/* * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "assembler_x86.inline.hpp" #include "gc_interface/collectedHeap.inline.hpp" #include "interpreter/interpreter.hpp" #include "memory/cardTableModRefBS.hpp" #include "memory/resourceArea.hpp" #include "prims/methodHandles.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/objectMonitor.hpp" #include "runtime/os.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #ifndef SERIALGC #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" #include "gc_implementation/g1/heapRegion.hpp" #endif // Implementation of AddressLiteral AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) { _is_lval = false; _target = target; switch (rtype) { case relocInfo::oop_type: // Oops are a special case. Normally they would be their own section // but in cases like icBuffer they are literals in the code stream that // we don't have a section for. We use none so that we get a literal address // which is always patchable. break; case relocInfo::external_word_type: _rspec = external_word_Relocation::spec(target); break; case relocInfo::internal_word_type: _rspec = internal_word_Relocation::spec(target); break; case relocInfo::opt_virtual_call_type: _rspec = opt_virtual_call_Relocation::spec(); break; case relocInfo::static_call_type: _rspec = static_call_Relocation::spec(); break; case relocInfo::runtime_call_type: _rspec = runtime_call_Relocation::spec(); break; case relocInfo::poll_type: case relocInfo::poll_return_type: _rspec = Relocation::spec_simple(rtype); break; case relocInfo::none: break; default: ShouldNotReachHere(); break; } } // Implementation of Address #ifdef _LP64 Address Address::make_array(ArrayAddress adr) { // Not implementable on 64bit machines // Should have been handled higher up the call chain. ShouldNotReachHere(); return Address(); } // exceedingly dangerous constructor Address::Address(int disp, address loc, relocInfo::relocType rtype) { _base = noreg; _index = noreg; _scale = no_scale; _disp = disp; switch (rtype) { case relocInfo::external_word_type: _rspec = external_word_Relocation::spec(loc); break; case relocInfo::internal_word_type: _rspec = internal_word_Relocation::spec(loc); break; case relocInfo::runtime_call_type: // HMM _rspec = runtime_call_Relocation::spec(); break; case relocInfo::poll_type: case relocInfo::poll_return_type: _rspec = Relocation::spec_simple(rtype); break; case relocInfo::none: break; default: ShouldNotReachHere(); } } #else // LP64 Address Address::make_array(ArrayAddress adr) { AddressLiteral base = adr.base(); Address index = adr.index(); assert(index._disp == 0, "must not have disp"); // maybe it can? Address array(index._base, index._index, index._scale, (intptr_t) base.target()); array._rspec = base._rspec; return array; } // exceedingly dangerous constructor Address::Address(address loc, RelocationHolder spec) { _base = noreg; _index = noreg; _scale = no_scale; _disp = (intptr_t) loc; _rspec = spec; } #endif // _LP64 // Convert the raw encoding form into the form expected by the constructor for // Address. An index of 4 (rsp) corresponds to having no index, so convert // that to noreg for the Address constructor. Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) { RelocationHolder rspec; if (disp_is_oop) { rspec = Relocation::spec_simple(relocInfo::oop_type); } bool valid_index = index != rsp->encoding(); if (valid_index) { Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp)); madr._rspec = rspec; return madr; } else { Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp)); madr._rspec = rspec; return madr; } } // Implementation of Assembler int AbstractAssembler::code_fill_byte() { return (u_char)'\xF4'; // hlt } // make this go away someday void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) { if (rtype == relocInfo::none) emit_long(data); else emit_data(data, Relocation::spec_simple(rtype), format); } void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) { assert(imm_operand == 0, "default format must be immediate in this file"); assert(inst_mark() != NULL, "must be inside InstructionMark"); if (rspec.type() != relocInfo::none) { #ifdef ASSERT check_relocation(rspec, format); #endif // Do not use AbstractAssembler::relocate, which is not intended for // embedded words. Instead, relocate to the enclosing instruction. // hack. call32 is too wide for mask so use disp32 if (format == call32_operand) code_section()->relocate(inst_mark(), rspec, disp32_operand); else code_section()->relocate(inst_mark(), rspec, format); } emit_long(data); } static int encode(Register r) { int enc = r->encoding(); if (enc >= 8) { enc -= 8; } return enc; } static int encode(XMMRegister r) { int enc = r->encoding(); if (enc >= 8) { enc -= 8; } return enc; } void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) { assert(dst->has_byte_register(), "must have byte register"); assert(isByte(op1) && isByte(op2), "wrong opcode"); assert(isByte(imm8), "not a byte"); assert((op1 & 0x01) == 0, "should be 8bit operation"); emit_byte(op1); emit_byte(op2 | encode(dst)); emit_byte(imm8); } void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) { assert(isByte(op1) && isByte(op2), "wrong opcode"); assert((op1 & 0x01) == 1, "should be 32bit operation"); assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); if (is8bit(imm32)) { emit_byte(op1 | 0x02); // set sign bit emit_byte(op2 | encode(dst)); emit_byte(imm32 & 0xFF); } else { emit_byte(op1); emit_byte(op2 | encode(dst)); emit_long(imm32); } } // immediate-to-memory forms void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) { assert((op1 & 0x01) == 1, "should be 32bit operation"); assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); if (is8bit(imm32)) { emit_byte(op1 | 0x02); // set sign bit emit_operand(rm, adr, 1); emit_byte(imm32 & 0xFF); } else { emit_byte(op1); emit_operand(rm, adr, 4); emit_long(imm32); } } void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) { LP64_ONLY(ShouldNotReachHere()); assert(isByte(op1) && isByte(op2), "wrong opcode"); assert((op1 & 0x01) == 1, "should be 32bit operation"); assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); InstructionMark im(this); emit_byte(op1); emit_byte(op2 | encode(dst)); emit_data((intptr_t)obj, relocInfo::oop_type, 0); } void Assembler::emit_arith(int op1, int op2, Register dst, Register src) { assert(isByte(op1) && isByte(op2), "wrong opcode"); emit_byte(op1); emit_byte(op2 | encode(dst) << 3 | encode(src)); } void Assembler::emit_operand(Register reg, Register base, Register index, Address::ScaleFactor scale, int disp, RelocationHolder const& rspec, int rip_relative_correction) { relocInfo::relocType rtype = (relocInfo::relocType) rspec.type(); // Encode the registers as needed in the fields they are used in int regenc = encode(reg) << 3; int indexenc = index->is_valid() ? encode(index) << 3 : 0; int baseenc = base->is_valid() ? encode(base) : 0; if (base->is_valid()) { if (index->is_valid()) { assert(scale != Address::no_scale, "inconsistent address"); // [base + index*scale + disp] if (disp == 0 && rtype == relocInfo::none && base != rbp LP64_ONLY(&& base != r13)) { // [base + index*scale] // [00 reg 100][ss index base] assert(index != rsp, "illegal addressing mode"); emit_byte(0x04 | regenc); emit_byte(scale << 6 | indexenc | baseenc); } else if (is8bit(disp) && rtype == relocInfo::none) { // [base + index*scale + imm8] // [01 reg 100][ss index base] imm8 assert(index != rsp, "illegal addressing mode"); emit_byte(0x44 | regenc); emit_byte(scale << 6 | indexenc | baseenc); emit_byte(disp & 0xFF); } else { // [base + index*scale + disp32] // [10 reg 100][ss index base] disp32 assert(index != rsp, "illegal addressing mode"); emit_byte(0x84 | regenc); emit_byte(scale << 6 | indexenc | baseenc); emit_data(disp, rspec, disp32_operand); } } else if (base == rsp LP64_ONLY(|| base == r12)) { // [rsp + disp] if (disp == 0 && rtype == relocInfo::none) { // [rsp] // [00 reg 100][00 100 100] emit_byte(0x04 | regenc); emit_byte(0x24); } else if (is8bit(disp) && rtype == relocInfo::none) { // [rsp + imm8] // [01 reg 100][00 100 100] disp8 emit_byte(0x44 | regenc); emit_byte(0x24); emit_byte(disp & 0xFF); } else { // [rsp + imm32] // [10 reg 100][00 100 100] disp32 emit_byte(0x84 | regenc); emit_byte(0x24); emit_data(disp, rspec, disp32_operand); } } else { // [base + disp] assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode"); if (disp == 0 && rtype == relocInfo::none && base != rbp LP64_ONLY(&& base != r13)) { // [base] // [00 reg base] emit_byte(0x00 | regenc | baseenc); } else if (is8bit(disp) && rtype == relocInfo::none) { // [base + disp8] // [01 reg base] disp8 emit_byte(0x40 | regenc | baseenc); emit_byte(disp & 0xFF); } else { // [base + disp32] // [10 reg base] disp32 emit_byte(0x80 | regenc | baseenc); emit_data(disp, rspec, disp32_operand); } } } else { if (index->is_valid()) { assert(scale != Address::no_scale, "inconsistent address"); // [index*scale + disp] // [00 reg 100][ss index 101] disp32 assert(index != rsp, "illegal addressing mode"); emit_byte(0x04 | regenc); emit_byte(scale << 6 | indexenc | 0x05); emit_data(disp, rspec, disp32_operand); } else if (rtype != relocInfo::none ) { // [disp] (64bit) RIP-RELATIVE (32bit) abs // [00 000 101] disp32 emit_byte(0x05 | regenc); // Note that the RIP-rel. correction applies to the generated // disp field, but _not_ to the target address in the rspec. // disp was created by converting the target address minus the pc // at the start of the instruction. That needs more correction here. // intptr_t disp = target - next_ip; assert(inst_mark() != NULL, "must be inside InstructionMark"); address next_ip = pc() + sizeof(int32_t) + rip_relative_correction; int64_t adjusted = disp; // Do rip-rel adjustment for 64bit LP64_ONLY(adjusted -= (next_ip - inst_mark())); assert(is_simm32(adjusted), "must be 32bit offset (RIP relative address)"); emit_data((int32_t) adjusted, rspec, disp32_operand); } else { // 32bit never did this, did everything as the rip-rel/disp code above // [disp] ABSOLUTE // [00 reg 100][00 100 101] disp32 emit_byte(0x04 | regenc); emit_byte(0x25); emit_data(disp, rspec, disp32_operand); } } } void Assembler::emit_operand(XMMRegister reg, Register base, Register index, Address::ScaleFactor scale, int disp, RelocationHolder const& rspec) { emit_operand((Register)reg, base, index, scale, disp, rspec); } // Secret local extension to Assembler::WhichOperand: #define end_pc_operand (_WhichOperand_limit) address Assembler::locate_operand(address inst, WhichOperand which) { // Decode the given instruction, and return the address of // an embedded 32-bit operand word. // If "which" is disp32_operand, selects the displacement portion // of an effective address specifier. // If "which" is imm64_operand, selects the trailing immediate constant. // If "which" is call32_operand, selects the displacement of a call or jump. // Caller is responsible for ensuring that there is such an operand, // and that it is 32/64 bits wide. // If "which" is end_pc_operand, find the end of the instruction. address ip = inst; bool is_64bit = false; debug_only(bool has_disp32 = false); int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn again_after_prefix: switch (0xFF & *ip++) { // These convenience macros generate groups of "case" labels for the switch. #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \ case (x)+4: case (x)+5: case (x)+6: case (x)+7 #define REP16(x) REP8((x)+0): \ case REP8((x)+8) case CS_segment: case SS_segment: case DS_segment: case ES_segment: case FS_segment: case GS_segment: // Seems dubious LP64_ONLY(assert(false, "shouldn't have that prefix")); assert(ip == inst+1, "only one prefix allowed"); goto again_after_prefix; case 0x67: case REX: case REX_B: case REX_X: case REX_XB: case REX_R: case REX_RB: case REX_RX: case REX_RXB: NOT_LP64(assert(false, "64bit prefixes")); goto again_after_prefix; case REX_W: case REX_WB: case REX_WX: case REX_WXB: case REX_WR: case REX_WRB: case REX_WRX: case REX_WRXB: NOT_LP64(assert(false, "64bit prefixes")); is_64bit = true; goto again_after_prefix; case 0xFF: // pushq a; decl a; incl a; call a; jmp a case 0x88: // movb a, r case 0x89: // movl a, r case 0x8A: // movb r, a case 0x8B: // movl r, a case 0x8F: // popl a debug_only(has_disp32 = true); break; case 0x68: // pushq #32 if (which == end_pc_operand) { return ip + 4; } assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate"); return ip; // not produced by emit_operand case 0x66: // movw ... (size prefix) again_after_size_prefix2: switch (0xFF & *ip++) { case REX: case REX_B: case REX_X: case REX_XB: case REX_R: case REX_RB: case REX_RX: case REX_RXB: case REX_W: case REX_WB: case REX_WX: case REX_WXB: case REX_WR: case REX_WRB: case REX_WRX: case REX_WRXB: NOT_LP64(assert(false, "64bit prefix found")); goto again_after_size_prefix2; case 0x8B: // movw r, a case 0x89: // movw a, r debug_only(has_disp32 = true); break; case 0xC7: // movw a, #16 debug_only(has_disp32 = true); tail_size = 2; // the imm16 break; case 0x0F: // several SSE/SSE2 variants ip--; // reparse the 0x0F goto again_after_prefix; default: ShouldNotReachHere(); } break; case REP8(0xB8): // movl/q r, #32/#64(oop?) if (which == end_pc_operand) return ip + (is_64bit ? 8 : 4); // these asserts are somewhat nonsensical #ifndef _LP64 assert(which == imm_operand || which == disp32_operand, ""); #else assert((which == call32_operand || which == imm_operand) && is_64bit || which == narrow_oop_operand && !is_64bit, ""); #endif // _LP64 return ip; case 0x69: // imul r, a, #32 case 0xC7: // movl a, #32(oop?) tail_size = 4; debug_only(has_disp32 = true); // has both kinds of operands! break; case 0x0F: // movx..., etc. switch (0xFF & *ip++) { case 0x3A: // pcmpestri tail_size = 1; case 0x38: // ptest, pmovzxbw ip++; // skip opcode debug_only(has_disp32 = true); // has both kinds of operands! break; case 0x70: // pshufd r, r/a, #8 debug_only(has_disp32 = true); // has both kinds of operands! case 0x73: // psrldq r, #8 tail_size = 1; break; case 0x12: // movlps case 0x28: // movaps case 0x2E: // ucomiss case 0x2F: // comiss case 0x54: // andps case 0x55: // andnps case 0x56: // orps case 0x57: // xorps case 0x6E: // movd case 0x7E: // movd case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush debug_only(has_disp32 = true); break; case 0xAD: // shrd r, a, %cl case 0xAF: // imul r, a case 0xBE: // movsbl r, a (movsxb) case 0xBF: // movswl r, a (movsxw) case 0xB6: // movzbl r, a (movzxb) case 0xB7: // movzwl r, a (movzxw) case REP16(0x40): // cmovl cc, r, a case 0xB0: // cmpxchgb case 0xB1: // cmpxchg case 0xC1: // xaddl case 0xC7: // cmpxchg8 case REP16(0x90): // setcc a debug_only(has_disp32 = true); // fall out of the switch to decode the address break; case 0xC4: // pinsrw r, a, #8 debug_only(has_disp32 = true); case 0xC5: // pextrw r, r, #8 tail_size = 1; // the imm8 break; case 0xAC: // shrd r, a, #8 debug_only(has_disp32 = true); tail_size = 1; // the imm8 break; case REP16(0x80): // jcc rdisp32 if (which == end_pc_operand) return ip + 4; assert(which == call32_operand, "jcc has no disp32 or imm"); return ip; default: ShouldNotReachHere(); } break; case 0x81: // addl a, #32; addl r, #32 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl // on 32bit in the case of cmpl, the imm might be an oop tail_size = 4; debug_only(has_disp32 = true); // has both kinds of operands! break; case 0x83: // addl a, #8; addl r, #8 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl debug_only(has_disp32 = true); // has both kinds of operands! tail_size = 1; break; case 0x9B: switch (0xFF & *ip++) { case 0xD9: // fnstcw a debug_only(has_disp32 = true); break; default: ShouldNotReachHere(); } break; case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a case REP4(0x10): // adc... case REP4(0x20): // and... case REP4(0x30): // xor... case REP4(0x08): // or... case REP4(0x18): // sbb... case REP4(0x28): // sub... case 0xF7: // mull a case 0x8D: // lea r, a case 0x87: // xchg r, a case REP4(0x38): // cmp... case 0x85: // test r, a debug_only(has_disp32 = true); // has both kinds of operands! break; case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8 case 0xC6: // movb a, #8 case 0x80: // cmpb a, #8 case 0x6B: // imul r, a, #8 debug_only(has_disp32 = true); // has both kinds of operands! tail_size = 1; // the imm8 break; case 0xC4: // VEX_3bytes case 0xC5: // VEX_2bytes assert((UseAVX > 0), "shouldn't have VEX prefix"); assert(ip == inst+1, "no prefixes allowed"); // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions // but they have prefix 0x0F and processed when 0x0F processed above. // // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES // instructions (these instructions are not supported in 64-bit mode). // To distinguish them bits [7:6] are set in the VEX second byte since // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set // those VEX bits REX and vvvv bits are inverted. // // Fortunately C2 doesn't generate these instructions so we don't need // to check for them in product version. // Check second byte NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions")); // First byte if ((0xFF & *inst) == VEX_3bytes) { ip++; // third byte is_64bit = ((VEX_W & *ip) == VEX_W); } ip++; // opcode // To find the end of instruction (which == end_pc_operand). switch (0xFF & *ip) { case 0x61: // pcmpestri r, r/a, #8 case 0x70: // pshufd r, r/a, #8 case 0x73: // psrldq r, #8 tail_size = 1; // the imm8 break; default: break; } ip++; // skip opcode debug_only(has_disp32 = true); // has both kinds of operands! break; case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1 case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a case 0xDD: // fld_d a; fst_d a; fstp_d a case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a case 0xDF: // fild_d a; fistp_d a case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a debug_only(has_disp32 = true); break; case 0xE8: // call rdisp32 case 0xE9: // jmp rdisp32 if (which == end_pc_operand) return ip + 4; assert(which == call32_operand, "call has no disp32 or imm"); return ip; case 0xF0: // Lock assert(os::is_MP(), "only on MP"); goto again_after_prefix; case 0xF3: // For SSE case 0xF2: // For SSE2 switch (0xFF & *ip++) { case REX: case REX_B: case REX_X: case REX_XB: case REX_R: case REX_RB: case REX_RX: case REX_RXB: case REX_W: case REX_WB: case REX_WX: case REX_WXB: case REX_WR: case REX_WRB: case REX_WRX: case REX_WRXB: NOT_LP64(assert(false, "found 64bit prefix")); ip++; default: ip++; } debug_only(has_disp32 = true); // has both kinds of operands! break; default: ShouldNotReachHere(); #undef REP8 #undef REP16 } assert(which != call32_operand, "instruction is not a call, jmp, or jcc"); #ifdef _LP64 assert(which != imm_operand, "instruction is not a movq reg, imm64"); #else // assert(which != imm_operand || has_imm32, "instruction has no imm32 field"); assert(which != imm_operand || has_disp32, "instruction has no imm32 field"); #endif // LP64 assert(which != disp32_operand || has_disp32, "instruction has no disp32 field"); // parse the output of emit_operand int op2 = 0xFF & *ip++; int base = op2 & 0x07; int op3 = -1; const int b100 = 4; const int b101 = 5; if (base == b100 && (op2 >> 6) != 3) { op3 = 0xFF & *ip++; base = op3 & 0x07; // refetch the base } // now ip points at the disp (if any) switch (op2 >> 6) { case 0: // [00 reg 100][ss index base] // [00 reg 100][00 100 esp] // [00 reg base] // [00 reg 100][ss index 101][disp32] // [00 reg 101] [disp32] if (base == b101) { if (which == disp32_operand) return ip; // caller wants the disp32 ip += 4; // skip the disp32 } break; case 1: // [01 reg 100][ss index base][disp8] // [01 reg 100][00 100 esp][disp8] // [01 reg base] [disp8] ip += 1; // skip the disp8 break; case 2: // [10 reg 100][ss index base][disp32] // [10 reg 100][00 100 esp][disp32] // [10 reg base] [disp32] if (which == disp32_operand) return ip; // caller wants the disp32 ip += 4; // skip the disp32 break; case 3: // [11 reg base] (not a memory addressing mode) break; } if (which == end_pc_operand) { return ip + tail_size; } #ifdef _LP64 assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32"); #else assert(which == imm_operand, "instruction has only an imm field"); #endif // LP64 return ip; } address Assembler::locate_next_instruction(address inst) { // Secretly share code with locate_operand: return locate_operand(inst, end_pc_operand); } #ifdef ASSERT void Assembler::check_relocation(RelocationHolder const& rspec, int format) { address inst = inst_mark(); assert(inst != NULL && inst < pc(), "must point to beginning of instruction"); address opnd; Relocation* r = rspec.reloc(); if (r->type() == relocInfo::none) { return; } else if (r->is_call() || format == call32_operand) { // assert(format == imm32_operand, "cannot specify a nonzero format"); opnd = locate_operand(inst, call32_operand); } else if (r->is_data()) { assert(format == imm_operand || format == disp32_operand LP64_ONLY(|| format == narrow_oop_operand), "format ok"); opnd = locate_operand(inst, (WhichOperand)format); } else { assert(format == imm_operand, "cannot specify a format"); return; } assert(opnd == pc(), "must put operand where relocs can find it"); } #endif // ASSERT void Assembler::emit_operand32(Register reg, Address adr) { assert(reg->encoding() < 8, "no extended registers"); assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers"); emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec); } void Assembler::emit_operand(Register reg, Address adr, int rip_relative_correction) { emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec, rip_relative_correction); } void Assembler::emit_operand(XMMRegister reg, Address adr) { emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec); } // MMX operations void Assembler::emit_operand(MMXRegister reg, Address adr) { assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers"); emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec); } // work around gcc (3.2.1-7a) bug void Assembler::emit_operand(Address adr, MMXRegister reg) { assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers"); emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec); } void Assembler::emit_farith(int b1, int b2, int i) { assert(isByte(b1) && isByte(b2), "wrong opcode"); assert(0 <= i && i < 8, "illegal stack offset"); emit_byte(b1); emit_byte(b2 + i); } // Now the Assembler instructions (identical for 32/64 bits) void Assembler::adcl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_arith_operand(0x81, rdx, dst, imm32); } void Assembler::adcl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_byte(0x11); emit_operand(src, dst); } void Assembler::adcl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xD0, dst, imm32); } void Assembler::adcl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x13); emit_operand(dst, src); } void Assembler::adcl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x13, 0xC0, dst, src); } void Assembler::addl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_arith_operand(0x81, rax, dst, imm32); } void Assembler::addl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_byte(0x01); emit_operand(src, dst); } void Assembler::addl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xC0, dst, imm32); } void Assembler::addl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x03); emit_operand(dst, src); } void Assembler::addl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x03, 0xC0, dst, src); } void Assembler::addr_nop_4() { // 4 bytes: NOP DWORD PTR [EAX+0] emit_byte(0x0F); emit_byte(0x1F); emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc); emit_byte(0); // 8-bits offset (1 byte) } void Assembler::addr_nop_5() { // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset emit_byte(0x0F); emit_byte(0x1F); emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4); emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); emit_byte(0); // 8-bits offset (1 byte) } void Assembler::addr_nop_7() { // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset emit_byte(0x0F); emit_byte(0x1F); emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc); emit_long(0); // 32-bits offset (4 bytes) } void Assembler::addr_nop_8() { // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset emit_byte(0x0F); emit_byte(0x1F); emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4); emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); emit_long(0); // 32-bits offset (4 bytes) } void Assembler::addsd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2); emit_byte(0x58); emit_byte(0xC0 | encode); } void Assembler::addsd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F2); emit_byte(0x58); emit_operand(dst, src); } void Assembler::addss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3); emit_byte(0x58); emit_byte(0xC0 | encode); } void Assembler::addss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F3); emit_byte(0x58); emit_operand(dst, src); } void Assembler::andl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_byte(0x81); emit_operand(rsp, dst, 4); emit_long(imm32); } void Assembler::andl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xE0, dst, imm32); } void Assembler::andl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x23); emit_operand(dst, src); } void Assembler::andl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x23, 0xC0, dst, src); } void Assembler::andpd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66); emit_byte(0x54); emit_operand(dst, src); } void Assembler::andpd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66); emit_byte(0x54); emit_byte(0xC0 | encode); } void Assembler::andps(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_NONE); emit_byte(0x54); emit_operand(dst, src); } void Assembler::andps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE); emit_byte(0x54); emit_byte(0xC0 | encode); } void Assembler::bsfl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xBC); emit_byte(0xC0 | encode); } void Assembler::bsrl(Register dst, Register src) { assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT"); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xBD); emit_byte(0xC0 | encode); } void Assembler::bswapl(Register reg) { // bswap int encode = prefix_and_encode(reg->encoding()); emit_byte(0x0F); emit_byte(0xC8 | encode); } void Assembler::call(Label& L, relocInfo::relocType rtype) { // suspect disp32 is always good int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand); if (L.is_bound()) { const int long_size = 5; int offs = (int)( target(L) - pc() ); assert(offs <= 0, "assembler error"); InstructionMark im(this); // 1110 1000 #32-bit disp emit_byte(0xE8); emit_data(offs - long_size, rtype, operand); } else { InstructionMark im(this); // 1110 1000 #32-bit disp L.add_patch_at(code(), locator()); emit_byte(0xE8); emit_data(int(0), rtype, operand); } } void Assembler::call(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xFF); emit_byte(0xD0 | encode); } void Assembler::call(Address adr) { InstructionMark im(this); prefix(adr); emit_byte(0xFF); emit_operand(rdx, adr); } void Assembler::call_literal(address entry, RelocationHolder const& rspec) { assert(entry != NULL, "call most probably wrong"); InstructionMark im(this); emit_byte(0xE8); intptr_t disp = entry - (_code_pos + sizeof(int32_t)); assert(is_simm32(disp), "must be 32bit offset (call2)"); // Technically, should use call32_operand, but this format is // implied by the fact that we're emitting a call instruction. int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand); emit_data((int) disp, rspec, operand); } void Assembler::cdql() { emit_byte(0x99); } void Assembler::cmovl(Condition cc, Register dst, Register src) { NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction")); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x40 | cc); emit_byte(0xC0 | encode); } void Assembler::cmovl(Condition cc, Register dst, Address src) { NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction")); prefix(src, dst); emit_byte(0x0F); emit_byte(0x40 | cc); emit_operand(dst, src); } void Assembler::cmpb(Address dst, int imm8) { InstructionMark im(this); prefix(dst); emit_byte(0x80); emit_operand(rdi, dst, 1); emit_byte(imm8); } void Assembler::cmpl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_byte(0x81); emit_operand(rdi, dst, 4); emit_long(imm32); } void Assembler::cmpl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xF8, dst, imm32); } void Assembler::cmpl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x3B, 0xC0, dst, src); } void Assembler::cmpl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x3B); emit_operand(dst, src); } void Assembler::cmpw(Address dst, int imm16) { InstructionMark im(this); assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers"); emit_byte(0x66); emit_byte(0x81); emit_operand(rdi, dst, 2); emit_word(imm16); } // The 32-bit cmpxchg compares the value at adr with the contents of rax, // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,. // The ZF is set if the compared values were equal, and cleared otherwise. void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg if (Atomics & 2) { // caveat: no instructionmark, so this isn't relocatable. // Emit a synthetic, non-atomic, CAS equivalent. // Beware. The synthetic form sets all ICCs, not just ZF. // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r) cmpl(rax, adr); movl(rax, adr); if (reg != rax) { Label L ; jcc(Assembler::notEqual, L); movl(adr, reg); bind(L); } } else { InstructionMark im(this); prefix(adr, reg); emit_byte(0x0F); emit_byte(0xB1); emit_operand(reg, adr); } } void Assembler::comisd(XMMRegister dst, Address src) { // NOTE: dbx seems to decode this as comiss even though the // 0x66 is there. Strangly ucomisd comes out correct NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); emit_byte(0x2F); emit_operand(dst, src); } void Assembler::comisd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66); emit_byte(0x2F); emit_byte(0xC0 | encode); } void Assembler::comiss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_NONE); emit_byte(0x2F); emit_operand(dst, src); } void Assembler::comiss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE); emit_byte(0x2F); emit_byte(0xC0 | encode); } void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3); emit_byte(0xE6); emit_byte(0xC0 | encode); } void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE); emit_byte(0x5B); emit_byte(0xC0 | encode); } void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2); emit_byte(0x5A); emit_byte(0xC0 | encode); } void Assembler::cvtsd2ss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F2); emit_byte(0x5A); emit_operand(dst, src); } void Assembler::cvtsi2sdl(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2); emit_byte(0x2A); emit_byte(0xC0 | encode); } void Assembler::cvtsi2sdl(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F2); emit_byte(0x2A); emit_operand(dst, src); } void Assembler::cvtsi2ssl(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3); emit_byte(0x2A); emit_byte(0xC0 | encode); } void Assembler::cvtsi2ssl(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F3); emit_byte(0x2A); emit_operand(dst, src); } void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3); emit_byte(0x5A); emit_byte(0xC0 | encode); } void Assembler::cvtss2sd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F3); emit_byte(0x5A); emit_operand(dst, src); } void Assembler::cvttsd2sil(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2); emit_byte(0x2C); emit_byte(0xC0 | encode); } void Assembler::cvttss2sil(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3); emit_byte(0x2C); emit_byte(0xC0 | encode); } void Assembler::decl(Address dst) { // Don't use it directly. Use MacroAssembler::decrement() instead. InstructionMark im(this); prefix(dst); emit_byte(0xFF); emit_operand(rcx, dst); } void Assembler::divsd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F2); emit_byte(0x5E); emit_operand(dst, src); } void Assembler::divsd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2); emit_byte(0x5E); emit_byte(0xC0 | encode); } void Assembler::divss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F3); emit_byte(0x5E); emit_operand(dst, src); } void Assembler::divss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3); emit_byte(0x5E); emit_byte(0xC0 | encode); } void Assembler::emms() { NOT_LP64(assert(VM_Version::supports_mmx(), "")); emit_byte(0x0F); emit_byte(0x77); } void Assembler::hlt() { emit_byte(0xF4); } void Assembler::idivl(Register src) { int encode = prefix_and_encode(src->encoding()); emit_byte(0xF7); emit_byte(0xF8 | encode); } void Assembler::divl(Register src) { // Unsigned int encode = prefix_and_encode(src->encoding()); emit_byte(0xF7); emit_byte(0xF0 | encode); } void Assembler::imull(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xAF); emit_byte(0xC0 | encode); } void Assembler::imull(Register dst, Register src, int value) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); if (is8bit(value)) { emit_byte(0x6B); emit_byte(0xC0 | encode); emit_byte(value & 0xFF); } else { emit_byte(0x69); emit_byte(0xC0 | encode); emit_long(value); } } void Assembler::incl(Address dst) { // Don't use it directly. Use MacroAssembler::increment() instead. InstructionMark im(this); prefix(dst); emit_byte(0xFF); emit_operand(rax, dst); } void Assembler::jcc(Condition cc, Label& L, bool maybe_short) { InstructionMark im(this); assert((0 <= cc) && (cc < 16), "illegal cc"); if (L.is_bound()) { address dst = target(L); assert(dst != NULL, "jcc most probably wrong"); const int short_size = 2; const int long_size = 6; intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos; if (maybe_short && is8bit(offs - short_size)) { // 0111 tttn #8-bit disp emit_byte(0x70 | cc); emit_byte((offs - short_size) & 0xFF); } else { // 0000 1111 1000 tttn #32-bit disp assert(is_simm32(offs - long_size), "must be 32bit offset (call4)"); emit_byte(0x0F); emit_byte(0x80 | cc); emit_long(offs - long_size); } } else { // Note: could eliminate cond. jumps to this jump if condition // is the same however, seems to be rather unlikely case. // Note: use jccb() if label to be bound is very close to get // an 8-bit displacement L.add_patch_at(code(), locator()); emit_byte(0x0F); emit_byte(0x80 | cc); emit_long(0); } } void Assembler::jccb(Condition cc, Label& L) { if (L.is_bound()) { const int short_size = 2; address entry = target(L); #ifdef ASSERT intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size); intptr_t delta = short_branch_delta(); if (delta != 0) { dist += (dist < 0 ? (-delta) :delta); } assert(is8bit(dist), "Dispacement too large for a short jmp"); #endif intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos; // 0111 tttn #8-bit disp emit_byte(0x70 | cc); emit_byte((offs - short_size) & 0xFF); } else { InstructionMark im(this); L.add_patch_at(code(), locator()); emit_byte(0x70 | cc); emit_byte(0); } } void Assembler::jmp(Address adr) { InstructionMark im(this); prefix(adr); emit_byte(0xFF); emit_operand(rsp, adr); } void Assembler::jmp(Label& L, bool maybe_short) { if (L.is_bound()) { address entry = target(L); assert(entry != NULL, "jmp most probably wrong"); InstructionMark im(this); const int short_size = 2; const int long_size = 5; intptr_t offs = entry - _code_pos; if (maybe_short && is8bit(offs - short_size)) { emit_byte(0xEB); emit_byte((offs - short_size) & 0xFF); } else { emit_byte(0xE9); emit_long(offs - long_size); } } else { // By default, forward jumps are always 32-bit displacements, since // we can't yet know where the label will be bound. If you're sure that // the forward jump will not run beyond 256 bytes, use jmpb to // force an 8-bit displacement. InstructionMark im(this); L.add_patch_at(code(), locator()); emit_byte(0xE9); emit_long(0); } } void Assembler::jmp(Register entry) { int encode = prefix_and_encode(entry->encoding()); emit_byte(0xFF); emit_byte(0xE0 | encode); } void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) { InstructionMark im(this); emit_byte(0xE9); assert(dest != NULL, "must have a target"); intptr_t disp = dest - (_code_pos + sizeof(int32_t)); assert(is_simm32(disp), "must be 32bit offset (jmp)"); emit_data(disp, rspec.reloc(), call32_operand); } void Assembler::jmpb(Label& L) { if (L.is_bound()) { const int short_size = 2; address entry = target(L); assert(entry != NULL, "jmp most probably wrong"); #ifdef ASSERT intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size); intptr_t delta = short_branch_delta(); if (delta != 0) { dist += (dist < 0 ? (-delta) :delta); } assert(is8bit(dist), "Dispacement too large for a short jmp"); #endif intptr_t offs = entry - _code_pos; emit_byte(0xEB); emit_byte((offs - short_size) & 0xFF); } else { InstructionMark im(this); L.add_patch_at(code(), locator()); emit_byte(0xEB); emit_byte(0); } } void Assembler::ldmxcsr( Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); prefix(src); emit_byte(0x0F); emit_byte(0xAE); emit_operand(as_Register(2), src); } void Assembler::leal(Register dst, Address src) { InstructionMark im(this); #ifdef _LP64 emit_byte(0x67); // addr32 prefix(src, dst); #endif // LP64 emit_byte(0x8D); emit_operand(dst, src); } void Assembler::lock() { if (Atomics & 1) { // Emit either nothing, a NOP, or a NOP: prefix emit_byte(0x90) ; } else { emit_byte(0xF0); } } void Assembler::lzcntl(Register dst, Register src) { assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR"); emit_byte(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xBD); emit_byte(0xC0 | encode); } // Emit mfence instruction void Assembler::mfence() { NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");) emit_byte( 0x0F ); emit_byte( 0xAE ); emit_byte( 0xF0 ); } void Assembler::mov(Register dst, Register src) { LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); } void Assembler::movapd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66); emit_byte(0x28); emit_byte(0xC0 | encode); } void Assembler::movaps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE); emit_byte(0x28); emit_byte(0xC0 | encode); } void Assembler::movb(Register dst, Address src) { NOT_LP64(assert(dst->has_byte_register(), "must have byte register")); InstructionMark im(this); prefix(src, dst, true); emit_byte(0x8A); emit_operand(dst, src); } void Assembler::movb(Address dst, int imm8) { InstructionMark im(this); prefix(dst); emit_byte(0xC6); emit_operand(rax, dst, 1); emit_byte(imm8); } void Assembler::movb(Address dst, Register src) { assert(src->has_byte_register(), "must have byte register"); InstructionMark im(this); prefix(dst, src, true); emit_byte(0x88); emit_operand(src, dst); } void Assembler::movdl(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66); emit_byte(0x6E); emit_byte(0xC0 | encode); } void Assembler::movdl(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // swap src/dst to get correct prefix int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66); emit_byte(0x7E); emit_byte(0xC0 | encode); } void Assembler::movdl(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); emit_byte(0x6E); emit_operand(dst, src); } void Assembler::movdqa(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66); emit_byte(0x6F); emit_byte(0xC0 | encode); } void Assembler::movdqu(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F3); emit_byte(0x6F); emit_operand(dst, src); } void Assembler::movdqu(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3); emit_byte(0x6F); emit_byte(0xC0 | encode); } void Assembler::movdqu(Address dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F3); emit_byte(0x7F); emit_operand(src, dst); } // Uses zero extension on 64bit void Assembler::movl(Register dst, int32_t imm32) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xB8 | encode); emit_long(imm32); } void Assembler::movl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x8B); emit_byte(0xC0 | encode); } void Assembler::movl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x8B); emit_operand(dst, src); } void Assembler::movl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_byte(0xC7); emit_operand(rax, dst, 4); emit_long(imm32); } void Assembler::movl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_byte(0x89); emit_operand(src, dst); } // New cpus require to use movsd and movss to avoid partial register stall // when loading from memory. But for old Opteron use movlpd instead of movsd. // The selection is done in MacroAssembler::movdbl() and movflt(). void Assembler::movlpd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66); emit_byte(0x12); emit_operand(dst, src); } void Assembler::movq( MMXRegister dst, Address src ) { assert( VM_Version::supports_mmx(), "" ); emit_byte(0x0F); emit_byte(0x6F); emit_operand(dst, src); } void Assembler::movq( Address dst, MMXRegister src ) { assert( VM_Version::supports_mmx(), "" ); emit_byte(0x0F); emit_byte(0x7F); // workaround gcc (3.2.1-7a) bug // In that version of gcc with only an emit_operand(MMX, Address) // gcc will tail jump and try and reverse the parameters completely // obliterating dst in the process. By having a version available // that doesn't need to swap the args at the tail jump the bug is // avoided. emit_operand(dst, src); } void Assembler::movq(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F3); emit_byte(0x7E); emit_operand(dst, src); } void Assembler::movq(Address dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); emit_byte(0xD6); emit_operand(src, dst); } void Assembler::movsbl(Register dst, Address src) { // movsxb InstructionMark im(this); prefix(src, dst); emit_byte(0x0F); emit_byte(0xBE); emit_operand(dst, src); } void Assembler::movsbl(Register dst, Register src) { // movsxb NOT_LP64(assert(src->has_byte_register(), "must have byte register")); int encode = prefix_and_encode(dst->encoding(), src->encoding(), true); emit_byte(0x0F); emit_byte(0xBE); emit_byte(0xC0 | encode); } void Assembler::movsd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2); emit_byte(0x10); emit_byte(0xC0 | encode); } void Assembler::movsd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F2); emit_byte(0x10); emit_operand(dst, src); } void Assembler::movsd(Address dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F2); emit_byte(0x11); emit_operand(src, dst); } void Assembler::movss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3); emit_byte(0x10); emit_byte(0xC0 | encode); } void Assembler::movss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F3); emit_byte(0x10); emit_operand(dst, src); } void Assembler::movss(Address dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F3); emit_byte(0x11); emit_operand(src, dst); } void Assembler::movswl(Register dst, Address src) { // movsxw InstructionMark im(this); prefix(src, dst); emit_byte(0x0F); emit_byte(0xBF); emit_operand(dst, src); } void Assembler::movswl(Register dst, Register src) { // movsxw int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xBF); emit_byte(0xC0 | encode); } void Assembler::movw(Address dst, int imm16) { InstructionMark im(this); emit_byte(0x66); // switch to 16-bit mode prefix(dst); emit_byte(0xC7); emit_operand(rax, dst, 2); emit_word(imm16); } void Assembler::movw(Register dst, Address src) { InstructionMark im(this); emit_byte(0x66); prefix(src, dst); emit_byte(0x8B); emit_operand(dst, src); } void Assembler::movw(Address dst, Register src) { InstructionMark im(this); emit_byte(0x66); prefix(dst, src); emit_byte(0x89); emit_operand(src, dst); } void Assembler::movzbl(Register dst, Address src) { // movzxb InstructionMark im(this); prefix(src, dst); emit_byte(0x0F); emit_byte(0xB6); emit_operand(dst, src); } void Assembler::movzbl(Register dst, Register src) { // movzxb NOT_LP64(assert(src->has_byte_register(), "must have byte register")); int encode = prefix_and_encode(dst->encoding(), src->encoding(), true); emit_byte(0x0F); emit_byte(0xB6); emit_byte(0xC0 | encode); } void Assembler::movzwl(Register dst, Address src) { // movzxw InstructionMark im(this); prefix(src, dst); emit_byte(0x0F); emit_byte(0xB7); emit_operand(dst, src); } void Assembler::movzwl(Register dst, Register src) { // movzxw int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xB7); emit_byte(0xC0 | encode); } void Assembler::mull(Address src) { InstructionMark im(this); prefix(src); emit_byte(0xF7); emit_operand(rsp, src); } void Assembler::mull(Register src) { int encode = prefix_and_encode(src->encoding()); emit_byte(0xF7); emit_byte(0xE0 | encode); } void Assembler::mulsd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F2); emit_byte(0x59); emit_operand(dst, src); } void Assembler::mulsd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2); emit_byte(0x59); emit_byte(0xC0 | encode); } void Assembler::mulss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F3); emit_byte(0x59); emit_operand(dst, src); } void Assembler::mulss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3); emit_byte(0x59); emit_byte(0xC0 | encode); } void Assembler::negl(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xF7); emit_byte(0xD8 | encode); } void Assembler::nop(int i) { #ifdef ASSERT assert(i > 0, " "); // The fancy nops aren't currently recognized by debuggers making it a // pain to disassemble code while debugging. If asserts are on clearly // speed is not an issue so simply use the single byte traditional nop // to do alignment. for (; i > 0 ; i--) emit_byte(0x90); return; #endif // ASSERT if (UseAddressNop && VM_Version::is_intel()) { // // Using multi-bytes nops "0x0F 0x1F [address]" for Intel // 1: 0x90 // 2: 0x66 0x90 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding) // 4: 0x0F 0x1F 0x40 0x00 // 5: 0x0F 0x1F 0x44 0x00 0x00 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // The rest coding is Intel specific - don't use consecutive address nops // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 while(i >= 15) { // For Intel don't generate consecutive addess nops (mix with regular nops) i -= 15; emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix addr_nop_8(); emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix emit_byte(0x90); // nop } switch (i) { case 14: emit_byte(0x66); // size prefix case 13: emit_byte(0x66); // size prefix case 12: addr_nop_8(); emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix emit_byte(0x90); // nop break; case 11: emit_byte(0x66); // size prefix case 10: emit_byte(0x66); // size prefix case 9: emit_byte(0x66); // size prefix case 8: addr_nop_8(); break; case 7: addr_nop_7(); break; case 6: emit_byte(0x66); // size prefix case 5: addr_nop_5(); break; case 4: addr_nop_4(); break; case 3: // Don't use "0x0F 0x1F 0x00" - need patching safe padding emit_byte(0x66); // size prefix case 2: emit_byte(0x66); // size prefix case 1: emit_byte(0x90); // nop break; default: assert(i == 0, " "); } return; } if (UseAddressNop && VM_Version::is_amd()) { // // Using multi-bytes nops "0x0F 0x1F [address]" for AMD. // 1: 0x90 // 2: 0x66 0x90 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding) // 4: 0x0F 0x1F 0x40 0x00 // 5: 0x0F 0x1F 0x44 0x00 0x00 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // The rest coding is AMD specific - use consecutive address nops // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00 // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00 // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // Size prefixes (0x66) are added for larger sizes while(i >= 22) { i -= 11; emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix addr_nop_8(); } // Generate first nop for size between 21-12 switch (i) { case 21: i -= 1; emit_byte(0x66); // size prefix case 20: case 19: i -= 1; emit_byte(0x66); // size prefix case 18: case 17: i -= 1; emit_byte(0x66); // size prefix case 16: case 15: i -= 8; addr_nop_8(); break; case 14: case 13: i -= 7; addr_nop_7(); break; case 12: i -= 6; emit_byte(0x66); // size prefix addr_nop_5(); break; default: assert(i < 12, " "); } // Generate second nop for size between 11-1 switch (i) { case 11: emit_byte(0x66); // size prefix case 10: emit_byte(0x66); // size prefix case 9: emit_byte(0x66); // size prefix case 8: addr_nop_8(); break; case 7: addr_nop_7(); break; case 6: emit_byte(0x66); // size prefix case 5: addr_nop_5(); break; case 4: addr_nop_4(); break; case 3: // Don't use "0x0F 0x1F 0x00" - need patching safe padding emit_byte(0x66); // size prefix case 2: emit_byte(0x66); // size prefix case 1: emit_byte(0x90); // nop break; default: assert(i == 0, " "); } return; } // Using nops with size prefixes "0x66 0x90". // From AMD Optimization Guide: // 1: 0x90 // 2: 0x66 0x90 // 3: 0x66 0x66 0x90 // 4: 0x66 0x66 0x66 0x90 // 5: 0x66 0x66 0x90 0x66 0x90 // 6: 0x66 0x66 0x90 0x66 0x66 0x90 // 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 // 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90 // 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90 // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90 // while(i > 12) { i -= 4; emit_byte(0x66); // size prefix emit_byte(0x66); emit_byte(0x66); emit_byte(0x90); // nop } // 1 - 12 nops if(i > 8) { if(i > 9) { i -= 1; emit_byte(0x66); } i -= 3; emit_byte(0x66); emit_byte(0x66); emit_byte(0x90); } // 1 - 8 nops if(i > 4) { if(i > 6) { i -= 1; emit_byte(0x66); } i -= 3; emit_byte(0x66); emit_byte(0x66); emit_byte(0x90); } switch (i) { case 4: emit_byte(0x66); case 3: emit_byte(0x66); case 2: emit_byte(0x66); case 1: emit_byte(0x90); break; default: assert(i == 0, " "); } } void Assembler::notl(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xF7); emit_byte(0xD0 | encode ); } void Assembler::orl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_arith_operand(0x81, rcx, dst, imm32); } void Assembler::orl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xC8, dst, imm32); } void Assembler::orl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x0B); emit_operand(dst, src); } void Assembler::orl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x0B, 0xC0, dst, src); } void Assembler::packuswb(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66); emit_byte(0x67); emit_operand(dst, src); } void Assembler::packuswb(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66); emit_byte(0x67); emit_byte(0xC0 | encode); } void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) { assert(VM_Version::supports_sse4_2(), ""); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A); emit_byte(0x61); emit_operand(dst, src); emit_byte(imm8); } void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { assert(VM_Version::supports_sse4_2(), ""); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A); emit_byte(0x61); emit_byte(0xC0 | encode); emit_byte(imm8); } void Assembler::pmovzxbw(XMMRegister dst, Address src) { assert(VM_Version::supports_sse4_1(), ""); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_byte(0x30); emit_operand(dst, src); } void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_sse4_1(), ""); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_byte(0x30); emit_byte(0xC0 | encode); } // generic void Assembler::pop(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0x58 | encode); } void Assembler::popcntl(Register dst, Address src) { assert(VM_Version::supports_popcnt(), "must support"); InstructionMark im(this); emit_byte(0xF3); prefix(src, dst); emit_byte(0x0F); emit_byte(0xB8); emit_operand(dst, src); } void Assembler::popcntl(Register dst, Register src) { assert(VM_Version::supports_popcnt(), "must support"); emit_byte(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xB8); emit_byte(0xC0 | encode); } void Assembler::popf() { emit_byte(0x9D); } #ifndef _LP64 // no 32bit push/pop on amd64 void Assembler::popl(Address dst) { // NOTE: this will adjust stack by 8byte on 64bits InstructionMark im(this); prefix(dst); emit_byte(0x8F); emit_operand(rax, dst); } #endif void Assembler::prefetch_prefix(Address src) { prefix(src); emit_byte(0x0F); } void Assembler::prefetchnta(Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "must support")); InstructionMark im(this); prefetch_prefix(src); emit_byte(0x18); emit_operand(rax, src); // 0, src } void Assembler::prefetchr(Address src) { assert(VM_Version::supports_3dnow_prefetch(), "must support"); InstructionMark im(this); prefetch_prefix(src); emit_byte(0x0D); emit_operand(rax, src); // 0, src } void Assembler::prefetcht0(Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "must support")); InstructionMark im(this); prefetch_prefix(src); emit_byte(0x18); emit_operand(rcx, src); // 1, src } void Assembler::prefetcht1(Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "must support")); InstructionMark im(this); prefetch_prefix(src); emit_byte(0x18); emit_operand(rdx, src); // 2, src } void Assembler::prefetcht2(Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "must support")); InstructionMark im(this); prefetch_prefix(src); emit_byte(0x18); emit_operand(rbx, src); // 3, src } void Assembler::prefetchw(Address src) { assert(VM_Version::supports_3dnow_prefetch(), "must support"); InstructionMark im(this); prefetch_prefix(src); emit_byte(0x0D); emit_operand(rcx, src); // 1, src } void Assembler::prefix(Prefix p) { a_byte(p); } void Assembler::por(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66); emit_byte(0xEB); emit_byte(0xC0 | encode); } void Assembler::por(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66); emit_byte(0xEB); emit_operand(dst, src); } void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) { assert(isByte(mode), "invalid value"); NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66); emit_byte(0x70); emit_byte(0xC0 | encode); emit_byte(mode & 0xFF); } void Assembler::pshufd(XMMRegister dst, Address src, int mode) { assert(isByte(mode), "invalid value"); NOT_LP64(assert(VM_Version::supports_sse2(), "")); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); emit_byte(0x70); emit_operand(dst, src); emit_byte(mode & 0xFF); } void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { assert(isByte(mode), "invalid value"); NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2); emit_byte(0x70); emit_byte(0xC0 | encode); emit_byte(mode & 0xFF); } void Assembler::pshuflw(XMMRegister dst, Address src, int mode) { assert(isByte(mode), "invalid value"); NOT_LP64(assert(VM_Version::supports_sse2(), "")); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F2); emit_byte(0x70); emit_operand(dst, src); emit_byte(mode & 0xFF); } void Assembler::psrlq(XMMRegister dst, int shift) { // Shift 64 bit value logically right by specified number of bits. // HMM Table D-1 says sse2 or mmx. // Do not confuse it with psrldq SSE2 instruction which // shifts 128 bit value in xmm register by number of bytes. NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66); emit_byte(0x73); emit_byte(0xC0 | encode); emit_byte(shift); } void Assembler::psrldq(XMMRegister dst, int shift) { // Shift 128 bit value in xmm register by number of bytes. NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66); emit_byte(0x73); emit_byte(0xC0 | encode); emit_byte(shift); } void Assembler::ptest(XMMRegister dst, Address src) { assert(VM_Version::supports_sse4_1(), ""); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_byte(0x17); emit_operand(dst, src); } void Assembler::ptest(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_sse4_1(), ""); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_byte(0x17); emit_byte(0xC0 | encode); } void Assembler::punpcklbw(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66); emit_byte(0x60); emit_operand(dst, src); } void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66); emit_byte(0x60); emit_byte(0xC0 | encode); } void Assembler::punpckldq(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66); emit_byte(0x62); emit_operand(dst, src); } void Assembler::punpckldq(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66); emit_byte(0x62); emit_byte(0xC0 | encode); } void Assembler::push(int32_t imm32) { // in 64bits we push 64bits onto the stack but only // take a 32bit immediate emit_byte(0x68); emit_long(imm32); } void Assembler::push(Register src) { int encode = prefix_and_encode(src->encoding()); emit_byte(0x50 | encode); } void Assembler::pushf() { emit_byte(0x9C); } #ifndef _LP64 // no 32bit push/pop on amd64 void Assembler::pushl(Address src) { // Note this will push 64bit on 64bit InstructionMark im(this); prefix(src); emit_byte(0xFF); emit_operand(rsi, src); } #endif void Assembler::pxor(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66); emit_byte(0xEF); emit_operand(dst, src); } void Assembler::pxor(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66); emit_byte(0xEF); emit_byte(0xC0 | encode); } void Assembler::rcll(Register dst, int imm8) { assert(isShiftCount(imm8), "illegal shift count"); int encode = prefix_and_encode(dst->encoding()); if (imm8 == 1) { emit_byte(0xD1); emit_byte(0xD0 | encode); } else { emit_byte(0xC1); emit_byte(0xD0 | encode); emit_byte(imm8); } } // copies data from [esi] to [edi] using rcx pointer sized words // generic void Assembler::rep_mov() { emit_byte(0xF3); // MOVSQ LP64_ONLY(prefix(REX_W)); emit_byte(0xA5); } // sets rcx pointer sized words with rax, value at [edi] // generic void Assembler::rep_set() { // rep_set emit_byte(0xF3); // STOSQ LP64_ONLY(prefix(REX_W)); emit_byte(0xAB); } // scans rcx pointer sized words at [edi] for occurance of rax, // generic void Assembler::repne_scan() { // repne_scan emit_byte(0xF2); // SCASQ LP64_ONLY(prefix(REX_W)); emit_byte(0xAF); } #ifdef _LP64 // scans rcx 4 byte words at [edi] for occurance of rax, // generic void Assembler::repne_scanl() { // repne_scan emit_byte(0xF2); // SCASL emit_byte(0xAF); } #endif void Assembler::ret(int imm16) { if (imm16 == 0) { emit_byte(0xC3); } else { emit_byte(0xC2); emit_word(imm16); } } void Assembler::sahf() { #ifdef _LP64 // Not supported in 64bit mode ShouldNotReachHere(); #endif emit_byte(0x9E); } void Assembler::sarl(Register dst, int imm8) { int encode = prefix_and_encode(dst->encoding()); assert(isShiftCount(imm8), "illegal shift count"); if (imm8 == 1) { emit_byte(0xD1); emit_byte(0xF8 | encode); } else { emit_byte(0xC1); emit_byte(0xF8 | encode); emit_byte(imm8); } } void Assembler::sarl(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xD3); emit_byte(0xF8 | encode); } void Assembler::sbbl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_arith_operand(0x81, rbx, dst, imm32); } void Assembler::sbbl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xD8, dst, imm32); } void Assembler::sbbl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x1B); emit_operand(dst, src); } void Assembler::sbbl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x1B, 0xC0, dst, src); } void Assembler::setb(Condition cc, Register dst) { assert(0 <= cc && cc < 16, "illegal cc"); int encode = prefix_and_encode(dst->encoding(), true); emit_byte(0x0F); emit_byte(0x90 | cc); emit_byte(0xC0 | encode); } void Assembler::shll(Register dst, int imm8) { assert(isShiftCount(imm8), "illegal shift count"); int encode = prefix_and_encode(dst->encoding()); if (imm8 == 1 ) { emit_byte(0xD1); emit_byte(0xE0 | encode); } else { emit_byte(0xC1); emit_byte(0xE0 | encode); emit_byte(imm8); } } void Assembler::shll(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xD3); emit_byte(0xE0 | encode); } void Assembler::shrl(Register dst, int imm8) { assert(isShiftCount(imm8), "illegal shift count"); int encode = prefix_and_encode(dst->encoding()); emit_byte(0xC1); emit_byte(0xE8 | encode); emit_byte(imm8); } void Assembler::shrl(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xD3); emit_byte(0xE8 | encode); } // copies a single word from [esi] to [edi] void Assembler::smovl() { emit_byte(0xA5); } void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2); emit_byte(0x51); emit_byte(0xC0 | encode); } void Assembler::sqrtsd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F2); emit_byte(0x51); emit_operand(dst, src); } void Assembler::sqrtss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3); emit_byte(0x51); emit_byte(0xC0 | encode); } void Assembler::sqrtss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F3); emit_byte(0x51); emit_operand(dst, src); } void Assembler::stmxcsr( Address dst) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); prefix(dst); emit_byte(0x0F); emit_byte(0xAE); emit_operand(as_Register(3), dst); } void Assembler::subl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_arith_operand(0x81, rbp, dst, imm32); } void Assembler::subl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_byte(0x29); emit_operand(src, dst); } void Assembler::subl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xE8, dst, imm32); } void Assembler::subl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x2B); emit_operand(dst, src); } void Assembler::subl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x2B, 0xC0, dst, src); } void Assembler::subsd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2); emit_byte(0x5C); emit_byte(0xC0 | encode); } void Assembler::subsd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F2); emit_byte(0x5C); emit_operand(dst, src); } void Assembler::subss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3); emit_byte(0x5C); emit_byte(0xC0 | encode); } void Assembler::subss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_F3); emit_byte(0x5C); emit_operand(dst, src); } void Assembler::testb(Register dst, int imm8) { NOT_LP64(assert(dst->has_byte_register(), "must have byte register")); (void) prefix_and_encode(dst->encoding(), true); emit_arith_b(0xF6, 0xC0, dst, imm8); } void Assembler::testl(Register dst, int32_t imm32) { // not using emit_arith because test // doesn't support sign-extension of // 8bit operands int encode = dst->encoding(); if (encode == 0) { emit_byte(0xA9); } else { encode = prefix_and_encode(encode); emit_byte(0xF7); emit_byte(0xC0 | encode); } emit_long(imm32); } void Assembler::testl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x85, 0xC0, dst, src); } void Assembler::testl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x85); emit_operand(dst, src); } void Assembler::ucomisd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); emit_byte(0x2E); emit_operand(dst, src); } void Assembler::ucomisd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66); emit_byte(0x2E); emit_byte(0xC0 | encode); } void Assembler::ucomiss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_NONE); emit_byte(0x2E); emit_operand(dst, src); } void Assembler::ucomiss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE); emit_byte(0x2E); emit_byte(0xC0 | encode); } void Assembler::xaddl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_byte(0x0F); emit_byte(0xC1); emit_operand(src, dst); } void Assembler::xchgl(Register dst, Address src) { // xchg InstructionMark im(this); prefix(src, dst); emit_byte(0x87); emit_operand(dst, src); } void Assembler::xchgl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x87); emit_byte(0xc0 | encode); } void Assembler::xorl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xF0, dst, imm32); } void Assembler::xorl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x33); emit_operand(dst, src); } void Assembler::xorl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x33, 0xC0, dst, src); } void Assembler::xorpd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66); emit_byte(0x57); emit_byte(0xC0 | encode); } void Assembler::xorpd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66); emit_byte(0x57); emit_operand(dst, src); } void Assembler::xorps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE); emit_byte(0x57); emit_byte(0xC0 | encode); } void Assembler::xorps(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_NONE); emit_byte(0x57); emit_operand(dst, src); } // AVX 3-operands non destructive source instructions (encoded with VEX prefix) void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); vex_prefix(dst, nds, src, VEX_SIMD_F2); emit_byte(0x58); emit_operand(dst, src); } void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2); emit_byte(0x58); emit_byte(0xC0 | encode); } void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); vex_prefix(dst, nds, src, VEX_SIMD_F3); emit_byte(0x58); emit_operand(dst, src); } void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3); emit_byte(0x58); emit_byte(0xC0 | encode); } void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector emit_byte(0x54); emit_operand(dst, src); } void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector emit_byte(0x54); emit_operand(dst, src); } void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); vex_prefix(dst, nds, src, VEX_SIMD_F2); emit_byte(0x5E); emit_operand(dst, src); } void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2); emit_byte(0x5E); emit_byte(0xC0 | encode); } void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); vex_prefix(dst, nds, src, VEX_SIMD_F3); emit_byte(0x5E); emit_operand(dst, src); } void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3); emit_byte(0x5E); emit_byte(0xC0 | encode); } void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); vex_prefix(dst, nds, src, VEX_SIMD_F2); emit_byte(0x59); emit_operand(dst, src); } void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2); emit_byte(0x59); emit_byte(0xC0 | encode); } void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) { InstructionMark im(this); vex_prefix(dst, nds, src, VEX_SIMD_F3); emit_byte(0x59); emit_operand(dst, src); } void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3); emit_byte(0x59); emit_byte(0xC0 | encode); } void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); vex_prefix(dst, nds, src, VEX_SIMD_F2); emit_byte(0x5C); emit_operand(dst, src); } void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2); emit_byte(0x5C); emit_byte(0xC0 | encode); } void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); vex_prefix(dst, nds, src, VEX_SIMD_F3); emit_byte(0x5C); emit_operand(dst, src); } void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3); emit_byte(0x5C); emit_byte(0xC0 | encode); } void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector emit_byte(0x57); emit_operand(dst, src); } void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector emit_byte(0x57); emit_operand(dst, src); } #ifndef _LP64 // 32bit only pieces of the assembler void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) { // NO PREFIX AS NEVER 64BIT InstructionMark im(this); emit_byte(0x81); emit_byte(0xF8 | src1->encoding()); emit_data(imm32, rspec, 0); } void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) { // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs InstructionMark im(this); emit_byte(0x81); emit_operand(rdi, src1); emit_data(imm32, rspec, 0); } // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax, // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded // into rdx:rax. The ZF is set if the compared values were equal, and cleared otherwise. void Assembler::cmpxchg8(Address adr) { InstructionMark im(this); emit_byte(0x0F); emit_byte(0xc7); emit_operand(rcx, adr); } void Assembler::decl(Register dst) { // Don't use it directly. Use MacroAssembler::decrementl() instead. emit_byte(0x48 | dst->encoding()); } #endif // _LP64 // 64bit typically doesn't use the x87 but needs to for the trig funcs void Assembler::fabs() { emit_byte(0xD9); emit_byte(0xE1); } void Assembler::fadd(int i) { emit_farith(0xD8, 0xC0, i); } void Assembler::fadd_d(Address src) { InstructionMark im(this); emit_byte(0xDC); emit_operand32(rax, src); } void Assembler::fadd_s(Address src) { InstructionMark im(this); emit_byte(0xD8); emit_operand32(rax, src); } void Assembler::fadda(int i) { emit_farith(0xDC, 0xC0, i); } void Assembler::faddp(int i) { emit_farith(0xDE, 0xC0, i); } void Assembler::fchs() { emit_byte(0xD9); emit_byte(0xE0); } void Assembler::fcom(int i) { emit_farith(0xD8, 0xD0, i); } void Assembler::fcomp(int i) { emit_farith(0xD8, 0xD8, i); } void Assembler::fcomp_d(Address src) { InstructionMark im(this); emit_byte(0xDC); emit_operand32(rbx, src); } void Assembler::fcomp_s(Address src) { InstructionMark im(this); emit_byte(0xD8); emit_operand32(rbx, src); } void Assembler::fcompp() { emit_byte(0xDE); emit_byte(0xD9); } void Assembler::fcos() { emit_byte(0xD9); emit_byte(0xFF); } void Assembler::fdecstp() { emit_byte(0xD9); emit_byte(0xF6); } void Assembler::fdiv(int i) { emit_farith(0xD8, 0xF0, i); } void Assembler::fdiv_d(Address src) { InstructionMark im(this); emit_byte(0xDC); emit_operand32(rsi, src); } void Assembler::fdiv_s(Address src) { InstructionMark im(this); emit_byte(0xD8); emit_operand32(rsi, src); } void Assembler::fdiva(int i) { emit_farith(0xDC, 0xF8, i); } // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994) // is erroneous for some of the floating-point instructions below. void Assembler::fdivp(int i) { emit_farith(0xDE, 0xF8, i); // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong) } void Assembler::fdivr(int i) { emit_farith(0xD8, 0xF8, i); } void Assembler::fdivr_d(Address src) { InstructionMark im(this); emit_byte(0xDC); emit_operand32(rdi, src); } void Assembler::fdivr_s(Address src) { InstructionMark im(this); emit_byte(0xD8); emit_operand32(rdi, src); } void Assembler::fdivra(int i) { emit_farith(0xDC, 0xF0, i); } void Assembler::fdivrp(int i) { emit_farith(0xDE, 0xF0, i); // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong) } void Assembler::ffree(int i) { emit_farith(0xDD, 0xC0, i); } void Assembler::fild_d(Address adr) { InstructionMark im(this); emit_byte(0xDF); emit_operand32(rbp, adr); } void Assembler::fild_s(Address adr) { InstructionMark im(this); emit_byte(0xDB); emit_operand32(rax, adr); } void Assembler::fincstp() { emit_byte(0xD9); emit_byte(0xF7); } void Assembler::finit() { emit_byte(0x9B); emit_byte(0xDB); emit_byte(0xE3); } void Assembler::fist_s(Address adr) { InstructionMark im(this); emit_byte(0xDB); emit_operand32(rdx, adr); } void Assembler::fistp_d(Address adr) { InstructionMark im(this); emit_byte(0xDF); emit_operand32(rdi, adr); } void Assembler::fistp_s(Address adr) { InstructionMark im(this); emit_byte(0xDB); emit_operand32(rbx, adr); } void Assembler::fld1() { emit_byte(0xD9); emit_byte(0xE8); } void Assembler::fld_d(Address adr) { InstructionMark im(this); emit_byte(0xDD); emit_operand32(rax, adr); } void Assembler::fld_s(Address adr) { InstructionMark im(this); emit_byte(0xD9); emit_operand32(rax, adr); } void Assembler::fld_s(int index) { emit_farith(0xD9, 0xC0, index); } void Assembler::fld_x(Address adr) { InstructionMark im(this); emit_byte(0xDB); emit_operand32(rbp, adr); } void Assembler::fldcw(Address src) { InstructionMark im(this); emit_byte(0xd9); emit_operand32(rbp, src); } void Assembler::fldenv(Address src) { InstructionMark im(this); emit_byte(0xD9); emit_operand32(rsp, src); } void Assembler::fldlg2() { emit_byte(0xD9); emit_byte(0xEC); } void Assembler::fldln2() { emit_byte(0xD9); emit_byte(0xED); } void Assembler::fldz() { emit_byte(0xD9); emit_byte(0xEE); } void Assembler::flog() { fldln2(); fxch(); fyl2x(); } void Assembler::flog10() { fldlg2(); fxch(); fyl2x(); } void Assembler::fmul(int i) { emit_farith(0xD8, 0xC8, i); } void Assembler::fmul_d(Address src) { InstructionMark im(this); emit_byte(0xDC); emit_operand32(rcx, src); } void Assembler::fmul_s(Address src) { InstructionMark im(this); emit_byte(0xD8); emit_operand32(rcx, src); } void Assembler::fmula(int i) { emit_farith(0xDC, 0xC8, i); } void Assembler::fmulp(int i) { emit_farith(0xDE, 0xC8, i); } void Assembler::fnsave(Address dst) { InstructionMark im(this); emit_byte(0xDD); emit_operand32(rsi, dst); } void Assembler::fnstcw(Address src) { InstructionMark im(this); emit_byte(0x9B); emit_byte(0xD9); emit_operand32(rdi, src); } void Assembler::fnstsw_ax() { emit_byte(0xdF); emit_byte(0xE0); } void Assembler::fprem() { emit_byte(0xD9); emit_byte(0xF8); } void Assembler::fprem1() { emit_byte(0xD9); emit_byte(0xF5); } void Assembler::frstor(Address src) { InstructionMark im(this); emit_byte(0xDD); emit_operand32(rsp, src); } void Assembler::fsin() { emit_byte(0xD9); emit_byte(0xFE); } void Assembler::fsqrt() { emit_byte(0xD9); emit_byte(0xFA); } void Assembler::fst_d(Address adr) { InstructionMark im(this); emit_byte(0xDD); emit_operand32(rdx, adr); } void Assembler::fst_s(Address adr) { InstructionMark im(this); emit_byte(0xD9); emit_operand32(rdx, adr); } void Assembler::fstp_d(Address adr) { InstructionMark im(this); emit_byte(0xDD); emit_operand32(rbx, adr); } void Assembler::fstp_d(int index) { emit_farith(0xDD, 0xD8, index); } void Assembler::fstp_s(Address adr) { InstructionMark im(this); emit_byte(0xD9); emit_operand32(rbx, adr); } void Assembler::fstp_x(Address adr) { InstructionMark im(this); emit_byte(0xDB); emit_operand32(rdi, adr); } void Assembler::fsub(int i) { emit_farith(0xD8, 0xE0, i); } void Assembler::fsub_d(Address src) { InstructionMark im(this); emit_byte(0xDC); emit_operand32(rsp, src); } void Assembler::fsub_s(Address src) { InstructionMark im(this); emit_byte(0xD8); emit_operand32(rsp, src); } void Assembler::fsuba(int i) { emit_farith(0xDC, 0xE8, i); } void Assembler::fsubp(int i) { emit_farith(0xDE, 0xE8, i); // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong) } void Assembler::fsubr(int i) { emit_farith(0xD8, 0xE8, i); } void Assembler::fsubr_d(Address src) { InstructionMark im(this); emit_byte(0xDC); emit_operand32(rbp, src); } void Assembler::fsubr_s(Address src) { InstructionMark im(this); emit_byte(0xD8); emit_operand32(rbp, src); } void Assembler::fsubra(int i) { emit_farith(0xDC, 0xE0, i); } void Assembler::fsubrp(int i) { emit_farith(0xDE, 0xE0, i); // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong) } void Assembler::ftan() { emit_byte(0xD9); emit_byte(0xF2); emit_byte(0xDD); emit_byte(0xD8); } void Assembler::ftst() { emit_byte(0xD9); emit_byte(0xE4); } void Assembler::fucomi(int i) { // make sure the instruction is supported (introduced for P6, together with cmov) guarantee(VM_Version::supports_cmov(), "illegal instruction"); emit_farith(0xDB, 0xE8, i); } void Assembler::fucomip(int i) { // make sure the instruction is supported (introduced for P6, together with cmov) guarantee(VM_Version::supports_cmov(), "illegal instruction"); emit_farith(0xDF, 0xE8, i); } void Assembler::fwait() { emit_byte(0x9B); } void Assembler::fxch(int i) { emit_farith(0xD9, 0xC8, i); } void Assembler::fyl2x() { emit_byte(0xD9); emit_byte(0xF1); } // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding. static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 }; // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding. static int simd_opc[4] = { 0, 0, 0x38, 0x3A }; // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding. void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) { if (pre > 0) { emit_byte(simd_pre[pre]); } if (rex_w) { prefixq(adr, xreg); } else { prefix(adr, xreg); } if (opc > 0) { emit_byte(0x0F); int opc2 = simd_opc[opc]; if (opc2 > 0) { emit_byte(opc2); } } } int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) { if (pre > 0) { emit_byte(simd_pre[pre]); } int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc); if (opc > 0) { emit_byte(0x0F); int opc2 = simd_opc[opc]; if (opc2 > 0) { emit_byte(opc2); } } return encode; } void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) { if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) { prefix(VEX_3bytes); int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0); byte1 = (~byte1) & 0xE0; byte1 |= opc; a_byte(byte1); int byte2 = ((~nds_enc) & 0xf) << 3; byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre; emit_byte(byte2); } else { prefix(VEX_2bytes); int byte1 = vex_r ? VEX_R : 0; byte1 = (~byte1) & 0x80; byte1 |= ((~nds_enc) & 0xf) << 3; byte1 |= (vector256 ? 4 : 0) | pre; emit_byte(byte1); } } void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){ bool vex_r = (xreg_enc >= 8); bool vex_b = adr.base_needs_rex(); bool vex_x = adr.index_needs_rex(); vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256); } int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) { bool vex_r = (dst_enc >= 8); bool vex_b = (src_enc >= 8); bool vex_x = false; vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256); return (((dst_enc & 7) << 3) | (src_enc & 7)); } void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) { if (UseAVX > 0) { int xreg_enc = xreg->encoding(); int nds_enc = nds->is_valid() ? nds->encoding() : 0; vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256); } else { assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding"); rex_prefix(adr, xreg, pre, opc, rex_w); } } int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) { int dst_enc = dst->encoding(); int src_enc = src->encoding(); if (UseAVX > 0) { int nds_enc = nds->is_valid() ? nds->encoding() : 0; return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256); } else { assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding"); return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w); } } #ifndef _LP64 void Assembler::incl(Register dst) { // Don't use it directly. Use MacroAssembler::incrementl() instead. emit_byte(0x40 | dst->encoding()); } void Assembler::lea(Register dst, Address src) { leal(dst, src); } void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); emit_byte(0xC7); emit_operand(rax, dst); emit_data((int)imm32, rspec, 0); } void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefix_and_encode(dst->encoding()); emit_byte(0xB8 | encode); emit_data((int)imm32, rspec, 0); } void Assembler::popa() { // 32bit emit_byte(0x61); } void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); emit_byte(0x68); emit_data(imm32, rspec, 0); } void Assembler::pusha() { // 32bit emit_byte(0x60); } void Assembler::set_byte_if_not_zero(Register dst) { emit_byte(0x0F); emit_byte(0x95); emit_byte(0xE0 | dst->encoding()); } void Assembler::shldl(Register dst, Register src) { emit_byte(0x0F); emit_byte(0xA5); emit_byte(0xC0 | src->encoding() << 3 | dst->encoding()); } void Assembler::shrdl(Register dst, Register src) { emit_byte(0x0F); emit_byte(0xAD); emit_byte(0xC0 | src->encoding() << 3 | dst->encoding()); } #else // LP64 void Assembler::set_byte_if_not_zero(Register dst) { int enc = prefix_and_encode(dst->encoding(), true); emit_byte(0x0F); emit_byte(0x95); emit_byte(0xE0 | enc); } // 64bit only pieces of the assembler // This should only be used by 64bit instructions that can use rip-relative // it cannot be used by instructions that want an immediate value. bool Assembler::reachable(AddressLiteral adr) { int64_t disp; // None will force a 64bit literal to the code stream. Likely a placeholder // for something that will be patched later and we need to certain it will // always be reachable. if (adr.reloc() == relocInfo::none) { return false; } if (adr.reloc() == relocInfo::internal_word_type) { // This should be rip relative and easily reachable. return true; } if (adr.reloc() == relocInfo::virtual_call_type || adr.reloc() == relocInfo::opt_virtual_call_type || adr.reloc() == relocInfo::static_call_type || adr.reloc() == relocInfo::static_stub_type ) { // This should be rip relative within the code cache and easily // reachable until we get huge code caches. (At which point // ic code is going to have issues). return true; } if (adr.reloc() != relocInfo::external_word_type && adr.reloc() != relocInfo::poll_return_type && // these are really external_word but need special adr.reloc() != relocInfo::poll_type && // relocs to identify them adr.reloc() != relocInfo::runtime_call_type ) { return false; } // Stress the correction code if (ForceUnreachable) { // Must be runtimecall reloc, see if it is in the codecache // Flipping stuff in the codecache to be unreachable causes issues // with things like inline caches where the additional instructions // are not handled. if (CodeCache::find_blob(adr._target) == NULL) { return false; } } // For external_word_type/runtime_call_type if it is reachable from where we // are now (possibly a temp buffer) and where we might end up // anywhere in the codeCache then we are always reachable. // This would have to change if we ever save/restore shared code // to be more pessimistic. disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int)); if (!is_simm32(disp)) return false; disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int)); if (!is_simm32(disp)) return false; disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int)); // Because rip relative is a disp + address_of_next_instruction and we // don't know the value of address_of_next_instruction we apply a fudge factor // to make sure we will be ok no matter the size of the instruction we get placed into. // We don't have to fudge the checks above here because they are already worst case. // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal // + 4 because better safe than sorry. const int fudge = 12 + 4; if (disp < 0) { disp -= fudge; } else { disp += fudge; } return is_simm32(disp); } // Check if the polling page is not reachable from the code cache using rip-relative // addressing. bool Assembler::is_polling_page_far() { intptr_t addr = (intptr_t)os::get_polling_page(); return ForceUnreachable || !is_simm32(addr - (intptr_t)CodeCache::low_bound()) || !is_simm32(addr - (intptr_t)CodeCache::high_bound()); } void Assembler::emit_data64(jlong data, relocInfo::relocType rtype, int format) { if (rtype == relocInfo::none) { emit_long64(data); } else { emit_data64(data, Relocation::spec_simple(rtype), format); } } void Assembler::emit_data64(jlong data, RelocationHolder const& rspec, int format) { assert(imm_operand == 0, "default format must be immediate in this file"); assert(imm_operand == format, "must be immediate"); assert(inst_mark() != NULL, "must be inside InstructionMark"); // Do not use AbstractAssembler::relocate, which is not intended for // embedded words. Instead, relocate to the enclosing instruction. code_section()->relocate(inst_mark(), rspec, format); #ifdef ASSERT check_relocation(rspec, format); #endif emit_long64(data); } int Assembler::prefix_and_encode(int reg_enc, bool byteinst) { if (reg_enc >= 8) { prefix(REX_B); reg_enc -= 8; } else if (byteinst && reg_enc >= 4) { prefix(REX); } return reg_enc; } int Assembler::prefixq_and_encode(int reg_enc) { if (reg_enc < 8) { prefix(REX_W); } else { prefix(REX_WB); reg_enc -= 8; } return reg_enc; } int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) { if (dst_enc < 8) { if (src_enc >= 8) { prefix(REX_B); src_enc -= 8; } else if (byteinst && src_enc >= 4) { prefix(REX); } } else { if (src_enc < 8) { prefix(REX_R); } else { prefix(REX_RB); src_enc -= 8; } dst_enc -= 8; } return dst_enc << 3 | src_enc; } int Assembler::prefixq_and_encode(int dst_enc, int src_enc) { if (dst_enc < 8) { if (src_enc < 8) { prefix(REX_W); } else { prefix(REX_WB); src_enc -= 8; } } else { if (src_enc < 8) { prefix(REX_WR); } else { prefix(REX_WRB); src_enc -= 8; } dst_enc -= 8; } return dst_enc << 3 | src_enc; } void Assembler::prefix(Register reg) { if (reg->encoding() >= 8) { prefix(REX_B); } } void Assembler::prefix(Address adr) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_XB); } else { prefix(REX_B); } } else { if (adr.index_needs_rex()) { prefix(REX_X); } } } void Assembler::prefixq(Address adr) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WXB); } else { prefix(REX_WB); } } else { if (adr.index_needs_rex()) { prefix(REX_WX); } else { prefix(REX_W); } } } void Assembler::prefix(Address adr, Register reg, bool byteinst) { if (reg->encoding() < 8) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_XB); } else { prefix(REX_B); } } else { if (adr.index_needs_rex()) { prefix(REX_X); } else if (byteinst && reg->encoding() >= 4 ) { prefix(REX); } } } else { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_RXB); } else { prefix(REX_RB); } } else { if (adr.index_needs_rex()) { prefix(REX_RX); } else { prefix(REX_R); } } } } void Assembler::prefixq(Address adr, Register src) { if (src->encoding() < 8) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WXB); } else { prefix(REX_WB); } } else { if (adr.index_needs_rex()) { prefix(REX_WX); } else { prefix(REX_W); } } } else { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WRXB); } else { prefix(REX_WRB); } } else { if (adr.index_needs_rex()) { prefix(REX_WRX); } else { prefix(REX_WR); } } } } void Assembler::prefix(Address adr, XMMRegister reg) { if (reg->encoding() < 8) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_XB); } else { prefix(REX_B); } } else { if (adr.index_needs_rex()) { prefix(REX_X); } } } else { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_RXB); } else { prefix(REX_RB); } } else { if (adr.index_needs_rex()) { prefix(REX_RX); } else { prefix(REX_R); } } } } void Assembler::prefixq(Address adr, XMMRegister src) { if (src->encoding() < 8) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WXB); } else { prefix(REX_WB); } } else { if (adr.index_needs_rex()) { prefix(REX_WX); } else { prefix(REX_W); } } } else { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WRXB); } else { prefix(REX_WRB); } } else { if (adr.index_needs_rex()) { prefix(REX_WRX); } else { prefix(REX_WR); } } } } void Assembler::adcq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xD0, dst, imm32); } void Assembler::adcq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x13); emit_operand(dst, src); } void Assembler::adcq(Register dst, Register src) { (int) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x13, 0xC0, dst, src); } void Assembler::addq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); emit_arith_operand(0x81, rax, dst,imm32); } void Assembler::addq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_byte(0x01); emit_operand(src, dst); } void Assembler::addq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xC0, dst, imm32); } void Assembler::addq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x03); emit_operand(dst, src); } void Assembler::addq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x03, 0xC0, dst, src); } void Assembler::andq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); emit_byte(0x81); emit_operand(rsp, dst, 4); emit_long(imm32); } void Assembler::andq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xE0, dst, imm32); } void Assembler::andq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x23); emit_operand(dst, src); } void Assembler::andq(Register dst, Register src) { (int) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x23, 0xC0, dst, src); } void Assembler::bsfq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xBC); emit_byte(0xC0 | encode); } void Assembler::bsrq(Register dst, Register src) { assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT"); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xBD); emit_byte(0xC0 | encode); } void Assembler::bswapq(Register reg) { int encode = prefixq_and_encode(reg->encoding()); emit_byte(0x0F); emit_byte(0xC8 | encode); } void Assembler::cdqq() { prefix(REX_W); emit_byte(0x99); } void Assembler::clflush(Address adr) { prefix(adr); emit_byte(0x0F); emit_byte(0xAE); emit_operand(rdi, adr); } void Assembler::cmovq(Condition cc, Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x40 | cc); emit_byte(0xC0 | encode); } void Assembler::cmovq(Condition cc, Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x0F); emit_byte(0x40 | cc); emit_operand(dst, src); } void Assembler::cmpq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); emit_byte(0x81); emit_operand(rdi, dst, 4); emit_long(imm32); } void Assembler::cmpq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xF8, dst, imm32); } void Assembler::cmpq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_byte(0x3B); emit_operand(src, dst); } void Assembler::cmpq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x3B, 0xC0, dst, src); } void Assembler::cmpq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x3B); emit_operand(dst, src); } void Assembler::cmpxchgq(Register reg, Address adr) { InstructionMark im(this); prefixq(adr, reg); emit_byte(0x0F); emit_byte(0xB1); emit_operand(reg, adr); } void Assembler::cvtsi2sdq(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2); emit_byte(0x2A); emit_byte(0xC0 | encode); } void Assembler::cvtsi2sdq(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix_q(dst, dst, src, VEX_SIMD_F2); emit_byte(0x2A); emit_operand(dst, src); } void Assembler::cvtsi2ssq(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3); emit_byte(0x2A); emit_byte(0xC0 | encode); } void Assembler::cvtsi2ssq(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix_q(dst, dst, src, VEX_SIMD_F3); emit_byte(0x2A); emit_operand(dst, src); } void Assembler::cvttsd2siq(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2); emit_byte(0x2C); emit_byte(0xC0 | encode); } void Assembler::cvttss2siq(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3); emit_byte(0x2C); emit_byte(0xC0 | encode); } void Assembler::decl(Register dst) { // Don't use it directly. Use MacroAssembler::decrementl() instead. // Use two-byte form (one-byte form is a REX prefix in 64-bit mode) int encode = prefix_and_encode(dst->encoding()); emit_byte(0xFF); emit_byte(0xC8 | encode); } void Assembler::decq(Register dst) { // Don't use it directly. Use MacroAssembler::decrementq() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xFF); emit_byte(0xC8 | encode); } void Assembler::decq(Address dst) { // Don't use it directly. Use MacroAssembler::decrementq() instead. InstructionMark im(this); prefixq(dst); emit_byte(0xFF); emit_operand(rcx, dst); } void Assembler::fxrstor(Address src) { prefixq(src); emit_byte(0x0F); emit_byte(0xAE); emit_operand(as_Register(1), src); } void Assembler::fxsave(Address dst) { prefixq(dst); emit_byte(0x0F); emit_byte(0xAE); emit_operand(as_Register(0), dst); } void Assembler::idivq(Register src) { int encode = prefixq_and_encode(src->encoding()); emit_byte(0xF7); emit_byte(0xF8 | encode); } void Assembler::imulq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xAF); emit_byte(0xC0 | encode); } void Assembler::imulq(Register dst, Register src, int value) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); if (is8bit(value)) { emit_byte(0x6B); emit_byte(0xC0 | encode); emit_byte(value & 0xFF); } else { emit_byte(0x69); emit_byte(0xC0 | encode); emit_long(value); } } void Assembler::incl(Register dst) { // Don't use it directly. Use MacroAssembler::incrementl() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefix_and_encode(dst->encoding()); emit_byte(0xFF); emit_byte(0xC0 | encode); } void Assembler::incq(Register dst) { // Don't use it directly. Use MacroAssembler::incrementq() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xFF); emit_byte(0xC0 | encode); } void Assembler::incq(Address dst) { // Don't use it directly. Use MacroAssembler::incrementq() instead. InstructionMark im(this); prefixq(dst); emit_byte(0xFF); emit_operand(rax, dst); } void Assembler::lea(Register dst, Address src) { leaq(dst, src); } void Assembler::leaq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x8D); emit_operand(dst, src); } void Assembler::mov64(Register dst, int64_t imm64) { InstructionMark im(this); int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xB8 | encode); emit_long64(imm64); } void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xB8 | encode); emit_data64(imm64, rspec); } void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefix_and_encode(dst->encoding()); emit_byte(0xB8 | encode); emit_data((int)imm32, rspec, narrow_oop_operand); } void Assembler::mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); prefix(dst); emit_byte(0xC7); emit_operand(rax, dst, 4); emit_data((int)imm32, rspec, narrow_oop_operand); } void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefix_and_encode(src1->encoding()); emit_byte(0x81); emit_byte(0xF8 | encode); emit_data((int)imm32, rspec, narrow_oop_operand); } void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); prefix(src1); emit_byte(0x81); emit_operand(rax, src1, 4); emit_data((int)imm32, rspec, narrow_oop_operand); } void Assembler::lzcntq(Register dst, Register src) { assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR"); emit_byte(0xF3); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xBD); emit_byte(0xC0 | encode); } void Assembler::movdq(XMMRegister dst, Register src) { // table D-1 says MMX/SSE2 NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66); emit_byte(0x6E); emit_byte(0xC0 | encode); } void Assembler::movdq(Register dst, XMMRegister src) { // table D-1 says MMX/SSE2 NOT_LP64(assert(VM_Version::supports_sse2(), "")); // swap src/dst to get correct prefix int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66); emit_byte(0x7E); emit_byte(0xC0 | encode); } void Assembler::movq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x8B); emit_byte(0xC0 | encode); } void Assembler::movq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x8B); emit_operand(dst, src); } void Assembler::movq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_byte(0x89); emit_operand(src, dst); } void Assembler::movsbq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x0F); emit_byte(0xBE); emit_operand(dst, src); } void Assembler::movsbq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xBE); emit_byte(0xC0 | encode); } void Assembler::movslq(Register dst, int32_t imm32) { // dbx shows movslq(rcx, 3) as movq $0x0000000049000000,(%rbx) // and movslq(r8, 3); as movl $0x0000000048000000,(%rbx) // as a result we shouldn't use until tested at runtime... ShouldNotReachHere(); InstructionMark im(this); int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xC7 | encode); emit_long(imm32); } void Assembler::movslq(Address dst, int32_t imm32) { assert(is_simm32(imm32), "lost bits"); InstructionMark im(this); prefixq(dst); emit_byte(0xC7); emit_operand(rax, dst, 4); emit_long(imm32); } void Assembler::movslq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x63); emit_operand(dst, src); } void Assembler::movslq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x63); emit_byte(0xC0 | encode); } void Assembler::movswq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x0F); emit_byte(0xBF); emit_operand(dst, src); } void Assembler::movswq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xBF); emit_byte(0xC0 | encode); } void Assembler::movzbq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x0F); emit_byte(0xB6); emit_operand(dst, src); } void Assembler::movzbq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xB6); emit_byte(0xC0 | encode); } void Assembler::movzwq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x0F); emit_byte(0xB7); emit_operand(dst, src); } void Assembler::movzwq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xB7); emit_byte(0xC0 | encode); } void Assembler::negq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xF7); emit_byte(0xD8 | encode); } void Assembler::notq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xF7); emit_byte(0xD0 | encode); } void Assembler::orq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); emit_byte(0x81); emit_operand(rcx, dst, 4); emit_long(imm32); } void Assembler::orq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xC8, dst, imm32); } void Assembler::orq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x0B); emit_operand(dst, src); } void Assembler::orq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x0B, 0xC0, dst, src); } void Assembler::popa() { // 64bit movq(r15, Address(rsp, 0)); movq(r14, Address(rsp, wordSize)); movq(r13, Address(rsp, 2 * wordSize)); movq(r12, Address(rsp, 3 * wordSize)); movq(r11, Address(rsp, 4 * wordSize)); movq(r10, Address(rsp, 5 * wordSize)); movq(r9, Address(rsp, 6 * wordSize)); movq(r8, Address(rsp, 7 * wordSize)); movq(rdi, Address(rsp, 8 * wordSize)); movq(rsi, Address(rsp, 9 * wordSize)); movq(rbp, Address(rsp, 10 * wordSize)); // skip rsp movq(rbx, Address(rsp, 12 * wordSize)); movq(rdx, Address(rsp, 13 * wordSize)); movq(rcx, Address(rsp, 14 * wordSize)); movq(rax, Address(rsp, 15 * wordSize)); addq(rsp, 16 * wordSize); } void Assembler::popcntq(Register dst, Address src) { assert(VM_Version::supports_popcnt(), "must support"); InstructionMark im(this); emit_byte(0xF3); prefixq(src, dst); emit_byte(0x0F); emit_byte(0xB8); emit_operand(dst, src); } void Assembler::popcntq(Register dst, Register src) { assert(VM_Version::supports_popcnt(), "must support"); emit_byte(0xF3); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xB8); emit_byte(0xC0 | encode); } void Assembler::popq(Address dst) { InstructionMark im(this); prefixq(dst); emit_byte(0x8F); emit_operand(rax, dst); } void Assembler::pusha() { // 64bit // we have to store original rsp. ABI says that 128 bytes // below rsp are local scratch. movq(Address(rsp, -5 * wordSize), rsp); subq(rsp, 16 * wordSize); movq(Address(rsp, 15 * wordSize), rax); movq(Address(rsp, 14 * wordSize), rcx); movq(Address(rsp, 13 * wordSize), rdx); movq(Address(rsp, 12 * wordSize), rbx); // skip rsp movq(Address(rsp, 10 * wordSize), rbp); movq(Address(rsp, 9 * wordSize), rsi); movq(Address(rsp, 8 * wordSize), rdi); movq(Address(rsp, 7 * wordSize), r8); movq(Address(rsp, 6 * wordSize), r9); movq(Address(rsp, 5 * wordSize), r10); movq(Address(rsp, 4 * wordSize), r11); movq(Address(rsp, 3 * wordSize), r12); movq(Address(rsp, 2 * wordSize), r13); movq(Address(rsp, wordSize), r14); movq(Address(rsp, 0), r15); } void Assembler::pushq(Address src) { InstructionMark im(this); prefixq(src); emit_byte(0xFF); emit_operand(rsi, src); } void Assembler::rclq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { emit_byte(0xD1); emit_byte(0xD0 | encode); } else { emit_byte(0xC1); emit_byte(0xD0 | encode); emit_byte(imm8); } } void Assembler::sarq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { emit_byte(0xD1); emit_byte(0xF8 | encode); } else { emit_byte(0xC1); emit_byte(0xF8 | encode); emit_byte(imm8); } } void Assembler::sarq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xD3); emit_byte(0xF8 | encode); } void Assembler::sbbq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); emit_arith_operand(0x81, rbx, dst, imm32); } void Assembler::sbbq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xD8, dst, imm32); } void Assembler::sbbq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x1B); emit_operand(dst, src); } void Assembler::sbbq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x1B, 0xC0, dst, src); } void Assembler::shlq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { emit_byte(0xD1); emit_byte(0xE0 | encode); } else { emit_byte(0xC1); emit_byte(0xE0 | encode); emit_byte(imm8); } } void Assembler::shlq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xD3); emit_byte(0xE0 | encode); } void Assembler::shrq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xC1); emit_byte(0xE8 | encode); emit_byte(imm8); } void Assembler::shrq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xD3); emit_byte(0xE8 | encode); } void Assembler::subq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); emit_arith_operand(0x81, rbp, dst, imm32); } void Assembler::subq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_byte(0x29); emit_operand(src, dst); } void Assembler::subq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xE8, dst, imm32); } void Assembler::subq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x2B); emit_operand(dst, src); } void Assembler::subq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x2B, 0xC0, dst, src); } void Assembler::testq(Register dst, int32_t imm32) { // not using emit_arith because test // doesn't support sign-extension of // 8bit operands int encode = dst->encoding(); if (encode == 0) { prefix(REX_W); emit_byte(0xA9); } else { encode = prefixq_and_encode(encode); emit_byte(0xF7); emit_byte(0xC0 | encode); } emit_long(imm32); } void Assembler::testq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x85, 0xC0, dst, src); } void Assembler::xaddq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_byte(0x0F); emit_byte(0xC1); emit_operand(src, dst); } void Assembler::xchgq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x87); emit_operand(dst, src); } void Assembler::xchgq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x87); emit_byte(0xc0 | encode); } void Assembler::xorq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x33, 0xC0, dst, src); } void Assembler::xorq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x33); emit_operand(dst, src); } #endif // !LP64 static Assembler::Condition reverse[] = { Assembler::noOverflow /* overflow = 0x0 */ , Assembler::overflow /* noOverflow = 0x1 */ , Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , Assembler::notZero /* zero = 0x4, equal = 0x4 */ , Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , Assembler::above /* belowEqual = 0x6 */ , Assembler::belowEqual /* above = 0x7 */ , Assembler::positive /* negative = 0x8 */ , Assembler::negative /* positive = 0x9 */ , Assembler::noParity /* parity = 0xa */ , Assembler::parity /* noParity = 0xb */ , Assembler::greaterEqual /* less = 0xc */ , Assembler::less /* greaterEqual = 0xd */ , Assembler::greater /* lessEqual = 0xe */ , Assembler::lessEqual /* greater = 0xf, */ }; // Implementation of MacroAssembler // First all the versions that have distinct versions depending on 32/64 bit // Unless the difference is trivial (1 line or so). #ifndef _LP64 // 32bit versions Address MacroAssembler::as_Address(AddressLiteral adr) { return Address(adr.target(), adr.rspec()); } Address MacroAssembler::as_Address(ArrayAddress adr) { return Address::make_array(adr); } int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg, bool swap_reg_contains_mark, Label& done, Label* slow_case, BiasedLockingCounters* counters) { assert(UseBiasedLocking, "why call this otherwise?"); assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg"); assert_different_registers(lock_reg, obj_reg, swap_reg); if (PrintBiasedLockingStatistics && counters == NULL) counters = BiasedLocking::counters(); bool need_tmp_reg = false; if (tmp_reg == noreg) { need_tmp_reg = true; tmp_reg = lock_reg; } else { assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg); } assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout"); Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes()); Address saved_mark_addr(lock_reg, 0); // Biased locking // See whether the lock is currently biased toward our thread and // whether the epoch is still valid // Note that the runtime guarantees sufficient alignment of JavaThread // pointers to allow age to be placed into low bits // First check to see whether biasing is even enabled for this object Label cas_label; int null_check_offset = -1; if (!swap_reg_contains_mark) { null_check_offset = offset(); movl(swap_reg, mark_addr); } if (need_tmp_reg) { push(tmp_reg); } movl(tmp_reg, swap_reg); andl(tmp_reg, markOopDesc::biased_lock_mask_in_place); cmpl(tmp_reg, markOopDesc::biased_lock_pattern); if (need_tmp_reg) { pop(tmp_reg); } jcc(Assembler::notEqual, cas_label); // The bias pattern is present in the object's header. Need to check // whether the bias owner and the epoch are both still current. // Note that because there is no current thread register on x86 we // need to store off the mark word we read out of the object to // avoid reloading it and needing to recheck invariants below. This // store is unfortunate but it makes the overall code shorter and // simpler. movl(saved_mark_addr, swap_reg); if (need_tmp_reg) { push(tmp_reg); } get_thread(tmp_reg); xorl(swap_reg, tmp_reg); if (swap_reg_contains_mark) { null_check_offset = offset(); } movl(tmp_reg, klass_addr); xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset())); andl(swap_reg, ~((int) markOopDesc::age_mask_in_place)); if (need_tmp_reg) { pop(tmp_reg); } if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address)counters->biased_lock_entry_count_addr())); } jcc(Assembler::equal, done); Label try_revoke_bias; Label try_rebias; // At this point we know that the header has the bias pattern and // that we are not the bias owner in the current epoch. We need to // figure out more details about the state of the header in order to // know what operations can be legally performed on the object's // header. // If the low three bits in the xor result aren't clear, that means // the prototype header is no longer biased and we have to revoke // the bias on this object. testl(swap_reg, markOopDesc::biased_lock_mask_in_place); jcc(Assembler::notZero, try_revoke_bias); // Biasing is still enabled for this data type. See whether the // epoch of the current bias is still valid, meaning that the epoch // bits of the mark word are equal to the epoch bits of the // prototype header. (Note that the prototype header's epoch bits // only change at a safepoint.) If not, attempt to rebias the object // toward the current thread. Note that we must be absolutely sure // that the current epoch is invalid in order to do this because // otherwise the manipulations it performs on the mark word are // illegal. testl(swap_reg, markOopDesc::epoch_mask_in_place); jcc(Assembler::notZero, try_rebias); // The epoch of the current bias is still valid but we know nothing // about the owner; it might be set or it might be clear. Try to // acquire the bias of the object using an atomic operation. If this // fails we will go in to the runtime to revoke the object's bias. // Note that we first construct the presumed unbiased header so we // don't accidentally blow away another thread's valid bias. movl(swap_reg, saved_mark_addr); andl(swap_reg, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place); if (need_tmp_reg) { push(tmp_reg); } get_thread(tmp_reg); orl(tmp_reg, swap_reg); if (os::is_MP()) { lock(); } cmpxchgptr(tmp_reg, Address(obj_reg, 0)); if (need_tmp_reg) { pop(tmp_reg); } // If the biasing toward our thread failed, this means that // another thread succeeded in biasing it toward itself and we // need to revoke that bias. The revocation will occur in the // interpreter runtime in the slow case. if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr())); } if (slow_case != NULL) { jcc(Assembler::notZero, *slow_case); } jmp(done); bind(try_rebias); // At this point we know the epoch has expired, meaning that the // current "bias owner", if any, is actually invalid. Under these // circumstances _only_, we are allowed to use the current header's // value as the comparison value when doing the cas to acquire the // bias in the current epoch. In other words, we allow transfer of // the bias from one thread to another directly in this situation. // // FIXME: due to a lack of registers we currently blow away the age // bits in this situation. Should attempt to preserve them. if (need_tmp_reg) { push(tmp_reg); } get_thread(tmp_reg); movl(swap_reg, klass_addr); orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset())); movl(swap_reg, saved_mark_addr); if (os::is_MP()) { lock(); } cmpxchgptr(tmp_reg, Address(obj_reg, 0)); if (need_tmp_reg) { pop(tmp_reg); } // If the biasing toward our thread failed, then another thread // succeeded in biasing it toward itself and we need to revoke that // bias. The revocation will occur in the runtime in the slow case. if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address)counters->rebiased_lock_entry_count_addr())); } if (slow_case != NULL) { jcc(Assembler::notZero, *slow_case); } jmp(done); bind(try_revoke_bias); // The prototype mark in the klass doesn't have the bias bit set any // more, indicating that objects of this data type are not supposed // to be biased any more. We are going to try to reset the mark of // this object to the prototype value and fall through to the // CAS-based locking scheme. Note that if our CAS fails, it means // that another thread raced us for the privilege of revoking the // bias of this particular object, so it's okay to continue in the // normal locking code. // // FIXME: due to a lack of registers we currently blow away the age // bits in this situation. Should attempt to preserve them. movl(swap_reg, saved_mark_addr); if (need_tmp_reg) { push(tmp_reg); } movl(tmp_reg, klass_addr); movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset())); if (os::is_MP()) { lock(); } cmpxchgptr(tmp_reg, Address(obj_reg, 0)); if (need_tmp_reg) { pop(tmp_reg); } // Fall through to the normal CAS-based lock, because no matter what // the result of the above CAS, some thread must have succeeded in // removing the bias bit from the object's header. if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address)counters->revoked_lock_entry_count_addr())); } bind(cas_label); return null_check_offset; } void MacroAssembler::call_VM_leaf_base(address entry_point, int number_of_arguments) { call(RuntimeAddress(entry_point)); increment(rsp, number_of_arguments * wordSize); } void MacroAssembler::cmpoop(Address src1, jobject obj) { cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::cmpoop(Register src1, jobject obj) { cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::extend_sign(Register hi, Register lo) { // According to Intel Doc. AP-526, "Integer Divide", p.18. if (VM_Version::is_P6() && hi == rdx && lo == rax) { cdql(); } else { movl(hi, lo); sarl(hi, 31); } } void MacroAssembler::fat_nop() { // A 5 byte nop that is safe for patching (see patch_verified_entry) emit_byte(0x26); // es: emit_byte(0x2e); // cs: emit_byte(0x64); // fs: emit_byte(0x65); // gs: emit_byte(0x90); } void MacroAssembler::jC2(Register tmp, Label& L) { // set parity bit if FPU flag C2 is set (via rax) save_rax(tmp); fwait(); fnstsw_ax(); sahf(); restore_rax(tmp); // branch jcc(Assembler::parity, L); } void MacroAssembler::jnC2(Register tmp, Label& L) { // set parity bit if FPU flag C2 is set (via rax) save_rax(tmp); fwait(); fnstsw_ax(); sahf(); restore_rax(tmp); // branch jcc(Assembler::noParity, L); } // 32bit can do a case table jump in one instruction but we no longer allow the base // to be installed in the Address class void MacroAssembler::jump(ArrayAddress entry) { jmp(as_Address(entry)); } // Note: y_lo will be destroyed void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { // Long compare for Java (semantics as described in JVM spec.) Label high, low, done; cmpl(x_hi, y_hi); jcc(Assembler::less, low); jcc(Assembler::greater, high); // x_hi is the return register xorl(x_hi, x_hi); cmpl(x_lo, y_lo); jcc(Assembler::below, low); jcc(Assembler::equal, done); bind(high); xorl(x_hi, x_hi); increment(x_hi); jmp(done); bind(low); xorl(x_hi, x_hi); decrementl(x_hi); bind(done); } void MacroAssembler::lea(Register dst, AddressLiteral src) { mov_literal32(dst, (int32_t)src.target(), src.rspec()); } void MacroAssembler::lea(Address dst, AddressLiteral adr) { // leal(dst, as_Address(adr)); // see note in movl as to why we must use a move mov_literal32(dst, (int32_t) adr.target(), adr.rspec()); } void MacroAssembler::leave() { mov(rsp, rbp); pop(rbp); } void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { // Multiplication of two Java long values stored on the stack // as illustrated below. Result is in rdx:rax. // // rsp ---> [ ?? ] \ \ // .... | y_rsp_offset | // [ y_lo ] / (in bytes) | x_rsp_offset // [ y_hi ] | (in bytes) // .... | // [ x_lo ] / // [ x_hi ] // .... // // Basic idea: lo(result) = lo(x_lo * y_lo) // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); Label quick; // load x_hi, y_hi and check if quick // multiplication is possible movl(rbx, x_hi); movl(rcx, y_hi); movl(rax, rbx); orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply // do full multiplication // 1st step mull(y_lo); // x_hi * y_lo movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, // 2nd step movl(rax, x_lo); mull(rcx); // x_lo * y_hi addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, // 3rd step bind(quick); // note: rbx, = 0 if quick multiply! movl(rax, x_lo); mull(y_lo); // x_lo * y_lo addl(rdx, rbx); // correct hi(x_lo * y_lo) } void MacroAssembler::lneg(Register hi, Register lo) { negl(lo); adcl(hi, 0); negl(hi); } void MacroAssembler::lshl(Register hi, Register lo) { // Java shift left long support (semantics as described in JVM spec., p.305) // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) // shift value is in rcx ! assert(hi != rcx, "must not use rcx"); assert(lo != rcx, "must not use rcx"); const Register s = rcx; // shift count const int n = BitsPerWord; Label L; andl(s, 0x3f); // s := s & 0x3f (s < 0x40) cmpl(s, n); // if (s < n) jcc(Assembler::less, L); // else (s >= n) movl(hi, lo); // x := x << n xorl(lo, lo); // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! bind(L); // s (mod n) < n shldl(hi, lo); // x := x << s shll(lo); } void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) assert(hi != rcx, "must not use rcx"); assert(lo != rcx, "must not use rcx"); const Register s = rcx; // shift count const int n = BitsPerWord; Label L; andl(s, 0x3f); // s := s & 0x3f (s < 0x40) cmpl(s, n); // if (s < n) jcc(Assembler::less, L); // else (s >= n) movl(lo, hi); // x := x >> n if (sign_extension) sarl(hi, 31); else xorl(hi, hi); // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! bind(L); // s (mod n) < n shrdl(lo, hi); // x := x >> s if (sign_extension) sarl(hi); else shrl(hi); } void MacroAssembler::movoop(Register dst, jobject obj) { mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::movoop(Address dst, jobject obj) { mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::movptr(Register dst, AddressLiteral src) { if (src.is_lval()) { mov_literal32(dst, (intptr_t)src.target(), src.rspec()); } else { movl(dst, as_Address(src)); } } void MacroAssembler::movptr(ArrayAddress dst, Register src) { movl(as_Address(dst), src); } void MacroAssembler::movptr(Register dst, ArrayAddress src) { movl(dst, as_Address(src)); } // src should NEVER be a real pointer. Use AddressLiteral for true pointers void MacroAssembler::movptr(Address dst, intptr_t src) { movl(dst, src); } void MacroAssembler::pop_callee_saved_registers() { pop(rcx); pop(rdx); pop(rdi); pop(rsi); } void MacroAssembler::pop_fTOS() { fld_d(Address(rsp, 0)); addl(rsp, 2 * wordSize); } void MacroAssembler::push_callee_saved_registers() { push(rsi); push(rdi); push(rdx); push(rcx); } void MacroAssembler::push_fTOS() { subl(rsp, 2 * wordSize); fstp_d(Address(rsp, 0)); } void MacroAssembler::pushoop(jobject obj) { push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::pushptr(AddressLiteral src) { if (src.is_lval()) { push_literal32((int32_t)src.target(), src.rspec()); } else { pushl(as_Address(src)); } } void MacroAssembler::set_word_if_not_zero(Register dst) { xorl(dst, dst); set_byte_if_not_zero(dst); } static void pass_arg0(MacroAssembler* masm, Register arg) { masm->push(arg); } static void pass_arg1(MacroAssembler* masm, Register arg) { masm->push(arg); } static void pass_arg2(MacroAssembler* masm, Register arg) { masm->push(arg); } static void pass_arg3(MacroAssembler* masm, Register arg) { masm->push(arg); } #ifndef PRODUCT extern "C" void findpc(intptr_t x); #endif void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { // In order to get locks to work, we need to fake a in_VM state JavaThread* thread = JavaThread::current(); JavaThreadState saved_state = thread->thread_state(); thread->set_thread_state(_thread_in_vm); if (ShowMessageBoxOnError) { JavaThread* thread = JavaThread::current(); JavaThreadState saved_state = thread->thread_state(); thread->set_thread_state(_thread_in_vm); if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { ttyLocker ttyl; BytecodeCounter::print(); } // To see where a verify_oop failed, get $ebx+40/X for this frame. // This is the value of eip which points to where verify_oop will return. if (os::message_box(msg, "Execution stopped, print registers?")) { ttyLocker ttyl; tty->print_cr("eip = 0x%08x", eip); #ifndef PRODUCT if ((WizardMode || Verbose) && PrintMiscellaneous) { tty->cr(); findpc(eip); tty->cr(); } #endif tty->print_cr("rax = 0x%08x", rax); tty->print_cr("rbx = 0x%08x", rbx); tty->print_cr("rcx = 0x%08x", rcx); tty->print_cr("rdx = 0x%08x", rdx); tty->print_cr("rdi = 0x%08x", rdi); tty->print_cr("rsi = 0x%08x", rsi); tty->print_cr("rbp = 0x%08x", rbp); tty->print_cr("rsp = 0x%08x", rsp); BREAKPOINT; assert(false, "start up GDB"); } } else { ttyLocker ttyl; ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg); assert(false, err_msg("DEBUG MESSAGE: %s", msg)); } ThreadStateTransition::transition(thread, _thread_in_vm, saved_state); } void MacroAssembler::stop(const char* msg) { ExternalAddress message((address)msg); // push address of message pushptr(message.addr()); { Label L; call(L, relocInfo::none); bind(L); } // push eip pusha(); // push registers call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); hlt(); } void MacroAssembler::warn(const char* msg) { push_CPU_state(); ExternalAddress message((address) msg); // push address of message pushptr(message.addr()); call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); addl(rsp, wordSize); // discard argument pop_CPU_state(); } #else // _LP64 // 64 bit versions Address MacroAssembler::as_Address(AddressLiteral adr) { // amd64 always does this as a pc-rel // we can be absolute or disp based on the instruction type // jmp/call are displacements others are absolute assert(!adr.is_lval(), "must be rval"); assert(reachable(adr), "must be"); return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc()); } Address MacroAssembler::as_Address(ArrayAddress adr) { AddressLiteral base = adr.base(); lea(rscratch1, base); Address index = adr.index(); assert(index._disp == 0, "must not have disp"); // maybe it can? Address array(rscratch1, index._index, index._scale, index._disp); return array; } int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg, bool swap_reg_contains_mark, Label& done, Label* slow_case, BiasedLockingCounters* counters) { assert(UseBiasedLocking, "why call this otherwise?"); assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq"); assert(tmp_reg != noreg, "tmp_reg must be supplied"); assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg); assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout"); Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); Address saved_mark_addr(lock_reg, 0); if (PrintBiasedLockingStatistics && counters == NULL) counters = BiasedLocking::counters(); // Biased locking // See whether the lock is currently biased toward our thread and // whether the epoch is still valid // Note that the runtime guarantees sufficient alignment of JavaThread // pointers to allow age to be placed into low bits // First check to see whether biasing is even enabled for this object Label cas_label; int null_check_offset = -1; if (!swap_reg_contains_mark) { null_check_offset = offset(); movq(swap_reg, mark_addr); } movq(tmp_reg, swap_reg); andq(tmp_reg, markOopDesc::biased_lock_mask_in_place); cmpq(tmp_reg, markOopDesc::biased_lock_pattern); jcc(Assembler::notEqual, cas_label); // The bias pattern is present in the object's header. Need to check // whether the bias owner and the epoch are both still current. load_prototype_header(tmp_reg, obj_reg); orq(tmp_reg, r15_thread); xorq(tmp_reg, swap_reg); andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place)); if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr())); } jcc(Assembler::equal, done); Label try_revoke_bias; Label try_rebias; // At this point we know that the header has the bias pattern and // that we are not the bias owner in the current epoch. We need to // figure out more details about the state of the header in order to // know what operations can be legally performed on the object's // header. // If the low three bits in the xor result aren't clear, that means // the prototype header is no longer biased and we have to revoke // the bias on this object. testq(tmp_reg, markOopDesc::biased_lock_mask_in_place); jcc(Assembler::notZero, try_revoke_bias); // Biasing is still enabled for this data type. See whether the // epoch of the current bias is still valid, meaning that the epoch // bits of the mark word are equal to the epoch bits of the // prototype header. (Note that the prototype header's epoch bits // only change at a safepoint.) If not, attempt to rebias the object // toward the current thread. Note that we must be absolutely sure // that the current epoch is invalid in order to do this because // otherwise the manipulations it performs on the mark word are // illegal. testq(tmp_reg, markOopDesc::epoch_mask_in_place); jcc(Assembler::notZero, try_rebias); // The epoch of the current bias is still valid but we know nothing // about the owner; it might be set or it might be clear. Try to // acquire the bias of the object using an atomic operation. If this // fails we will go in to the runtime to revoke the object's bias. // Note that we first construct the presumed unbiased header so we // don't accidentally blow away another thread's valid bias. andq(swap_reg, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place); movq(tmp_reg, swap_reg); orq(tmp_reg, r15_thread); if (os::is_MP()) { lock(); } cmpxchgq(tmp_reg, Address(obj_reg, 0)); // If the biasing toward our thread failed, this means that // another thread succeeded in biasing it toward itself and we // need to revoke that bias. The revocation will occur in the // interpreter runtime in the slow case. if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr())); } if (slow_case != NULL) { jcc(Assembler::notZero, *slow_case); } jmp(done); bind(try_rebias); // At this point we know the epoch has expired, meaning that the // current "bias owner", if any, is actually invalid. Under these // circumstances _only_, we are allowed to use the current header's // value as the comparison value when doing the cas to acquire the // bias in the current epoch. In other words, we allow transfer of // the bias from one thread to another directly in this situation. // // FIXME: due to a lack of registers we currently blow away the age // bits in this situation. Should attempt to preserve them. load_prototype_header(tmp_reg, obj_reg); orq(tmp_reg, r15_thread); if (os::is_MP()) { lock(); } cmpxchgq(tmp_reg, Address(obj_reg, 0)); // If the biasing toward our thread failed, then another thread // succeeded in biasing it toward itself and we need to revoke that // bias. The revocation will occur in the runtime in the slow case. if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address) counters->rebiased_lock_entry_count_addr())); } if (slow_case != NULL) { jcc(Assembler::notZero, *slow_case); } jmp(done); bind(try_revoke_bias); // The prototype mark in the klass doesn't have the bias bit set any // more, indicating that objects of this data type are not supposed // to be biased any more. We are going to try to reset the mark of // this object to the prototype value and fall through to the // CAS-based locking scheme. Note that if our CAS fails, it means // that another thread raced us for the privilege of revoking the // bias of this particular object, so it's okay to continue in the // normal locking code. // // FIXME: due to a lack of registers we currently blow away the age // bits in this situation. Should attempt to preserve them. load_prototype_header(tmp_reg, obj_reg); if (os::is_MP()) { lock(); } cmpxchgq(tmp_reg, Address(obj_reg, 0)); // Fall through to the normal CAS-based lock, because no matter what // the result of the above CAS, some thread must have succeeded in // removing the bias bit from the object's header. if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address) counters->revoked_lock_entry_count_addr())); } bind(cas_label); return null_check_offset; } void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { Label L, E; #ifdef _WIN64 // Windows always allocates space for it's register args assert(num_args <= 4, "only register arguments supported"); subq(rsp, frame::arg_reg_save_area_bytes); #endif // Align stack if necessary testl(rsp, 15); jcc(Assembler::zero, L); subq(rsp, 8); { call(RuntimeAddress(entry_point)); } addq(rsp, 8); jmp(E); bind(L); { call(RuntimeAddress(entry_point)); } bind(E); #ifdef _WIN64 // restore stack pointer addq(rsp, frame::arg_reg_save_area_bytes); #endif } void MacroAssembler::cmp64(Register src1, AddressLiteral src2) { assert(!src2.is_lval(), "should use cmpptr"); if (reachable(src2)) { cmpq(src1, as_Address(src2)); } else { lea(rscratch1, src2); Assembler::cmpq(src1, Address(rscratch1, 0)); } } int MacroAssembler::corrected_idivq(Register reg) { // Full implementation of Java ldiv and lrem; checks for special // case as described in JVM spec., p.243 & p.271. The function // returns the (pc) offset of the idivl instruction - may be needed // for implicit exceptions. // // normal case special case // // input : rax: dividend min_long // reg: divisor (may not be eax/edx) -1 // // output: rax: quotient (= rax idiv reg) min_long // rdx: remainder (= rax irem reg) 0 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); static const int64_t min_long = 0x8000000000000000; Label normal_case, special_case; // check for special case cmp64(rax, ExternalAddress((address) &min_long)); jcc(Assembler::notEqual, normal_case); xorl(rdx, rdx); // prepare rdx for possible special case (where // remainder = 0) cmpq(reg, -1); jcc(Assembler::equal, special_case); // handle normal case bind(normal_case); cdqq(); int idivq_offset = offset(); idivq(reg); // normal and special case exit bind(special_case); return idivq_offset; } void MacroAssembler::decrementq(Register reg, int value) { if (value == min_jint) { subq(reg, value); return; } if (value < 0) { incrementq(reg, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { decq(reg) ; return; } /* else */ { subq(reg, value) ; return; } } void MacroAssembler::decrementq(Address dst, int value) { if (value == min_jint) { subq(dst, value); return; } if (value < 0) { incrementq(dst, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { decq(dst) ; return; } /* else */ { subq(dst, value) ; return; } } void MacroAssembler::fat_nop() { // A 5 byte nop that is safe for patching (see patch_verified_entry) // Recommened sequence from 'Software Optimization Guide for the AMD // Hammer Processor' emit_byte(0x66); emit_byte(0x66); emit_byte(0x90); emit_byte(0x66); emit_byte(0x90); } void MacroAssembler::incrementq(Register reg, int value) { if (value == min_jint) { addq(reg, value); return; } if (value < 0) { decrementq(reg, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { incq(reg) ; return; } /* else */ { addq(reg, value) ; return; } } void MacroAssembler::incrementq(Address dst, int value) { if (value == min_jint) { addq(dst, value); return; } if (value < 0) { decrementq(dst, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { incq(dst) ; return; } /* else */ { addq(dst, value) ; return; } } // 32bit can do a case table jump in one instruction but we no longer allow the base // to be installed in the Address class void MacroAssembler::jump(ArrayAddress entry) { lea(rscratch1, entry.base()); Address dispatch = entry.index(); assert(dispatch._base == noreg, "must be"); dispatch._base = rscratch1; jmp(dispatch); } void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { ShouldNotReachHere(); // 64bit doesn't use two regs cmpq(x_lo, y_lo); } void MacroAssembler::lea(Register dst, AddressLiteral src) { mov_literal64(dst, (intptr_t)src.target(), src.rspec()); } void MacroAssembler::lea(Address dst, AddressLiteral adr) { mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec()); movptr(dst, rscratch1); } void MacroAssembler::leave() { // %%% is this really better? Why not on 32bit too? emit_byte(0xC9); // LEAVE } void MacroAssembler::lneg(Register hi, Register lo) { ShouldNotReachHere(); // 64bit doesn't use two regs negq(lo); } void MacroAssembler::movoop(Register dst, jobject obj) { mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::movoop(Address dst, jobject obj) { mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate()); movq(dst, rscratch1); } void MacroAssembler::movptr(Register dst, AddressLiteral src) { if (src.is_lval()) { mov_literal64(dst, (intptr_t)src.target(), src.rspec()); } else { if (reachable(src)) { movq(dst, as_Address(src)); } else { lea(rscratch1, src); movq(dst, Address(rscratch1,0)); } } } void MacroAssembler::movptr(ArrayAddress dst, Register src) { movq(as_Address(dst), src); } void MacroAssembler::movptr(Register dst, ArrayAddress src) { movq(dst, as_Address(src)); } // src should NEVER be a real pointer. Use AddressLiteral for true pointers void MacroAssembler::movptr(Address dst, intptr_t src) { mov64(rscratch1, src); movq(dst, rscratch1); } // These are mostly for initializing NULL void MacroAssembler::movptr(Address dst, int32_t src) { movslq(dst, src); } void MacroAssembler::movptr(Register dst, int32_t src) { mov64(dst, (intptr_t)src); } void MacroAssembler::pushoop(jobject obj) { movoop(rscratch1, obj); push(rscratch1); } void MacroAssembler::pushptr(AddressLiteral src) { lea(rscratch1, src); if (src.is_lval()) { push(rscratch1); } else { pushq(Address(rscratch1, 0)); } } void MacroAssembler::reset_last_Java_frame(bool clear_fp, bool clear_pc) { // we must set sp to zero to clear frame movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); // must clear fp, so that compiled frames are not confused; it is // possible that we need it only for debugging if (clear_fp) { movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); } if (clear_pc) { movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); } } void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_java_fp, address last_java_pc) { // determine last_java_sp register if (!last_java_sp->is_valid()) { last_java_sp = rsp; } // last_java_fp is optional if (last_java_fp->is_valid()) { movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), last_java_fp); } // last_java_pc is optional if (last_java_pc != NULL) { Address java_pc(r15_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); lea(rscratch1, InternalAddress(last_java_pc)); movptr(java_pc, rscratch1); } movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp); } static void pass_arg0(MacroAssembler* masm, Register arg) { if (c_rarg0 != arg ) { masm->mov(c_rarg0, arg); } } static void pass_arg1(MacroAssembler* masm, Register arg) { if (c_rarg1 != arg ) { masm->mov(c_rarg1, arg); } } static void pass_arg2(MacroAssembler* masm, Register arg) { if (c_rarg2 != arg ) { masm->mov(c_rarg2, arg); } } static void pass_arg3(MacroAssembler* masm, Register arg) { if (c_rarg3 != arg ) { masm->mov(c_rarg3, arg); } } void MacroAssembler::stop(const char* msg) { address rip = pc(); pusha(); // get regs on stack lea(c_rarg0, ExternalAddress((address) msg)); lea(c_rarg1, InternalAddress(rip)); movq(c_rarg2, rsp); // pass pointer to regs array andq(rsp, -16); // align stack as required by ABI call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); hlt(); } void MacroAssembler::warn(const char* msg) { push(rsp); andq(rsp, -16); // align stack as required by push_CPU_state and call push_CPU_state(); // keeps alignment at 16 bytes lea(c_rarg0, ExternalAddress((address) msg)); call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0); pop_CPU_state(); pop(rsp); } #ifndef PRODUCT extern "C" void findpc(intptr_t x); #endif void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { // In order to get locks to work, we need to fake a in_VM state if (ShowMessageBoxOnError ) { JavaThread* thread = JavaThread::current(); JavaThreadState saved_state = thread->thread_state(); thread->set_thread_state(_thread_in_vm); #ifndef PRODUCT if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { ttyLocker ttyl; BytecodeCounter::print(); } #endif // To see where a verify_oop failed, get $ebx+40/X for this frame. // XXX correct this offset for amd64 // This is the value of eip which points to where verify_oop will return. if (os::message_box(msg, "Execution stopped, print registers?")) { ttyLocker ttyl; tty->print_cr("rip = 0x%016lx", pc); #ifndef PRODUCT tty->cr(); findpc(pc); tty->cr(); #endif tty->print_cr("rax = 0x%016lx", regs[15]); tty->print_cr("rbx = 0x%016lx", regs[12]); tty->print_cr("rcx = 0x%016lx", regs[14]); tty->print_cr("rdx = 0x%016lx", regs[13]); tty->print_cr("rdi = 0x%016lx", regs[8]); tty->print_cr("rsi = 0x%016lx", regs[9]); tty->print_cr("rbp = 0x%016lx", regs[10]); tty->print_cr("rsp = 0x%016lx", regs[11]); tty->print_cr("r8 = 0x%016lx", regs[7]); tty->print_cr("r9 = 0x%016lx", regs[6]); tty->print_cr("r10 = 0x%016lx", regs[5]); tty->print_cr("r11 = 0x%016lx", regs[4]); tty->print_cr("r12 = 0x%016lx", regs[3]); tty->print_cr("r13 = 0x%016lx", regs[2]); tty->print_cr("r14 = 0x%016lx", regs[1]); tty->print_cr("r15 = 0x%016lx", regs[0]); BREAKPOINT; } ThreadStateTransition::transition(thread, _thread_in_vm, saved_state); } else { ttyLocker ttyl; ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg); assert(false, err_msg("DEBUG MESSAGE: %s", msg)); } } #endif // _LP64 // Now versions that are common to 32/64 bit void MacroAssembler::addptr(Register dst, int32_t imm32) { LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); } void MacroAssembler::addptr(Register dst, Register src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); } void MacroAssembler::addptr(Address dst, Register src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); } void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::addsd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::addsd(dst, Address(rscratch1, 0)); } } void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { addss(dst, as_Address(src)); } else { lea(rscratch1, src); addss(dst, Address(rscratch1, 0)); } } void MacroAssembler::align(int modulus) { if (offset() % modulus != 0) { nop(modulus - (offset() % modulus)); } } void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) { // Used in sign-masking with aligned address. assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); if (reachable(src)) { Assembler::andpd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::andpd(dst, Address(rscratch1, 0)); } } void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) { // Used in sign-masking with aligned address. assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); if (reachable(src)) { Assembler::andps(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::andps(dst, Address(rscratch1, 0)); } } void MacroAssembler::andptr(Register dst, int32_t imm32) { LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); } void MacroAssembler::atomic_incl(AddressLiteral counter_addr) { pushf(); if (os::is_MP()) lock(); incrementl(counter_addr); popf(); } // Writes to stack successive pages until offset reached to check for // stack overflow + shadow pages. This clobbers tmp. void MacroAssembler::bang_stack_size(Register size, Register tmp) { movptr(tmp, rsp); // Bang stack for total size given plus shadow page size. // Bang one page at a time because large size can bang beyond yellow and // red zones. Label loop; bind(loop); movl(Address(tmp, (-os::vm_page_size())), size ); subptr(tmp, os::vm_page_size()); subl(size, os::vm_page_size()); jcc(Assembler::greater, loop); // Bang down shadow pages too. // The -1 because we already subtracted 1 page. for (int i = 0; i< StackShadowPages-1; i++) { // this could be any sized move but this is can be a debugging crumb // so the bigger the better. movptr(Address(tmp, (-i*os::vm_page_size())), size ); } } void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { assert(UseBiasedLocking, "why call this otherwise?"); // Check for biased locking unlock case, which is a no-op // Note: we do not have to check the thread ID for two reasons. // First, the interpreter checks for IllegalMonitorStateException at // a higher level. Second, if the bias was revoked while we held the // lock, the object could not be rebiased toward another thread, so // the bias bit would be clear. movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); andptr(temp_reg, markOopDesc::biased_lock_mask_in_place); cmpptr(temp_reg, markOopDesc::biased_lock_pattern); jcc(Assembler::equal, done); } void MacroAssembler::c2bool(Register x) { // implements x == 0 ? 0 : 1 // note: must only look at least-significant byte of x // since C-style booleans are stored in one byte // only! (was bug) andl(x, 0xFF); setb(Assembler::notZero, x); } // Wouldn't need if AddressLiteral version had new name void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { Assembler::call(L, rtype); } void MacroAssembler::call(Register entry) { Assembler::call(entry); } void MacroAssembler::call(AddressLiteral entry) { if (reachable(entry)) { Assembler::call_literal(entry.target(), entry.rspec()); } else { lea(rscratch1, entry); Assembler::call(rscratch1); } } // Implementation of call_VM versions void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { Label C, E; call(C, relocInfo::none); jmp(E); bind(C); call_VM_helper(oop_result, entry_point, 0, check_exceptions); ret(0); bind(E); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) { Label C, E; call(C, relocInfo::none); jmp(E); bind(C); pass_arg1(this, arg_1); call_VM_helper(oop_result, entry_point, 1, check_exceptions); ret(0); bind(E); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { Label C, E; call(C, relocInfo::none); jmp(E); bind(C); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); pass_arg1(this, arg_1); call_VM_helper(oop_result, entry_point, 2, check_exceptions); ret(0); bind(E); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { Label C, E; call(C, relocInfo::none); jmp(E); bind(C); LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); pass_arg3(this, arg_3); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); pass_arg1(this, arg_1); call_VM_helper(oop_result, entry_point, 3, check_exceptions); ret(0); bind(E); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) { pass_arg1(this, arg_1); call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); pass_arg1(this, arg_1); call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); pass_arg3(this, arg_3); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); pass_arg1(this, arg_1); call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); } void MacroAssembler::super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); } void MacroAssembler::super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) { pass_arg1(this, arg_1); super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); } void MacroAssembler::super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); pass_arg1(this, arg_1); super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); } void MacroAssembler::super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); pass_arg3(this, arg_3); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); pass_arg1(this, arg_1); super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); } void MacroAssembler::call_VM_base(Register oop_result, Register java_thread, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { // determine java_thread register if (!java_thread->is_valid()) { #ifdef _LP64 java_thread = r15_thread; #else java_thread = rdi; get_thread(java_thread); #endif // LP64 } // determine last_java_sp register if (!last_java_sp->is_valid()) { last_java_sp = rsp; } // debugging support assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); LP64_ONLY(assert(java_thread == r15_thread, "unexpected register")); #ifdef ASSERT LP64_ONLY(if (UseCompressedOops) verify_heapbase("call_VM_base");) #endif // ASSERT assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); // push java thread (becomes first argument of C function) NOT_LP64(push(java_thread); number_of_arguments++); LP64_ONLY(mov(c_rarg0, r15_thread)); // set last Java frame before call assert(last_java_sp != rbp, "can't use ebp/rbp"); // Only interpreter should have to set fp set_last_Java_frame(java_thread, last_java_sp, rbp, NULL); // do the call, remove parameters MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); // restore the thread (cannot use the pushed argument since arguments // may be overwritten by C code generated by an optimizing compiler); // however can use the register value directly if it is callee saved. if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) { // rdi & rsi (also r15) are callee saved -> nothing to do #ifdef ASSERT guarantee(java_thread != rax, "change this code"); push(rax); { Label L; get_thread(rax); cmpptr(java_thread, rax); jcc(Assembler::equal, L); stop("MacroAssembler::call_VM_base: rdi not callee saved?"); bind(L); } pop(rax); #endif } else { get_thread(java_thread); } // reset last Java frame // Only interpreter should have to clear fp reset_last_Java_frame(java_thread, true, false); #ifndef CC_INTERP // C++ interp handles this in the interpreter check_and_handle_popframe(java_thread); check_and_handle_earlyret(java_thread); #endif /* CC_INTERP */ if (check_exceptions) { // check for pending exceptions (java_thread is set upon return) cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD); #ifndef _LP64 jump_cc(Assembler::notEqual, RuntimeAddress(StubRoutines::forward_exception_entry())); #else // This used to conditionally jump to forward_exception however it is // possible if we relocate that the branch will not reach. So we must jump // around so we can always reach Label ok; jcc(Assembler::equal, ok); jump(RuntimeAddress(StubRoutines::forward_exception_entry())); bind(ok); #endif // LP64 } // get oop result if there is one and reset the value in the thread if (oop_result->is_valid()) { movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); verify_oop(oop_result, "broken oop in call_VM_base"); } } void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { // Calculate the value for last_Java_sp // somewhat subtle. call_VM does an intermediate call // which places a return address on the stack just under the // stack pointer as the user finsihed with it. This allows // use to retrieve last_Java_pc from last_Java_sp[-1]. // On 32bit we then have to push additional args on the stack to accomplish // the actual requested call. On 64bit call_VM only can use register args // so the only extra space is the return address that call_VM created. // This hopefully explains the calculations here. #ifdef _LP64 // We've pushed one address, correct last_Java_sp lea(rax, Address(rsp, wordSize)); #else lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); #endif // LP64 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); } void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { call_VM_leaf_base(entry_point, number_of_arguments); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { pass_arg0(this, arg_0); call_VM_leaf(entry_point, 1); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); pass_arg1(this, arg_1); pass_arg0(this, arg_0); call_VM_leaf(entry_point, 2); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); pass_arg1(this, arg_1); pass_arg0(this, arg_0); call_VM_leaf(entry_point, 3); } void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { pass_arg0(this, arg_0); MacroAssembler::call_VM_leaf_base(entry_point, 1); } void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); pass_arg1(this, arg_1); pass_arg0(this, arg_0); MacroAssembler::call_VM_leaf_base(entry_point, 2); } void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); pass_arg1(this, arg_1); pass_arg0(this, arg_0); MacroAssembler::call_VM_leaf_base(entry_point, 3); } void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg")); LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); pass_arg3(this, arg_3); LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); pass_arg1(this, arg_1); pass_arg0(this, arg_0); MacroAssembler::call_VM_leaf_base(entry_point, 4); } void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } void MacroAssembler::check_and_handle_popframe(Register java_thread) { } void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) { if (reachable(src1)) { cmpl(as_Address(src1), imm); } else { lea(rscratch1, src1); cmpl(Address(rscratch1, 0), imm); } } void MacroAssembler::cmp32(Register src1, AddressLiteral src2) { assert(!src2.is_lval(), "use cmpptr"); if (reachable(src2)) { cmpl(src1, as_Address(src2)); } else { lea(rscratch1, src2); cmpl(src1, Address(rscratch1, 0)); } } void MacroAssembler::cmp32(Register src1, int32_t imm) { Assembler::cmpl(src1, imm); } void MacroAssembler::cmp32(Register src1, Address src2) { Assembler::cmpl(src1, src2); } void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { ucomisd(opr1, opr2); Label L; if (unordered_is_less) { movl(dst, -1); jcc(Assembler::parity, L); jcc(Assembler::below , L); movl(dst, 0); jcc(Assembler::equal , L); increment(dst); } else { // unordered is greater movl(dst, 1); jcc(Assembler::parity, L); jcc(Assembler::above , L); movl(dst, 0); jcc(Assembler::equal , L); decrementl(dst); } bind(L); } void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { ucomiss(opr1, opr2); Label L; if (unordered_is_less) { movl(dst, -1); jcc(Assembler::parity, L); jcc(Assembler::below , L); movl(dst, 0); jcc(Assembler::equal , L); increment(dst); } else { // unordered is greater movl(dst, 1); jcc(Assembler::parity, L); jcc(Assembler::above , L); movl(dst, 0); jcc(Assembler::equal , L); decrementl(dst); } bind(L); } void MacroAssembler::cmp8(AddressLiteral src1, int imm) { if (reachable(src1)) { cmpb(as_Address(src1), imm); } else { lea(rscratch1, src1); cmpb(Address(rscratch1, 0), imm); } } void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) { #ifdef _LP64 if (src2.is_lval()) { movptr(rscratch1, src2); Assembler::cmpq(src1, rscratch1); } else if (reachable(src2)) { cmpq(src1, as_Address(src2)); } else { lea(rscratch1, src2); Assembler::cmpq(src1, Address(rscratch1, 0)); } #else if (src2.is_lval()) { cmp_literal32(src1, (int32_t) src2.target(), src2.rspec()); } else { cmpl(src1, as_Address(src2)); } #endif // _LP64 } void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) { assert(src2.is_lval(), "not a mem-mem compare"); #ifdef _LP64 // moves src2's literal address movptr(rscratch1, src2); Assembler::cmpq(src1, rscratch1); #else cmp_literal32(src1, (int32_t) src2.target(), src2.rspec()); #endif // _LP64 } void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) { if (reachable(adr)) { if (os::is_MP()) lock(); cmpxchgptr(reg, as_Address(adr)); } else { lea(rscratch1, adr); if (os::is_MP()) lock(); cmpxchgptr(reg, Address(rscratch1, 0)); } } void MacroAssembler::cmpxchgptr(Register reg, Address adr) { LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); } void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::comisd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::comisd(dst, Address(rscratch1, 0)); } } void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::comiss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::comiss(dst, Address(rscratch1, 0)); } } void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) { Condition negated_cond = negate_condition(cond); Label L; jcc(negated_cond, L); atomic_incl(counter_addr); bind(L); } int MacroAssembler::corrected_idivl(Register reg) { // Full implementation of Java idiv and irem; checks for // special case as described in JVM spec., p.243 & p.271. // The function returns the (pc) offset of the idivl // instruction - may be needed for implicit exceptions. // // normal case special case // // input : rax,: dividend min_int // reg: divisor (may not be rax,/rdx) -1 // // output: rax,: quotient (= rax, idiv reg) min_int // rdx: remainder (= rax, irem reg) 0 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); const int min_int = 0x80000000; Label normal_case, special_case; // check for special case cmpl(rax, min_int); jcc(Assembler::notEqual, normal_case); xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) cmpl(reg, -1); jcc(Assembler::equal, special_case); // handle normal case bind(normal_case); cdql(); int idivl_offset = offset(); idivl(reg); // normal and special case exit bind(special_case); return idivl_offset; } void MacroAssembler::decrementl(Register reg, int value) { if (value == min_jint) {subl(reg, value) ; return; } if (value < 0) { incrementl(reg, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { decl(reg) ; return; } /* else */ { subl(reg, value) ; return; } } void MacroAssembler::decrementl(Address dst, int value) { if (value == min_jint) {subl(dst, value) ; return; } if (value < 0) { incrementl(dst, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { decl(dst) ; return; } /* else */ { subl(dst, value) ; return; } } void MacroAssembler::division_with_shift (Register reg, int shift_value) { assert (shift_value > 0, "illegal shift value"); Label _is_positive; testl (reg, reg); jcc (Assembler::positive, _is_positive); int offset = (1 << shift_value) - 1 ; if (offset == 1) { incrementl(reg); } else { addl(reg, offset); } bind (_is_positive); sarl(reg, shift_value); } void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::divsd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::divsd(dst, Address(rscratch1, 0)); } } void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::divss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::divss(dst, Address(rscratch1, 0)); } } // !defined(COMPILER2) is because of stupid core builds #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) void MacroAssembler::empty_FPU_stack() { if (VM_Version::supports_mmx()) { emms(); } else { for (int i = 8; i-- > 0; ) ffree(i); } } #endif // !LP64 || C1 || !C2 // Defines obj, preserves var_size_in_bytes void MacroAssembler::eden_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Label& slow_case) { assert(obj == rax, "obj must be in rax, for cmpxchg"); assert_different_registers(obj, var_size_in_bytes, t1); if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { jmp(slow_case); } else { Register end = t1; Label retry; bind(retry); ExternalAddress heap_top((address) Universe::heap()->top_addr()); movptr(obj, heap_top); if (var_size_in_bytes == noreg) { lea(end, Address(obj, con_size_in_bytes)); } else { lea(end, Address(obj, var_size_in_bytes, Address::times_1)); } // if end < obj then we wrapped around => object too long => slow case cmpptr(end, obj); jcc(Assembler::below, slow_case); cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr())); jcc(Assembler::above, slow_case); // Compare obj with the top addr, and if still equal, store the new top addr in // end at the address of the top addr pointer. Sets ZF if was equal, and clears // it otherwise. Use lock prefix for atomicity on MPs. locked_cmpxchgptr(end, heap_top); jcc(Assembler::notEqual, retry); } } void MacroAssembler::enter() { push(rbp); mov(rbp, rsp); } void MacroAssembler::fcmp(Register tmp) { fcmp(tmp, 1, true, true); } void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { assert(!pop_right || pop_left, "usage error"); if (VM_Version::supports_cmov()) { assert(tmp == noreg, "unneeded temp"); if (pop_left) { fucomip(index); } else { fucomi(index); } if (pop_right) { fpop(); } } else { assert(tmp != noreg, "need temp"); if (pop_left) { if (pop_right) { fcompp(); } else { fcomp(index); } } else { fcom(index); } // convert FPU condition into eflags condition via rax, save_rax(tmp); fwait(); fnstsw_ax(); sahf(); restore_rax(tmp); } // condition codes set as follows: // // CF (corresponds to C0) if x < y // PF (corresponds to C2) if unordered // ZF (corresponds to C3) if x = y } void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { fcmp2int(dst, unordered_is_less, 1, true, true); } void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); Label L; if (unordered_is_less) { movl(dst, -1); jcc(Assembler::parity, L); jcc(Assembler::below , L); movl(dst, 0); jcc(Assembler::equal , L); increment(dst); } else { // unordered is greater movl(dst, 1); jcc(Assembler::parity, L); jcc(Assembler::above , L); movl(dst, 0); jcc(Assembler::equal , L); decrementl(dst); } bind(L); } void MacroAssembler::fld_d(AddressLiteral src) { fld_d(as_Address(src)); } void MacroAssembler::fld_s(AddressLiteral src) { fld_s(as_Address(src)); } void MacroAssembler::fld_x(AddressLiteral src) { Assembler::fld_x(as_Address(src)); } void MacroAssembler::fldcw(AddressLiteral src) { Assembler::fldcw(as_Address(src)); } void MacroAssembler::fpop() { ffree(); fincstp(); } void MacroAssembler::fremr(Register tmp) { save_rax(tmp); { Label L; bind(L); fprem(); fwait(); fnstsw_ax(); #ifdef _LP64 testl(rax, 0x400); jcc(Assembler::notEqual, L); #else sahf(); jcc(Assembler::parity, L); #endif // _LP64 } restore_rax(tmp); // Result is in ST0. // Note: fxch & fpop to get rid of ST1 // (otherwise FPU stack could overflow eventually) fxch(1); fpop(); } void MacroAssembler::incrementl(AddressLiteral dst) { if (reachable(dst)) { incrementl(as_Address(dst)); } else { lea(rscratch1, dst); incrementl(Address(rscratch1, 0)); } } void MacroAssembler::incrementl(ArrayAddress dst) { incrementl(as_Address(dst)); } void MacroAssembler::incrementl(Register reg, int value) { if (value == min_jint) {addl(reg, value) ; return; } if (value < 0) { decrementl(reg, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { incl(reg) ; return; } /* else */ { addl(reg, value) ; return; } } void MacroAssembler::incrementl(Address dst, int value) { if (value == min_jint) {addl(dst, value) ; return; } if (value < 0) { decrementl(dst, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { incl(dst) ; return; } /* else */ { addl(dst, value) ; return; } } void MacroAssembler::jump(AddressLiteral dst) { if (reachable(dst)) { jmp_literal(dst.target(), dst.rspec()); } else { lea(rscratch1, dst); jmp(rscratch1); } } void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) { if (reachable(dst)) { InstructionMark im(this); relocate(dst.reloc()); const int short_size = 2; const int long_size = 6; int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos); if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { // 0111 tttn #8-bit disp emit_byte(0x70 | cc); emit_byte((offs - short_size) & 0xFF); } else { // 0000 1111 1000 tttn #32-bit disp emit_byte(0x0F); emit_byte(0x80 | cc); emit_long(offs - long_size); } } else { #ifdef ASSERT warning("reversing conditional branch"); #endif /* ASSERT */ Label skip; jccb(reverse[cc], skip); lea(rscratch1, dst); Assembler::jmp(rscratch1); bind(skip); } } void MacroAssembler::ldmxcsr(AddressLiteral src) { if (reachable(src)) { Assembler::ldmxcsr(as_Address(src)); } else { lea(rscratch1, src); Assembler::ldmxcsr(Address(rscratch1, 0)); } } int MacroAssembler::load_signed_byte(Register dst, Address src) { int off; if (LP64_ONLY(true ||) VM_Version::is_P6()) { off = offset(); movsbl(dst, src); // movsxb } else { off = load_unsigned_byte(dst, src); shll(dst, 24); sarl(dst, 24); } return off; } // Note: load_signed_short used to be called load_signed_word. // Although the 'w' in x86 opcodes refers to the term "word" in the assembler // manual, which means 16 bits, that usage is found nowhere in HotSpot code. // The term "word" in HotSpot means a 32- or 64-bit machine word. int MacroAssembler::load_signed_short(Register dst, Address src) { int off; if (LP64_ONLY(true ||) VM_Version::is_P6()) { // This is dubious to me since it seems safe to do a signed 16 => 64 bit // version but this is what 64bit has always done. This seems to imply // that users are only using 32bits worth. off = offset(); movswl(dst, src); // movsxw } else { off = load_unsigned_short(dst, src); shll(dst, 16); sarl(dst, 16); } return off; } int MacroAssembler::load_unsigned_byte(Register dst, Address src) { // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, // and "3.9 Partial Register Penalties", p. 22). int off; if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { off = offset(); movzbl(dst, src); // movzxb } else { xorl(dst, dst); off = offset(); movb(dst, src); } return off; } // Note: load_unsigned_short used to be called load_unsigned_word. int MacroAssembler::load_unsigned_short(Register dst, Address src) { // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, // and "3.9 Partial Register Penalties", p. 22). int off; if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { off = offset(); movzwl(dst, src); // movzxw } else { xorl(dst, dst); off = offset(); movw(dst, src); } return off; } void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { switch (size_in_bytes) { #ifndef _LP64 case 8: assert(dst2 != noreg, "second dest register required"); movl(dst, src); movl(dst2, src.plus_disp(BytesPerInt)); break; #else case 8: movq(dst, src); break; #endif case 4: movl(dst, src); break; case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; default: ShouldNotReachHere(); } } void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { switch (size_in_bytes) { #ifndef _LP64 case 8: assert(src2 != noreg, "second source register required"); movl(dst, src); movl(dst.plus_disp(BytesPerInt), src2); break; #else case 8: movq(dst, src); break; #endif case 4: movl(dst, src); break; case 2: movw(dst, src); break; case 1: movb(dst, src); break; default: ShouldNotReachHere(); } } void MacroAssembler::mov32(AddressLiteral dst, Register src) { if (reachable(dst)) { movl(as_Address(dst), src); } else { lea(rscratch1, dst); movl(Address(rscratch1, 0), src); } } void MacroAssembler::mov32(Register dst, AddressLiteral src) { if (reachable(src)) { movl(dst, as_Address(src)); } else { lea(rscratch1, src); movl(dst, Address(rscratch1, 0)); } } // C++ bool manipulation void MacroAssembler::movbool(Register dst, Address src) { if(sizeof(bool) == 1) movb(dst, src); else if(sizeof(bool) == 2) movw(dst, src); else if(sizeof(bool) == 4) movl(dst, src); else // unsupported ShouldNotReachHere(); } void MacroAssembler::movbool(Address dst, bool boolconst) { if(sizeof(bool) == 1) movb(dst, (int) boolconst); else if(sizeof(bool) == 2) movw(dst, (int) boolconst); else if(sizeof(bool) == 4) movl(dst, (int) boolconst); else // unsupported ShouldNotReachHere(); } void MacroAssembler::movbool(Address dst, Register src) { if(sizeof(bool) == 1) movb(dst, src); else if(sizeof(bool) == 2) movw(dst, src); else if(sizeof(bool) == 4) movl(dst, src); else // unsupported ShouldNotReachHere(); } void MacroAssembler::movbyte(ArrayAddress dst, int src) { movb(as_Address(dst), src); } void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { if (UseXmmLoadAndClearUpper) { movsd (dst, as_Address(src)); } else { movlpd(dst, as_Address(src)); } } else { lea(rscratch1, src); if (UseXmmLoadAndClearUpper) { movsd (dst, Address(rscratch1, 0)); } else { movlpd(dst, Address(rscratch1, 0)); } } } void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { movss(dst, as_Address(src)); } else { lea(rscratch1, src); movss(dst, Address(rscratch1, 0)); } } void MacroAssembler::movptr(Register dst, Register src) { LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); } void MacroAssembler::movptr(Register dst, Address src) { LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); } // src should NEVER be a real pointer. Use AddressLiteral for true pointers void MacroAssembler::movptr(Register dst, intptr_t src) { LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src)); } void MacroAssembler::movptr(Address dst, Register src) { LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); } void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::movsd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::movsd(dst, Address(rscratch1, 0)); } } void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::movss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::movss(dst, Address(rscratch1, 0)); } } void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::mulsd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::mulsd(dst, Address(rscratch1, 0)); } } void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::mulss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::mulss(dst, Address(rscratch1, 0)); } } void MacroAssembler::null_check(Register reg, int offset) { if (needs_explicit_null_check(offset)) { // provoke OS NULL exception if reg = NULL by // accessing M[reg] w/o changing any (non-CC) registers // NOTE: cmpl is plenty here to provoke a segv cmpptr(rax, Address(reg, 0)); // Note: should probably use testl(rax, Address(reg, 0)); // may be shorter code (however, this version of // testl needs to be implemented first) } else { // nothing to do, (later) access of M[reg + offset] // will provoke OS NULL exception if reg = NULL } } void MacroAssembler::os_breakpoint() { // instead of directly emitting a breakpoint, call os:breakpoint for better debugability // (e.g., MSVC can't call ps() otherwise) call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); } void MacroAssembler::pop_CPU_state() { pop_FPU_state(); pop_IU_state(); } void MacroAssembler::pop_FPU_state() { NOT_LP64(frstor(Address(rsp, 0));) LP64_ONLY(fxrstor(Address(rsp, 0));) addptr(rsp, FPUStateSizeInWords * wordSize); } void MacroAssembler::pop_IU_state() { popa(); LP64_ONLY(addq(rsp, 8)); popf(); } // Save Integer and Float state // Warning: Stack must be 16 byte aligned (64bit) void MacroAssembler::push_CPU_state() { push_IU_state(); push_FPU_state(); } void MacroAssembler::push_FPU_state() { subptr(rsp, FPUStateSizeInWords * wordSize); #ifndef _LP64 fnsave(Address(rsp, 0)); fwait(); #else fxsave(Address(rsp, 0)); #endif // LP64 } void MacroAssembler::push_IU_state() { // Push flags first because pusha kills them pushf(); // Make sure rsp stays 16-byte aligned LP64_ONLY(subq(rsp, 8)); pusha(); } void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) { // determine java_thread register if (!java_thread->is_valid()) { java_thread = rdi; get_thread(java_thread); } // we must set sp to zero to clear frame movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); if (clear_fp) { movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); } if (clear_pc) movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); } void MacroAssembler::restore_rax(Register tmp) { if (tmp == noreg) pop(rax); else if (tmp != rax) mov(rax, tmp); } void MacroAssembler::round_to(Register reg, int modulus) { addptr(reg, modulus - 1); andptr(reg, -modulus); } void MacroAssembler::save_rax(Register tmp) { if (tmp == noreg) push(rax); else if (tmp != rax) mov(tmp, rax); } // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. void MacroAssembler::serialize_memory(Register thread, Register tmp) { movl(tmp, thread); shrl(tmp, os::get_serialize_page_shift_count()); andl(tmp, (os::vm_page_size() - sizeof(int))); Address index(noreg, tmp, Address::times_1); ExternalAddress page(os::get_memory_serialize_page()); // Size of store must match masking code above movl(as_Address(ArrayAddress(page, index)), tmp); } // Calls to C land // // When entering C land, the rbp, & rsp of the last Java frame have to be recorded // in the (thread-local) JavaThread object. When leaving C land, the last Java fp // has to be reset to 0. This is required to allow proper stack traversal. void MacroAssembler::set_last_Java_frame(Register java_thread, Register last_java_sp, Register last_java_fp, address last_java_pc) { // determine java_thread register if (!java_thread->is_valid()) { java_thread = rdi; get_thread(java_thread); } // determine last_java_sp register if (!last_java_sp->is_valid()) { last_java_sp = rsp; } // last_java_fp is optional if (last_java_fp->is_valid()) { movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); } // last_java_pc is optional if (last_java_pc != NULL) { lea(Address(java_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()), InternalAddress(last_java_pc)); } movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); } void MacroAssembler::shlptr(Register dst, int imm8) { LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); } void MacroAssembler::shrptr(Register dst, int imm8) { LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); } void MacroAssembler::sign_extend_byte(Register reg) { if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { movsbl(reg, reg); // movsxb } else { shll(reg, 24); sarl(reg, 24); } } void MacroAssembler::sign_extend_short(Register reg) { if (LP64_ONLY(true ||) VM_Version::is_P6()) { movswl(reg, reg); // movsxw } else { shll(reg, 16); sarl(reg, 16); } } void MacroAssembler::testl(Register dst, AddressLiteral src) { assert(reachable(src), "Address should be reachable"); testl(dst, as_Address(src)); } void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::sqrtsd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::sqrtsd(dst, Address(rscratch1, 0)); } } void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::sqrtss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::sqrtss(dst, Address(rscratch1, 0)); } } void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::subsd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::subsd(dst, Address(rscratch1, 0)); } } void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::subss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::subss(dst, Address(rscratch1, 0)); } } void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::ucomisd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::ucomisd(dst, Address(rscratch1, 0)); } } void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::ucomiss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::ucomiss(dst, Address(rscratch1, 0)); } } void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) { // Used in sign-bit flipping with aligned address. assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); if (reachable(src)) { Assembler::xorpd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::xorpd(dst, Address(rscratch1, 0)); } } void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) { // Used in sign-bit flipping with aligned address. assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); if (reachable(src)) { Assembler::xorps(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::xorps(dst, Address(rscratch1, 0)); } } // AVX 3-operands instructions void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vaddsd(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vaddsd(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vaddss(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vaddss(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vandpd(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vandpd(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vandps(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vandps(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vdivsd(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vdivsd(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vdivss(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vdivss(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vmulsd(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vmulsd(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vmulss(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vmulss(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vsubsd(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vsubsd(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vsubss(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vsubss(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vxorpd(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vxorpd(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vxorps(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vxorps(dst, nds, Address(rscratch1, 0)); } } ////////////////////////////////////////////////////////////////////////////////// #ifndef SERIALGC void MacroAssembler::g1_write_barrier_pre(Register obj, Register pre_val, Register thread, Register tmp, bool tosca_live, bool expand_call) { // If expand_call is true then we expand the call_VM_leaf macro // directly to skip generating the check by // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp. #ifdef _LP64 assert(thread == r15_thread, "must be"); #endif // _LP64 Label done; Label runtime; assert(pre_val != noreg, "check this code"); if (obj != noreg) { assert_different_registers(obj, pre_val, tmp); assert(pre_val != rax, "check this code"); } Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active())); Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index())); Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_buf())); // Is marking active? if (in_bytes(PtrQueue::byte_width_of_active()) == 4) { cmpl(in_progress, 0); } else { assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption"); cmpb(in_progress, 0); } jcc(Assembler::equal, done); // Do we need to load the previous value? if (obj != noreg) { load_heap_oop(pre_val, Address(obj, 0)); } // Is the previous value null? cmpptr(pre_val, (int32_t) NULL_WORD); jcc(Assembler::equal, done); // Can we store original value in the thread's buffer? // Is index == 0? // (The index field is typed as size_t.) movptr(tmp, index); // tmp := *index_adr cmpptr(tmp, 0); // tmp == 0? jcc(Assembler::equal, runtime); // If yes, goto runtime subptr(tmp, wordSize); // tmp := tmp - wordSize movptr(index, tmp); // *index_adr := tmp addptr(tmp, buffer); // tmp := tmp + *buffer_adr // Record the previous value movptr(Address(tmp, 0), pre_val); jmp(done); bind(runtime); // save the live input values if(tosca_live) push(rax); if (obj != noreg && obj != rax) push(obj); if (pre_val != rax) push(pre_val); // Calling the runtime using the regular call_VM_leaf mechanism generates // code (generated by InterpreterMacroAssember::call_VM_leaf_base) // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL. // // If we care generating the pre-barrier without a frame (e.g. in the // intrinsified Reference.get() routine) then ebp might be pointing to // the caller frame and so this check will most likely fail at runtime. // // Expanding the call directly bypasses the generation of the check. // So when we do not have have a full interpreter frame on the stack // expand_call should be passed true. NOT_LP64( push(thread); ) if (expand_call) { LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); ) pass_arg1(this, thread); pass_arg0(this, pre_val); MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2); } else { call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread); } NOT_LP64( pop(thread); ) // save the live input values if (pre_val != rax) pop(pre_val); if (obj != noreg && obj != rax) pop(obj); if(tosca_live) pop(rax); bind(done); } void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register thread, Register tmp, Register tmp2) { #ifdef _LP64 assert(thread == r15_thread, "must be"); #endif // _LP64 Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index())); Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_buf())); BarrierSet* bs = Universe::heap()->barrier_set(); CardTableModRefBS* ct = (CardTableModRefBS*)bs; Label done; Label runtime; // Does store cross heap regions? movptr(tmp, store_addr); xorptr(tmp, new_val); shrptr(tmp, HeapRegion::LogOfHRGrainBytes); jcc(Assembler::equal, done); // crosses regions, storing NULL? cmpptr(new_val, (int32_t) NULL_WORD); jcc(Assembler::equal, done); // storing region crossing non-NULL, is card already dirty? ExternalAddress cardtable((address) ct->byte_map_base); assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); #ifdef _LP64 const Register card_addr = tmp; movq(card_addr, store_addr); shrq(card_addr, CardTableModRefBS::card_shift); lea(tmp2, cardtable); // get the address of the card addq(card_addr, tmp2); #else const Register card_index = tmp; movl(card_index, store_addr); shrl(card_index, CardTableModRefBS::card_shift); Address index(noreg, card_index, Address::times_1); const Register card_addr = tmp; lea(card_addr, as_Address(ArrayAddress(cardtable, index))); #endif cmpb(Address(card_addr, 0), 0); jcc(Assembler::equal, done); // storing a region crossing, non-NULL oop, card is clean. // dirty card and log. movb(Address(card_addr, 0), 0); cmpl(queue_index, 0); jcc(Assembler::equal, runtime); subl(queue_index, wordSize); movptr(tmp2, buffer); #ifdef _LP64 movslq(rscratch1, queue_index); addq(tmp2, rscratch1); movq(Address(tmp2, 0), card_addr); #else addl(tmp2, queue_index); movl(Address(tmp2, 0), card_index); #endif jmp(done); bind(runtime); // save the live input values push(store_addr); push(new_val); #ifdef _LP64 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread); #else push(thread); call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread); pop(thread); #endif pop(new_val); pop(store_addr); bind(done); } #endif // SERIALGC ////////////////////////////////////////////////////////////////////////////////// void MacroAssembler::store_check(Register obj) { // Does a store check for the oop in register obj. The content of // register obj is destroyed afterwards. store_check_part_1(obj); store_check_part_2(obj); } void MacroAssembler::store_check(Register obj, Address dst) { store_check(obj); } // split the store check operation so that other instructions can be scheduled inbetween void MacroAssembler::store_check_part_1(Register obj) { BarrierSet* bs = Universe::heap()->barrier_set(); assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); shrptr(obj, CardTableModRefBS::card_shift); } void MacroAssembler::store_check_part_2(Register obj) { BarrierSet* bs = Universe::heap()->barrier_set(); assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); CardTableModRefBS* ct = (CardTableModRefBS*)bs; assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); // The calculation for byte_map_base is as follows: // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift); // So this essentially converts an address to a displacement and // it will never need to be relocated. On 64bit however the value may be too // large for a 32bit displacement intptr_t disp = (intptr_t) ct->byte_map_base; if (is_simm32(disp)) { Address cardtable(noreg, obj, Address::times_1, disp); movb(cardtable, 0); } else { // By doing it as an ExternalAddress disp could be converted to a rip-relative // displacement and done in a single instruction given favorable mapping and // a smarter version of as_Address. Worst case it is two instructions which // is no worse off then loading disp into a register and doing as a simple // Address() as above. // We can't do as ExternalAddress as the only style since if disp == 0 we'll // assert since NULL isn't acceptable in a reloci (see 6644928). In any case // in some cases we'll get a single instruction version. ExternalAddress cardtable((address)disp); Address index(noreg, obj, Address::times_1); movb(as_Address(ArrayAddress(cardtable, index)), 0); } } void MacroAssembler::subptr(Register dst, int32_t imm32) { LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); } void MacroAssembler::subptr(Register dst, Register src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); } // C++ bool manipulation void MacroAssembler::testbool(Register dst) { if(sizeof(bool) == 1) testb(dst, 0xff); else if(sizeof(bool) == 2) { // testw implementation needed for two byte bools ShouldNotReachHere(); } else if(sizeof(bool) == 4) testl(dst, dst); else // unsupported ShouldNotReachHere(); } void MacroAssembler::testptr(Register dst, Register src) { LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); } // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. void MacroAssembler::tlab_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) { assert_different_registers(obj, t1, t2); assert_different_registers(obj, var_size_in_bytes, t1); Register end = t2; Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread); verify_tlab(); NOT_LP64(get_thread(thread)); movptr(obj, Address(thread, JavaThread::tlab_top_offset())); if (var_size_in_bytes == noreg) { lea(end, Address(obj, con_size_in_bytes)); } else { lea(end, Address(obj, var_size_in_bytes, Address::times_1)); } cmpptr(end, Address(thread, JavaThread::tlab_end_offset())); jcc(Assembler::above, slow_case); // update the tlab top pointer movptr(Address(thread, JavaThread::tlab_top_offset()), end); // recover var_size_in_bytes if necessary if (var_size_in_bytes == end) { subptr(var_size_in_bytes, obj); } verify_tlab(); } // Preserves rbx, and rdx. Register MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) { Register top = rax; Register t1 = rcx; Register t2 = rsi; Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread); assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx); Label do_refill, discard_tlab; if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { // No allocation in the shared eden. jmp(slow_case); } NOT_LP64(get_thread(thread_reg)); movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); // calculate amount of free space subptr(t1, top); shrptr(t1, LogHeapWordSize); // Retain tlab and allocate object in shared space if // the amount free in the tlab is too large to discard. cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); jcc(Assembler::lessEqual, discard_tlab); // Retain // %%% yuck as movptr... movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment()); addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2); if (TLABStats) { // increment number of slow_allocations addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1); } jmp(try_eden); bind(discard_tlab); if (TLABStats) { // increment number of refills addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1); // accumulate wastage -- t1 is amount free in tlab addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1); } // if tlab is currently allocated (top or end != null) then // fill [top, end + alignment_reserve) with array object testptr(top, top); jcc(Assembler::zero, do_refill); // set up the mark word movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2)); // set the length to the remaining space subptr(t1, typeArrayOopDesc::header_size(T_INT)); addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve()); shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint))); movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1); // set klass to intArrayKlass // dubious reloc why not an oop reloc? movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr())); // store klass last. concurrent gcs assumes klass length is valid if // klass field is not null. store_klass(top, t1); movptr(t1, top); subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); incr_allocated_bytes(thread_reg, t1, 0); // refill the tlab with an eden allocation bind(do_refill); movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset()))); shlptr(t1, LogHeapWordSize); // allocate new tlab, address returned in top eden_allocate(top, t1, 0, t2, slow_case); // Check that t1 was preserved in eden_allocate. #ifdef ASSERT if (UseTLAB) { Label ok; Register tsize = rsi; assert_different_registers(tsize, thread_reg, t1); push(tsize); movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset()))); shlptr(tsize, LogHeapWordSize); cmpptr(t1, tsize); jcc(Assembler::equal, ok); stop("assert(t1 != tlab size)"); should_not_reach_here(); bind(ok); pop(tsize); } #endif movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top); movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top); addptr(top, t1); subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes()); movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top); verify_tlab(); jmp(retry); return thread_reg; // for use by caller } void MacroAssembler::incr_allocated_bytes(Register thread, Register var_size_in_bytes, int con_size_in_bytes, Register t1) { #ifdef _LP64 if (var_size_in_bytes->is_valid()) { addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes); } else { addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes); } #else if (!thread->is_valid()) { assert(t1->is_valid(), "need temp reg"); thread = t1; get_thread(thread); } if (var_size_in_bytes->is_valid()) { addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes); } else { addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes); } adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0); #endif } static const double pi_4 = 0.7853981633974483; void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) { // A hand-coded argument reduction for values in fabs(pi/4, pi/2) // was attempted in this code; unfortunately it appears that the // switch to 80-bit precision and back causes this to be // unprofitable compared with simply performing a runtime call if // the argument is out of the (-pi/4, pi/4) range. Register tmp = noreg; if (!VM_Version::supports_cmov()) { // fcmp needs a temporary so preserve rbx, tmp = rbx; push(tmp); } Label slow_case, done; ExternalAddress pi4_adr = (address)&pi_4; if (reachable(pi4_adr)) { // x ?<= pi/4 fld_d(pi4_adr); fld_s(1); // Stack: X PI/4 X fabs(); // Stack: |X| PI/4 X fcmp(tmp); jcc(Assembler::above, slow_case); // fastest case: -pi/4 <= x <= pi/4 switch(trig) { case 's': fsin(); break; case 'c': fcos(); break; case 't': ftan(); break; default: assert(false, "bad intrinsic"); break; } jmp(done); } // slow case: runtime call bind(slow_case); // Preserve registers across runtime call pusha(); int incoming_argument_and_return_value_offset = -1; if (num_fpu_regs_in_use > 1) { // Must preserve all other FPU regs (could alternatively convert // SharedRuntime::dsin and dcos into assembly routines known not to trash // FPU state, but can not trust C compiler) NEEDS_CLEANUP; // NOTE that in this case we also push the incoming argument to // the stack and restore it later; we also use this stack slot to // hold the return value from dsin or dcos. for (int i = 0; i < num_fpu_regs_in_use; i++) { subptr(rsp, sizeof(jdouble)); fstp_d(Address(rsp, 0)); } incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1); fld_d(Address(rsp, incoming_argument_and_return_value_offset)); } subptr(rsp, sizeof(jdouble)); fstp_d(Address(rsp, 0)); #ifdef _LP64 movdbl(xmm0, Address(rsp, 0)); #endif // _LP64 // NOTE: we must not use call_VM_leaf here because that requires a // complete interpreter frame in debug mode -- same bug as 4387334 // MacroAssembler::call_VM_leaf_base is perfectly safe and will // do proper 64bit abi NEEDS_CLEANUP; // Need to add stack banging before this runtime call if it needs to // be taken; however, there is no generic stack banging routine at // the MacroAssembler level switch(trig) { case 's': { MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0); } break; case 'c': { MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0); } break; case 't': { MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0); } break; default: assert(false, "bad intrinsic"); break; } #ifdef _LP64 movsd(Address(rsp, 0), xmm0); fld_d(Address(rsp, 0)); #endif // _LP64 addptr(rsp, sizeof(jdouble)); if (num_fpu_regs_in_use > 1) { // Must save return value to stack and then restore entire FPU stack fstp_d(Address(rsp, incoming_argument_and_return_value_offset)); for (int i = 0; i < num_fpu_regs_in_use; i++) { fld_d(Address(rsp, 0)); addptr(rsp, sizeof(jdouble)); } } popa(); // Come here with result in F-TOS bind(done); if (tmp != noreg) { pop(tmp); } } // Look up the method for a megamorphic invokeinterface call. // The target method is determined by . // The receiver klass is in recv_klass. // On success, the result will be in method_result, and execution falls through. // On failure, execution transfers to the given label. void MacroAssembler::lookup_interface_method(Register recv_klass, Register intf_klass, RegisterOrConstant itable_index, Register method_result, Register scan_temp, Label& L_no_such_interface) { assert_different_registers(recv_klass, intf_klass, method_result, scan_temp); assert(itable_index.is_constant() || itable_index.as_register() == method_result, "caller must use same register for non-constant itable index as for method"); // Compute start of first itableOffsetEntry (which is at the end of the vtable) int vtable_base = instanceKlass::vtable_start_offset() * wordSize; int itentry_off = itableMethodEntry::method_offset_in_bytes(); int scan_step = itableOffsetEntry::size() * wordSize; int vte_size = vtableEntry::size() * wordSize; Address::ScaleFactor times_vte_scale = Address::times_ptr; assert(vte_size == wordSize, "else adjust times_vte_scale"); movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize)); // %%% Could store the aligned, prescaled offset in the klassoop. lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); if (HeapWordsPerLong > 1) { // Round up to align_object_offset boundary // see code for instanceKlass::start_of_itable! round_to(scan_temp, BytesPerLong); } // Adjust recv_klass by scaled itable_index, so we can free itable_index. assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { // if (scan->interface() == intf) { // result = (klass + scan->offset() + itable_index); // } // } Label search, found_method; for (int peel = 1; peel >= 0; peel--) { movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); cmpptr(intf_klass, method_result); if (peel) { jccb(Assembler::equal, found_method); } else { jccb(Assembler::notEqual, search); // (invert the test to fall through to found_method...) } if (!peel) break; bind(search); // Check that the previous entry is non-null. A null entry means that // the receiver class doesn't implement the interface, and wasn't the // same as when the caller was compiled. testptr(method_result, method_result); jcc(Assembler::zero, L_no_such_interface); addptr(scan_temp, scan_step); } bind(found_method); // Got a hit. movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); } void MacroAssembler::check_klass_subtype(Register sub_klass, Register super_klass, Register temp_reg, Label& L_success) { Label L_failure; check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); bind(L_failure); } void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, Register super_klass, Register temp_reg, Label* L_success, Label* L_failure, Label* L_slow_path, RegisterOrConstant super_check_offset) { assert_different_registers(sub_klass, super_klass, temp_reg); bool must_load_sco = (super_check_offset.constant_or_zero() == -1); if (super_check_offset.is_register()) { assert_different_registers(sub_klass, super_klass, super_check_offset.as_register()); } else if (must_load_sco) { assert(temp_reg != noreg, "supply either a temp or a register offset"); } Label L_fallthrough; int label_nulls = 0; if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } assert(label_nulls <= 1, "at most one NULL in the batch"); int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); int sco_offset = in_bytes(Klass::super_check_offset_offset()); Address super_check_offset_addr(super_klass, sco_offset); // Hacked jcc, which "knows" that L_fallthrough, at least, is in // range of a jccb. If this routine grows larger, reconsider at // least some of these. #define local_jcc(assembler_cond, label) \ if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ else jcc( assembler_cond, label) /*omit semi*/ // Hacked jmp, which may only be used just before L_fallthrough. #define final_jmp(label) \ if (&(label) == &L_fallthrough) { /*do nothing*/ } \ else jmp(label) /*omit semi*/ // If the pointers are equal, we are done (e.g., String[] elements). // This self-check enables sharing of secondary supertype arrays among // non-primary types such as array-of-interface. Otherwise, each such // type would need its own customized SSA. // We move this check to the front of the fast path because many // type checks are in fact trivially successful in this manner, // so we get a nicely predicted branch right at the start of the check. cmpptr(sub_klass, super_klass); local_jcc(Assembler::equal, *L_success); // Check the supertype display: if (must_load_sco) { // Positive movl does right thing on LP64. movl(temp_reg, super_check_offset_addr); super_check_offset = RegisterOrConstant(temp_reg); } Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); cmpptr(super_klass, super_check_addr); // load displayed supertype // This check has worked decisively for primary supers. // Secondary supers are sought in the super_cache ('super_cache_addr'). // (Secondary supers are interfaces and very deeply nested subtypes.) // This works in the same check above because of a tricky aliasing // between the super_cache and the primary super display elements. // (The 'super_check_addr' can address either, as the case requires.) // Note that the cache is updated below if it does not help us find // what we need immediately. // So if it was a primary super, we can just fail immediately. // Otherwise, it's the slow path for us (no success at this point). if (super_check_offset.is_register()) { local_jcc(Assembler::equal, *L_success); cmpl(super_check_offset.as_register(), sc_offset); if (L_failure == &L_fallthrough) { local_jcc(Assembler::equal, *L_slow_path); } else { local_jcc(Assembler::notEqual, *L_failure); final_jmp(*L_slow_path); } } else if (super_check_offset.as_constant() == sc_offset) { // Need a slow path; fast failure is impossible. if (L_slow_path == &L_fallthrough) { local_jcc(Assembler::equal, *L_success); } else { local_jcc(Assembler::notEqual, *L_slow_path); final_jmp(*L_success); } } else { // No slow path; it's a fast decision. if (L_failure == &L_fallthrough) { local_jcc(Assembler::equal, *L_success); } else { local_jcc(Assembler::notEqual, *L_failure); final_jmp(*L_success); } } bind(L_fallthrough); #undef local_jcc #undef final_jmp } void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, Register super_klass, Register temp_reg, Register temp2_reg, Label* L_success, Label* L_failure, bool set_cond_codes) { assert_different_registers(sub_klass, super_klass, temp_reg); if (temp2_reg != noreg) assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) Label L_fallthrough; int label_nulls = 0; if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } assert(label_nulls <= 1, "at most one NULL in the batch"); // a couple of useful fields in sub_klass: int ss_offset = in_bytes(Klass::secondary_supers_offset()); int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); Address secondary_supers_addr(sub_klass, ss_offset); Address super_cache_addr( sub_klass, sc_offset); // Do a linear scan of the secondary super-klass chain. // This code is rarely used, so simplicity is a virtue here. // The repne_scan instruction uses fixed registers, which we must spill. // Don't worry too much about pre-existing connections with the input regs. assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) // Get super_klass value into rax (even if it was in rdi or rcx). bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; if (super_klass != rax || UseCompressedOops) { if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } mov(rax, super_klass); } if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } #ifndef PRODUCT int* pst_counter = &SharedRuntime::_partial_subtype_ctr; ExternalAddress pst_counter_addr((address) pst_counter); NOT_LP64( incrementl(pst_counter_addr) ); LP64_ONLY( lea(rcx, pst_counter_addr) ); LP64_ONLY( incrementl(Address(rcx, 0)) ); #endif //PRODUCT // We will consult the secondary-super array. movptr(rdi, secondary_supers_addr); // Load the array length. (Positive movl does right thing on LP64.) movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes())); // Skip to start of data. addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); // Scan RCX words at [RDI] for an occurrence of RAX. // Set NZ/Z based on last compare. // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does // not change flags (only scas instruction which is repeated sets flags). // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. #ifdef _LP64 // This part is tricky, as values in supers array could be 32 or 64 bit wide // and we store values in objArrays always encoded, thus we need to encode // the value of rax before repne. Note that rax is dead after the repne. if (UseCompressedOops) { encode_heap_oop_not_null(rax); // Changes flags. // The superclass is never null; it would be a basic system error if a null // pointer were to sneak in here. Note that we have already loaded the // Klass::super_check_offset from the super_klass in the fast path, // so if there is a null in that register, we are already in the afterlife. testl(rax,rax); // Set Z = 0 repne_scanl(); } else #endif // _LP64 { testptr(rax,rax); // Set Z = 0 repne_scan(); } // Unspill the temp. registers: if (pushed_rdi) pop(rdi); if (pushed_rcx) pop(rcx); if (pushed_rax) pop(rax); if (set_cond_codes) { // Special hack for the AD files: rdi is guaranteed non-zero. assert(!pushed_rdi, "rdi must be left non-NULL"); // Also, the condition codes are properly set Z/NZ on succeed/failure. } if (L_failure == &L_fallthrough) jccb(Assembler::notEqual, *L_failure); else jcc(Assembler::notEqual, *L_failure); // Success. Cache the super we found and proceed in triumph. movptr(super_cache_addr, super_klass); if (L_success != &L_fallthrough) { jmp(*L_success); } #undef IS_A_TEMP bind(L_fallthrough); } void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { if (VM_Version::supports_cmov()) { cmovl(cc, dst, src); } else { Label L; jccb(negate_condition(cc), L); movl(dst, src); bind(L); } } void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { if (VM_Version::supports_cmov()) { cmovl(cc, dst, src); } else { Label L; jccb(negate_condition(cc), L); movl(dst, src); bind(L); } } void MacroAssembler::verify_oop(Register reg, const char* s) { if (!VerifyOops) return; // Pass register number to verify_oop_subroutine char* b = new char[strlen(s) + 50]; sprintf(b, "verify_oop: %s: %s", reg->name(), s); #ifdef _LP64 push(rscratch1); // save r10, trashed by movptr() #endif push(rax); // save rax, push(reg); // pass register argument ExternalAddress buffer((address) b); // avoid using pushptr, as it modifies scratch registers // and our contract is not to modify anything movptr(rax, buffer.addr()); push(rax); // call indirectly to solve generation ordering problem movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); call(rax); // Caller pops the arguments (oop, message) and restores rax, r10 } RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) { intptr_t value = *delayed_value_addr; if (value != 0) return RegisterOrConstant(value + offset); // load indirectly to solve generation ordering problem movptr(tmp, ExternalAddress((address) delayed_value_addr)); #ifdef ASSERT { Label L; testptr(tmp, tmp); if (WizardMode) { jcc(Assembler::notZero, L); char* buf = new char[40]; sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]); stop(buf); } else { jccb(Assembler::notZero, L); hlt(); } bind(L); } #endif if (offset != 0) addptr(tmp, offset); return RegisterOrConstant(tmp); } // registers on entry: // - rax ('check' register): required MethodType // - rcx: method handle // - rdx, rsi, or ?: killable temp void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg, Register temp_reg, Label& wrong_method_type) { Address type_addr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)); // compare method type against that of the receiver if (UseCompressedOops) { load_heap_oop(temp_reg, type_addr); cmpptr(mtype_reg, temp_reg); } else { cmpptr(mtype_reg, type_addr); } jcc(Assembler::notEqual, wrong_method_type); } // A method handle has a "vmslots" field which gives the size of its // argument list in JVM stack slots. This field is either located directly // in every method handle, or else is indirectly accessed through the // method handle's MethodType. This macro hides the distinction. void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg, Register temp_reg) { assert_different_registers(vmslots_reg, mh_reg, temp_reg); // load mh.type.form.vmslots Register temp2_reg = vmslots_reg; load_heap_oop(temp2_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg))); load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg))); movl(vmslots_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg))); } // registers on entry: // - rcx: method handle // - rdx: killable temp (interpreted only) // - rax: killable temp (compiled only) void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) { assert(mh_reg == rcx, "caller must put MH object in rcx"); assert_different_registers(mh_reg, temp_reg); // pick out the interpreted side of the handler // NOTE: vmentry is not an oop! movptr(temp_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg))); // off we go... jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes())); // for the various stubs which take control at this point, // see MethodHandles::generate_method_handle_stub } Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, int extra_slot_offset) { // cf. TemplateTable::prepare_invoke(), if (load_receiver). int stackElementSize = Interpreter::stackElementSize; int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); #ifdef ASSERT int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); assert(offset1 - offset == stackElementSize, "correct arithmetic"); #endif Register scale_reg = noreg; Address::ScaleFactor scale_factor = Address::no_scale; if (arg_slot.is_constant()) { offset += arg_slot.as_constant() * stackElementSize; } else { scale_reg = arg_slot.as_register(); scale_factor = Address::times(stackElementSize); } offset += wordSize; // return PC is on stack return Address(rsp, scale_reg, scale_factor, offset); } void MacroAssembler::verify_oop_addr(Address addr, const char* s) { if (!VerifyOops) return; // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord); // Pass register number to verify_oop_subroutine char* b = new char[strlen(s) + 50]; sprintf(b, "verify_oop_addr: %s", s); #ifdef _LP64 push(rscratch1); // save r10, trashed by movptr() #endif push(rax); // save rax, // addr may contain rsp so we will have to adjust it based on the push // we just did (and on 64 bit we do two pushes) // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which // stores rax into addr which is backwards of what was intended. if (addr.uses(rsp)) { lea(rax, addr); pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); } else { pushptr(addr); } ExternalAddress buffer((address) b); // pass msg argument // avoid using pushptr, as it modifies scratch registers // and our contract is not to modify anything movptr(rax, buffer.addr()); push(rax); // call indirectly to solve generation ordering problem movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); call(rax); // Caller pops the arguments (addr, message) and restores rax, r10. } void MacroAssembler::verify_tlab() { #ifdef ASSERT if (UseTLAB && VerifyOops) { Label next, ok; Register t1 = rsi; Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); push(t1); NOT_LP64(push(thread_reg)); NOT_LP64(get_thread(thread_reg)); movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); jcc(Assembler::aboveEqual, next); stop("assert(top >= start)"); should_not_reach_here(); bind(next); movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); jcc(Assembler::aboveEqual, ok); stop("assert(top <= end)"); should_not_reach_here(); bind(ok); NOT_LP64(pop(thread_reg)); pop(t1); } #endif } class ControlWord { public: int32_t _value; int rounding_control() const { return (_value >> 10) & 3 ; } int precision_control() const { return (_value >> 8) & 3 ; } bool precision() const { return ((_value >> 5) & 1) != 0; } bool underflow() const { return ((_value >> 4) & 1) != 0; } bool overflow() const { return ((_value >> 3) & 1) != 0; } bool zero_divide() const { return ((_value >> 2) & 1) != 0; } bool denormalized() const { return ((_value >> 1) & 1) != 0; } bool invalid() const { return ((_value >> 0) & 1) != 0; } void print() const { // rounding control const char* rc; switch (rounding_control()) { case 0: rc = "round near"; break; case 1: rc = "round down"; break; case 2: rc = "round up "; break; case 3: rc = "chop "; break; }; // precision control const char* pc; switch (precision_control()) { case 0: pc = "24 bits "; break; case 1: pc = "reserved"; break; case 2: pc = "53 bits "; break; case 3: pc = "64 bits "; break; }; // flags char f[9]; f[0] = ' '; f[1] = ' '; f[2] = (precision ()) ? 'P' : 'p'; f[3] = (underflow ()) ? 'U' : 'u'; f[4] = (overflow ()) ? 'O' : 'o'; f[5] = (zero_divide ()) ? 'Z' : 'z'; f[6] = (denormalized()) ? 'D' : 'd'; f[7] = (invalid ()) ? 'I' : 'i'; f[8] = '\x0'; // output printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); } }; class StatusWord { public: int32_t _value; bool busy() const { return ((_value >> 15) & 1) != 0; } bool C3() const { return ((_value >> 14) & 1) != 0; } bool C2() const { return ((_value >> 10) & 1) != 0; } bool C1() const { return ((_value >> 9) & 1) != 0; } bool C0() const { return ((_value >> 8) & 1) != 0; } int top() const { return (_value >> 11) & 7 ; } bool error_status() const { return ((_value >> 7) & 1) != 0; } bool stack_fault() const { return ((_value >> 6) & 1) != 0; } bool precision() const { return ((_value >> 5) & 1) != 0; } bool underflow() const { return ((_value >> 4) & 1) != 0; } bool overflow() const { return ((_value >> 3) & 1) != 0; } bool zero_divide() const { return ((_value >> 2) & 1) != 0; } bool denormalized() const { return ((_value >> 1) & 1) != 0; } bool invalid() const { return ((_value >> 0) & 1) != 0; } void print() const { // condition codes char c[5]; c[0] = (C3()) ? '3' : '-'; c[1] = (C2()) ? '2' : '-'; c[2] = (C1()) ? '1' : '-'; c[3] = (C0()) ? '0' : '-'; c[4] = '\x0'; // flags char f[9]; f[0] = (error_status()) ? 'E' : '-'; f[1] = (stack_fault ()) ? 'S' : '-'; f[2] = (precision ()) ? 'P' : '-'; f[3] = (underflow ()) ? 'U' : '-'; f[4] = (overflow ()) ? 'O' : '-'; f[5] = (zero_divide ()) ? 'Z' : '-'; f[6] = (denormalized()) ? 'D' : '-'; f[7] = (invalid ()) ? 'I' : '-'; f[8] = '\x0'; // output printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); } }; class TagWord { public: int32_t _value; int tag_at(int i) const { return (_value >> (i*2)) & 3; } void print() const { printf("%04x", _value & 0xFFFF); } }; class FPU_Register { public: int32_t _m0; int32_t _m1; int16_t _ex; bool is_indefinite() const { return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; } void print() const { char sign = (_ex < 0) ? '-' : '+'; const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); }; }; class FPU_State { public: enum { register_size = 10, number_of_registers = 8, register_mask = 7 }; ControlWord _control_word; StatusWord _status_word; TagWord _tag_word; int32_t _error_offset; int32_t _error_selector; int32_t _data_offset; int32_t _data_selector; int8_t _register[register_size * number_of_registers]; int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } const char* tag_as_string(int tag) const { switch (tag) { case 0: return "valid"; case 1: return "zero"; case 2: return "special"; case 3: return "empty"; } ShouldNotReachHere(); return NULL; } void print() const { // print computation registers { int t = _status_word.top(); for (int i = 0; i < number_of_registers; i++) { int j = (i - t) & register_mask; printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); st(j)->print(); printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); } } printf("\n"); // print control registers printf("ctrl = "); _control_word.print(); printf("\n"); printf("stat = "); _status_word .print(); printf("\n"); printf("tags = "); _tag_word .print(); printf("\n"); } }; class Flag_Register { public: int32_t _value; bool overflow() const { return ((_value >> 11) & 1) != 0; } bool direction() const { return ((_value >> 10) & 1) != 0; } bool sign() const { return ((_value >> 7) & 1) != 0; } bool zero() const { return ((_value >> 6) & 1) != 0; } bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } bool parity() const { return ((_value >> 2) & 1) != 0; } bool carry() const { return ((_value >> 0) & 1) != 0; } void print() const { // flags char f[8]; f[0] = (overflow ()) ? 'O' : '-'; f[1] = (direction ()) ? 'D' : '-'; f[2] = (sign ()) ? 'S' : '-'; f[3] = (zero ()) ? 'Z' : '-'; f[4] = (auxiliary_carry()) ? 'A' : '-'; f[5] = (parity ()) ? 'P' : '-'; f[6] = (carry ()) ? 'C' : '-'; f[7] = '\x0'; // output printf("%08x flags = %s", _value, f); } }; class IU_Register { public: int32_t _value; void print() const { printf("%08x %11d", _value, _value); } }; class IU_State { public: Flag_Register _eflags; IU_Register _rdi; IU_Register _rsi; IU_Register _rbp; IU_Register _rsp; IU_Register _rbx; IU_Register _rdx; IU_Register _rcx; IU_Register _rax; void print() const { // computation registers printf("rax, = "); _rax.print(); printf("\n"); printf("rbx, = "); _rbx.print(); printf("\n"); printf("rcx = "); _rcx.print(); printf("\n"); printf("rdx = "); _rdx.print(); printf("\n"); printf("rdi = "); _rdi.print(); printf("\n"); printf("rsi = "); _rsi.print(); printf("\n"); printf("rbp, = "); _rbp.print(); printf("\n"); printf("rsp = "); _rsp.print(); printf("\n"); printf("\n"); // control registers printf("flgs = "); _eflags.print(); printf("\n"); } }; class CPU_State { public: FPU_State _fpu_state; IU_State _iu_state; void print() const { printf("--------------------------------------------------\n"); _iu_state .print(); printf("\n"); _fpu_state.print(); printf("--------------------------------------------------\n"); } }; static void _print_CPU_state(CPU_State* state) { state->print(); }; void MacroAssembler::print_CPU_state() { push_CPU_state(); push(rsp); // pass CPU state call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); addptr(rsp, wordSize); // discard argument pop_CPU_state(); } static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { static int counter = 0; FPU_State* fs = &state->_fpu_state; counter++; // For leaf calls, only verify that the top few elements remain empty. // We only need 1 empty at the top for C2 code. if( stack_depth < 0 ) { if( fs->tag_for_st(7) != 3 ) { printf("FPR7 not empty\n"); state->print(); assert(false, "error"); return false; } return true; // All other stack states do not matter } assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std, "bad FPU control word"); // compute stack depth int i = 0; while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; int d = i; while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; // verify findings if (i != FPU_State::number_of_registers) { // stack not contiguous printf("%s: stack not contiguous at ST%d\n", s, i); state->print(); assert(false, "error"); return false; } // check if computed stack depth corresponds to expected stack depth if (stack_depth < 0) { // expected stack depth is -stack_depth or less if (d > -stack_depth) { // too many elements on the stack printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); state->print(); assert(false, "error"); return false; } } else { // expected stack depth is stack_depth if (d != stack_depth) { // wrong stack depth printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); state->print(); assert(false, "error"); return false; } } // everything is cool return true; } void MacroAssembler::verify_FPU(int stack_depth, const char* s) { if (!VerifyFPU) return; push_CPU_state(); push(rsp); // pass CPU state ExternalAddress msg((address) s); // pass message string s pushptr(msg.addr()); push(stack_depth); // pass stack depth call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); addptr(rsp, 3 * wordSize); // discard arguments // check for error { Label L; testl(rax, rax); jcc(Assembler::notZero, L); int3(); // break if error condition bind(L); } pop_CPU_state(); } void MacroAssembler::load_klass(Register dst, Register src) { #ifdef _LP64 if (UseCompressedOops) { movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); decode_heap_oop_not_null(dst); } else #endif movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); } void MacroAssembler::load_prototype_header(Register dst, Register src) { #ifdef _LP64 if (UseCompressedOops) { assert (Universe::heap() != NULL, "java heap should be initialized"); movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); if (Universe::narrow_oop_shift() != 0) { assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); if (LogMinObjAlignmentInBytes == Address::times_8) { movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset())); } else { // OK to use shift since we don't need to preserve flags. shlq(dst, LogMinObjAlignmentInBytes); movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset())); } } else { movq(dst, Address(dst, Klass::prototype_header_offset())); } } else #endif { movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); movptr(dst, Address(dst, Klass::prototype_header_offset())); } } void MacroAssembler::store_klass(Register dst, Register src) { #ifdef _LP64 if (UseCompressedOops) { encode_heap_oop_not_null(src); movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); } else #endif movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); } void MacroAssembler::load_heap_oop(Register dst, Address src) { #ifdef _LP64 if (UseCompressedOops) { movl(dst, src); decode_heap_oop(dst); } else #endif movptr(dst, src); } // Doesn't do verfication, generates fixed size code void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) { #ifdef _LP64 if (UseCompressedOops) { movl(dst, src); decode_heap_oop_not_null(dst); } else #endif movptr(dst, src); } void MacroAssembler::store_heap_oop(Address dst, Register src) { #ifdef _LP64 if (UseCompressedOops) { assert(!dst.uses(src), "not enough registers"); encode_heap_oop(src); movl(dst, src); } else #endif movptr(dst, src); } // Used for storing NULLs. void MacroAssembler::store_heap_oop_null(Address dst) { #ifdef _LP64 if (UseCompressedOops) { movl(dst, (int32_t)NULL_WORD); } else { movslq(dst, (int32_t)NULL_WORD); } #else movl(dst, (int32_t)NULL_WORD); #endif } #ifdef _LP64 void MacroAssembler::store_klass_gap(Register dst, Register src) { if (UseCompressedOops) { // Store to klass gap in destination movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); } } #ifdef ASSERT void MacroAssembler::verify_heapbase(const char* msg) { assert (UseCompressedOops, "should be compressed"); assert (Universe::heap() != NULL, "java heap should be initialized"); if (CheckCompressedOops) { Label ok; push(rscratch1); // cmpptr trashes rscratch1 cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr())); jcc(Assembler::equal, ok); stop(msg); bind(ok); pop(rscratch1); } } #endif // Algorithm must match oop.inline.hpp encode_heap_oop. void MacroAssembler::encode_heap_oop(Register r) { #ifdef ASSERT verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); #endif verify_oop(r, "broken oop in encode_heap_oop"); if (Universe::narrow_oop_base() == NULL) { if (Universe::narrow_oop_shift() != 0) { assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); shrq(r, LogMinObjAlignmentInBytes); } return; } testq(r, r); cmovq(Assembler::equal, r, r12_heapbase); subq(r, r12_heapbase); shrq(r, LogMinObjAlignmentInBytes); } void MacroAssembler::encode_heap_oop_not_null(Register r) { #ifdef ASSERT verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); if (CheckCompressedOops) { Label ok; testq(r, r); jcc(Assembler::notEqual, ok); stop("null oop passed to encode_heap_oop_not_null"); bind(ok); } #endif verify_oop(r, "broken oop in encode_heap_oop_not_null"); if (Universe::narrow_oop_base() != NULL) { subq(r, r12_heapbase); } if (Universe::narrow_oop_shift() != 0) { assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); shrq(r, LogMinObjAlignmentInBytes); } } void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { #ifdef ASSERT verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); if (CheckCompressedOops) { Label ok; testq(src, src); jcc(Assembler::notEqual, ok); stop("null oop passed to encode_heap_oop_not_null2"); bind(ok); } #endif verify_oop(src, "broken oop in encode_heap_oop_not_null2"); if (dst != src) { movq(dst, src); } if (Universe::narrow_oop_base() != NULL) { subq(dst, r12_heapbase); } if (Universe::narrow_oop_shift() != 0) { assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); shrq(dst, LogMinObjAlignmentInBytes); } } void MacroAssembler::decode_heap_oop(Register r) { #ifdef ASSERT verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); #endif if (Universe::narrow_oop_base() == NULL) { if (Universe::narrow_oop_shift() != 0) { assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); shlq(r, LogMinObjAlignmentInBytes); } } else { Label done; shlq(r, LogMinObjAlignmentInBytes); jccb(Assembler::equal, done); addq(r, r12_heapbase); bind(done); } verify_oop(r, "broken oop in decode_heap_oop"); } void MacroAssembler::decode_heap_oop_not_null(Register r) { // Note: it will change flags assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); // Cannot assert, unverified entry point counts instructions (see .ad file) // vtableStubs also counts instructions in pd_code_size_limit. // Also do not verify_oop as this is called by verify_oop. if (Universe::narrow_oop_shift() != 0) { assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); shlq(r, LogMinObjAlignmentInBytes); if (Universe::narrow_oop_base() != NULL) { addq(r, r12_heapbase); } } else { assert (Universe::narrow_oop_base() == NULL, "sanity"); } } void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { // Note: it will change flags assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); // Cannot assert, unverified entry point counts instructions (see .ad file) // vtableStubs also counts instructions in pd_code_size_limit. // Also do not verify_oop as this is called by verify_oop. if (Universe::narrow_oop_shift() != 0) { assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); if (LogMinObjAlignmentInBytes == Address::times_8) { leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); } else { if (dst != src) { movq(dst, src); } shlq(dst, LogMinObjAlignmentInBytes); if (Universe::narrow_oop_base() != NULL) { addq(dst, r12_heapbase); } } } else { assert (Universe::narrow_oop_base() == NULL, "sanity"); if (dst != src) { movq(dst, src); } } } void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int oop_index = oop_recorder()->find_index(obj); RelocationHolder rspec = oop_Relocation::spec(oop_index); mov_narrow_oop(dst, oop_index, rspec); } void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int oop_index = oop_recorder()->find_index(obj); RelocationHolder rspec = oop_Relocation::spec(oop_index); mov_narrow_oop(dst, oop_index, rspec); } void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int oop_index = oop_recorder()->find_index(obj); RelocationHolder rspec = oop_Relocation::spec(oop_index); Assembler::cmp_narrow_oop(dst, oop_index, rspec); } void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int oop_index = oop_recorder()->find_index(obj); RelocationHolder rspec = oop_Relocation::spec(oop_index); Assembler::cmp_narrow_oop(dst, oop_index, rspec); } void MacroAssembler::reinit_heapbase() { if (UseCompressedOops) { movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr())); } } #endif // _LP64 // IndexOf for constant substrings with size >= 8 chars // which don't need to be loaded through stack. void MacroAssembler::string_indexofC8(Register str1, Register str2, Register cnt1, Register cnt2, int int_cnt2, Register result, XMMRegister vec, Register tmp) { ShortBranchVerifier sbv(this); assert(UseSSE42Intrinsics, "SSE4.2 is required"); // This method uses pcmpestri inxtruction with bound registers // inputs: // xmm - substring // rax - substring length (elements count) // mem - scanned string // rdx - string length (elements count) // 0xd - mode: 1100 (substring search) + 01 (unsigned shorts) // outputs: // rcx - matched index in string assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri"); Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR, MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE; // Note, inline_string_indexOf() generates checks: // if (substr.count > string.count) return -1; // if (substr.count == 0) return 0; assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars"); // Load substring. movdqu(vec, Address(str2, 0)); movl(cnt2, int_cnt2); movptr(result, str1); // string addr if (int_cnt2 > 8) { jmpb(SCAN_TO_SUBSTR); // Reload substr for rescan, this code // is executed only for large substrings (> 8 chars) bind(RELOAD_SUBSTR); movdqu(vec, Address(str2, 0)); negptr(cnt2); // Jumped here with negative cnt2, convert to positive bind(RELOAD_STR); // We came here after the beginning of the substring was // matched but the rest of it was not so we need to search // again. Start from the next element after the previous match. // cnt2 is number of substring reminding elements and // cnt1 is number of string reminding elements when cmp failed. // Restored cnt1 = cnt1 - cnt2 + int_cnt2 subl(cnt1, cnt2); addl(cnt1, int_cnt2); movl(cnt2, int_cnt2); // Now restore cnt2 decrementl(cnt1); // Shift to next element cmpl(cnt1, cnt2); jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring addptr(result, 2); } // (int_cnt2 > 8) // Scan string for start of substr in 16-byte vectors bind(SCAN_TO_SUBSTR); pcmpestri(vec, Address(result, 0), 0x0d); jccb(Assembler::below, FOUND_CANDIDATE); // CF == 1 subl(cnt1, 8); jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string cmpl(cnt1, cnt2); jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring addptr(result, 16); jmpb(SCAN_TO_SUBSTR); // Found a potential substr bind(FOUND_CANDIDATE); // Matched whole vector if first element matched (tmp(rcx) == 0). if (int_cnt2 == 8) { jccb(Assembler::overflow, RET_FOUND); // OF == 1 } else { // int_cnt2 > 8 jccb(Assembler::overflow, FOUND_SUBSTR); } // After pcmpestri tmp(rcx) contains matched element index // Compute start addr of substr lea(result, Address(result, tmp, Address::times_2)); // Make sure string is still long enough subl(cnt1, tmp); cmpl(cnt1, cnt2); if (int_cnt2 == 8) { jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR); } else { // int_cnt2 > 8 jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD); } // Left less then substring. bind(RET_NOT_FOUND); movl(result, -1); jmpb(EXIT); if (int_cnt2 > 8) { // This code is optimized for the case when whole substring // is matched if its head is matched. bind(MATCH_SUBSTR_HEAD); pcmpestri(vec, Address(result, 0), 0x0d); // Reload only string if does not match jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0 Label CONT_SCAN_SUBSTR; // Compare the rest of substring (> 8 chars). bind(FOUND_SUBSTR); // First 8 chars are already matched. negptr(cnt2); addptr(cnt2, 8); bind(SCAN_SUBSTR); subl(cnt1, 8); cmpl(cnt2, -8); // Do not read beyond substring jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR); // Back-up strings to avoid reading beyond substring: // cnt1 = cnt1 - cnt2 + 8 addl(cnt1, cnt2); // cnt2 is negative addl(cnt1, 8); movl(cnt2, 8); negptr(cnt2); bind(CONT_SCAN_SUBSTR); if (int_cnt2 < (int)G) { movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2)); pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d); } else { // calculate index in register to avoid integer overflow (int_cnt2*2) movl(tmp, int_cnt2); addptr(tmp, cnt2); movdqu(vec, Address(str2, tmp, Address::times_2, 0)); pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d); } // Need to reload strings pointers if not matched whole vector jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0 addptr(cnt2, 8); jcc(Assembler::negative, SCAN_SUBSTR); // Fall through if found full substring } // (int_cnt2 > 8) bind(RET_FOUND); // Found result if we matched full small substring. // Compute substr offset subptr(result, str1); shrl(result, 1); // index bind(EXIT); } // string_indexofC8 // Small strings are loaded through stack if they cross page boundary. void MacroAssembler::string_indexof(Register str1, Register str2, Register cnt1, Register cnt2, int int_cnt2, Register result, XMMRegister vec, Register tmp) { ShortBranchVerifier sbv(this); assert(UseSSE42Intrinsics, "SSE4.2 is required"); // // int_cnt2 is length of small (< 8 chars) constant substring // or (-1) for non constant substring in which case its length // is in cnt2 register. // // Note, inline_string_indexOf() generates checks: // if (substr.count > string.count) return -1; // if (substr.count == 0) return 0; // assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0"); // This method uses pcmpestri inxtruction with bound registers // inputs: // xmm - substring // rax - substring length (elements count) // mem - scanned string // rdx - string length (elements count) // 0xd - mode: 1100 (substring search) + 01 (unsigned shorts) // outputs: // rcx - matched index in string assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri"); Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR, RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR, FOUND_CANDIDATE; { //======================================================== // We don't know where these strings are located // and we can't read beyond them. Load them through stack. Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR; movptr(tmp, rsp); // save old SP if (int_cnt2 > 0) { // small (< 8 chars) constant substring if (int_cnt2 == 1) { // One char load_unsigned_short(result, Address(str2, 0)); movdl(vec, result); // move 32 bits } else if (int_cnt2 == 2) { // Two chars movdl(vec, Address(str2, 0)); // move 32 bits } else if (int_cnt2 == 4) { // Four chars movq(vec, Address(str2, 0)); // move 64 bits } else { // cnt2 = { 3, 5, 6, 7 } // Array header size is 12 bytes in 32-bit VM // + 6 bytes for 3 chars == 18 bytes, // enough space to load vec and shift. assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity"); movdqu(vec, Address(str2, (int_cnt2*2)-16)); psrldq(vec, 16-(int_cnt2*2)); } } else { // not constant substring cmpl(cnt2, 8); jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough // We can read beyond string if srt+16 does not cross page boundary // since heaps are aligned and mapped by pages. assert(os::vm_page_size() < (int)G, "default page should be small"); movl(result, str2); // We need only low 32 bits andl(result, (os::vm_page_size()-1)); cmpl(result, (os::vm_page_size()-16)); jccb(Assembler::belowEqual, CHECK_STR); // Move small strings to stack to allow load 16 bytes into vec. subptr(rsp, 16); int stk_offset = wordSize-2; push(cnt2); bind(COPY_SUBSTR); load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2)); movw(Address(rsp, cnt2, Address::times_2, stk_offset), result); decrement(cnt2); jccb(Assembler::notZero, COPY_SUBSTR); pop(cnt2); movptr(str2, rsp); // New substring address } // non constant bind(CHECK_STR); cmpl(cnt1, 8); jccb(Assembler::aboveEqual, BIG_STRINGS); // Check cross page boundary. movl(result, str1); // We need only low 32 bits andl(result, (os::vm_page_size()-1)); cmpl(result, (os::vm_page_size()-16)); jccb(Assembler::belowEqual, BIG_STRINGS); subptr(rsp, 16); int stk_offset = -2; if (int_cnt2 < 0) { // not constant push(cnt2); stk_offset += wordSize; } movl(cnt2, cnt1); bind(COPY_STR); load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2)); movw(Address(rsp, cnt2, Address::times_2, stk_offset), result); decrement(cnt2); jccb(Assembler::notZero, COPY_STR); if (int_cnt2 < 0) { // not constant pop(cnt2); } movptr(str1, rsp); // New string address bind(BIG_STRINGS); // Load substring. if (int_cnt2 < 0) { // -1 movdqu(vec, Address(str2, 0)); push(cnt2); // substr count push(str2); // substr addr push(str1); // string addr } else { // Small (< 8 chars) constant substrings are loaded already. movl(cnt2, int_cnt2); } push(tmp); // original SP } // Finished loading //======================================================== // Start search // movptr(result, str1); // string addr if (int_cnt2 < 0) { // Only for non constant substring jmpb(SCAN_TO_SUBSTR); // SP saved at sp+0 // String saved at sp+1*wordSize // Substr saved at sp+2*wordSize // Substr count saved at sp+3*wordSize // Reload substr for rescan, this code // is executed only for large substrings (> 8 chars) bind(RELOAD_SUBSTR); movptr(str2, Address(rsp, 2*wordSize)); movl(cnt2, Address(rsp, 3*wordSize)); movdqu(vec, Address(str2, 0)); // We came here after the beginning of the substring was // matched but the rest of it was not so we need to search // again. Start from the next element after the previous match. subptr(str1, result); // Restore counter shrl(str1, 1); addl(cnt1, str1); decrementl(cnt1); // Shift to next element cmpl(cnt1, cnt2); jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring addptr(result, 2); } // non constant // Scan string for start of substr in 16-byte vectors bind(SCAN_TO_SUBSTR); assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri"); pcmpestri(vec, Address(result, 0), 0x0d); jccb(Assembler::below, FOUND_CANDIDATE); // CF == 1 subl(cnt1, 8); jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string cmpl(cnt1, cnt2); jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring addptr(result, 16); bind(ADJUST_STR); cmpl(cnt1, 8); // Do not read beyond string jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR); // Back-up string to avoid reading beyond string. lea(result, Address(result, cnt1, Address::times_2, -16)); movl(cnt1, 8); jmpb(SCAN_TO_SUBSTR); // Found a potential substr bind(FOUND_CANDIDATE); // After pcmpestri tmp(rcx) contains matched element index // Make sure string is still long enough subl(cnt1, tmp); cmpl(cnt1, cnt2); jccb(Assembler::greaterEqual, FOUND_SUBSTR); // Left less then substring. bind(RET_NOT_FOUND); movl(result, -1); jmpb(CLEANUP); bind(FOUND_SUBSTR); // Compute start addr of substr lea(result, Address(result, tmp, Address::times_2)); if (int_cnt2 > 0) { // Constant substring // Repeat search for small substring (< 8 chars) // from new point without reloading substring. // Have to check that we don't read beyond string. cmpl(tmp, 8-int_cnt2); jccb(Assembler::greater, ADJUST_STR); // Fall through if matched whole substring. } else { // non constant assert(int_cnt2 == -1, "should be != 0"); addl(tmp, cnt2); // Found result if we matched whole substring. cmpl(tmp, 8); jccb(Assembler::lessEqual, RET_FOUND); // Repeat search for small substring (<= 8 chars) // from new point 'str1' without reloading substring. cmpl(cnt2, 8); // Have to check that we don't read beyond string. jccb(Assembler::lessEqual, ADJUST_STR); Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG; // Compare the rest of substring (> 8 chars). movptr(str1, result); cmpl(tmp, cnt2); // First 8 chars are already matched. jccb(Assembler::equal, CHECK_NEXT); bind(SCAN_SUBSTR); pcmpestri(vec, Address(str1, 0), 0x0d); // Need to reload strings pointers if not matched whole vector jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0 bind(CHECK_NEXT); subl(cnt2, 8); jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring addptr(str1, 16); addptr(str2, 16); subl(cnt1, 8); cmpl(cnt2, 8); // Do not read beyond substring jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR); // Back-up strings to avoid reading beyond substring. lea(str2, Address(str2, cnt2, Address::times_2, -16)); lea(str1, Address(str1, cnt2, Address::times_2, -16)); subl(cnt1, cnt2); movl(cnt2, 8); addl(cnt1, 8); bind(CONT_SCAN_SUBSTR); movdqu(vec, Address(str2, 0)); jmpb(SCAN_SUBSTR); bind(RET_FOUND_LONG); movptr(str1, Address(rsp, wordSize)); } // non constant bind(RET_FOUND); // Compute substr offset subptr(result, str1); shrl(result, 1); // index bind(CLEANUP); pop(rsp); // restore SP } // string_indexof // Compare strings. void MacroAssembler::string_compare(Register str1, Register str2, Register cnt1, Register cnt2, Register result, XMMRegister vec1) { ShortBranchVerifier sbv(this); Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL; // Compute the minimum of the string lengths and the // difference of the string lengths (stack). // Do the conditional move stuff movl(result, cnt1); subl(cnt1, cnt2); push(cnt1); cmov32(Assembler::lessEqual, cnt2, result); // Is the minimum length zero? testl(cnt2, cnt2); jcc(Assembler::zero, LENGTH_DIFF_LABEL); // Load first characters load_unsigned_short(result, Address(str1, 0)); load_unsigned_short(cnt1, Address(str2, 0)); // Compare first characters subl(result, cnt1); jcc(Assembler::notZero, POP_LABEL); decrementl(cnt2); jcc(Assembler::zero, LENGTH_DIFF_LABEL); { // Check after comparing first character to see if strings are equivalent Label LSkip2; // Check if the strings start at same location cmpptr(str1, str2); jccb(Assembler::notEqual, LSkip2); // Check if the length difference is zero (from stack) cmpl(Address(rsp, 0), 0x0); jcc(Assembler::equal, LENGTH_DIFF_LABEL); // Strings might not be equivalent bind(LSkip2); } Address::ScaleFactor scale = Address::times_2; int stride = 8; // Advance to next element addptr(str1, 16/stride); addptr(str2, 16/stride); if (UseSSE42Intrinsics) { Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL; int pcmpmask = 0x19; // Setup to compare 16-byte vectors movl(result, cnt2); andl(cnt2, ~(stride - 1)); // cnt2 holds the vector count jccb(Assembler::zero, COMPARE_TAIL); lea(str1, Address(str1, result, scale)); lea(str2, Address(str2, result, scale)); negptr(result); // pcmpestri // inputs: // vec1- substring // rax - negative string length (elements count) // mem - scaned string // rdx - string length (elements count) // pcmpmask - cmp mode: 11000 (string compare with negated result) // + 00 (unsigned bytes) or + 01 (unsigned shorts) // outputs: // rcx - first mismatched element index assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri"); bind(COMPARE_WIDE_VECTORS); movdqu(vec1, Address(str1, result, scale)); pcmpestri(vec1, Address(str2, result, scale), pcmpmask); // After pcmpestri cnt1(rcx) contains mismatched element index jccb(Assembler::below, VECTOR_NOT_EQUAL); // CF==1 addptr(result, stride); subptr(cnt2, stride); jccb(Assembler::notZero, COMPARE_WIDE_VECTORS); // compare wide vectors tail testl(result, result); jccb(Assembler::zero, LENGTH_DIFF_LABEL); movl(cnt2, stride); movl(result, stride); negptr(result); movdqu(vec1, Address(str1, result, scale)); pcmpestri(vec1, Address(str2, result, scale), pcmpmask); jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL); // Mismatched characters in the vectors bind(VECTOR_NOT_EQUAL); addptr(result, cnt1); movptr(cnt2, result); load_unsigned_short(result, Address(str1, cnt2, scale)); load_unsigned_short(cnt1, Address(str2, cnt2, scale)); subl(result, cnt1); jmpb(POP_LABEL); bind(COMPARE_TAIL); // limit is zero movl(cnt2, result); // Fallthru to tail compare } // Shift str2 and str1 to the end of the arrays, negate min lea(str1, Address(str1, cnt2, scale, 0)); lea(str2, Address(str2, cnt2, scale, 0)); negptr(cnt2); // Compare the rest of the elements bind(WHILE_HEAD_LABEL); load_unsigned_short(result, Address(str1, cnt2, scale, 0)); load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0)); subl(result, cnt1); jccb(Assembler::notZero, POP_LABEL); increment(cnt2); jccb(Assembler::notZero, WHILE_HEAD_LABEL); // Strings are equal up to min length. Return the length difference. bind(LENGTH_DIFF_LABEL); pop(result); jmpb(DONE_LABEL); // Discard the stored length difference bind(POP_LABEL); pop(cnt1); // That's it bind(DONE_LABEL); } // Compare char[] arrays aligned to 4 bytes or substrings. void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2, Register limit, Register result, Register chr, XMMRegister vec1, XMMRegister vec2) { ShortBranchVerifier sbv(this); Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR; int length_offset = arrayOopDesc::length_offset_in_bytes(); int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR); // Check the input args cmpptr(ary1, ary2); jcc(Assembler::equal, TRUE_LABEL); if (is_array_equ) { // Need additional checks for arrays_equals. testptr(ary1, ary1); jcc(Assembler::zero, FALSE_LABEL); testptr(ary2, ary2); jcc(Assembler::zero, FALSE_LABEL); // Check the lengths movl(limit, Address(ary1, length_offset)); cmpl(limit, Address(ary2, length_offset)); jcc(Assembler::notEqual, FALSE_LABEL); } // count == 0 testl(limit, limit); jcc(Assembler::zero, TRUE_LABEL); if (is_array_equ) { // Load array address lea(ary1, Address(ary1, base_offset)); lea(ary2, Address(ary2, base_offset)); } shll(limit, 1); // byte count != 0 movl(result, limit); // copy if (UseSSE42Intrinsics) { // With SSE4.2, use double quad vector compare Label COMPARE_WIDE_VECTORS, COMPARE_TAIL; // Compare 16-byte vectors andl(result, 0x0000000e); // tail count (in bytes) andl(limit, 0xfffffff0); // vector count (in bytes) jccb(Assembler::zero, COMPARE_TAIL); lea(ary1, Address(ary1, limit, Address::times_1)); lea(ary2, Address(ary2, limit, Address::times_1)); negptr(limit); bind(COMPARE_WIDE_VECTORS); movdqu(vec1, Address(ary1, limit, Address::times_1)); movdqu(vec2, Address(ary2, limit, Address::times_1)); pxor(vec1, vec2); ptest(vec1, vec1); jccb(Assembler::notZero, FALSE_LABEL); addptr(limit, 16); jcc(Assembler::notZero, COMPARE_WIDE_VECTORS); testl(result, result); jccb(Assembler::zero, TRUE_LABEL); movdqu(vec1, Address(ary1, result, Address::times_1, -16)); movdqu(vec2, Address(ary2, result, Address::times_1, -16)); pxor(vec1, vec2); ptest(vec1, vec1); jccb(Assembler::notZero, FALSE_LABEL); jmpb(TRUE_LABEL); bind(COMPARE_TAIL); // limit is zero movl(limit, result); // Fallthru to tail compare } // Compare 4-byte vectors andl(limit, 0xfffffffc); // vector count (in bytes) jccb(Assembler::zero, COMPARE_CHAR); lea(ary1, Address(ary1, limit, Address::times_1)); lea(ary2, Address(ary2, limit, Address::times_1)); negptr(limit); bind(COMPARE_VECTORS); movl(chr, Address(ary1, limit, Address::times_1)); cmpl(chr, Address(ary2, limit, Address::times_1)); jccb(Assembler::notEqual, FALSE_LABEL); addptr(limit, 4); jcc(Assembler::notZero, COMPARE_VECTORS); // Compare trailing char (final 2 bytes), if any bind(COMPARE_CHAR); testl(result, 0x2); // tail char jccb(Assembler::zero, TRUE_LABEL); load_unsigned_short(chr, Address(ary1, 0)); load_unsigned_short(limit, Address(ary2, 0)); cmpl(chr, limit); jccb(Assembler::notEqual, FALSE_LABEL); bind(TRUE_LABEL); movl(result, 1); // return true jmpb(DONE); bind(FALSE_LABEL); xorl(result, result); // return false // That's it bind(DONE); } #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #else #define BLOCK_COMMENT(str) block_comment(str) #endif #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") void MacroAssembler::generate_fill(BasicType t, bool aligned, Register to, Register value, Register count, Register rtmp, XMMRegister xtmp) { ShortBranchVerifier sbv(this); assert_different_registers(to, value, count, rtmp); Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte; Label L_fill_2_bytes, L_fill_4_bytes; int shift = -1; switch (t) { case T_BYTE: shift = 2; break; case T_SHORT: shift = 1; break; case T_INT: shift = 0; break; default: ShouldNotReachHere(); } if (t == T_BYTE) { andl(value, 0xff); movl(rtmp, value); shll(rtmp, 8); orl(value, rtmp); } if (t == T_SHORT) { andl(value, 0xffff); } if (t == T_BYTE || t == T_SHORT) { movl(rtmp, value); shll(rtmp, 16); orl(value, rtmp); } cmpl(count, 2<= 2, "supported cpu only" ); Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; // Fill 32-byte chunks movdl(xtmp, value); pshufd(xtmp, xtmp, 0); subl(count, 8 << shift); jcc(Assembler::less, L_check_fill_8_bytes); align(16); BIND(L_fill_32_bytes_loop); if (UseUnalignedLoadStores) { movdqu(Address(to, 0), xtmp); movdqu(Address(to, 16), xtmp); } else { movq(Address(to, 0), xtmp); movq(Address(to, 8), xtmp); movq(Address(to, 16), xtmp); movq(Address(to, 24), xtmp); } addptr(to, 32); subl(count, 8 << shift); jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); BIND(L_check_fill_8_bytes); addl(count, 8 << shift); jccb(Assembler::zero, L_exit); jmpb(L_fill_8_bytes); // // length is too short, just fill qwords // BIND(L_fill_8_bytes_loop); movq(Address(to, 0), xtmp); addptr(to, 8); BIND(L_fill_8_bytes); subl(count, 1 << (shift + 1)); jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); } } // fill trailing 4 bytes BIND(L_fill_4_bytes); testl(count, 1<cmp8(ExternalAddress((address)flag_addr), value); _masm->jcc(Assembler::equal, _label); } SkipIfEqual::~SkipIfEqual() { _masm->bind(_label); }