
1743 void IdealLoopTree::dump_head( ) const {
1744   for (uint i=0; i<_nest; i++)
1745     tty->print("  ");
1746   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
1747   if (_irreducible) tty->print(" IRREDUCIBLE");
1748   Node* entry = _head->in(LoopNode::EntryControl);
1749   if (LoopLimitCheck) {
1750     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
1751     if (predicate != NULL ) {
1752       tty->print(" limit_check");
1753       entry = entry->in(0)->in(0);
1754     }
1755   }
1756   if (UseLoopPredicate) {
1757     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
1758     if (entry != NULL) {
1759       tty->print(" predicated");
1760     }
1761   }
1762   if (_head->is_CountedLoop()) {
1763     CountedLoopNode *cl = _head->as_CountedLoop();
1764     tty->print(" counted");
1765 
1766     Node* init_n = cl->init_trip();
1767     if (init_n  != NULL &&  init_n->is_Con())
1768       tty->print(" [%d,", cl->init_trip()->get_int());
1769     else
1770       tty->print(" [int,");
1771     Node* limit_n = cl->limit();
1772     if (limit_n  != NULL &&  limit_n->is_Con())
1773       tty->print("%d),", cl->limit()->get_int());
1774     else
1775       tty->print("int),");
1776     int stride_con  = cl->stride_con();
1777     if (stride_con > 0) tty->print("+");
1778     tty->print("%d", stride_con);
1779 
1780     if (cl->is_pre_loop ()) tty->print(" pre" );
1781     if (cl->is_main_loop()) tty->print(" main");
1782     if (cl->is_post_loop()) tty->print(" post");
1783   }
1784   tty->cr();
1785 }
1786 
1787 //------------------------------dump-------------------------------------------
1788 // Dump loops by loop tree
1789 void IdealLoopTree::dump( ) const {
1790   dump_head();
1791   if (_child) _child->dump();
1792   if (_next)  _next ->dump();
1793 }
1794 
1795 #endif
1796 
1797 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
1798   if (loop == root) {
1799     if (loop->_child != NULL) {
1800       log->begin_head("loop_tree");
1801       log->end_head();
1802       if( loop->_child ) log_loop_tree(root, loop->_child, log);
1803       log->tail("loop_tree");
1804       assert(loop->_next == NULL, "what?");
1805     }
1806   } else {
1807     Node* head = loop->_head;
1808     log->begin_head("loop");
1809     log->print(" idx='%d' ", head->_idx);
1810     if (loop->_irreducible) log->print("irreducible='1' ");
1811     if (head->is_Loop()) {
1812       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
1813       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
1814     }
1815     if (head->is_CountedLoop()) {
1816       CountedLoopNode* cl = head->as_CountedLoop();
1817       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
1818       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
1819       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
1820     }
1821     log->end_head();
1822     if( loop->_child ) log_loop_tree(root, loop->_child, log);
1823     log->tail("loop");
1824     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
1825   }
1826 }
1827 
1828 //---------------------collect_potentially_useful_predicates-----------------------
1829 // Helper function to collect potentially useful predicates to prevent them from
1830 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
1831 void PhaseIdealLoop::collect_potentially_useful_predicates(
1832                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
1833   if (loop->_child) { // child
1834     collect_potentially_useful_predicates(loop->_child, useful_predicates);
1835   }
1836 
1837   // self (only loops that we can apply loop predication may use their predicates)
1838   if (loop->_head->is_Loop() &&
1839       !loop->_irreducible    &&
1840       !loop->tail()->is_top()) {
1841     LoopNode* lpn = loop->_head->as_Loop();
1842     Node* entry = lpn->in(LoopNode::EntryControl);
1843     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
1844     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
1845       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
1846       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
1847       entry = entry->in(0)->in(0);
1848     }
1849     predicate_proj = find_predicate(entry); // Predicate
1850     if (predicate_proj != NULL ) {
1851       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
1852     }
1853   }
1854 
1855   if (loop->_next) { // sibling
1856     collect_potentially_useful_predicates(loop->_next, useful_predicates);
1857   }
1858 }
1859 
1860 //------------------------eliminate_useless_predicates-----------------------------
1861 // Eliminate all inserted predicates if they could not be used by loop predication.
1862 // Note: it will also eliminates loop limits check predicate since it also uses
1863 // Opaque1 node (see Parse::add_predicate()).
1864 void PhaseIdealLoop::eliminate_useless_predicates() {
1865   if (C->predicate_count() == 0)
1866     return; // no predicate left
1867 
1868   Unique_Node_List useful_predicates; // to store useful predicates
1869   if (C->has_loops()) {
1870     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
1871   }
1872 
1873   for (int i = C->predicate_count(); i > 0; i--) {
1874      Node * n = C->predicate_opaque1_node(i-1);
1875      assert(n->Opcode() == Op_Opaque1, "must be");
1876      if (!useful_predicates.member(n)) { // not in the useful list
1877        _igvn.replace_node(n, n->in(1));
1878      }
1879   }
1880 }
1881 
1882 //=============================================================================
1883 //----------------------------build_and_optimize-------------------------------
1884 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
1885 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
1886 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs) {
1887   ResourceMark rm;
1888 
1889   int old_progress = C->major_progress();
1890   uint orig_worklist_size = _igvn._worklist.size();
1891 
1892   // Reset major-progress flag for the driver's heuristics
1893   C->clear_major_progress();
1894 
1895 #ifndef PRODUCT
1896   // Capture for later assert
1897   uint unique = C->unique();
1898   _loop_invokes++;
1899   _loop_work += unique;
1900 #endif
1901 
1902   // True if the method has at least 1 irreducible loop
1903   _has_irreducible_loops = false;
1904 
1905   _created_loop_node = false;
1906 
1907   Arena *a = Thread::current()->resource_area();
1908   VectorSet visited(a);
1909   // Pre-grow the mapping from Nodes to IdealLoopTrees.
1910   _nodes.map(C->unique(), NULL);
1911   memset(_nodes.adr(), 0, wordSize * C->unique());
1912 
1913   // Pre-build the top-level outermost loop tree entry
1914   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
1915   // Do not need a safepoint at the top level
1916   _ltree_root->_has_sfpt = 1;
1917 
1918   // Initialize Dominators.
1919   // Checked in clone_loop_predicate() during beautify_loops().
1920   _idom_size = 0;
1921   _idom      = NULL;
1922   _dom_depth = NULL;
1923   _dom_stk   = NULL;
1924 
1925   // Empty pre-order array
1926   allocate_preorders();
1927 
1928   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
1929   // IdealLoopTree entries.  Data nodes are NOT walked.
1930   build_loop_tree();
1931   // Check for bailout, and return
1932   if (C->failing()) {
1933     return;
1934   }
1935 
1936   // No loops after all
1937   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
1938 
1939   // There should always be an outer loop containing the Root and Return nodes.
1940   // If not, we have a degenerate empty program.  Bail out in this case.
1941   if (!has_node(C->root())) {
1942     if (!_verify_only) {
1943       C->clear_major_progress();
1944       C->record_method_not_compilable("empty program detected during loop optimization");
1945     }
1946     return;
1947   }
1948 
1949   // Nothing to do, so get out
1950   if( !C->has_loops() && !do_split_ifs && !_verify_me && !_verify_only ) {
1951     _igvn.optimize();           // Cleanup NeverBranches
1952     return;
1953   }
1954 
1955   // Set loop nesting depth
1956   _ltree_root->set_nest( 0 );
1957 
1958   // Split shared headers and insert loop landing pads.
1959   // Do not bother doing this on the Root loop of course.
1960   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
1961     C->print_method("Before beautify loops", 3);
1962     if( _ltree_root->_child->beautify_loops( this ) ) {
1963       // Re-build loop tree!
1964       _ltree_root->_child = NULL;
1965       _nodes.clear();
1966       reallocate_preorders();
1967       build_loop_tree();
1968       // Check for bailout, and return
1969       if (C->failing()) {
1970         return;
1971       }
1972       // Reset loop nesting depth
1973       _ltree_root->set_nest( 0 );
1974 
1975       C->print_method("After beautify loops", 3);
1976     }
1977   }
1978 
1979   // Build Dominators for elision of NULL checks & loop finding.
1980   // Since nodes do not have a slot for immediate dominator, make
1981   // a persistent side array for that info indexed on node->_idx.
1982   _idom_size = C->unique();
1983   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
1984   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
1985   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
1986   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
1987 
1988   Dominators();
1989 
1990   if (!_verify_only) {
1991     // As a side effect, Dominators removed any unreachable CFG paths
1992     // into RegionNodes.  It doesn't do this test against Root, so
1993     // we do it here.
1994     for( uint i = 1; i < C->root()->req(); i++ ) {
1995       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
1996         _igvn.hash_delete(C->root());
1997         C->root()->del_req(i);
1998         _igvn._worklist.push(C->root());
1999         i--;                      // Rerun same iteration on compressed edges
2000       }
2001     }
2002 
2003     // Given dominators, try to find inner loops with calls that must
2004     // always be executed (call dominates loop tail).  These loops do
2005     // not need a separate safepoint.
2006     Node_List cisstack(a);
2007     _ltree_root->check_safepts(visited, cisstack);
2008   }
2009 
2010   // Walk the DATA nodes and place into loops.  Find earliest control
2011   // node.  For CFG nodes, the _nodes array starts out and remains
2012   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
2013   // _nodes array holds the earliest legal controlling CFG node.
2014 
2015   // Allocate stack with enough space to avoid frequent realloc
2016   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
2017   Node_Stack nstack( a, stack_size );
2018 
2019   visited.Clear();
2020   Node_List worklist(a);
2021   // Don't need C->root() on worklist since
2022   // it will be processed among C->top() inputs
2023   worklist.push( C->top() );
2024   visited.set( C->top()->_idx ); // Set C->top() as visited now
2025   build_loop_early( visited, worklist, nstack );
2026 
2027   // Given early legal placement, try finding counted loops.  This placement
2028   // is good enough to discover most loop invariants.
2029   if( !_verify_me && !_verify_only )
2030     _ltree_root->counted_loop( this );
2031 
2032   // Find latest loop placement.  Find ideal loop placement.
2033   visited.Clear();
2034   init_dom_lca_tags();
2035   // Need C->root() on worklist when processing outs
2036   worklist.push( C->root() );
2037   NOT_PRODUCT( C->verify_graph_edges(); )
2038   worklist.push( C->top() );
2039   build_loop_late( visited, worklist, nstack );
2040 
2041   if (_verify_only) {
2042     // restore major progress flag
2043     for (int i = 0; i < old_progress; i++)
2044       C->set_major_progress();
2045     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
2046     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
2047     return;
2048   }
2049 
2050   // Some parser-inserted loop predicates could never be used by loop
2051   // predication or they were moved away from loop during some optimizations.
2052   // For example, peeling. Eliminate them before next loop optimizations.
2053   if (UseLoopPredicate || LoopLimitCheck) {
2054     eliminate_useless_predicates();
2055   }
2056 
2057   // clear out the dead code
2058   while(_deadlist.size()) {
2059     _igvn.remove_globally_dead_node(_deadlist.pop());
2060   }
2061 
2062 #ifndef PRODUCT
2063   C->verify_graph_edges();
2064   if (_verify_me) {             // Nested verify pass?
2065     // Check to see if the verify mode is broken
2066     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
2067     return;
2068   }
2069   if(VerifyLoopOptimizations) verify();
2070   if(TraceLoopOpts && C->has_loops()) {
2071     _ltree_root->dump();
2072   }
2073 #endif
2074 
2075   if (ReassociateInvariants) {
2076     // Reassociate invariants and prep for split_thru_phi
2077     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2078       IdealLoopTree* lpt = iter.current();
2079       if (!lpt->is_counted() || !lpt->is_inner()) continue;
2080 
2081       lpt->reassociate_invariants(this);
2082 
2083       // Because RCE opportunities can be masked by split_thru_phi,
2084       // look for RCE candidates and inhibit split_thru_phi
2085       // on just their loop-phi's for this pass of loop opts
2086       if (SplitIfBlocks && do_split_ifs) {
2087         if (lpt->policy_range_check(this)) {
2088           lpt->_rce_candidate = 1; // = true
2089         }
2090       }
2091     }
2092   }
2093 
2094   // Check for aggressive application of split-if and other transforms
2095   // that require basic-block info (like cloning through Phi's)
2096   if( SplitIfBlocks && do_split_ifs ) {
2097     visited.Clear();
2098     split_if_with_blocks( visited, nstack );
2099     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
2100   }
2101 
2102   // Perform loop predication before iteration splitting
2103   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
2104     _ltree_root->_child->loop_predication(this);
2105   }
2106 
2107   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
2108     if (do_intrinsify_fill()) {
2109       C->set_major_progress();
2110     }
2111   }
2112 
2113   // Perform iteration-splitting on inner loops.  Split iterations to avoid
2114   // range checks or one-shot null checks.
2115 
2116   // If split-if's didn't hack the graph too bad (no CFG changes)
2117   // then do loop opts.
2118   if (C->has_loops() && !C->major_progress()) {
2119     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
2120     _ltree_root->_child->iteration_split( this, worklist );
2121     // No verify after peeling!  GCM has hoisted code out of the loop.
2122     // After peeling, the hoisted code could sink inside the peeled area.
2123     // The peeling code does not try to recompute the best location for
2124     // all the code before the peeled area, so the verify pass will always
2125     // complain about it.
2126   }
2127   // Do verify graph edges in any case
2128   NOT_PRODUCT( C->verify_graph_edges(); );
2129 
2130   if (!do_split_ifs) {
2131     // We saw major progress in Split-If to get here.  We forced a
2132     // pass with unrolling and not split-if, however more split-if's
2133     // might make progress.  If the unrolling didn't make progress
2134     // then the major-progress flag got cleared and we won't try
2135     // another round of Split-If.  In particular the ever-common
2136     // instance-of/check-cast pattern requires at least 2 rounds of
2137     // Split-If to clear out.
2138     C->set_major_progress();
2139   }
2140 
2141   // Repeat loop optimizations if new loops were seen
2142   if (created_loop_node()) {
2143     C->set_major_progress();
2144   }
2145 
2146   // Keep loop predicates and perform optimizations with them
2147   // until no more loop optimizations could be done.
2148   // After that switch predicates off and do more loop optimizations.
2149   if (!C->major_progress() && (C->predicate_count() > 0)) {
2150      C->cleanup_loop_predicates(_igvn);
2151 #ifndef PRODUCT
2152      if (TraceLoopOpts) {
2153        tty->print_cr("PredicatesOff");
2154      }
2155 #endif
2156      C->set_major_progress();
2157   }
2158 
2159   // Convert scalar to superword operations at the end of all loop opts.
2160   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
2161     // SuperWord transform
2162     SuperWord sw(this);
2163     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2164       IdealLoopTree* lpt = iter.current();
2165       if (lpt->is_counted()) {
2166         sw.transform_loop(lpt);
2167       }
2168     }
2169   }
2170 
2171   // Cleanup any modified bits
2172   _igvn.optimize();
2173 
2174   // disable assert until issue with split_flow_path is resolved (6742111)
2175   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
2176   //        "shouldn't introduce irreducible loops");
2177 
2178   if (C->log() != NULL) {
2179     log_loop_tree(_ltree_root, _ltree_root, C->log());
2180   }
2181 }
2182 
2183 #ifndef PRODUCT
2184 //------------------------------print_statistics-------------------------------
2185 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
2186 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
2187 void PhaseIdealLoop::print_statistics() {
2188   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
2189 }
2190 
2191 //------------------------------verify-----------------------------------------
2192 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
2193 static int fail;                // debug only, so its multi-thread dont care
2194 void PhaseIdealLoop::verify() const {
2195   int old_progress = C->major_progress();
2196   ResourceMark rm;
2197   PhaseIdealLoop loop_verify( _igvn, this );
2198   VectorSet visited(Thread::current()->resource_area());
2199 
2200   fail = 0;
2201   verify_compare( C->root(), &loop_verify, visited );
2202   assert( fail == 0, "verify loops failed" );
2203   // Verify loop structure is the same
2204   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
2205   // Reset major-progress.  It was cleared by creating a verify version of
2206   // PhaseIdealLoop.
2207   for( int i=0; i<old_progress; i++ )
2208     C->set_major_progress();
2209 }
2210 
2211 //------------------------------verify_compare---------------------------------
2212 // Make sure me and the given PhaseIdealLoop agree on key data structures
2213 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
2214   if( !n ) return;
2215   if( visited.test_set( n->_idx ) ) return;
2216   if( !_nodes[n->_idx] ) {      // Unreachable
2217     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
2218     return;
2219   }
2220 
2221   uint i;
2222   for( i = 0; i < n->req(); i++ )
2223     verify_compare( n->in(i), loop_verify, visited );
2224 
2225   // Check the '_nodes' block/loop structure
2226   i = n->_idx;
2227   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
2228     if( _nodes[i] != loop_verify->_nodes[i] &&
2229         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
2230       tty->print("Mismatched control setting for: ");
2231       n->dump();
2232       if( fail++ > 10 ) return;
2233       Node *c = get_ctrl_no_update(n);
2234       tty->print("We have it as: ");
2235       if( c->in(0) ) c->dump();
2236         else tty->print_cr("N%d",c->_idx);
2237       tty->print("Verify thinks: ");
2238       if( loop_verify->has_ctrl(n) )
2239         loop_verify->get_ctrl_no_update(n)->dump();
2240       else
2241         loop_verify->get_loop_idx(n)->dump();
2242       tty->cr();
2243     }
2244   } else {                    // We have a loop
2245     IdealLoopTree *us = get_loop_idx(n);
2246     if( loop_verify->has_ctrl(n) ) {
2247       tty->print("Mismatched loop setting for: ");
2248       n->dump();
2249       if( fail++ > 10 ) return;
2250       tty->print("We have it as: ");
2251       us->dump();
2252       tty->print("Verify thinks: ");
2253       loop_verify->get_ctrl_no_update(n)->dump();
2254       tty->cr();
2255     } else if (!C->major_progress()) {
2256       // Loop selection can be messed up if we did a major progress
2257       // operation, like split-if.  Do not verify in that case.
2258       IdealLoopTree *them = loop_verify->get_loop_idx(n);
2259       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
2260         tty->print("Unequals loops for: ");
2261         n->dump();
2262         if( fail++ > 10 ) return;
2263         tty->print("We have it as: ");
2264         us->dump();
2265         tty->print("Verify thinks: ");
2266         them->dump();
2267         tty->cr();
2268       }
2269     }
2270   }
2271 
2272   // Check for immediate dominators being equal
2273   if( i >= _idom_size ) {
2274     if( !n->is_CFG() ) return;
2275     tty->print("CFG Node with no idom: ");
2276     n->dump();
2277     return;
2278   }
2279   if( !n->is_CFG() ) return;
2280   if( n == C->root() ) return; // No IDOM here
2281 
2282   assert(n->_idx == i, "sanity");
2283   Node *id = idom_no_update(n);
2284   if( id != loop_verify->idom_no_update(n) ) {
2285     tty->print("Unequals idoms for: ");
2286     n->dump();
2287     if( fail++ > 10 ) return;
2288     tty->print("We have it as: ");
2289     id->dump();
2290     tty->print("Verify thinks: ");
2291     loop_verify->idom_no_update(n)->dump();
2292     tty->cr();
2293   }
2294 
2295 }
2296 
2297 //------------------------------verify_tree------------------------------------
2298 // Verify that tree structures match.  Because the CFG can change, siblings
2299 // within the loop tree can be reordered.  We attempt to deal with that by
2300 // reordering the verify's loop tree if possible.
2301 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
2302   assert( _parent == parent, "Badly formed loop tree" );
2303 
2304   // Siblings not in same order?  Attempt to re-order.
2305   if( _head != loop->_head ) {
2306     // Find _next pointer to update
2307     IdealLoopTree **pp = &loop->_parent->_child;
2308     while( *pp != loop )
2309       pp = &((*pp)->_next);
2310     // Find proper sibling to be next
2311     IdealLoopTree **nn = &loop->_next;
2312     while( (*nn) && (*nn)->_head != _head )
2313       nn = &((*nn)->_next);
2314 
2315     // Check for no match.
2316     if( !(*nn) ) {
2317       // Annoyingly, irreducible loops can pick different headers
2318       // after a major_progress operation, so the rest of the loop
2319       // tree cannot be matched.
2320       if (_irreducible && Compile::current()->major_progress())  return;
2321       assert( 0, "failed to match loop tree" );
2322     }
2323 
2324     // Move (*nn) to (*pp)
2325     IdealLoopTree *hit = *nn;
2326     *nn = hit->_next;
2327     hit->_next = loop;
2328     *pp = loop;
2329     loop = hit;
2330     // Now try again to verify
2331   }
2332 
2333   assert( _head  == loop->_head , "mismatched loop head" );
2334   Node *tail = _tail;           // Inline a non-updating version of
2335   while( !tail->in(0) )         // the 'tail()' call.
2336     tail = tail->in(1);
2337   assert( tail == loop->_tail, "mismatched loop tail" );
2338 
2339   // Counted loops that are guarded should be able to find their guards
2340   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
2341     CountedLoopNode *cl = _head->as_CountedLoop();
2342     Node *init = cl->init_trip();
2343     Node *ctrl = cl->in(LoopNode::EntryControl);
2344     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
2345     Node *iff  = ctrl->in(0);
2346     assert( iff->Opcode() == Op_If, "" );
2347     Node *bol  = iff->in(1);
2348     assert( bol->Opcode() == Op_Bool, "" );
2349     Node *cmp  = bol->in(1);
2350     assert( cmp->Opcode() == Op_CmpI, "" );
2351     Node *add  = cmp->in(1);
2352     Node *opaq;
2353     if( add->Opcode() == Op_Opaque1 ) {
2354       opaq = add;
2355     } else {
2356       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
2357       assert( add == init, "" );
2358       opaq = cmp->in(2);
2359     }
2360     assert( opaq->Opcode() == Op_Opaque1, "" );
2361 
2362   }
2363 
2364   if (_child != NULL)  _child->verify_tree(loop->_child, this);
2365   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
2366   // Innermost loops need to verify loop bodies,
2367   // but only if no 'major_progress'
2368   int fail = 0;
2369   if (!Compile::current()->major_progress() && _child == NULL) {
2370     for( uint i = 0; i < _body.size(); i++ ) {
2371       Node *n = _body.at(i);
2372       if (n->outcnt() == 0)  continue; // Ignore dead
2373       uint j;
2374       for( j = 0; j < loop->_body.size(); j++ )
2375         if( loop->_body.at(j) == n )
2376           break;
2377       if( j == loop->_body.size() ) { // Not found in loop body
2378         // Last ditch effort to avoid assertion: Its possible that we
2379         // have some users (so outcnt not zero) but are still dead.
2380         // Try to find from root.
2381         if (Compile::current()->root()->find(n->_idx)) {
2382           fail++;
2383           tty->print("We have that verify does not: ");
2384           n->dump();
2385         }
2386       }
2387     }
2388     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
2389       Node *n = loop->_body.at(i2);
2390       if (n->outcnt() == 0)  continue; // Ignore dead
2391       uint j;
2392       for( j = 0; j < _body.size(); j++ )
2393         if( _body.at(j) == n )
2394           break;
2395       if( j == _body.size() ) { // Not found in loop body
2396         // Last ditch effort to avoid assertion: Its possible that we
2397         // have some users (so outcnt not zero) but are still dead.
2398         // Try to find from root.
2399         if (Compile::current()->root()->find(n->_idx)) {
2400           fail++;
2401           tty->print("Verify has that we do not: ");
2402           n->dump();
2403         }
2404       }
2405     }
2406     assert( !fail, "loop body mismatch" );
2407   }
2408 }
2409 
2410 #endif
2411 
2412 //------------------------------set_idom---------------------------------------
2413 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
2414   uint idx = d->_idx;
2415   if (idx >= _idom_size) {
2416     uint newsize = _idom_size<<1;
2417     while( idx >= newsize ) {
2418       newsize <<= 1;
2419     }
2420     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
2421     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
2422     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
2423     _idom_size = newsize;
2424   }
2425   _idom[idx] = n;
2426   _dom_depth[idx] = dom_depth;
2427 }
2428 
2429 //------------------------------recompute_dom_depth---------------------------------------
2430 // The dominator tree is constructed with only parent pointers.
2431 // This recomputes the depth in the tree by first tagging all
2432 // nodes as "no depth yet" marker.  The next pass then runs up
2433 // the dom tree from each node marked "no depth yet", and computes
2434 // the depth on the way back down.
2435 void PhaseIdealLoop::recompute_dom_depth() {
2436   uint no_depth_marker = C->unique();
2437   uint i;
2438   // Initialize depth to "no depth yet"
2439   for (i = 0; i < _idom_size; i++) {
2440     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
2441      _dom_depth[i] = no_depth_marker;
2442     }
2443   }
2444   if (_dom_stk == NULL) {
2445     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
2446     if (init_size < 10) init_size = 10;
2447     _dom_stk = new GrowableArray<uint>(init_size);
2448   }
2449   // Compute new depth for each node.
2450   for (i = 0; i < _idom_size; i++) {
2451     uint j = i;
2452     // Run up the dom tree to find a node with a depth
2453     while (_dom_depth[j] == no_depth_marker) {
2454       _dom_stk->push(j);
2455       j = _idom[j]->_idx;
2456     }
2457     // Compute the depth on the way back down this tree branch
2458     uint dd = _dom_depth[j] + 1;
2459     while (_dom_stk->length() > 0) {
2460       uint j = _dom_stk->pop();
2461       _dom_depth[j] = dd;
2462       dd++;
2463     }
2464   }
2465 }
2466 
2467 //------------------------------sort-------------------------------------------
2468 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
2469 // loop tree, not the root.
2470 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
2471   if( !innermost ) return loop; // New innermost loop
2472 
2473   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
2474   assert( loop_preorder, "not yet post-walked loop" );
2475   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
2476   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
2477 
2478   // Insert at start of list
2479   while( l ) {                  // Insertion sort based on pre-order
2480     if( l == loop ) return innermost; // Already on list!
2481     int l_preorder = get_preorder(l->_head); // Cache pre-order number
2482     assert( l_preorder, "not yet post-walked l" );
2483     // Check header pre-order number to figure proper nesting
2484     if( loop_preorder > l_preorder )
2485       break;                    // End of insertion
2486     // If headers tie (e.g., shared headers) check tail pre-order numbers.
2487     // Since I split shared headers, you'd think this could not happen.
2488     // BUT: I must first do the preorder numbering before I can discover I
2489     // have shared headers, so the split headers all get the same preorder
2490     // number as the RegionNode they split from.
2491     if( loop_preorder == l_preorder &&
2492         get_preorder(loop->_tail) < get_preorder(l->_tail) )
2493       break;                    // Also check for shared headers (same pre#)
2494     pp = &l->_parent;           // Chain up list
2495     l = *pp;
2496   }
2497   // Link into list
2498   // Point predecessor to me
2499   *pp = loop;
2500   // Point me to successor
2501   IdealLoopTree *p = loop->_parent;
2502   loop->_parent = l;            // Point me to successor
2503   if( p ) sort( p, innermost ); // Insert my parents into list as well
2504   return innermost;
2505 }
2506 
2507 //------------------------------build_loop_tree--------------------------------
2508 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
2509 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
2510 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
2511 // tightest enclosing IdealLoopTree for post-walked.
2512 //
2513 // During my forward walk I do a short 1-layer lookahead to see if I can find
2514 // a loop backedge with that doesn't have any work on the backedge.  This
2515 // helps me construct nested loops with shared headers better.
2516 //
2517 // Once I've done the forward recursion, I do the post-work.  For each child
2518 // I check to see if there is a backedge.  Backedges define a loop!  I
2519 // insert an IdealLoopTree at the target of the backedge.
2520 //
2521 // During the post-work I also check to see if I have several children
2522 // belonging to different loops.  If so, then this Node is a decision point
2523 // where control flow can choose to change loop nests.  It is at this
2524 // decision point where I can figure out how loops are nested.  At this
2525 // time I can properly order the different loop nests from my children.
2526 // Note that there may not be any backedges at the decision point!
2527 //
2528 // Since the decision point can be far removed from the backedges, I can't
2529 // order my loops at the time I discover them.  Thus at the decision point
2530 // I need to inspect loop header pre-order numbers to properly nest my
2531 // loops.  This means I need to sort my childrens' loops by pre-order.
2532 // The sort is of size number-of-control-children, which generally limits
2533 // it to size 2 (i.e., I just choose between my 2 target loops).
2534 void PhaseIdealLoop::build_loop_tree() {
2535   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2536   GrowableArray <Node *> bltstack(C->unique() >> 1);
2537   Node *n = C->root();
2538   bltstack.push(n);
2539   int pre_order = 1;
2540   int stack_size;
2541 
2542   while ( ( stack_size = bltstack.length() ) != 0 ) {
2543     n = bltstack.top(); // Leave node on stack
2544     if ( !is_visited(n) ) {
2545       // ---- Pre-pass Work ----
2546       // Pre-walked but not post-walked nodes need a pre_order number.
2547 
2548       set_preorder_visited( n, pre_order ); // set as visited
2549 
2550       // ---- Scan over children ----
2551       // Scan first over control projections that lead to loop headers.
2552       // This helps us find inner-to-outer loops with shared headers better.
2553 
2554       // Scan children's children for loop headers.
2555       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
2556         Node* m = n->raw_out(i);       // Child
2557         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
2558           // Scan over children's children to find loop
2559           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2560             Node* l = m->fast_out(j);
2561             if( is_visited(l) &&       // Been visited?
2562                 !is_postvisited(l) &&  // But not post-visited
2563                 get_preorder(l) < pre_order ) { // And smaller pre-order
2564               // Found!  Scan the DFS down this path before doing other paths
2565               bltstack.push(m);
2566               break;
2567             }
2568           }
2569         }
2570       }
2571       pre_order++;
2572     }
2573     else if ( !is_postvisited(n) ) {
2574       // Note: build_loop_tree_impl() adds out edges on rare occasions,
2575       // such as com.sun.rsasign.am::a.
2576       // For non-recursive version, first, process current children.
2577       // On next iteration, check if additional children were added.
2578       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
2579         Node* u = n->raw_out(k);
2580         if ( u->is_CFG() && !is_visited(u) ) {
2581           bltstack.push(u);
2582         }
2583       }
2584       if ( bltstack.length() == stack_size ) {
2585         // There were no additional children, post visit node now
2586         (void)bltstack.pop(); // Remove node from stack
2587         pre_order = build_loop_tree_impl( n, pre_order );
2588         // Check for bailout
2589         if (C->failing()) {
2590           return;
2591         }
2592         // Check to grow _preorders[] array for the case when
2593         // build_loop_tree_impl() adds new nodes.
2594         check_grow_preorders();
2595       }
2596     }
2597     else {
2598       (void)bltstack.pop(); // Remove post-visited node from stack
2599     }
2600   }
2601 }
2602 
2603 //------------------------------build_loop_tree_impl---------------------------
2604 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
2605   // ---- Post-pass Work ----
2606   // Pre-walked but not post-walked nodes need a pre_order number.
2607 
2608   // Tightest enclosing loop for this Node
2609   IdealLoopTree *innermost = NULL;
2610 
2611   // For all children, see if any edge is a backedge.  If so, make a loop
2612   // for it.  Then find the tightest enclosing loop for the self Node.
2613   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2614     Node* m = n->fast_out(i);   // Child
2615     if( n == m ) continue;      // Ignore control self-cycles
2616     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
2617 
2618     IdealLoopTree *l;           // Child's loop
2619     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
2620       // Found a backedge
2621       assert( get_preorder(m) < pre_order, "should be backedge" );
2622       // Check for the RootNode, which is already a LoopNode and is allowed
2623       // to have multiple "backedges".
2624       if( m == C->root()) {     // Found the root?
2625         l = _ltree_root;        // Root is the outermost LoopNode
2626       } else {                  // Else found a nested loop
2627         // Insert a LoopNode to mark this loop.
2628         l = new IdealLoopTree(this, m, n);
2629       } // End of Else found a nested loop
2630       if( !has_loop(m) )        // If 'm' does not already have a loop set
2631         set_loop(m, l);         // Set loop header to loop now
2632 
2633     } else {                    // Else not a nested loop
2634       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
2635       l = get_loop(m);          // Get previously determined loop
2636       // If successor is header of a loop (nest), move up-loop till it
2637       // is a member of some outer enclosing loop.  Since there are no
2638       // shared headers (I've split them already) I only need to go up
2639       // at most 1 level.
2640       while( l && l->_head == m ) // Successor heads loop?
2641         l = l->_parent;         // Move up 1 for me
2642       // If this loop is not properly parented, then this loop
2643       // has no exit path out, i.e. its an infinite loop.
2644       if( !l ) {
2645         // Make loop "reachable" from root so the CFG is reachable.  Basically
2646         // insert a bogus loop exit that is never taken.  'm', the loop head,
2647         // points to 'n', one (of possibly many) fall-in paths.  There may be
2648         // many backedges as well.
2649 
2650         // Here I set the loop to be the root loop.  I could have, after
2651         // inserting a bogus loop exit, restarted the recursion and found my
2652         // new loop exit.  This would make the infinite loop a first-class
2653         // loop and it would then get properly optimized.  What's the use of
2654         // optimizing an infinite loop?
2655         l = _ltree_root;        // Oops, found infinite loop
2656 
2657         if (!_verify_only) {
2658           // Insert the NeverBranch between 'm' and it's control user.
2659           NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
2660           _igvn.register_new_node_with_optimizer(iff);
2661           set_loop(iff, l);
2662           Node *if_t = new (C, 1) CProjNode( iff, 0 );
2663           _igvn.register_new_node_with_optimizer(if_t);
2664           set_loop(if_t, l);
2665 
2666           Node* cfg = NULL;       // Find the One True Control User of m
2667           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2668             Node* x = m->fast_out(j);
2669             if (x->is_CFG() && x != m && x != iff)
2670               { cfg = x; break; }
2671           }
2672           assert(cfg != NULL, "must find the control user of m");
2673           uint k = 0;             // Probably cfg->in(0)
2674           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
2675           cfg->set_req( k, if_t ); // Now point to NeverBranch
2676 
2677           // Now create the never-taken loop exit
2678           Node *if_f = new (C, 1) CProjNode( iff, 1 );
2679           _igvn.register_new_node_with_optimizer(if_f);
2680           set_loop(if_f, l);
2681           // Find frame ptr for Halt.  Relies on the optimizer
2682           // V-N'ing.  Easier and quicker than searching through
2683           // the program structure.
2684           Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
2685           _igvn.register_new_node_with_optimizer(frame);
2686           // Halt & Catch Fire
2687           Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
2688           _igvn.register_new_node_with_optimizer(halt);
2689           set_loop(halt, l);
2690           C->root()->add_req(halt);
2691         }
2692         set_loop(C->root(), _ltree_root);
2693       }
2694     }
2695     // Weeny check for irreducible.  This child was already visited (this
2696     // IS the post-work phase).  Is this child's loop header post-visited
2697     // as well?  If so, then I found another entry into the loop.
2698     if (!_verify_only) {
2699       while( is_postvisited(l->_head) ) {
2700         // found irreducible
2701         l->_irreducible = 1; // = true
2702         l = l->_parent;
2703         _has_irreducible_loops = true;
2704         // Check for bad CFG here to prevent crash, and bailout of compile
2705         if (l == NULL) {
2706           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
2707           return pre_order;
2708         }
2709       }
2710     }
2711 
2712     // This Node might be a decision point for loops.  It is only if
2713     // it's children belong to several different loops.  The sort call
2714     // does a trivial amount of work if there is only 1 child or all
2715     // children belong to the same loop.  If however, the children
2716     // belong to different loops, the sort call will properly set the
2717     // _parent pointers to show how the loops nest.
2718     //
2719     // In any case, it returns the tightest enclosing loop.
2720     innermost = sort( l, innermost );
2721   }
2722 
2723   // Def-use info will have some dead stuff; dead stuff will have no
2724   // loop decided on.
2725 
2726   // Am I a loop header?  If so fix up my parent's child and next ptrs.
2727   if( innermost && innermost->_head == n ) {
2728     assert( get_loop(n) == innermost, "" );
2729     IdealLoopTree *p = innermost->_parent;
2730     IdealLoopTree *l = innermost;
2731     while( p && l->_head == n ) {
2732       l->_next = p->_child;     // Put self on parents 'next child'
2733       p->_child = l;            // Make self as first child of parent
2734       l = p;                    // Now walk up the parent chain
2735       p = l->_parent;
2736     }
2737   } else {
2738     // Note that it is possible for a LoopNode to reach here, if the
2739     // backedge has been made unreachable (hence the LoopNode no longer
2740     // denotes a Loop, and will eventually be removed).
2741 
2742     // Record tightest enclosing loop for self.  Mark as post-visited.
2743     set_loop(n, innermost);
2744     // Also record has_call flag early on
2745     if( innermost ) {
2746       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
2747         // Do not count uncommon calls
2748         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
2749           Node *iff = n->in(0)->in(0);
2750           if( !iff->is_If() ||
2751               (n->in(0)->Opcode() == Op_IfFalse &&
2752                (1.0 - iff->as_If()->_prob) >= 0.01) ||
2753               (iff->as_If()->_prob >= 0.01) )
2754             innermost->_has_call = 1;
2755         }
2756       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
2757         // Disable loop optimizations if the loop has a scalar replaceable
2758         // allocation. This disabling may cause a potential performance lost
2759         // if the allocation is not eliminated for some reason.
2760         innermost->_allow_optimizations = false;
2761         innermost->_has_call = 1; // = true
2762       }
2763     }
2764   }
2765 
2766   // Flag as post-visited now
2767   set_postvisited(n);
2768   return pre_order;
2769 }
2770 
2771 
2772 //------------------------------build_loop_early-------------------------------
2773 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
2774 // First pass computes the earliest controlling node possible.  This is the
2775 // controlling input with the deepest dominating depth.
2776 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
2777   while (worklist.size() != 0) {
2778     // Use local variables nstack_top_n & nstack_top_i to cache values
2779     // on nstack's top.
2780     Node *nstack_top_n = worklist.pop();
2781     uint  nstack_top_i = 0;
2782 //while_nstack_nonempty:
2783     while (true) {
2784       // Get parent node and next input's index from stack's top.
2785       Node  *n = nstack_top_n;
2786       uint   i = nstack_top_i;
2787       uint cnt = n->req(); // Count of inputs
2788       if (i == 0) {        // Pre-process the node.
2789         if( has_node(n) &&            // Have either loop or control already?
2790             !has_ctrl(n) ) {          // Have loop picked out already?
2791           // During "merge_many_backedges" we fold up several nested loops
2792           // into a single loop.  This makes the members of the original
2793           // loop bodies pointing to dead loops; they need to move up
2794           // to the new UNION'd larger loop.  I set the _head field of these
2795           // dead loops to NULL and the _parent field points to the owning
2796           // loop.  Shades of UNION-FIND algorithm.
2797           IdealLoopTree *ilt;
2798           while( !(ilt = get_loop(n))->_head ) {
2799             // Normally I would use a set_loop here.  But in this one special
2800             // case, it is legal (and expected) to change what loop a Node
2801             // belongs to.
2802             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
2803           }
2804           // Remove safepoints ONLY if I've already seen I don't need one.
2805           // (the old code here would yank a 2nd safepoint after seeing a
2806           // first one, even though the 1st did not dominate in the loop body
2807           // and thus could be avoided indefinitely)
2808           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
2809               is_deleteable_safept(n)) {
2810             Node *in = n->in(TypeFunc::Control);
2811             lazy_replace(n,in);       // Pull safepoint now
2812             // Carry on with the recursion "as if" we are walking
2813             // only the control input
2814             if( !visited.test_set( in->_idx ) ) {
2815               worklist.push(in);      // Visit this guy later, using worklist
2816             }
2817             // Get next node from nstack:
2818             // - skip n's inputs processing by setting i > cnt;
2819             // - we also will not call set_early_ctrl(n) since
2820             //   has_node(n) == true (see the condition above).
2821             i = cnt + 1;
2822           }
2823         }
2824       } // if (i == 0)
2825 
2826       // Visit all inputs
2827       bool done = true;       // Assume all n's inputs will be processed
2828       while (i < cnt) {
2829         Node *in = n->in(i);
2830         ++i;
2831         if (in == NULL) continue;
2832         if (in->pinned() && !in->is_CFG())
2833           set_ctrl(in, in->in(0));
2834         int is_visited = visited.test_set( in->_idx );
2835         if (!has_node(in)) {  // No controlling input yet?
2836           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
2837           assert( !is_visited, "visit only once" );
2838           nstack.push(n, i);  // Save parent node and next input's index.
2839           nstack_top_n = in;  // Process current input now.
2840           nstack_top_i = 0;
2841           done = false;       // Not all n's inputs processed.
2842           break; // continue while_nstack_nonempty;
2843         } else if (!is_visited) {
2844           // This guy has a location picked out for him, but has not yet
2845           // been visited.  Happens to all CFG nodes, for instance.
2846           // Visit him using the worklist instead of recursion, to break
2847           // cycles.  Since he has a location already we do not need to
2848           // find his location before proceeding with the current Node.
2849           worklist.push(in);  // Visit this guy later, using worklist
2850         }
2851       }
2852       if (done) {
2853         // All of n's inputs have been processed, complete post-processing.
2854 
2855         // Compute earliest point this Node can go.
2856         // CFG, Phi, pinned nodes already know their controlling input.
2857         if (!has_node(n)) {
2858           // Record earliest legal location
2859           set_early_ctrl( n );
2860         }
2861         if (nstack.is_empty()) {
2862           // Finished all nodes on stack.
2863           // Process next node on the worklist.
2864           break;
2865         }
2866         // Get saved parent node and next input's index.
2867         nstack_top_n = nstack.node();
2868         nstack_top_i = nstack.index();
2869         nstack.pop();
2870       }
2871     } // while (true)
2872   }
2873 }
2874 
2875 //------------------------------dom_lca_internal--------------------------------
2876 // Pair-wise LCA
2877 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
2878   if( !n1 ) return n2;          // Handle NULL original LCA
2879   assert( n1->is_CFG(), "" );
2880   assert( n2->is_CFG(), "" );
2881   // find LCA of all uses
2882   uint d1 = dom_depth(n1);
2883   uint d2 = dom_depth(n2);
2884   while (n1 != n2) {
2885     if (d1 > d2) {
2886       n1 =      idom(n1);
2887       d1 = dom_depth(n1);
2888     } else if (d1 < d2) {
2889       n2 =      idom(n2);
2890       d2 = dom_depth(n2);
2891     } else {
2892       // Here d1 == d2.  Due to edits of the dominator-tree, sections
2893       // of the tree might have the same depth.  These sections have
2894       // to be searched more carefully.
2895 
2896       // Scan up all the n1's with equal depth, looking for n2.
2897       Node *t1 = idom(n1);
2898       while (dom_depth(t1) == d1) {
2899         if (t1 == n2)  return n2;
2900         t1 = idom(t1);
2901       }
2902       // Scan up all the n2's with equal depth, looking for n1.
2903       Node *t2 = idom(n2);
2904       while (dom_depth(t2) == d2) {
2905         if (t2 == n1)  return n1;
2906         t2 = idom(t2);
2907       }
2908       // Move up to a new dominator-depth value as well as up the dom-tree.
2909       n1 = t1;
2910       n2 = t2;
2911       d1 = dom_depth(n1);
2912       d2 = dom_depth(n2);
2913     }
2914   }
2915   return n1;
2916 }
2917 
2918 //------------------------------compute_idom-----------------------------------
2919 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
2920 // IDOMs are correct.
2921 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
2922   assert( region->is_Region(), "" );
2923   Node *LCA = NULL;
2924   for( uint i = 1; i < region->req(); i++ ) {
2925     if( region->in(i) != C->top() )
2926       LCA = dom_lca( LCA, region->in(i) );
2927   }
2928   return LCA;
2929 }
2930 
2931 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
2932   bool had_error = false;
2933 #ifdef ASSERT
2934   if (early != C->root()) {
2935     // Make sure that there's a dominance path from use to LCA
2936     Node* d = use;
2937     while (d != LCA) {
2938       d = idom(d);
2939       if (d == C->root()) {
2940         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
2941         n->dump();
2942         use->dump();
2943         had_error = true;
2944         break;
2945       }
2946     }
2947   }
2948 #endif
2949   return had_error;
2950 }
2951 
2952 
2953 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
2954   // Compute LCA over list of uses
2955   bool had_error = false;
2956   Node *LCA = NULL;
2957   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
2958     Node* c = n->fast_out(i);
2959     if (_nodes[c->_idx] == NULL)
2960       continue;                 // Skip the occasional dead node
2961     if( c->is_Phi() ) {         // For Phis, we must land above on the path
2962       for( uint j=1; j<c->req(); j++ ) {// For all inputs
2963         if( c->in(j) == n ) {   // Found matching input?
2964           Node *use = c->in(0)->in(j);
2965           if (_verify_only && use->is_top()) continue;
2966           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
2967           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
2968         }
2969       }
2970     } else {
2971       // For CFG data-users, use is in the block just prior
2972       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
2973       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
2974       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
2975     }
2976   }
2977   assert(!had_error, "bad dominance");
2978   return LCA;
2979 }
2980 
2981 //------------------------------get_late_ctrl----------------------------------
2982 // Compute latest legal control.
2983 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
2984   assert(early != NULL, "early control should not be NULL");
2985 
2986   Node* LCA = compute_lca_of_uses(n, early);
2987 #ifdef ASSERT
2988   if (LCA == C->root() && LCA != early) {
2989     // def doesn't dominate uses so print some useful debugging output
2990     compute_lca_of_uses(n, early, true);
2991   }
2992 #endif
2993 
2994   // if this is a load, check for anti-dependent stores
2995   // We use a conservative algorithm to identify potential interfering
2996   // instructions and for rescheduling the load.  The users of the memory
2997   // input of this load are examined.  Any use which is not a load and is
2998   // dominated by early is considered a potentially interfering store.
2999   // This can produce false positives.
3000   if (n->is_Load() && LCA != early) {
3001     Node_List worklist;
3002 
3003     Node *mem = n->in(MemNode::Memory);
3004     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3005       Node* s = mem->fast_out(i);
3006       worklist.push(s);
3007     }
3008     while(worklist.size() != 0 && LCA != early) {
3009       Node* s = worklist.pop();
3010       if (s->is_Load()) {
3011         continue;
3012       } else if (s->is_MergeMem()) {
3013         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
3014           Node* s1 = s->fast_out(i);
3015           worklist.push(s1);
3016         }
3017       } else {
3018         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
3019         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
3020         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
3021           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
3022         }
3023       }
3024     }
3025   }
3026 
3027   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
3028   return LCA;
3029 }
3030 
3031 // true if CFG node d dominates CFG node n
3032 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
3033   if (d == n)
3034     return true;
3035   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
3036   uint dd = dom_depth(d);
3037   while (dom_depth(n) >= dd) {
3038     if (n == d)
3039       return true;
3040     n = idom(n);
3041   }
3042   return false;
3043 }
3044 
3045 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
3046 // Pair-wise LCA with tags.
3047 // Tag each index with the node 'tag' currently being processed
3048 // before advancing up the dominator chain using idom().
3049 // Later calls that find a match to 'tag' know that this path has already
3050 // been considered in the current LCA (which is input 'n1' by convention).
3051 // Since get_late_ctrl() is only called once for each node, the tag array
3052 // does not need to be cleared between calls to get_late_ctrl().
3053 // Algorithm trades a larger constant factor for better asymptotic behavior
3054 //
3055 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
3056   uint d1 = dom_depth(n1);
3057   uint d2 = dom_depth(n2);
3058 
3059   do {
3060     if (d1 > d2) {
3061       // current lca is deeper than n2
3062       _dom_lca_tags.map(n1->_idx, tag);
3063       n1 =      idom(n1);
3064       d1 = dom_depth(n1);
3065     } else if (d1 < d2) {
3066       // n2 is deeper than current lca
3067       Node *memo = _dom_lca_tags[n2->_idx];
3068       if( memo == tag ) {
3069         return n1;    // Return the current LCA
3070       }
3071       _dom_lca_tags.map(n2->_idx, tag);
3072       n2 =      idom(n2);
3073       d2 = dom_depth(n2);
3074     } else {
3075       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3076       // of the tree might have the same depth.  These sections have
3077       // to be searched more carefully.
3078 
3079       // Scan up all the n1's with equal depth, looking for n2.
3080       _dom_lca_tags.map(n1->_idx, tag);
3081       Node *t1 = idom(n1);
3082       while (dom_depth(t1) == d1) {
3083         if (t1 == n2)  return n2;
3084         _dom_lca_tags.map(t1->_idx, tag);
3085         t1 = idom(t1);
3086       }
3087       // Scan up all the n2's with equal depth, looking for n1.
3088       _dom_lca_tags.map(n2->_idx, tag);
3089       Node *t2 = idom(n2);
3090       while (dom_depth(t2) == d2) {
3091         if (t2 == n1)  return n1;
3092         _dom_lca_tags.map(t2->_idx, tag);
3093         t2 = idom(t2);
3094       }
3095       // Move up to a new dominator-depth value as well as up the dom-tree.
3096       n1 = t1;
3097       n2 = t2;
3098       d1 = dom_depth(n1);
3099       d2 = dom_depth(n2);
3100     }
3101   } while (n1 != n2);
3102   return n1;
3103 }
3104 
3105 //------------------------------init_dom_lca_tags------------------------------
3106 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3107 // Intended use does not involve any growth for the array, so it could
3108 // be of fixed size.
3109 void PhaseIdealLoop::init_dom_lca_tags() {
3110   uint limit = C->unique() + 1;
3111   _dom_lca_tags.map( limit, NULL );
3112 #ifdef ASSERT
3113   for( uint i = 0; i < limit; ++i ) {
3114     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3115   }
3116 #endif // ASSERT
3117 }
3118 
3119 //------------------------------clear_dom_lca_tags------------------------------
3120 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3121 // Intended use does not involve any growth for the array, so it could
3122 // be of fixed size.
3123 void PhaseIdealLoop::clear_dom_lca_tags() {
3124   uint limit = C->unique() + 1;
3125   _dom_lca_tags.map( limit, NULL );
3126   _dom_lca_tags.clear();
3127 #ifdef ASSERT
3128   for( uint i = 0; i < limit; ++i ) {
3129     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3130   }
3131 #endif // ASSERT
3132 }
3133 
3134 //------------------------------build_loop_late--------------------------------
3135 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3136 // Second pass finds latest legal placement, and ideal loop placement.
3137 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3138   while (worklist.size() != 0) {
3139     Node *n = worklist.pop();
3140     // Only visit once
3141     if (visited.test_set(n->_idx)) continue;
3142     uint cnt = n->outcnt();
3143     uint   i = 0;
3144     while (true) {
3145       assert( _nodes[n->_idx], "no dead nodes" );
3146       // Visit all children
3147       if (i < cnt) {
3148         Node* use = n->raw_out(i);
3149         ++i;
3150         // Check for dead uses.  Aggressively prune such junk.  It might be
3151         // dead in the global sense, but still have local uses so I cannot
3152         // easily call 'remove_dead_node'.
3153         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
3154           // Due to cycles, we might not hit the same fixed point in the verify
3155           // pass as we do in the regular pass.  Instead, visit such phis as
3156           // simple uses of the loop head.
3157           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
3158             if( !visited.test(use->_idx) )
3159               worklist.push(use);
3160           } else if( !visited.test_set(use->_idx) ) {
3161             nstack.push(n, i); // Save parent and next use's index.
3162             n   = use;         // Process all children of current use.
3163             cnt = use->outcnt();
3164             i   = 0;
3165           }
3166         } else {
3167           // Do not visit around the backedge of loops via data edges.
3168           // push dead code onto a worklist
3169           _deadlist.push(use);
3170         }
3171       } else {
3172         // All of n's children have been processed, complete post-processing.
3173         build_loop_late_post(n);
3174         if (nstack.is_empty()) {
3175           // Finished all nodes on stack.
3176           // Process next node on the worklist.
3177           break;
3178         }
3179         // Get saved parent node and next use's index. Visit the rest of uses.
3180         n   = nstack.node();
3181         cnt = n->outcnt();
3182         i   = nstack.index();
3183         nstack.pop();
3184       }
3185     }
3186   }
3187 }
3188 
3189 //------------------------------build_loop_late_post---------------------------
3190 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3191 // Second pass finds latest legal placement, and ideal loop placement.
3192 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
3193 
3194   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
3195     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
3196   }
3197 
3198   // CFG and pinned nodes already handled
3199   if( n->in(0) ) {
3200     if( n->in(0)->is_top() ) return; // Dead?
3201 
3202     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
3203     // _must_ be pinned (they have to observe their control edge of course).
3204     // Unlike Stores (which modify an unallocable resource, the memory
3205     // state), Mods/Loads can float around.  So free them up.
3206     bool pinned = true;
3207     switch( n->Opcode() ) {
3208     case Op_DivI:
3209     case Op_DivF:
3210     case Op_DivD:
3211     case Op_ModI:
3212     case Op_ModF:
3213     case Op_ModD:
3214     case Op_LoadB:              // Same with Loads; they can sink
3215     case Op_LoadUS:             // during loop optimizations.
3216     case Op_LoadD:
3217     case Op_LoadF:
3218     case Op_LoadI:
3219     case Op_LoadKlass:
3220     case Op_LoadNKlass:
3221     case Op_LoadL:
3222     case Op_LoadS:
3223     case Op_LoadP:
3224     case Op_LoadN:
3225     case Op_LoadRange:
3226     case Op_LoadD_unaligned:
3227     case Op_LoadL_unaligned:
3228     case Op_StrComp:            // Does a bunch of load-like effects
3229     case Op_StrEquals:
3230     case Op_StrIndexOf:
3231     case Op_AryEq:
3232       pinned = false;
3233     }
3234     if( pinned ) {
3235       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
3236       if( !chosen_loop->_child )       // Inner loop?
3237         chosen_loop->_body.push(n); // Collect inner loops
3238       return;
3239     }
3240   } else {                      // No slot zero
3241     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
3242       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
3243       return;
3244     }
3245     assert(!n->is_CFG() || n->outcnt() == 0, "");
3246   }
3247 
3248   // Do I have a "safe range" I can select over?
3249   Node *early = get_ctrl(n);// Early location already computed
3250 
3251   // Compute latest point this Node can go
3252   Node *LCA = get_late_ctrl( n, early );
3253   // LCA is NULL due to uses being dead
3254   if( LCA == NULL ) {
3255 #ifdef ASSERT
3256     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
3257       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
3258     }
3259 #endif
3260     _nodes.map(n->_idx, 0);     // This node is useless
3261     _deadlist.push(n);
3262     return;
3263   }
3264   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
3265 
3266   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
3267   Node *least = legal;          // Best legal position so far
3268   while( early != legal ) {     // While not at earliest legal
3269 #ifdef ASSERT
3270     if (legal->is_Start() && !early->is_Root()) {
3271       // Bad graph. Print idom path and fail.
3272       tty->print_cr( "Bad graph detected in build_loop_late");
3273       tty->print("n: ");n->dump(); tty->cr();
3274       tty->print("early: ");early->dump(); tty->cr();
3275       int ct = 0;
3276       Node *dbg_legal = LCA;
3277       while(!dbg_legal->is_Start() && ct < 100) {
3278         tty->print("idom[%d] ",ct); dbg_legal->dump(); tty->cr();
3279         ct++;
3280         dbg_legal = idom(dbg_legal);
3281       }
3282       assert(false, "Bad graph detected in build_loop_late");
3283     }
3284 #endif
3285     // Find least loop nesting depth
3286     legal = idom(legal);        // Bump up the IDOM tree
3287     // Check for lower nesting depth
3288     if( get_loop(legal)->_nest < get_loop(least)->_nest )
3289       least = legal;
3290   }
3291   assert(early == legal || legal != C->root(), "bad dominance of inputs");
3292 
3293   // Try not to place code on a loop entry projection
3294   // which can inhibit range check elimination.
3295   if (least != early) {
3296     Node* ctrl_out = least->unique_ctrl_out();
3297     if (ctrl_out && ctrl_out->is_CountedLoop() &&
3298         least == ctrl_out->in(LoopNode::EntryControl)) {
3299       Node* least_dom = idom(least);
3300       if (get_loop(least_dom)->is_member(get_loop(least))) {
3301         least = least_dom;
3302       }
3303     }
3304   }
3305 
3306 #ifdef ASSERT
3307   // If verifying, verify that 'verify_me' has a legal location
3308   // and choose it as our location.
3309   if( _verify_me ) {
3310     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
3311     Node *legal = LCA;
3312     while( early != legal ) {   // While not at earliest legal
3313       if( legal == v_ctrl ) break;  // Check for prior good location
3314       legal = idom(legal)      ;// Bump up the IDOM tree
3315     }
3316     // Check for prior good location
3317     if( legal == v_ctrl ) least = legal; // Keep prior if found
3318   }
3319 #endif
3320 
3321   // Assign discovered "here or above" point
3322   least = find_non_split_ctrl(least);
3323   set_ctrl(n, least);
3324 
3325   // Collect inner loop bodies
3326   IdealLoopTree *chosen_loop = get_loop(least);
3327   if( !chosen_loop->_child )   // Inner loop?
3328     chosen_loop->_body.push(n);// Collect inner loops
3329 }
3330 
3331 #ifndef PRODUCT
3332 //------------------------------dump-------------------------------------------
3333 void PhaseIdealLoop::dump( ) const {
3334   ResourceMark rm;
3335   Arena* arena = Thread::current()->resource_area();
3336   Node_Stack stack(arena, C->unique() >> 2);
3337   Node_List rpo_list;
3338   VectorSet visited(arena);
3339   visited.set(C->top()->_idx);
3340   rpo( C->root(), stack, visited, rpo_list );
3341   // Dump root loop indexed by last element in PO order
3342   dump( _ltree_root, rpo_list.size(), rpo_list );
3343 }
3344 
3345 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
3346   loop->dump_head();
3347 
3348   // Now scan for CFG nodes in the same loop
3349   for( uint j=idx; j > 0;  j-- ) {
3350     Node *n = rpo_list[j-1];
3351     if( !_nodes[n->_idx] )      // Skip dead nodes
3352       continue;
3353     if( get_loop(n) != loop ) { // Wrong loop nest
3354       if( get_loop(n)->_head == n &&    // Found nested loop?
3355           get_loop(n)->_parent == loop )
3356         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
3357       continue;
3358     }
3359 
3360     // Dump controlling node
3361     for( uint x = 0; x < loop->_nest; x++ )
3362       tty->print("  ");
3363     tty->print("C");
3364     if( n == C->root() ) {
3365       n->dump();
3366     } else {
3367       Node* cached_idom   = idom_no_update(n);
3368       Node *computed_idom = n->in(0);
3369       if( n->is_Region() ) {
3370         computed_idom = compute_idom(n);
3371         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
3372         // any MultiBranch ctrl node), so apply a similar transform to
3373         // the cached idom returned from idom_no_update.
3374         cached_idom = find_non_split_ctrl(cached_idom);
3375       }
3376       tty->print(" ID:%d",computed_idom->_idx);
3377       n->dump();
3378       if( cached_idom != computed_idom ) {
3379         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
3380                       computed_idom->_idx, cached_idom->_idx);
3381       }
3382     }
3383     // Dump nodes it controls
3384     for( uint k = 0; k < _nodes.Size(); k++ ) {
3385       // (k < C->unique() && get_ctrl(find(k)) == n)
3386       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
3387         Node *m = C->root()->find(k);
3388         if( m && m->outcnt() > 0 ) {
3389           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
3390             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
3391                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
3392           }
3393           for( uint j = 0; j < loop->_nest; j++ )
3394             tty->print("  ");
3395           tty->print(" ");
3396           m->dump();
3397         }
3398       }
3399     }
3400   }
3401 }
3402 
3403 // Collect a R-P-O for the whole CFG.
3404 // Result list is in post-order (scan backwards for RPO)
3405 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
3406   stk.push(start, 0);
3407   visited.set(start->_idx);
3408 
3409   while (stk.is_nonempty()) {
3410     Node* m   = stk.node();
3411     uint  idx = stk.index();
3412     if (idx < m->outcnt()) {
3413       stk.set_index(idx + 1);
3414       Node* n = m->raw_out(idx);
3415       if (n->is_CFG() && !visited.test_set(n->_idx)) {
3416         stk.push(n, 0);
3417       }
3418     } else {
3419       rpo_list.push(m);
3420       stk.pop();
3421     }
3422   }
3423 }
3424 #endif
3425 
3426 
3427 //=============================================================================
3428 //------------------------------LoopTreeIterator-----------------------------------
3429 
3430 // Advance to next loop tree using a preorder, left-to-right traversal.
3431 void LoopTreeIterator::next() {
3432   assert(!done(), "must not be done.");
3433   if (_curnt->_child != NULL) {
3434     _curnt = _curnt->_child;
3435   } else if (_curnt->_next != NULL) {
3436     _curnt = _curnt->_next;
3437   } else {
3438     while (_curnt != _root && _curnt->_next == NULL) {
3439       _curnt = _curnt->_parent;
3440     }
3441     if (_curnt == _root) {
3442       _curnt = NULL;
3443       assert(done(), "must be done.");
3444     } else {
3445       assert(_curnt->_next != NULL, "must be more to do");
3446       _curnt = _curnt->_next;
3447     }
3448   }
3449 }