1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "assembler_x86.inline.hpp"
  27 #include "gc_interface/collectedHeap.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "memory/cardTableModRefBS.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "prims/methodHandles.hpp"
  32 #include "runtime/biasedLocking.hpp"
  33 #include "runtime/interfaceSupport.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/os.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #ifndef SERIALGC
  39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  41 #include "gc_implementation/g1/heapRegion.hpp"
  42 #endif
  43 
  44 // Implementation of AddressLiteral
  45 
  46 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  47   _is_lval = false;
  48   _target = target;
  49   switch (rtype) {
  50   case relocInfo::oop_type:
  51     // Oops are a special case. Normally they would be their own section
  52     // but in cases like icBuffer they are literals in the code stream that
  53     // we don't have a section for. We use none so that we get a literal address
  54     // which is always patchable.
  55     break;
  56   case relocInfo::external_word_type:
  57     _rspec = external_word_Relocation::spec(target);
  58     break;
  59   case relocInfo::internal_word_type:
  60     _rspec = internal_word_Relocation::spec(target);
  61     break;
  62   case relocInfo::opt_virtual_call_type:
  63     _rspec = opt_virtual_call_Relocation::spec();
  64     break;
  65   case relocInfo::static_call_type:
  66     _rspec = static_call_Relocation::spec();
  67     break;
  68   case relocInfo::runtime_call_type:
  69     _rspec = runtime_call_Relocation::spec();
  70     break;
  71   case relocInfo::poll_type:
  72   case relocInfo::poll_return_type:
  73     _rspec = Relocation::spec_simple(rtype);
  74     break;
  75   case relocInfo::none:
  76     break;
  77   default:
  78     ShouldNotReachHere();
  79     break;
  80   }
  81 }
  82 
  83 // Implementation of Address
  84 
  85 #ifdef _LP64
  86 
  87 Address Address::make_array(ArrayAddress adr) {
  88   // Not implementable on 64bit machines
  89   // Should have been handled higher up the call chain.
  90   ShouldNotReachHere();
  91   return Address();
  92 }
  93 
  94 // exceedingly dangerous constructor
  95 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
  96   _base  = noreg;
  97   _index = noreg;
  98   _scale = no_scale;
  99   _disp  = disp;
 100   switch (rtype) {
 101     case relocInfo::external_word_type:
 102       _rspec = external_word_Relocation::spec(loc);
 103       break;
 104     case relocInfo::internal_word_type:
 105       _rspec = internal_word_Relocation::spec(loc);
 106       break;
 107     case relocInfo::runtime_call_type:
 108       // HMM
 109       _rspec = runtime_call_Relocation::spec();
 110       break;
 111     case relocInfo::poll_type:
 112     case relocInfo::poll_return_type:
 113       _rspec = Relocation::spec_simple(rtype);
 114       break;
 115     case relocInfo::none:
 116       break;
 117     default:
 118       ShouldNotReachHere();
 119   }
 120 }
 121 #else // LP64
 122 
 123 Address Address::make_array(ArrayAddress adr) {
 124   AddressLiteral base = adr.base();
 125   Address index = adr.index();
 126   assert(index._disp == 0, "must not have disp"); // maybe it can?
 127   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 128   array._rspec = base._rspec;
 129   return array;
 130 }
 131 
 132 // exceedingly dangerous constructor
 133 Address::Address(address loc, RelocationHolder spec) {
 134   _base  = noreg;
 135   _index = noreg;
 136   _scale = no_scale;
 137   _disp  = (intptr_t) loc;
 138   _rspec = spec;
 139 }
 140 
 141 #endif // _LP64
 142 
 143 
 144 
 145 // Convert the raw encoding form into the form expected by the constructor for
 146 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 147 // that to noreg for the Address constructor.
 148 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
 149   RelocationHolder rspec;
 150   if (disp_is_oop) {
 151     rspec = Relocation::spec_simple(relocInfo::oop_type);
 152   }
 153   bool valid_index = index != rsp->encoding();
 154   if (valid_index) {
 155     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 156     madr._rspec = rspec;
 157     return madr;
 158   } else {
 159     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 160     madr._rspec = rspec;
 161     return madr;
 162   }
 163 }
 164 
 165 // Implementation of Assembler
 166 
 167 int AbstractAssembler::code_fill_byte() {
 168   return (u_char)'\xF4'; // hlt
 169 }
 170 
 171 // make this go away someday
 172 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 173   if (rtype == relocInfo::none)
 174         emit_long(data);
 175   else  emit_data(data, Relocation::spec_simple(rtype), format);
 176 }
 177 
 178 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 179   assert(imm_operand == 0, "default format must be immediate in this file");
 180   assert(inst_mark() != NULL, "must be inside InstructionMark");
 181   if (rspec.type() !=  relocInfo::none) {
 182     #ifdef ASSERT
 183       check_relocation(rspec, format);
 184     #endif
 185     // Do not use AbstractAssembler::relocate, which is not intended for
 186     // embedded words.  Instead, relocate to the enclosing instruction.
 187 
 188     // hack. call32 is too wide for mask so use disp32
 189     if (format == call32_operand)
 190       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 191     else
 192       code_section()->relocate(inst_mark(), rspec, format);
 193   }
 194   emit_long(data);
 195 }
 196 
 197 static int encode(Register r) {
 198   int enc = r->encoding();
 199   if (enc >= 8) {
 200     enc -= 8;
 201   }
 202   return enc;
 203 }
 204 
 205 static int encode(XMMRegister r) {
 206   int enc = r->encoding();
 207   if (enc >= 8) {
 208     enc -= 8;
 209   }
 210   return enc;
 211 }
 212 
 213 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 214   assert(dst->has_byte_register(), "must have byte register");
 215   assert(isByte(op1) && isByte(op2), "wrong opcode");
 216   assert(isByte(imm8), "not a byte");
 217   assert((op1 & 0x01) == 0, "should be 8bit operation");
 218   emit_byte(op1);
 219   emit_byte(op2 | encode(dst));
 220   emit_byte(imm8);
 221 }
 222 
 223 
 224 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 225   assert(isByte(op1) && isByte(op2), "wrong opcode");
 226   assert((op1 & 0x01) == 1, "should be 32bit operation");
 227   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 228   if (is8bit(imm32)) {
 229     emit_byte(op1 | 0x02); // set sign bit
 230     emit_byte(op2 | encode(dst));
 231     emit_byte(imm32 & 0xFF);
 232   } else {
 233     emit_byte(op1);
 234     emit_byte(op2 | encode(dst));
 235     emit_long(imm32);
 236   }
 237 }
 238 
 239 // immediate-to-memory forms
 240 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 241   assert((op1 & 0x01) == 1, "should be 32bit operation");
 242   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 243   if (is8bit(imm32)) {
 244     emit_byte(op1 | 0x02); // set sign bit
 245     emit_operand(rm, adr, 1);
 246     emit_byte(imm32 & 0xFF);
 247   } else {
 248     emit_byte(op1);
 249     emit_operand(rm, adr, 4);
 250     emit_long(imm32);
 251   }
 252 }
 253 
 254 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
 255   LP64_ONLY(ShouldNotReachHere());
 256   assert(isByte(op1) && isByte(op2), "wrong opcode");
 257   assert((op1 & 0x01) == 1, "should be 32bit operation");
 258   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 259   InstructionMark im(this);
 260   emit_byte(op1);
 261   emit_byte(op2 | encode(dst));
 262   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
 263 }
 264 
 265 
 266 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 267   assert(isByte(op1) && isByte(op2), "wrong opcode");
 268   emit_byte(op1);
 269   emit_byte(op2 | encode(dst) << 3 | encode(src));
 270 }
 271 
 272 
 273 void Assembler::emit_operand(Register reg, Register base, Register index,
 274                              Address::ScaleFactor scale, int disp,
 275                              RelocationHolder const& rspec,
 276                              int rip_relative_correction) {
 277   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 278 
 279   // Encode the registers as needed in the fields they are used in
 280 
 281   int regenc = encode(reg) << 3;
 282   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 283   int baseenc = base->is_valid() ? encode(base) : 0;
 284 
 285   if (base->is_valid()) {
 286     if (index->is_valid()) {
 287       assert(scale != Address::no_scale, "inconsistent address");
 288       // [base + index*scale + disp]
 289       if (disp == 0 && rtype == relocInfo::none  &&
 290           base != rbp LP64_ONLY(&& base != r13)) {
 291         // [base + index*scale]
 292         // [00 reg 100][ss index base]
 293         assert(index != rsp, "illegal addressing mode");
 294         emit_byte(0x04 | regenc);
 295         emit_byte(scale << 6 | indexenc | baseenc);
 296       } else if (is8bit(disp) && rtype == relocInfo::none) {
 297         // [base + index*scale + imm8]
 298         // [01 reg 100][ss index base] imm8
 299         assert(index != rsp, "illegal addressing mode");
 300         emit_byte(0x44 | regenc);
 301         emit_byte(scale << 6 | indexenc | baseenc);
 302         emit_byte(disp & 0xFF);
 303       } else {
 304         // [base + index*scale + disp32]
 305         // [10 reg 100][ss index base] disp32
 306         assert(index != rsp, "illegal addressing mode");
 307         emit_byte(0x84 | regenc);
 308         emit_byte(scale << 6 | indexenc | baseenc);
 309         emit_data(disp, rspec, disp32_operand);
 310       }
 311     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 312       // [rsp + disp]
 313       if (disp == 0 && rtype == relocInfo::none) {
 314         // [rsp]
 315         // [00 reg 100][00 100 100]
 316         emit_byte(0x04 | regenc);
 317         emit_byte(0x24);
 318       } else if (is8bit(disp) && rtype == relocInfo::none) {
 319         // [rsp + imm8]
 320         // [01 reg 100][00 100 100] disp8
 321         emit_byte(0x44 | regenc);
 322         emit_byte(0x24);
 323         emit_byte(disp & 0xFF);
 324       } else {
 325         // [rsp + imm32]
 326         // [10 reg 100][00 100 100] disp32
 327         emit_byte(0x84 | regenc);
 328         emit_byte(0x24);
 329         emit_data(disp, rspec, disp32_operand);
 330       }
 331     } else {
 332       // [base + disp]
 333       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 334       if (disp == 0 && rtype == relocInfo::none &&
 335           base != rbp LP64_ONLY(&& base != r13)) {
 336         // [base]
 337         // [00 reg base]
 338         emit_byte(0x00 | regenc | baseenc);
 339       } else if (is8bit(disp) && rtype == relocInfo::none) {
 340         // [base + disp8]
 341         // [01 reg base] disp8
 342         emit_byte(0x40 | regenc | baseenc);
 343         emit_byte(disp & 0xFF);
 344       } else {
 345         // [base + disp32]
 346         // [10 reg base] disp32
 347         emit_byte(0x80 | regenc | baseenc);
 348         emit_data(disp, rspec, disp32_operand);
 349       }
 350     }
 351   } else {
 352     if (index->is_valid()) {
 353       assert(scale != Address::no_scale, "inconsistent address");
 354       // [index*scale + disp]
 355       // [00 reg 100][ss index 101] disp32
 356       assert(index != rsp, "illegal addressing mode");
 357       emit_byte(0x04 | regenc);
 358       emit_byte(scale << 6 | indexenc | 0x05);
 359       emit_data(disp, rspec, disp32_operand);
 360     } else if (rtype != relocInfo::none ) {
 361       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 362       // [00 000 101] disp32
 363 
 364       emit_byte(0x05 | regenc);
 365       // Note that the RIP-rel. correction applies to the generated
 366       // disp field, but _not_ to the target address in the rspec.
 367 
 368       // disp was created by converting the target address minus the pc
 369       // at the start of the instruction. That needs more correction here.
 370       // intptr_t disp = target - next_ip;
 371       assert(inst_mark() != NULL, "must be inside InstructionMark");
 372       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 373       int64_t adjusted = disp;
 374       // Do rip-rel adjustment for 64bit
 375       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 376       assert(is_simm32(adjusted),
 377              "must be 32bit offset (RIP relative address)");
 378       emit_data((int32_t) adjusted, rspec, disp32_operand);
 379 
 380     } else {
 381       // 32bit never did this, did everything as the rip-rel/disp code above
 382       // [disp] ABSOLUTE
 383       // [00 reg 100][00 100 101] disp32
 384       emit_byte(0x04 | regenc);
 385       emit_byte(0x25);
 386       emit_data(disp, rspec, disp32_operand);
 387     }
 388   }
 389 }
 390 
 391 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 392                              Address::ScaleFactor scale, int disp,
 393                              RelocationHolder const& rspec) {
 394   emit_operand((Register)reg, base, index, scale, disp, rspec);
 395 }
 396 
 397 // Secret local extension to Assembler::WhichOperand:
 398 #define end_pc_operand (_WhichOperand_limit)
 399 
 400 address Assembler::locate_operand(address inst, WhichOperand which) {
 401   // Decode the given instruction, and return the address of
 402   // an embedded 32-bit operand word.
 403 
 404   // If "which" is disp32_operand, selects the displacement portion
 405   // of an effective address specifier.
 406   // If "which" is imm64_operand, selects the trailing immediate constant.
 407   // If "which" is call32_operand, selects the displacement of a call or jump.
 408   // Caller is responsible for ensuring that there is such an operand,
 409   // and that it is 32/64 bits wide.
 410 
 411   // If "which" is end_pc_operand, find the end of the instruction.
 412 
 413   address ip = inst;
 414   bool is_64bit = false;
 415 
 416   debug_only(bool has_disp32 = false);
 417   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 418 
 419   again_after_prefix:
 420   switch (0xFF & *ip++) {
 421 
 422   // These convenience macros generate groups of "case" labels for the switch.
 423 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 424 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 425              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 426 #define REP16(x) REP8((x)+0): \
 427               case REP8((x)+8)
 428 
 429   case CS_segment:
 430   case SS_segment:
 431   case DS_segment:
 432   case ES_segment:
 433   case FS_segment:
 434   case GS_segment:
 435     // Seems dubious
 436     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 437     assert(ip == inst+1, "only one prefix allowed");
 438     goto again_after_prefix;
 439 
 440   case 0x67:
 441   case REX:
 442   case REX_B:
 443   case REX_X:
 444   case REX_XB:
 445   case REX_R:
 446   case REX_RB:
 447   case REX_RX:
 448   case REX_RXB:
 449     NOT_LP64(assert(false, "64bit prefixes"));
 450     goto again_after_prefix;
 451 
 452   case REX_W:
 453   case REX_WB:
 454   case REX_WX:
 455   case REX_WXB:
 456   case REX_WR:
 457   case REX_WRB:
 458   case REX_WRX:
 459   case REX_WRXB:
 460     NOT_LP64(assert(false, "64bit prefixes"));
 461     is_64bit = true;
 462     goto again_after_prefix;
 463 
 464   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 465   case 0x88: // movb a, r
 466   case 0x89: // movl a, r
 467   case 0x8A: // movb r, a
 468   case 0x8B: // movl r, a
 469   case 0x8F: // popl a
 470     debug_only(has_disp32 = true);
 471     break;
 472 
 473   case 0x68: // pushq #32
 474     if (which == end_pc_operand) {
 475       return ip + 4;
 476     }
 477     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 478     return ip;                  // not produced by emit_operand
 479 
 480   case 0x66: // movw ... (size prefix)
 481     again_after_size_prefix2:
 482     switch (0xFF & *ip++) {
 483     case REX:
 484     case REX_B:
 485     case REX_X:
 486     case REX_XB:
 487     case REX_R:
 488     case REX_RB:
 489     case REX_RX:
 490     case REX_RXB:
 491     case REX_W:
 492     case REX_WB:
 493     case REX_WX:
 494     case REX_WXB:
 495     case REX_WR:
 496     case REX_WRB:
 497     case REX_WRX:
 498     case REX_WRXB:
 499       NOT_LP64(assert(false, "64bit prefix found"));
 500       goto again_after_size_prefix2;
 501     case 0x8B: // movw r, a
 502     case 0x89: // movw a, r
 503       debug_only(has_disp32 = true);
 504       break;
 505     case 0xC7: // movw a, #16
 506       debug_only(has_disp32 = true);
 507       tail_size = 2;  // the imm16
 508       break;
 509     case 0x0F: // several SSE/SSE2 variants
 510       ip--;    // reparse the 0x0F
 511       goto again_after_prefix;
 512     default:
 513       ShouldNotReachHere();
 514     }
 515     break;
 516 
 517   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 518     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 519     // these asserts are somewhat nonsensical
 520 #ifndef _LP64
 521     assert(which == imm_operand || which == disp32_operand, "");
 522 #else
 523     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 524            which == narrow_oop_operand && !is_64bit, "");
 525 #endif // _LP64
 526     return ip;
 527 
 528   case 0x69: // imul r, a, #32
 529   case 0xC7: // movl a, #32(oop?)
 530     tail_size = 4;
 531     debug_only(has_disp32 = true); // has both kinds of operands!
 532     break;
 533 
 534   case 0x0F: // movx..., etc.
 535     switch (0xFF & *ip++) {
 536     case 0x12: // movlps
 537     case 0x28: // movaps
 538     case 0x2E: // ucomiss
 539     case 0x2F: // comiss
 540     case 0x54: // andps
 541     case 0x55: // andnps
 542     case 0x56: // orps
 543     case 0x57: // xorps
 544     case 0x6E: // movd
 545     case 0x7E: // movd
 546     case 0xAE: // ldmxcsr   a
 547       // 64bit side says it these have both operands but that doesn't
 548       // appear to be true
 549       debug_only(has_disp32 = true);
 550       break;
 551 
 552     case 0xAD: // shrd r, a, %cl
 553     case 0xAF: // imul r, a
 554     case 0xBE: // movsbl r, a (movsxb)
 555     case 0xBF: // movswl r, a (movsxw)
 556     case 0xB6: // movzbl r, a (movzxb)
 557     case 0xB7: // movzwl r, a (movzxw)
 558     case REP16(0x40): // cmovl cc, r, a
 559     case 0xB0: // cmpxchgb
 560     case 0xB1: // cmpxchg
 561     case 0xC1: // xaddl
 562     case 0xC7: // cmpxchg8
 563     case REP16(0x90): // setcc a
 564       debug_only(has_disp32 = true);
 565       // fall out of the switch to decode the address
 566       break;
 567 
 568     case 0xAC: // shrd r, a, #8
 569       debug_only(has_disp32 = true);
 570       tail_size = 1;  // the imm8
 571       break;
 572 
 573     case REP16(0x80): // jcc rdisp32
 574       if (which == end_pc_operand)  return ip + 4;
 575       assert(which == call32_operand, "jcc has no disp32 or imm");
 576       return ip;
 577     default:
 578       ShouldNotReachHere();
 579     }
 580     break;
 581 
 582   case 0x81: // addl a, #32; addl r, #32
 583     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 584     // on 32bit in the case of cmpl, the imm might be an oop
 585     tail_size = 4;
 586     debug_only(has_disp32 = true); // has both kinds of operands!
 587     break;
 588 
 589   case 0x83: // addl a, #8; addl r, #8
 590     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 591     debug_only(has_disp32 = true); // has both kinds of operands!
 592     tail_size = 1;
 593     break;
 594 
 595   case 0x9B:
 596     switch (0xFF & *ip++) {
 597     case 0xD9: // fnstcw a
 598       debug_only(has_disp32 = true);
 599       break;
 600     default:
 601       ShouldNotReachHere();
 602     }
 603     break;
 604 
 605   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 606   case REP4(0x10): // adc...
 607   case REP4(0x20): // and...
 608   case REP4(0x30): // xor...
 609   case REP4(0x08): // or...
 610   case REP4(0x18): // sbb...
 611   case REP4(0x28): // sub...
 612   case 0xF7: // mull a
 613   case 0x8D: // lea r, a
 614   case 0x87: // xchg r, a
 615   case REP4(0x38): // cmp...
 616   case 0x85: // test r, a
 617     debug_only(has_disp32 = true); // has both kinds of operands!
 618     break;
 619 
 620   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 621   case 0xC6: // movb a, #8
 622   case 0x80: // cmpb a, #8
 623   case 0x6B: // imul r, a, #8
 624     debug_only(has_disp32 = true); // has both kinds of operands!
 625     tail_size = 1; // the imm8
 626     break;
 627 
 628   case 0xE8: // call rdisp32
 629   case 0xE9: // jmp  rdisp32
 630     if (which == end_pc_operand)  return ip + 4;
 631     assert(which == call32_operand, "call has no disp32 or imm");
 632     return ip;
 633 
 634   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 635   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 636   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 637   case 0xDD: // fld_d a; fst_d a; fstp_d a
 638   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 639   case 0xDF: // fild_d a; fistp_d a
 640   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 641   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 642   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 643     debug_only(has_disp32 = true);
 644     break;
 645 
 646   case 0xF0:                    // Lock
 647     assert(os::is_MP(), "only on MP");
 648     goto again_after_prefix;
 649 
 650   case 0xF3:                    // For SSE
 651   case 0xF2:                    // For SSE2
 652     switch (0xFF & *ip++) {
 653     case REX:
 654     case REX_B:
 655     case REX_X:
 656     case REX_XB:
 657     case REX_R:
 658     case REX_RB:
 659     case REX_RX:
 660     case REX_RXB:
 661     case REX_W:
 662     case REX_WB:
 663     case REX_WX:
 664     case REX_WXB:
 665     case REX_WR:
 666     case REX_WRB:
 667     case REX_WRX:
 668     case REX_WRXB:
 669       NOT_LP64(assert(false, "found 64bit prefix"));
 670       ip++;
 671     default:
 672       ip++;
 673     }
 674     debug_only(has_disp32 = true); // has both kinds of operands!
 675     break;
 676 
 677   default:
 678     ShouldNotReachHere();
 679 
 680 #undef REP8
 681 #undef REP16
 682   }
 683 
 684   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 685 #ifdef _LP64
 686   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 687 #else
 688   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 689   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 690 #endif // LP64
 691   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 692 
 693   // parse the output of emit_operand
 694   int op2 = 0xFF & *ip++;
 695   int base = op2 & 0x07;
 696   int op3 = -1;
 697   const int b100 = 4;
 698   const int b101 = 5;
 699   if (base == b100 && (op2 >> 6) != 3) {
 700     op3 = 0xFF & *ip++;
 701     base = op3 & 0x07;   // refetch the base
 702   }
 703   // now ip points at the disp (if any)
 704 
 705   switch (op2 >> 6) {
 706   case 0:
 707     // [00 reg  100][ss index base]
 708     // [00 reg  100][00   100  esp]
 709     // [00 reg base]
 710     // [00 reg  100][ss index  101][disp32]
 711     // [00 reg  101]               [disp32]
 712 
 713     if (base == b101) {
 714       if (which == disp32_operand)
 715         return ip;              // caller wants the disp32
 716       ip += 4;                  // skip the disp32
 717     }
 718     break;
 719 
 720   case 1:
 721     // [01 reg  100][ss index base][disp8]
 722     // [01 reg  100][00   100  esp][disp8]
 723     // [01 reg base]               [disp8]
 724     ip += 1;                    // skip the disp8
 725     break;
 726 
 727   case 2:
 728     // [10 reg  100][ss index base][disp32]
 729     // [10 reg  100][00   100  esp][disp32]
 730     // [10 reg base]               [disp32]
 731     if (which == disp32_operand)
 732       return ip;                // caller wants the disp32
 733     ip += 4;                    // skip the disp32
 734     break;
 735 
 736   case 3:
 737     // [11 reg base]  (not a memory addressing mode)
 738     break;
 739   }
 740 
 741   if (which == end_pc_operand) {
 742     return ip + tail_size;
 743   }
 744 
 745 #ifdef _LP64
 746   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
 747 #else
 748   assert(which == imm_operand, "instruction has only an imm field");
 749 #endif // LP64
 750   return ip;
 751 }
 752 
 753 address Assembler::locate_next_instruction(address inst) {
 754   // Secretly share code with locate_operand:
 755   return locate_operand(inst, end_pc_operand);
 756 }
 757 
 758 
 759 #ifdef ASSERT
 760 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
 761   address inst = inst_mark();
 762   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
 763   address opnd;
 764 
 765   Relocation* r = rspec.reloc();
 766   if (r->type() == relocInfo::none) {
 767     return;
 768   } else if (r->is_call() || format == call32_operand) {
 769     // assert(format == imm32_operand, "cannot specify a nonzero format");
 770     opnd = locate_operand(inst, call32_operand);
 771   } else if (r->is_data()) {
 772     assert(format == imm_operand || format == disp32_operand
 773            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
 774     opnd = locate_operand(inst, (WhichOperand)format);
 775   } else {
 776     assert(format == imm_operand, "cannot specify a format");
 777     return;
 778   }
 779   assert(opnd == pc(), "must put operand where relocs can find it");
 780 }
 781 #endif // ASSERT
 782 
 783 void Assembler::emit_operand32(Register reg, Address adr) {
 784   assert(reg->encoding() < 8, "no extended registers");
 785   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 786   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 787                adr._rspec);
 788 }
 789 
 790 void Assembler::emit_operand(Register reg, Address adr,
 791                              int rip_relative_correction) {
 792   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 793                adr._rspec,
 794                rip_relative_correction);
 795 }
 796 
 797 void Assembler::emit_operand(XMMRegister reg, Address adr) {
 798   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 799                adr._rspec);
 800 }
 801 
 802 // MMX operations
 803 void Assembler::emit_operand(MMXRegister reg, Address adr) {
 804   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 805   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 806 }
 807 
 808 // work around gcc (3.2.1-7a) bug
 809 void Assembler::emit_operand(Address adr, MMXRegister reg) {
 810   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 811   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 812 }
 813 
 814 
 815 void Assembler::emit_farith(int b1, int b2, int i) {
 816   assert(isByte(b1) && isByte(b2), "wrong opcode");
 817   assert(0 <= i &&  i < 8, "illegal stack offset");
 818   emit_byte(b1);
 819   emit_byte(b2 + i);
 820 }
 821 
 822 
 823 // Now the Assembler instructions (identical for 32/64 bits)
 824 
 825 void Assembler::adcl(Address dst, int32_t imm32) {
 826   InstructionMark im(this);
 827   prefix(dst);
 828   emit_arith_operand(0x81, rdx, dst, imm32);
 829 }
 830 
 831 void Assembler::adcl(Address dst, Register src) {
 832   InstructionMark im(this);
 833   prefix(dst, src);
 834   emit_byte(0x11);
 835   emit_operand(src, dst);
 836 }
 837 
 838 void Assembler::adcl(Register dst, int32_t imm32) {
 839   prefix(dst);
 840   emit_arith(0x81, 0xD0, dst, imm32);
 841 }
 842 
 843 void Assembler::adcl(Register dst, Address src) {
 844   InstructionMark im(this);
 845   prefix(src, dst);
 846   emit_byte(0x13);
 847   emit_operand(dst, src);
 848 }
 849 
 850 void Assembler::adcl(Register dst, Register src) {
 851   (void) prefix_and_encode(dst->encoding(), src->encoding());
 852   emit_arith(0x13, 0xC0, dst, src);
 853 }
 854 
 855 void Assembler::addl(Address dst, int32_t imm32) {
 856   InstructionMark im(this);
 857   prefix(dst);
 858   emit_arith_operand(0x81, rax, dst, imm32);
 859 }
 860 
 861 void Assembler::addl(Address dst, Register src) {
 862   InstructionMark im(this);
 863   prefix(dst, src);
 864   emit_byte(0x01);
 865   emit_operand(src, dst);
 866 }
 867 
 868 void Assembler::addl(Register dst, int32_t imm32) {
 869   prefix(dst);
 870   emit_arith(0x81, 0xC0, dst, imm32);
 871 }
 872 
 873 void Assembler::addl(Register dst, Address src) {
 874   InstructionMark im(this);
 875   prefix(src, dst);
 876   emit_byte(0x03);
 877   emit_operand(dst, src);
 878 }
 879 
 880 void Assembler::addl(Register dst, Register src) {
 881   (void) prefix_and_encode(dst->encoding(), src->encoding());
 882   emit_arith(0x03, 0xC0, dst, src);
 883 }
 884 
 885 void Assembler::addr_nop_4() {
 886   // 4 bytes: NOP DWORD PTR [EAX+0]
 887   emit_byte(0x0F);
 888   emit_byte(0x1F);
 889   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
 890   emit_byte(0);    // 8-bits offset (1 byte)
 891 }
 892 
 893 void Assembler::addr_nop_5() {
 894   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
 895   emit_byte(0x0F);
 896   emit_byte(0x1F);
 897   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
 898   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 899   emit_byte(0);    // 8-bits offset (1 byte)
 900 }
 901 
 902 void Assembler::addr_nop_7() {
 903   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
 904   emit_byte(0x0F);
 905   emit_byte(0x1F);
 906   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
 907   emit_long(0);    // 32-bits offset (4 bytes)
 908 }
 909 
 910 void Assembler::addr_nop_8() {
 911   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
 912   emit_byte(0x0F);
 913   emit_byte(0x1F);
 914   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
 915   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 916   emit_long(0);    // 32-bits offset (4 bytes)
 917 }
 918 
 919 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
 920   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 921   emit_byte(0xF2);
 922   int encode = prefix_and_encode(dst->encoding(), src->encoding());
 923   emit_byte(0x0F);
 924   emit_byte(0x58);
 925   emit_byte(0xC0 | encode);
 926 }
 927 
 928 void Assembler::addsd(XMMRegister dst, Address src) {
 929   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 930   InstructionMark im(this);
 931   emit_byte(0xF2);
 932   prefix(src, dst);
 933   emit_byte(0x0F);
 934   emit_byte(0x58);
 935   emit_operand(dst, src);
 936 }
 937 
 938 void Assembler::addss(XMMRegister dst, XMMRegister src) {
 939   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 940   emit_byte(0xF3);
 941   int encode = prefix_and_encode(dst->encoding(), src->encoding());
 942   emit_byte(0x0F);
 943   emit_byte(0x58);
 944   emit_byte(0xC0 | encode);
 945 }
 946 
 947 void Assembler::addss(XMMRegister dst, Address src) {
 948   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 949   InstructionMark im(this);
 950   emit_byte(0xF3);
 951   prefix(src, dst);
 952   emit_byte(0x0F);
 953   emit_byte(0x58);
 954   emit_operand(dst, src);
 955 }
 956 
 957 void Assembler::andl(Register dst, int32_t imm32) {
 958   prefix(dst);
 959   emit_arith(0x81, 0xE0, dst, imm32);
 960 }
 961 
 962 void Assembler::andl(Register dst, Address src) {
 963   InstructionMark im(this);
 964   prefix(src, dst);
 965   emit_byte(0x23);
 966   emit_operand(dst, src);
 967 }
 968 
 969 void Assembler::andl(Register dst, Register src) {
 970   (void) prefix_and_encode(dst->encoding(), src->encoding());
 971   emit_arith(0x23, 0xC0, dst, src);
 972 }
 973 
 974 void Assembler::andpd(XMMRegister dst, Address src) {
 975   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 976   InstructionMark im(this);
 977   emit_byte(0x66);
 978   prefix(src, dst);
 979   emit_byte(0x0F);
 980   emit_byte(0x54);
 981   emit_operand(dst, src);
 982 }
 983 
 984 void Assembler::bsfl(Register dst, Register src) {
 985   int encode = prefix_and_encode(dst->encoding(), src->encoding());
 986   emit_byte(0x0F);
 987   emit_byte(0xBC);
 988   emit_byte(0xC0 | encode);
 989 }
 990 
 991 void Assembler::bsrl(Register dst, Register src) {
 992   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
 993   int encode = prefix_and_encode(dst->encoding(), src->encoding());
 994   emit_byte(0x0F);
 995   emit_byte(0xBD);
 996   emit_byte(0xC0 | encode);
 997 }
 998 
 999 void Assembler::bswapl(Register reg) { // bswap
1000   int encode = prefix_and_encode(reg->encoding());
1001   emit_byte(0x0F);
1002   emit_byte(0xC8 | encode);
1003 }
1004 
1005 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1006   // suspect disp32 is always good
1007   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1008 
1009   if (L.is_bound()) {
1010     const int long_size = 5;
1011     int offs = (int)( target(L) - pc() );
1012     assert(offs <= 0, "assembler error");
1013     InstructionMark im(this);
1014     // 1110 1000 #32-bit disp
1015     emit_byte(0xE8);
1016     emit_data(offs - long_size, rtype, operand);
1017   } else {
1018     InstructionMark im(this);
1019     // 1110 1000 #32-bit disp
1020     L.add_patch_at(code(), locator());
1021 
1022     emit_byte(0xE8);
1023     emit_data(int(0), rtype, operand);
1024   }
1025 }
1026 
1027 void Assembler::call(Register dst) {
1028   // This was originally using a 32bit register encoding
1029   // and surely we want 64bit!
1030   // this is a 32bit encoding but in 64bit mode the default
1031   // operand size is 64bit so there is no need for the
1032   // wide prefix. So prefix only happens if we use the
1033   // new registers. Much like push/pop.
1034   int x = offset();
1035   // this may be true but dbx disassembles it as if it
1036   // were 32bits...
1037   // int encode = prefix_and_encode(dst->encoding());
1038   // if (offset() != x) assert(dst->encoding() >= 8, "what?");
1039   int encode = prefixq_and_encode(dst->encoding());
1040 
1041   emit_byte(0xFF);
1042   emit_byte(0xD0 | encode);
1043 }
1044 
1045 
1046 void Assembler::call(Address adr) {
1047   InstructionMark im(this);
1048   prefix(adr);
1049   emit_byte(0xFF);
1050   emit_operand(rdx, adr);
1051 }
1052 
1053 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1054   assert(entry != NULL, "call most probably wrong");
1055   InstructionMark im(this);
1056   emit_byte(0xE8);
1057   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
1058   assert(is_simm32(disp), "must be 32bit offset (call2)");
1059   // Technically, should use call32_operand, but this format is
1060   // implied by the fact that we're emitting a call instruction.
1061 
1062   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1063   emit_data((int) disp, rspec, operand);
1064 }
1065 
1066 void Assembler::cdql() {
1067   emit_byte(0x99);
1068 }
1069 
1070 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1071   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1072   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1073   emit_byte(0x0F);
1074   emit_byte(0x40 | cc);
1075   emit_byte(0xC0 | encode);
1076 }
1077 
1078 
1079 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1080   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1081   prefix(src, dst);
1082   emit_byte(0x0F);
1083   emit_byte(0x40 | cc);
1084   emit_operand(dst, src);
1085 }
1086 
1087 void Assembler::cmpb(Address dst, int imm8) {
1088   InstructionMark im(this);
1089   prefix(dst);
1090   emit_byte(0x80);
1091   emit_operand(rdi, dst, 1);
1092   emit_byte(imm8);
1093 }
1094 
1095 void Assembler::cmpl(Address dst, int32_t imm32) {
1096   InstructionMark im(this);
1097   prefix(dst);
1098   emit_byte(0x81);
1099   emit_operand(rdi, dst, 4);
1100   emit_long(imm32);
1101 }
1102 
1103 void Assembler::cmpl(Register dst, int32_t imm32) {
1104   prefix(dst);
1105   emit_arith(0x81, 0xF8, dst, imm32);
1106 }
1107 
1108 void Assembler::cmpl(Register dst, Register src) {
1109   (void) prefix_and_encode(dst->encoding(), src->encoding());
1110   emit_arith(0x3B, 0xC0, dst, src);
1111 }
1112 
1113 
1114 void Assembler::cmpl(Register dst, Address  src) {
1115   InstructionMark im(this);
1116   prefix(src, dst);
1117   emit_byte(0x3B);
1118   emit_operand(dst, src);
1119 }
1120 
1121 void Assembler::cmpw(Address dst, int imm16) {
1122   InstructionMark im(this);
1123   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1124   emit_byte(0x66);
1125   emit_byte(0x81);
1126   emit_operand(rdi, dst, 2);
1127   emit_word(imm16);
1128 }
1129 
1130 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1131 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1132 // The ZF is set if the compared values were equal, and cleared otherwise.
1133 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1134   if (Atomics & 2) {
1135      // caveat: no instructionmark, so this isn't relocatable.
1136      // Emit a synthetic, non-atomic, CAS equivalent.
1137      // Beware.  The synthetic form sets all ICCs, not just ZF.
1138      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
1139      cmpl(rax, adr);
1140      movl(rax, adr);
1141      if (reg != rax) {
1142         Label L ;
1143         jcc(Assembler::notEqual, L);
1144         movl(adr, reg);
1145         bind(L);
1146      }
1147   } else {
1148      InstructionMark im(this);
1149      prefix(adr, reg);
1150      emit_byte(0x0F);
1151      emit_byte(0xB1);
1152      emit_operand(reg, adr);
1153   }
1154 }
1155 
1156 void Assembler::comisd(XMMRegister dst, Address src) {
1157   // NOTE: dbx seems to decode this as comiss even though the
1158   // 0x66 is there. Strangly ucomisd comes out correct
1159   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1160   emit_byte(0x66);
1161   comiss(dst, src);
1162 }
1163 
1164 void Assembler::comiss(XMMRegister dst, Address src) {
1165   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1166 
1167   InstructionMark im(this);
1168   prefix(src, dst);
1169   emit_byte(0x0F);
1170   emit_byte(0x2F);
1171   emit_operand(dst, src);
1172 }
1173 
1174 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1175   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1176   emit_byte(0xF3);
1177   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1178   emit_byte(0x0F);
1179   emit_byte(0xE6);
1180   emit_byte(0xC0 | encode);
1181 }
1182 
1183 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1184   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1185   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1186   emit_byte(0x0F);
1187   emit_byte(0x5B);
1188   emit_byte(0xC0 | encode);
1189 }
1190 
1191 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1192   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1193   emit_byte(0xF2);
1194   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1195   emit_byte(0x0F);
1196   emit_byte(0x5A);
1197   emit_byte(0xC0 | encode);
1198 }
1199 
1200 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1201   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1202   emit_byte(0xF2);
1203   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1204   emit_byte(0x0F);
1205   emit_byte(0x2A);
1206   emit_byte(0xC0 | encode);
1207 }
1208 
1209 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1210   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1211   emit_byte(0xF3);
1212   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1213   emit_byte(0x0F);
1214   emit_byte(0x2A);
1215   emit_byte(0xC0 | encode);
1216 }
1217 
1218 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1219   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1220   emit_byte(0xF3);
1221   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1222   emit_byte(0x0F);
1223   emit_byte(0x5A);
1224   emit_byte(0xC0 | encode);
1225 }
1226 
1227 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1228   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1229   emit_byte(0xF2);
1230   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1231   emit_byte(0x0F);
1232   emit_byte(0x2C);
1233   emit_byte(0xC0 | encode);
1234 }
1235 
1236 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1237   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1238   emit_byte(0xF3);
1239   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1240   emit_byte(0x0F);
1241   emit_byte(0x2C);
1242   emit_byte(0xC0 | encode);
1243 }
1244 
1245 void Assembler::decl(Address dst) {
1246   // Don't use it directly. Use MacroAssembler::decrement() instead.
1247   InstructionMark im(this);
1248   prefix(dst);
1249   emit_byte(0xFF);
1250   emit_operand(rcx, dst);
1251 }
1252 
1253 void Assembler::divsd(XMMRegister dst, Address src) {
1254   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1255   InstructionMark im(this);
1256   emit_byte(0xF2);
1257   prefix(src, dst);
1258   emit_byte(0x0F);
1259   emit_byte(0x5E);
1260   emit_operand(dst, src);
1261 }
1262 
1263 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1264   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1265   emit_byte(0xF2);
1266   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1267   emit_byte(0x0F);
1268   emit_byte(0x5E);
1269   emit_byte(0xC0 | encode);
1270 }
1271 
1272 void Assembler::divss(XMMRegister dst, Address src) {
1273   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1274   InstructionMark im(this);
1275   emit_byte(0xF3);
1276   prefix(src, dst);
1277   emit_byte(0x0F);
1278   emit_byte(0x5E);
1279   emit_operand(dst, src);
1280 }
1281 
1282 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1283   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1284   emit_byte(0xF3);
1285   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1286   emit_byte(0x0F);
1287   emit_byte(0x5E);
1288   emit_byte(0xC0 | encode);
1289 }
1290 
1291 void Assembler::emms() {
1292   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1293   emit_byte(0x0F);
1294   emit_byte(0x77);
1295 }
1296 
1297 void Assembler::hlt() {
1298   emit_byte(0xF4);
1299 }
1300 
1301 void Assembler::idivl(Register src) {
1302   int encode = prefix_and_encode(src->encoding());
1303   emit_byte(0xF7);
1304   emit_byte(0xF8 | encode);
1305 }
1306 
1307 void Assembler::divl(Register src) { // Unsigned
1308   int encode = prefix_and_encode(src->encoding());
1309   emit_byte(0xF7);
1310   emit_byte(0xF0 | encode);
1311 }
1312 
1313 void Assembler::imull(Register dst, Register src) {
1314   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1315   emit_byte(0x0F);
1316   emit_byte(0xAF);
1317   emit_byte(0xC0 | encode);
1318 }
1319 
1320 
1321 void Assembler::imull(Register dst, Register src, int value) {
1322   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1323   if (is8bit(value)) {
1324     emit_byte(0x6B);
1325     emit_byte(0xC0 | encode);
1326     emit_byte(value & 0xFF);
1327   } else {
1328     emit_byte(0x69);
1329     emit_byte(0xC0 | encode);
1330     emit_long(value);
1331   }
1332 }
1333 
1334 void Assembler::incl(Address dst) {
1335   // Don't use it directly. Use MacroAssembler::increment() instead.
1336   InstructionMark im(this);
1337   prefix(dst);
1338   emit_byte(0xFF);
1339   emit_operand(rax, dst);
1340 }
1341 
1342 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1343   InstructionMark im(this);
1344   assert((0 <= cc) && (cc < 16), "illegal cc");
1345   if (L.is_bound()) {
1346     address dst = target(L);
1347     assert(dst != NULL, "jcc most probably wrong");
1348 
1349     const int short_size = 2;
1350     const int long_size = 6;
1351     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
1352     if (maybe_short && is8bit(offs - short_size)) {
1353       // 0111 tttn #8-bit disp
1354       emit_byte(0x70 | cc);
1355       emit_byte((offs - short_size) & 0xFF);
1356     } else {
1357       // 0000 1111 1000 tttn #32-bit disp
1358       assert(is_simm32(offs - long_size),
1359              "must be 32bit offset (call4)");
1360       emit_byte(0x0F);
1361       emit_byte(0x80 | cc);
1362       emit_long(offs - long_size);
1363     }
1364   } else {
1365     // Note: could eliminate cond. jumps to this jump if condition
1366     //       is the same however, seems to be rather unlikely case.
1367     // Note: use jccb() if label to be bound is very close to get
1368     //       an 8-bit displacement
1369     L.add_patch_at(code(), locator());
1370     emit_byte(0x0F);
1371     emit_byte(0x80 | cc);
1372     emit_long(0);
1373   }
1374 }
1375 
1376 void Assembler::jccb(Condition cc, Label& L) {
1377   if (L.is_bound()) {
1378     const int short_size = 2;
1379     address entry = target(L);
1380     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
1381            "Dispacement too large for a short jmp");
1382     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
1383     // 0111 tttn #8-bit disp
1384     emit_byte(0x70 | cc);
1385     emit_byte((offs - short_size) & 0xFF);
1386   } else {
1387     InstructionMark im(this);
1388     L.add_patch_at(code(), locator());
1389     emit_byte(0x70 | cc);
1390     emit_byte(0);
1391   }
1392 }
1393 
1394 void Assembler::jmp(Address adr) {
1395   InstructionMark im(this);
1396   prefix(adr);
1397   emit_byte(0xFF);
1398   emit_operand(rsp, adr);
1399 }
1400 
1401 void Assembler::jmp(Label& L, bool maybe_short) {
1402   if (L.is_bound()) {
1403     address entry = target(L);
1404     assert(entry != NULL, "jmp most probably wrong");
1405     InstructionMark im(this);
1406     const int short_size = 2;
1407     const int long_size = 5;
1408     intptr_t offs = entry - _code_pos;
1409     if (maybe_short && is8bit(offs - short_size)) {
1410       emit_byte(0xEB);
1411       emit_byte((offs - short_size) & 0xFF);
1412     } else {
1413       emit_byte(0xE9);
1414       emit_long(offs - long_size);
1415     }
1416   } else {
1417     // By default, forward jumps are always 32-bit displacements, since
1418     // we can't yet know where the label will be bound.  If you're sure that
1419     // the forward jump will not run beyond 256 bytes, use jmpb to
1420     // force an 8-bit displacement.
1421     InstructionMark im(this);
1422     L.add_patch_at(code(), locator());
1423     emit_byte(0xE9);
1424     emit_long(0);
1425   }
1426 }
1427 
1428 void Assembler::jmp(Register entry) {
1429   int encode = prefix_and_encode(entry->encoding());
1430   emit_byte(0xFF);
1431   emit_byte(0xE0 | encode);
1432 }
1433 
1434 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1435   InstructionMark im(this);
1436   emit_byte(0xE9);
1437   assert(dest != NULL, "must have a target");
1438   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
1439   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1440   emit_data(disp, rspec.reloc(), call32_operand);
1441 }
1442 
1443 void Assembler::jmpb(Label& L) {
1444   if (L.is_bound()) {
1445     const int short_size = 2;
1446     address entry = target(L);
1447     assert(is8bit((entry - _code_pos) + short_size),
1448            "Dispacement too large for a short jmp");
1449     assert(entry != NULL, "jmp most probably wrong");
1450     intptr_t offs = entry - _code_pos;
1451     emit_byte(0xEB);
1452     emit_byte((offs - short_size) & 0xFF);
1453   } else {
1454     InstructionMark im(this);
1455     L.add_patch_at(code(), locator());
1456     emit_byte(0xEB);
1457     emit_byte(0);
1458   }
1459 }
1460 
1461 void Assembler::ldmxcsr( Address src) {
1462   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1463   InstructionMark im(this);
1464   prefix(src);
1465   emit_byte(0x0F);
1466   emit_byte(0xAE);
1467   emit_operand(as_Register(2), src);
1468 }
1469 
1470 void Assembler::leal(Register dst, Address src) {
1471   InstructionMark im(this);
1472 #ifdef _LP64
1473   emit_byte(0x67); // addr32
1474   prefix(src, dst);
1475 #endif // LP64
1476   emit_byte(0x8D);
1477   emit_operand(dst, src);
1478 }
1479 
1480 void Assembler::lock() {
1481   if (Atomics & 1) {
1482      // Emit either nothing, a NOP, or a NOP: prefix
1483      emit_byte(0x90) ;
1484   } else {
1485      emit_byte(0xF0);
1486   }
1487 }
1488 
1489 void Assembler::lzcntl(Register dst, Register src) {
1490   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1491   emit_byte(0xF3);
1492   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1493   emit_byte(0x0F);
1494   emit_byte(0xBD);
1495   emit_byte(0xC0 | encode);
1496 }
1497 
1498 // Emit mfence instruction
1499 void Assembler::mfence() {
1500   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1501   emit_byte( 0x0F );
1502   emit_byte( 0xAE );
1503   emit_byte( 0xF0 );
1504 }
1505 
1506 void Assembler::mov(Register dst, Register src) {
1507   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1508 }
1509 
1510 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1511   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1512   int dstenc = dst->encoding();
1513   int srcenc = src->encoding();
1514   emit_byte(0x66);
1515   if (dstenc < 8) {
1516     if (srcenc >= 8) {
1517       prefix(REX_B);
1518       srcenc -= 8;
1519     }
1520   } else {
1521     if (srcenc < 8) {
1522       prefix(REX_R);
1523     } else {
1524       prefix(REX_RB);
1525       srcenc -= 8;
1526     }
1527     dstenc -= 8;
1528   }
1529   emit_byte(0x0F);
1530   emit_byte(0x28);
1531   emit_byte(0xC0 | dstenc << 3 | srcenc);
1532 }
1533 
1534 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1535   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1536   int dstenc = dst->encoding();
1537   int srcenc = src->encoding();
1538   if (dstenc < 8) {
1539     if (srcenc >= 8) {
1540       prefix(REX_B);
1541       srcenc -= 8;
1542     }
1543   } else {
1544     if (srcenc < 8) {
1545       prefix(REX_R);
1546     } else {
1547       prefix(REX_RB);
1548       srcenc -= 8;
1549     }
1550     dstenc -= 8;
1551   }
1552   emit_byte(0x0F);
1553   emit_byte(0x28);
1554   emit_byte(0xC0 | dstenc << 3 | srcenc);
1555 }
1556 
1557 void Assembler::movb(Register dst, Address src) {
1558   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
1559   InstructionMark im(this);
1560   prefix(src, dst, true);
1561   emit_byte(0x8A);
1562   emit_operand(dst, src);
1563 }
1564 
1565 
1566 void Assembler::movb(Address dst, int imm8) {
1567   InstructionMark im(this);
1568    prefix(dst);
1569   emit_byte(0xC6);
1570   emit_operand(rax, dst, 1);
1571   emit_byte(imm8);
1572 }
1573 
1574 
1575 void Assembler::movb(Address dst, Register src) {
1576   assert(src->has_byte_register(), "must have byte register");
1577   InstructionMark im(this);
1578   prefix(dst, src, true);
1579   emit_byte(0x88);
1580   emit_operand(src, dst);
1581 }
1582 
1583 void Assembler::movdl(XMMRegister dst, Register src) {
1584   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1585   emit_byte(0x66);
1586   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1587   emit_byte(0x0F);
1588   emit_byte(0x6E);
1589   emit_byte(0xC0 | encode);
1590 }
1591 
1592 void Assembler::movdl(Register dst, XMMRegister src) {
1593   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1594   emit_byte(0x66);
1595   // swap src/dst to get correct prefix
1596   int encode = prefix_and_encode(src->encoding(), dst->encoding());
1597   emit_byte(0x0F);
1598   emit_byte(0x7E);
1599   emit_byte(0xC0 | encode);
1600 }
1601 
1602 void Assembler::movdl(XMMRegister dst, Address src) {
1603   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1604   InstructionMark im(this);
1605   emit_byte(0x66);
1606   prefix(src, dst);
1607   emit_byte(0x0F);
1608   emit_byte(0x6E);
1609   emit_operand(dst, src);
1610 }
1611 
1612 
1613 void Assembler::movdqa(XMMRegister dst, Address src) {
1614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1615   InstructionMark im(this);
1616   emit_byte(0x66);
1617   prefix(src, dst);
1618   emit_byte(0x0F);
1619   emit_byte(0x6F);
1620   emit_operand(dst, src);
1621 }
1622 
1623 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
1624   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1625   emit_byte(0x66);
1626   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
1627   emit_byte(0x0F);
1628   emit_byte(0x6F);
1629   emit_byte(0xC0 | encode);
1630 }
1631 
1632 void Assembler::movdqa(Address dst, XMMRegister src) {
1633   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1634   InstructionMark im(this);
1635   emit_byte(0x66);
1636   prefix(dst, src);
1637   emit_byte(0x0F);
1638   emit_byte(0x7F);
1639   emit_operand(src, dst);
1640 }
1641 
1642 void Assembler::movdqu(XMMRegister dst, Address src) {
1643   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1644   InstructionMark im(this);
1645   emit_byte(0xF3);
1646   prefix(src, dst);
1647   emit_byte(0x0F);
1648   emit_byte(0x6F);
1649   emit_operand(dst, src);
1650 }
1651 
1652 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
1653   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1654   emit_byte(0xF3);
1655   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
1656   emit_byte(0x0F);
1657   emit_byte(0x6F);
1658   emit_byte(0xC0 | encode);
1659 }
1660 
1661 void Assembler::movdqu(Address dst, XMMRegister src) {
1662   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1663   InstructionMark im(this);
1664   emit_byte(0xF3);
1665   prefix(dst, src);
1666   emit_byte(0x0F);
1667   emit_byte(0x7F);
1668   emit_operand(src, dst);
1669 }
1670 
1671 // Uses zero extension on 64bit
1672 
1673 void Assembler::movl(Register dst, int32_t imm32) {
1674   int encode = prefix_and_encode(dst->encoding());
1675   emit_byte(0xB8 | encode);
1676   emit_long(imm32);
1677 }
1678 
1679 void Assembler::movl(Register dst, Register src) {
1680   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1681   emit_byte(0x8B);
1682   emit_byte(0xC0 | encode);
1683 }
1684 
1685 void Assembler::movl(Register dst, Address src) {
1686   InstructionMark im(this);
1687   prefix(src, dst);
1688   emit_byte(0x8B);
1689   emit_operand(dst, src);
1690 }
1691 
1692 void Assembler::movl(Address dst, int32_t imm32) {
1693   InstructionMark im(this);
1694   prefix(dst);
1695   emit_byte(0xC7);
1696   emit_operand(rax, dst, 4);
1697   emit_long(imm32);
1698 }
1699 
1700 void Assembler::movl(Address dst, Register src) {
1701   InstructionMark im(this);
1702   prefix(dst, src);
1703   emit_byte(0x89);
1704   emit_operand(src, dst);
1705 }
1706 
1707 // New cpus require to use movsd and movss to avoid partial register stall
1708 // when loading from memory. But for old Opteron use movlpd instead of movsd.
1709 // The selection is done in MacroAssembler::movdbl() and movflt().
1710 void Assembler::movlpd(XMMRegister dst, Address src) {
1711   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1712   InstructionMark im(this);
1713   emit_byte(0x66);
1714   prefix(src, dst);
1715   emit_byte(0x0F);
1716   emit_byte(0x12);
1717   emit_operand(dst, src);
1718 }
1719 
1720 void Assembler::movq( MMXRegister dst, Address src ) {
1721   assert( VM_Version::supports_mmx(), "" );
1722   emit_byte(0x0F);
1723   emit_byte(0x6F);
1724   emit_operand(dst, src);
1725 }
1726 
1727 void Assembler::movq( Address dst, MMXRegister src ) {
1728   assert( VM_Version::supports_mmx(), "" );
1729   emit_byte(0x0F);
1730   emit_byte(0x7F);
1731   // workaround gcc (3.2.1-7a) bug
1732   // In that version of gcc with only an emit_operand(MMX, Address)
1733   // gcc will tail jump and try and reverse the parameters completely
1734   // obliterating dst in the process. By having a version available
1735   // that doesn't need to swap the args at the tail jump the bug is
1736   // avoided.
1737   emit_operand(dst, src);
1738 }
1739 
1740 void Assembler::movq(XMMRegister dst, Address src) {
1741   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1742   InstructionMark im(this);
1743   emit_byte(0xF3);
1744   prefix(src, dst);
1745   emit_byte(0x0F);
1746   emit_byte(0x7E);
1747   emit_operand(dst, src);
1748 }
1749 
1750 void Assembler::movq(Address dst, XMMRegister src) {
1751   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1752   InstructionMark im(this);
1753   emit_byte(0x66);
1754   prefix(dst, src);
1755   emit_byte(0x0F);
1756   emit_byte(0xD6);
1757   emit_operand(src, dst);
1758 }
1759 
1760 void Assembler::movsbl(Register dst, Address src) { // movsxb
1761   InstructionMark im(this);
1762   prefix(src, dst);
1763   emit_byte(0x0F);
1764   emit_byte(0xBE);
1765   emit_operand(dst, src);
1766 }
1767 
1768 void Assembler::movsbl(Register dst, Register src) { // movsxb
1769   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1770   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1771   emit_byte(0x0F);
1772   emit_byte(0xBE);
1773   emit_byte(0xC0 | encode);
1774 }
1775 
1776 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
1777   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1778   emit_byte(0xF2);
1779   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1780   emit_byte(0x0F);
1781   emit_byte(0x10);
1782   emit_byte(0xC0 | encode);
1783 }
1784 
1785 void Assembler::movsd(XMMRegister dst, Address src) {
1786   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1787   InstructionMark im(this);
1788   emit_byte(0xF2);
1789   prefix(src, dst);
1790   emit_byte(0x0F);
1791   emit_byte(0x10);
1792   emit_operand(dst, src);
1793 }
1794 
1795 void Assembler::movsd(Address dst, XMMRegister src) {
1796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1797   InstructionMark im(this);
1798   emit_byte(0xF2);
1799   prefix(dst, src);
1800   emit_byte(0x0F);
1801   emit_byte(0x11);
1802   emit_operand(src, dst);
1803 }
1804 
1805 void Assembler::movss(XMMRegister dst, XMMRegister src) {
1806   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1807   emit_byte(0xF3);
1808   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1809   emit_byte(0x0F);
1810   emit_byte(0x10);
1811   emit_byte(0xC0 | encode);
1812 }
1813 
1814 void Assembler::movss(XMMRegister dst, Address src) {
1815   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1816   InstructionMark im(this);
1817   emit_byte(0xF3);
1818   prefix(src, dst);
1819   emit_byte(0x0F);
1820   emit_byte(0x10);
1821   emit_operand(dst, src);
1822 }
1823 
1824 void Assembler::movss(Address dst, XMMRegister src) {
1825   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1826   InstructionMark im(this);
1827   emit_byte(0xF3);
1828   prefix(dst, src);
1829   emit_byte(0x0F);
1830   emit_byte(0x11);
1831   emit_operand(src, dst);
1832 }
1833 
1834 void Assembler::movswl(Register dst, Address src) { // movsxw
1835   InstructionMark im(this);
1836   prefix(src, dst);
1837   emit_byte(0x0F);
1838   emit_byte(0xBF);
1839   emit_operand(dst, src);
1840 }
1841 
1842 void Assembler::movswl(Register dst, Register src) { // movsxw
1843   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1844   emit_byte(0x0F);
1845   emit_byte(0xBF);
1846   emit_byte(0xC0 | encode);
1847 }
1848 
1849 void Assembler::movw(Address dst, int imm16) {
1850   InstructionMark im(this);
1851 
1852   emit_byte(0x66); // switch to 16-bit mode
1853   prefix(dst);
1854   emit_byte(0xC7);
1855   emit_operand(rax, dst, 2);
1856   emit_word(imm16);
1857 }
1858 
1859 void Assembler::movw(Register dst, Address src) {
1860   InstructionMark im(this);
1861   emit_byte(0x66);
1862   prefix(src, dst);
1863   emit_byte(0x8B);
1864   emit_operand(dst, src);
1865 }
1866 
1867 void Assembler::movw(Address dst, Register src) {
1868   InstructionMark im(this);
1869   emit_byte(0x66);
1870   prefix(dst, src);
1871   emit_byte(0x89);
1872   emit_operand(src, dst);
1873 }
1874 
1875 void Assembler::movzbl(Register dst, Address src) { // movzxb
1876   InstructionMark im(this);
1877   prefix(src, dst);
1878   emit_byte(0x0F);
1879   emit_byte(0xB6);
1880   emit_operand(dst, src);
1881 }
1882 
1883 void Assembler::movzbl(Register dst, Register src) { // movzxb
1884   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1885   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1886   emit_byte(0x0F);
1887   emit_byte(0xB6);
1888   emit_byte(0xC0 | encode);
1889 }
1890 
1891 void Assembler::movzwl(Register dst, Address src) { // movzxw
1892   InstructionMark im(this);
1893   prefix(src, dst);
1894   emit_byte(0x0F);
1895   emit_byte(0xB7);
1896   emit_operand(dst, src);
1897 }
1898 
1899 void Assembler::movzwl(Register dst, Register src) { // movzxw
1900   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1901   emit_byte(0x0F);
1902   emit_byte(0xB7);
1903   emit_byte(0xC0 | encode);
1904 }
1905 
1906 void Assembler::mull(Address src) {
1907   InstructionMark im(this);
1908   prefix(src);
1909   emit_byte(0xF7);
1910   emit_operand(rsp, src);
1911 }
1912 
1913 void Assembler::mull(Register src) {
1914   int encode = prefix_and_encode(src->encoding());
1915   emit_byte(0xF7);
1916   emit_byte(0xE0 | encode);
1917 }
1918 
1919 void Assembler::mulsd(XMMRegister dst, Address src) {
1920   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1921   InstructionMark im(this);
1922   emit_byte(0xF2);
1923   prefix(src, dst);
1924   emit_byte(0x0F);
1925   emit_byte(0x59);
1926   emit_operand(dst, src);
1927 }
1928 
1929 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
1930   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1931   emit_byte(0xF2);
1932   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1933   emit_byte(0x0F);
1934   emit_byte(0x59);
1935   emit_byte(0xC0 | encode);
1936 }
1937 
1938 void Assembler::mulss(XMMRegister dst, Address src) {
1939   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1940   InstructionMark im(this);
1941   emit_byte(0xF3);
1942   prefix(src, dst);
1943   emit_byte(0x0F);
1944   emit_byte(0x59);
1945   emit_operand(dst, src);
1946 }
1947 
1948 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
1949   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1950   emit_byte(0xF3);
1951   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1952   emit_byte(0x0F);
1953   emit_byte(0x59);
1954   emit_byte(0xC0 | encode);
1955 }
1956 
1957 void Assembler::negl(Register dst) {
1958   int encode = prefix_and_encode(dst->encoding());
1959   emit_byte(0xF7);
1960   emit_byte(0xD8 | encode);
1961 }
1962 
1963 void Assembler::nop(int i) {
1964 #ifdef ASSERT
1965   assert(i > 0, " ");
1966   // The fancy nops aren't currently recognized by debuggers making it a
1967   // pain to disassemble code while debugging. If asserts are on clearly
1968   // speed is not an issue so simply use the single byte traditional nop
1969   // to do alignment.
1970 
1971   for (; i > 0 ; i--) emit_byte(0x90);
1972   return;
1973 
1974 #endif // ASSERT
1975 
1976   if (UseAddressNop && VM_Version::is_intel()) {
1977     //
1978     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
1979     //  1: 0x90
1980     //  2: 0x66 0x90
1981     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
1982     //  4: 0x0F 0x1F 0x40 0x00
1983     //  5: 0x0F 0x1F 0x44 0x00 0x00
1984     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
1985     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
1986     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1987     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1988     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1989     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1990 
1991     // The rest coding is Intel specific - don't use consecutive address nops
1992 
1993     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
1994     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
1995     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
1996     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
1997 
1998     while(i >= 15) {
1999       // For Intel don't generate consecutive addess nops (mix with regular nops)
2000       i -= 15;
2001       emit_byte(0x66);   // size prefix
2002       emit_byte(0x66);   // size prefix
2003       emit_byte(0x66);   // size prefix
2004       addr_nop_8();
2005       emit_byte(0x66);   // size prefix
2006       emit_byte(0x66);   // size prefix
2007       emit_byte(0x66);   // size prefix
2008       emit_byte(0x90);   // nop
2009     }
2010     switch (i) {
2011       case 14:
2012         emit_byte(0x66); // size prefix
2013       case 13:
2014         emit_byte(0x66); // size prefix
2015       case 12:
2016         addr_nop_8();
2017         emit_byte(0x66); // size prefix
2018         emit_byte(0x66); // size prefix
2019         emit_byte(0x66); // size prefix
2020         emit_byte(0x90); // nop
2021         break;
2022       case 11:
2023         emit_byte(0x66); // size prefix
2024       case 10:
2025         emit_byte(0x66); // size prefix
2026       case 9:
2027         emit_byte(0x66); // size prefix
2028       case 8:
2029         addr_nop_8();
2030         break;
2031       case 7:
2032         addr_nop_7();
2033         break;
2034       case 6:
2035         emit_byte(0x66); // size prefix
2036       case 5:
2037         addr_nop_5();
2038         break;
2039       case 4:
2040         addr_nop_4();
2041         break;
2042       case 3:
2043         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2044         emit_byte(0x66); // size prefix
2045       case 2:
2046         emit_byte(0x66); // size prefix
2047       case 1:
2048         emit_byte(0x90); // nop
2049         break;
2050       default:
2051         assert(i == 0, " ");
2052     }
2053     return;
2054   }
2055   if (UseAddressNop && VM_Version::is_amd()) {
2056     //
2057     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2058     //  1: 0x90
2059     //  2: 0x66 0x90
2060     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2061     //  4: 0x0F 0x1F 0x40 0x00
2062     //  5: 0x0F 0x1F 0x44 0x00 0x00
2063     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2064     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2065     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2066     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2067     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2068     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2069 
2070     // The rest coding is AMD specific - use consecutive address nops
2071 
2072     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2073     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2074     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2075     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2076     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2077     //     Size prefixes (0x66) are added for larger sizes
2078 
2079     while(i >= 22) {
2080       i -= 11;
2081       emit_byte(0x66); // size prefix
2082       emit_byte(0x66); // size prefix
2083       emit_byte(0x66); // size prefix
2084       addr_nop_8();
2085     }
2086     // Generate first nop for size between 21-12
2087     switch (i) {
2088       case 21:
2089         i -= 1;
2090         emit_byte(0x66); // size prefix
2091       case 20:
2092       case 19:
2093         i -= 1;
2094         emit_byte(0x66); // size prefix
2095       case 18:
2096       case 17:
2097         i -= 1;
2098         emit_byte(0x66); // size prefix
2099       case 16:
2100       case 15:
2101         i -= 8;
2102         addr_nop_8();
2103         break;
2104       case 14:
2105       case 13:
2106         i -= 7;
2107         addr_nop_7();
2108         break;
2109       case 12:
2110         i -= 6;
2111         emit_byte(0x66); // size prefix
2112         addr_nop_5();
2113         break;
2114       default:
2115         assert(i < 12, " ");
2116     }
2117 
2118     // Generate second nop for size between 11-1
2119     switch (i) {
2120       case 11:
2121         emit_byte(0x66); // size prefix
2122       case 10:
2123         emit_byte(0x66); // size prefix
2124       case 9:
2125         emit_byte(0x66); // size prefix
2126       case 8:
2127         addr_nop_8();
2128         break;
2129       case 7:
2130         addr_nop_7();
2131         break;
2132       case 6:
2133         emit_byte(0x66); // size prefix
2134       case 5:
2135         addr_nop_5();
2136         break;
2137       case 4:
2138         addr_nop_4();
2139         break;
2140       case 3:
2141         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2142         emit_byte(0x66); // size prefix
2143       case 2:
2144         emit_byte(0x66); // size prefix
2145       case 1:
2146         emit_byte(0x90); // nop
2147         break;
2148       default:
2149         assert(i == 0, " ");
2150     }
2151     return;
2152   }
2153 
2154   // Using nops with size prefixes "0x66 0x90".
2155   // From AMD Optimization Guide:
2156   //  1: 0x90
2157   //  2: 0x66 0x90
2158   //  3: 0x66 0x66 0x90
2159   //  4: 0x66 0x66 0x66 0x90
2160   //  5: 0x66 0x66 0x90 0x66 0x90
2161   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2162   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2163   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2164   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2165   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2166   //
2167   while(i > 12) {
2168     i -= 4;
2169     emit_byte(0x66); // size prefix
2170     emit_byte(0x66);
2171     emit_byte(0x66);
2172     emit_byte(0x90); // nop
2173   }
2174   // 1 - 12 nops
2175   if(i > 8) {
2176     if(i > 9) {
2177       i -= 1;
2178       emit_byte(0x66);
2179     }
2180     i -= 3;
2181     emit_byte(0x66);
2182     emit_byte(0x66);
2183     emit_byte(0x90);
2184   }
2185   // 1 - 8 nops
2186   if(i > 4) {
2187     if(i > 6) {
2188       i -= 1;
2189       emit_byte(0x66);
2190     }
2191     i -= 3;
2192     emit_byte(0x66);
2193     emit_byte(0x66);
2194     emit_byte(0x90);
2195   }
2196   switch (i) {
2197     case 4:
2198       emit_byte(0x66);
2199     case 3:
2200       emit_byte(0x66);
2201     case 2:
2202       emit_byte(0x66);
2203     case 1:
2204       emit_byte(0x90);
2205       break;
2206     default:
2207       assert(i == 0, " ");
2208   }
2209 }
2210 
2211 void Assembler::notl(Register dst) {
2212   int encode = prefix_and_encode(dst->encoding());
2213   emit_byte(0xF7);
2214   emit_byte(0xD0 | encode );
2215 }
2216 
2217 void Assembler::orl(Address dst, int32_t imm32) {
2218   InstructionMark im(this);
2219   prefix(dst);
2220   emit_arith_operand(0x81, rcx, dst, imm32);
2221 }
2222 
2223 void Assembler::orl(Register dst, int32_t imm32) {
2224   prefix(dst);
2225   emit_arith(0x81, 0xC8, dst, imm32);
2226 }
2227 
2228 void Assembler::orl(Register dst, Address src) {
2229   InstructionMark im(this);
2230   prefix(src, dst);
2231   emit_byte(0x0B);
2232   emit_operand(dst, src);
2233 }
2234 
2235 void Assembler::orl(Register dst, Register src) {
2236   (void) prefix_and_encode(dst->encoding(), src->encoding());
2237   emit_arith(0x0B, 0xC0, dst, src);
2238 }
2239 
2240 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2241   assert(VM_Version::supports_sse4_2(), "");
2242 
2243   InstructionMark im(this);
2244   emit_byte(0x66);
2245   prefix(src, dst);
2246   emit_byte(0x0F);
2247   emit_byte(0x3A);
2248   emit_byte(0x61);
2249   emit_operand(dst, src);
2250   emit_byte(imm8);
2251 }
2252 
2253 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2254   assert(VM_Version::supports_sse4_2(), "");
2255 
2256   emit_byte(0x66);
2257   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2258   emit_byte(0x0F);
2259   emit_byte(0x3A);
2260   emit_byte(0x61);
2261   emit_byte(0xC0 | encode);
2262   emit_byte(imm8);
2263 }
2264 
2265 // generic
2266 void Assembler::pop(Register dst) {
2267   int encode = prefix_and_encode(dst->encoding());
2268   emit_byte(0x58 | encode);
2269 }
2270 
2271 void Assembler::popcntl(Register dst, Address src) {
2272   assert(VM_Version::supports_popcnt(), "must support");
2273   InstructionMark im(this);
2274   emit_byte(0xF3);
2275   prefix(src, dst);
2276   emit_byte(0x0F);
2277   emit_byte(0xB8);
2278   emit_operand(dst, src);
2279 }
2280 
2281 void Assembler::popcntl(Register dst, Register src) {
2282   assert(VM_Version::supports_popcnt(), "must support");
2283   emit_byte(0xF3);
2284   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2285   emit_byte(0x0F);
2286   emit_byte(0xB8);
2287   emit_byte(0xC0 | encode);
2288 }
2289 
2290 void Assembler::popf() {
2291   emit_byte(0x9D);
2292 }
2293 
2294 #ifndef _LP64 // no 32bit push/pop on amd64
2295 void Assembler::popl(Address dst) {
2296   // NOTE: this will adjust stack by 8byte on 64bits
2297   InstructionMark im(this);
2298   prefix(dst);
2299   emit_byte(0x8F);
2300   emit_operand(rax, dst);
2301 }
2302 #endif
2303 
2304 void Assembler::prefetch_prefix(Address src) {
2305   prefix(src);
2306   emit_byte(0x0F);
2307 }
2308 
2309 void Assembler::prefetchnta(Address src) {
2310   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2311   InstructionMark im(this);
2312   prefetch_prefix(src);
2313   emit_byte(0x18);
2314   emit_operand(rax, src); // 0, src
2315 }
2316 
2317 void Assembler::prefetchr(Address src) {
2318   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2319   InstructionMark im(this);
2320   prefetch_prefix(src);
2321   emit_byte(0x0D);
2322   emit_operand(rax, src); // 0, src
2323 }
2324 
2325 void Assembler::prefetcht0(Address src) {
2326   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2327   InstructionMark im(this);
2328   prefetch_prefix(src);
2329   emit_byte(0x18);
2330   emit_operand(rcx, src); // 1, src
2331 }
2332 
2333 void Assembler::prefetcht1(Address src) {
2334   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2335   InstructionMark im(this);
2336   prefetch_prefix(src);
2337   emit_byte(0x18);
2338   emit_operand(rdx, src); // 2, src
2339 }
2340 
2341 void Assembler::prefetcht2(Address src) {
2342   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2343   InstructionMark im(this);
2344   prefetch_prefix(src);
2345   emit_byte(0x18);
2346   emit_operand(rbx, src); // 3, src
2347 }
2348 
2349 void Assembler::prefetchw(Address src) {
2350   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2351   InstructionMark im(this);
2352   prefetch_prefix(src);
2353   emit_byte(0x0D);
2354   emit_operand(rcx, src); // 1, src
2355 }
2356 
2357 void Assembler::prefix(Prefix p) {
2358   a_byte(p);
2359 }
2360 
2361 void Assembler::por(XMMRegister dst, XMMRegister src) {
2362   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2363 
2364   emit_byte(0x66);
2365   int  encode = prefix_and_encode(dst->encoding(), src->encoding());
2366   emit_byte(0x0F);
2367 
2368   emit_byte(0xEB);
2369   emit_byte(0xC0 | encode);
2370 }
2371 
2372 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
2373   assert(isByte(mode), "invalid value");
2374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2375 
2376   emit_byte(0x66);
2377   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2378   emit_byte(0x0F);
2379   emit_byte(0x70);
2380   emit_byte(0xC0 | encode);
2381   emit_byte(mode & 0xFF);
2382 
2383 }
2384 
2385 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
2386   assert(isByte(mode), "invalid value");
2387   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2388 
2389   InstructionMark im(this);
2390   emit_byte(0x66);
2391   prefix(src, dst);
2392   emit_byte(0x0F);
2393   emit_byte(0x70);
2394   emit_operand(dst, src);
2395   emit_byte(mode & 0xFF);
2396 }
2397 
2398 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
2399   assert(isByte(mode), "invalid value");
2400   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2401 
2402   emit_byte(0xF2);
2403   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2404   emit_byte(0x0F);
2405   emit_byte(0x70);
2406   emit_byte(0xC0 | encode);
2407   emit_byte(mode & 0xFF);
2408 }
2409 
2410 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
2411   assert(isByte(mode), "invalid value");
2412   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2413 
2414   InstructionMark im(this);
2415   emit_byte(0xF2);
2416   prefix(src, dst); // QQ new
2417   emit_byte(0x0F);
2418   emit_byte(0x70);
2419   emit_operand(dst, src);
2420   emit_byte(mode & 0xFF);
2421 }
2422 
2423 void Assembler::psrlq(XMMRegister dst, int shift) {
2424   // Shift 64 bit value logically right by specified number of bits.
2425   // HMM Table D-1 says sse2 or mmx.
2426   // Do not confuse it with psrldq SSE2 instruction which
2427   // shifts 128 bit value in xmm register by number of bytes.
2428   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2429 
2430   int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
2431   emit_byte(0x66);
2432   emit_byte(0x0F);
2433   emit_byte(0x73);
2434   emit_byte(0xC0 | encode);
2435   emit_byte(shift);
2436 }
2437 
2438 void Assembler::psrldq(XMMRegister dst, int shift) {
2439   // Shift 128 bit value in xmm register by number of bytes.
2440   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2441 
2442   int encode = prefixq_and_encode(xmm3->encoding(), dst->encoding());
2443   emit_byte(0x66);
2444   emit_byte(0x0F);
2445   emit_byte(0x73);
2446   emit_byte(0xC0 | encode);
2447   emit_byte(shift);
2448 }
2449 
2450 void Assembler::ptest(XMMRegister dst, Address src) {
2451   assert(VM_Version::supports_sse4_1(), "");
2452 
2453   InstructionMark im(this);
2454   emit_byte(0x66);
2455   prefix(src, dst);
2456   emit_byte(0x0F);
2457   emit_byte(0x38);
2458   emit_byte(0x17);
2459   emit_operand(dst, src);
2460 }
2461 
2462 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2463   assert(VM_Version::supports_sse4_1(), "");
2464 
2465   emit_byte(0x66);
2466   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2467   emit_byte(0x0F);
2468   emit_byte(0x38);
2469   emit_byte(0x17);
2470   emit_byte(0xC0 | encode);
2471 }
2472 
2473 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
2474   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2475   emit_byte(0x66);
2476   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2477   emit_byte(0x0F);
2478   emit_byte(0x60);
2479   emit_byte(0xC0 | encode);
2480 }
2481 
2482 void Assembler::push(int32_t imm32) {
2483   // in 64bits we push 64bits onto the stack but only
2484   // take a 32bit immediate
2485   emit_byte(0x68);
2486   emit_long(imm32);
2487 }
2488 
2489 void Assembler::push(Register src) {
2490   int encode = prefix_and_encode(src->encoding());
2491 
2492   emit_byte(0x50 | encode);
2493 }
2494 
2495 void Assembler::pushf() {
2496   emit_byte(0x9C);
2497 }
2498 
2499 #ifndef _LP64 // no 32bit push/pop on amd64
2500 void Assembler::pushl(Address src) {
2501   // Note this will push 64bit on 64bit
2502   InstructionMark im(this);
2503   prefix(src);
2504   emit_byte(0xFF);
2505   emit_operand(rsi, src);
2506 }
2507 #endif
2508 
2509 void Assembler::pxor(XMMRegister dst, Address src) {
2510   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2511   InstructionMark im(this);
2512   emit_byte(0x66);
2513   prefix(src, dst);
2514   emit_byte(0x0F);
2515   emit_byte(0xEF);
2516   emit_operand(dst, src);
2517 }
2518 
2519 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
2520   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2521   InstructionMark im(this);
2522   emit_byte(0x66);
2523   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2524   emit_byte(0x0F);
2525   emit_byte(0xEF);
2526   emit_byte(0xC0 | encode);
2527 }
2528 
2529 void Assembler::rcll(Register dst, int imm8) {
2530   assert(isShiftCount(imm8), "illegal shift count");
2531   int encode = prefix_and_encode(dst->encoding());
2532   if (imm8 == 1) {
2533     emit_byte(0xD1);
2534     emit_byte(0xD0 | encode);
2535   } else {
2536     emit_byte(0xC1);
2537     emit_byte(0xD0 | encode);
2538     emit_byte(imm8);
2539   }
2540 }
2541 
2542 // copies data from [esi] to [edi] using rcx pointer sized words
2543 // generic
2544 void Assembler::rep_mov() {
2545   emit_byte(0xF3);
2546   // MOVSQ
2547   LP64_ONLY(prefix(REX_W));
2548   emit_byte(0xA5);
2549 }
2550 
2551 // sets rcx pointer sized words with rax, value at [edi]
2552 // generic
2553 void Assembler::rep_set() { // rep_set
2554   emit_byte(0xF3);
2555   // STOSQ
2556   LP64_ONLY(prefix(REX_W));
2557   emit_byte(0xAB);
2558 }
2559 
2560 // scans rcx pointer sized words at [edi] for occurance of rax,
2561 // generic
2562 void Assembler::repne_scan() { // repne_scan
2563   emit_byte(0xF2);
2564   // SCASQ
2565   LP64_ONLY(prefix(REX_W));
2566   emit_byte(0xAF);
2567 }
2568 
2569 #ifdef _LP64
2570 // scans rcx 4 byte words at [edi] for occurance of rax,
2571 // generic
2572 void Assembler::repne_scanl() { // repne_scan
2573   emit_byte(0xF2);
2574   // SCASL
2575   emit_byte(0xAF);
2576 }
2577 #endif
2578 
2579 void Assembler::ret(int imm16) {
2580   if (imm16 == 0) {
2581     emit_byte(0xC3);
2582   } else {
2583     emit_byte(0xC2);
2584     emit_word(imm16);
2585   }
2586 }
2587 
2588 void Assembler::sahf() {
2589 #ifdef _LP64
2590   // Not supported in 64bit mode
2591   ShouldNotReachHere();
2592 #endif
2593   emit_byte(0x9E);
2594 }
2595 
2596 void Assembler::sarl(Register dst, int imm8) {
2597   int encode = prefix_and_encode(dst->encoding());
2598   assert(isShiftCount(imm8), "illegal shift count");
2599   if (imm8 == 1) {
2600     emit_byte(0xD1);
2601     emit_byte(0xF8 | encode);
2602   } else {
2603     emit_byte(0xC1);
2604     emit_byte(0xF8 | encode);
2605     emit_byte(imm8);
2606   }
2607 }
2608 
2609 void Assembler::sarl(Register dst) {
2610   int encode = prefix_and_encode(dst->encoding());
2611   emit_byte(0xD3);
2612   emit_byte(0xF8 | encode);
2613 }
2614 
2615 void Assembler::sbbl(Address dst, int32_t imm32) {
2616   InstructionMark im(this);
2617   prefix(dst);
2618   emit_arith_operand(0x81, rbx, dst, imm32);
2619 }
2620 
2621 void Assembler::sbbl(Register dst, int32_t imm32) {
2622   prefix(dst);
2623   emit_arith(0x81, 0xD8, dst, imm32);
2624 }
2625 
2626 
2627 void Assembler::sbbl(Register dst, Address src) {
2628   InstructionMark im(this);
2629   prefix(src, dst);
2630   emit_byte(0x1B);
2631   emit_operand(dst, src);
2632 }
2633 
2634 void Assembler::sbbl(Register dst, Register src) {
2635   (void) prefix_and_encode(dst->encoding(), src->encoding());
2636   emit_arith(0x1B, 0xC0, dst, src);
2637 }
2638 
2639 void Assembler::setb(Condition cc, Register dst) {
2640   assert(0 <= cc && cc < 16, "illegal cc");
2641   int encode = prefix_and_encode(dst->encoding(), true);
2642   emit_byte(0x0F);
2643   emit_byte(0x90 | cc);
2644   emit_byte(0xC0 | encode);
2645 }
2646 
2647 void Assembler::shll(Register dst, int imm8) {
2648   assert(isShiftCount(imm8), "illegal shift count");
2649   int encode = prefix_and_encode(dst->encoding());
2650   if (imm8 == 1 ) {
2651     emit_byte(0xD1);
2652     emit_byte(0xE0 | encode);
2653   } else {
2654     emit_byte(0xC1);
2655     emit_byte(0xE0 | encode);
2656     emit_byte(imm8);
2657   }
2658 }
2659 
2660 void Assembler::shll(Register dst) {
2661   int encode = prefix_and_encode(dst->encoding());
2662   emit_byte(0xD3);
2663   emit_byte(0xE0 | encode);
2664 }
2665 
2666 void Assembler::shrl(Register dst, int imm8) {
2667   assert(isShiftCount(imm8), "illegal shift count");
2668   int encode = prefix_and_encode(dst->encoding());
2669   emit_byte(0xC1);
2670   emit_byte(0xE8 | encode);
2671   emit_byte(imm8);
2672 }
2673 
2674 void Assembler::shrl(Register dst) {
2675   int encode = prefix_and_encode(dst->encoding());
2676   emit_byte(0xD3);
2677   emit_byte(0xE8 | encode);
2678 }
2679 
2680 // copies a single word from [esi] to [edi]
2681 void Assembler::smovl() {
2682   emit_byte(0xA5);
2683 }
2684 
2685 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2686   // HMM Table D-1 says sse2
2687   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
2688   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2689   emit_byte(0xF2);
2690   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2691   emit_byte(0x0F);
2692   emit_byte(0x51);
2693   emit_byte(0xC0 | encode);
2694 }
2695 
2696 void Assembler::sqrtsd(XMMRegister dst, Address src) {
2697   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2698   InstructionMark im(this);
2699   emit_byte(0xF2);
2700   prefix(src, dst);
2701   emit_byte(0x0F);
2702   emit_byte(0x51);
2703   emit_operand(dst, src);
2704 }
2705 
2706 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
2707   // HMM Table D-1 says sse2
2708   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
2709   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2710   emit_byte(0xF3);
2711   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2712   emit_byte(0x0F);
2713   emit_byte(0x51);
2714   emit_byte(0xC0 | encode);
2715 }
2716 
2717 void Assembler::sqrtss(XMMRegister dst, Address src) {
2718   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2719   InstructionMark im(this);
2720   emit_byte(0xF3);
2721   prefix(src, dst);
2722   emit_byte(0x0F);
2723   emit_byte(0x51);
2724   emit_operand(dst, src);
2725 }
2726 
2727 void Assembler::stmxcsr( Address dst) {
2728   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2729   InstructionMark im(this);
2730   prefix(dst);
2731   emit_byte(0x0F);
2732   emit_byte(0xAE);
2733   emit_operand(as_Register(3), dst);
2734 }
2735 
2736 void Assembler::subl(Address dst, int32_t imm32) {
2737   InstructionMark im(this);
2738   prefix(dst);
2739   emit_arith_operand(0x81, rbp, dst, imm32);
2740 }
2741 
2742 void Assembler::subl(Address dst, Register src) {
2743   InstructionMark im(this);
2744   prefix(dst, src);
2745   emit_byte(0x29);
2746   emit_operand(src, dst);
2747 }
2748 
2749 void Assembler::subl(Register dst, int32_t imm32) {
2750   prefix(dst);
2751   emit_arith(0x81, 0xE8, dst, imm32);
2752 }
2753 
2754 void Assembler::subl(Register dst, Address src) {
2755   InstructionMark im(this);
2756   prefix(src, dst);
2757   emit_byte(0x2B);
2758   emit_operand(dst, src);
2759 }
2760 
2761 void Assembler::subl(Register dst, Register src) {
2762   (void) prefix_and_encode(dst->encoding(), src->encoding());
2763   emit_arith(0x2B, 0xC0, dst, src);
2764 }
2765 
2766 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2767   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2768   emit_byte(0xF2);
2769   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2770   emit_byte(0x0F);
2771   emit_byte(0x5C);
2772   emit_byte(0xC0 | encode);
2773 }
2774 
2775 void Assembler::subsd(XMMRegister dst, Address src) {
2776   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2777   InstructionMark im(this);
2778   emit_byte(0xF2);
2779   prefix(src, dst);
2780   emit_byte(0x0F);
2781   emit_byte(0x5C);
2782   emit_operand(dst, src);
2783 }
2784 
2785 void Assembler::subss(XMMRegister dst, XMMRegister src) {
2786   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2787   emit_byte(0xF3);
2788   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2789   emit_byte(0x0F);
2790   emit_byte(0x5C);
2791   emit_byte(0xC0 | encode);
2792 }
2793 
2794 void Assembler::subss(XMMRegister dst, Address src) {
2795   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2796   InstructionMark im(this);
2797   emit_byte(0xF3);
2798   prefix(src, dst);
2799   emit_byte(0x0F);
2800   emit_byte(0x5C);
2801   emit_operand(dst, src);
2802 }
2803 
2804 void Assembler::testb(Register dst, int imm8) {
2805   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2806   (void) prefix_and_encode(dst->encoding(), true);
2807   emit_arith_b(0xF6, 0xC0, dst, imm8);
2808 }
2809 
2810 void Assembler::testl(Register dst, int32_t imm32) {
2811   // not using emit_arith because test
2812   // doesn't support sign-extension of
2813   // 8bit operands
2814   int encode = dst->encoding();
2815   if (encode == 0) {
2816     emit_byte(0xA9);
2817   } else {
2818     encode = prefix_and_encode(encode);
2819     emit_byte(0xF7);
2820     emit_byte(0xC0 | encode);
2821   }
2822   emit_long(imm32);
2823 }
2824 
2825 void Assembler::testl(Register dst, Register src) {
2826   (void) prefix_and_encode(dst->encoding(), src->encoding());
2827   emit_arith(0x85, 0xC0, dst, src);
2828 }
2829 
2830 void Assembler::testl(Register dst, Address  src) {
2831   InstructionMark im(this);
2832   prefix(src, dst);
2833   emit_byte(0x85);
2834   emit_operand(dst, src);
2835 }
2836 
2837 void Assembler::ucomisd(XMMRegister dst, Address src) {
2838   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2839   emit_byte(0x66);
2840   ucomiss(dst, src);
2841 }
2842 
2843 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
2844   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2845   emit_byte(0x66);
2846   ucomiss(dst, src);
2847 }
2848 
2849 void Assembler::ucomiss(XMMRegister dst, Address src) {
2850   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2851 
2852   InstructionMark im(this);
2853   prefix(src, dst);
2854   emit_byte(0x0F);
2855   emit_byte(0x2E);
2856   emit_operand(dst, src);
2857 }
2858 
2859 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
2860   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2861   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2862   emit_byte(0x0F);
2863   emit_byte(0x2E);
2864   emit_byte(0xC0 | encode);
2865 }
2866 
2867 
2868 void Assembler::xaddl(Address dst, Register src) {
2869   InstructionMark im(this);
2870   prefix(dst, src);
2871   emit_byte(0x0F);
2872   emit_byte(0xC1);
2873   emit_operand(src, dst);
2874 }
2875 
2876 void Assembler::xchgl(Register dst, Address src) { // xchg
2877   InstructionMark im(this);
2878   prefix(src, dst);
2879   emit_byte(0x87);
2880   emit_operand(dst, src);
2881 }
2882 
2883 void Assembler::xchgl(Register dst, Register src) {
2884   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2885   emit_byte(0x87);
2886   emit_byte(0xc0 | encode);
2887 }
2888 
2889 void Assembler::xorl(Register dst, int32_t imm32) {
2890   prefix(dst);
2891   emit_arith(0x81, 0xF0, dst, imm32);
2892 }
2893 
2894 void Assembler::xorl(Register dst, Address src) {
2895   InstructionMark im(this);
2896   prefix(src, dst);
2897   emit_byte(0x33);
2898   emit_operand(dst, src);
2899 }
2900 
2901 void Assembler::xorl(Register dst, Register src) {
2902   (void) prefix_and_encode(dst->encoding(), src->encoding());
2903   emit_arith(0x33, 0xC0, dst, src);
2904 }
2905 
2906 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
2907   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2908   emit_byte(0x66);
2909   xorps(dst, src);
2910 }
2911 
2912 void Assembler::xorpd(XMMRegister dst, Address src) {
2913   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2914   InstructionMark im(this);
2915   emit_byte(0x66);
2916   prefix(src, dst);
2917   emit_byte(0x0F);
2918   emit_byte(0x57);
2919   emit_operand(dst, src);
2920 }
2921 
2922 
2923 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
2924   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2925   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2926   emit_byte(0x0F);
2927   emit_byte(0x57);
2928   emit_byte(0xC0 | encode);
2929 }
2930 
2931 void Assembler::xorps(XMMRegister dst, Address src) {
2932   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2933   InstructionMark im(this);
2934   prefix(src, dst);
2935   emit_byte(0x0F);
2936   emit_byte(0x57);
2937   emit_operand(dst, src);
2938 }
2939 
2940 #ifndef _LP64
2941 // 32bit only pieces of the assembler
2942 
2943 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
2944   // NO PREFIX AS NEVER 64BIT
2945   InstructionMark im(this);
2946   emit_byte(0x81);
2947   emit_byte(0xF8 | src1->encoding());
2948   emit_data(imm32, rspec, 0);
2949 }
2950 
2951 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
2952   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
2953   InstructionMark im(this);
2954   emit_byte(0x81);
2955   emit_operand(rdi, src1);
2956   emit_data(imm32, rspec, 0);
2957 }
2958 
2959 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
2960 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
2961 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
2962 void Assembler::cmpxchg8(Address adr) {
2963   InstructionMark im(this);
2964   emit_byte(0x0F);
2965   emit_byte(0xc7);
2966   emit_operand(rcx, adr);
2967 }
2968 
2969 void Assembler::decl(Register dst) {
2970   // Don't use it directly. Use MacroAssembler::decrementl() instead.
2971  emit_byte(0x48 | dst->encoding());
2972 }
2973 
2974 #endif // _LP64
2975 
2976 // 64bit typically doesn't use the x87 but needs to for the trig funcs
2977 
2978 void Assembler::fabs() {
2979   emit_byte(0xD9);
2980   emit_byte(0xE1);
2981 }
2982 
2983 void Assembler::fadd(int i) {
2984   emit_farith(0xD8, 0xC0, i);
2985 }
2986 
2987 void Assembler::fadd_d(Address src) {
2988   InstructionMark im(this);
2989   emit_byte(0xDC);
2990   emit_operand32(rax, src);
2991 }
2992 
2993 void Assembler::fadd_s(Address src) {
2994   InstructionMark im(this);
2995   emit_byte(0xD8);
2996   emit_operand32(rax, src);
2997 }
2998 
2999 void Assembler::fadda(int i) {
3000   emit_farith(0xDC, 0xC0, i);
3001 }
3002 
3003 void Assembler::faddp(int i) {
3004   emit_farith(0xDE, 0xC0, i);
3005 }
3006 
3007 void Assembler::fchs() {
3008   emit_byte(0xD9);
3009   emit_byte(0xE0);
3010 }
3011 
3012 void Assembler::fcom(int i) {
3013   emit_farith(0xD8, 0xD0, i);
3014 }
3015 
3016 void Assembler::fcomp(int i) {
3017   emit_farith(0xD8, 0xD8, i);
3018 }
3019 
3020 void Assembler::fcomp_d(Address src) {
3021   InstructionMark im(this);
3022   emit_byte(0xDC);
3023   emit_operand32(rbx, src);
3024 }
3025 
3026 void Assembler::fcomp_s(Address src) {
3027   InstructionMark im(this);
3028   emit_byte(0xD8);
3029   emit_operand32(rbx, src);
3030 }
3031 
3032 void Assembler::fcompp() {
3033   emit_byte(0xDE);
3034   emit_byte(0xD9);
3035 }
3036 
3037 void Assembler::fcos() {
3038   emit_byte(0xD9);
3039   emit_byte(0xFF);
3040 }
3041 
3042 void Assembler::fdecstp() {
3043   emit_byte(0xD9);
3044   emit_byte(0xF6);
3045 }
3046 
3047 void Assembler::fdiv(int i) {
3048   emit_farith(0xD8, 0xF0, i);
3049 }
3050 
3051 void Assembler::fdiv_d(Address src) {
3052   InstructionMark im(this);
3053   emit_byte(0xDC);
3054   emit_operand32(rsi, src);
3055 }
3056 
3057 void Assembler::fdiv_s(Address src) {
3058   InstructionMark im(this);
3059   emit_byte(0xD8);
3060   emit_operand32(rsi, src);
3061 }
3062 
3063 void Assembler::fdiva(int i) {
3064   emit_farith(0xDC, 0xF8, i);
3065 }
3066 
3067 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
3068 //       is erroneous for some of the floating-point instructions below.
3069 
3070 void Assembler::fdivp(int i) {
3071   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
3072 }
3073 
3074 void Assembler::fdivr(int i) {
3075   emit_farith(0xD8, 0xF8, i);
3076 }
3077 
3078 void Assembler::fdivr_d(Address src) {
3079   InstructionMark im(this);
3080   emit_byte(0xDC);
3081   emit_operand32(rdi, src);
3082 }
3083 
3084 void Assembler::fdivr_s(Address src) {
3085   InstructionMark im(this);
3086   emit_byte(0xD8);
3087   emit_operand32(rdi, src);
3088 }
3089 
3090 void Assembler::fdivra(int i) {
3091   emit_farith(0xDC, 0xF0, i);
3092 }
3093 
3094 void Assembler::fdivrp(int i) {
3095   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
3096 }
3097 
3098 void Assembler::ffree(int i) {
3099   emit_farith(0xDD, 0xC0, i);
3100 }
3101 
3102 void Assembler::fild_d(Address adr) {
3103   InstructionMark im(this);
3104   emit_byte(0xDF);
3105   emit_operand32(rbp, adr);
3106 }
3107 
3108 void Assembler::fild_s(Address adr) {
3109   InstructionMark im(this);
3110   emit_byte(0xDB);
3111   emit_operand32(rax, adr);
3112 }
3113 
3114 void Assembler::fincstp() {
3115   emit_byte(0xD9);
3116   emit_byte(0xF7);
3117 }
3118 
3119 void Assembler::finit() {
3120   emit_byte(0x9B);
3121   emit_byte(0xDB);
3122   emit_byte(0xE3);
3123 }
3124 
3125 void Assembler::fist_s(Address adr) {
3126   InstructionMark im(this);
3127   emit_byte(0xDB);
3128   emit_operand32(rdx, adr);
3129 }
3130 
3131 void Assembler::fistp_d(Address adr) {
3132   InstructionMark im(this);
3133   emit_byte(0xDF);
3134   emit_operand32(rdi, adr);
3135 }
3136 
3137 void Assembler::fistp_s(Address adr) {
3138   InstructionMark im(this);
3139   emit_byte(0xDB);
3140   emit_operand32(rbx, adr);
3141 }
3142 
3143 void Assembler::fld1() {
3144   emit_byte(0xD9);
3145   emit_byte(0xE8);
3146 }
3147 
3148 void Assembler::fld_d(Address adr) {
3149   InstructionMark im(this);
3150   emit_byte(0xDD);
3151   emit_operand32(rax, adr);
3152 }
3153 
3154 void Assembler::fld_s(Address adr) {
3155   InstructionMark im(this);
3156   emit_byte(0xD9);
3157   emit_operand32(rax, adr);
3158 }
3159 
3160 
3161 void Assembler::fld_s(int index) {
3162   emit_farith(0xD9, 0xC0, index);
3163 }
3164 
3165 void Assembler::fld_x(Address adr) {
3166   InstructionMark im(this);
3167   emit_byte(0xDB);
3168   emit_operand32(rbp, adr);
3169 }
3170 
3171 void Assembler::fldcw(Address src) {
3172   InstructionMark im(this);
3173   emit_byte(0xd9);
3174   emit_operand32(rbp, src);
3175 }
3176 
3177 void Assembler::fldenv(Address src) {
3178   InstructionMark im(this);
3179   emit_byte(0xD9);
3180   emit_operand32(rsp, src);
3181 }
3182 
3183 void Assembler::fldlg2() {
3184   emit_byte(0xD9);
3185   emit_byte(0xEC);
3186 }
3187 
3188 void Assembler::fldln2() {
3189   emit_byte(0xD9);
3190   emit_byte(0xED);
3191 }
3192 
3193 void Assembler::fldz() {
3194   emit_byte(0xD9);
3195   emit_byte(0xEE);
3196 }
3197 
3198 void Assembler::flog() {
3199   fldln2();
3200   fxch();
3201   fyl2x();
3202 }
3203 
3204 void Assembler::flog10() {
3205   fldlg2();
3206   fxch();
3207   fyl2x();
3208 }
3209 
3210 void Assembler::fmul(int i) {
3211   emit_farith(0xD8, 0xC8, i);
3212 }
3213 
3214 void Assembler::fmul_d(Address src) {
3215   InstructionMark im(this);
3216   emit_byte(0xDC);
3217   emit_operand32(rcx, src);
3218 }
3219 
3220 void Assembler::fmul_s(Address src) {
3221   InstructionMark im(this);
3222   emit_byte(0xD8);
3223   emit_operand32(rcx, src);
3224 }
3225 
3226 void Assembler::fmula(int i) {
3227   emit_farith(0xDC, 0xC8, i);
3228 }
3229 
3230 void Assembler::fmulp(int i) {
3231   emit_farith(0xDE, 0xC8, i);
3232 }
3233 
3234 void Assembler::fnsave(Address dst) {
3235   InstructionMark im(this);
3236   emit_byte(0xDD);
3237   emit_operand32(rsi, dst);
3238 }
3239 
3240 void Assembler::fnstcw(Address src) {
3241   InstructionMark im(this);
3242   emit_byte(0x9B);
3243   emit_byte(0xD9);
3244   emit_operand32(rdi, src);
3245 }
3246 
3247 void Assembler::fnstsw_ax() {
3248   emit_byte(0xdF);
3249   emit_byte(0xE0);
3250 }
3251 
3252 void Assembler::fprem() {
3253   emit_byte(0xD9);
3254   emit_byte(0xF8);
3255 }
3256 
3257 void Assembler::fprem1() {
3258   emit_byte(0xD9);
3259   emit_byte(0xF5);
3260 }
3261 
3262 void Assembler::frstor(Address src) {
3263   InstructionMark im(this);
3264   emit_byte(0xDD);
3265   emit_operand32(rsp, src);
3266 }
3267 
3268 void Assembler::fsin() {
3269   emit_byte(0xD9);
3270   emit_byte(0xFE);
3271 }
3272 
3273 void Assembler::fsqrt() {
3274   emit_byte(0xD9);
3275   emit_byte(0xFA);
3276 }
3277 
3278 void Assembler::fst_d(Address adr) {
3279   InstructionMark im(this);
3280   emit_byte(0xDD);
3281   emit_operand32(rdx, adr);
3282 }
3283 
3284 void Assembler::fst_s(Address adr) {
3285   InstructionMark im(this);
3286   emit_byte(0xD9);
3287   emit_operand32(rdx, adr);
3288 }
3289 
3290 void Assembler::fstp_d(Address adr) {
3291   InstructionMark im(this);
3292   emit_byte(0xDD);
3293   emit_operand32(rbx, adr);
3294 }
3295 
3296 void Assembler::fstp_d(int index) {
3297   emit_farith(0xDD, 0xD8, index);
3298 }
3299 
3300 void Assembler::fstp_s(Address adr) {
3301   InstructionMark im(this);
3302   emit_byte(0xD9);
3303   emit_operand32(rbx, adr);
3304 }
3305 
3306 void Assembler::fstp_x(Address adr) {
3307   InstructionMark im(this);
3308   emit_byte(0xDB);
3309   emit_operand32(rdi, adr);
3310 }
3311 
3312 void Assembler::fsub(int i) {
3313   emit_farith(0xD8, 0xE0, i);
3314 }
3315 
3316 void Assembler::fsub_d(Address src) {
3317   InstructionMark im(this);
3318   emit_byte(0xDC);
3319   emit_operand32(rsp, src);
3320 }
3321 
3322 void Assembler::fsub_s(Address src) {
3323   InstructionMark im(this);
3324   emit_byte(0xD8);
3325   emit_operand32(rsp, src);
3326 }
3327 
3328 void Assembler::fsuba(int i) {
3329   emit_farith(0xDC, 0xE8, i);
3330 }
3331 
3332 void Assembler::fsubp(int i) {
3333   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
3334 }
3335 
3336 void Assembler::fsubr(int i) {
3337   emit_farith(0xD8, 0xE8, i);
3338 }
3339 
3340 void Assembler::fsubr_d(Address src) {
3341   InstructionMark im(this);
3342   emit_byte(0xDC);
3343   emit_operand32(rbp, src);
3344 }
3345 
3346 void Assembler::fsubr_s(Address src) {
3347   InstructionMark im(this);
3348   emit_byte(0xD8);
3349   emit_operand32(rbp, src);
3350 }
3351 
3352 void Assembler::fsubra(int i) {
3353   emit_farith(0xDC, 0xE0, i);
3354 }
3355 
3356 void Assembler::fsubrp(int i) {
3357   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
3358 }
3359 
3360 void Assembler::ftan() {
3361   emit_byte(0xD9);
3362   emit_byte(0xF2);
3363   emit_byte(0xDD);
3364   emit_byte(0xD8);
3365 }
3366 
3367 void Assembler::ftst() {
3368   emit_byte(0xD9);
3369   emit_byte(0xE4);
3370 }
3371 
3372 void Assembler::fucomi(int i) {
3373   // make sure the instruction is supported (introduced for P6, together with cmov)
3374   guarantee(VM_Version::supports_cmov(), "illegal instruction");
3375   emit_farith(0xDB, 0xE8, i);
3376 }
3377 
3378 void Assembler::fucomip(int i) {
3379   // make sure the instruction is supported (introduced for P6, together with cmov)
3380   guarantee(VM_Version::supports_cmov(), "illegal instruction");
3381   emit_farith(0xDF, 0xE8, i);
3382 }
3383 
3384 void Assembler::fwait() {
3385   emit_byte(0x9B);
3386 }
3387 
3388 void Assembler::fxch(int i) {
3389   emit_farith(0xD9, 0xC8, i);
3390 }
3391 
3392 void Assembler::fyl2x() {
3393   emit_byte(0xD9);
3394   emit_byte(0xF1);
3395 }
3396 
3397 
3398 #ifndef _LP64
3399 
3400 void Assembler::incl(Register dst) {
3401   // Don't use it directly. Use MacroAssembler::incrementl() instead.
3402  emit_byte(0x40 | dst->encoding());
3403 }
3404 
3405 void Assembler::lea(Register dst, Address src) {
3406   leal(dst, src);
3407 }
3408 
3409 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
3410   InstructionMark im(this);
3411   emit_byte(0xC7);
3412   emit_operand(rax, dst);
3413   emit_data((int)imm32, rspec, 0);
3414 }
3415 
3416 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
3417   InstructionMark im(this);
3418   int encode = prefix_and_encode(dst->encoding());
3419   emit_byte(0xB8 | encode);
3420   emit_data((int)imm32, rspec, 0);
3421 }
3422 
3423 void Assembler::popa() { // 32bit
3424   emit_byte(0x61);
3425 }
3426 
3427 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
3428   InstructionMark im(this);
3429   emit_byte(0x68);
3430   emit_data(imm32, rspec, 0);
3431 }
3432 
3433 void Assembler::pusha() { // 32bit
3434   emit_byte(0x60);
3435 }
3436 
3437 void Assembler::set_byte_if_not_zero(Register dst) {
3438   emit_byte(0x0F);
3439   emit_byte(0x95);
3440   emit_byte(0xE0 | dst->encoding());
3441 }
3442 
3443 void Assembler::shldl(Register dst, Register src) {
3444   emit_byte(0x0F);
3445   emit_byte(0xA5);
3446   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
3447 }
3448 
3449 void Assembler::shrdl(Register dst, Register src) {
3450   emit_byte(0x0F);
3451   emit_byte(0xAD);
3452   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
3453 }
3454 
3455 #else // LP64
3456 
3457 void Assembler::set_byte_if_not_zero(Register dst) {
3458   int enc = prefix_and_encode(dst->encoding(), true);
3459   emit_byte(0x0F);
3460   emit_byte(0x95);
3461   emit_byte(0xE0 | enc);
3462 }
3463 
3464 // 64bit only pieces of the assembler
3465 // This should only be used by 64bit instructions that can use rip-relative
3466 // it cannot be used by instructions that want an immediate value.
3467 
3468 bool Assembler::reachable(AddressLiteral adr) {
3469   int64_t disp;
3470   // None will force a 64bit literal to the code stream. Likely a placeholder
3471   // for something that will be patched later and we need to certain it will
3472   // always be reachable.
3473   if (adr.reloc() == relocInfo::none) {
3474     return false;
3475   }
3476   if (adr.reloc() == relocInfo::internal_word_type) {
3477     // This should be rip relative and easily reachable.
3478     return true;
3479   }
3480   if (adr.reloc() == relocInfo::virtual_call_type ||
3481       adr.reloc() == relocInfo::opt_virtual_call_type ||
3482       adr.reloc() == relocInfo::static_call_type ||
3483       adr.reloc() == relocInfo::static_stub_type ) {
3484     // This should be rip relative within the code cache and easily
3485     // reachable until we get huge code caches. (At which point
3486     // ic code is going to have issues).
3487     return true;
3488   }
3489   if (adr.reloc() != relocInfo::external_word_type &&
3490       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
3491       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
3492       adr.reloc() != relocInfo::runtime_call_type ) {
3493     return false;
3494   }
3495 
3496   // Stress the correction code
3497   if (ForceUnreachable) {
3498     // Must be runtimecall reloc, see if it is in the codecache
3499     // Flipping stuff in the codecache to be unreachable causes issues
3500     // with things like inline caches where the additional instructions
3501     // are not handled.
3502     if (CodeCache::find_blob(adr._target) == NULL) {
3503       return false;
3504     }
3505   }
3506   // For external_word_type/runtime_call_type if it is reachable from where we
3507   // are now (possibly a temp buffer) and where we might end up
3508   // anywhere in the codeCache then we are always reachable.
3509   // This would have to change if we ever save/restore shared code
3510   // to be more pessimistic.
3511   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
3512   if (!is_simm32(disp)) return false;
3513   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
3514   if (!is_simm32(disp)) return false;
3515 
3516   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
3517 
3518   // Because rip relative is a disp + address_of_next_instruction and we
3519   // don't know the value of address_of_next_instruction we apply a fudge factor
3520   // to make sure we will be ok no matter the size of the instruction we get placed into.
3521   // We don't have to fudge the checks above here because they are already worst case.
3522 
3523   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
3524   // + 4 because better safe than sorry.
3525   const int fudge = 12 + 4;
3526   if (disp < 0) {
3527     disp -= fudge;
3528   } else {
3529     disp += fudge;
3530   }
3531   return is_simm32(disp);
3532 }
3533 
3534 // Check if the polling page is not reachable from the code cache using rip-relative
3535 // addressing.
3536 bool Assembler::is_polling_page_far() {
3537   intptr_t addr = (intptr_t)os::get_polling_page();
3538   return ForceUnreachable ||
3539          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
3540          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
3541 }
3542 
3543 void Assembler::emit_data64(jlong data,
3544                             relocInfo::relocType rtype,
3545                             int format) {
3546   if (rtype == relocInfo::none) {
3547     emit_long64(data);
3548   } else {
3549     emit_data64(data, Relocation::spec_simple(rtype), format);
3550   }
3551 }
3552 
3553 void Assembler::emit_data64(jlong data,
3554                             RelocationHolder const& rspec,
3555                             int format) {
3556   assert(imm_operand == 0, "default format must be immediate in this file");
3557   assert(imm_operand == format, "must be immediate");
3558   assert(inst_mark() != NULL, "must be inside InstructionMark");
3559   // Do not use AbstractAssembler::relocate, which is not intended for
3560   // embedded words.  Instead, relocate to the enclosing instruction.
3561   code_section()->relocate(inst_mark(), rspec, format);
3562 #ifdef ASSERT
3563   check_relocation(rspec, format);
3564 #endif
3565   emit_long64(data);
3566 }
3567 
3568 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
3569   if (reg_enc >= 8) {
3570     prefix(REX_B);
3571     reg_enc -= 8;
3572   } else if (byteinst && reg_enc >= 4) {
3573     prefix(REX);
3574   }
3575   return reg_enc;
3576 }
3577 
3578 int Assembler::prefixq_and_encode(int reg_enc) {
3579   if (reg_enc < 8) {
3580     prefix(REX_W);
3581   } else {
3582     prefix(REX_WB);
3583     reg_enc -= 8;
3584   }
3585   return reg_enc;
3586 }
3587 
3588 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
3589   if (dst_enc < 8) {
3590     if (src_enc >= 8) {
3591       prefix(REX_B);
3592       src_enc -= 8;
3593     } else if (byteinst && src_enc >= 4) {
3594       prefix(REX);
3595     }
3596   } else {
3597     if (src_enc < 8) {
3598       prefix(REX_R);
3599     } else {
3600       prefix(REX_RB);
3601       src_enc -= 8;
3602     }
3603     dst_enc -= 8;
3604   }
3605   return dst_enc << 3 | src_enc;
3606 }
3607 
3608 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
3609   if (dst_enc < 8) {
3610     if (src_enc < 8) {
3611       prefix(REX_W);
3612     } else {
3613       prefix(REX_WB);
3614       src_enc -= 8;
3615     }
3616   } else {
3617     if (src_enc < 8) {
3618       prefix(REX_WR);
3619     } else {
3620       prefix(REX_WRB);
3621       src_enc -= 8;
3622     }
3623     dst_enc -= 8;
3624   }
3625   return dst_enc << 3 | src_enc;
3626 }
3627 
3628 void Assembler::prefix(Register reg) {
3629   if (reg->encoding() >= 8) {
3630     prefix(REX_B);
3631   }
3632 }
3633 
3634 void Assembler::prefix(Address adr) {
3635   if (adr.base_needs_rex()) {
3636     if (adr.index_needs_rex()) {
3637       prefix(REX_XB);
3638     } else {
3639       prefix(REX_B);
3640     }
3641   } else {
3642     if (adr.index_needs_rex()) {
3643       prefix(REX_X);
3644     }
3645   }
3646 }
3647 
3648 void Assembler::prefixq(Address adr) {
3649   if (adr.base_needs_rex()) {
3650     if (adr.index_needs_rex()) {
3651       prefix(REX_WXB);
3652     } else {
3653       prefix(REX_WB);
3654     }
3655   } else {
3656     if (adr.index_needs_rex()) {
3657       prefix(REX_WX);
3658     } else {
3659       prefix(REX_W);
3660     }
3661   }
3662 }
3663 
3664 
3665 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
3666   if (reg->encoding() < 8) {
3667     if (adr.base_needs_rex()) {
3668       if (adr.index_needs_rex()) {
3669         prefix(REX_XB);
3670       } else {
3671         prefix(REX_B);
3672       }
3673     } else {
3674       if (adr.index_needs_rex()) {
3675         prefix(REX_X);
3676       } else if (byteinst && reg->encoding() >= 4 ) {
3677         prefix(REX);
3678       }
3679     }
3680   } else {
3681     if (adr.base_needs_rex()) {
3682       if (adr.index_needs_rex()) {
3683         prefix(REX_RXB);
3684       } else {
3685         prefix(REX_RB);
3686       }
3687     } else {
3688       if (adr.index_needs_rex()) {
3689         prefix(REX_RX);
3690       } else {
3691         prefix(REX_R);
3692       }
3693     }
3694   }
3695 }
3696 
3697 void Assembler::prefixq(Address adr, Register src) {
3698   if (src->encoding() < 8) {
3699     if (adr.base_needs_rex()) {
3700       if (adr.index_needs_rex()) {
3701         prefix(REX_WXB);
3702       } else {
3703         prefix(REX_WB);
3704       }
3705     } else {
3706       if (adr.index_needs_rex()) {
3707         prefix(REX_WX);
3708       } else {
3709         prefix(REX_W);
3710       }
3711     }
3712   } else {
3713     if (adr.base_needs_rex()) {
3714       if (adr.index_needs_rex()) {
3715         prefix(REX_WRXB);
3716       } else {
3717         prefix(REX_WRB);
3718       }
3719     } else {
3720       if (adr.index_needs_rex()) {
3721         prefix(REX_WRX);
3722       } else {
3723         prefix(REX_WR);
3724       }
3725     }
3726   }
3727 }
3728 
3729 void Assembler::prefix(Address adr, XMMRegister reg) {
3730   if (reg->encoding() < 8) {
3731     if (adr.base_needs_rex()) {
3732       if (adr.index_needs_rex()) {
3733         prefix(REX_XB);
3734       } else {
3735         prefix(REX_B);
3736       }
3737     } else {
3738       if (adr.index_needs_rex()) {
3739         prefix(REX_X);
3740       }
3741     }
3742   } else {
3743     if (adr.base_needs_rex()) {
3744       if (adr.index_needs_rex()) {
3745         prefix(REX_RXB);
3746       } else {
3747         prefix(REX_RB);
3748       }
3749     } else {
3750       if (adr.index_needs_rex()) {
3751         prefix(REX_RX);
3752       } else {
3753         prefix(REX_R);
3754       }
3755     }
3756   }
3757 }
3758 
3759 void Assembler::adcq(Register dst, int32_t imm32) {
3760   (void) prefixq_and_encode(dst->encoding());
3761   emit_arith(0x81, 0xD0, dst, imm32);
3762 }
3763 
3764 void Assembler::adcq(Register dst, Address src) {
3765   InstructionMark im(this);
3766   prefixq(src, dst);
3767   emit_byte(0x13);
3768   emit_operand(dst, src);
3769 }
3770 
3771 void Assembler::adcq(Register dst, Register src) {
3772   (int) prefixq_and_encode(dst->encoding(), src->encoding());
3773   emit_arith(0x13, 0xC0, dst, src);
3774 }
3775 
3776 void Assembler::addq(Address dst, int32_t imm32) {
3777   InstructionMark im(this);
3778   prefixq(dst);
3779   emit_arith_operand(0x81, rax, dst,imm32);
3780 }
3781 
3782 void Assembler::addq(Address dst, Register src) {
3783   InstructionMark im(this);
3784   prefixq(dst, src);
3785   emit_byte(0x01);
3786   emit_operand(src, dst);
3787 }
3788 
3789 void Assembler::addq(Register dst, int32_t imm32) {
3790   (void) prefixq_and_encode(dst->encoding());
3791   emit_arith(0x81, 0xC0, dst, imm32);
3792 }
3793 
3794 void Assembler::addq(Register dst, Address src) {
3795   InstructionMark im(this);
3796   prefixq(src, dst);
3797   emit_byte(0x03);
3798   emit_operand(dst, src);
3799 }
3800 
3801 void Assembler::addq(Register dst, Register src) {
3802   (void) prefixq_and_encode(dst->encoding(), src->encoding());
3803   emit_arith(0x03, 0xC0, dst, src);
3804 }
3805 
3806 void Assembler::andq(Address dst, int32_t imm32) {
3807   InstructionMark im(this);
3808   prefixq(dst);
3809   emit_byte(0x81);
3810   emit_operand(rsp, dst, 4);
3811   emit_long(imm32);
3812 }
3813 
3814 void Assembler::andq(Register dst, int32_t imm32) {
3815   (void) prefixq_and_encode(dst->encoding());
3816   emit_arith(0x81, 0xE0, dst, imm32);
3817 }
3818 
3819 void Assembler::andq(Register dst, Address src) {
3820   InstructionMark im(this);
3821   prefixq(src, dst);
3822   emit_byte(0x23);
3823   emit_operand(dst, src);
3824 }
3825 
3826 void Assembler::andq(Register dst, Register src) {
3827   (int) prefixq_and_encode(dst->encoding(), src->encoding());
3828   emit_arith(0x23, 0xC0, dst, src);
3829 }
3830 
3831 void Assembler::bsfq(Register dst, Register src) {
3832   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3833   emit_byte(0x0F);
3834   emit_byte(0xBC);
3835   emit_byte(0xC0 | encode);
3836 }
3837 
3838 void Assembler::bsrq(Register dst, Register src) {
3839   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
3840   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3841   emit_byte(0x0F);
3842   emit_byte(0xBD);
3843   emit_byte(0xC0 | encode);
3844 }
3845 
3846 void Assembler::bswapq(Register reg) {
3847   int encode = prefixq_and_encode(reg->encoding());
3848   emit_byte(0x0F);
3849   emit_byte(0xC8 | encode);
3850 }
3851 
3852 void Assembler::cdqq() {
3853   prefix(REX_W);
3854   emit_byte(0x99);
3855 }
3856 
3857 void Assembler::clflush(Address adr) {
3858   prefix(adr);
3859   emit_byte(0x0F);
3860   emit_byte(0xAE);
3861   emit_operand(rdi, adr);
3862 }
3863 
3864 void Assembler::cmovq(Condition cc, Register dst, Register src) {
3865   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3866   emit_byte(0x0F);
3867   emit_byte(0x40 | cc);
3868   emit_byte(0xC0 | encode);
3869 }
3870 
3871 void Assembler::cmovq(Condition cc, Register dst, Address src) {
3872   InstructionMark im(this);
3873   prefixq(src, dst);
3874   emit_byte(0x0F);
3875   emit_byte(0x40 | cc);
3876   emit_operand(dst, src);
3877 }
3878 
3879 void Assembler::cmpq(Address dst, int32_t imm32) {
3880   InstructionMark im(this);
3881   prefixq(dst);
3882   emit_byte(0x81);
3883   emit_operand(rdi, dst, 4);
3884   emit_long(imm32);
3885 }
3886 
3887 void Assembler::cmpq(Register dst, int32_t imm32) {
3888   (void) prefixq_and_encode(dst->encoding());
3889   emit_arith(0x81, 0xF8, dst, imm32);
3890 }
3891 
3892 void Assembler::cmpq(Address dst, Register src) {
3893   InstructionMark im(this);
3894   prefixq(dst, src);
3895   emit_byte(0x3B);
3896   emit_operand(src, dst);
3897 }
3898 
3899 void Assembler::cmpq(Register dst, Register src) {
3900   (void) prefixq_and_encode(dst->encoding(), src->encoding());
3901   emit_arith(0x3B, 0xC0, dst, src);
3902 }
3903 
3904 void Assembler::cmpq(Register dst, Address  src) {
3905   InstructionMark im(this);
3906   prefixq(src, dst);
3907   emit_byte(0x3B);
3908   emit_operand(dst, src);
3909 }
3910 
3911 void Assembler::cmpxchgq(Register reg, Address adr) {
3912   InstructionMark im(this);
3913   prefixq(adr, reg);
3914   emit_byte(0x0F);
3915   emit_byte(0xB1);
3916   emit_operand(reg, adr);
3917 }
3918 
3919 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
3920   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3921   emit_byte(0xF2);
3922   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3923   emit_byte(0x0F);
3924   emit_byte(0x2A);
3925   emit_byte(0xC0 | encode);
3926 }
3927 
3928 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
3929   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3930   emit_byte(0xF3);
3931   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3932   emit_byte(0x0F);
3933   emit_byte(0x2A);
3934   emit_byte(0xC0 | encode);
3935 }
3936 
3937 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
3938   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3939   emit_byte(0xF2);
3940   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3941   emit_byte(0x0F);
3942   emit_byte(0x2C);
3943   emit_byte(0xC0 | encode);
3944 }
3945 
3946 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
3947   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3948   emit_byte(0xF3);
3949   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3950   emit_byte(0x0F);
3951   emit_byte(0x2C);
3952   emit_byte(0xC0 | encode);
3953 }
3954 
3955 void Assembler::decl(Register dst) {
3956   // Don't use it directly. Use MacroAssembler::decrementl() instead.
3957   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
3958   int encode = prefix_and_encode(dst->encoding());
3959   emit_byte(0xFF);
3960   emit_byte(0xC8 | encode);
3961 }
3962 
3963 void Assembler::decq(Register dst) {
3964   // Don't use it directly. Use MacroAssembler::decrementq() instead.
3965   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
3966   int encode = prefixq_and_encode(dst->encoding());
3967   emit_byte(0xFF);
3968   emit_byte(0xC8 | encode);
3969 }
3970 
3971 void Assembler::decq(Address dst) {
3972   // Don't use it directly. Use MacroAssembler::decrementq() instead.
3973   InstructionMark im(this);
3974   prefixq(dst);
3975   emit_byte(0xFF);
3976   emit_operand(rcx, dst);
3977 }
3978 
3979 void Assembler::fxrstor(Address src) {
3980   prefixq(src);
3981   emit_byte(0x0F);
3982   emit_byte(0xAE);
3983   emit_operand(as_Register(1), src);
3984 }
3985 
3986 void Assembler::fxsave(Address dst) {
3987   prefixq(dst);
3988   emit_byte(0x0F);
3989   emit_byte(0xAE);
3990   emit_operand(as_Register(0), dst);
3991 }
3992 
3993 void Assembler::idivq(Register src) {
3994   int encode = prefixq_and_encode(src->encoding());
3995   emit_byte(0xF7);
3996   emit_byte(0xF8 | encode);
3997 }
3998 
3999 void Assembler::imulq(Register dst, Register src) {
4000   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4001   emit_byte(0x0F);
4002   emit_byte(0xAF);
4003   emit_byte(0xC0 | encode);
4004 }
4005 
4006 void Assembler::imulq(Register dst, Register src, int value) {
4007   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4008   if (is8bit(value)) {
4009     emit_byte(0x6B);
4010     emit_byte(0xC0 | encode);
4011     emit_byte(value & 0xFF);
4012   } else {
4013     emit_byte(0x69);
4014     emit_byte(0xC0 | encode);
4015     emit_long(value);
4016   }
4017 }
4018 
4019 void Assembler::incl(Register dst) {
4020   // Don't use it directly. Use MacroAssembler::incrementl() instead.
4021   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
4022   int encode = prefix_and_encode(dst->encoding());
4023   emit_byte(0xFF);
4024   emit_byte(0xC0 | encode);
4025 }
4026 
4027 void Assembler::incq(Register dst) {
4028   // Don't use it directly. Use MacroAssembler::incrementq() instead.
4029   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
4030   int encode = prefixq_and_encode(dst->encoding());
4031   emit_byte(0xFF);
4032   emit_byte(0xC0 | encode);
4033 }
4034 
4035 void Assembler::incq(Address dst) {
4036   // Don't use it directly. Use MacroAssembler::incrementq() instead.
4037   InstructionMark im(this);
4038   prefixq(dst);
4039   emit_byte(0xFF);
4040   emit_operand(rax, dst);
4041 }
4042 
4043 void Assembler::lea(Register dst, Address src) {
4044   leaq(dst, src);
4045 }
4046 
4047 void Assembler::leaq(Register dst, Address src) {
4048   InstructionMark im(this);
4049   prefixq(src, dst);
4050   emit_byte(0x8D);
4051   emit_operand(dst, src);
4052 }
4053 
4054 void Assembler::mov64(Register dst, int64_t imm64) {
4055   InstructionMark im(this);
4056   int encode = prefixq_and_encode(dst->encoding());
4057   emit_byte(0xB8 | encode);
4058   emit_long64(imm64);
4059 }
4060 
4061 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
4062   InstructionMark im(this);
4063   int encode = prefixq_and_encode(dst->encoding());
4064   emit_byte(0xB8 | encode);
4065   emit_data64(imm64, rspec);
4066 }
4067 
4068 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
4069   InstructionMark im(this);
4070   int encode = prefix_and_encode(dst->encoding());
4071   emit_byte(0xB8 | encode);
4072   emit_data((int)imm32, rspec, narrow_oop_operand);
4073 }
4074 
4075 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
4076   InstructionMark im(this);
4077   prefix(dst);
4078   emit_byte(0xC7);
4079   emit_operand(rax, dst, 4);
4080   emit_data((int)imm32, rspec, narrow_oop_operand);
4081 }
4082 
4083 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
4084   InstructionMark im(this);
4085   int encode = prefix_and_encode(src1->encoding());
4086   emit_byte(0x81);
4087   emit_byte(0xF8 | encode);
4088   emit_data((int)imm32, rspec, narrow_oop_operand);
4089 }
4090 
4091 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
4092   InstructionMark im(this);
4093   prefix(src1);
4094   emit_byte(0x81);
4095   emit_operand(rax, src1, 4);
4096   emit_data((int)imm32, rspec, narrow_oop_operand);
4097 }
4098 
4099 void Assembler::lzcntq(Register dst, Register src) {
4100   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
4101   emit_byte(0xF3);
4102   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4103   emit_byte(0x0F);
4104   emit_byte(0xBD);
4105   emit_byte(0xC0 | encode);
4106 }
4107 
4108 void Assembler::movdq(XMMRegister dst, Register src) {
4109   // table D-1 says MMX/SSE2
4110   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
4111   emit_byte(0x66);
4112   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4113   emit_byte(0x0F);
4114   emit_byte(0x6E);
4115   emit_byte(0xC0 | encode);
4116 }
4117 
4118 void Assembler::movdq(Register dst, XMMRegister src) {
4119   // table D-1 says MMX/SSE2
4120   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
4121   emit_byte(0x66);
4122   // swap src/dst to get correct prefix
4123   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
4124   emit_byte(0x0F);
4125   emit_byte(0x7E);
4126   emit_byte(0xC0 | encode);
4127 }
4128 
4129 void Assembler::movq(Register dst, Register src) {
4130   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4131   emit_byte(0x8B);
4132   emit_byte(0xC0 | encode);
4133 }
4134 
4135 void Assembler::movq(Register dst, Address src) {
4136   InstructionMark im(this);
4137   prefixq(src, dst);
4138   emit_byte(0x8B);
4139   emit_operand(dst, src);
4140 }
4141 
4142 void Assembler::movq(Address dst, Register src) {
4143   InstructionMark im(this);
4144   prefixq(dst, src);
4145   emit_byte(0x89);
4146   emit_operand(src, dst);
4147 }
4148 
4149 void Assembler::movsbq(Register dst, Address src) {
4150   InstructionMark im(this);
4151   prefixq(src, dst);
4152   emit_byte(0x0F);
4153   emit_byte(0xBE);
4154   emit_operand(dst, src);
4155 }
4156 
4157 void Assembler::movsbq(Register dst, Register src) {
4158   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4159   emit_byte(0x0F);
4160   emit_byte(0xBE);
4161   emit_byte(0xC0 | encode);
4162 }
4163 
4164 void Assembler::movslq(Register dst, int32_t imm32) {
4165   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
4166   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
4167   // as a result we shouldn't use until tested at runtime...
4168   ShouldNotReachHere();
4169   InstructionMark im(this);
4170   int encode = prefixq_and_encode(dst->encoding());
4171   emit_byte(0xC7 | encode);
4172   emit_long(imm32);
4173 }
4174 
4175 void Assembler::movslq(Address dst, int32_t imm32) {
4176   assert(is_simm32(imm32), "lost bits");
4177   InstructionMark im(this);
4178   prefixq(dst);
4179   emit_byte(0xC7);
4180   emit_operand(rax, dst, 4);
4181   emit_long(imm32);
4182 }
4183 
4184 void Assembler::movslq(Register dst, Address src) {
4185   InstructionMark im(this);
4186   prefixq(src, dst);
4187   emit_byte(0x63);
4188   emit_operand(dst, src);
4189 }
4190 
4191 void Assembler::movslq(Register dst, Register src) {
4192   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4193   emit_byte(0x63);
4194   emit_byte(0xC0 | encode);
4195 }
4196 
4197 void Assembler::movswq(Register dst, Address src) {
4198   InstructionMark im(this);
4199   prefixq(src, dst);
4200   emit_byte(0x0F);
4201   emit_byte(0xBF);
4202   emit_operand(dst, src);
4203 }
4204 
4205 void Assembler::movswq(Register dst, Register src) {
4206   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4207   emit_byte(0x0F);
4208   emit_byte(0xBF);
4209   emit_byte(0xC0 | encode);
4210 }
4211 
4212 void Assembler::movzbq(Register dst, Address src) {
4213   InstructionMark im(this);
4214   prefixq(src, dst);
4215   emit_byte(0x0F);
4216   emit_byte(0xB6);
4217   emit_operand(dst, src);
4218 }
4219 
4220 void Assembler::movzbq(Register dst, Register src) {
4221   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4222   emit_byte(0x0F);
4223   emit_byte(0xB6);
4224   emit_byte(0xC0 | encode);
4225 }
4226 
4227 void Assembler::movzwq(Register dst, Address src) {
4228   InstructionMark im(this);
4229   prefixq(src, dst);
4230   emit_byte(0x0F);
4231   emit_byte(0xB7);
4232   emit_operand(dst, src);
4233 }
4234 
4235 void Assembler::movzwq(Register dst, Register src) {
4236   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4237   emit_byte(0x0F);
4238   emit_byte(0xB7);
4239   emit_byte(0xC0 | encode);
4240 }
4241 
4242 void Assembler::negq(Register dst) {
4243   int encode = prefixq_and_encode(dst->encoding());
4244   emit_byte(0xF7);
4245   emit_byte(0xD8 | encode);
4246 }
4247 
4248 void Assembler::notq(Register dst) {
4249   int encode = prefixq_and_encode(dst->encoding());
4250   emit_byte(0xF7);
4251   emit_byte(0xD0 | encode);
4252 }
4253 
4254 void Assembler::orq(Address dst, int32_t imm32) {
4255   InstructionMark im(this);
4256   prefixq(dst);
4257   emit_byte(0x81);
4258   emit_operand(rcx, dst, 4);
4259   emit_long(imm32);
4260 }
4261 
4262 void Assembler::orq(Register dst, int32_t imm32) {
4263   (void) prefixq_and_encode(dst->encoding());
4264   emit_arith(0x81, 0xC8, dst, imm32);
4265 }
4266 
4267 void Assembler::orq(Register dst, Address src) {
4268   InstructionMark im(this);
4269   prefixq(src, dst);
4270   emit_byte(0x0B);
4271   emit_operand(dst, src);
4272 }
4273 
4274 void Assembler::orq(Register dst, Register src) {
4275   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4276   emit_arith(0x0B, 0xC0, dst, src);
4277 }
4278 
4279 void Assembler::popa() { // 64bit
4280   movq(r15, Address(rsp, 0));
4281   movq(r14, Address(rsp, wordSize));
4282   movq(r13, Address(rsp, 2 * wordSize));
4283   movq(r12, Address(rsp, 3 * wordSize));
4284   movq(r11, Address(rsp, 4 * wordSize));
4285   movq(r10, Address(rsp, 5 * wordSize));
4286   movq(r9,  Address(rsp, 6 * wordSize));
4287   movq(r8,  Address(rsp, 7 * wordSize));
4288   movq(rdi, Address(rsp, 8 * wordSize));
4289   movq(rsi, Address(rsp, 9 * wordSize));
4290   movq(rbp, Address(rsp, 10 * wordSize));
4291   // skip rsp
4292   movq(rbx, Address(rsp, 12 * wordSize));
4293   movq(rdx, Address(rsp, 13 * wordSize));
4294   movq(rcx, Address(rsp, 14 * wordSize));
4295   movq(rax, Address(rsp, 15 * wordSize));
4296 
4297   addq(rsp, 16 * wordSize);
4298 }
4299 
4300 void Assembler::popcntq(Register dst, Address src) {
4301   assert(VM_Version::supports_popcnt(), "must support");
4302   InstructionMark im(this);
4303   emit_byte(0xF3);
4304   prefixq(src, dst);
4305   emit_byte(0x0F);
4306   emit_byte(0xB8);
4307   emit_operand(dst, src);
4308 }
4309 
4310 void Assembler::popcntq(Register dst, Register src) {
4311   assert(VM_Version::supports_popcnt(), "must support");
4312   emit_byte(0xF3);
4313   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4314   emit_byte(0x0F);
4315   emit_byte(0xB8);
4316   emit_byte(0xC0 | encode);
4317 }
4318 
4319 void Assembler::popq(Address dst) {
4320   InstructionMark im(this);
4321   prefixq(dst);
4322   emit_byte(0x8F);
4323   emit_operand(rax, dst);
4324 }
4325 
4326 void Assembler::pusha() { // 64bit
4327   // we have to store original rsp.  ABI says that 128 bytes
4328   // below rsp are local scratch.
4329   movq(Address(rsp, -5 * wordSize), rsp);
4330 
4331   subq(rsp, 16 * wordSize);
4332 
4333   movq(Address(rsp, 15 * wordSize), rax);
4334   movq(Address(rsp, 14 * wordSize), rcx);
4335   movq(Address(rsp, 13 * wordSize), rdx);
4336   movq(Address(rsp, 12 * wordSize), rbx);
4337   // skip rsp
4338   movq(Address(rsp, 10 * wordSize), rbp);
4339   movq(Address(rsp, 9 * wordSize), rsi);
4340   movq(Address(rsp, 8 * wordSize), rdi);
4341   movq(Address(rsp, 7 * wordSize), r8);
4342   movq(Address(rsp, 6 * wordSize), r9);
4343   movq(Address(rsp, 5 * wordSize), r10);
4344   movq(Address(rsp, 4 * wordSize), r11);
4345   movq(Address(rsp, 3 * wordSize), r12);
4346   movq(Address(rsp, 2 * wordSize), r13);
4347   movq(Address(rsp, wordSize), r14);
4348   movq(Address(rsp, 0), r15);
4349 }
4350 
4351 void Assembler::pushq(Address src) {
4352   InstructionMark im(this);
4353   prefixq(src);
4354   emit_byte(0xFF);
4355   emit_operand(rsi, src);
4356 }
4357 
4358 void Assembler::rclq(Register dst, int imm8) {
4359   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4360   int encode = prefixq_and_encode(dst->encoding());
4361   if (imm8 == 1) {
4362     emit_byte(0xD1);
4363     emit_byte(0xD0 | encode);
4364   } else {
4365     emit_byte(0xC1);
4366     emit_byte(0xD0 | encode);
4367     emit_byte(imm8);
4368   }
4369 }
4370 void Assembler::sarq(Register dst, int imm8) {
4371   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4372   int encode = prefixq_and_encode(dst->encoding());
4373   if (imm8 == 1) {
4374     emit_byte(0xD1);
4375     emit_byte(0xF8 | encode);
4376   } else {
4377     emit_byte(0xC1);
4378     emit_byte(0xF8 | encode);
4379     emit_byte(imm8);
4380   }
4381 }
4382 
4383 void Assembler::sarq(Register dst) {
4384   int encode = prefixq_and_encode(dst->encoding());
4385   emit_byte(0xD3);
4386   emit_byte(0xF8 | encode);
4387 }
4388 
4389 void Assembler::sbbq(Address dst, int32_t imm32) {
4390   InstructionMark im(this);
4391   prefixq(dst);
4392   emit_arith_operand(0x81, rbx, dst, imm32);
4393 }
4394 
4395 void Assembler::sbbq(Register dst, int32_t imm32) {
4396   (void) prefixq_and_encode(dst->encoding());
4397   emit_arith(0x81, 0xD8, dst, imm32);
4398 }
4399 
4400 void Assembler::sbbq(Register dst, Address src) {
4401   InstructionMark im(this);
4402   prefixq(src, dst);
4403   emit_byte(0x1B);
4404   emit_operand(dst, src);
4405 }
4406 
4407 void Assembler::sbbq(Register dst, Register src) {
4408   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4409   emit_arith(0x1B, 0xC0, dst, src);
4410 }
4411 
4412 void Assembler::shlq(Register dst, int imm8) {
4413   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4414   int encode = prefixq_and_encode(dst->encoding());
4415   if (imm8 == 1) {
4416     emit_byte(0xD1);
4417     emit_byte(0xE0 | encode);
4418   } else {
4419     emit_byte(0xC1);
4420     emit_byte(0xE0 | encode);
4421     emit_byte(imm8);
4422   }
4423 }
4424 
4425 void Assembler::shlq(Register dst) {
4426   int encode = prefixq_and_encode(dst->encoding());
4427   emit_byte(0xD3);
4428   emit_byte(0xE0 | encode);
4429 }
4430 
4431 void Assembler::shrq(Register dst, int imm8) {
4432   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4433   int encode = prefixq_and_encode(dst->encoding());
4434   emit_byte(0xC1);
4435   emit_byte(0xE8 | encode);
4436   emit_byte(imm8);
4437 }
4438 
4439 void Assembler::shrq(Register dst) {
4440   int encode = prefixq_and_encode(dst->encoding());
4441   emit_byte(0xD3);
4442   emit_byte(0xE8 | encode);
4443 }
4444 
4445 void Assembler::subq(Address dst, int32_t imm32) {
4446   InstructionMark im(this);
4447   prefixq(dst);
4448   emit_arith_operand(0x81, rbp, dst, imm32);
4449 }
4450 
4451 void Assembler::subq(Address dst, Register src) {
4452   InstructionMark im(this);
4453   prefixq(dst, src);
4454   emit_byte(0x29);
4455   emit_operand(src, dst);
4456 }
4457 
4458 void Assembler::subq(Register dst, int32_t imm32) {
4459   (void) prefixq_and_encode(dst->encoding());
4460   emit_arith(0x81, 0xE8, dst, imm32);
4461 }
4462 
4463 void Assembler::subq(Register dst, Address src) {
4464   InstructionMark im(this);
4465   prefixq(src, dst);
4466   emit_byte(0x2B);
4467   emit_operand(dst, src);
4468 }
4469 
4470 void Assembler::subq(Register dst, Register src) {
4471   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4472   emit_arith(0x2B, 0xC0, dst, src);
4473 }
4474 
4475 void Assembler::testq(Register dst, int32_t imm32) {
4476   // not using emit_arith because test
4477   // doesn't support sign-extension of
4478   // 8bit operands
4479   int encode = dst->encoding();
4480   if (encode == 0) {
4481     prefix(REX_W);
4482     emit_byte(0xA9);
4483   } else {
4484     encode = prefixq_and_encode(encode);
4485     emit_byte(0xF7);
4486     emit_byte(0xC0 | encode);
4487   }
4488   emit_long(imm32);
4489 }
4490 
4491 void Assembler::testq(Register dst, Register src) {
4492   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4493   emit_arith(0x85, 0xC0, dst, src);
4494 }
4495 
4496 void Assembler::xaddq(Address dst, Register src) {
4497   InstructionMark im(this);
4498   prefixq(dst, src);
4499   emit_byte(0x0F);
4500   emit_byte(0xC1);
4501   emit_operand(src, dst);
4502 }
4503 
4504 void Assembler::xchgq(Register dst, Address src) {
4505   InstructionMark im(this);
4506   prefixq(src, dst);
4507   emit_byte(0x87);
4508   emit_operand(dst, src);
4509 }
4510 
4511 void Assembler::xchgq(Register dst, Register src) {
4512   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4513   emit_byte(0x87);
4514   emit_byte(0xc0 | encode);
4515 }
4516 
4517 void Assembler::xorq(Register dst, Register src) {
4518   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4519   emit_arith(0x33, 0xC0, dst, src);
4520 }
4521 
4522 void Assembler::xorq(Register dst, Address src) {
4523   InstructionMark im(this);
4524   prefixq(src, dst);
4525   emit_byte(0x33);
4526   emit_operand(dst, src);
4527 }
4528 
4529 #endif // !LP64
4530 
4531 static Assembler::Condition reverse[] = {
4532     Assembler::noOverflow     /* overflow      = 0x0 */ ,
4533     Assembler::overflow       /* noOverflow    = 0x1 */ ,
4534     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
4535     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
4536     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
4537     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
4538     Assembler::above          /* belowEqual    = 0x6 */ ,
4539     Assembler::belowEqual     /* above         = 0x7 */ ,
4540     Assembler::positive       /* negative      = 0x8 */ ,
4541     Assembler::negative       /* positive      = 0x9 */ ,
4542     Assembler::noParity       /* parity        = 0xa */ ,
4543     Assembler::parity         /* noParity      = 0xb */ ,
4544     Assembler::greaterEqual   /* less          = 0xc */ ,
4545     Assembler::less           /* greaterEqual  = 0xd */ ,
4546     Assembler::greater        /* lessEqual     = 0xe */ ,
4547     Assembler::lessEqual      /* greater       = 0xf, */
4548 
4549 };
4550 
4551 
4552 // Implementation of MacroAssembler
4553 
4554 // First all the versions that have distinct versions depending on 32/64 bit
4555 // Unless the difference is trivial (1 line or so).
4556 
4557 #ifndef _LP64
4558 
4559 // 32bit versions
4560 
4561 Address MacroAssembler::as_Address(AddressLiteral adr) {
4562   return Address(adr.target(), adr.rspec());
4563 }
4564 
4565 Address MacroAssembler::as_Address(ArrayAddress adr) {
4566   return Address::make_array(adr);
4567 }
4568 
4569 int MacroAssembler::biased_locking_enter(Register lock_reg,
4570                                          Register obj_reg,
4571                                          Register swap_reg,
4572                                          Register tmp_reg,
4573                                          bool swap_reg_contains_mark,
4574                                          Label& done,
4575                                          Label* slow_case,
4576                                          BiasedLockingCounters* counters) {
4577   assert(UseBiasedLocking, "why call this otherwise?");
4578   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
4579   assert_different_registers(lock_reg, obj_reg, swap_reg);
4580 
4581   if (PrintBiasedLockingStatistics && counters == NULL)
4582     counters = BiasedLocking::counters();
4583 
4584   bool need_tmp_reg = false;
4585   if (tmp_reg == noreg) {
4586     need_tmp_reg = true;
4587     tmp_reg = lock_reg;
4588   } else {
4589     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
4590   }
4591   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
4592   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
4593   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
4594   Address saved_mark_addr(lock_reg, 0);
4595 
4596   // Biased locking
4597   // See whether the lock is currently biased toward our thread and
4598   // whether the epoch is still valid
4599   // Note that the runtime guarantees sufficient alignment of JavaThread
4600   // pointers to allow age to be placed into low bits
4601   // First check to see whether biasing is even enabled for this object
4602   Label cas_label;
4603   int null_check_offset = -1;
4604   if (!swap_reg_contains_mark) {
4605     null_check_offset = offset();
4606     movl(swap_reg, mark_addr);
4607   }
4608   if (need_tmp_reg) {
4609     push(tmp_reg);
4610   }
4611   movl(tmp_reg, swap_reg);
4612   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
4613   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
4614   if (need_tmp_reg) {
4615     pop(tmp_reg);
4616   }
4617   jcc(Assembler::notEqual, cas_label);
4618   // The bias pattern is present in the object's header. Need to check
4619   // whether the bias owner and the epoch are both still current.
4620   // Note that because there is no current thread register on x86 we
4621   // need to store off the mark word we read out of the object to
4622   // avoid reloading it and needing to recheck invariants below. This
4623   // store is unfortunate but it makes the overall code shorter and
4624   // simpler.
4625   movl(saved_mark_addr, swap_reg);
4626   if (need_tmp_reg) {
4627     push(tmp_reg);
4628   }
4629   get_thread(tmp_reg);
4630   xorl(swap_reg, tmp_reg);
4631   if (swap_reg_contains_mark) {
4632     null_check_offset = offset();
4633   }
4634   movl(tmp_reg, klass_addr);
4635   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4636   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
4637   if (need_tmp_reg) {
4638     pop(tmp_reg);
4639   }
4640   if (counters != NULL) {
4641     cond_inc32(Assembler::zero,
4642                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
4643   }
4644   jcc(Assembler::equal, done);
4645 
4646   Label try_revoke_bias;
4647   Label try_rebias;
4648 
4649   // At this point we know that the header has the bias pattern and
4650   // that we are not the bias owner in the current epoch. We need to
4651   // figure out more details about the state of the header in order to
4652   // know what operations can be legally performed on the object's
4653   // header.
4654 
4655   // If the low three bits in the xor result aren't clear, that means
4656   // the prototype header is no longer biased and we have to revoke
4657   // the bias on this object.
4658   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
4659   jcc(Assembler::notZero, try_revoke_bias);
4660 
4661   // Biasing is still enabled for this data type. See whether the
4662   // epoch of the current bias is still valid, meaning that the epoch
4663   // bits of the mark word are equal to the epoch bits of the
4664   // prototype header. (Note that the prototype header's epoch bits
4665   // only change at a safepoint.) If not, attempt to rebias the object
4666   // toward the current thread. Note that we must be absolutely sure
4667   // that the current epoch is invalid in order to do this because
4668   // otherwise the manipulations it performs on the mark word are
4669   // illegal.
4670   testl(swap_reg, markOopDesc::epoch_mask_in_place);
4671   jcc(Assembler::notZero, try_rebias);
4672 
4673   // The epoch of the current bias is still valid but we know nothing
4674   // about the owner; it might be set or it might be clear. Try to
4675   // acquire the bias of the object using an atomic operation. If this
4676   // fails we will go in to the runtime to revoke the object's bias.
4677   // Note that we first construct the presumed unbiased header so we
4678   // don't accidentally blow away another thread's valid bias.
4679   movl(swap_reg, saved_mark_addr);
4680   andl(swap_reg,
4681        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
4682   if (need_tmp_reg) {
4683     push(tmp_reg);
4684   }
4685   get_thread(tmp_reg);
4686   orl(tmp_reg, swap_reg);
4687   if (os::is_MP()) {
4688     lock();
4689   }
4690   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
4691   if (need_tmp_reg) {
4692     pop(tmp_reg);
4693   }
4694   // If the biasing toward our thread failed, this means that
4695   // another thread succeeded in biasing it toward itself and we
4696   // need to revoke that bias. The revocation will occur in the
4697   // interpreter runtime in the slow case.
4698   if (counters != NULL) {
4699     cond_inc32(Assembler::zero,
4700                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
4701   }
4702   if (slow_case != NULL) {
4703     jcc(Assembler::notZero, *slow_case);
4704   }
4705   jmp(done);
4706 
4707   bind(try_rebias);
4708   // At this point we know the epoch has expired, meaning that the
4709   // current "bias owner", if any, is actually invalid. Under these
4710   // circumstances _only_, we are allowed to use the current header's
4711   // value as the comparison value when doing the cas to acquire the
4712   // bias in the current epoch. In other words, we allow transfer of
4713   // the bias from one thread to another directly in this situation.
4714   //
4715   // FIXME: due to a lack of registers we currently blow away the age
4716   // bits in this situation. Should attempt to preserve them.
4717   if (need_tmp_reg) {
4718     push(tmp_reg);
4719   }
4720   get_thread(tmp_reg);
4721   movl(swap_reg, klass_addr);
4722   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4723   movl(swap_reg, saved_mark_addr);
4724   if (os::is_MP()) {
4725     lock();
4726   }
4727   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
4728   if (need_tmp_reg) {
4729     pop(tmp_reg);
4730   }
4731   // If the biasing toward our thread failed, then another thread
4732   // succeeded in biasing it toward itself and we need to revoke that
4733   // bias. The revocation will occur in the runtime in the slow case.
4734   if (counters != NULL) {
4735     cond_inc32(Assembler::zero,
4736                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
4737   }
4738   if (slow_case != NULL) {
4739     jcc(Assembler::notZero, *slow_case);
4740   }
4741   jmp(done);
4742 
4743   bind(try_revoke_bias);
4744   // The prototype mark in the klass doesn't have the bias bit set any
4745   // more, indicating that objects of this data type are not supposed
4746   // to be biased any more. We are going to try to reset the mark of
4747   // this object to the prototype value and fall through to the
4748   // CAS-based locking scheme. Note that if our CAS fails, it means
4749   // that another thread raced us for the privilege of revoking the
4750   // bias of this particular object, so it's okay to continue in the
4751   // normal locking code.
4752   //
4753   // FIXME: due to a lack of registers we currently blow away the age
4754   // bits in this situation. Should attempt to preserve them.
4755   movl(swap_reg, saved_mark_addr);
4756   if (need_tmp_reg) {
4757     push(tmp_reg);
4758   }
4759   movl(tmp_reg, klass_addr);
4760   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4761   if (os::is_MP()) {
4762     lock();
4763   }
4764   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
4765   if (need_tmp_reg) {
4766     pop(tmp_reg);
4767   }
4768   // Fall through to the normal CAS-based lock, because no matter what
4769   // the result of the above CAS, some thread must have succeeded in
4770   // removing the bias bit from the object's header.
4771   if (counters != NULL) {
4772     cond_inc32(Assembler::zero,
4773                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
4774   }
4775 
4776   bind(cas_label);
4777 
4778   return null_check_offset;
4779 }
4780 void MacroAssembler::call_VM_leaf_base(address entry_point,
4781                                        int number_of_arguments) {
4782   call(RuntimeAddress(entry_point));
4783   increment(rsp, number_of_arguments * wordSize);
4784 }
4785 
4786 void MacroAssembler::cmpoop(Address src1, jobject obj) {
4787   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
4788 }
4789 
4790 void MacroAssembler::cmpoop(Register src1, jobject obj) {
4791   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
4792 }
4793 
4794 void MacroAssembler::extend_sign(Register hi, Register lo) {
4795   // According to Intel Doc. AP-526, "Integer Divide", p.18.
4796   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
4797     cdql();
4798   } else {
4799     movl(hi, lo);
4800     sarl(hi, 31);
4801   }
4802 }
4803 
4804 void MacroAssembler::fat_nop() {
4805   // A 5 byte nop that is safe for patching (see patch_verified_entry)
4806   emit_byte(0x26); // es:
4807   emit_byte(0x2e); // cs:
4808   emit_byte(0x64); // fs:
4809   emit_byte(0x65); // gs:
4810   emit_byte(0x90);
4811 }
4812 
4813 void MacroAssembler::jC2(Register tmp, Label& L) {
4814   // set parity bit if FPU flag C2 is set (via rax)
4815   save_rax(tmp);
4816   fwait(); fnstsw_ax();
4817   sahf();
4818   restore_rax(tmp);
4819   // branch
4820   jcc(Assembler::parity, L);
4821 }
4822 
4823 void MacroAssembler::jnC2(Register tmp, Label& L) {
4824   // set parity bit if FPU flag C2 is set (via rax)
4825   save_rax(tmp);
4826   fwait(); fnstsw_ax();
4827   sahf();
4828   restore_rax(tmp);
4829   // branch
4830   jcc(Assembler::noParity, L);
4831 }
4832 
4833 // 32bit can do a case table jump in one instruction but we no longer allow the base
4834 // to be installed in the Address class
4835 void MacroAssembler::jump(ArrayAddress entry) {
4836   jmp(as_Address(entry));
4837 }
4838 
4839 // Note: y_lo will be destroyed
4840 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
4841   // Long compare for Java (semantics as described in JVM spec.)
4842   Label high, low, done;
4843 
4844   cmpl(x_hi, y_hi);
4845   jcc(Assembler::less, low);
4846   jcc(Assembler::greater, high);
4847   // x_hi is the return register
4848   xorl(x_hi, x_hi);
4849   cmpl(x_lo, y_lo);
4850   jcc(Assembler::below, low);
4851   jcc(Assembler::equal, done);
4852 
4853   bind(high);
4854   xorl(x_hi, x_hi);
4855   increment(x_hi);
4856   jmp(done);
4857 
4858   bind(low);
4859   xorl(x_hi, x_hi);
4860   decrementl(x_hi);
4861 
4862   bind(done);
4863 }
4864 
4865 void MacroAssembler::lea(Register dst, AddressLiteral src) {
4866     mov_literal32(dst, (int32_t)src.target(), src.rspec());
4867 }
4868 
4869 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
4870   // leal(dst, as_Address(adr));
4871   // see note in movl as to why we must use a move
4872   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
4873 }
4874 
4875 void MacroAssembler::leave() {
4876   mov(rsp, rbp);
4877   pop(rbp);
4878 }
4879 
4880 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
4881   // Multiplication of two Java long values stored on the stack
4882   // as illustrated below. Result is in rdx:rax.
4883   //
4884   // rsp ---> [  ??  ] \               \
4885   //            ....    | y_rsp_offset  |
4886   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
4887   //          [ y_hi ]                  | (in bytes)
4888   //            ....                    |
4889   //          [ x_lo ]                 /
4890   //          [ x_hi ]
4891   //            ....
4892   //
4893   // Basic idea: lo(result) = lo(x_lo * y_lo)
4894   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
4895   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
4896   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
4897   Label quick;
4898   // load x_hi, y_hi and check if quick
4899   // multiplication is possible
4900   movl(rbx, x_hi);
4901   movl(rcx, y_hi);
4902   movl(rax, rbx);
4903   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
4904   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
4905   // do full multiplication
4906   // 1st step
4907   mull(y_lo);                                    // x_hi * y_lo
4908   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
4909   // 2nd step
4910   movl(rax, x_lo);
4911   mull(rcx);                                     // x_lo * y_hi
4912   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
4913   // 3rd step
4914   bind(quick);                                   // note: rbx, = 0 if quick multiply!
4915   movl(rax, x_lo);
4916   mull(y_lo);                                    // x_lo * y_lo
4917   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
4918 }
4919 
4920 void MacroAssembler::lneg(Register hi, Register lo) {
4921   negl(lo);
4922   adcl(hi, 0);
4923   negl(hi);
4924 }
4925 
4926 void MacroAssembler::lshl(Register hi, Register lo) {
4927   // Java shift left long support (semantics as described in JVM spec., p.305)
4928   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
4929   // shift value is in rcx !
4930   assert(hi != rcx, "must not use rcx");
4931   assert(lo != rcx, "must not use rcx");
4932   const Register s = rcx;                        // shift count
4933   const int      n = BitsPerWord;
4934   Label L;
4935   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
4936   cmpl(s, n);                                    // if (s < n)
4937   jcc(Assembler::less, L);                       // else (s >= n)
4938   movl(hi, lo);                                  // x := x << n
4939   xorl(lo, lo);
4940   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
4941   bind(L);                                       // s (mod n) < n
4942   shldl(hi, lo);                                 // x := x << s
4943   shll(lo);
4944 }
4945 
4946 
4947 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
4948   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
4949   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
4950   assert(hi != rcx, "must not use rcx");
4951   assert(lo != rcx, "must not use rcx");
4952   const Register s = rcx;                        // shift count
4953   const int      n = BitsPerWord;
4954   Label L;
4955   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
4956   cmpl(s, n);                                    // if (s < n)
4957   jcc(Assembler::less, L);                       // else (s >= n)
4958   movl(lo, hi);                                  // x := x >> n
4959   if (sign_extension) sarl(hi, 31);
4960   else                xorl(hi, hi);
4961   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
4962   bind(L);                                       // s (mod n) < n
4963   shrdl(lo, hi);                                 // x := x >> s
4964   if (sign_extension) sarl(hi);
4965   else                shrl(hi);
4966 }
4967 
4968 void MacroAssembler::movoop(Register dst, jobject obj) {
4969   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
4970 }
4971 
4972 void MacroAssembler::movoop(Address dst, jobject obj) {
4973   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
4974 }
4975 
4976 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
4977   if (src.is_lval()) {
4978     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
4979   } else {
4980     movl(dst, as_Address(src));
4981   }
4982 }
4983 
4984 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
4985   movl(as_Address(dst), src);
4986 }
4987 
4988 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
4989   movl(dst, as_Address(src));
4990 }
4991 
4992 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
4993 void MacroAssembler::movptr(Address dst, intptr_t src) {
4994   movl(dst, src);
4995 }
4996 
4997 
4998 void MacroAssembler::pop_callee_saved_registers() {
4999   pop(rcx);
5000   pop(rdx);
5001   pop(rdi);
5002   pop(rsi);
5003 }
5004 
5005 void MacroAssembler::pop_fTOS() {
5006   fld_d(Address(rsp, 0));
5007   addl(rsp, 2 * wordSize);
5008 }
5009 
5010 void MacroAssembler::push_callee_saved_registers() {
5011   push(rsi);
5012   push(rdi);
5013   push(rdx);
5014   push(rcx);
5015 }
5016 
5017 void MacroAssembler::push_fTOS() {
5018   subl(rsp, 2 * wordSize);
5019   fstp_d(Address(rsp, 0));
5020 }
5021 
5022 
5023 void MacroAssembler::pushoop(jobject obj) {
5024   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
5025 }
5026 
5027 
5028 void MacroAssembler::pushptr(AddressLiteral src) {
5029   if (src.is_lval()) {
5030     push_literal32((int32_t)src.target(), src.rspec());
5031   } else {
5032     pushl(as_Address(src));
5033   }
5034 }
5035 
5036 void MacroAssembler::set_word_if_not_zero(Register dst) {
5037   xorl(dst, dst);
5038   set_byte_if_not_zero(dst);
5039 }
5040 
5041 static void pass_arg0(MacroAssembler* masm, Register arg) {
5042   masm->push(arg);
5043 }
5044 
5045 static void pass_arg1(MacroAssembler* masm, Register arg) {
5046   masm->push(arg);
5047 }
5048 
5049 static void pass_arg2(MacroAssembler* masm, Register arg) {
5050   masm->push(arg);
5051 }
5052 
5053 static void pass_arg3(MacroAssembler* masm, Register arg) {
5054   masm->push(arg);
5055 }
5056 
5057 #ifndef PRODUCT
5058 extern "C" void findpc(intptr_t x);
5059 #endif
5060 
5061 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
5062   // In order to get locks to work, we need to fake a in_VM state
5063   JavaThread* thread = JavaThread::current();
5064   JavaThreadState saved_state = thread->thread_state();
5065   thread->set_thread_state(_thread_in_vm);
5066   if (ShowMessageBoxOnError) {
5067     JavaThread* thread = JavaThread::current();
5068     JavaThreadState saved_state = thread->thread_state();
5069     thread->set_thread_state(_thread_in_vm);
5070     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
5071       ttyLocker ttyl;
5072       BytecodeCounter::print();
5073     }
5074     // To see where a verify_oop failed, get $ebx+40/X for this frame.
5075     // This is the value of eip which points to where verify_oop will return.
5076     if (os::message_box(msg, "Execution stopped, print registers?")) {
5077       ttyLocker ttyl;
5078       tty->print_cr("eip = 0x%08x", eip);
5079 #ifndef PRODUCT
5080       if ((WizardMode || Verbose) && PrintMiscellaneous) {
5081         tty->cr();
5082         findpc(eip);
5083         tty->cr();
5084       }
5085 #endif
5086       tty->print_cr("rax = 0x%08x", rax);
5087       tty->print_cr("rbx = 0x%08x", rbx);
5088       tty->print_cr("rcx = 0x%08x", rcx);
5089       tty->print_cr("rdx = 0x%08x", rdx);
5090       tty->print_cr("rdi = 0x%08x", rdi);
5091       tty->print_cr("rsi = 0x%08x", rsi);
5092       tty->print_cr("rbp = 0x%08x", rbp);
5093       tty->print_cr("rsp = 0x%08x", rsp);
5094       BREAKPOINT;
5095       assert(false, "start up GDB");
5096     }
5097   } else {
5098     ttyLocker ttyl;
5099     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
5100     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
5101   }
5102   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
5103 }
5104 
5105 void MacroAssembler::stop(const char* msg) {
5106   ExternalAddress message((address)msg);
5107   // push address of message
5108   pushptr(message.addr());
5109   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
5110   pusha();                                           // push registers
5111   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
5112   hlt();
5113 }
5114 
5115 void MacroAssembler::warn(const char* msg) {
5116   push_CPU_state();
5117 
5118   ExternalAddress message((address) msg);
5119   // push address of message
5120   pushptr(message.addr());
5121 
5122   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
5123   addl(rsp, wordSize);       // discard argument
5124   pop_CPU_state();
5125 }
5126 
5127 #else // _LP64
5128 
5129 // 64 bit versions
5130 
5131 Address MacroAssembler::as_Address(AddressLiteral adr) {
5132   // amd64 always does this as a pc-rel
5133   // we can be absolute or disp based on the instruction type
5134   // jmp/call are displacements others are absolute
5135   assert(!adr.is_lval(), "must be rval");
5136   assert(reachable(adr), "must be");
5137   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
5138 
5139 }
5140 
5141 Address MacroAssembler::as_Address(ArrayAddress adr) {
5142   AddressLiteral base = adr.base();
5143   lea(rscratch1, base);
5144   Address index = adr.index();
5145   assert(index._disp == 0, "must not have disp"); // maybe it can?
5146   Address array(rscratch1, index._index, index._scale, index._disp);
5147   return array;
5148 }
5149 
5150 int MacroAssembler::biased_locking_enter(Register lock_reg,
5151                                          Register obj_reg,
5152                                          Register swap_reg,
5153                                          Register tmp_reg,
5154                                          bool swap_reg_contains_mark,
5155                                          Label& done,
5156                                          Label* slow_case,
5157                                          BiasedLockingCounters* counters) {
5158   assert(UseBiasedLocking, "why call this otherwise?");
5159   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
5160   assert(tmp_reg != noreg, "tmp_reg must be supplied");
5161   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
5162   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
5163   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
5164   Address saved_mark_addr(lock_reg, 0);
5165 
5166   if (PrintBiasedLockingStatistics && counters == NULL)
5167     counters = BiasedLocking::counters();
5168 
5169   // Biased locking
5170   // See whether the lock is currently biased toward our thread and
5171   // whether the epoch is still valid
5172   // Note that the runtime guarantees sufficient alignment of JavaThread
5173   // pointers to allow age to be placed into low bits
5174   // First check to see whether biasing is even enabled for this object
5175   Label cas_label;
5176   int null_check_offset = -1;
5177   if (!swap_reg_contains_mark) {
5178     null_check_offset = offset();
5179     movq(swap_reg, mark_addr);
5180   }
5181   movq(tmp_reg, swap_reg);
5182   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
5183   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
5184   jcc(Assembler::notEqual, cas_label);
5185   // The bias pattern is present in the object's header. Need to check
5186   // whether the bias owner and the epoch are both still current.
5187   load_prototype_header(tmp_reg, obj_reg);
5188   orq(tmp_reg, r15_thread);
5189   xorq(tmp_reg, swap_reg);
5190   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
5191   if (counters != NULL) {
5192     cond_inc32(Assembler::zero,
5193                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
5194   }
5195   jcc(Assembler::equal, done);
5196 
5197   Label try_revoke_bias;
5198   Label try_rebias;
5199 
5200   // At this point we know that the header has the bias pattern and
5201   // that we are not the bias owner in the current epoch. We need to
5202   // figure out more details about the state of the header in order to
5203   // know what operations can be legally performed on the object's
5204   // header.
5205 
5206   // If the low three bits in the xor result aren't clear, that means
5207   // the prototype header is no longer biased and we have to revoke
5208   // the bias on this object.
5209   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
5210   jcc(Assembler::notZero, try_revoke_bias);
5211 
5212   // Biasing is still enabled for this data type. See whether the
5213   // epoch of the current bias is still valid, meaning that the epoch
5214   // bits of the mark word are equal to the epoch bits of the
5215   // prototype header. (Note that the prototype header's epoch bits
5216   // only change at a safepoint.) If not, attempt to rebias the object
5217   // toward the current thread. Note that we must be absolutely sure
5218   // that the current epoch is invalid in order to do this because
5219   // otherwise the manipulations it performs on the mark word are
5220   // illegal.
5221   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
5222   jcc(Assembler::notZero, try_rebias);
5223 
5224   // The epoch of the current bias is still valid but we know nothing
5225   // about the owner; it might be set or it might be clear. Try to
5226   // acquire the bias of the object using an atomic operation. If this
5227   // fails we will go in to the runtime to revoke the object's bias.
5228   // Note that we first construct the presumed unbiased header so we
5229   // don't accidentally blow away another thread's valid bias.
5230   andq(swap_reg,
5231        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
5232   movq(tmp_reg, swap_reg);
5233   orq(tmp_reg, r15_thread);
5234   if (os::is_MP()) {
5235     lock();
5236   }
5237   cmpxchgq(tmp_reg, Address(obj_reg, 0));
5238   // If the biasing toward our thread failed, this means that
5239   // another thread succeeded in biasing it toward itself and we
5240   // need to revoke that bias. The revocation will occur in the
5241   // interpreter runtime in the slow case.
5242   if (counters != NULL) {
5243     cond_inc32(Assembler::zero,
5244                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
5245   }
5246   if (slow_case != NULL) {
5247     jcc(Assembler::notZero, *slow_case);
5248   }
5249   jmp(done);
5250 
5251   bind(try_rebias);
5252   // At this point we know the epoch has expired, meaning that the
5253   // current "bias owner", if any, is actually invalid. Under these
5254   // circumstances _only_, we are allowed to use the current header's
5255   // value as the comparison value when doing the cas to acquire the
5256   // bias in the current epoch. In other words, we allow transfer of
5257   // the bias from one thread to another directly in this situation.
5258   //
5259   // FIXME: due to a lack of registers we currently blow away the age
5260   // bits in this situation. Should attempt to preserve them.
5261   load_prototype_header(tmp_reg, obj_reg);
5262   orq(tmp_reg, r15_thread);
5263   if (os::is_MP()) {
5264     lock();
5265   }
5266   cmpxchgq(tmp_reg, Address(obj_reg, 0));
5267   // If the biasing toward our thread failed, then another thread
5268   // succeeded in biasing it toward itself and we need to revoke that
5269   // bias. The revocation will occur in the runtime in the slow case.
5270   if (counters != NULL) {
5271     cond_inc32(Assembler::zero,
5272                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
5273   }
5274   if (slow_case != NULL) {
5275     jcc(Assembler::notZero, *slow_case);
5276   }
5277   jmp(done);
5278 
5279   bind(try_revoke_bias);
5280   // The prototype mark in the klass doesn't have the bias bit set any
5281   // more, indicating that objects of this data type are not supposed
5282   // to be biased any more. We are going to try to reset the mark of
5283   // this object to the prototype value and fall through to the
5284   // CAS-based locking scheme. Note that if our CAS fails, it means
5285   // that another thread raced us for the privilege of revoking the
5286   // bias of this particular object, so it's okay to continue in the
5287   // normal locking code.
5288   //
5289   // FIXME: due to a lack of registers we currently blow away the age
5290   // bits in this situation. Should attempt to preserve them.
5291   load_prototype_header(tmp_reg, obj_reg);
5292   if (os::is_MP()) {
5293     lock();
5294   }
5295   cmpxchgq(tmp_reg, Address(obj_reg, 0));
5296   // Fall through to the normal CAS-based lock, because no matter what
5297   // the result of the above CAS, some thread must have succeeded in
5298   // removing the bias bit from the object's header.
5299   if (counters != NULL) {
5300     cond_inc32(Assembler::zero,
5301                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
5302   }
5303 
5304   bind(cas_label);
5305 
5306   return null_check_offset;
5307 }
5308 
5309 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
5310   Label L, E;
5311 
5312 #ifdef _WIN64
5313   // Windows always allocates space for it's register args
5314   assert(num_args <= 4, "only register arguments supported");
5315   subq(rsp,  frame::arg_reg_save_area_bytes);
5316 #endif
5317 
5318   // Align stack if necessary
5319   testl(rsp, 15);
5320   jcc(Assembler::zero, L);
5321 
5322   subq(rsp, 8);
5323   {
5324     call(RuntimeAddress(entry_point));
5325   }
5326   addq(rsp, 8);
5327   jmp(E);
5328 
5329   bind(L);
5330   {
5331     call(RuntimeAddress(entry_point));
5332   }
5333 
5334   bind(E);
5335 
5336 #ifdef _WIN64
5337   // restore stack pointer
5338   addq(rsp, frame::arg_reg_save_area_bytes);
5339 #endif
5340 
5341 }
5342 
5343 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
5344   assert(!src2.is_lval(), "should use cmpptr");
5345 
5346   if (reachable(src2)) {
5347     cmpq(src1, as_Address(src2));
5348   } else {
5349     lea(rscratch1, src2);
5350     Assembler::cmpq(src1, Address(rscratch1, 0));
5351   }
5352 }
5353 
5354 int MacroAssembler::corrected_idivq(Register reg) {
5355   // Full implementation of Java ldiv and lrem; checks for special
5356   // case as described in JVM spec., p.243 & p.271.  The function
5357   // returns the (pc) offset of the idivl instruction - may be needed
5358   // for implicit exceptions.
5359   //
5360   //         normal case                           special case
5361   //
5362   // input : rax: dividend                         min_long
5363   //         reg: divisor   (may not be eax/edx)   -1
5364   //
5365   // output: rax: quotient  (= rax idiv reg)       min_long
5366   //         rdx: remainder (= rax irem reg)       0
5367   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
5368   static const int64_t min_long = 0x8000000000000000;
5369   Label normal_case, special_case;
5370 
5371   // check for special case
5372   cmp64(rax, ExternalAddress((address) &min_long));
5373   jcc(Assembler::notEqual, normal_case);
5374   xorl(rdx, rdx); // prepare rdx for possible special case (where
5375                   // remainder = 0)
5376   cmpq(reg, -1);
5377   jcc(Assembler::equal, special_case);
5378 
5379   // handle normal case
5380   bind(normal_case);
5381   cdqq();
5382   int idivq_offset = offset();
5383   idivq(reg);
5384 
5385   // normal and special case exit
5386   bind(special_case);
5387 
5388   return idivq_offset;
5389 }
5390 
5391 void MacroAssembler::decrementq(Register reg, int value) {
5392   if (value == min_jint) { subq(reg, value); return; }
5393   if (value <  0) { incrementq(reg, -value); return; }
5394   if (value == 0) {                        ; return; }
5395   if (value == 1 && UseIncDec) { decq(reg) ; return; }
5396   /* else */      { subq(reg, value)       ; return; }
5397 }
5398 
5399 void MacroAssembler::decrementq(Address dst, int value) {
5400   if (value == min_jint) { subq(dst, value); return; }
5401   if (value <  0) { incrementq(dst, -value); return; }
5402   if (value == 0) {                        ; return; }
5403   if (value == 1 && UseIncDec) { decq(dst) ; return; }
5404   /* else */      { subq(dst, value)       ; return; }
5405 }
5406 
5407 void MacroAssembler::fat_nop() {
5408   // A 5 byte nop that is safe for patching (see patch_verified_entry)
5409   // Recommened sequence from 'Software Optimization Guide for the AMD
5410   // Hammer Processor'
5411   emit_byte(0x66);
5412   emit_byte(0x66);
5413   emit_byte(0x90);
5414   emit_byte(0x66);
5415   emit_byte(0x90);
5416 }
5417 
5418 void MacroAssembler::incrementq(Register reg, int value) {
5419   if (value == min_jint) { addq(reg, value); return; }
5420   if (value <  0) { decrementq(reg, -value); return; }
5421   if (value == 0) {                        ; return; }
5422   if (value == 1 && UseIncDec) { incq(reg) ; return; }
5423   /* else */      { addq(reg, value)       ; return; }
5424 }
5425 
5426 void MacroAssembler::incrementq(Address dst, int value) {
5427   if (value == min_jint) { addq(dst, value); return; }
5428   if (value <  0) { decrementq(dst, -value); return; }
5429   if (value == 0) {                        ; return; }
5430   if (value == 1 && UseIncDec) { incq(dst) ; return; }
5431   /* else */      { addq(dst, value)       ; return; }
5432 }
5433 
5434 // 32bit can do a case table jump in one instruction but we no longer allow the base
5435 // to be installed in the Address class
5436 void MacroAssembler::jump(ArrayAddress entry) {
5437   lea(rscratch1, entry.base());
5438   Address dispatch = entry.index();
5439   assert(dispatch._base == noreg, "must be");
5440   dispatch._base = rscratch1;
5441   jmp(dispatch);
5442 }
5443 
5444 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
5445   ShouldNotReachHere(); // 64bit doesn't use two regs
5446   cmpq(x_lo, y_lo);
5447 }
5448 
5449 void MacroAssembler::lea(Register dst, AddressLiteral src) {
5450     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
5451 }
5452 
5453 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
5454   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
5455   movptr(dst, rscratch1);
5456 }
5457 
5458 void MacroAssembler::leave() {
5459   // %%% is this really better? Why not on 32bit too?
5460   emit_byte(0xC9); // LEAVE
5461 }
5462 
5463 void MacroAssembler::lneg(Register hi, Register lo) {
5464   ShouldNotReachHere(); // 64bit doesn't use two regs
5465   negq(lo);
5466 }
5467 
5468 void MacroAssembler::movoop(Register dst, jobject obj) {
5469   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
5470 }
5471 
5472 void MacroAssembler::movoop(Address dst, jobject obj) {
5473   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
5474   movq(dst, rscratch1);
5475 }
5476 
5477 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
5478   if (src.is_lval()) {
5479     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
5480   } else {
5481     if (reachable(src)) {
5482       movq(dst, as_Address(src));
5483     } else {
5484       lea(rscratch1, src);
5485       movq(dst, Address(rscratch1,0));
5486     }
5487   }
5488 }
5489 
5490 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
5491   movq(as_Address(dst), src);
5492 }
5493 
5494 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
5495   movq(dst, as_Address(src));
5496 }
5497 
5498 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
5499 void MacroAssembler::movptr(Address dst, intptr_t src) {
5500   mov64(rscratch1, src);
5501   movq(dst, rscratch1);
5502 }
5503 
5504 // These are mostly for initializing NULL
5505 void MacroAssembler::movptr(Address dst, int32_t src) {
5506   movslq(dst, src);
5507 }
5508 
5509 void MacroAssembler::movptr(Register dst, int32_t src) {
5510   mov64(dst, (intptr_t)src);
5511 }
5512 
5513 void MacroAssembler::pushoop(jobject obj) {
5514   movoop(rscratch1, obj);
5515   push(rscratch1);
5516 }
5517 
5518 void MacroAssembler::pushptr(AddressLiteral src) {
5519   lea(rscratch1, src);
5520   if (src.is_lval()) {
5521     push(rscratch1);
5522   } else {
5523     pushq(Address(rscratch1, 0));
5524   }
5525 }
5526 
5527 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
5528                                            bool clear_pc) {
5529   // we must set sp to zero to clear frame
5530   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
5531   // must clear fp, so that compiled frames are not confused; it is
5532   // possible that we need it only for debugging
5533   if (clear_fp) {
5534     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
5535   }
5536 
5537   if (clear_pc) {
5538     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
5539   }
5540 }
5541 
5542 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
5543                                          Register last_java_fp,
5544                                          address  last_java_pc) {
5545   // determine last_java_sp register
5546   if (!last_java_sp->is_valid()) {
5547     last_java_sp = rsp;
5548   }
5549 
5550   // last_java_fp is optional
5551   if (last_java_fp->is_valid()) {
5552     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
5553            last_java_fp);
5554   }
5555 
5556   // last_java_pc is optional
5557   if (last_java_pc != NULL) {
5558     Address java_pc(r15_thread,
5559                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
5560     lea(rscratch1, InternalAddress(last_java_pc));
5561     movptr(java_pc, rscratch1);
5562   }
5563 
5564   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
5565 }
5566 
5567 static void pass_arg0(MacroAssembler* masm, Register arg) {
5568   if (c_rarg0 != arg ) {
5569     masm->mov(c_rarg0, arg);
5570   }
5571 }
5572 
5573 static void pass_arg1(MacroAssembler* masm, Register arg) {
5574   if (c_rarg1 != arg ) {
5575     masm->mov(c_rarg1, arg);
5576   }
5577 }
5578 
5579 static void pass_arg2(MacroAssembler* masm, Register arg) {
5580   if (c_rarg2 != arg ) {
5581     masm->mov(c_rarg2, arg);
5582   }
5583 }
5584 
5585 static void pass_arg3(MacroAssembler* masm, Register arg) {
5586   if (c_rarg3 != arg ) {
5587     masm->mov(c_rarg3, arg);
5588   }
5589 }
5590 
5591 void MacroAssembler::stop(const char* msg) {
5592   address rip = pc();
5593   pusha(); // get regs on stack
5594   lea(c_rarg0, ExternalAddress((address) msg));
5595   lea(c_rarg1, InternalAddress(rip));
5596   movq(c_rarg2, rsp); // pass pointer to regs array
5597   andq(rsp, -16); // align stack as required by ABI
5598   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
5599   hlt();
5600 }
5601 
5602 void MacroAssembler::warn(const char* msg) {
5603   push(rsp);
5604   andq(rsp, -16);     // align stack as required by push_CPU_state and call
5605 
5606   push_CPU_state();   // keeps alignment at 16 bytes
5607   lea(c_rarg0, ExternalAddress((address) msg));
5608   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
5609   pop_CPU_state();
5610   pop(rsp);
5611 }
5612 
5613 #ifndef PRODUCT
5614 extern "C" void findpc(intptr_t x);
5615 #endif
5616 
5617 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
5618   // In order to get locks to work, we need to fake a in_VM state
5619   if (ShowMessageBoxOnError ) {
5620     JavaThread* thread = JavaThread::current();
5621     JavaThreadState saved_state = thread->thread_state();
5622     thread->set_thread_state(_thread_in_vm);
5623 #ifndef PRODUCT
5624     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
5625       ttyLocker ttyl;
5626       BytecodeCounter::print();
5627     }
5628 #endif
5629     // To see where a verify_oop failed, get $ebx+40/X for this frame.
5630     // XXX correct this offset for amd64
5631     // This is the value of eip which points to where verify_oop will return.
5632     if (os::message_box(msg, "Execution stopped, print registers?")) {
5633       ttyLocker ttyl;
5634       tty->print_cr("rip = 0x%016lx", pc);
5635 #ifndef PRODUCT
5636       tty->cr();
5637       findpc(pc);
5638       tty->cr();
5639 #endif
5640       tty->print_cr("rax = 0x%016lx", regs[15]);
5641       tty->print_cr("rbx = 0x%016lx", regs[12]);
5642       tty->print_cr("rcx = 0x%016lx", regs[14]);
5643       tty->print_cr("rdx = 0x%016lx", regs[13]);
5644       tty->print_cr("rdi = 0x%016lx", regs[8]);
5645       tty->print_cr("rsi = 0x%016lx", regs[9]);
5646       tty->print_cr("rbp = 0x%016lx", regs[10]);
5647       tty->print_cr("rsp = 0x%016lx", regs[11]);
5648       tty->print_cr("r8  = 0x%016lx", regs[7]);
5649       tty->print_cr("r9  = 0x%016lx", regs[6]);
5650       tty->print_cr("r10 = 0x%016lx", regs[5]);
5651       tty->print_cr("r11 = 0x%016lx", regs[4]);
5652       tty->print_cr("r12 = 0x%016lx", regs[3]);
5653       tty->print_cr("r13 = 0x%016lx", regs[2]);
5654       tty->print_cr("r14 = 0x%016lx", regs[1]);
5655       tty->print_cr("r15 = 0x%016lx", regs[0]);
5656       BREAKPOINT;
5657     }
5658     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
5659   } else {
5660     ttyLocker ttyl;
5661     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
5662                     msg);
5663     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
5664   }
5665 }
5666 
5667 #endif // _LP64
5668 
5669 // Now versions that are common to 32/64 bit
5670 
5671 void MacroAssembler::addptr(Register dst, int32_t imm32) {
5672   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
5673 }
5674 
5675 void MacroAssembler::addptr(Register dst, Register src) {
5676   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
5677 }
5678 
5679 void MacroAssembler::addptr(Address dst, Register src) {
5680   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
5681 }
5682 
5683 void MacroAssembler::align(int modulus) {
5684   if (offset() % modulus != 0) {
5685     nop(modulus - (offset() % modulus));
5686   }
5687 }
5688 
5689 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
5690   if (reachable(src)) {
5691     andpd(dst, as_Address(src));
5692   } else {
5693     lea(rscratch1, src);
5694     andpd(dst, Address(rscratch1, 0));
5695   }
5696 }
5697 
5698 void MacroAssembler::andptr(Register dst, int32_t imm32) {
5699   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
5700 }
5701 
5702 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
5703   pushf();
5704   if (os::is_MP())
5705     lock();
5706   incrementl(counter_addr);
5707   popf();
5708 }
5709 
5710 // Writes to stack successive pages until offset reached to check for
5711 // stack overflow + shadow pages.  This clobbers tmp.
5712 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5713   movptr(tmp, rsp);
5714   // Bang stack for total size given plus shadow page size.
5715   // Bang one page at a time because large size can bang beyond yellow and
5716   // red zones.
5717   Label loop;
5718   bind(loop);
5719   movl(Address(tmp, (-os::vm_page_size())), size );
5720   subptr(tmp, os::vm_page_size());
5721   subl(size, os::vm_page_size());
5722   jcc(Assembler::greater, loop);
5723 
5724   // Bang down shadow pages too.
5725   // The -1 because we already subtracted 1 page.
5726   for (int i = 0; i< StackShadowPages-1; i++) {
5727     // this could be any sized move but this is can be a debugging crumb
5728     // so the bigger the better.
5729     movptr(Address(tmp, (-i*os::vm_page_size())), size );
5730   }
5731 }
5732 
5733 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
5734   assert(UseBiasedLocking, "why call this otherwise?");
5735 
5736   // Check for biased locking unlock case, which is a no-op
5737   // Note: we do not have to check the thread ID for two reasons.
5738   // First, the interpreter checks for IllegalMonitorStateException at
5739   // a higher level. Second, if the bias was revoked while we held the
5740   // lock, the object could not be rebiased toward another thread, so
5741   // the bias bit would be clear.
5742   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
5743   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
5744   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
5745   jcc(Assembler::equal, done);
5746 }
5747 
5748 void MacroAssembler::c2bool(Register x) {
5749   // implements x == 0 ? 0 : 1
5750   // note: must only look at least-significant byte of x
5751   //       since C-style booleans are stored in one byte
5752   //       only! (was bug)
5753   andl(x, 0xFF);
5754   setb(Assembler::notZero, x);
5755 }
5756 
5757 // Wouldn't need if AddressLiteral version had new name
5758 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
5759   Assembler::call(L, rtype);
5760 }
5761 
5762 void MacroAssembler::call(Register entry) {
5763   Assembler::call(entry);
5764 }
5765 
5766 void MacroAssembler::call(AddressLiteral entry) {
5767   if (reachable(entry)) {
5768     Assembler::call_literal(entry.target(), entry.rspec());
5769   } else {
5770     lea(rscratch1, entry);
5771     Assembler::call(rscratch1);
5772   }
5773 }
5774 
5775 // Implementation of call_VM versions
5776 
5777 void MacroAssembler::call_VM(Register oop_result,
5778                              address entry_point,
5779                              bool check_exceptions) {
5780   Label C, E;
5781   call(C, relocInfo::none);
5782   jmp(E);
5783 
5784   bind(C);
5785   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
5786   ret(0);
5787 
5788   bind(E);
5789 }
5790 
5791 void MacroAssembler::call_VM(Register oop_result,
5792                              address entry_point,
5793                              Register arg_1,
5794                              bool check_exceptions) {
5795   Label C, E;
5796   call(C, relocInfo::none);
5797   jmp(E);
5798 
5799   bind(C);
5800   pass_arg1(this, arg_1);
5801   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
5802   ret(0);
5803 
5804   bind(E);
5805 }
5806 
5807 void MacroAssembler::call_VM(Register oop_result,
5808                              address entry_point,
5809                              Register arg_1,
5810                              Register arg_2,
5811                              bool check_exceptions) {
5812   Label C, E;
5813   call(C, relocInfo::none);
5814   jmp(E);
5815 
5816   bind(C);
5817 
5818   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5819 
5820   pass_arg2(this, arg_2);
5821   pass_arg1(this, arg_1);
5822   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
5823   ret(0);
5824 
5825   bind(E);
5826 }
5827 
5828 void MacroAssembler::call_VM(Register oop_result,
5829                              address entry_point,
5830                              Register arg_1,
5831                              Register arg_2,
5832                              Register arg_3,
5833                              bool check_exceptions) {
5834   Label C, E;
5835   call(C, relocInfo::none);
5836   jmp(E);
5837 
5838   bind(C);
5839 
5840   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
5841   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
5842   pass_arg3(this, arg_3);
5843 
5844   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5845   pass_arg2(this, arg_2);
5846 
5847   pass_arg1(this, arg_1);
5848   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
5849   ret(0);
5850 
5851   bind(E);
5852 }
5853 
5854 void MacroAssembler::call_VM(Register oop_result,
5855                              Register last_java_sp,
5856                              address entry_point,
5857                              int number_of_arguments,
5858                              bool check_exceptions) {
5859   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
5860   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
5861 }
5862 
5863 void MacroAssembler::call_VM(Register oop_result,
5864                              Register last_java_sp,
5865                              address entry_point,
5866                              Register arg_1,
5867                              bool check_exceptions) {
5868   pass_arg1(this, arg_1);
5869   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
5870 }
5871 
5872 void MacroAssembler::call_VM(Register oop_result,
5873                              Register last_java_sp,
5874                              address entry_point,
5875                              Register arg_1,
5876                              Register arg_2,
5877                              bool check_exceptions) {
5878 
5879   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5880   pass_arg2(this, arg_2);
5881   pass_arg1(this, arg_1);
5882   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
5883 }
5884 
5885 void MacroAssembler::call_VM(Register oop_result,
5886                              Register last_java_sp,
5887                              address entry_point,
5888                              Register arg_1,
5889                              Register arg_2,
5890                              Register arg_3,
5891                              bool check_exceptions) {
5892   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
5893   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
5894   pass_arg3(this, arg_3);
5895   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5896   pass_arg2(this, arg_2);
5897   pass_arg1(this, arg_1);
5898   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
5899 }
5900 
5901 void MacroAssembler::super_call_VM(Register oop_result,
5902                                    Register last_java_sp,
5903                                    address entry_point,
5904                                    int number_of_arguments,
5905                                    bool check_exceptions) {
5906   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
5907   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
5908 }
5909 
5910 void MacroAssembler::super_call_VM(Register oop_result,
5911                                    Register last_java_sp,
5912                                    address entry_point,
5913                                    Register arg_1,
5914                                    bool check_exceptions) {
5915   pass_arg1(this, arg_1);
5916   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
5917 }
5918 
5919 void MacroAssembler::super_call_VM(Register oop_result,
5920                                    Register last_java_sp,
5921                                    address entry_point,
5922                                    Register arg_1,
5923                                    Register arg_2,
5924                                    bool check_exceptions) {
5925 
5926   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5927   pass_arg2(this, arg_2);
5928   pass_arg1(this, arg_1);
5929   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
5930 }
5931 
5932 void MacroAssembler::super_call_VM(Register oop_result,
5933                                    Register last_java_sp,
5934                                    address entry_point,
5935                                    Register arg_1,
5936                                    Register arg_2,
5937                                    Register arg_3,
5938                                    bool check_exceptions) {
5939   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
5940   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
5941   pass_arg3(this, arg_3);
5942   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5943   pass_arg2(this, arg_2);
5944   pass_arg1(this, arg_1);
5945   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
5946 }
5947 
5948 void MacroAssembler::call_VM_base(Register oop_result,
5949                                   Register java_thread,
5950                                   Register last_java_sp,
5951                                   address  entry_point,
5952                                   int      number_of_arguments,
5953                                   bool     check_exceptions) {
5954   // determine java_thread register
5955   if (!java_thread->is_valid()) {
5956 #ifdef _LP64
5957     java_thread = r15_thread;
5958 #else
5959     java_thread = rdi;
5960     get_thread(java_thread);
5961 #endif // LP64
5962   }
5963   // determine last_java_sp register
5964   if (!last_java_sp->is_valid()) {
5965     last_java_sp = rsp;
5966   }
5967   // debugging support
5968   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
5969   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
5970 #ifdef ASSERT
5971   LP64_ONLY(if (UseCompressedOops) verify_heapbase("call_VM_base");)
5972 #endif // ASSERT
5973 
5974   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
5975   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
5976 
5977   // push java thread (becomes first argument of C function)
5978 
5979   NOT_LP64(push(java_thread); number_of_arguments++);
5980   LP64_ONLY(mov(c_rarg0, r15_thread));
5981 
5982   // set last Java frame before call
5983   assert(last_java_sp != rbp, "can't use ebp/rbp");
5984 
5985   // Only interpreter should have to set fp
5986   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
5987 
5988   // do the call, remove parameters
5989   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
5990 
5991   // restore the thread (cannot use the pushed argument since arguments
5992   // may be overwritten by C code generated by an optimizing compiler);
5993   // however can use the register value directly if it is callee saved.
5994   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
5995     // rdi & rsi (also r15) are callee saved -> nothing to do
5996 #ifdef ASSERT
5997     guarantee(java_thread != rax, "change this code");
5998     push(rax);
5999     { Label L;
6000       get_thread(rax);
6001       cmpptr(java_thread, rax);
6002       jcc(Assembler::equal, L);
6003       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
6004       bind(L);
6005     }
6006     pop(rax);
6007 #endif
6008   } else {
6009     get_thread(java_thread);
6010   }
6011   // reset last Java frame
6012   // Only interpreter should have to clear fp
6013   reset_last_Java_frame(java_thread, true, false);
6014 
6015 #ifndef CC_INTERP
6016    // C++ interp handles this in the interpreter
6017   check_and_handle_popframe(java_thread);
6018   check_and_handle_earlyret(java_thread);
6019 #endif /* CC_INTERP */
6020 
6021   if (check_exceptions) {
6022     // check for pending exceptions (java_thread is set upon return)
6023     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
6024 #ifndef _LP64
6025     jump_cc(Assembler::notEqual,
6026             RuntimeAddress(StubRoutines::forward_exception_entry()));
6027 #else
6028     // This used to conditionally jump to forward_exception however it is
6029     // possible if we relocate that the branch will not reach. So we must jump
6030     // around so we can always reach
6031 
6032     Label ok;
6033     jcc(Assembler::equal, ok);
6034     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
6035     bind(ok);
6036 #endif // LP64
6037   }
6038 
6039   // get oop result if there is one and reset the value in the thread
6040   if (oop_result->is_valid()) {
6041     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
6042     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
6043     verify_oop(oop_result, "broken oop in call_VM_base");
6044   }
6045 }
6046 
6047 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
6048 
6049   // Calculate the value for last_Java_sp
6050   // somewhat subtle. call_VM does an intermediate call
6051   // which places a return address on the stack just under the
6052   // stack pointer as the user finsihed with it. This allows
6053   // use to retrieve last_Java_pc from last_Java_sp[-1].
6054   // On 32bit we then have to push additional args on the stack to accomplish
6055   // the actual requested call. On 64bit call_VM only can use register args
6056   // so the only extra space is the return address that call_VM created.
6057   // This hopefully explains the calculations here.
6058 
6059 #ifdef _LP64
6060   // We've pushed one address, correct last_Java_sp
6061   lea(rax, Address(rsp, wordSize));
6062 #else
6063   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
6064 #endif // LP64
6065 
6066   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
6067 
6068 }
6069 
6070 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
6071   call_VM_leaf_base(entry_point, number_of_arguments);
6072 }
6073 
6074 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
6075   pass_arg0(this, arg_0);
6076   call_VM_leaf(entry_point, 1);
6077 }
6078 
6079 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
6080 
6081   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
6082   pass_arg1(this, arg_1);
6083   pass_arg0(this, arg_0);
6084   call_VM_leaf(entry_point, 2);
6085 }
6086 
6087 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
6088   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
6089   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
6090   pass_arg2(this, arg_2);
6091   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
6092   pass_arg1(this, arg_1);
6093   pass_arg0(this, arg_0);
6094   call_VM_leaf(entry_point, 3);
6095 }
6096 
6097 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
6098   pass_arg0(this, arg_0);
6099   MacroAssembler::call_VM_leaf_base(entry_point, 1);
6100 }
6101 
6102 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
6103 
6104   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
6105   pass_arg1(this, arg_1);
6106   pass_arg0(this, arg_0);
6107   MacroAssembler::call_VM_leaf_base(entry_point, 2);
6108 }
6109 
6110 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
6111   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
6112   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
6113   pass_arg2(this, arg_2);
6114   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
6115   pass_arg1(this, arg_1);
6116   pass_arg0(this, arg_0);
6117   MacroAssembler::call_VM_leaf_base(entry_point, 3);
6118 }
6119 
6120 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
6121   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
6122   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
6123   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
6124   pass_arg3(this, arg_3);
6125   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
6126   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
6127   pass_arg2(this, arg_2);
6128   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
6129   pass_arg1(this, arg_1);
6130   pass_arg0(this, arg_0);
6131   MacroAssembler::call_VM_leaf_base(entry_point, 4);
6132 }
6133 
6134 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
6135 }
6136 
6137 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
6138 }
6139 
6140 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
6141   if (reachable(src1)) {
6142     cmpl(as_Address(src1), imm);
6143   } else {
6144     lea(rscratch1, src1);
6145     cmpl(Address(rscratch1, 0), imm);
6146   }
6147 }
6148 
6149 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
6150   assert(!src2.is_lval(), "use cmpptr");
6151   if (reachable(src2)) {
6152     cmpl(src1, as_Address(src2));
6153   } else {
6154     lea(rscratch1, src2);
6155     cmpl(src1, Address(rscratch1, 0));
6156   }
6157 }
6158 
6159 void MacroAssembler::cmp32(Register src1, int32_t imm) {
6160   Assembler::cmpl(src1, imm);
6161 }
6162 
6163 void MacroAssembler::cmp32(Register src1, Address src2) {
6164   Assembler::cmpl(src1, src2);
6165 }
6166 
6167 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
6168   ucomisd(opr1, opr2);
6169 
6170   Label L;
6171   if (unordered_is_less) {
6172     movl(dst, -1);
6173     jcc(Assembler::parity, L);
6174     jcc(Assembler::below , L);
6175     movl(dst, 0);
6176     jcc(Assembler::equal , L);
6177     increment(dst);
6178   } else { // unordered is greater
6179     movl(dst, 1);
6180     jcc(Assembler::parity, L);
6181     jcc(Assembler::above , L);
6182     movl(dst, 0);
6183     jcc(Assembler::equal , L);
6184     decrementl(dst);
6185   }
6186   bind(L);
6187 }
6188 
6189 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
6190   ucomiss(opr1, opr2);
6191 
6192   Label L;
6193   if (unordered_is_less) {
6194     movl(dst, -1);
6195     jcc(Assembler::parity, L);
6196     jcc(Assembler::below , L);
6197     movl(dst, 0);
6198     jcc(Assembler::equal , L);
6199     increment(dst);
6200   } else { // unordered is greater
6201     movl(dst, 1);
6202     jcc(Assembler::parity, L);
6203     jcc(Assembler::above , L);
6204     movl(dst, 0);
6205     jcc(Assembler::equal , L);
6206     decrementl(dst);
6207   }
6208   bind(L);
6209 }
6210 
6211 
6212 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
6213   if (reachable(src1)) {
6214     cmpb(as_Address(src1), imm);
6215   } else {
6216     lea(rscratch1, src1);
6217     cmpb(Address(rscratch1, 0), imm);
6218   }
6219 }
6220 
6221 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
6222 #ifdef _LP64
6223   if (src2.is_lval()) {
6224     movptr(rscratch1, src2);
6225     Assembler::cmpq(src1, rscratch1);
6226   } else if (reachable(src2)) {
6227     cmpq(src1, as_Address(src2));
6228   } else {
6229     lea(rscratch1, src2);
6230     Assembler::cmpq(src1, Address(rscratch1, 0));
6231   }
6232 #else
6233   if (src2.is_lval()) {
6234     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
6235   } else {
6236     cmpl(src1, as_Address(src2));
6237   }
6238 #endif // _LP64
6239 }
6240 
6241 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
6242   assert(src2.is_lval(), "not a mem-mem compare");
6243 #ifdef _LP64
6244   // moves src2's literal address
6245   movptr(rscratch1, src2);
6246   Assembler::cmpq(src1, rscratch1);
6247 #else
6248   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
6249 #endif // _LP64
6250 }
6251 
6252 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
6253   if (reachable(adr)) {
6254     if (os::is_MP())
6255       lock();
6256     cmpxchgptr(reg, as_Address(adr));
6257   } else {
6258     lea(rscratch1, adr);
6259     if (os::is_MP())
6260       lock();
6261     cmpxchgptr(reg, Address(rscratch1, 0));
6262   }
6263 }
6264 
6265 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
6266   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
6267 }
6268 
6269 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
6270   if (reachable(src)) {
6271     comisd(dst, as_Address(src));
6272   } else {
6273     lea(rscratch1, src);
6274     comisd(dst, Address(rscratch1, 0));
6275   }
6276 }
6277 
6278 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
6279   if (reachable(src)) {
6280     comiss(dst, as_Address(src));
6281   } else {
6282     lea(rscratch1, src);
6283     comiss(dst, Address(rscratch1, 0));
6284   }
6285 }
6286 
6287 
6288 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
6289   Condition negated_cond = negate_condition(cond);
6290   Label L;
6291   jcc(negated_cond, L);
6292   atomic_incl(counter_addr);
6293   bind(L);
6294 }
6295 
6296 int MacroAssembler::corrected_idivl(Register reg) {
6297   // Full implementation of Java idiv and irem; checks for
6298   // special case as described in JVM spec., p.243 & p.271.
6299   // The function returns the (pc) offset of the idivl
6300   // instruction - may be needed for implicit exceptions.
6301   //
6302   //         normal case                           special case
6303   //
6304   // input : rax,: dividend                         min_int
6305   //         reg: divisor   (may not be rax,/rdx)   -1
6306   //
6307   // output: rax,: quotient  (= rax, idiv reg)       min_int
6308   //         rdx: remainder (= rax, irem reg)       0
6309   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
6310   const int min_int = 0x80000000;
6311   Label normal_case, special_case;
6312 
6313   // check for special case
6314   cmpl(rax, min_int);
6315   jcc(Assembler::notEqual, normal_case);
6316   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
6317   cmpl(reg, -1);
6318   jcc(Assembler::equal, special_case);
6319 
6320   // handle normal case
6321   bind(normal_case);
6322   cdql();
6323   int idivl_offset = offset();
6324   idivl(reg);
6325 
6326   // normal and special case exit
6327   bind(special_case);
6328 
6329   return idivl_offset;
6330 }
6331 
6332 
6333 
6334 void MacroAssembler::decrementl(Register reg, int value) {
6335   if (value == min_jint) {subl(reg, value) ; return; }
6336   if (value <  0) { incrementl(reg, -value); return; }
6337   if (value == 0) {                        ; return; }
6338   if (value == 1 && UseIncDec) { decl(reg) ; return; }
6339   /* else */      { subl(reg, value)       ; return; }
6340 }
6341 
6342 void MacroAssembler::decrementl(Address dst, int value) {
6343   if (value == min_jint) {subl(dst, value) ; return; }
6344   if (value <  0) { incrementl(dst, -value); return; }
6345   if (value == 0) {                        ; return; }
6346   if (value == 1 && UseIncDec) { decl(dst) ; return; }
6347   /* else */      { subl(dst, value)       ; return; }
6348 }
6349 
6350 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
6351   assert (shift_value > 0, "illegal shift value");
6352   Label _is_positive;
6353   testl (reg, reg);
6354   jcc (Assembler::positive, _is_positive);
6355   int offset = (1 << shift_value) - 1 ;
6356 
6357   if (offset == 1) {
6358     incrementl(reg);
6359   } else {
6360     addl(reg, offset);
6361   }
6362 
6363   bind (_is_positive);
6364   sarl(reg, shift_value);
6365 }
6366 
6367 // !defined(COMPILER2) is because of stupid core builds
6368 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
6369 void MacroAssembler::empty_FPU_stack() {
6370   if (VM_Version::supports_mmx()) {
6371     emms();
6372   } else {
6373     for (int i = 8; i-- > 0; ) ffree(i);
6374   }
6375 }
6376 #endif // !LP64 || C1 || !C2
6377 
6378 
6379 // Defines obj, preserves var_size_in_bytes
6380 void MacroAssembler::eden_allocate(Register obj,
6381                                    Register var_size_in_bytes,
6382                                    int con_size_in_bytes,
6383                                    Register t1,
6384                                    Label& slow_case) {
6385   assert(obj == rax, "obj must be in rax, for cmpxchg");
6386   assert_different_registers(obj, var_size_in_bytes, t1);
6387   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
6388     jmp(slow_case);
6389   } else {
6390     Register end = t1;
6391     Label retry;
6392     bind(retry);
6393     ExternalAddress heap_top((address) Universe::heap()->top_addr());
6394     movptr(obj, heap_top);
6395     if (var_size_in_bytes == noreg) {
6396       lea(end, Address(obj, con_size_in_bytes));
6397     } else {
6398       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
6399     }
6400     // if end < obj then we wrapped around => object too long => slow case
6401     cmpptr(end, obj);
6402     jcc(Assembler::below, slow_case);
6403     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
6404     jcc(Assembler::above, slow_case);
6405     // Compare obj with the top addr, and if still equal, store the new top addr in
6406     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
6407     // it otherwise. Use lock prefix for atomicity on MPs.
6408     locked_cmpxchgptr(end, heap_top);
6409     jcc(Assembler::notEqual, retry);
6410   }
6411 }
6412 
6413 void MacroAssembler::enter() {
6414   push(rbp);
6415   mov(rbp, rsp);
6416 }
6417 
6418 void MacroAssembler::fcmp(Register tmp) {
6419   fcmp(tmp, 1, true, true);
6420 }
6421 
6422 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
6423   assert(!pop_right || pop_left, "usage error");
6424   if (VM_Version::supports_cmov()) {
6425     assert(tmp == noreg, "unneeded temp");
6426     if (pop_left) {
6427       fucomip(index);
6428     } else {
6429       fucomi(index);
6430     }
6431     if (pop_right) {
6432       fpop();
6433     }
6434   } else {
6435     assert(tmp != noreg, "need temp");
6436     if (pop_left) {
6437       if (pop_right) {
6438         fcompp();
6439       } else {
6440         fcomp(index);
6441       }
6442     } else {
6443       fcom(index);
6444     }
6445     // convert FPU condition into eflags condition via rax,
6446     save_rax(tmp);
6447     fwait(); fnstsw_ax();
6448     sahf();
6449     restore_rax(tmp);
6450   }
6451   // condition codes set as follows:
6452   //
6453   // CF (corresponds to C0) if x < y
6454   // PF (corresponds to C2) if unordered
6455   // ZF (corresponds to C3) if x = y
6456 }
6457 
6458 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
6459   fcmp2int(dst, unordered_is_less, 1, true, true);
6460 }
6461 
6462 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
6463   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
6464   Label L;
6465   if (unordered_is_less) {
6466     movl(dst, -1);
6467     jcc(Assembler::parity, L);
6468     jcc(Assembler::below , L);
6469     movl(dst, 0);
6470     jcc(Assembler::equal , L);
6471     increment(dst);
6472   } else { // unordered is greater
6473     movl(dst, 1);
6474     jcc(Assembler::parity, L);
6475     jcc(Assembler::above , L);
6476     movl(dst, 0);
6477     jcc(Assembler::equal , L);
6478     decrementl(dst);
6479   }
6480   bind(L);
6481 }
6482 
6483 void MacroAssembler::fld_d(AddressLiteral src) {
6484   fld_d(as_Address(src));
6485 }
6486 
6487 void MacroAssembler::fld_s(AddressLiteral src) {
6488   fld_s(as_Address(src));
6489 }
6490 
6491 void MacroAssembler::fld_x(AddressLiteral src) {
6492   Assembler::fld_x(as_Address(src));
6493 }
6494 
6495 void MacroAssembler::fldcw(AddressLiteral src) {
6496   Assembler::fldcw(as_Address(src));
6497 }
6498 
6499 void MacroAssembler::fpop() {
6500   ffree();
6501   fincstp();
6502 }
6503 
6504 void MacroAssembler::fremr(Register tmp) {
6505   save_rax(tmp);
6506   { Label L;
6507     bind(L);
6508     fprem();
6509     fwait(); fnstsw_ax();
6510 #ifdef _LP64
6511     testl(rax, 0x400);
6512     jcc(Assembler::notEqual, L);
6513 #else
6514     sahf();
6515     jcc(Assembler::parity, L);
6516 #endif // _LP64
6517   }
6518   restore_rax(tmp);
6519   // Result is in ST0.
6520   // Note: fxch & fpop to get rid of ST1
6521   // (otherwise FPU stack could overflow eventually)
6522   fxch(1);
6523   fpop();
6524 }
6525 
6526 
6527 void MacroAssembler::incrementl(AddressLiteral dst) {
6528   if (reachable(dst)) {
6529     incrementl(as_Address(dst));
6530   } else {
6531     lea(rscratch1, dst);
6532     incrementl(Address(rscratch1, 0));
6533   }
6534 }
6535 
6536 void MacroAssembler::incrementl(ArrayAddress dst) {
6537   incrementl(as_Address(dst));
6538 }
6539 
6540 void MacroAssembler::incrementl(Register reg, int value) {
6541   if (value == min_jint) {addl(reg, value) ; return; }
6542   if (value <  0) { decrementl(reg, -value); return; }
6543   if (value == 0) {                        ; return; }
6544   if (value == 1 && UseIncDec) { incl(reg) ; return; }
6545   /* else */      { addl(reg, value)       ; return; }
6546 }
6547 
6548 void MacroAssembler::incrementl(Address dst, int value) {
6549   if (value == min_jint) {addl(dst, value) ; return; }
6550   if (value <  0) { decrementl(dst, -value); return; }
6551   if (value == 0) {                        ; return; }
6552   if (value == 1 && UseIncDec) { incl(dst) ; return; }
6553   /* else */      { addl(dst, value)       ; return; }
6554 }
6555 
6556 void MacroAssembler::jump(AddressLiteral dst) {
6557   if (reachable(dst)) {
6558     jmp_literal(dst.target(), dst.rspec());
6559   } else {
6560     lea(rscratch1, dst);
6561     jmp(rscratch1);
6562   }
6563 }
6564 
6565 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
6566   if (reachable(dst)) {
6567     InstructionMark im(this);
6568     relocate(dst.reloc());
6569     const int short_size = 2;
6570     const int long_size = 6;
6571     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
6572     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
6573       // 0111 tttn #8-bit disp
6574       emit_byte(0x70 | cc);
6575       emit_byte((offs - short_size) & 0xFF);
6576     } else {
6577       // 0000 1111 1000 tttn #32-bit disp
6578       emit_byte(0x0F);
6579       emit_byte(0x80 | cc);
6580       emit_long(offs - long_size);
6581     }
6582   } else {
6583 #ifdef ASSERT
6584     warning("reversing conditional branch");
6585 #endif /* ASSERT */
6586     Label skip;
6587     jccb(reverse[cc], skip);
6588     lea(rscratch1, dst);
6589     Assembler::jmp(rscratch1);
6590     bind(skip);
6591   }
6592 }
6593 
6594 void MacroAssembler::ldmxcsr(AddressLiteral src) {
6595   if (reachable(src)) {
6596     Assembler::ldmxcsr(as_Address(src));
6597   } else {
6598     lea(rscratch1, src);
6599     Assembler::ldmxcsr(Address(rscratch1, 0));
6600   }
6601 }
6602 
6603 int MacroAssembler::load_signed_byte(Register dst, Address src) {
6604   int off;
6605   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
6606     off = offset();
6607     movsbl(dst, src); // movsxb
6608   } else {
6609     off = load_unsigned_byte(dst, src);
6610     shll(dst, 24);
6611     sarl(dst, 24);
6612   }
6613   return off;
6614 }
6615 
6616 // Note: load_signed_short used to be called load_signed_word.
6617 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
6618 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
6619 // The term "word" in HotSpot means a 32- or 64-bit machine word.
6620 int MacroAssembler::load_signed_short(Register dst, Address src) {
6621   int off;
6622   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
6623     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
6624     // version but this is what 64bit has always done. This seems to imply
6625     // that users are only using 32bits worth.
6626     off = offset();
6627     movswl(dst, src); // movsxw
6628   } else {
6629     off = load_unsigned_short(dst, src);
6630     shll(dst, 16);
6631     sarl(dst, 16);
6632   }
6633   return off;
6634 }
6635 
6636 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
6637   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
6638   // and "3.9 Partial Register Penalties", p. 22).
6639   int off;
6640   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
6641     off = offset();
6642     movzbl(dst, src); // movzxb
6643   } else {
6644     xorl(dst, dst);
6645     off = offset();
6646     movb(dst, src);
6647   }
6648   return off;
6649 }
6650 
6651 // Note: load_unsigned_short used to be called load_unsigned_word.
6652 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
6653   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
6654   // and "3.9 Partial Register Penalties", p. 22).
6655   int off;
6656   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
6657     off = offset();
6658     movzwl(dst, src); // movzxw
6659   } else {
6660     xorl(dst, dst);
6661     off = offset();
6662     movw(dst, src);
6663   }
6664   return off;
6665 }
6666 
6667 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
6668   switch (size_in_bytes) {
6669 #ifndef _LP64
6670   case  8:
6671     assert(dst2 != noreg, "second dest register required");
6672     movl(dst,  src);
6673     movl(dst2, src.plus_disp(BytesPerInt));
6674     break;
6675 #else
6676   case  8:  movq(dst, src); break;
6677 #endif
6678   case  4:  movl(dst, src); break;
6679   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
6680   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
6681   default:  ShouldNotReachHere();
6682   }
6683 }
6684 
6685 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
6686   switch (size_in_bytes) {
6687 #ifndef _LP64
6688   case  8:
6689     assert(src2 != noreg, "second source register required");
6690     movl(dst,                        src);
6691     movl(dst.plus_disp(BytesPerInt), src2);
6692     break;
6693 #else
6694   case  8:  movq(dst, src); break;
6695 #endif
6696   case  4:  movl(dst, src); break;
6697   case  2:  movw(dst, src); break;
6698   case  1:  movb(dst, src); break;
6699   default:  ShouldNotReachHere();
6700   }
6701 }
6702 
6703 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
6704   if (reachable(dst)) {
6705     movl(as_Address(dst), src);
6706   } else {
6707     lea(rscratch1, dst);
6708     movl(Address(rscratch1, 0), src);
6709   }
6710 }
6711 
6712 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
6713   if (reachable(src)) {
6714     movl(dst, as_Address(src));
6715   } else {
6716     lea(rscratch1, src);
6717     movl(dst, Address(rscratch1, 0));
6718   }
6719 }
6720 
6721 // C++ bool manipulation
6722 
6723 void MacroAssembler::movbool(Register dst, Address src) {
6724   if(sizeof(bool) == 1)
6725     movb(dst, src);
6726   else if(sizeof(bool) == 2)
6727     movw(dst, src);
6728   else if(sizeof(bool) == 4)
6729     movl(dst, src);
6730   else
6731     // unsupported
6732     ShouldNotReachHere();
6733 }
6734 
6735 void MacroAssembler::movbool(Address dst, bool boolconst) {
6736   if(sizeof(bool) == 1)
6737     movb(dst, (int) boolconst);
6738   else if(sizeof(bool) == 2)
6739     movw(dst, (int) boolconst);
6740   else if(sizeof(bool) == 4)
6741     movl(dst, (int) boolconst);
6742   else
6743     // unsupported
6744     ShouldNotReachHere();
6745 }
6746 
6747 void MacroAssembler::movbool(Address dst, Register src) {
6748   if(sizeof(bool) == 1)
6749     movb(dst, src);
6750   else if(sizeof(bool) == 2)
6751     movw(dst, src);
6752   else if(sizeof(bool) == 4)
6753     movl(dst, src);
6754   else
6755     // unsupported
6756     ShouldNotReachHere();
6757 }
6758 
6759 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
6760   movb(as_Address(dst), src);
6761 }
6762 
6763 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
6764   if (reachable(src)) {
6765     if (UseXmmLoadAndClearUpper) {
6766       movsd (dst, as_Address(src));
6767     } else {
6768       movlpd(dst, as_Address(src));
6769     }
6770   } else {
6771     lea(rscratch1, src);
6772     if (UseXmmLoadAndClearUpper) {
6773       movsd (dst, Address(rscratch1, 0));
6774     } else {
6775       movlpd(dst, Address(rscratch1, 0));
6776     }
6777   }
6778 }
6779 
6780 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
6781   if (reachable(src)) {
6782     movss(dst, as_Address(src));
6783   } else {
6784     lea(rscratch1, src);
6785     movss(dst, Address(rscratch1, 0));
6786   }
6787 }
6788 
6789 void MacroAssembler::movptr(Register dst, Register src) {
6790   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
6791 }
6792 
6793 void MacroAssembler::movptr(Register dst, Address src) {
6794   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
6795 }
6796 
6797 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
6798 void MacroAssembler::movptr(Register dst, intptr_t src) {
6799   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
6800 }
6801 
6802 void MacroAssembler::movptr(Address dst, Register src) {
6803   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
6804 }
6805 
6806 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
6807   if (reachable(src)) {
6808     movss(dst, as_Address(src));
6809   } else {
6810     lea(rscratch1, src);
6811     movss(dst, Address(rscratch1, 0));
6812   }
6813 }
6814 
6815 void MacroAssembler::null_check(Register reg, int offset) {
6816   if (needs_explicit_null_check(offset)) {
6817     // provoke OS NULL exception if reg = NULL by
6818     // accessing M[reg] w/o changing any (non-CC) registers
6819     // NOTE: cmpl is plenty here to provoke a segv
6820     cmpptr(rax, Address(reg, 0));
6821     // Note: should probably use testl(rax, Address(reg, 0));
6822     //       may be shorter code (however, this version of
6823     //       testl needs to be implemented first)
6824   } else {
6825     // nothing to do, (later) access of M[reg + offset]
6826     // will provoke OS NULL exception if reg = NULL
6827   }
6828 }
6829 
6830 void MacroAssembler::os_breakpoint() {
6831   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
6832   // (e.g., MSVC can't call ps() otherwise)
6833   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
6834 }
6835 
6836 void MacroAssembler::pop_CPU_state() {
6837   pop_FPU_state();
6838   pop_IU_state();
6839 }
6840 
6841 void MacroAssembler::pop_FPU_state() {
6842   NOT_LP64(frstor(Address(rsp, 0));)
6843   LP64_ONLY(fxrstor(Address(rsp, 0));)
6844   addptr(rsp, FPUStateSizeInWords * wordSize);
6845 }
6846 
6847 void MacroAssembler::pop_IU_state() {
6848   popa();
6849   LP64_ONLY(addq(rsp, 8));
6850   popf();
6851 }
6852 
6853 // Save Integer and Float state
6854 // Warning: Stack must be 16 byte aligned (64bit)
6855 void MacroAssembler::push_CPU_state() {
6856   push_IU_state();
6857   push_FPU_state();
6858 }
6859 
6860 void MacroAssembler::push_FPU_state() {
6861   subptr(rsp, FPUStateSizeInWords * wordSize);
6862 #ifndef _LP64
6863   fnsave(Address(rsp, 0));
6864   fwait();
6865 #else
6866   fxsave(Address(rsp, 0));
6867 #endif // LP64
6868 }
6869 
6870 void MacroAssembler::push_IU_state() {
6871   // Push flags first because pusha kills them
6872   pushf();
6873   // Make sure rsp stays 16-byte aligned
6874   LP64_ONLY(subq(rsp, 8));
6875   pusha();
6876 }
6877 
6878 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
6879   // determine java_thread register
6880   if (!java_thread->is_valid()) {
6881     java_thread = rdi;
6882     get_thread(java_thread);
6883   }
6884   // we must set sp to zero to clear frame
6885   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
6886   if (clear_fp) {
6887     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
6888   }
6889 
6890   if (clear_pc)
6891     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
6892 
6893 }
6894 
6895 void MacroAssembler::restore_rax(Register tmp) {
6896   if (tmp == noreg) pop(rax);
6897   else if (tmp != rax) mov(rax, tmp);
6898 }
6899 
6900 void MacroAssembler::round_to(Register reg, int modulus) {
6901   addptr(reg, modulus - 1);
6902   andptr(reg, -modulus);
6903 }
6904 
6905 void MacroAssembler::save_rax(Register tmp) {
6906   if (tmp == noreg) push(rax);
6907   else if (tmp != rax) mov(tmp, rax);
6908 }
6909 
6910 // Write serialization page so VM thread can do a pseudo remote membar.
6911 // We use the current thread pointer to calculate a thread specific
6912 // offset to write to within the page. This minimizes bus traffic
6913 // due to cache line collision.
6914 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
6915   movl(tmp, thread);
6916   shrl(tmp, os::get_serialize_page_shift_count());
6917   andl(tmp, (os::vm_page_size() - sizeof(int)));
6918 
6919   Address index(noreg, tmp, Address::times_1);
6920   ExternalAddress page(os::get_memory_serialize_page());
6921 
6922   // Size of store must match masking code above
6923   movl(as_Address(ArrayAddress(page, index)), tmp);
6924 }
6925 
6926 // Calls to C land
6927 //
6928 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
6929 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
6930 // has to be reset to 0. This is required to allow proper stack traversal.
6931 void MacroAssembler::set_last_Java_frame(Register java_thread,
6932                                          Register last_java_sp,
6933                                          Register last_java_fp,
6934                                          address  last_java_pc) {
6935   // determine java_thread register
6936   if (!java_thread->is_valid()) {
6937     java_thread = rdi;
6938     get_thread(java_thread);
6939   }
6940   // determine last_java_sp register
6941   if (!last_java_sp->is_valid()) {
6942     last_java_sp = rsp;
6943   }
6944 
6945   // last_java_fp is optional
6946 
6947   if (last_java_fp->is_valid()) {
6948     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
6949   }
6950 
6951   // last_java_pc is optional
6952 
6953   if (last_java_pc != NULL) {
6954     lea(Address(java_thread,
6955                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
6956         InternalAddress(last_java_pc));
6957 
6958   }
6959   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
6960 }
6961 
6962 void MacroAssembler::shlptr(Register dst, int imm8) {
6963   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
6964 }
6965 
6966 void MacroAssembler::shrptr(Register dst, int imm8) {
6967   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
6968 }
6969 
6970 void MacroAssembler::sign_extend_byte(Register reg) {
6971   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
6972     movsbl(reg, reg); // movsxb
6973   } else {
6974     shll(reg, 24);
6975     sarl(reg, 24);
6976   }
6977 }
6978 
6979 void MacroAssembler::sign_extend_short(Register reg) {
6980   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
6981     movswl(reg, reg); // movsxw
6982   } else {
6983     shll(reg, 16);
6984     sarl(reg, 16);
6985   }
6986 }
6987 
6988 void MacroAssembler::testl(Register dst, AddressLiteral src) {
6989   assert(reachable(src), "Address should be reachable");
6990   testl(dst, as_Address(src));
6991 }
6992 
6993 //////////////////////////////////////////////////////////////////////////////////
6994 #ifndef SERIALGC
6995 
6996 void MacroAssembler::g1_write_barrier_pre(Register obj,
6997                                           Register pre_val,
6998                                           Register thread,
6999                                           Register tmp,
7000                                           bool tosca_live,
7001                                           bool expand_call) {
7002 
7003   // If expand_call is true then we expand the call_VM_leaf macro
7004   // directly to skip generating the check by
7005   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
7006 
7007 #ifdef _LP64
7008   assert(thread == r15_thread, "must be");
7009 #endif // _LP64
7010 
7011   Label done;
7012   Label runtime;
7013 
7014   assert(pre_val != noreg, "check this code");
7015 
7016   if (obj != noreg) {
7017     assert_different_registers(obj, pre_val, tmp);
7018     assert(pre_val != rax, "check this code");
7019   }
7020 
7021   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
7022                                        PtrQueue::byte_offset_of_active()));
7023   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
7024                                        PtrQueue::byte_offset_of_index()));
7025   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
7026                                        PtrQueue::byte_offset_of_buf()));
7027 
7028 
7029   // Is marking active?
7030   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
7031     cmpl(in_progress, 0);
7032   } else {
7033     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
7034     cmpb(in_progress, 0);
7035   }
7036   jcc(Assembler::equal, done);
7037 
7038   // Do we need to load the previous value?
7039   if (obj != noreg) {
7040     load_heap_oop(pre_val, Address(obj, 0));
7041   }
7042 
7043   // Is the previous value null?
7044   cmpptr(pre_val, (int32_t) NULL_WORD);
7045   jcc(Assembler::equal, done);
7046 
7047   // Can we store original value in the thread's buffer?
7048   // Is index == 0?
7049   // (The index field is typed as size_t.)
7050 
7051   movptr(tmp, index);                   // tmp := *index_adr
7052   cmpptr(tmp, 0);                       // tmp == 0?
7053   jcc(Assembler::equal, runtime);       // If yes, goto runtime
7054 
7055   subptr(tmp, wordSize);                // tmp := tmp - wordSize
7056   movptr(index, tmp);                   // *index_adr := tmp
7057   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
7058 
7059   // Record the previous value
7060   movptr(Address(tmp, 0), pre_val);
7061   jmp(done);
7062 
7063   bind(runtime);
7064   // save the live input values
7065   if(tosca_live) push(rax);
7066 
7067   if (obj != noreg && obj != rax)
7068     push(obj);
7069 
7070   if (pre_val != rax)
7071     push(pre_val);
7072 
7073   // Calling the runtime using the regular call_VM_leaf mechanism generates
7074   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
7075   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
7076   //
7077   // If we care generating the pre-barrier without a frame (e.g. in the
7078   // intrinsified Reference.get() routine) then ebp might be pointing to
7079   // the caller frame and so this check will most likely fail at runtime.
7080   //
7081   // Expanding the call directly bypasses the generation of the check.
7082   // So when we do not have have a full interpreter frame on the stack
7083   // expand_call should be passed true.
7084 
7085   NOT_LP64( push(thread); )
7086 
7087   if (expand_call) {
7088     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
7089     pass_arg1(this, thread);
7090     pass_arg0(this, pre_val);
7091     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
7092   } else {
7093     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
7094   }
7095 
7096   NOT_LP64( pop(thread); )
7097 
7098   // save the live input values
7099   if (pre_val != rax)
7100     pop(pre_val);
7101 
7102   if (obj != noreg && obj != rax)
7103     pop(obj);
7104 
7105   if(tosca_live) pop(rax);
7106 
7107   bind(done);
7108 }
7109 
7110 void MacroAssembler::g1_write_barrier_post(Register store_addr,
7111                                            Register new_val,
7112                                            Register thread,
7113                                            Register tmp,
7114                                            Register tmp2) {
7115 #ifdef _LP64
7116   assert(thread == r15_thread, "must be");
7117 #endif // _LP64
7118 
7119   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
7120                                        PtrQueue::byte_offset_of_index()));
7121   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
7122                                        PtrQueue::byte_offset_of_buf()));
7123 
7124   BarrierSet* bs = Universe::heap()->barrier_set();
7125   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
7126   Label done;
7127   Label runtime;
7128 
7129   // Does store cross heap regions?
7130 
7131   movptr(tmp, store_addr);
7132   xorptr(tmp, new_val);
7133   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
7134   jcc(Assembler::equal, done);
7135 
7136   // crosses regions, storing NULL?
7137 
7138   cmpptr(new_val, (int32_t) NULL_WORD);
7139   jcc(Assembler::equal, done);
7140 
7141   // storing region crossing non-NULL, is card already dirty?
7142 
7143   ExternalAddress cardtable((address) ct->byte_map_base);
7144   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
7145 #ifdef _LP64
7146   const Register card_addr = tmp;
7147 
7148   movq(card_addr, store_addr);
7149   shrq(card_addr, CardTableModRefBS::card_shift);
7150 
7151   lea(tmp2, cardtable);
7152 
7153   // get the address of the card
7154   addq(card_addr, tmp2);
7155 #else
7156   const Register card_index = tmp;
7157 
7158   movl(card_index, store_addr);
7159   shrl(card_index, CardTableModRefBS::card_shift);
7160 
7161   Address index(noreg, card_index, Address::times_1);
7162   const Register card_addr = tmp;
7163   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
7164 #endif
7165   cmpb(Address(card_addr, 0), 0);
7166   jcc(Assembler::equal, done);
7167 
7168   // storing a region crossing, non-NULL oop, card is clean.
7169   // dirty card and log.
7170 
7171   movb(Address(card_addr, 0), 0);
7172 
7173   cmpl(queue_index, 0);
7174   jcc(Assembler::equal, runtime);
7175   subl(queue_index, wordSize);
7176   movptr(tmp2, buffer);
7177 #ifdef _LP64
7178   movslq(rscratch1, queue_index);
7179   addq(tmp2, rscratch1);
7180   movq(Address(tmp2, 0), card_addr);
7181 #else
7182   addl(tmp2, queue_index);
7183   movl(Address(tmp2, 0), card_index);
7184 #endif
7185   jmp(done);
7186 
7187   bind(runtime);
7188   // save the live input values
7189   push(store_addr);
7190   push(new_val);
7191 #ifdef _LP64
7192   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
7193 #else
7194   push(thread);
7195   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
7196   pop(thread);
7197 #endif
7198   pop(new_val);
7199   pop(store_addr);
7200 
7201   bind(done);
7202 }
7203 
7204 #endif // SERIALGC
7205 //////////////////////////////////////////////////////////////////////////////////
7206 
7207 
7208 void MacroAssembler::store_check(Register obj) {
7209   // Does a store check for the oop in register obj. The content of
7210   // register obj is destroyed afterwards.
7211   store_check_part_1(obj);
7212   store_check_part_2(obj);
7213 }
7214 
7215 void MacroAssembler::store_check(Register obj, Address dst) {
7216   store_check(obj);
7217 }
7218 
7219 
7220 // split the store check operation so that other instructions can be scheduled inbetween
7221 void MacroAssembler::store_check_part_1(Register obj) {
7222   BarrierSet* bs = Universe::heap()->barrier_set();
7223   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
7224   shrptr(obj, CardTableModRefBS::card_shift);
7225 }
7226 
7227 void MacroAssembler::store_check_part_2(Register obj) {
7228   BarrierSet* bs = Universe::heap()->barrier_set();
7229   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
7230   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
7231   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
7232 
7233   // The calculation for byte_map_base is as follows:
7234   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
7235   // So this essentially converts an address to a displacement and
7236   // it will never need to be relocated. On 64bit however the value may be too
7237   // large for a 32bit displacement
7238 
7239   intptr_t disp = (intptr_t) ct->byte_map_base;
7240   if (is_simm32(disp)) {
7241     Address cardtable(noreg, obj, Address::times_1, disp);
7242     movb(cardtable, 0);
7243   } else {
7244     // By doing it as an ExternalAddress disp could be converted to a rip-relative
7245     // displacement and done in a single instruction given favorable mapping and
7246     // a smarter version of as_Address. Worst case it is two instructions which
7247     // is no worse off then loading disp into a register and doing as a simple
7248     // Address() as above.
7249     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
7250     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
7251     // in some cases we'll get a single instruction version.
7252 
7253     ExternalAddress cardtable((address)disp);
7254     Address index(noreg, obj, Address::times_1);
7255     movb(as_Address(ArrayAddress(cardtable, index)), 0);
7256   }
7257 }
7258 
7259 void MacroAssembler::subptr(Register dst, int32_t imm32) {
7260   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
7261 }
7262 
7263 void MacroAssembler::subptr(Register dst, Register src) {
7264   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
7265 }
7266 
7267 // C++ bool manipulation
7268 void MacroAssembler::testbool(Register dst) {
7269   if(sizeof(bool) == 1)
7270     testb(dst, 0xff);
7271   else if(sizeof(bool) == 2) {
7272     // testw implementation needed for two byte bools
7273     ShouldNotReachHere();
7274   } else if(sizeof(bool) == 4)
7275     testl(dst, dst);
7276   else
7277     // unsupported
7278     ShouldNotReachHere();
7279 }
7280 
7281 void MacroAssembler::testptr(Register dst, Register src) {
7282   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
7283 }
7284 
7285 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
7286 void MacroAssembler::tlab_allocate(Register obj,
7287                                    Register var_size_in_bytes,
7288                                    int con_size_in_bytes,
7289                                    Register t1,
7290                                    Register t2,
7291                                    Label& slow_case) {
7292   assert_different_registers(obj, t1, t2);
7293   assert_different_registers(obj, var_size_in_bytes, t1);
7294   Register end = t2;
7295   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
7296 
7297   verify_tlab();
7298 
7299   NOT_LP64(get_thread(thread));
7300 
7301   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
7302   if (var_size_in_bytes == noreg) {
7303     lea(end, Address(obj, con_size_in_bytes));
7304   } else {
7305     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
7306   }
7307   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
7308   jcc(Assembler::above, slow_case);
7309 
7310   // update the tlab top pointer
7311   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
7312 
7313   // recover var_size_in_bytes if necessary
7314   if (var_size_in_bytes == end) {
7315     subptr(var_size_in_bytes, obj);
7316   }
7317   verify_tlab();
7318 }
7319 
7320 // Preserves rbx, and rdx.
7321 Register MacroAssembler::tlab_refill(Label& retry,
7322                                      Label& try_eden,
7323                                      Label& slow_case) {
7324   Register top = rax;
7325   Register t1  = rcx;
7326   Register t2  = rsi;
7327   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
7328   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
7329   Label do_refill, discard_tlab;
7330 
7331   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
7332     // No allocation in the shared eden.
7333     jmp(slow_case);
7334   }
7335 
7336   NOT_LP64(get_thread(thread_reg));
7337 
7338   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
7339   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
7340 
7341   // calculate amount of free space
7342   subptr(t1, top);
7343   shrptr(t1, LogHeapWordSize);
7344 
7345   // Retain tlab and allocate object in shared space if
7346   // the amount free in the tlab is too large to discard.
7347   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
7348   jcc(Assembler::lessEqual, discard_tlab);
7349 
7350   // Retain
7351   // %%% yuck as movptr...
7352   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
7353   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
7354   if (TLABStats) {
7355     // increment number of slow_allocations
7356     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
7357   }
7358   jmp(try_eden);
7359 
7360   bind(discard_tlab);
7361   if (TLABStats) {
7362     // increment number of refills
7363     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
7364     // accumulate wastage -- t1 is amount free in tlab
7365     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
7366   }
7367 
7368   // if tlab is currently allocated (top or end != null) then
7369   // fill [top, end + alignment_reserve) with array object
7370   testptr(top, top);
7371   jcc(Assembler::zero, do_refill);
7372 
7373   // set up the mark word
7374   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
7375   // set the length to the remaining space
7376   subptr(t1, typeArrayOopDesc::header_size(T_INT));
7377   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
7378   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
7379   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
7380   // set klass to intArrayKlass
7381   // dubious reloc why not an oop reloc?
7382   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
7383   // store klass last.  concurrent gcs assumes klass length is valid if
7384   // klass field is not null.
7385   store_klass(top, t1);
7386 
7387   movptr(t1, top);
7388   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
7389   incr_allocated_bytes(thread_reg, t1, 0);
7390 
7391   // refill the tlab with an eden allocation
7392   bind(do_refill);
7393   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
7394   shlptr(t1, LogHeapWordSize);
7395   // allocate new tlab, address returned in top
7396   eden_allocate(top, t1, 0, t2, slow_case);
7397 
7398   // Check that t1 was preserved in eden_allocate.
7399 #ifdef ASSERT
7400   if (UseTLAB) {
7401     Label ok;
7402     Register tsize = rsi;
7403     assert_different_registers(tsize, thread_reg, t1);
7404     push(tsize);
7405     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
7406     shlptr(tsize, LogHeapWordSize);
7407     cmpptr(t1, tsize);
7408     jcc(Assembler::equal, ok);
7409     stop("assert(t1 != tlab size)");
7410     should_not_reach_here();
7411 
7412     bind(ok);
7413     pop(tsize);
7414   }
7415 #endif
7416   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
7417   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
7418   addptr(top, t1);
7419   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
7420   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
7421   verify_tlab();
7422   jmp(retry);
7423 
7424   return thread_reg; // for use by caller
7425 }
7426 
7427 void MacroAssembler::incr_allocated_bytes(Register thread,
7428                                           Register var_size_in_bytes,
7429                                           int con_size_in_bytes,
7430                                           Register t1) {
7431 #ifdef _LP64
7432   if (var_size_in_bytes->is_valid()) {
7433     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
7434   } else {
7435     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
7436   }
7437 #else
7438   if (!thread->is_valid()) {
7439     assert(t1->is_valid(), "need temp reg");
7440     thread = t1;
7441     get_thread(thread);
7442   }
7443 
7444   if (var_size_in_bytes->is_valid()) {
7445     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
7446   } else {
7447     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
7448   }
7449   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
7450 #endif
7451 }
7452 
7453 static const double     pi_4 =  0.7853981633974483;
7454 
7455 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
7456   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
7457   // was attempted in this code; unfortunately it appears that the
7458   // switch to 80-bit precision and back causes this to be
7459   // unprofitable compared with simply performing a runtime call if
7460   // the argument is out of the (-pi/4, pi/4) range.
7461 
7462   Register tmp = noreg;
7463   if (!VM_Version::supports_cmov()) {
7464     // fcmp needs a temporary so preserve rbx,
7465     tmp = rbx;
7466     push(tmp);
7467   }
7468 
7469   Label slow_case, done;
7470 
7471   ExternalAddress pi4_adr = (address)&pi_4;
7472   if (reachable(pi4_adr)) {
7473     // x ?<= pi/4
7474     fld_d(pi4_adr);
7475     fld_s(1);                // Stack:  X  PI/4  X
7476     fabs();                  // Stack: |X| PI/4  X
7477     fcmp(tmp);
7478     jcc(Assembler::above, slow_case);
7479 
7480     // fastest case: -pi/4 <= x <= pi/4
7481     switch(trig) {
7482     case 's':
7483       fsin();
7484       break;
7485     case 'c':
7486       fcos();
7487       break;
7488     case 't':
7489       ftan();
7490       break;
7491     default:
7492       assert(false, "bad intrinsic");
7493       break;
7494     }
7495     jmp(done);
7496   }
7497 
7498   // slow case: runtime call
7499   bind(slow_case);
7500   // Preserve registers across runtime call
7501   pusha();
7502   int incoming_argument_and_return_value_offset = -1;
7503   if (num_fpu_regs_in_use > 1) {
7504     // Must preserve all other FPU regs (could alternatively convert
7505     // SharedRuntime::dsin and dcos into assembly routines known not to trash
7506     // FPU state, but can not trust C compiler)
7507     NEEDS_CLEANUP;
7508     // NOTE that in this case we also push the incoming argument to
7509     // the stack and restore it later; we also use this stack slot to
7510     // hold the return value from dsin or dcos.
7511     for (int i = 0; i < num_fpu_regs_in_use; i++) {
7512       subptr(rsp, sizeof(jdouble));
7513       fstp_d(Address(rsp, 0));
7514     }
7515     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
7516     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
7517   }
7518   subptr(rsp, sizeof(jdouble));
7519   fstp_d(Address(rsp, 0));
7520 #ifdef _LP64
7521   movdbl(xmm0, Address(rsp, 0));
7522 #endif // _LP64
7523 
7524   // NOTE: we must not use call_VM_leaf here because that requires a
7525   // complete interpreter frame in debug mode -- same bug as 4387334
7526   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
7527   // do proper 64bit abi
7528 
7529   NEEDS_CLEANUP;
7530   // Need to add stack banging before this runtime call if it needs to
7531   // be taken; however, there is no generic stack banging routine at
7532   // the MacroAssembler level
7533   switch(trig) {
7534   case 's':
7535     {
7536       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
7537     }
7538     break;
7539   case 'c':
7540     {
7541       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
7542     }
7543     break;
7544   case 't':
7545     {
7546       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
7547     }
7548     break;
7549   default:
7550     assert(false, "bad intrinsic");
7551     break;
7552   }
7553 #ifdef _LP64
7554     movsd(Address(rsp, 0), xmm0);
7555     fld_d(Address(rsp, 0));
7556 #endif // _LP64
7557   addptr(rsp, sizeof(jdouble));
7558   if (num_fpu_regs_in_use > 1) {
7559     // Must save return value to stack and then restore entire FPU stack
7560     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
7561     for (int i = 0; i < num_fpu_regs_in_use; i++) {
7562       fld_d(Address(rsp, 0));
7563       addptr(rsp, sizeof(jdouble));
7564     }
7565   }
7566   popa();
7567 
7568   // Come here with result in F-TOS
7569   bind(done);
7570 
7571   if (tmp != noreg) {
7572     pop(tmp);
7573   }
7574 }
7575 
7576 
7577 // Look up the method for a megamorphic invokeinterface call.
7578 // The target method is determined by <intf_klass, itable_index>.
7579 // The receiver klass is in recv_klass.
7580 // On success, the result will be in method_result, and execution falls through.
7581 // On failure, execution transfers to the given label.
7582 void MacroAssembler::lookup_interface_method(Register recv_klass,
7583                                              Register intf_klass,
7584                                              RegisterOrConstant itable_index,
7585                                              Register method_result,
7586                                              Register scan_temp,
7587                                              Label& L_no_such_interface) {
7588   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
7589   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
7590          "caller must use same register for non-constant itable index as for method");
7591 
7592   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
7593   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
7594   int itentry_off = itableMethodEntry::method_offset_in_bytes();
7595   int scan_step   = itableOffsetEntry::size() * wordSize;
7596   int vte_size    = vtableEntry::size() * wordSize;
7597   Address::ScaleFactor times_vte_scale = Address::times_ptr;
7598   assert(vte_size == wordSize, "else adjust times_vte_scale");
7599 
7600   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
7601 
7602   // %%% Could store the aligned, prescaled offset in the klassoop.
7603   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
7604   if (HeapWordsPerLong > 1) {
7605     // Round up to align_object_offset boundary
7606     // see code for instanceKlass::start_of_itable!
7607     round_to(scan_temp, BytesPerLong);
7608   }
7609 
7610   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
7611   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
7612   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
7613 
7614   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
7615   //   if (scan->interface() == intf) {
7616   //     result = (klass + scan->offset() + itable_index);
7617   //   }
7618   // }
7619   Label search, found_method;
7620 
7621   for (int peel = 1; peel >= 0; peel--) {
7622     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
7623     cmpptr(intf_klass, method_result);
7624 
7625     if (peel) {
7626       jccb(Assembler::equal, found_method);
7627     } else {
7628       jccb(Assembler::notEqual, search);
7629       // (invert the test to fall through to found_method...)
7630     }
7631 
7632     if (!peel)  break;
7633 
7634     bind(search);
7635 
7636     // Check that the previous entry is non-null.  A null entry means that
7637     // the receiver class doesn't implement the interface, and wasn't the
7638     // same as when the caller was compiled.
7639     testptr(method_result, method_result);
7640     jcc(Assembler::zero, L_no_such_interface);
7641     addptr(scan_temp, scan_step);
7642   }
7643 
7644   bind(found_method);
7645 
7646   // Got a hit.
7647   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
7648   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
7649 }
7650 
7651 
7652 void MacroAssembler::check_klass_subtype(Register sub_klass,
7653                            Register super_klass,
7654                            Register temp_reg,
7655                            Label& L_success) {
7656   Label L_failure;
7657   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
7658   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
7659   bind(L_failure);
7660 }
7661 
7662 
7663 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
7664                                                    Register super_klass,
7665                                                    Register temp_reg,
7666                                                    Label* L_success,
7667                                                    Label* L_failure,
7668                                                    Label* L_slow_path,
7669                                         RegisterOrConstant super_check_offset) {
7670   assert_different_registers(sub_klass, super_klass, temp_reg);
7671   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
7672   if (super_check_offset.is_register()) {
7673     assert_different_registers(sub_klass, super_klass,
7674                                super_check_offset.as_register());
7675   } else if (must_load_sco) {
7676     assert(temp_reg != noreg, "supply either a temp or a register offset");
7677   }
7678 
7679   Label L_fallthrough;
7680   int label_nulls = 0;
7681   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
7682   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
7683   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
7684   assert(label_nulls <= 1, "at most one NULL in the batch");
7685 
7686   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
7687                    Klass::secondary_super_cache_offset_in_bytes());
7688   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
7689                     Klass::super_check_offset_offset_in_bytes());
7690   Address super_check_offset_addr(super_klass, sco_offset);
7691 
7692   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
7693   // range of a jccb.  If this routine grows larger, reconsider at
7694   // least some of these.
7695 #define local_jcc(assembler_cond, label)                                \
7696   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
7697   else                             jcc( assembler_cond, label) /*omit semi*/
7698 
7699   // Hacked jmp, which may only be used just before L_fallthrough.
7700 #define final_jmp(label)                                                \
7701   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
7702   else                            jmp(label)                /*omit semi*/
7703 
7704   // If the pointers are equal, we are done (e.g., String[] elements).
7705   // This self-check enables sharing of secondary supertype arrays among
7706   // non-primary types such as array-of-interface.  Otherwise, each such
7707   // type would need its own customized SSA.
7708   // We move this check to the front of the fast path because many
7709   // type checks are in fact trivially successful in this manner,
7710   // so we get a nicely predicted branch right at the start of the check.
7711   cmpptr(sub_klass, super_klass);
7712   local_jcc(Assembler::equal, *L_success);
7713 
7714   // Check the supertype display:
7715   if (must_load_sco) {
7716     // Positive movl does right thing on LP64.
7717     movl(temp_reg, super_check_offset_addr);
7718     super_check_offset = RegisterOrConstant(temp_reg);
7719   }
7720   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
7721   cmpptr(super_klass, super_check_addr); // load displayed supertype
7722 
7723   // This check has worked decisively for primary supers.
7724   // Secondary supers are sought in the super_cache ('super_cache_addr').
7725   // (Secondary supers are interfaces and very deeply nested subtypes.)
7726   // This works in the same check above because of a tricky aliasing
7727   // between the super_cache and the primary super display elements.
7728   // (The 'super_check_addr' can address either, as the case requires.)
7729   // Note that the cache is updated below if it does not help us find
7730   // what we need immediately.
7731   // So if it was a primary super, we can just fail immediately.
7732   // Otherwise, it's the slow path for us (no success at this point).
7733 
7734   if (super_check_offset.is_register()) {
7735     local_jcc(Assembler::equal, *L_success);
7736     cmpl(super_check_offset.as_register(), sc_offset);
7737     if (L_failure == &L_fallthrough) {
7738       local_jcc(Assembler::equal, *L_slow_path);
7739     } else {
7740       local_jcc(Assembler::notEqual, *L_failure);
7741       final_jmp(*L_slow_path);
7742     }
7743   } else if (super_check_offset.as_constant() == sc_offset) {
7744     // Need a slow path; fast failure is impossible.
7745     if (L_slow_path == &L_fallthrough) {
7746       local_jcc(Assembler::equal, *L_success);
7747     } else {
7748       local_jcc(Assembler::notEqual, *L_slow_path);
7749       final_jmp(*L_success);
7750     }
7751   } else {
7752     // No slow path; it's a fast decision.
7753     if (L_failure == &L_fallthrough) {
7754       local_jcc(Assembler::equal, *L_success);
7755     } else {
7756       local_jcc(Assembler::notEqual, *L_failure);
7757       final_jmp(*L_success);
7758     }
7759   }
7760 
7761   bind(L_fallthrough);
7762 
7763 #undef local_jcc
7764 #undef final_jmp
7765 }
7766 
7767 
7768 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
7769                                                    Register super_klass,
7770                                                    Register temp_reg,
7771                                                    Register temp2_reg,
7772                                                    Label* L_success,
7773                                                    Label* L_failure,
7774                                                    bool set_cond_codes) {
7775   assert_different_registers(sub_klass, super_klass, temp_reg);
7776   if (temp2_reg != noreg)
7777     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
7778 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
7779 
7780   Label L_fallthrough;
7781   int label_nulls = 0;
7782   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
7783   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
7784   assert(label_nulls <= 1, "at most one NULL in the batch");
7785 
7786   // a couple of useful fields in sub_klass:
7787   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
7788                    Klass::secondary_supers_offset_in_bytes());
7789   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
7790                    Klass::secondary_super_cache_offset_in_bytes());
7791   Address secondary_supers_addr(sub_klass, ss_offset);
7792   Address super_cache_addr(     sub_klass, sc_offset);
7793 
7794   // Do a linear scan of the secondary super-klass chain.
7795   // This code is rarely used, so simplicity is a virtue here.
7796   // The repne_scan instruction uses fixed registers, which we must spill.
7797   // Don't worry too much about pre-existing connections with the input regs.
7798 
7799   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
7800   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
7801 
7802   // Get super_klass value into rax (even if it was in rdi or rcx).
7803   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
7804   if (super_klass != rax || UseCompressedOops) {
7805     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
7806     mov(rax, super_klass);
7807   }
7808   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
7809   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
7810 
7811 #ifndef PRODUCT
7812   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
7813   ExternalAddress pst_counter_addr((address) pst_counter);
7814   NOT_LP64(  incrementl(pst_counter_addr) );
7815   LP64_ONLY( lea(rcx, pst_counter_addr) );
7816   LP64_ONLY( incrementl(Address(rcx, 0)) );
7817 #endif //PRODUCT
7818 
7819   // We will consult the secondary-super array.
7820   movptr(rdi, secondary_supers_addr);
7821   // Load the array length.  (Positive movl does right thing on LP64.)
7822   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
7823   // Skip to start of data.
7824   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
7825 
7826   // Scan RCX words at [RDI] for an occurrence of RAX.
7827   // Set NZ/Z based on last compare.
7828   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
7829   // not change flags (only scas instruction which is repeated sets flags).
7830   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
7831 #ifdef _LP64
7832   // This part is tricky, as values in supers array could be 32 or 64 bit wide
7833   // and we store values in objArrays always encoded, thus we need to encode
7834   // the value of rax before repne.  Note that rax is dead after the repne.
7835   if (UseCompressedOops) {
7836     encode_heap_oop_not_null(rax); // Changes flags.
7837     // The superclass is never null; it would be a basic system error if a null
7838     // pointer were to sneak in here.  Note that we have already loaded the
7839     // Klass::super_check_offset from the super_klass in the fast path,
7840     // so if there is a null in that register, we are already in the afterlife.
7841     testl(rax,rax); // Set Z = 0
7842     repne_scanl();
7843   } else
7844 #endif // _LP64
7845   {
7846     testptr(rax,rax); // Set Z = 0
7847     repne_scan();
7848   }
7849   // Unspill the temp. registers:
7850   if (pushed_rdi)  pop(rdi);
7851   if (pushed_rcx)  pop(rcx);
7852   if (pushed_rax)  pop(rax);
7853 
7854   if (set_cond_codes) {
7855     // Special hack for the AD files:  rdi is guaranteed non-zero.
7856     assert(!pushed_rdi, "rdi must be left non-NULL");
7857     // Also, the condition codes are properly set Z/NZ on succeed/failure.
7858   }
7859 
7860   if (L_failure == &L_fallthrough)
7861         jccb(Assembler::notEqual, *L_failure);
7862   else  jcc(Assembler::notEqual, *L_failure);
7863 
7864   // Success.  Cache the super we found and proceed in triumph.
7865   movptr(super_cache_addr, super_klass);
7866 
7867   if (L_success != &L_fallthrough) {
7868     jmp(*L_success);
7869   }
7870 
7871 #undef IS_A_TEMP
7872 
7873   bind(L_fallthrough);
7874 }
7875 
7876 
7877 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
7878   ucomisd(dst, as_Address(src));
7879 }
7880 
7881 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
7882   ucomiss(dst, as_Address(src));
7883 }
7884 
7885 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
7886   if (reachable(src)) {
7887     xorpd(dst, as_Address(src));
7888   } else {
7889     lea(rscratch1, src);
7890     xorpd(dst, Address(rscratch1, 0));
7891   }
7892 }
7893 
7894 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
7895   if (reachable(src)) {
7896     xorps(dst, as_Address(src));
7897   } else {
7898     lea(rscratch1, src);
7899     xorps(dst, Address(rscratch1, 0));
7900   }
7901 }
7902 
7903 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
7904   if (VM_Version::supports_cmov()) {
7905     cmovl(cc, dst, src);
7906   } else {
7907     Label L;
7908     jccb(negate_condition(cc), L);
7909     movl(dst, src);
7910     bind(L);
7911   }
7912 }
7913 
7914 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
7915   if (VM_Version::supports_cmov()) {
7916     cmovl(cc, dst, src);
7917   } else {
7918     Label L;
7919     jccb(negate_condition(cc), L);
7920     movl(dst, src);
7921     bind(L);
7922   }
7923 }
7924 
7925 void MacroAssembler::verify_oop(Register reg, const char* s) {
7926   if (!VerifyOops) return;
7927 
7928   // Pass register number to verify_oop_subroutine
7929   char* b = new char[strlen(s) + 50];
7930   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
7931 #ifdef _LP64
7932   push(rscratch1);                    // save r10, trashed by movptr()
7933 #endif
7934   push(rax);                          // save rax,
7935   push(reg);                          // pass register argument
7936   ExternalAddress buffer((address) b);
7937   // avoid using pushptr, as it modifies scratch registers
7938   // and our contract is not to modify anything
7939   movptr(rax, buffer.addr());
7940   push(rax);
7941   // call indirectly to solve generation ordering problem
7942   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
7943   call(rax);
7944   // Caller pops the arguments (oop, message) and restores rax, r10
7945 }
7946 
7947 
7948 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
7949                                                       Register tmp,
7950                                                       int offset) {
7951   intptr_t value = *delayed_value_addr;
7952   if (value != 0)
7953     return RegisterOrConstant(value + offset);
7954 
7955   // load indirectly to solve generation ordering problem
7956   movptr(tmp, ExternalAddress((address) delayed_value_addr));
7957 
7958 #ifdef ASSERT
7959   { Label L;
7960     testptr(tmp, tmp);
7961     if (WizardMode) {
7962       jcc(Assembler::notZero, L);
7963       char* buf = new char[40];
7964       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
7965       stop(buf);
7966     } else {
7967       jccb(Assembler::notZero, L);
7968       hlt();
7969     }
7970     bind(L);
7971   }
7972 #endif
7973 
7974   if (offset != 0)
7975     addptr(tmp, offset);
7976 
7977   return RegisterOrConstant(tmp);
7978 }
7979 
7980 
7981 // registers on entry:
7982 //  - rax ('check' register): required MethodType
7983 //  - rcx: method handle
7984 //  - rdx, rsi, or ?: killable temp
7985 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
7986                                               Register temp_reg,
7987                                               Label& wrong_method_type) {
7988   Address type_addr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg));
7989   // compare method type against that of the receiver
7990   if (UseCompressedOops) {
7991     load_heap_oop(temp_reg, type_addr);
7992     cmpptr(mtype_reg, temp_reg);
7993   } else {
7994     cmpptr(mtype_reg, type_addr);
7995   }
7996   jcc(Assembler::notEqual, wrong_method_type);
7997 }
7998 
7999 
8000 // A method handle has a "vmslots" field which gives the size of its
8001 // argument list in JVM stack slots.  This field is either located directly
8002 // in every method handle, or else is indirectly accessed through the
8003 // method handle's MethodType.  This macro hides the distinction.
8004 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
8005                                                 Register temp_reg) {
8006   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
8007   // load mh.type.form.vmslots
8008   Register temp2_reg = vmslots_reg;
8009   load_heap_oop(temp2_reg, Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)));
8010   load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)));
8011   movl(vmslots_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
8012 }
8013 
8014 
8015 // registers on entry:
8016 //  - rcx: method handle
8017 //  - rdx: killable temp (interpreted only)
8018 //  - rax: killable temp (compiled only)
8019 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
8020   assert(mh_reg == rcx, "caller must put MH object in rcx");
8021   assert_different_registers(mh_reg, temp_reg);
8022 
8023   // pick out the interpreted side of the handler
8024   // NOTE: vmentry is not an oop!
8025   movptr(temp_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
8026 
8027   // off we go...
8028   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
8029 
8030   // for the various stubs which take control at this point,
8031   // see MethodHandles::generate_method_handle_stub
8032 }
8033 
8034 
8035 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
8036                                          int extra_slot_offset) {
8037   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
8038   int stackElementSize = Interpreter::stackElementSize;
8039   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
8040 #ifdef ASSERT
8041   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
8042   assert(offset1 - offset == stackElementSize, "correct arithmetic");
8043 #endif
8044   Register             scale_reg    = noreg;
8045   Address::ScaleFactor scale_factor = Address::no_scale;
8046   if (arg_slot.is_constant()) {
8047     offset += arg_slot.as_constant() * stackElementSize;
8048   } else {
8049     scale_reg    = arg_slot.as_register();
8050     scale_factor = Address::times(stackElementSize);
8051   }
8052   offset += wordSize;           // return PC is on stack
8053   return Address(rsp, scale_reg, scale_factor, offset);
8054 }
8055 
8056 
8057 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
8058   if (!VerifyOops) return;
8059 
8060   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
8061   // Pass register number to verify_oop_subroutine
8062   char* b = new char[strlen(s) + 50];
8063   sprintf(b, "verify_oop_addr: %s", s);
8064 
8065 #ifdef _LP64
8066   push(rscratch1);                    // save r10, trashed by movptr()
8067 #endif
8068   push(rax);                          // save rax,
8069   // addr may contain rsp so we will have to adjust it based on the push
8070   // we just did (and on 64 bit we do two pushes)
8071   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
8072   // stores rax into addr which is backwards of what was intended.
8073   if (addr.uses(rsp)) {
8074     lea(rax, addr);
8075     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
8076   } else {
8077     pushptr(addr);
8078   }
8079 
8080   ExternalAddress buffer((address) b);
8081   // pass msg argument
8082   // avoid using pushptr, as it modifies scratch registers
8083   // and our contract is not to modify anything
8084   movptr(rax, buffer.addr());
8085   push(rax);
8086 
8087   // call indirectly to solve generation ordering problem
8088   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
8089   call(rax);
8090   // Caller pops the arguments (addr, message) and restores rax, r10.
8091 }
8092 
8093 void MacroAssembler::verify_tlab() {
8094 #ifdef ASSERT
8095   if (UseTLAB && VerifyOops) {
8096     Label next, ok;
8097     Register t1 = rsi;
8098     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
8099 
8100     push(t1);
8101     NOT_LP64(push(thread_reg));
8102     NOT_LP64(get_thread(thread_reg));
8103 
8104     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
8105     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
8106     jcc(Assembler::aboveEqual, next);
8107     stop("assert(top >= start)");
8108     should_not_reach_here();
8109 
8110     bind(next);
8111     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
8112     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
8113     jcc(Assembler::aboveEqual, ok);
8114     stop("assert(top <= end)");
8115     should_not_reach_here();
8116 
8117     bind(ok);
8118     NOT_LP64(pop(thread_reg));
8119     pop(t1);
8120   }
8121 #endif
8122 }
8123 
8124 class ControlWord {
8125  public:
8126   int32_t _value;
8127 
8128   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
8129   int  precision_control() const       { return  (_value >>  8) & 3      ; }
8130   bool precision() const               { return ((_value >>  5) & 1) != 0; }
8131   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
8132   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
8133   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
8134   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
8135   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
8136 
8137   void print() const {
8138     // rounding control
8139     const char* rc;
8140     switch (rounding_control()) {
8141       case 0: rc = "round near"; break;
8142       case 1: rc = "round down"; break;
8143       case 2: rc = "round up  "; break;
8144       case 3: rc = "chop      "; break;
8145     };
8146     // precision control
8147     const char* pc;
8148     switch (precision_control()) {
8149       case 0: pc = "24 bits "; break;
8150       case 1: pc = "reserved"; break;
8151       case 2: pc = "53 bits "; break;
8152       case 3: pc = "64 bits "; break;
8153     };
8154     // flags
8155     char f[9];
8156     f[0] = ' ';
8157     f[1] = ' ';
8158     f[2] = (precision   ()) ? 'P' : 'p';
8159     f[3] = (underflow   ()) ? 'U' : 'u';
8160     f[4] = (overflow    ()) ? 'O' : 'o';
8161     f[5] = (zero_divide ()) ? 'Z' : 'z';
8162     f[6] = (denormalized()) ? 'D' : 'd';
8163     f[7] = (invalid     ()) ? 'I' : 'i';
8164     f[8] = '\x0';
8165     // output
8166     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
8167   }
8168 
8169 };
8170 
8171 class StatusWord {
8172  public:
8173   int32_t _value;
8174 
8175   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
8176   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
8177   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
8178   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
8179   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
8180   int  top() const                     { return  (_value >> 11) & 7      ; }
8181   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
8182   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
8183   bool precision() const               { return ((_value >>  5) & 1) != 0; }
8184   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
8185   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
8186   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
8187   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
8188   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
8189 
8190   void print() const {
8191     // condition codes
8192     char c[5];
8193     c[0] = (C3()) ? '3' : '-';
8194     c[1] = (C2()) ? '2' : '-';
8195     c[2] = (C1()) ? '1' : '-';
8196     c[3] = (C0()) ? '0' : '-';
8197     c[4] = '\x0';
8198     // flags
8199     char f[9];
8200     f[0] = (error_status()) ? 'E' : '-';
8201     f[1] = (stack_fault ()) ? 'S' : '-';
8202     f[2] = (precision   ()) ? 'P' : '-';
8203     f[3] = (underflow   ()) ? 'U' : '-';
8204     f[4] = (overflow    ()) ? 'O' : '-';
8205     f[5] = (zero_divide ()) ? 'Z' : '-';
8206     f[6] = (denormalized()) ? 'D' : '-';
8207     f[7] = (invalid     ()) ? 'I' : '-';
8208     f[8] = '\x0';
8209     // output
8210     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
8211   }
8212 
8213 };
8214 
8215 class TagWord {
8216  public:
8217   int32_t _value;
8218 
8219   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
8220 
8221   void print() const {
8222     printf("%04x", _value & 0xFFFF);
8223   }
8224 
8225 };
8226 
8227 class FPU_Register {
8228  public:
8229   int32_t _m0;
8230   int32_t _m1;
8231   int16_t _ex;
8232 
8233   bool is_indefinite() const           {
8234     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
8235   }
8236 
8237   void print() const {
8238     char  sign = (_ex < 0) ? '-' : '+';
8239     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
8240     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
8241   };
8242 
8243 };
8244 
8245 class FPU_State {
8246  public:
8247   enum {
8248     register_size       = 10,
8249     number_of_registers =  8,
8250     register_mask       =  7
8251   };
8252 
8253   ControlWord  _control_word;
8254   StatusWord   _status_word;
8255   TagWord      _tag_word;
8256   int32_t      _error_offset;
8257   int32_t      _error_selector;
8258   int32_t      _data_offset;
8259   int32_t      _data_selector;
8260   int8_t       _register[register_size * number_of_registers];
8261 
8262   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
8263   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
8264 
8265   const char* tag_as_string(int tag) const {
8266     switch (tag) {
8267       case 0: return "valid";
8268       case 1: return "zero";
8269       case 2: return "special";
8270       case 3: return "empty";
8271     }
8272     ShouldNotReachHere();
8273     return NULL;
8274   }
8275 
8276   void print() const {
8277     // print computation registers
8278     { int t = _status_word.top();
8279       for (int i = 0; i < number_of_registers; i++) {
8280         int j = (i - t) & register_mask;
8281         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
8282         st(j)->print();
8283         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
8284       }
8285     }
8286     printf("\n");
8287     // print control registers
8288     printf("ctrl = "); _control_word.print(); printf("\n");
8289     printf("stat = "); _status_word .print(); printf("\n");
8290     printf("tags = "); _tag_word    .print(); printf("\n");
8291   }
8292 
8293 };
8294 
8295 class Flag_Register {
8296  public:
8297   int32_t _value;
8298 
8299   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
8300   bool direction() const               { return ((_value >> 10) & 1) != 0; }
8301   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
8302   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
8303   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
8304   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
8305   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
8306 
8307   void print() const {
8308     // flags
8309     char f[8];
8310     f[0] = (overflow       ()) ? 'O' : '-';
8311     f[1] = (direction      ()) ? 'D' : '-';
8312     f[2] = (sign           ()) ? 'S' : '-';
8313     f[3] = (zero           ()) ? 'Z' : '-';
8314     f[4] = (auxiliary_carry()) ? 'A' : '-';
8315     f[5] = (parity         ()) ? 'P' : '-';
8316     f[6] = (carry          ()) ? 'C' : '-';
8317     f[7] = '\x0';
8318     // output
8319     printf("%08x  flags = %s", _value, f);
8320   }
8321 
8322 };
8323 
8324 class IU_Register {
8325  public:
8326   int32_t _value;
8327 
8328   void print() const {
8329     printf("%08x  %11d", _value, _value);
8330   }
8331 
8332 };
8333 
8334 class IU_State {
8335  public:
8336   Flag_Register _eflags;
8337   IU_Register   _rdi;
8338   IU_Register   _rsi;
8339   IU_Register   _rbp;
8340   IU_Register   _rsp;
8341   IU_Register   _rbx;
8342   IU_Register   _rdx;
8343   IU_Register   _rcx;
8344   IU_Register   _rax;
8345 
8346   void print() const {
8347     // computation registers
8348     printf("rax,  = "); _rax.print(); printf("\n");
8349     printf("rbx,  = "); _rbx.print(); printf("\n");
8350     printf("rcx  = "); _rcx.print(); printf("\n");
8351     printf("rdx  = "); _rdx.print(); printf("\n");
8352     printf("rdi  = "); _rdi.print(); printf("\n");
8353     printf("rsi  = "); _rsi.print(); printf("\n");
8354     printf("rbp,  = "); _rbp.print(); printf("\n");
8355     printf("rsp  = "); _rsp.print(); printf("\n");
8356     printf("\n");
8357     // control registers
8358     printf("flgs = "); _eflags.print(); printf("\n");
8359   }
8360 };
8361 
8362 
8363 class CPU_State {
8364  public:
8365   FPU_State _fpu_state;
8366   IU_State  _iu_state;
8367 
8368   void print() const {
8369     printf("--------------------------------------------------\n");
8370     _iu_state .print();
8371     printf("\n");
8372     _fpu_state.print();
8373     printf("--------------------------------------------------\n");
8374   }
8375 
8376 };
8377 
8378 
8379 static void _print_CPU_state(CPU_State* state) {
8380   state->print();
8381 };
8382 
8383 
8384 void MacroAssembler::print_CPU_state() {
8385   push_CPU_state();
8386   push(rsp);                // pass CPU state
8387   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
8388   addptr(rsp, wordSize);       // discard argument
8389   pop_CPU_state();
8390 }
8391 
8392 
8393 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
8394   static int counter = 0;
8395   FPU_State* fs = &state->_fpu_state;
8396   counter++;
8397   // For leaf calls, only verify that the top few elements remain empty.
8398   // We only need 1 empty at the top for C2 code.
8399   if( stack_depth < 0 ) {
8400     if( fs->tag_for_st(7) != 3 ) {
8401       printf("FPR7 not empty\n");
8402       state->print();
8403       assert(false, "error");
8404       return false;
8405     }
8406     return true;                // All other stack states do not matter
8407   }
8408 
8409   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
8410          "bad FPU control word");
8411 
8412   // compute stack depth
8413   int i = 0;
8414   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
8415   int d = i;
8416   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
8417   // verify findings
8418   if (i != FPU_State::number_of_registers) {
8419     // stack not contiguous
8420     printf("%s: stack not contiguous at ST%d\n", s, i);
8421     state->print();
8422     assert(false, "error");
8423     return false;
8424   }
8425   // check if computed stack depth corresponds to expected stack depth
8426   if (stack_depth < 0) {
8427     // expected stack depth is -stack_depth or less
8428     if (d > -stack_depth) {
8429       // too many elements on the stack
8430       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
8431       state->print();
8432       assert(false, "error");
8433       return false;
8434     }
8435   } else {
8436     // expected stack depth is stack_depth
8437     if (d != stack_depth) {
8438       // wrong stack depth
8439       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
8440       state->print();
8441       assert(false, "error");
8442       return false;
8443     }
8444   }
8445   // everything is cool
8446   return true;
8447 }
8448 
8449 
8450 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
8451   if (!VerifyFPU) return;
8452   push_CPU_state();
8453   push(rsp);                // pass CPU state
8454   ExternalAddress msg((address) s);
8455   // pass message string s
8456   pushptr(msg.addr());
8457   push(stack_depth);        // pass stack depth
8458   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
8459   addptr(rsp, 3 * wordSize);   // discard arguments
8460   // check for error
8461   { Label L;
8462     testl(rax, rax);
8463     jcc(Assembler::notZero, L);
8464     int3();                  // break if error condition
8465     bind(L);
8466   }
8467   pop_CPU_state();
8468 }
8469 
8470 void MacroAssembler::load_klass(Register dst, Register src) {
8471 #ifdef _LP64
8472   if (UseCompressedOops) {
8473     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8474     decode_heap_oop_not_null(dst);
8475   } else
8476 #endif
8477     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8478 }
8479 
8480 void MacroAssembler::load_prototype_header(Register dst, Register src) {
8481 #ifdef _LP64
8482   if (UseCompressedOops) {
8483     assert (Universe::heap() != NULL, "java heap should be initialized");
8484     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8485     if (Universe::narrow_oop_shift() != 0) {
8486       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8487       if (LogMinObjAlignmentInBytes == Address::times_8) {
8488         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8489       } else {
8490         // OK to use shift since we don't need to preserve flags.
8491         shlq(dst, LogMinObjAlignmentInBytes);
8492         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8493       }
8494     } else {
8495       movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8496     }
8497   } else
8498 #endif
8499   {
8500     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8501     movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8502   }
8503 }
8504 
8505 void MacroAssembler::store_klass(Register dst, Register src) {
8506 #ifdef _LP64
8507   if (UseCompressedOops) {
8508     encode_heap_oop_not_null(src);
8509     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
8510   } else
8511 #endif
8512     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
8513 }
8514 
8515 void MacroAssembler::load_heap_oop(Register dst, Address src) {
8516 #ifdef _LP64
8517   if (UseCompressedOops) {
8518     movl(dst, src);
8519     decode_heap_oop(dst);
8520   } else
8521 #endif
8522     movptr(dst, src);
8523 }
8524 
8525 // Doesn't do verfication, generates fixed size code
8526 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
8527 #ifdef _LP64
8528   if (UseCompressedOops) {
8529     movl(dst, src);
8530     decode_heap_oop_not_null(dst);
8531   } else
8532 #endif
8533     movptr(dst, src);
8534 }
8535 
8536 void MacroAssembler::store_heap_oop(Address dst, Register src) {
8537 #ifdef _LP64
8538   if (UseCompressedOops) {
8539     assert(!dst.uses(src), "not enough registers");
8540     encode_heap_oop(src);
8541     movl(dst, src);
8542   } else
8543 #endif
8544     movptr(dst, src);
8545 }
8546 
8547 // Used for storing NULLs.
8548 void MacroAssembler::store_heap_oop_null(Address dst) {
8549 #ifdef _LP64
8550   if (UseCompressedOops) {
8551     movl(dst, (int32_t)NULL_WORD);
8552   } else {
8553     movslq(dst, (int32_t)NULL_WORD);
8554   }
8555 #else
8556   movl(dst, (int32_t)NULL_WORD);
8557 #endif
8558 }
8559 
8560 #ifdef _LP64
8561 void MacroAssembler::store_klass_gap(Register dst, Register src) {
8562   if (UseCompressedOops) {
8563     // Store to klass gap in destination
8564     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
8565   }
8566 }
8567 
8568 #ifdef ASSERT
8569 void MacroAssembler::verify_heapbase(const char* msg) {
8570   assert (UseCompressedOops, "should be compressed");
8571   assert (Universe::heap() != NULL, "java heap should be initialized");
8572   if (CheckCompressedOops) {
8573     Label ok;
8574     push(rscratch1); // cmpptr trashes rscratch1
8575     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
8576     jcc(Assembler::equal, ok);
8577     stop(msg);
8578     bind(ok);
8579     pop(rscratch1);
8580   }
8581 }
8582 #endif
8583 
8584 // Algorithm must match oop.inline.hpp encode_heap_oop.
8585 void MacroAssembler::encode_heap_oop(Register r) {
8586 #ifdef ASSERT
8587   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
8588 #endif
8589   verify_oop(r, "broken oop in encode_heap_oop");
8590   if (Universe::narrow_oop_base() == NULL) {
8591     if (Universe::narrow_oop_shift() != 0) {
8592       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8593       shrq(r, LogMinObjAlignmentInBytes);
8594     }
8595     return;
8596   }
8597   testq(r, r);
8598   cmovq(Assembler::equal, r, r12_heapbase);
8599   subq(r, r12_heapbase);
8600   shrq(r, LogMinObjAlignmentInBytes);
8601 }
8602 
8603 void MacroAssembler::encode_heap_oop_not_null(Register r) {
8604 #ifdef ASSERT
8605   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
8606   if (CheckCompressedOops) {
8607     Label ok;
8608     testq(r, r);
8609     jcc(Assembler::notEqual, ok);
8610     stop("null oop passed to encode_heap_oop_not_null");
8611     bind(ok);
8612   }
8613 #endif
8614   verify_oop(r, "broken oop in encode_heap_oop_not_null");
8615   if (Universe::narrow_oop_base() != NULL) {
8616     subq(r, r12_heapbase);
8617   }
8618   if (Universe::narrow_oop_shift() != 0) {
8619     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8620     shrq(r, LogMinObjAlignmentInBytes);
8621   }
8622 }
8623 
8624 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
8625 #ifdef ASSERT
8626   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
8627   if (CheckCompressedOops) {
8628     Label ok;
8629     testq(src, src);
8630     jcc(Assembler::notEqual, ok);
8631     stop("null oop passed to encode_heap_oop_not_null2");
8632     bind(ok);
8633   }
8634 #endif
8635   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
8636   if (dst != src) {
8637     movq(dst, src);
8638   }
8639   if (Universe::narrow_oop_base() != NULL) {
8640     subq(dst, r12_heapbase);
8641   }
8642   if (Universe::narrow_oop_shift() != 0) {
8643     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8644     shrq(dst, LogMinObjAlignmentInBytes);
8645   }
8646 }
8647 
8648 void  MacroAssembler::decode_heap_oop(Register r) {
8649 #ifdef ASSERT
8650   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
8651 #endif
8652   if (Universe::narrow_oop_base() == NULL) {
8653     if (Universe::narrow_oop_shift() != 0) {
8654       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8655       shlq(r, LogMinObjAlignmentInBytes);
8656     }
8657   } else {
8658     Label done;
8659     shlq(r, LogMinObjAlignmentInBytes);
8660     jccb(Assembler::equal, done);
8661     addq(r, r12_heapbase);
8662     bind(done);
8663   }
8664   verify_oop(r, "broken oop in decode_heap_oop");
8665 }
8666 
8667 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
8668   // Note: it will change flags
8669   assert (UseCompressedOops, "should only be used for compressed headers");
8670   assert (Universe::heap() != NULL, "java heap should be initialized");
8671   // Cannot assert, unverified entry point counts instructions (see .ad file)
8672   // vtableStubs also counts instructions in pd_code_size_limit.
8673   // Also do not verify_oop as this is called by verify_oop.
8674   if (Universe::narrow_oop_shift() != 0) {
8675     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8676     shlq(r, LogMinObjAlignmentInBytes);
8677     if (Universe::narrow_oop_base() != NULL) {
8678       addq(r, r12_heapbase);
8679     }
8680   } else {
8681     assert (Universe::narrow_oop_base() == NULL, "sanity");
8682   }
8683 }
8684 
8685 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
8686   // Note: it will change flags
8687   assert (UseCompressedOops, "should only be used for compressed headers");
8688   assert (Universe::heap() != NULL, "java heap should be initialized");
8689   // Cannot assert, unverified entry point counts instructions (see .ad file)
8690   // vtableStubs also counts instructions in pd_code_size_limit.
8691   // Also do not verify_oop as this is called by verify_oop.
8692   if (Universe::narrow_oop_shift() != 0) {
8693     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8694     if (LogMinObjAlignmentInBytes == Address::times_8) {
8695       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
8696     } else {
8697       if (dst != src) {
8698         movq(dst, src);
8699       }
8700       shlq(dst, LogMinObjAlignmentInBytes);
8701       if (Universe::narrow_oop_base() != NULL) {
8702         addq(dst, r12_heapbase);
8703       }
8704     }
8705   } else {
8706     assert (Universe::narrow_oop_base() == NULL, "sanity");
8707     if (dst != src) {
8708       movq(dst, src);
8709     }
8710   }
8711 }
8712 
8713 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
8714   assert (UseCompressedOops, "should only be used for compressed headers");
8715   assert (Universe::heap() != NULL, "java heap should be initialized");
8716   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8717   int oop_index = oop_recorder()->find_index(obj);
8718   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8719   mov_narrow_oop(dst, oop_index, rspec);
8720 }
8721 
8722 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
8723   assert (UseCompressedOops, "should only be used for compressed headers");
8724   assert (Universe::heap() != NULL, "java heap should be initialized");
8725   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8726   int oop_index = oop_recorder()->find_index(obj);
8727   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8728   mov_narrow_oop(dst, oop_index, rspec);
8729 }
8730 
8731 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
8732   assert (UseCompressedOops, "should only be used for compressed headers");
8733   assert (Universe::heap() != NULL, "java heap should be initialized");
8734   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8735   int oop_index = oop_recorder()->find_index(obj);
8736   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8737   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
8738 }
8739 
8740 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
8741   assert (UseCompressedOops, "should only be used for compressed headers");
8742   assert (Universe::heap() != NULL, "java heap should be initialized");
8743   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8744   int oop_index = oop_recorder()->find_index(obj);
8745   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8746   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
8747 }
8748 
8749 void MacroAssembler::reinit_heapbase() {
8750   if (UseCompressedOops) {
8751     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
8752   }
8753 }
8754 #endif // _LP64
8755 
8756 // IndexOf for constant substrings with size >= 8 chars
8757 // which don't need to be loaded through stack.
8758 void MacroAssembler::string_indexofC8(Register str1, Register str2,
8759                                       Register cnt1, Register cnt2,
8760                                       int int_cnt2,  Register result,
8761                                       XMMRegister vec, Register tmp) {
8762   assert(UseSSE42Intrinsics, "SSE4.2 is required");
8763 
8764   // This method uses pcmpestri inxtruction with bound registers
8765   //   inputs:
8766   //     xmm - substring
8767   //     rax - substring length (elements count)
8768   //     mem - scanned string
8769   //     rdx - string length (elements count)
8770   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
8771   //   outputs:
8772   //     rcx - matched index in string
8773   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
8774 
8775   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
8776         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
8777         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
8778 
8779   // Note, inline_string_indexOf() generates checks:
8780   // if (substr.count > string.count) return -1;
8781   // if (substr.count == 0) return 0;
8782   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
8783 
8784   // Load substring.
8785   movdqu(vec, Address(str2, 0));
8786   movl(cnt2, int_cnt2);
8787   movptr(result, str1); // string addr
8788 
8789   if (int_cnt2 > 8) {
8790     jmpb(SCAN_TO_SUBSTR);
8791 
8792     // Reload substr for rescan, this code
8793     // is executed only for large substrings (> 8 chars)
8794     bind(RELOAD_SUBSTR);
8795     movdqu(vec, Address(str2, 0));
8796     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
8797 
8798     bind(RELOAD_STR);
8799     // We came here after the beginning of the substring was
8800     // matched but the rest of it was not so we need to search
8801     // again. Start from the next element after the previous match.
8802 
8803     // cnt2 is number of substring reminding elements and
8804     // cnt1 is number of string reminding elements when cmp failed.
8805     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
8806     subl(cnt1, cnt2);
8807     addl(cnt1, int_cnt2);
8808     movl(cnt2, int_cnt2); // Now restore cnt2
8809 
8810     decrementl(cnt1);     // Shift to next element
8811     cmpl(cnt1, cnt2);
8812     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
8813 
8814     addptr(result, 2);
8815 
8816   } // (int_cnt2 > 8)
8817 
8818   // Scan string for start of substr in 16-byte vectors
8819   bind(SCAN_TO_SUBSTR);
8820   pcmpestri(vec, Address(result, 0), 0x0d);
8821   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
8822   subl(cnt1, 8);
8823   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
8824   cmpl(cnt1, cnt2);
8825   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
8826   addptr(result, 16);
8827   jmpb(SCAN_TO_SUBSTR);
8828 
8829   // Found a potential substr
8830   bind(FOUND_CANDIDATE);
8831   // Matched whole vector if first element matched (tmp(rcx) == 0).
8832   if (int_cnt2 == 8) {
8833     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
8834   } else { // int_cnt2 > 8
8835     jccb(Assembler::overflow, FOUND_SUBSTR);
8836   }
8837   // After pcmpestri tmp(rcx) contains matched element index
8838   // Compute start addr of substr
8839   lea(result, Address(result, tmp, Address::times_2));
8840 
8841   // Make sure string is still long enough
8842   subl(cnt1, tmp);
8843   cmpl(cnt1, cnt2);
8844   if (int_cnt2 == 8) {
8845     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
8846   } else { // int_cnt2 > 8
8847     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
8848   }
8849   // Left less then substring.
8850 
8851   bind(RET_NOT_FOUND);
8852   movl(result, -1);
8853   jmpb(EXIT);
8854 
8855   if (int_cnt2 > 8) {
8856     // This code is optimized for the case when whole substring
8857     // is matched if its head is matched.
8858     bind(MATCH_SUBSTR_HEAD);
8859     pcmpestri(vec, Address(result, 0), 0x0d);
8860     // Reload only string if does not match
8861     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
8862 
8863     Label CONT_SCAN_SUBSTR;
8864     // Compare the rest of substring (> 8 chars).
8865     bind(FOUND_SUBSTR);
8866     // First 8 chars are already matched.
8867     negptr(cnt2);
8868     addptr(cnt2, 8);
8869 
8870     bind(SCAN_SUBSTR);
8871     subl(cnt1, 8);
8872     cmpl(cnt2, -8); // Do not read beyond substring
8873     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
8874     // Back-up strings to avoid reading beyond substring:
8875     // cnt1 = cnt1 - cnt2 + 8
8876     addl(cnt1, cnt2); // cnt2 is negative
8877     addl(cnt1, 8);
8878     movl(cnt2, 8); negptr(cnt2);
8879     bind(CONT_SCAN_SUBSTR);
8880     if (int_cnt2 < (int)G) {
8881       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
8882       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
8883     } else {
8884       // calculate index in register to avoid integer overflow (int_cnt2*2)
8885       movl(tmp, int_cnt2);
8886       addptr(tmp, cnt2);
8887       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
8888       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
8889     }
8890     // Need to reload strings pointers if not matched whole vector
8891     jccb(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
8892     addptr(cnt2, 8);
8893     jccb(Assembler::negative, SCAN_SUBSTR);
8894     // Fall through if found full substring
8895 
8896   } // (int_cnt2 > 8)
8897 
8898   bind(RET_FOUND);
8899   // Found result if we matched full small substring.
8900   // Compute substr offset
8901   subptr(result, str1);
8902   shrl(result, 1); // index
8903   bind(EXIT);
8904 
8905 } // string_indexofC8
8906 
8907 // Small strings are loaded through stack if they cross page boundary.
8908 void MacroAssembler::string_indexof(Register str1, Register str2,
8909                                     Register cnt1, Register cnt2,
8910                                     int int_cnt2,  Register result,
8911                                     XMMRegister vec, Register tmp) {
8912   assert(UseSSE42Intrinsics, "SSE4.2 is required");
8913   //
8914   // int_cnt2 is length of small (< 8 chars) constant substring
8915   // or (-1) for non constant substring in which case its length
8916   // is in cnt2 register.
8917   //
8918   // Note, inline_string_indexOf() generates checks:
8919   // if (substr.count > string.count) return -1;
8920   // if (substr.count == 0) return 0;
8921   //
8922   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
8923 
8924   // This method uses pcmpestri inxtruction with bound registers
8925   //   inputs:
8926   //     xmm - substring
8927   //     rax - substring length (elements count)
8928   //     mem - scanned string
8929   //     rdx - string length (elements count)
8930   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
8931   //   outputs:
8932   //     rcx - matched index in string
8933   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
8934 
8935   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
8936         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
8937         FOUND_CANDIDATE;
8938 
8939   { //========================================================
8940     // We don't know where these strings are located
8941     // and we can't read beyond them. Load them through stack.
8942     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
8943 
8944     movptr(tmp, rsp); // save old SP
8945 
8946     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
8947       if (int_cnt2 == 1) {  // One char
8948         load_unsigned_short(result, Address(str2, 0));
8949         movdl(vec, result); // move 32 bits
8950       } else if (int_cnt2 == 2) { // Two chars
8951         movdl(vec, Address(str2, 0)); // move 32 bits
8952       } else if (int_cnt2 == 4) { // Four chars
8953         movq(vec, Address(str2, 0));  // move 64 bits
8954       } else { // cnt2 = { 3, 5, 6, 7 }
8955         // Array header size is 12 bytes in 32-bit VM
8956         // + 6 bytes for 3 chars == 18 bytes,
8957         // enough space to load vec and shift.
8958         assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
8959         movdqu(vec, Address(str2, (int_cnt2*2)-16));
8960         psrldq(vec, 16-(int_cnt2*2));
8961       }
8962     } else { // not constant substring
8963       cmpl(cnt2, 8);
8964       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
8965 
8966       // We can read beyond string if srt+16 does not cross page boundary
8967       // since heaps are aligned and mapped by pages.
8968       assert(os::vm_page_size() < (int)G, "default page should be small");
8969       movl(result, str2); // We need only low 32 bits
8970       andl(result, (os::vm_page_size()-1));
8971       cmpl(result, (os::vm_page_size()-16));
8972       jccb(Assembler::belowEqual, CHECK_STR);
8973 
8974       // Move small strings to stack to allow load 16 bytes into vec.
8975       subptr(rsp, 16);
8976       int stk_offset = wordSize-2;
8977       push(cnt2);
8978 
8979       bind(COPY_SUBSTR);
8980       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
8981       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
8982       decrement(cnt2);
8983       jccb(Assembler::notZero, COPY_SUBSTR);
8984 
8985       pop(cnt2);
8986       movptr(str2, rsp);  // New substring address
8987     } // non constant
8988 
8989     bind(CHECK_STR);
8990     cmpl(cnt1, 8);
8991     jccb(Assembler::aboveEqual, BIG_STRINGS);
8992 
8993     // Check cross page boundary.
8994     movl(result, str1); // We need only low 32 bits
8995     andl(result, (os::vm_page_size()-1));
8996     cmpl(result, (os::vm_page_size()-16));
8997     jccb(Assembler::belowEqual, BIG_STRINGS);
8998 
8999     subptr(rsp, 16);
9000     int stk_offset = -2;
9001     if (int_cnt2 < 0) { // not constant
9002       push(cnt2);
9003       stk_offset += wordSize;
9004     }
9005     movl(cnt2, cnt1);
9006 
9007     bind(COPY_STR);
9008     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
9009     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
9010     decrement(cnt2);
9011     jccb(Assembler::notZero, COPY_STR);
9012 
9013     if (int_cnt2 < 0) { // not constant
9014       pop(cnt2);
9015     }
9016     movptr(str1, rsp);  // New string address
9017 
9018     bind(BIG_STRINGS);
9019     // Load substring.
9020     if (int_cnt2 < 0) { // -1
9021       movdqu(vec, Address(str2, 0));
9022       push(cnt2);       // substr count
9023       push(str2);       // substr addr
9024       push(str1);       // string addr
9025     } else {
9026       // Small (< 8 chars) constant substrings are loaded already.
9027       movl(cnt2, int_cnt2);
9028     }
9029     push(tmp);  // original SP
9030 
9031   } // Finished loading
9032 
9033   //========================================================
9034   // Start search
9035   //
9036 
9037   movptr(result, str1); // string addr
9038 
9039   if (int_cnt2  < 0) {  // Only for non constant substring
9040     jmpb(SCAN_TO_SUBSTR);
9041 
9042     // SP saved at sp+0
9043     // String saved at sp+1*wordSize
9044     // Substr saved at sp+2*wordSize
9045     // Substr count saved at sp+3*wordSize
9046 
9047     // Reload substr for rescan, this code
9048     // is executed only for large substrings (> 8 chars)
9049     bind(RELOAD_SUBSTR);
9050     movptr(str2, Address(rsp, 2*wordSize));
9051     movl(cnt2, Address(rsp, 3*wordSize));
9052     movdqu(vec, Address(str2, 0));
9053     // We came here after the beginning of the substring was
9054     // matched but the rest of it was not so we need to search
9055     // again. Start from the next element after the previous match.
9056     subptr(str1, result); // Restore counter
9057     shrl(str1, 1);
9058     addl(cnt1, str1);
9059     decrementl(cnt1);   // Shift to next element
9060     cmpl(cnt1, cnt2);
9061     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
9062 
9063     addptr(result, 2);
9064   } // non constant
9065 
9066   // Scan string for start of substr in 16-byte vectors
9067   bind(SCAN_TO_SUBSTR);
9068   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
9069   pcmpestri(vec, Address(result, 0), 0x0d);
9070   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
9071   subl(cnt1, 8);
9072   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
9073   cmpl(cnt1, cnt2);
9074   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
9075   addptr(result, 16);
9076 
9077   bind(ADJUST_STR);
9078   cmpl(cnt1, 8); // Do not read beyond string
9079   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
9080   // Back-up string to avoid reading beyond string.
9081   lea(result, Address(result, cnt1, Address::times_2, -16));
9082   movl(cnt1, 8);
9083   jmpb(SCAN_TO_SUBSTR);
9084 
9085   // Found a potential substr
9086   bind(FOUND_CANDIDATE);
9087   // After pcmpestri tmp(rcx) contains matched element index
9088 
9089   // Make sure string is still long enough
9090   subl(cnt1, tmp);
9091   cmpl(cnt1, cnt2);
9092   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
9093   // Left less then substring.
9094 
9095   bind(RET_NOT_FOUND);
9096   movl(result, -1);
9097   jmpb(CLEANUP);
9098 
9099   bind(FOUND_SUBSTR);
9100   // Compute start addr of substr
9101   lea(result, Address(result, tmp, Address::times_2));
9102 
9103   if (int_cnt2 > 0) { // Constant substring
9104     // Repeat search for small substring (< 8 chars)
9105     // from new point without reloading substring.
9106     // Have to check that we don't read beyond string.
9107     cmpl(tmp, 8-int_cnt2);
9108     jccb(Assembler::greater, ADJUST_STR);
9109     // Fall through if matched whole substring.
9110   } else { // non constant
9111     assert(int_cnt2 == -1, "should be != 0");
9112 
9113     addl(tmp, cnt2);
9114     // Found result if we matched whole substring.
9115     cmpl(tmp, 8);
9116     jccb(Assembler::lessEqual, RET_FOUND);
9117 
9118     // Repeat search for small substring (<= 8 chars)
9119     // from new point 'str1' without reloading substring.
9120     cmpl(cnt2, 8);
9121     // Have to check that we don't read beyond string.
9122     jccb(Assembler::lessEqual, ADJUST_STR);
9123 
9124     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
9125     // Compare the rest of substring (> 8 chars).
9126     movptr(str1, result);
9127 
9128     cmpl(tmp, cnt2);
9129     // First 8 chars are already matched.
9130     jccb(Assembler::equal, CHECK_NEXT);
9131 
9132     bind(SCAN_SUBSTR);
9133     pcmpestri(vec, Address(str1, 0), 0x0d);
9134     // Need to reload strings pointers if not matched whole vector
9135     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
9136 
9137     bind(CHECK_NEXT);
9138     subl(cnt2, 8);
9139     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
9140     addptr(str1, 16);
9141     addptr(str2, 16);
9142     subl(cnt1, 8);
9143     cmpl(cnt2, 8); // Do not read beyond substring
9144     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
9145     // Back-up strings to avoid reading beyond substring.
9146     lea(str2, Address(str2, cnt2, Address::times_2, -16));
9147     lea(str1, Address(str1, cnt2, Address::times_2, -16));
9148     subl(cnt1, cnt2);
9149     movl(cnt2, 8);
9150     addl(cnt1, 8);
9151     bind(CONT_SCAN_SUBSTR);
9152     movdqu(vec, Address(str2, 0));
9153     jmpb(SCAN_SUBSTR);
9154 
9155     bind(RET_FOUND_LONG);
9156     movptr(str1, Address(rsp, wordSize));
9157   } // non constant
9158 
9159   bind(RET_FOUND);
9160   // Compute substr offset
9161   subptr(result, str1);
9162   shrl(result, 1); // index
9163 
9164   bind(CLEANUP);
9165   pop(rsp); // restore SP
9166 
9167 } // string_indexof
9168 
9169 // Compare strings.
9170 void MacroAssembler::string_compare(Register str1, Register str2,
9171                                     Register cnt1, Register cnt2, Register result,
9172                                     XMMRegister vec1) {
9173   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
9174 
9175   // Compute the minimum of the string lengths and the
9176   // difference of the string lengths (stack).
9177   // Do the conditional move stuff
9178   movl(result, cnt1);
9179   subl(cnt1, cnt2);
9180   push(cnt1);
9181   cmov32(Assembler::lessEqual, cnt2, result);
9182 
9183   // Is the minimum length zero?
9184   testl(cnt2, cnt2);
9185   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
9186 
9187   // Load first characters
9188   load_unsigned_short(result, Address(str1, 0));
9189   load_unsigned_short(cnt1, Address(str2, 0));
9190 
9191   // Compare first characters
9192   subl(result, cnt1);
9193   jcc(Assembler::notZero,  POP_LABEL);
9194   decrementl(cnt2);
9195   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
9196 
9197   {
9198     // Check after comparing first character to see if strings are equivalent
9199     Label LSkip2;
9200     // Check if the strings start at same location
9201     cmpptr(str1, str2);
9202     jccb(Assembler::notEqual, LSkip2);
9203 
9204     // Check if the length difference is zero (from stack)
9205     cmpl(Address(rsp, 0), 0x0);
9206     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
9207 
9208     // Strings might not be equivalent
9209     bind(LSkip2);
9210   }
9211 
9212   Address::ScaleFactor scale = Address::times_2;
9213   int stride = 8;
9214 
9215   // Advance to next element
9216   addptr(str1, 16/stride);
9217   addptr(str2, 16/stride);
9218 
9219   if (UseSSE42Intrinsics) {
9220     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
9221     int pcmpmask = 0x19;
9222     // Setup to compare 16-byte vectors
9223     movl(result, cnt2);
9224     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
9225     jccb(Assembler::zero, COMPARE_TAIL);
9226 
9227     lea(str1, Address(str1, result, scale));
9228     lea(str2, Address(str2, result, scale));
9229     negptr(result);
9230 
9231     // pcmpestri
9232     //   inputs:
9233     //     vec1- substring
9234     //     rax - negative string length (elements count)
9235     //     mem - scaned string
9236     //     rdx - string length (elements count)
9237     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
9238     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
9239     //   outputs:
9240     //     rcx - first mismatched element index
9241     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
9242 
9243     bind(COMPARE_WIDE_VECTORS);
9244     movdqu(vec1, Address(str1, result, scale));
9245     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
9246     // After pcmpestri cnt1(rcx) contains mismatched element index
9247 
9248     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
9249     addptr(result, stride);
9250     subptr(cnt2, stride);
9251     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
9252 
9253     // compare wide vectors tail
9254     testl(result, result);
9255     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
9256 
9257     movl(cnt2, stride);
9258     movl(result, stride);
9259     negptr(result);
9260     movdqu(vec1, Address(str1, result, scale));
9261     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
9262     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
9263 
9264     // Mismatched characters in the vectors
9265     bind(VECTOR_NOT_EQUAL);
9266     addptr(result, cnt1);
9267     movptr(cnt2, result);
9268     load_unsigned_short(result, Address(str1, cnt2, scale));
9269     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
9270     subl(result, cnt1);
9271     jmpb(POP_LABEL);
9272 
9273     bind(COMPARE_TAIL); // limit is zero
9274     movl(cnt2, result);
9275     // Fallthru to tail compare
9276   }
9277 
9278   // Shift str2 and str1 to the end of the arrays, negate min
9279   lea(str1, Address(str1, cnt2, scale, 0));
9280   lea(str2, Address(str2, cnt2, scale, 0));
9281   negptr(cnt2);
9282 
9283   // Compare the rest of the elements
9284   bind(WHILE_HEAD_LABEL);
9285   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
9286   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
9287   subl(result, cnt1);
9288   jccb(Assembler::notZero, POP_LABEL);
9289   increment(cnt2);
9290   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
9291 
9292   // Strings are equal up to min length.  Return the length difference.
9293   bind(LENGTH_DIFF_LABEL);
9294   pop(result);
9295   jmpb(DONE_LABEL);
9296 
9297   // Discard the stored length difference
9298   bind(POP_LABEL);
9299   pop(cnt1);
9300 
9301   // That's it
9302   bind(DONE_LABEL);
9303 }
9304 
9305 // Compare char[] arrays aligned to 4 bytes or substrings.
9306 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
9307                                         Register limit, Register result, Register chr,
9308                                         XMMRegister vec1, XMMRegister vec2) {
9309   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
9310 
9311   int length_offset  = arrayOopDesc::length_offset_in_bytes();
9312   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
9313 
9314   // Check the input args
9315   cmpptr(ary1, ary2);
9316   jcc(Assembler::equal, TRUE_LABEL);
9317 
9318   if (is_array_equ) {
9319     // Need additional checks for arrays_equals.
9320     testptr(ary1, ary1);
9321     jcc(Assembler::zero, FALSE_LABEL);
9322     testptr(ary2, ary2);
9323     jcc(Assembler::zero, FALSE_LABEL);
9324 
9325     // Check the lengths
9326     movl(limit, Address(ary1, length_offset));
9327     cmpl(limit, Address(ary2, length_offset));
9328     jcc(Assembler::notEqual, FALSE_LABEL);
9329   }
9330 
9331   // count == 0
9332   testl(limit, limit);
9333   jcc(Assembler::zero, TRUE_LABEL);
9334 
9335   if (is_array_equ) {
9336     // Load array address
9337     lea(ary1, Address(ary1, base_offset));
9338     lea(ary2, Address(ary2, base_offset));
9339   }
9340 
9341   shll(limit, 1);      // byte count != 0
9342   movl(result, limit); // copy
9343 
9344   if (UseSSE42Intrinsics) {
9345     // With SSE4.2, use double quad vector compare
9346     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
9347 
9348     // Compare 16-byte vectors
9349     andl(result, 0x0000000e);  //   tail count (in bytes)
9350     andl(limit, 0xfffffff0);   // vector count (in bytes)
9351     jccb(Assembler::zero, COMPARE_TAIL);
9352 
9353     lea(ary1, Address(ary1, limit, Address::times_1));
9354     lea(ary2, Address(ary2, limit, Address::times_1));
9355     negptr(limit);
9356 
9357     bind(COMPARE_WIDE_VECTORS);
9358     movdqu(vec1, Address(ary1, limit, Address::times_1));
9359     movdqu(vec2, Address(ary2, limit, Address::times_1));
9360     pxor(vec1, vec2);
9361 
9362     ptest(vec1, vec1);
9363     jccb(Assembler::notZero, FALSE_LABEL);
9364     addptr(limit, 16);
9365     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
9366 
9367     testl(result, result);
9368     jccb(Assembler::zero, TRUE_LABEL);
9369 
9370     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
9371     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
9372     pxor(vec1, vec2);
9373 
9374     ptest(vec1, vec1);
9375     jccb(Assembler::notZero, FALSE_LABEL);
9376     jmpb(TRUE_LABEL);
9377 
9378     bind(COMPARE_TAIL); // limit is zero
9379     movl(limit, result);
9380     // Fallthru to tail compare
9381   }
9382 
9383   // Compare 4-byte vectors
9384   andl(limit, 0xfffffffc); // vector count (in bytes)
9385   jccb(Assembler::zero, COMPARE_CHAR);
9386 
9387   lea(ary1, Address(ary1, limit, Address::times_1));
9388   lea(ary2, Address(ary2, limit, Address::times_1));
9389   negptr(limit);
9390 
9391   bind(COMPARE_VECTORS);
9392   movl(chr, Address(ary1, limit, Address::times_1));
9393   cmpl(chr, Address(ary2, limit, Address::times_1));
9394   jccb(Assembler::notEqual, FALSE_LABEL);
9395   addptr(limit, 4);
9396   jcc(Assembler::notZero, COMPARE_VECTORS);
9397 
9398   // Compare trailing char (final 2 bytes), if any
9399   bind(COMPARE_CHAR);
9400   testl(result, 0x2);   // tail  char
9401   jccb(Assembler::zero, TRUE_LABEL);
9402   load_unsigned_short(chr, Address(ary1, 0));
9403   load_unsigned_short(limit, Address(ary2, 0));
9404   cmpl(chr, limit);
9405   jccb(Assembler::notEqual, FALSE_LABEL);
9406 
9407   bind(TRUE_LABEL);
9408   movl(result, 1);   // return true
9409   jmpb(DONE);
9410 
9411   bind(FALSE_LABEL);
9412   xorl(result, result); // return false
9413 
9414   // That's it
9415   bind(DONE);
9416 }
9417 
9418 #ifdef PRODUCT
9419 #define BLOCK_COMMENT(str) /* nothing */
9420 #else
9421 #define BLOCK_COMMENT(str) block_comment(str)
9422 #endif
9423 
9424 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
9425 void MacroAssembler::generate_fill(BasicType t, bool aligned,
9426                                    Register to, Register value, Register count,
9427                                    Register rtmp, XMMRegister xtmp) {
9428   assert_different_registers(to, value, count, rtmp);
9429   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
9430   Label L_fill_2_bytes, L_fill_4_bytes;
9431 
9432   int shift = -1;
9433   switch (t) {
9434     case T_BYTE:
9435       shift = 2;
9436       break;
9437     case T_SHORT:
9438       shift = 1;
9439       break;
9440     case T_INT:
9441       shift = 0;
9442       break;
9443     default: ShouldNotReachHere();
9444   }
9445 
9446   if (t == T_BYTE) {
9447     andl(value, 0xff);
9448     movl(rtmp, value);
9449     shll(rtmp, 8);
9450     orl(value, rtmp);
9451   }
9452   if (t == T_SHORT) {
9453     andl(value, 0xffff);
9454   }
9455   if (t == T_BYTE || t == T_SHORT) {
9456     movl(rtmp, value);
9457     shll(rtmp, 16);
9458     orl(value, rtmp);
9459   }
9460 
9461   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
9462   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
9463   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
9464     // align source address at 4 bytes address boundary
9465     if (t == T_BYTE) {
9466       // One byte misalignment happens only for byte arrays
9467       testptr(to, 1);
9468       jccb(Assembler::zero, L_skip_align1);
9469       movb(Address(to, 0), value);
9470       increment(to);
9471       decrement(count);
9472       BIND(L_skip_align1);
9473     }
9474     // Two bytes misalignment happens only for byte and short (char) arrays
9475     testptr(to, 2);
9476     jccb(Assembler::zero, L_skip_align2);
9477     movw(Address(to, 0), value);
9478     addptr(to, 2);
9479     subl(count, 1<<(shift-1));
9480     BIND(L_skip_align2);
9481   }
9482   if (UseSSE < 2) {
9483     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
9484     // Fill 32-byte chunks
9485     subl(count, 8 << shift);
9486     jcc(Assembler::less, L_check_fill_8_bytes);
9487     align(16);
9488 
9489     BIND(L_fill_32_bytes_loop);
9490 
9491     for (int i = 0; i < 32; i += 4) {
9492       movl(Address(to, i), value);
9493     }
9494 
9495     addptr(to, 32);
9496     subl(count, 8 << shift);
9497     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
9498     BIND(L_check_fill_8_bytes);
9499     addl(count, 8 << shift);
9500     jccb(Assembler::zero, L_exit);
9501     jmpb(L_fill_8_bytes);
9502 
9503     //
9504     // length is too short, just fill qwords
9505     //
9506     BIND(L_fill_8_bytes_loop);
9507     movl(Address(to, 0), value);
9508     movl(Address(to, 4), value);
9509     addptr(to, 8);
9510     BIND(L_fill_8_bytes);
9511     subl(count, 1 << (shift + 1));
9512     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
9513     // fall through to fill 4 bytes
9514   } else {
9515     Label L_fill_32_bytes;
9516     if (!UseUnalignedLoadStores) {
9517       // align to 8 bytes, we know we are 4 byte aligned to start
9518       testptr(to, 4);
9519       jccb(Assembler::zero, L_fill_32_bytes);
9520       movl(Address(to, 0), value);
9521       addptr(to, 4);
9522       subl(count, 1<<shift);
9523     }
9524     BIND(L_fill_32_bytes);
9525     {
9526       assert( UseSSE >= 2, "supported cpu only" );
9527       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
9528       // Fill 32-byte chunks
9529       movdl(xtmp, value);
9530       pshufd(xtmp, xtmp, 0);
9531 
9532       subl(count, 8 << shift);
9533       jcc(Assembler::less, L_check_fill_8_bytes);
9534       align(16);
9535 
9536       BIND(L_fill_32_bytes_loop);
9537 
9538       if (UseUnalignedLoadStores) {
9539         movdqu(Address(to, 0), xtmp);
9540         movdqu(Address(to, 16), xtmp);
9541       } else {
9542         movq(Address(to, 0), xtmp);
9543         movq(Address(to, 8), xtmp);
9544         movq(Address(to, 16), xtmp);
9545         movq(Address(to, 24), xtmp);
9546       }
9547 
9548       addptr(to, 32);
9549       subl(count, 8 << shift);
9550       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
9551       BIND(L_check_fill_8_bytes);
9552       addl(count, 8 << shift);
9553       jccb(Assembler::zero, L_exit);
9554       jmpb(L_fill_8_bytes);
9555 
9556       //
9557       // length is too short, just fill qwords
9558       //
9559       BIND(L_fill_8_bytes_loop);
9560       movq(Address(to, 0), xtmp);
9561       addptr(to, 8);
9562       BIND(L_fill_8_bytes);
9563       subl(count, 1 << (shift + 1));
9564       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
9565     }
9566   }
9567   // fill trailing 4 bytes
9568   BIND(L_fill_4_bytes);
9569   testl(count, 1<<shift);
9570   jccb(Assembler::zero, L_fill_2_bytes);
9571   movl(Address(to, 0), value);
9572   if (t == T_BYTE || t == T_SHORT) {
9573     addptr(to, 4);
9574     BIND(L_fill_2_bytes);
9575     // fill trailing 2 bytes
9576     testl(count, 1<<(shift-1));
9577     jccb(Assembler::zero, L_fill_byte);
9578     movw(Address(to, 0), value);
9579     if (t == T_BYTE) {
9580       addptr(to, 2);
9581       BIND(L_fill_byte);
9582       // fill trailing byte
9583       testl(count, 1);
9584       jccb(Assembler::zero, L_exit);
9585       movb(Address(to, 0), value);
9586     } else {
9587       BIND(L_fill_byte);
9588     }
9589   } else {
9590     BIND(L_fill_2_bytes);
9591   }
9592   BIND(L_exit);
9593 }
9594 #undef BIND
9595 #undef BLOCK_COMMENT
9596 
9597 
9598 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9599   switch (cond) {
9600     // Note some conditions are synonyms for others
9601     case Assembler::zero:         return Assembler::notZero;
9602     case Assembler::notZero:      return Assembler::zero;
9603     case Assembler::less:         return Assembler::greaterEqual;
9604     case Assembler::lessEqual:    return Assembler::greater;
9605     case Assembler::greater:      return Assembler::lessEqual;
9606     case Assembler::greaterEqual: return Assembler::less;
9607     case Assembler::below:        return Assembler::aboveEqual;
9608     case Assembler::belowEqual:   return Assembler::above;
9609     case Assembler::above:        return Assembler::belowEqual;
9610     case Assembler::aboveEqual:   return Assembler::below;
9611     case Assembler::overflow:     return Assembler::noOverflow;
9612     case Assembler::noOverflow:   return Assembler::overflow;
9613     case Assembler::negative:     return Assembler::positive;
9614     case Assembler::positive:     return Assembler::negative;
9615     case Assembler::parity:       return Assembler::noParity;
9616     case Assembler::noParity:     return Assembler::parity;
9617   }
9618   ShouldNotReachHere(); return Assembler::overflow;
9619 }
9620 
9621 SkipIfEqual::SkipIfEqual(
9622     MacroAssembler* masm, const bool* flag_addr, bool value) {
9623   _masm = masm;
9624   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9625   _masm->jcc(Assembler::equal, _label);
9626 }
9627 
9628 SkipIfEqual::~SkipIfEqual() {
9629   _masm->bind(_label);
9630 }