1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/cfgnode.hpp"
  30 #include "opto/connode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/regalloc.hpp"
  37 #include "opto/rootnode.hpp"
  38 
  39 //=============================================================================
  40 #define NODE_HASH_MINIMUM_SIZE    255
  41 //------------------------------NodeHash---------------------------------------
  42 NodeHash::NodeHash(uint est_max_size) :
  43   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  44   _a(Thread::current()->resource_area()),
  45   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
  46   _inserts(0), _insert_limit( insert_limit() ),
  47   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
  48   _total_insert_probes(0), _total_inserts(0),
  49   _insert_probes(0), _grows(0) {
  50   // _sentinel must be in the current node space
  51   _sentinel = new (Compile::current(), 1) ProjNode(NULL, TypeFunc::Control);
  52   memset(_table,0,sizeof(Node*)*_max);
  53 }
  54 
  55 //------------------------------NodeHash---------------------------------------
  56 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
  57   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  58   _a(arena),
  59   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
  60   _inserts(0), _insert_limit( insert_limit() ),
  61   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
  62   _delete_probes(0), _delete_hits(0), _delete_misses(0),
  63   _total_insert_probes(0), _total_inserts(0),
  64   _insert_probes(0), _grows(0) {
  65   // _sentinel must be in the current node space
  66   _sentinel = new (Compile::current(), 1) ProjNode(NULL, TypeFunc::Control);
  67   memset(_table,0,sizeof(Node*)*_max);
  68 }
  69 
  70 //------------------------------NodeHash---------------------------------------
  71 NodeHash::NodeHash(NodeHash *nh) {
  72   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  73   // just copy in all the fields
  74   *this = *nh;
  75   // nh->_sentinel must be in the current node space
  76 }
  77 
  78 //------------------------------hash_find--------------------------------------
  79 // Find in hash table
  80 Node *NodeHash::hash_find( const Node *n ) {
  81   // ((Node*)n)->set_hash( n->hash() );
  82   uint hash = n->hash();
  83   if (hash == Node::NO_HASH) {
  84     debug_only( _lookup_misses++ );
  85     return NULL;
  86   }
  87   uint key = hash & (_max-1);
  88   uint stride = key | 0x01;
  89   debug_only( _look_probes++ );
  90   Node *k = _table[key];        // Get hashed value
  91   if( !k ) {                    // ?Miss?
  92     debug_only( _lookup_misses++ );
  93     return NULL;                // Miss!
  94   }
  95 
  96   int op = n->Opcode();
  97   uint req = n->req();
  98   while( 1 ) {                  // While probing hash table
  99     if( k->req() == req &&      // Same count of inputs
 100         k->Opcode() == op ) {   // Same Opcode
 101       for( uint i=0; i<req; i++ )
 102         if( n->in(i)!=k->in(i)) // Different inputs?
 103           goto collision;       // "goto" is a speed hack...
 104       if( n->cmp(*k) ) {        // Check for any special bits
 105         debug_only( _lookup_hits++ );
 106         return k;               // Hit!
 107       }
 108     }
 109   collision:
 110     debug_only( _look_probes++ );
 111     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
 112     k = _table[key];            // Get hashed value
 113     if( !k ) {                  // ?Miss?
 114       debug_only( _lookup_misses++ );
 115       return NULL;              // Miss!
 116     }
 117   }
 118   ShouldNotReachHere();
 119   return NULL;
 120 }
 121 
 122 //------------------------------hash_find_insert-------------------------------
 123 // Find in hash table, insert if not already present
 124 // Used to preserve unique entries in hash table
 125 Node *NodeHash::hash_find_insert( Node *n ) {
 126   // n->set_hash( );
 127   uint hash = n->hash();
 128   if (hash == Node::NO_HASH) {
 129     debug_only( _lookup_misses++ );
 130     return NULL;
 131   }
 132   uint key = hash & (_max-1);
 133   uint stride = key | 0x01;     // stride must be relatively prime to table siz
 134   uint first_sentinel = 0;      // replace a sentinel if seen.
 135   debug_only( _look_probes++ );
 136   Node *k = _table[key];        // Get hashed value
 137   if( !k ) {                    // ?Miss?
 138     debug_only( _lookup_misses++ );
 139     _table[key] = n;            // Insert into table!
 140     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 141     check_grow();               // Grow table if insert hit limit
 142     return NULL;                // Miss!
 143   }
 144   else if( k == _sentinel ) {
 145     first_sentinel = key;      // Can insert here
 146   }
 147 
 148   int op = n->Opcode();
 149   uint req = n->req();
 150   while( 1 ) {                  // While probing hash table
 151     if( k->req() == req &&      // Same count of inputs
 152         k->Opcode() == op ) {   // Same Opcode
 153       for( uint i=0; i<req; i++ )
 154         if( n->in(i)!=k->in(i)) // Different inputs?
 155           goto collision;       // "goto" is a speed hack...
 156       if( n->cmp(*k) ) {        // Check for any special bits
 157         debug_only( _lookup_hits++ );
 158         return k;               // Hit!
 159       }
 160     }
 161   collision:
 162     debug_only( _look_probes++ );
 163     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 164     k = _table[key];            // Get hashed value
 165     if( !k ) {                  // ?Miss?
 166       debug_only( _lookup_misses++ );
 167       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
 168       _table[key] = n;          // Insert into table!
 169       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 170       check_grow();             // Grow table if insert hit limit
 171       return NULL;              // Miss!
 172     }
 173     else if( first_sentinel == 0 && k == _sentinel ) {
 174       first_sentinel = key;    // Can insert here
 175     }
 176 
 177   }
 178   ShouldNotReachHere();
 179   return NULL;
 180 }
 181 
 182 //------------------------------hash_insert------------------------------------
 183 // Insert into hash table
 184 void NodeHash::hash_insert( Node *n ) {
 185   // // "conflict" comments -- print nodes that conflict
 186   // bool conflict = false;
 187   // n->set_hash();
 188   uint hash = n->hash();
 189   if (hash == Node::NO_HASH) {
 190     return;
 191   }
 192   check_grow();
 193   uint key = hash & (_max-1);
 194   uint stride = key | 0x01;
 195 
 196   while( 1 ) {                  // While probing hash table
 197     debug_only( _insert_probes++ );
 198     Node *k = _table[key];      // Get hashed value
 199     if( !k || (k == _sentinel) ) break;       // Found a slot
 200     assert( k != n, "already inserted" );
 201     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
 202     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 203   }
 204   _table[key] = n;              // Insert into table!
 205   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 206   // if( conflict ) { n->dump(); }
 207 }
 208 
 209 //------------------------------hash_delete------------------------------------
 210 // Replace in hash table with sentinel
 211 bool NodeHash::hash_delete( const Node *n ) {
 212   Node *k;
 213   uint hash = n->hash();
 214   if (hash == Node::NO_HASH) {
 215     debug_only( _delete_misses++ );
 216     return false;
 217   }
 218   uint key = hash & (_max-1);
 219   uint stride = key | 0x01;
 220   debug_only( uint counter = 0; );
 221   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
 222     debug_only( counter++ );
 223     debug_only( _delete_probes++ );
 224     k = _table[key];            // Get hashed value
 225     if( !k ) {                  // Miss?
 226       debug_only( _delete_misses++ );
 227 #ifdef ASSERT
 228       if( VerifyOpto ) {
 229         for( uint i=0; i < _max; i++ )
 230           assert( _table[i] != n, "changed edges with rehashing" );
 231       }
 232 #endif
 233       return false;             // Miss! Not in chain
 234     }
 235     else if( n == k ) {
 236       debug_only( _delete_hits++ );
 237       _table[key] = _sentinel;  // Hit! Label as deleted entry
 238       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
 239       return true;
 240     }
 241     else {
 242       // collision: move through table with prime offset
 243       key = (key + stride/*7*/) & (_max-1);
 244       assert( counter <= _insert_limit, "Cycle in hash-table");
 245     }
 246   }
 247   ShouldNotReachHere();
 248   return false;
 249 }
 250 
 251 //------------------------------round_up---------------------------------------
 252 // Round up to nearest power of 2
 253 uint NodeHash::round_up( uint x ) {
 254   x += (x>>2);                  // Add 25% slop
 255   if( x <16 ) return 16;        // Small stuff
 256   uint i=16;
 257   while( i < x ) i <<= 1;       // Double to fit
 258   return i;                     // Return hash table size
 259 }
 260 
 261 //------------------------------grow-------------------------------------------
 262 // Grow _table to next power of 2 and insert old entries
 263 void  NodeHash::grow() {
 264   // Record old state
 265   uint   old_max   = _max;
 266   Node **old_table = _table;
 267   // Construct new table with twice the space
 268   _grows++;
 269   _total_inserts       += _inserts;
 270   _total_insert_probes += _insert_probes;
 271   _inserts         = 0;
 272   _insert_probes   = 0;
 273   _max     = _max << 1;
 274   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
 275   memset(_table,0,sizeof(Node*)*_max);
 276   _insert_limit = insert_limit();
 277   // Insert old entries into the new table
 278   for( uint i = 0; i < old_max; i++ ) {
 279     Node *m = *old_table++;
 280     if( !m || m == _sentinel ) continue;
 281     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
 282     hash_insert(m);
 283   }
 284 }
 285 
 286 //------------------------------clear------------------------------------------
 287 // Clear all entries in _table to NULL but keep storage
 288 void  NodeHash::clear() {
 289 #ifdef ASSERT
 290   // Unlock all nodes upon removal from table.
 291   for (uint i = 0; i < _max; i++) {
 292     Node* n = _table[i];
 293     if (!n || n == _sentinel)  continue;
 294     n->exit_hash_lock();
 295   }
 296 #endif
 297 
 298   memset( _table, 0, _max * sizeof(Node*) );
 299 }
 300 
 301 //-----------------------remove_useless_nodes----------------------------------
 302 // Remove useless nodes from value table,
 303 // implementation does not depend on hash function
 304 void NodeHash::remove_useless_nodes(VectorSet &useful) {
 305 
 306   // Dead nodes in the hash table inherited from GVN should not replace
 307   // existing nodes, remove dead nodes.
 308   uint max = size();
 309   Node *sentinel_node = sentinel();
 310   for( uint i = 0; i < max; ++i ) {
 311     Node *n = at(i);
 312     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
 313       debug_only(n->exit_hash_lock()); // Unlock the node when removed
 314       _table[i] = sentinel_node;       // Replace with placeholder
 315     }
 316   }
 317 }
 318 
 319 #ifndef PRODUCT
 320 //------------------------------dump-------------------------------------------
 321 // Dump statistics for the hash table
 322 void NodeHash::dump() {
 323   _total_inserts       += _inserts;
 324   _total_insert_probes += _insert_probes;
 325   if( PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0) ) { // PrintOptoGVN
 326     if( PrintCompilation2 ) {
 327       for( uint i=0; i<_max; i++ )
 328       if( _table[i] )
 329         tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
 330     }
 331     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
 332     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
 333     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
 334     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
 335     // sentinels increase lookup cost, but not insert cost
 336     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
 337     assert( _inserts+(_inserts>>3) < _max, "table too full" );
 338     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
 339   }
 340 }
 341 
 342 Node *NodeHash::find_index(uint idx) { // For debugging
 343   // Find an entry by its index value
 344   for( uint i = 0; i < _max; i++ ) {
 345     Node *m = _table[i];
 346     if( !m || m == _sentinel ) continue;
 347     if( m->_idx == (uint)idx ) return m;
 348   }
 349   return NULL;
 350 }
 351 #endif
 352 
 353 #ifdef ASSERT
 354 NodeHash::~NodeHash() {
 355   // Unlock all nodes upon destruction of table.
 356   if (_table != (Node**)badAddress)  clear();
 357 }
 358 
 359 void NodeHash::operator=(const NodeHash& nh) {
 360   // Unlock all nodes upon replacement of table.
 361   if (&nh == this)  return;
 362   if (_table != (Node**)badAddress)  clear();
 363   memcpy(this, &nh, sizeof(*this));
 364   // Do not increment hash_lock counts again.
 365   // Instead, be sure we never again use the source table.
 366   ((NodeHash*)&nh)->_table = (Node**)badAddress;
 367 }
 368 
 369 
 370 #endif
 371 
 372 
 373 //=============================================================================
 374 //------------------------------PhaseRemoveUseless-----------------------------
 375 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
 376 PhaseRemoveUseless::PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist ) : Phase(Remove_Useless),
 377   _useful(Thread::current()->resource_area()) {
 378 
 379   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
 380   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
 381   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
 382 
 383   // Identify nodes that are reachable from below, useful.
 384   C->identify_useful_nodes(_useful);
 385 
 386   // Remove all useless nodes from PhaseValues' recorded types
 387   // Must be done before disconnecting nodes to preserve hash-table-invariant
 388   gvn->remove_useless_nodes(_useful.member_set());
 389 
 390   // Remove all useless nodes from future worklist
 391   worklist->remove_useless_nodes(_useful.member_set());
 392 
 393   // Disconnect 'useless' nodes that are adjacent to useful nodes
 394   C->remove_useless_nodes(_useful);
 395 
 396   // Remove edges from "root" to each SafePoint at a backward branch.
 397   // They were inserted during parsing (see add_safepoint()) to make infinite
 398   // loops without calls or exceptions visible to root, i.e., useful.
 399   Node *root = C->root();
 400   if( root != NULL ) {
 401     for( uint i = root->req(); i < root->len(); ++i ) {
 402       Node *n = root->in(i);
 403       if( n != NULL && n->is_SafePoint() ) {
 404         root->rm_prec(i);
 405         --i;
 406       }
 407     }
 408   }
 409 }
 410 
 411 
 412 //=============================================================================
 413 //------------------------------PhaseTransform---------------------------------
 414 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
 415   _arena(Thread::current()->resource_area()),
 416   _nodes(_arena),
 417   _types(_arena)
 418 {
 419   init_con_caches();
 420 #ifndef PRODUCT
 421   clear_progress();
 422   clear_transforms();
 423   set_allow_progress(true);
 424 #endif
 425   // Force allocation for currently existing nodes
 426   _types.map(C->unique(), NULL);
 427 }
 428 
 429 //------------------------------PhaseTransform---------------------------------
 430 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
 431   _arena(arena),
 432   _nodes(arena),
 433   _types(arena)
 434 {
 435   init_con_caches();
 436 #ifndef PRODUCT
 437   clear_progress();
 438   clear_transforms();
 439   set_allow_progress(true);
 440 #endif
 441   // Force allocation for currently existing nodes
 442   _types.map(C->unique(), NULL);
 443 }
 444 
 445 //------------------------------PhaseTransform---------------------------------
 446 // Initialize with previously generated type information
 447 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
 448   _arena(pt->_arena),
 449   _nodes(pt->_nodes),
 450   _types(pt->_types)
 451 {
 452   init_con_caches();
 453 #ifndef PRODUCT
 454   clear_progress();
 455   clear_transforms();
 456   set_allow_progress(true);
 457 #endif
 458 }
 459 
 460 void PhaseTransform::init_con_caches() {
 461   memset(_icons,0,sizeof(_icons));
 462   memset(_lcons,0,sizeof(_lcons));
 463   memset(_zcons,0,sizeof(_zcons));
 464 }
 465 
 466 
 467 //--------------------------------find_int_type--------------------------------
 468 const TypeInt* PhaseTransform::find_int_type(Node* n) {
 469   if (n == NULL)  return NULL;
 470   // Call type_or_null(n) to determine node's type since we might be in
 471   // parse phase and call n->Value() may return wrong type.
 472   // (For example, a phi node at the beginning of loop parsing is not ready.)
 473   const Type* t = type_or_null(n);
 474   if (t == NULL)  return NULL;
 475   return t->isa_int();
 476 }
 477 
 478 
 479 //-------------------------------find_long_type--------------------------------
 480 const TypeLong* PhaseTransform::find_long_type(Node* n) {
 481   if (n == NULL)  return NULL;
 482   // (See comment above on type_or_null.)
 483   const Type* t = type_or_null(n);
 484   if (t == NULL)  return NULL;
 485   return t->isa_long();
 486 }
 487 
 488 
 489 #ifndef PRODUCT
 490 void PhaseTransform::dump_old2new_map() const {
 491   _nodes.dump();
 492 }
 493 
 494 void PhaseTransform::dump_new( uint nidx ) const {
 495   for( uint i=0; i<_nodes.Size(); i++ )
 496     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
 497       _nodes[i]->dump();
 498       tty->cr();
 499       tty->print_cr("Old index= %d",i);
 500       return;
 501     }
 502   tty->print_cr("Node %d not found in the new indices", nidx);
 503 }
 504 
 505 //------------------------------dump_types-------------------------------------
 506 void PhaseTransform::dump_types( ) const {
 507   _types.dump();
 508 }
 509 
 510 //------------------------------dump_nodes_and_types---------------------------
 511 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
 512   VectorSet visited(Thread::current()->resource_area());
 513   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
 514 }
 515 
 516 //------------------------------dump_nodes_and_types_recur---------------------
 517 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
 518   if( !n ) return;
 519   if( depth == 0 ) return;
 520   if( visited.test_set(n->_idx) ) return;
 521   for( uint i=0; i<n->len(); i++ ) {
 522     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
 523     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
 524   }
 525   n->dump();
 526   if (type_or_null(n) != NULL) {
 527     tty->print("      "); type(n)->dump(); tty->cr();
 528   }
 529 }
 530 
 531 #endif
 532 
 533 
 534 //=============================================================================
 535 //------------------------------PhaseValues------------------------------------
 536 // Set minimum table size to "255"
 537 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
 538   NOT_PRODUCT( clear_new_values(); )
 539 }
 540 
 541 //------------------------------PhaseValues------------------------------------
 542 // Set minimum table size to "255"
 543 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
 544   _table(&ptv->_table) {
 545   NOT_PRODUCT( clear_new_values(); )
 546 }
 547 
 548 //------------------------------PhaseValues------------------------------------
 549 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
 550 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
 551   _table(ptv->arena(),ptv->_table.size()) {
 552   NOT_PRODUCT( clear_new_values(); )
 553 }
 554 
 555 //------------------------------~PhaseValues-----------------------------------
 556 #ifndef PRODUCT
 557 PhaseValues::~PhaseValues() {
 558   _table.dump();
 559 
 560   // Statistics for value progress and efficiency
 561   if( PrintCompilation && Verbose && WizardMode ) {
 562     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
 563       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
 564     if( made_transforms() != 0 ) {
 565       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
 566     } else {
 567       tty->cr();
 568     }
 569   }
 570 }
 571 #endif
 572 
 573 //------------------------------makecon----------------------------------------
 574 ConNode* PhaseTransform::makecon(const Type *t) {
 575   assert(t->singleton(), "must be a constant");
 576   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
 577   switch (t->base()) {  // fast paths
 578   case Type::Half:
 579   case Type::Top:  return (ConNode*) C->top();
 580   case Type::Int:  return intcon( t->is_int()->get_con() );
 581   case Type::Long: return longcon( t->is_long()->get_con() );
 582   }
 583   if (t->is_zero_type())
 584     return zerocon(t->basic_type());
 585   return uncached_makecon(t);
 586 }
 587 
 588 //--------------------------uncached_makecon-----------------------------------
 589 // Make an idealized constant - one of ConINode, ConPNode, etc.
 590 ConNode* PhaseValues::uncached_makecon(const Type *t) {
 591   assert(t->singleton(), "must be a constant");
 592   ConNode* x = ConNode::make(C, t);
 593   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
 594   if (k == NULL) {
 595     set_type(x, t);             // Missed, provide type mapping
 596     GrowableArray<Node_Notes*>* nna = C->node_note_array();
 597     if (nna != NULL) {
 598       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
 599       loc->clear(); // do not put debug info on constants
 600     }
 601   } else {
 602     x->destruct();              // Hit, destroy duplicate constant
 603     x = k;                      // use existing constant
 604   }
 605   return x;
 606 }
 607 
 608 //------------------------------intcon-----------------------------------------
 609 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
 610 ConINode* PhaseTransform::intcon(int i) {
 611   // Small integer?  Check cache! Check that cached node is not dead
 612   if (i >= _icon_min && i <= _icon_max) {
 613     ConINode* icon = _icons[i-_icon_min];
 614     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
 615       return icon;
 616   }
 617   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
 618   assert(icon->is_Con(), "");
 619   if (i >= _icon_min && i <= _icon_max)
 620     _icons[i-_icon_min] = icon;   // Cache small integers
 621   return icon;
 622 }
 623 
 624 //------------------------------longcon----------------------------------------
 625 // Fast long constant.
 626 ConLNode* PhaseTransform::longcon(jlong l) {
 627   // Small integer?  Check cache! Check that cached node is not dead
 628   if (l >= _lcon_min && l <= _lcon_max) {
 629     ConLNode* lcon = _lcons[l-_lcon_min];
 630     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
 631       return lcon;
 632   }
 633   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
 634   assert(lcon->is_Con(), "");
 635   if (l >= _lcon_min && l <= _lcon_max)
 636     _lcons[l-_lcon_min] = lcon;      // Cache small integers
 637   return lcon;
 638 }
 639 
 640 //------------------------------zerocon-----------------------------------------
 641 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
 642 ConNode* PhaseTransform::zerocon(BasicType bt) {
 643   assert((uint)bt <= _zcon_max, "domain check");
 644   ConNode* zcon = _zcons[bt];
 645   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
 646     return zcon;
 647   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
 648   _zcons[bt] = zcon;
 649   return zcon;
 650 }
 651 
 652 
 653 
 654 //=============================================================================
 655 //------------------------------transform--------------------------------------
 656 // Return a node which computes the same function as this node, but in a
 657 // faster or cheaper fashion.
 658 Node *PhaseGVN::transform( Node *n ) {
 659   return transform_no_reclaim(n);
 660 }
 661 
 662 //------------------------------transform--------------------------------------
 663 // Return a node which computes the same function as this node, but
 664 // in a faster or cheaper fashion.
 665 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
 666   NOT_PRODUCT( set_transforms(); )
 667 
 668   // Apply the Ideal call in a loop until it no longer applies
 669   Node *k = n;
 670   NOT_PRODUCT( uint loop_count = 0; )
 671   while( 1 ) {
 672     Node *i = k->Ideal(this, /*can_reshape=*/false);
 673     if( !i ) break;
 674     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
 675     k = i;
 676     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
 677   }
 678   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
 679 
 680 
 681   // If brand new node, make space in type array.
 682   ensure_type_or_null(k);
 683 
 684   // Since I just called 'Value' to compute the set of run-time values
 685   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
 686   // cache Value.  Later requests for the local phase->type of this Node can
 687   // use the cached Value instead of suffering with 'bottom_type'.
 688   const Type *t = k->Value(this); // Get runtime Value set
 689   assert(t != NULL, "value sanity");
 690   if (type_or_null(k) != t) {
 691 #ifndef PRODUCT
 692     // Do not count initial visit to node as a transformation
 693     if (type_or_null(k) == NULL) {
 694       inc_new_values();
 695       set_progress();
 696     }
 697 #endif
 698     set_type(k, t);
 699     // If k is a TypeNode, capture any more-precise type permanently into Node
 700     k->raise_bottom_type(t);
 701   }
 702 
 703   if( t->singleton() && !k->is_Con() ) {
 704     NOT_PRODUCT( set_progress(); )
 705     return makecon(t);          // Turn into a constant
 706   }
 707 
 708   // Now check for Identities
 709   Node *i = k->Identity(this);  // Look for a nearby replacement
 710   if( i != k ) {                // Found? Return replacement!
 711     NOT_PRODUCT( set_progress(); )
 712     return i;
 713   }
 714 
 715   // Global Value Numbering
 716   i = hash_find_insert(k);      // Insert if new
 717   if( i && (i != k) ) {
 718     // Return the pre-existing node
 719     NOT_PRODUCT( set_progress(); )
 720     return i;
 721   }
 722 
 723   // Return Idealized original
 724   return k;
 725 }
 726 
 727 #ifdef ASSERT
 728 //------------------------------dead_loop_check--------------------------------
 729 // Check for a simple dead loop when a data node references itself directly
 730 // or through an other data node excluding cons and phis.
 731 void PhaseGVN::dead_loop_check( Node *n ) {
 732   // Phi may reference itself in a loop
 733   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
 734     // Do 2 levels check and only data inputs.
 735     bool no_dead_loop = true;
 736     uint cnt = n->req();
 737     for (uint i = 1; i < cnt && no_dead_loop; i++) {
 738       Node *in = n->in(i);
 739       if (in == n) {
 740         no_dead_loop = false;
 741       } else if (in != NULL && !in->is_dead_loop_safe()) {
 742         uint icnt = in->req();
 743         for (uint j = 1; j < icnt && no_dead_loop; j++) {
 744           if (in->in(j) == n || in->in(j) == in)
 745             no_dead_loop = false;
 746         }
 747       }
 748     }
 749     if (!no_dead_loop) n->dump(3);
 750     assert(no_dead_loop, "dead loop detected");
 751   }
 752 }
 753 #endif
 754 
 755 //=============================================================================
 756 //------------------------------PhaseIterGVN-----------------------------------
 757 // Initialize hash table to fresh and clean for +VerifyOpto
 758 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
 759                                                                       _delay_transform(false) {
 760 }
 761 
 762 //------------------------------PhaseIterGVN-----------------------------------
 763 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
 764 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
 765                                                    _worklist( igvn->_worklist ),
 766                                                    _delay_transform(igvn->_delay_transform)
 767 {
 768 }
 769 
 770 //------------------------------PhaseIterGVN-----------------------------------
 771 // Initialize with previous PhaseGVN info from Parser
 772 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
 773                                               _worklist(*C->for_igvn()),
 774                                               _delay_transform(false)
 775 {
 776   uint max;
 777 
 778   // Dead nodes in the hash table inherited from GVN were not treated as
 779   // roots during def-use info creation; hence they represent an invisible
 780   // use.  Clear them out.
 781   max = _table.size();
 782   for( uint i = 0; i < max; ++i ) {
 783     Node *n = _table.at(i);
 784     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
 785       if( n->is_top() ) continue;
 786       assert( false, "Parse::remove_useless_nodes missed this node");
 787       hash_delete(n);
 788     }
 789   }
 790 
 791   // Any Phis or Regions on the worklist probably had uses that could not
 792   // make more progress because the uses were made while the Phis and Regions
 793   // were in half-built states.  Put all uses of Phis and Regions on worklist.
 794   max = _worklist.size();
 795   for( uint j = 0; j < max; j++ ) {
 796     Node *n = _worklist.at(j);
 797     uint uop = n->Opcode();
 798     if( uop == Op_Phi || uop == Op_Region ||
 799         n->is_Type() ||
 800         n->is_Mem() )
 801       add_users_to_worklist(n);
 802   }
 803 }
 804 
 805 
 806 #ifndef PRODUCT
 807 void PhaseIterGVN::verify_step(Node* n) {
 808   _verify_window[_verify_counter % _verify_window_size] = n;
 809   ++_verify_counter;
 810   ResourceMark rm;
 811   ResourceArea *area = Thread::current()->resource_area();
 812   VectorSet old_space(area), new_space(area);
 813   if (C->unique() < 1000 ||
 814       0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
 815     ++_verify_full_passes;
 816     Node::verify_recur(C->root(), -1, old_space, new_space);
 817   }
 818   const int verify_depth = 4;
 819   for ( int i = 0; i < _verify_window_size; i++ ) {
 820     Node* n = _verify_window[i];
 821     if ( n == NULL )  continue;
 822     if( n->in(0) == NodeSentinel ) {  // xform_idom
 823       _verify_window[i] = n->in(1);
 824       --i; continue;
 825     }
 826     // Typical fanout is 1-2, so this call visits about 6 nodes.
 827     Node::verify_recur(n, verify_depth, old_space, new_space);
 828   }
 829 }
 830 #endif
 831 
 832 
 833 //------------------------------init_worklist----------------------------------
 834 // Initialize worklist for each node.
 835 void PhaseIterGVN::init_worklist( Node *n ) {
 836   if( _worklist.member(n) ) return;
 837   _worklist.push(n);
 838   uint cnt = n->req();
 839   for( uint i =0 ; i < cnt; i++ ) {
 840     Node *m = n->in(i);
 841     if( m ) init_worklist(m);
 842   }
 843 }
 844 
 845 //------------------------------optimize---------------------------------------
 846 void PhaseIterGVN::optimize() {
 847   debug_only(uint num_processed  = 0;);
 848 #ifndef PRODUCT
 849   {
 850     _verify_counter = 0;
 851     _verify_full_passes = 0;
 852     for ( int i = 0; i < _verify_window_size; i++ ) {
 853       _verify_window[i] = NULL;
 854     }
 855   }
 856 #endif
 857 
 858 #ifdef ASSERT
 859   Node* prev = NULL;
 860   uint rep_cnt = 0;
 861 #endif
 862   uint loop_count = 0;
 863 
 864   // Pull from worklist; transform node;
 865   // If node has changed: update edge info and put uses on worklist.
 866   while( _worklist.size() ) {
 867     if (C->check_node_count(NodeLimitFudgeFactor * 2,
 868                             "out of nodes optimizing method")) {
 869       return;
 870     }
 871     Node *n  = _worklist.pop();
 872     if (++loop_count >= K * C->unique()) {
 873       debug_only(n->dump(4);)
 874       assert(false, "infinite loop in PhaseIterGVN::optimize");
 875       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
 876       return;
 877     }
 878 #ifdef ASSERT
 879     if (n == prev) {
 880       if (++rep_cnt > 3) {
 881         n->dump(4);
 882         assert(false, "loop in Ideal transformation");
 883       }
 884     } else {
 885       rep_cnt = 0;
 886     }
 887     prev = n;
 888 #endif
 889     if (TraceIterativeGVN && Verbose) {
 890       tty->print("  Pop ");
 891       NOT_PRODUCT( n->dump(); )
 892       debug_only(if( (num_processed++ % 100) == 0 ) _worklist.print_set();)
 893     }
 894 
 895     if (n->outcnt() != 0) {
 896 
 897 #ifndef PRODUCT
 898       uint wlsize = _worklist.size();
 899       const Type* oldtype = type_or_null(n);
 900 #endif //PRODUCT
 901 
 902       Node *nn = transform_old(n);
 903 
 904 #ifndef PRODUCT
 905       if (TraceIterativeGVN) {
 906         const Type* newtype = type_or_null(n);
 907         if (nn != n) {
 908           // print old node
 909           tty->print("< ");
 910           if (oldtype != newtype && oldtype != NULL) {
 911             oldtype->dump();
 912           }
 913           do { tty->print("\t"); } while (tty->position() < 16);
 914           tty->print("<");
 915           n->dump();
 916         }
 917         if (oldtype != newtype || nn != n) {
 918           // print new node and/or new type
 919           if (oldtype == NULL) {
 920             tty->print("* ");
 921           } else if (nn != n) {
 922             tty->print("> ");
 923           } else {
 924             tty->print("= ");
 925           }
 926           if (newtype == NULL) {
 927             tty->print("null");
 928           } else {
 929             newtype->dump();
 930           }
 931           do { tty->print("\t"); } while (tty->position() < 16);
 932           nn->dump();
 933         }
 934         if (Verbose && wlsize < _worklist.size()) {
 935           tty->print("  Push {");
 936           while (wlsize != _worklist.size()) {
 937             Node* pushed = _worklist.at(wlsize++);
 938             tty->print(" %d", pushed->_idx);
 939           }
 940           tty->print_cr(" }");
 941         }
 942       }
 943       if( VerifyIterativeGVN && nn != n ) {
 944         verify_step((Node*) NULL);  // ignore n, it might be subsumed
 945       }
 946 #endif
 947     } else if (!n->is_top()) {
 948       remove_dead_node(n);
 949     }
 950   }
 951 
 952 #ifndef PRODUCT
 953   C->verify_graph_edges();
 954   if( VerifyOpto && allow_progress() ) {
 955     // Must turn off allow_progress to enable assert and break recursion
 956     C->root()->verify();
 957     { // Check if any progress was missed using IterGVN
 958       // Def-Use info enables transformations not attempted in wash-pass
 959       // e.g. Region/Phi cleanup, ...
 960       // Null-check elision -- may not have reached fixpoint
 961       //                       do not propagate to dominated nodes
 962       ResourceMark rm;
 963       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
 964       // Fill worklist completely
 965       igvn2.init_worklist(C->root());
 966 
 967       igvn2.set_allow_progress(false);
 968       igvn2.optimize();
 969       igvn2.set_allow_progress(true);
 970     }
 971   }
 972   if ( VerifyIterativeGVN && PrintOpto ) {
 973     if ( _verify_counter == _verify_full_passes )
 974       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
 975                     _verify_full_passes);
 976     else
 977       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
 978                   _verify_counter, _verify_full_passes);
 979   }
 980 #endif
 981 }
 982 
 983 
 984 //------------------register_new_node_with_optimizer---------------------------
 985 // Register a new node with the optimizer.  Update the types array, the def-use
 986 // info.  Put on worklist.
 987 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
 988   set_type_bottom(n);
 989   _worklist.push(n);
 990   if (orig != NULL)  C->copy_node_notes_to(n, orig);
 991   return n;
 992 }
 993 
 994 //------------------------------transform--------------------------------------
 995 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
 996 Node *PhaseIterGVN::transform( Node *n ) {
 997   if (_delay_transform) {
 998     // Register the node but don't optimize for now
 999     register_new_node_with_optimizer(n);
1000     return n;
1001   }
1002 
1003   // If brand new node, make space in type array, and give it a type.
1004   ensure_type_or_null(n);
1005   if (type_or_null(n) == NULL) {
1006     set_type_bottom(n);
1007   }
1008 
1009   return transform_old(n);
1010 }
1011 
1012 //------------------------------transform_old----------------------------------
1013 Node *PhaseIterGVN::transform_old( Node *n ) {
1014 #ifndef PRODUCT
1015   debug_only(uint loop_count = 0;);
1016   set_transforms();
1017 #endif
1018   // Remove 'n' from hash table in case it gets modified
1019   _table.hash_delete(n);
1020   if( VerifyIterativeGVN ) {
1021    assert( !_table.find_index(n->_idx), "found duplicate entry in table");
1022   }
1023 
1024   // Apply the Ideal call in a loop until it no longer applies
1025   Node *k = n;
1026   DEBUG_ONLY(dead_loop_check(k);)
1027   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1028   Node *i = k->Ideal(this, /*can_reshape=*/true);
1029   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1030 #ifndef PRODUCT
1031   if( VerifyIterativeGVN )
1032     verify_step(k);
1033   if( i && VerifyOpto ) {
1034     if( !allow_progress() ) {
1035       if (i->is_Add() && i->outcnt() == 1) {
1036         // Switched input to left side because this is the only use
1037       } else if( i->is_If() && (i->in(0) == NULL) ) {
1038         // This IF is dead because it is dominated by an equivalent IF When
1039         // dominating if changed, info is not propagated sparsely to 'this'
1040         // Propagating this info further will spuriously identify other
1041         // progress.
1042         return i;
1043       } else
1044         set_progress();
1045     } else
1046       set_progress();
1047   }
1048 #endif
1049 
1050   while( i ) {
1051 #ifndef PRODUCT
1052     debug_only( if( loop_count >= K ) i->dump(4); )
1053     assert(loop_count < K, "infinite loop in PhaseIterGVN::transform");
1054     debug_only( loop_count++; )
1055 #endif
1056     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1057     // Made a change; put users of original Node on worklist
1058     add_users_to_worklist( k );
1059     // Replacing root of transform tree?
1060     if( k != i ) {
1061       // Make users of old Node now use new.
1062       subsume_node( k, i );
1063       k = i;
1064     }
1065     DEBUG_ONLY(dead_loop_check(k);)
1066     // Try idealizing again
1067     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1068     i = k->Ideal(this, /*can_reshape=*/true);
1069     assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1070 #ifndef PRODUCT
1071     if( VerifyIterativeGVN )
1072       verify_step(k);
1073     if( i && VerifyOpto ) set_progress();
1074 #endif
1075   }
1076 
1077   // If brand new node, make space in type array.
1078   ensure_type_or_null(k);
1079 
1080   // See what kind of values 'k' takes on at runtime
1081   const Type *t = k->Value(this);
1082   assert(t != NULL, "value sanity");
1083 
1084   // Since I just called 'Value' to compute the set of run-time values
1085   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1086   // cache Value.  Later requests for the local phase->type of this Node can
1087   // use the cached Value instead of suffering with 'bottom_type'.
1088   if (t != type_or_null(k)) {
1089     NOT_PRODUCT( set_progress(); )
1090     NOT_PRODUCT( inc_new_values();)
1091     set_type(k, t);
1092     // If k is a TypeNode, capture any more-precise type permanently into Node
1093     k->raise_bottom_type(t);
1094     // Move users of node to worklist
1095     add_users_to_worklist( k );
1096   }
1097 
1098   // If 'k' computes a constant, replace it with a constant
1099   if( t->singleton() && !k->is_Con() ) {
1100     NOT_PRODUCT( set_progress(); )
1101     Node *con = makecon(t);     // Make a constant
1102     add_users_to_worklist( k );
1103     subsume_node( k, con );     // Everybody using k now uses con
1104     return con;
1105   }
1106 
1107   // Now check for Identities
1108   i = k->Identity(this);        // Look for a nearby replacement
1109   if( i != k ) {                // Found? Return replacement!
1110     NOT_PRODUCT( set_progress(); )
1111     add_users_to_worklist( k );
1112     subsume_node( k, i );       // Everybody using k now uses i
1113     return i;
1114   }
1115 
1116   // Global Value Numbering
1117   i = hash_find_insert(k);      // Check for pre-existing node
1118   if( i && (i != k) ) {
1119     // Return the pre-existing node if it isn't dead
1120     NOT_PRODUCT( set_progress(); )
1121     add_users_to_worklist( k );
1122     subsume_node( k, i );       // Everybody using k now uses i
1123     return i;
1124   }
1125 
1126   // Return Idealized original
1127   return k;
1128 }
1129 
1130 //---------------------------------saturate------------------------------------
1131 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1132                                    const Type* limit_type) const {
1133   return new_type->narrow(old_type);
1134 }
1135 
1136 //------------------------------remove_globally_dead_node----------------------
1137 // Kill a globally dead Node.  All uses are also globally dead and are
1138 // aggressively trimmed.
1139 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1140   assert(dead != C->root(), "killing root, eh?");
1141   if (dead->is_top())  return;
1142   NOT_PRODUCT( set_progress(); )
1143   // Remove from iterative worklist
1144   _worklist.remove(dead);
1145   if (!dead->is_Con()) { // Don't kill cons but uses
1146     // Remove from hash table
1147     _table.hash_delete( dead );
1148     // Smash all inputs to 'dead', isolating him completely
1149     for( uint i = 0; i < dead->req(); i++ ) {
1150       Node *in = dead->in(i);
1151       if( in ) {                 // Points to something?
1152         dead->set_req(i,NULL);  // Kill the edge
1153         if (in->outcnt() == 0 && in != C->top()) {// Made input go dead?
1154           remove_dead_node(in); // Recursively remove
1155         } else if (in->outcnt() == 1 &&
1156                    in->has_special_unique_user()) {
1157           _worklist.push(in->unique_out());
1158         } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1159           if( in->Opcode() == Op_Region )
1160             _worklist.push(in);
1161           else if( in->is_Store() ) {
1162             DUIterator_Fast imax, i = in->fast_outs(imax);
1163             _worklist.push(in->fast_out(i));
1164             i++;
1165             if(in->outcnt() == 2) {
1166               _worklist.push(in->fast_out(i));
1167               i++;
1168             }
1169             assert(!(i < imax), "sanity");
1170           }
1171         }
1172       }
1173     }
1174 
1175     if (dead->is_macro()) {
1176       C->remove_macro_node(dead);
1177     }
1178   }
1179   // Aggressively kill globally dead uses
1180   // (Cannot use DUIterator_Last because of the indefinite number
1181   // of edge deletions per loop trip.)
1182   while (dead->outcnt() > 0) {
1183     remove_globally_dead_node(dead->raw_out(0));
1184   }
1185 }
1186 
1187 //------------------------------subsume_node-----------------------------------
1188 // Remove users from node 'old' and add them to node 'nn'.
1189 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1190   assert( old != hash_find(old), "should already been removed" );
1191   assert( old != C->top(), "cannot subsume top node");
1192   // Copy debug or profile information to the new version:
1193   C->copy_node_notes_to(nn, old);
1194   // Move users of node 'old' to node 'nn'
1195   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1196     Node* use = old->last_out(i);  // for each use...
1197     // use might need re-hashing (but it won't if it's a new node)
1198     bool is_in_table = _table.hash_delete( use );
1199     // Update use-def info as well
1200     // We remove all occurrences of old within use->in,
1201     // so as to avoid rehashing any node more than once.
1202     // The hash table probe swamps any outer loop overhead.
1203     uint num_edges = 0;
1204     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1205       if (use->in(j) == old) {
1206         use->set_req(j, nn);
1207         ++num_edges;
1208       }
1209     }
1210     // Insert into GVN hash table if unique
1211     // If a duplicate, 'use' will be cleaned up when pulled off worklist
1212     if( is_in_table ) {
1213       hash_find_insert(use);
1214     }
1215     i -= num_edges;    // we deleted 1 or more copies of this edge
1216   }
1217 
1218   // Smash all inputs to 'old', isolating him completely
1219   Node *temp = new (C, 1) Node(1);
1220   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1221   remove_dead_node( old );
1222   temp->del_req(0);         // Yank bogus edge
1223 #ifndef PRODUCT
1224   if( VerifyIterativeGVN ) {
1225     for ( int i = 0; i < _verify_window_size; i++ ) {
1226       if ( _verify_window[i] == old )
1227         _verify_window[i] = nn;
1228     }
1229   }
1230 #endif
1231   _worklist.remove(temp);   // this can be necessary
1232   temp->destruct();         // reuse the _idx of this little guy
1233 }
1234 
1235 //------------------------------add_users_to_worklist--------------------------
1236 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1237   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1238     _worklist.push(n->fast_out(i));  // Push on worklist
1239   }
1240 }
1241 
1242 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1243   add_users_to_worklist0(n);
1244 
1245   // Move users of node to worklist
1246   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1247     Node* use = n->fast_out(i); // Get use
1248 
1249     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1250         use->is_Store() )       // Enable store/load same address
1251       add_users_to_worklist0(use);
1252 
1253     // If we changed the receiver type to a call, we need to revisit
1254     // the Catch following the call.  It's looking for a non-NULL
1255     // receiver to know when to enable the regular fall-through path
1256     // in addition to the NullPtrException path.
1257     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1258       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
1259       if (p != NULL) {
1260         add_users_to_worklist0(p);
1261       }
1262     }
1263 
1264     if( use->is_Cmp() ) {       // Enable CMP/BOOL optimization
1265       add_users_to_worklist(use); // Put Bool on worklist
1266       // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1267       // phi merging either 0 or 1 onto the worklist
1268       if (use->outcnt() > 0) {
1269         Node* bol = use->raw_out(0);
1270         if (bol->outcnt() > 0) {
1271           Node* iff = bol->raw_out(0);
1272           if (iff->outcnt() == 2) {
1273             Node* ifproj0 = iff->raw_out(0);
1274             Node* ifproj1 = iff->raw_out(1);
1275             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1276               Node* region0 = ifproj0->raw_out(0);
1277               Node* region1 = ifproj1->raw_out(0);
1278               if( region0 == region1 )
1279                 add_users_to_worklist0(region0);
1280             }
1281           }
1282         }
1283       }
1284     }
1285 
1286     uint use_op = use->Opcode();
1287     // If changed Cast input, check Phi users for simple cycles
1288     if( use->is_ConstraintCast() || use->is_CheckCastPP() ) {
1289       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1290         Node* u = use->fast_out(i2);
1291         if (u->is_Phi())
1292           _worklist.push(u);
1293       }
1294     }
1295     // If changed LShift inputs, check RShift users for useless sign-ext
1296     if( use_op == Op_LShiftI ) {
1297       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1298         Node* u = use->fast_out(i2);
1299         if (u->Opcode() == Op_RShiftI)
1300           _worklist.push(u);
1301       }
1302     }
1303     // If changed AddP inputs, check Stores for loop invariant
1304     if( use_op == Op_AddP ) {
1305       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1306         Node* u = use->fast_out(i2);
1307         if (u->is_Mem())
1308           _worklist.push(u);
1309       }
1310     }
1311     // If changed initialization activity, check dependent Stores
1312     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1313       InitializeNode* init = use->as_Allocate()->initialization();
1314       if (init != NULL) {
1315         Node* imem = init->proj_out(TypeFunc::Memory);
1316         if (imem != NULL)  add_users_to_worklist0(imem);
1317       }
1318     }
1319     if (use_op == Op_Initialize) {
1320       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
1321       if (imem != NULL)  add_users_to_worklist0(imem);
1322     }
1323   }
1324 }
1325 
1326 //=============================================================================
1327 #ifndef PRODUCT
1328 uint PhaseCCP::_total_invokes   = 0;
1329 uint PhaseCCP::_total_constants = 0;
1330 #endif
1331 //------------------------------PhaseCCP---------------------------------------
1332 // Conditional Constant Propagation, ala Wegman & Zadeck
1333 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1334   NOT_PRODUCT( clear_constants(); )
1335   assert( _worklist.size() == 0, "" );
1336   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1337   _nodes.clear();               // Clear out from IterGVN
1338   analyze();
1339 }
1340 
1341 #ifndef PRODUCT
1342 //------------------------------~PhaseCCP--------------------------------------
1343 PhaseCCP::~PhaseCCP() {
1344   inc_invokes();
1345   _total_constants += count_constants();
1346 }
1347 #endif
1348 
1349 
1350 #ifdef ASSERT
1351 static bool ccp_type_widens(const Type* t, const Type* t0) {
1352   assert(t->meet(t0) == t, "Not monotonic");
1353   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1354   case Type::Int:
1355     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1356     break;
1357   case Type::Long:
1358     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1359     break;
1360   }
1361   return true;
1362 }
1363 #endif //ASSERT
1364 
1365 //------------------------------analyze----------------------------------------
1366 void PhaseCCP::analyze() {
1367   // Initialize all types to TOP, optimistic analysis
1368   for (int i = C->unique() - 1; i >= 0; i--)  {
1369     _types.map(i,Type::TOP);
1370   }
1371 
1372   // Push root onto worklist
1373   Unique_Node_List worklist;
1374   worklist.push(C->root());
1375 
1376   // Pull from worklist; compute new value; push changes out.
1377   // This loop is the meat of CCP.
1378   while( worklist.size() ) {
1379     Node *n = worklist.pop();
1380     const Type *t = n->Value(this);
1381     if (t != type(n)) {
1382       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1383 #ifndef PRODUCT
1384       if( TracePhaseCCP ) {
1385         t->dump();
1386         do { tty->print("\t"); } while (tty->position() < 16);
1387         n->dump();
1388       }
1389 #endif
1390       set_type(n, t);
1391       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1392         Node* m = n->fast_out(i);   // Get user
1393         if( m->is_Region() ) {  // New path to Region?  Must recheck Phis too
1394           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1395             Node* p = m->fast_out(i2); // Propagate changes to uses
1396             if( p->bottom_type() != type(p) ) // If not already bottomed out
1397               worklist.push(p); // Propagate change to user
1398           }
1399         }
1400         // If we changed the receiver type to a call, we need to revisit
1401         // the Catch following the call.  It's looking for a non-NULL
1402         // receiver to know when to enable the regular fall-through path
1403         // in addition to the NullPtrException path
1404         if (m->is_Call()) {
1405           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1406             Node* p = m->fast_out(i2);  // Propagate changes to uses
1407             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1)
1408               worklist.push(p->unique_out());
1409           }
1410         }
1411         if( m->bottom_type() != type(m) ) // If not already bottomed out
1412           worklist.push(m);     // Propagate change to user
1413       }
1414     }
1415   }
1416 }
1417 
1418 //------------------------------do_transform-----------------------------------
1419 // Top level driver for the recursive transformer
1420 void PhaseCCP::do_transform() {
1421   // Correct leaves of new-space Nodes; they point to old-space.
1422   C->set_root( transform(C->root())->as_Root() );
1423   assert( C->top(),  "missing TOP node" );
1424   assert( C->root(), "missing root" );
1425 }
1426 
1427 //------------------------------transform--------------------------------------
1428 // Given a Node in old-space, clone him into new-space.
1429 // Convert any of his old-space children into new-space children.
1430 Node *PhaseCCP::transform( Node *n ) {
1431   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1432   if( new_node != NULL )
1433     return new_node;                // Been there, done that, return old answer
1434   new_node = transform_once(n);     // Check for constant
1435   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1436 
1437   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1438   GrowableArray <Node *> trstack(C->unique() >> 1);
1439 
1440   trstack.push(new_node);           // Process children of cloned node
1441   while ( trstack.is_nonempty() ) {
1442     Node *clone = trstack.pop();
1443     uint cnt = clone->req();
1444     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1445       Node *input = clone->in(i);
1446       if( input != NULL ) {                    // Ignore NULLs
1447         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1448         if( new_input == NULL ) {
1449           new_input = transform_once(input);   // Check for constant
1450           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1451           trstack.push(new_input);
1452         }
1453         assert( new_input == clone->in(i), "insanity check");
1454       }
1455     }
1456   }
1457   return new_node;
1458 }
1459 
1460 
1461 //------------------------------transform_once---------------------------------
1462 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
1463 Node *PhaseCCP::transform_once( Node *n ) {
1464   const Type *t = type(n);
1465   // Constant?  Use constant Node instead
1466   if( t->singleton() ) {
1467     Node *nn = n;               // Default is to return the original constant
1468     if( t == Type::TOP ) {
1469       // cache my top node on the Compile instance
1470       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1471         C->set_cached_top_node( ConNode::make(C, Type::TOP) );
1472         set_type(C->top(), Type::TOP);
1473       }
1474       nn = C->top();
1475     }
1476     if( !n->is_Con() ) {
1477       if( t != Type::TOP ) {
1478         nn = makecon(t);        // ConNode::make(t);
1479         NOT_PRODUCT( inc_constants(); )
1480       } else if( n->is_Region() ) { // Unreachable region
1481         // Note: nn == C->top()
1482         n->set_req(0, NULL);        // Cut selfreference
1483         // Eagerly remove dead phis to avoid phis copies creation.
1484         for (DUIterator i = n->outs(); n->has_out(i); i++) {
1485           Node* m = n->out(i);
1486           if( m->is_Phi() ) {
1487             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1488             replace_node(m, nn);
1489             --i; // deleted this phi; rescan starting with next position
1490           }
1491         }
1492       }
1493       replace_node(n,nn);       // Update DefUse edges for new constant
1494     }
1495     return nn;
1496   }
1497 
1498   // If x is a TypeNode, capture any more-precise type permanently into Node
1499   if (t != n->bottom_type()) {
1500     hash_delete(n);             // changing bottom type may force a rehash
1501     n->raise_bottom_type(t);
1502     _worklist.push(n);          // n re-enters the hash table via the worklist
1503   }
1504 
1505   // Idealize graph using DU info.  Must clone() into new-space.
1506   // DU info is generally used to show profitability, progress or safety
1507   // (but generally not needed for correctness).
1508   Node *nn = n->Ideal_DU_postCCP(this);
1509 
1510   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1511   switch( n->Opcode() ) {
1512   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1513   case Op_If:
1514   case Op_CountedLoopEnd:
1515   case Op_Region:
1516   case Op_Loop:
1517   case Op_CountedLoop:
1518   case Op_Conv2B:
1519   case Op_Opaque1:
1520   case Op_Opaque2:
1521     _worklist.push(n);
1522     break;
1523   default:
1524     break;
1525   }
1526   if( nn ) {
1527     _worklist.push(n);
1528     // Put users of 'n' onto worklist for second igvn transform
1529     add_users_to_worklist(n);
1530     return nn;
1531   }
1532 
1533   return  n;
1534 }
1535 
1536 //---------------------------------saturate------------------------------------
1537 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1538                                const Type* limit_type) const {
1539   const Type* wide_type = new_type->widen(old_type, limit_type);
1540   if (wide_type != new_type) {          // did we widen?
1541     // If so, we may have widened beyond the limit type.  Clip it back down.
1542     new_type = wide_type->filter(limit_type);
1543   }
1544   return new_type;
1545 }
1546 
1547 //------------------------------print_statistics-------------------------------
1548 #ifndef PRODUCT
1549 void PhaseCCP::print_statistics() {
1550   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1551 }
1552 #endif
1553 
1554 
1555 //=============================================================================
1556 #ifndef PRODUCT
1557 uint PhasePeephole::_total_peepholes = 0;
1558 #endif
1559 //------------------------------PhasePeephole----------------------------------
1560 // Conditional Constant Propagation, ala Wegman & Zadeck
1561 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1562   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1563   NOT_PRODUCT( clear_peepholes(); )
1564 }
1565 
1566 #ifndef PRODUCT
1567 //------------------------------~PhasePeephole---------------------------------
1568 PhasePeephole::~PhasePeephole() {
1569   _total_peepholes += count_peepholes();
1570 }
1571 #endif
1572 
1573 //------------------------------transform--------------------------------------
1574 Node *PhasePeephole::transform( Node *n ) {
1575   ShouldNotCallThis();
1576   return NULL;
1577 }
1578 
1579 //------------------------------do_transform-----------------------------------
1580 void PhasePeephole::do_transform() {
1581   bool method_name_not_printed = true;
1582 
1583   // Examine each basic block
1584   for( uint block_number = 1; block_number < _cfg._num_blocks; ++block_number ) {
1585     Block *block = _cfg._blocks[block_number];
1586     bool block_not_printed = true;
1587 
1588     // and each instruction within a block
1589     uint end_index = block->_nodes.size();
1590     // block->end_idx() not valid after PhaseRegAlloc
1591     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
1592       Node     *n = block->_nodes.at(instruction_index);
1593       if( n->is_Mach() ) {
1594         MachNode *m = n->as_Mach();
1595         int deleted_count = 0;
1596         // check for peephole opportunities
1597         MachNode *m2 = m->peephole( block, instruction_index, _regalloc, deleted_count, C );
1598         if( m2 != NULL ) {
1599 #ifndef PRODUCT
1600           if( PrintOptoPeephole ) {
1601             // Print method, first time only
1602             if( C->method() && method_name_not_printed ) {
1603               C->method()->print_short_name(); tty->cr();
1604               method_name_not_printed = false;
1605             }
1606             // Print this block
1607             if( Verbose && block_not_printed) {
1608               tty->print_cr("in block");
1609               block->dump();
1610               block_not_printed = false;
1611             }
1612             // Print instructions being deleted
1613             for( int i = (deleted_count - 1); i >= 0; --i ) {
1614               block->_nodes.at(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
1615             }
1616             tty->print_cr("replaced with");
1617             // Print new instruction
1618             m2->format(_regalloc);
1619             tty->print("\n\n");
1620           }
1621 #endif
1622           // Remove old nodes from basic block and update instruction_index
1623           // (old nodes still exist and may have edges pointing to them
1624           //  as register allocation info is stored in the allocator using
1625           //  the node index to live range mappings.)
1626           uint safe_instruction_index = (instruction_index - deleted_count);
1627           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
1628             block->_nodes.remove( instruction_index );
1629           }
1630           // install new node after safe_instruction_index
1631           block->_nodes.insert( safe_instruction_index + 1, m2 );
1632           end_index = block->_nodes.size() - 1; // Recompute new block size
1633           NOT_PRODUCT( inc_peepholes(); )
1634         }
1635       }
1636     }
1637   }
1638 }
1639 
1640 //------------------------------print_statistics-------------------------------
1641 #ifndef PRODUCT
1642 void PhasePeephole::print_statistics() {
1643   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
1644 }
1645 #endif
1646 
1647 
1648 //=============================================================================
1649 //------------------------------set_req_X--------------------------------------
1650 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
1651   assert( is_not_dead(n), "can not use dead node");
1652   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
1653   Node *old = in(i);
1654   set_req(i, n);
1655 
1656   // old goes dead?
1657   if( old ) {
1658     switch (old->outcnt()) {
1659     case 0:
1660       // Put into the worklist to kill later. We do not kill it now because the
1661       // recursive kill will delete the current node (this) if dead-loop exists
1662       if (!old->is_top())
1663         igvn->_worklist.push( old );
1664       break;
1665     case 1:
1666       if( old->is_Store() || old->has_special_unique_user() )
1667         igvn->add_users_to_worklist( old );
1668       break;
1669     case 2:
1670       if( old->is_Store() )
1671         igvn->add_users_to_worklist( old );
1672       if( old->Opcode() == Op_Region )
1673         igvn->_worklist.push(old);
1674       break;
1675     case 3:
1676       if( old->Opcode() == Op_Region ) {
1677         igvn->_worklist.push(old);
1678         igvn->add_users_to_worklist( old );
1679       }
1680       break;
1681     default:
1682       break;
1683     }
1684   }
1685 
1686 }
1687 
1688 //-------------------------------replace_by-----------------------------------
1689 // Using def-use info, replace one node for another.  Follow the def-use info
1690 // to all users of the OLD node.  Then make all uses point to the NEW node.
1691 void Node::replace_by(Node *new_node) {
1692   assert(!is_top(), "top node has no DU info");
1693   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
1694     Node* use = last_out(i);
1695     uint uses_found = 0;
1696     for (uint j = 0; j < use->len(); j++) {
1697       if (use->in(j) == this) {
1698         if (j < use->req())
1699               use->set_req(j, new_node);
1700         else  use->set_prec(j, new_node);
1701         uses_found++;
1702       }
1703     }
1704     i -= uses_found;    // we deleted 1 or more copies of this edge
1705   }
1706 }
1707 
1708 //=============================================================================
1709 //-----------------------------------------------------------------------------
1710 void Type_Array::grow( uint i ) {
1711   if( !_max ) {
1712     _max = 1;
1713     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
1714     _types[0] = NULL;
1715   }
1716   uint old = _max;
1717   while( i >= _max ) _max <<= 1;        // Double to fit
1718   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
1719   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
1720 }
1721 
1722 //------------------------------dump-------------------------------------------
1723 #ifndef PRODUCT
1724 void Type_Array::dump() const {
1725   uint max = Size();
1726   for( uint i = 0; i < max; i++ ) {
1727     if( _types[i] != NULL ) {
1728       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
1729     }
1730   }
1731 }
1732 #endif