1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "assembler_x86.inline.hpp"
  27 #include "gc_interface/collectedHeap.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "memory/cardTableModRefBS.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "prims/methodHandles.hpp"
  32 #include "runtime/biasedLocking.hpp"
  33 #include "runtime/interfaceSupport.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/os.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #ifndef SERIALGC
  39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  41 #include "gc_implementation/g1/heapRegion.hpp"
  42 #endif
  43 
  44 // Implementation of AddressLiteral
  45 
  46 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  47   _is_lval = false;
  48   _target = target;
  49   switch (rtype) {
  50   case relocInfo::oop_type:
  51     // Oops are a special case. Normally they would be their own section
  52     // but in cases like icBuffer they are literals in the code stream that
  53     // we don't have a section for. We use none so that we get a literal address
  54     // which is always patchable.
  55     break;
  56   case relocInfo::external_word_type:
  57     _rspec = external_word_Relocation::spec(target);
  58     break;
  59   case relocInfo::internal_word_type:
  60     _rspec = internal_word_Relocation::spec(target);
  61     break;
  62   case relocInfo::opt_virtual_call_type:
  63     _rspec = opt_virtual_call_Relocation::spec();
  64     break;
  65   case relocInfo::static_call_type:
  66     _rspec = static_call_Relocation::spec();
  67     break;
  68   case relocInfo::runtime_call_type:
  69     _rspec = runtime_call_Relocation::spec();
  70     break;
  71   case relocInfo::poll_type:
  72   case relocInfo::poll_return_type:
  73     _rspec = Relocation::spec_simple(rtype);
  74     break;
  75   case relocInfo::none:
  76     break;
  77   default:
  78     ShouldNotReachHere();
  79     break;
  80   }
  81 }
  82 
  83 // Implementation of Address
  84 
  85 #ifdef _LP64
  86 
  87 Address Address::make_array(ArrayAddress adr) {
  88   // Not implementable on 64bit machines
  89   // Should have been handled higher up the call chain.
  90   ShouldNotReachHere();
  91   return Address();
  92 }
  93 
  94 // exceedingly dangerous constructor
  95 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
  96   _base  = noreg;
  97   _index = noreg;
  98   _scale = no_scale;
  99   _disp  = disp;
 100   switch (rtype) {
 101     case relocInfo::external_word_type:
 102       _rspec = external_word_Relocation::spec(loc);
 103       break;
 104     case relocInfo::internal_word_type:
 105       _rspec = internal_word_Relocation::spec(loc);
 106       break;
 107     case relocInfo::runtime_call_type:
 108       // HMM
 109       _rspec = runtime_call_Relocation::spec();
 110       break;
 111     case relocInfo::poll_type:
 112     case relocInfo::poll_return_type:
 113       _rspec = Relocation::spec_simple(rtype);
 114       break;
 115     case relocInfo::none:
 116       break;
 117     default:
 118       ShouldNotReachHere();
 119   }
 120 }
 121 #else // LP64
 122 
 123 Address Address::make_array(ArrayAddress adr) {
 124   AddressLiteral base = adr.base();
 125   Address index = adr.index();
 126   assert(index._disp == 0, "must not have disp"); // maybe it can?
 127   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 128   array._rspec = base._rspec;
 129   return array;
 130 }
 131 
 132 // exceedingly dangerous constructor
 133 Address::Address(address loc, RelocationHolder spec) {
 134   _base  = noreg;
 135   _index = noreg;
 136   _scale = no_scale;
 137   _disp  = (intptr_t) loc;
 138   _rspec = spec;
 139 }
 140 
 141 #endif // _LP64
 142 
 143 
 144 
 145 // Convert the raw encoding form into the form expected by the constructor for
 146 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 147 // that to noreg for the Address constructor.
 148 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
 149   RelocationHolder rspec;
 150   if (disp_is_oop) {
 151     rspec = Relocation::spec_simple(relocInfo::oop_type);
 152   }
 153   bool valid_index = index != rsp->encoding();
 154   if (valid_index) {
 155     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 156     madr._rspec = rspec;
 157     return madr;
 158   } else {
 159     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 160     madr._rspec = rspec;
 161     return madr;
 162   }
 163 }
 164 
 165 // Implementation of Assembler
 166 
 167 int AbstractAssembler::code_fill_byte() {
 168   return (u_char)'\xF4'; // hlt
 169 }
 170 
 171 // make this go away someday
 172 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 173   if (rtype == relocInfo::none)
 174         emit_long(data);
 175   else  emit_data(data, Relocation::spec_simple(rtype), format);
 176 }
 177 
 178 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 179   assert(imm_operand == 0, "default format must be immediate in this file");
 180   assert(inst_mark() != NULL, "must be inside InstructionMark");
 181   if (rspec.type() !=  relocInfo::none) {
 182     #ifdef ASSERT
 183       check_relocation(rspec, format);
 184     #endif
 185     // Do not use AbstractAssembler::relocate, which is not intended for
 186     // embedded words.  Instead, relocate to the enclosing instruction.
 187 
 188     // hack. call32 is too wide for mask so use disp32
 189     if (format == call32_operand)
 190       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 191     else
 192       code_section()->relocate(inst_mark(), rspec, format);
 193   }
 194   emit_long(data);
 195 }
 196 
 197 static int encode(Register r) {
 198   int enc = r->encoding();
 199   if (enc >= 8) {
 200     enc -= 8;
 201   }
 202   return enc;
 203 }
 204 
 205 static int encode(XMMRegister r) {
 206   int enc = r->encoding();
 207   if (enc >= 8) {
 208     enc -= 8;
 209   }
 210   return enc;
 211 }
 212 
 213 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 214   assert(dst->has_byte_register(), "must have byte register");
 215   assert(isByte(op1) && isByte(op2), "wrong opcode");
 216   assert(isByte(imm8), "not a byte");
 217   assert((op1 & 0x01) == 0, "should be 8bit operation");
 218   emit_byte(op1);
 219   emit_byte(op2 | encode(dst));
 220   emit_byte(imm8);
 221 }
 222 
 223 
 224 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 225   assert(isByte(op1) && isByte(op2), "wrong opcode");
 226   assert((op1 & 0x01) == 1, "should be 32bit operation");
 227   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 228   if (is8bit(imm32)) {
 229     emit_byte(op1 | 0x02); // set sign bit
 230     emit_byte(op2 | encode(dst));
 231     emit_byte(imm32 & 0xFF);
 232   } else {
 233     emit_byte(op1);
 234     emit_byte(op2 | encode(dst));
 235     emit_long(imm32);
 236   }
 237 }
 238 
 239 // immediate-to-memory forms
 240 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 241   assert((op1 & 0x01) == 1, "should be 32bit operation");
 242   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 243   if (is8bit(imm32)) {
 244     emit_byte(op1 | 0x02); // set sign bit
 245     emit_operand(rm, adr, 1);
 246     emit_byte(imm32 & 0xFF);
 247   } else {
 248     emit_byte(op1);
 249     emit_operand(rm, adr, 4);
 250     emit_long(imm32);
 251   }
 252 }
 253 
 254 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
 255   LP64_ONLY(ShouldNotReachHere());
 256   assert(isByte(op1) && isByte(op2), "wrong opcode");
 257   assert((op1 & 0x01) == 1, "should be 32bit operation");
 258   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 259   InstructionMark im(this);
 260   emit_byte(op1);
 261   emit_byte(op2 | encode(dst));
 262   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
 263 }
 264 
 265 
 266 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 267   assert(isByte(op1) && isByte(op2), "wrong opcode");
 268   emit_byte(op1);
 269   emit_byte(op2 | encode(dst) << 3 | encode(src));
 270 }
 271 
 272 
 273 void Assembler::emit_operand(Register reg, Register base, Register index,
 274                              Address::ScaleFactor scale, int disp,
 275                              RelocationHolder const& rspec,
 276                              int rip_relative_correction) {
 277   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 278 
 279   // Encode the registers as needed in the fields they are used in
 280 
 281   int regenc = encode(reg) << 3;
 282   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 283   int baseenc = base->is_valid() ? encode(base) : 0;
 284 
 285   if (base->is_valid()) {
 286     if (index->is_valid()) {
 287       assert(scale != Address::no_scale, "inconsistent address");
 288       // [base + index*scale + disp]
 289       if (disp == 0 && rtype == relocInfo::none  &&
 290           base != rbp LP64_ONLY(&& base != r13)) {
 291         // [base + index*scale]
 292         // [00 reg 100][ss index base]
 293         assert(index != rsp, "illegal addressing mode");
 294         emit_byte(0x04 | regenc);
 295         emit_byte(scale << 6 | indexenc | baseenc);
 296       } else if (is8bit(disp) && rtype == relocInfo::none) {
 297         // [base + index*scale + imm8]
 298         // [01 reg 100][ss index base] imm8
 299         assert(index != rsp, "illegal addressing mode");
 300         emit_byte(0x44 | regenc);
 301         emit_byte(scale << 6 | indexenc | baseenc);
 302         emit_byte(disp & 0xFF);
 303       } else {
 304         // [base + index*scale + disp32]
 305         // [10 reg 100][ss index base] disp32
 306         assert(index != rsp, "illegal addressing mode");
 307         emit_byte(0x84 | regenc);
 308         emit_byte(scale << 6 | indexenc | baseenc);
 309         emit_data(disp, rspec, disp32_operand);
 310       }
 311     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 312       // [rsp + disp]
 313       if (disp == 0 && rtype == relocInfo::none) {
 314         // [rsp]
 315         // [00 reg 100][00 100 100]
 316         emit_byte(0x04 | regenc);
 317         emit_byte(0x24);
 318       } else if (is8bit(disp) && rtype == relocInfo::none) {
 319         // [rsp + imm8]
 320         // [01 reg 100][00 100 100] disp8
 321         emit_byte(0x44 | regenc);
 322         emit_byte(0x24);
 323         emit_byte(disp & 0xFF);
 324       } else {
 325         // [rsp + imm32]
 326         // [10 reg 100][00 100 100] disp32
 327         emit_byte(0x84 | regenc);
 328         emit_byte(0x24);
 329         emit_data(disp, rspec, disp32_operand);
 330       }
 331     } else {
 332       // [base + disp]
 333       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 334       if (disp == 0 && rtype == relocInfo::none &&
 335           base != rbp LP64_ONLY(&& base != r13)) {
 336         // [base]
 337         // [00 reg base]
 338         emit_byte(0x00 | regenc | baseenc);
 339       } else if (is8bit(disp) && rtype == relocInfo::none) {
 340         // [base + disp8]
 341         // [01 reg base] disp8
 342         emit_byte(0x40 | regenc | baseenc);
 343         emit_byte(disp & 0xFF);
 344       } else {
 345         // [base + disp32]
 346         // [10 reg base] disp32
 347         emit_byte(0x80 | regenc | baseenc);
 348         emit_data(disp, rspec, disp32_operand);
 349       }
 350     }
 351   } else {
 352     if (index->is_valid()) {
 353       assert(scale != Address::no_scale, "inconsistent address");
 354       // [index*scale + disp]
 355       // [00 reg 100][ss index 101] disp32
 356       assert(index != rsp, "illegal addressing mode");
 357       emit_byte(0x04 | regenc);
 358       emit_byte(scale << 6 | indexenc | 0x05);
 359       emit_data(disp, rspec, disp32_operand);
 360     } else if (rtype != relocInfo::none ) {
 361       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 362       // [00 000 101] disp32
 363 
 364       emit_byte(0x05 | regenc);
 365       // Note that the RIP-rel. correction applies to the generated
 366       // disp field, but _not_ to the target address in the rspec.
 367 
 368       // disp was created by converting the target address minus the pc
 369       // at the start of the instruction. That needs more correction here.
 370       // intptr_t disp = target - next_ip;
 371       assert(inst_mark() != NULL, "must be inside InstructionMark");
 372       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 373       int64_t adjusted = disp;
 374       // Do rip-rel adjustment for 64bit
 375       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 376       assert(is_simm32(adjusted),
 377              "must be 32bit offset (RIP relative address)");
 378       emit_data((int32_t) adjusted, rspec, disp32_operand);
 379 
 380     } else {
 381       // 32bit never did this, did everything as the rip-rel/disp code above
 382       // [disp] ABSOLUTE
 383       // [00 reg 100][00 100 101] disp32
 384       emit_byte(0x04 | regenc);
 385       emit_byte(0x25);
 386       emit_data(disp, rspec, disp32_operand);
 387     }
 388   }
 389 }
 390 
 391 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 392                              Address::ScaleFactor scale, int disp,
 393                              RelocationHolder const& rspec) {
 394   emit_operand((Register)reg, base, index, scale, disp, rspec);
 395 }
 396 
 397 // Secret local extension to Assembler::WhichOperand:
 398 #define end_pc_operand (_WhichOperand_limit)
 399 
 400 address Assembler::locate_operand(address inst, WhichOperand which) {
 401   // Decode the given instruction, and return the address of
 402   // an embedded 32-bit operand word.
 403 
 404   // If "which" is disp32_operand, selects the displacement portion
 405   // of an effective address specifier.
 406   // If "which" is imm64_operand, selects the trailing immediate constant.
 407   // If "which" is call32_operand, selects the displacement of a call or jump.
 408   // Caller is responsible for ensuring that there is such an operand,
 409   // and that it is 32/64 bits wide.
 410 
 411   // If "which" is end_pc_operand, find the end of the instruction.
 412 
 413   address ip = inst;
 414   bool is_64bit = false;
 415 
 416   debug_only(bool has_disp32 = false);
 417   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 418 
 419   again_after_prefix:
 420   switch (0xFF & *ip++) {
 421 
 422   // These convenience macros generate groups of "case" labels for the switch.
 423 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 424 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 425              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 426 #define REP16(x) REP8((x)+0): \
 427               case REP8((x)+8)
 428 
 429   case CS_segment:
 430   case SS_segment:
 431   case DS_segment:
 432   case ES_segment:
 433   case FS_segment:
 434   case GS_segment:
 435     // Seems dubious
 436     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 437     assert(ip == inst+1, "only one prefix allowed");
 438     goto again_after_prefix;
 439 
 440   case 0x67:
 441   case REX:
 442   case REX_B:
 443   case REX_X:
 444   case REX_XB:
 445   case REX_R:
 446   case REX_RB:
 447   case REX_RX:
 448   case REX_RXB:
 449     NOT_LP64(assert(false, "64bit prefixes"));
 450     goto again_after_prefix;
 451 
 452   case REX_W:
 453   case REX_WB:
 454   case REX_WX:
 455   case REX_WXB:
 456   case REX_WR:
 457   case REX_WRB:
 458   case REX_WRX:
 459   case REX_WRXB:
 460     NOT_LP64(assert(false, "64bit prefixes"));
 461     is_64bit = true;
 462     goto again_after_prefix;
 463 
 464   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 465   case 0x88: // movb a, r
 466   case 0x89: // movl a, r
 467   case 0x8A: // movb r, a
 468   case 0x8B: // movl r, a
 469   case 0x8F: // popl a
 470     debug_only(has_disp32 = true);
 471     break;
 472 
 473   case 0x68: // pushq #32
 474     if (which == end_pc_operand) {
 475       return ip + 4;
 476     }
 477     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 478     return ip;                  // not produced by emit_operand
 479 
 480   case 0x66: // movw ... (size prefix)
 481     again_after_size_prefix2:
 482     switch (0xFF & *ip++) {
 483     case REX:
 484     case REX_B:
 485     case REX_X:
 486     case REX_XB:
 487     case REX_R:
 488     case REX_RB:
 489     case REX_RX:
 490     case REX_RXB:
 491     case REX_W:
 492     case REX_WB:
 493     case REX_WX:
 494     case REX_WXB:
 495     case REX_WR:
 496     case REX_WRB:
 497     case REX_WRX:
 498     case REX_WRXB:
 499       NOT_LP64(assert(false, "64bit prefix found"));
 500       goto again_after_size_prefix2;
 501     case 0x8B: // movw r, a
 502     case 0x89: // movw a, r
 503       debug_only(has_disp32 = true);
 504       break;
 505     case 0xC7: // movw a, #16
 506       debug_only(has_disp32 = true);
 507       tail_size = 2;  // the imm16
 508       break;
 509     case 0x0F: // several SSE/SSE2 variants
 510       ip--;    // reparse the 0x0F
 511       goto again_after_prefix;
 512     default:
 513       ShouldNotReachHere();
 514     }
 515     break;
 516 
 517   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 518     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 519     // these asserts are somewhat nonsensical
 520 #ifndef _LP64
 521     assert(which == imm_operand || which == disp32_operand, "");
 522 #else
 523     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 524            which == narrow_oop_operand && !is_64bit, "");
 525 #endif // _LP64
 526     return ip;
 527 
 528   case 0x69: // imul r, a, #32
 529   case 0xC7: // movl a, #32(oop?)
 530     tail_size = 4;
 531     debug_only(has_disp32 = true); // has both kinds of operands!
 532     break;
 533 
 534   case 0x0F: // movx..., etc.
 535     switch (0xFF & *ip++) {
 536     case 0x3A: // pcmpestri
 537       tail_size = 1;
 538     case 0x38: // ptest, pmovzxbw
 539       ip++; // skip opcode
 540       debug_only(has_disp32 = true); // has both kinds of operands!
 541       break;
 542 
 543     case 0x70: // pshufd r, r/a, #8
 544       debug_only(has_disp32 = true); // has both kinds of operands!
 545     case 0x73: // psrldq r, #8
 546       tail_size = 1;
 547       break;
 548 
 549     case 0x12: // movlps
 550     case 0x28: // movaps
 551     case 0x2E: // ucomiss
 552     case 0x2F: // comiss
 553     case 0x54: // andps
 554     case 0x55: // andnps
 555     case 0x56: // orps
 556     case 0x57: // xorps
 557     case 0x6E: // movd
 558     case 0x7E: // movd
 559     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 560       debug_only(has_disp32 = true);
 561       break;
 562 
 563     case 0xAD: // shrd r, a, %cl
 564     case 0xAF: // imul r, a
 565     case 0xBE: // movsbl r, a (movsxb)
 566     case 0xBF: // movswl r, a (movsxw)
 567     case 0xB6: // movzbl r, a (movzxb)
 568     case 0xB7: // movzwl r, a (movzxw)
 569     case REP16(0x40): // cmovl cc, r, a
 570     case 0xB0: // cmpxchgb
 571     case 0xB1: // cmpxchg
 572     case 0xC1: // xaddl
 573     case 0xC7: // cmpxchg8
 574     case REP16(0x90): // setcc a
 575       debug_only(has_disp32 = true);
 576       // fall out of the switch to decode the address
 577       break;
 578 
 579     case 0xC4: // pinsrw r, a, #8
 580       debug_only(has_disp32 = true);
 581     case 0xC5: // pextrw r, r, #8
 582       tail_size = 1;  // the imm8
 583       break;
 584 
 585     case 0xAC: // shrd r, a, #8
 586       debug_only(has_disp32 = true);
 587       tail_size = 1;  // the imm8
 588       break;
 589 
 590     case REP16(0x80): // jcc rdisp32
 591       if (which == end_pc_operand)  return ip + 4;
 592       assert(which == call32_operand, "jcc has no disp32 or imm");
 593       return ip;
 594     default:
 595       ShouldNotReachHere();
 596     }
 597     break;
 598 
 599   case 0x81: // addl a, #32; addl r, #32
 600     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 601     // on 32bit in the case of cmpl, the imm might be an oop
 602     tail_size = 4;
 603     debug_only(has_disp32 = true); // has both kinds of operands!
 604     break;
 605 
 606   case 0x83: // addl a, #8; addl r, #8
 607     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 608     debug_only(has_disp32 = true); // has both kinds of operands!
 609     tail_size = 1;
 610     break;
 611 
 612   case 0x9B:
 613     switch (0xFF & *ip++) {
 614     case 0xD9: // fnstcw a
 615       debug_only(has_disp32 = true);
 616       break;
 617     default:
 618       ShouldNotReachHere();
 619     }
 620     break;
 621 
 622   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 623   case REP4(0x10): // adc...
 624   case REP4(0x20): // and...
 625   case REP4(0x30): // xor...
 626   case REP4(0x08): // or...
 627   case REP4(0x18): // sbb...
 628   case REP4(0x28): // sub...
 629   case 0xF7: // mull a
 630   case 0x8D: // lea r, a
 631   case 0x87: // xchg r, a
 632   case REP4(0x38): // cmp...
 633   case 0x85: // test r, a
 634     debug_only(has_disp32 = true); // has both kinds of operands!
 635     break;
 636 
 637   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 638   case 0xC6: // movb a, #8
 639   case 0x80: // cmpb a, #8
 640   case 0x6B: // imul r, a, #8
 641     debug_only(has_disp32 = true); // has both kinds of operands!
 642     tail_size = 1; // the imm8
 643     break;
 644 
 645   case 0xC4: // VEX_3bytes
 646   case 0xC5: // VEX_2bytes
 647     assert((UseAVX > 0), "shouldn't have VEX prefix");
 648     assert(ip == inst+1, "no prefixes allowed");
 649     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 650     // but they have prefix 0x0F and processed when 0x0F processed above.
 651     //
 652     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 653     // instructions (these instructions are not supported in 64-bit mode).
 654     // To distinguish them bits [7:6] are set in the VEX second byte since
 655     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 656     // those VEX bits REX and vvvv bits are inverted.
 657     //
 658     // Fortunately C2 doesn't generate these instructions so we don't need
 659     // to check for them in product version.
 660 
 661     // Check second byte
 662     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 663 
 664     // First byte
 665     if ((0xFF & *inst) == VEX_3bytes) {
 666       ip++; // third byte
 667       is_64bit = ((VEX_W & *ip) == VEX_W);
 668     }
 669     ip++; // opcode
 670     // To find the end of instruction (which == end_pc_operand).
 671     switch (0xFF & *ip) {
 672     case 0x61: // pcmpestri r, r/a, #8
 673     case 0x70: // pshufd r, r/a, #8
 674     case 0x73: // psrldq r, #8
 675       tail_size = 1;  // the imm8
 676       break;
 677     default:
 678       break;
 679     }
 680     ip++; // skip opcode
 681     debug_only(has_disp32 = true); // has both kinds of operands!
 682     break;
 683 
 684   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 685   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 686   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 687   case 0xDD: // fld_d a; fst_d a; fstp_d a
 688   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 689   case 0xDF: // fild_d a; fistp_d a
 690   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 691   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 692   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 693     debug_only(has_disp32 = true);
 694     break;
 695 
 696   case 0xE8: // call rdisp32
 697   case 0xE9: // jmp  rdisp32
 698     if (which == end_pc_operand)  return ip + 4;
 699     assert(which == call32_operand, "call has no disp32 or imm");
 700     return ip;
 701 
 702   case 0xF0:                    // Lock
 703     assert(os::is_MP(), "only on MP");
 704     goto again_after_prefix;
 705 
 706   case 0xF3:                    // For SSE
 707   case 0xF2:                    // For SSE2
 708     switch (0xFF & *ip++) {
 709     case REX:
 710     case REX_B:
 711     case REX_X:
 712     case REX_XB:
 713     case REX_R:
 714     case REX_RB:
 715     case REX_RX:
 716     case REX_RXB:
 717     case REX_W:
 718     case REX_WB:
 719     case REX_WX:
 720     case REX_WXB:
 721     case REX_WR:
 722     case REX_WRB:
 723     case REX_WRX:
 724     case REX_WRXB:
 725       NOT_LP64(assert(false, "found 64bit prefix"));
 726       ip++;
 727     default:
 728       ip++;
 729     }
 730     debug_only(has_disp32 = true); // has both kinds of operands!
 731     break;
 732 
 733   default:
 734     ShouldNotReachHere();
 735 
 736 #undef REP8
 737 #undef REP16
 738   }
 739 
 740   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 741 #ifdef _LP64
 742   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 743 #else
 744   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 745   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 746 #endif // LP64
 747   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 748 
 749   // parse the output of emit_operand
 750   int op2 = 0xFF & *ip++;
 751   int base = op2 & 0x07;
 752   int op3 = -1;
 753   const int b100 = 4;
 754   const int b101 = 5;
 755   if (base == b100 && (op2 >> 6) != 3) {
 756     op3 = 0xFF & *ip++;
 757     base = op3 & 0x07;   // refetch the base
 758   }
 759   // now ip points at the disp (if any)
 760 
 761   switch (op2 >> 6) {
 762   case 0:
 763     // [00 reg  100][ss index base]
 764     // [00 reg  100][00   100  esp]
 765     // [00 reg base]
 766     // [00 reg  100][ss index  101][disp32]
 767     // [00 reg  101]               [disp32]
 768 
 769     if (base == b101) {
 770       if (which == disp32_operand)
 771         return ip;              // caller wants the disp32
 772       ip += 4;                  // skip the disp32
 773     }
 774     break;
 775 
 776   case 1:
 777     // [01 reg  100][ss index base][disp8]
 778     // [01 reg  100][00   100  esp][disp8]
 779     // [01 reg base]               [disp8]
 780     ip += 1;                    // skip the disp8
 781     break;
 782 
 783   case 2:
 784     // [10 reg  100][ss index base][disp32]
 785     // [10 reg  100][00   100  esp][disp32]
 786     // [10 reg base]               [disp32]
 787     if (which == disp32_operand)
 788       return ip;                // caller wants the disp32
 789     ip += 4;                    // skip the disp32
 790     break;
 791 
 792   case 3:
 793     // [11 reg base]  (not a memory addressing mode)
 794     break;
 795   }
 796 
 797   if (which == end_pc_operand) {
 798     return ip + tail_size;
 799   }
 800 
 801 #ifdef _LP64
 802   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
 803 #else
 804   assert(which == imm_operand, "instruction has only an imm field");
 805 #endif // LP64
 806   return ip;
 807 }
 808 
 809 address Assembler::locate_next_instruction(address inst) {
 810   // Secretly share code with locate_operand:
 811   return locate_operand(inst, end_pc_operand);
 812 }
 813 
 814 
 815 #ifdef ASSERT
 816 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
 817   address inst = inst_mark();
 818   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
 819   address opnd;
 820 
 821   Relocation* r = rspec.reloc();
 822   if (r->type() == relocInfo::none) {
 823     return;
 824   } else if (r->is_call() || format == call32_operand) {
 825     // assert(format == imm32_operand, "cannot specify a nonzero format");
 826     opnd = locate_operand(inst, call32_operand);
 827   } else if (r->is_data()) {
 828     assert(format == imm_operand || format == disp32_operand
 829            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
 830     opnd = locate_operand(inst, (WhichOperand)format);
 831   } else {
 832     assert(format == imm_operand, "cannot specify a format");
 833     return;
 834   }
 835   assert(opnd == pc(), "must put operand where relocs can find it");
 836 }
 837 #endif // ASSERT
 838 
 839 void Assembler::emit_operand32(Register reg, Address adr) {
 840   assert(reg->encoding() < 8, "no extended registers");
 841   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 842   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 843                adr._rspec);
 844 }
 845 
 846 void Assembler::emit_operand(Register reg, Address adr,
 847                              int rip_relative_correction) {
 848   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 849                adr._rspec,
 850                rip_relative_correction);
 851 }
 852 
 853 void Assembler::emit_operand(XMMRegister reg, Address adr) {
 854   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 855                adr._rspec);
 856 }
 857 
 858 // MMX operations
 859 void Assembler::emit_operand(MMXRegister reg, Address adr) {
 860   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 861   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 862 }
 863 
 864 // work around gcc (3.2.1-7a) bug
 865 void Assembler::emit_operand(Address adr, MMXRegister reg) {
 866   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 867   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 868 }
 869 
 870 
 871 void Assembler::emit_farith(int b1, int b2, int i) {
 872   assert(isByte(b1) && isByte(b2), "wrong opcode");
 873   assert(0 <= i &&  i < 8, "illegal stack offset");
 874   emit_byte(b1);
 875   emit_byte(b2 + i);
 876 }
 877 
 878 
 879 // Now the Assembler instructions (identical for 32/64 bits)
 880 
 881 void Assembler::adcl(Address dst, int32_t imm32) {
 882   InstructionMark im(this);
 883   prefix(dst);
 884   emit_arith_operand(0x81, rdx, dst, imm32);
 885 }
 886 
 887 void Assembler::adcl(Address dst, Register src) {
 888   InstructionMark im(this);
 889   prefix(dst, src);
 890   emit_byte(0x11);
 891   emit_operand(src, dst);
 892 }
 893 
 894 void Assembler::adcl(Register dst, int32_t imm32) {
 895   prefix(dst);
 896   emit_arith(0x81, 0xD0, dst, imm32);
 897 }
 898 
 899 void Assembler::adcl(Register dst, Address src) {
 900   InstructionMark im(this);
 901   prefix(src, dst);
 902   emit_byte(0x13);
 903   emit_operand(dst, src);
 904 }
 905 
 906 void Assembler::adcl(Register dst, Register src) {
 907   (void) prefix_and_encode(dst->encoding(), src->encoding());
 908   emit_arith(0x13, 0xC0, dst, src);
 909 }
 910 
 911 void Assembler::addl(Address dst, int32_t imm32) {
 912   InstructionMark im(this);
 913   prefix(dst);
 914   emit_arith_operand(0x81, rax, dst, imm32);
 915 }
 916 
 917 void Assembler::addl(Address dst, Register src) {
 918   InstructionMark im(this);
 919   prefix(dst, src);
 920   emit_byte(0x01);
 921   emit_operand(src, dst);
 922 }
 923 
 924 void Assembler::addl(Register dst, int32_t imm32) {
 925   prefix(dst);
 926   emit_arith(0x81, 0xC0, dst, imm32);
 927 }
 928 
 929 void Assembler::addl(Register dst, Address src) {
 930   InstructionMark im(this);
 931   prefix(src, dst);
 932   emit_byte(0x03);
 933   emit_operand(dst, src);
 934 }
 935 
 936 void Assembler::addl(Register dst, Register src) {
 937   (void) prefix_and_encode(dst->encoding(), src->encoding());
 938   emit_arith(0x03, 0xC0, dst, src);
 939 }
 940 
 941 void Assembler::addr_nop_4() {
 942   // 4 bytes: NOP DWORD PTR [EAX+0]
 943   emit_byte(0x0F);
 944   emit_byte(0x1F);
 945   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
 946   emit_byte(0);    // 8-bits offset (1 byte)
 947 }
 948 
 949 void Assembler::addr_nop_5() {
 950   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
 951   emit_byte(0x0F);
 952   emit_byte(0x1F);
 953   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
 954   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 955   emit_byte(0);    // 8-bits offset (1 byte)
 956 }
 957 
 958 void Assembler::addr_nop_7() {
 959   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
 960   emit_byte(0x0F);
 961   emit_byte(0x1F);
 962   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
 963   emit_long(0);    // 32-bits offset (4 bytes)
 964 }
 965 
 966 void Assembler::addr_nop_8() {
 967   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
 968   emit_byte(0x0F);
 969   emit_byte(0x1F);
 970   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
 971   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 972   emit_long(0);    // 32-bits offset (4 bytes)
 973 }
 974 
 975 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
 976   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 977   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
 978   emit_byte(0x58);
 979   emit_byte(0xC0 | encode);
 980 }
 981 
 982 void Assembler::addsd(XMMRegister dst, Address src) {
 983   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 984   InstructionMark im(this);
 985   simd_prefix(dst, dst, src, VEX_SIMD_F2);
 986   emit_byte(0x58);
 987   emit_operand(dst, src);
 988 }
 989 
 990 void Assembler::addss(XMMRegister dst, XMMRegister src) {
 991   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 992   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
 993   emit_byte(0x58);
 994   emit_byte(0xC0 | encode);
 995 }
 996 
 997 void Assembler::addss(XMMRegister dst, Address src) {
 998   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 999   InstructionMark im(this);
1000   simd_prefix(dst, dst, src, VEX_SIMD_F3);
1001   emit_byte(0x58);
1002   emit_operand(dst, src);
1003 }
1004 
1005 void Assembler::andl(Address dst, int32_t imm32) {
1006   InstructionMark im(this);
1007   prefix(dst);
1008   emit_byte(0x81);
1009   emit_operand(rsp, dst, 4);
1010   emit_long(imm32);
1011 }
1012 
1013 void Assembler::andl(Register dst, int32_t imm32) {
1014   prefix(dst);
1015   emit_arith(0x81, 0xE0, dst, imm32);
1016 }
1017 
1018 void Assembler::andl(Register dst, Address src) {
1019   InstructionMark im(this);
1020   prefix(src, dst);
1021   emit_byte(0x23);
1022   emit_operand(dst, src);
1023 }
1024 
1025 void Assembler::andl(Register dst, Register src) {
1026   (void) prefix_and_encode(dst->encoding(), src->encoding());
1027   emit_arith(0x23, 0xC0, dst, src);
1028 }
1029 
1030 void Assembler::andpd(XMMRegister dst, Address src) {
1031   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1032   InstructionMark im(this);
1033   simd_prefix(dst, dst, src, VEX_SIMD_66);
1034   emit_byte(0x54);
1035   emit_operand(dst, src);
1036 }
1037 
1038 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
1039   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1040   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
1041   emit_byte(0x54);
1042   emit_byte(0xC0 | encode);
1043 }
1044 
1045 void Assembler::andps(XMMRegister dst, Address src) {
1046   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1047   InstructionMark im(this);
1048   simd_prefix(dst, dst, src, VEX_SIMD_NONE);
1049   emit_byte(0x54);
1050   emit_operand(dst, src);
1051 }
1052 
1053 void Assembler::andps(XMMRegister dst, XMMRegister src) {
1054   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1055   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
1056   emit_byte(0x54);
1057   emit_byte(0xC0 | encode);
1058 }
1059 
1060 void Assembler::bsfl(Register dst, Register src) {
1061   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1062   emit_byte(0x0F);
1063   emit_byte(0xBC);
1064   emit_byte(0xC0 | encode);
1065 }
1066 
1067 void Assembler::bsrl(Register dst, Register src) {
1068   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
1069   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1070   emit_byte(0x0F);
1071   emit_byte(0xBD);
1072   emit_byte(0xC0 | encode);
1073 }
1074 
1075 void Assembler::bswapl(Register reg) { // bswap
1076   int encode = prefix_and_encode(reg->encoding());
1077   emit_byte(0x0F);
1078   emit_byte(0xC8 | encode);
1079 }
1080 
1081 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1082   // suspect disp32 is always good
1083   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1084 
1085   if (L.is_bound()) {
1086     const int long_size = 5;
1087     int offs = (int)( target(L) - pc() );
1088     assert(offs <= 0, "assembler error");
1089     InstructionMark im(this);
1090     // 1110 1000 #32-bit disp
1091     emit_byte(0xE8);
1092     emit_data(offs - long_size, rtype, operand);
1093   } else {
1094     InstructionMark im(this);
1095     // 1110 1000 #32-bit disp
1096     L.add_patch_at(code(), locator());
1097 
1098     emit_byte(0xE8);
1099     emit_data(int(0), rtype, operand);
1100   }
1101 }
1102 
1103 void Assembler::call(Register dst) {
1104   // This was originally using a 32bit register encoding
1105   // and surely we want 64bit!
1106   // this is a 32bit encoding but in 64bit mode the default
1107   // operand size is 64bit so there is no need for the
1108   // wide prefix. So prefix only happens if we use the
1109   // new registers. Much like push/pop.
1110   int x = offset();
1111   // this may be true but dbx disassembles it as if it
1112   // were 32bits...
1113   // int encode = prefix_and_encode(dst->encoding());
1114   // if (offset() != x) assert(dst->encoding() >= 8, "what?");
1115   int encode = prefixq_and_encode(dst->encoding());
1116 
1117   emit_byte(0xFF);
1118   emit_byte(0xD0 | encode);
1119 }
1120 
1121 
1122 void Assembler::call(Address adr) {
1123   InstructionMark im(this);
1124   prefix(adr);
1125   emit_byte(0xFF);
1126   emit_operand(rdx, adr);
1127 }
1128 
1129 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1130   assert(entry != NULL, "call most probably wrong");
1131   InstructionMark im(this);
1132   emit_byte(0xE8);
1133   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
1134   assert(is_simm32(disp), "must be 32bit offset (call2)");
1135   // Technically, should use call32_operand, but this format is
1136   // implied by the fact that we're emitting a call instruction.
1137 
1138   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1139   emit_data((int) disp, rspec, operand);
1140 }
1141 
1142 void Assembler::cdql() {
1143   emit_byte(0x99);
1144 }
1145 
1146 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1147   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1148   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1149   emit_byte(0x0F);
1150   emit_byte(0x40 | cc);
1151   emit_byte(0xC0 | encode);
1152 }
1153 
1154 
1155 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1156   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1157   prefix(src, dst);
1158   emit_byte(0x0F);
1159   emit_byte(0x40 | cc);
1160   emit_operand(dst, src);
1161 }
1162 
1163 void Assembler::cmpb(Address dst, int imm8) {
1164   InstructionMark im(this);
1165   prefix(dst);
1166   emit_byte(0x80);
1167   emit_operand(rdi, dst, 1);
1168   emit_byte(imm8);
1169 }
1170 
1171 void Assembler::cmpl(Address dst, int32_t imm32) {
1172   InstructionMark im(this);
1173   prefix(dst);
1174   emit_byte(0x81);
1175   emit_operand(rdi, dst, 4);
1176   emit_long(imm32);
1177 }
1178 
1179 void Assembler::cmpl(Register dst, int32_t imm32) {
1180   prefix(dst);
1181   emit_arith(0x81, 0xF8, dst, imm32);
1182 }
1183 
1184 void Assembler::cmpl(Register dst, Register src) {
1185   (void) prefix_and_encode(dst->encoding(), src->encoding());
1186   emit_arith(0x3B, 0xC0, dst, src);
1187 }
1188 
1189 
1190 void Assembler::cmpl(Register dst, Address  src) {
1191   InstructionMark im(this);
1192   prefix(src, dst);
1193   emit_byte(0x3B);
1194   emit_operand(dst, src);
1195 }
1196 
1197 void Assembler::cmpw(Address dst, int imm16) {
1198   InstructionMark im(this);
1199   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1200   emit_byte(0x66);
1201   emit_byte(0x81);
1202   emit_operand(rdi, dst, 2);
1203   emit_word(imm16);
1204 }
1205 
1206 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1207 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1208 // The ZF is set if the compared values were equal, and cleared otherwise.
1209 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1210   if (Atomics & 2) {
1211      // caveat: no instructionmark, so this isn't relocatable.
1212      // Emit a synthetic, non-atomic, CAS equivalent.
1213      // Beware.  The synthetic form sets all ICCs, not just ZF.
1214      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
1215      cmpl(rax, adr);
1216      movl(rax, adr);
1217      if (reg != rax) {
1218         Label L ;
1219         jcc(Assembler::notEqual, L);
1220         movl(adr, reg);
1221         bind(L);
1222      }
1223   } else {
1224      InstructionMark im(this);
1225      prefix(adr, reg);
1226      emit_byte(0x0F);
1227      emit_byte(0xB1);
1228      emit_operand(reg, adr);
1229   }
1230 }
1231 
1232 void Assembler::comisd(XMMRegister dst, Address src) {
1233   // NOTE: dbx seems to decode this as comiss even though the
1234   // 0x66 is there. Strangly ucomisd comes out correct
1235   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1236   InstructionMark im(this);
1237   simd_prefix(dst, src, VEX_SIMD_66);
1238   emit_byte(0x2F);
1239   emit_operand(dst, src);
1240 }
1241 
1242 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1243   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1244   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1245   emit_byte(0x2F);
1246   emit_byte(0xC0 | encode);
1247 }
1248 
1249 void Assembler::comiss(XMMRegister dst, Address src) {
1250   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1251   InstructionMark im(this);
1252   simd_prefix(dst, src, VEX_SIMD_NONE);
1253   emit_byte(0x2F);
1254   emit_operand(dst, src);
1255 }
1256 
1257 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1258   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1259   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
1260   emit_byte(0x2F);
1261   emit_byte(0xC0 | encode);
1262 }
1263 
1264 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1265   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1266   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1267   emit_byte(0xE6);
1268   emit_byte(0xC0 | encode);
1269 }
1270 
1271 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1272   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1273   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
1274   emit_byte(0x5B);
1275   emit_byte(0xC0 | encode);
1276 }
1277 
1278 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1279   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1280   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1281   emit_byte(0x5A);
1282   emit_byte(0xC0 | encode);
1283 }
1284 
1285 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1286   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1287   InstructionMark im(this);
1288   simd_prefix(dst, dst, src, VEX_SIMD_F2);
1289   emit_byte(0x5A);
1290   emit_operand(dst, src);
1291 }
1292 
1293 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1294   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1295   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1296   emit_byte(0x2A);
1297   emit_byte(0xC0 | encode);
1298 }
1299 
1300 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1301   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1302   InstructionMark im(this);
1303   simd_prefix(dst, dst, src, VEX_SIMD_F2);
1304   emit_byte(0x2A);
1305   emit_operand(dst, src);
1306 }
1307 
1308 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1309   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1310   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1311   emit_byte(0x2A);
1312   emit_byte(0xC0 | encode);
1313 }
1314 
1315 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1316   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1317   InstructionMark im(this);
1318   simd_prefix(dst, dst, src, VEX_SIMD_F3);
1319   emit_byte(0x2A);
1320   emit_operand(dst, src);
1321 }
1322 
1323 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1324   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1325   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1326   emit_byte(0x5A);
1327   emit_byte(0xC0 | encode);
1328 }
1329 
1330 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1331   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1332   InstructionMark im(this);
1333   simd_prefix(dst, dst, src, VEX_SIMD_F3);
1334   emit_byte(0x5A);
1335   emit_operand(dst, src);
1336 }
1337 
1338 
1339 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1340   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1341   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
1342   emit_byte(0x2C);
1343   emit_byte(0xC0 | encode);
1344 }
1345 
1346 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1347   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1348   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1349   emit_byte(0x2C);
1350   emit_byte(0xC0 | encode);
1351 }
1352 
1353 void Assembler::decl(Address dst) {
1354   // Don't use it directly. Use MacroAssembler::decrement() instead.
1355   InstructionMark im(this);
1356   prefix(dst);
1357   emit_byte(0xFF);
1358   emit_operand(rcx, dst);
1359 }
1360 
1361 void Assembler::divsd(XMMRegister dst, Address src) {
1362   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1363   InstructionMark im(this);
1364   simd_prefix(dst, dst, src, VEX_SIMD_F2);
1365   emit_byte(0x5E);
1366   emit_operand(dst, src);
1367 }
1368 
1369 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1370   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1371   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1372   emit_byte(0x5E);
1373   emit_byte(0xC0 | encode);
1374 }
1375 
1376 void Assembler::divss(XMMRegister dst, Address src) {
1377   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1378   InstructionMark im(this);
1379   simd_prefix(dst, dst, src, VEX_SIMD_F3);
1380   emit_byte(0x5E);
1381   emit_operand(dst, src);
1382 }
1383 
1384 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1385   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1386   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1387   emit_byte(0x5E);
1388   emit_byte(0xC0 | encode);
1389 }
1390 
1391 void Assembler::emms() {
1392   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1393   emit_byte(0x0F);
1394   emit_byte(0x77);
1395 }
1396 
1397 void Assembler::hlt() {
1398   emit_byte(0xF4);
1399 }
1400 
1401 void Assembler::idivl(Register src) {
1402   int encode = prefix_and_encode(src->encoding());
1403   emit_byte(0xF7);
1404   emit_byte(0xF8 | encode);
1405 }
1406 
1407 void Assembler::divl(Register src) { // Unsigned
1408   int encode = prefix_and_encode(src->encoding());
1409   emit_byte(0xF7);
1410   emit_byte(0xF0 | encode);
1411 }
1412 
1413 void Assembler::imull(Register dst, Register src) {
1414   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1415   emit_byte(0x0F);
1416   emit_byte(0xAF);
1417   emit_byte(0xC0 | encode);
1418 }
1419 
1420 
1421 void Assembler::imull(Register dst, Register src, int value) {
1422   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1423   if (is8bit(value)) {
1424     emit_byte(0x6B);
1425     emit_byte(0xC0 | encode);
1426     emit_byte(value & 0xFF);
1427   } else {
1428     emit_byte(0x69);
1429     emit_byte(0xC0 | encode);
1430     emit_long(value);
1431   }
1432 }
1433 
1434 void Assembler::incl(Address dst) {
1435   // Don't use it directly. Use MacroAssembler::increment() instead.
1436   InstructionMark im(this);
1437   prefix(dst);
1438   emit_byte(0xFF);
1439   emit_operand(rax, dst);
1440 }
1441 
1442 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1443   InstructionMark im(this);
1444   assert((0 <= cc) && (cc < 16), "illegal cc");
1445   if (L.is_bound()) {
1446     address dst = target(L);
1447     assert(dst != NULL, "jcc most probably wrong");
1448 
1449     const int short_size = 2;
1450     const int long_size = 6;
1451     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
1452     if (maybe_short && is8bit(offs - short_size)) {
1453       // 0111 tttn #8-bit disp
1454       emit_byte(0x70 | cc);
1455       emit_byte((offs - short_size) & 0xFF);
1456     } else {
1457       // 0000 1111 1000 tttn #32-bit disp
1458       assert(is_simm32(offs - long_size),
1459              "must be 32bit offset (call4)");
1460       emit_byte(0x0F);
1461       emit_byte(0x80 | cc);
1462       emit_long(offs - long_size);
1463     }
1464   } else {
1465     // Note: could eliminate cond. jumps to this jump if condition
1466     //       is the same however, seems to be rather unlikely case.
1467     // Note: use jccb() if label to be bound is very close to get
1468     //       an 8-bit displacement
1469     L.add_patch_at(code(), locator());
1470     emit_byte(0x0F);
1471     emit_byte(0x80 | cc);
1472     emit_long(0);
1473   }
1474 }
1475 
1476 void Assembler::jccb(Condition cc, Label& L) {
1477   if (L.is_bound()) {
1478     const int short_size = 2;
1479     address entry = target(L);
1480     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
1481            "Dispacement too large for a short jmp");
1482     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
1483     // 0111 tttn #8-bit disp
1484     emit_byte(0x70 | cc);
1485     emit_byte((offs - short_size) & 0xFF);
1486   } else {
1487     InstructionMark im(this);
1488     L.add_patch_at(code(), locator());
1489     emit_byte(0x70 | cc);
1490     emit_byte(0);
1491   }
1492 }
1493 
1494 void Assembler::jmp(Address adr) {
1495   InstructionMark im(this);
1496   prefix(adr);
1497   emit_byte(0xFF);
1498   emit_operand(rsp, adr);
1499 }
1500 
1501 void Assembler::jmp(Label& L, bool maybe_short) {
1502   if (L.is_bound()) {
1503     address entry = target(L);
1504     assert(entry != NULL, "jmp most probably wrong");
1505     InstructionMark im(this);
1506     const int short_size = 2;
1507     const int long_size = 5;
1508     intptr_t offs = entry - _code_pos;
1509     if (maybe_short && is8bit(offs - short_size)) {
1510       emit_byte(0xEB);
1511       emit_byte((offs - short_size) & 0xFF);
1512     } else {
1513       emit_byte(0xE9);
1514       emit_long(offs - long_size);
1515     }
1516   } else {
1517     // By default, forward jumps are always 32-bit displacements, since
1518     // we can't yet know where the label will be bound.  If you're sure that
1519     // the forward jump will not run beyond 256 bytes, use jmpb to
1520     // force an 8-bit displacement.
1521     InstructionMark im(this);
1522     L.add_patch_at(code(), locator());
1523     emit_byte(0xE9);
1524     emit_long(0);
1525   }
1526 }
1527 
1528 void Assembler::jmp(Register entry) {
1529   int encode = prefix_and_encode(entry->encoding());
1530   emit_byte(0xFF);
1531   emit_byte(0xE0 | encode);
1532 }
1533 
1534 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1535   InstructionMark im(this);
1536   emit_byte(0xE9);
1537   assert(dest != NULL, "must have a target");
1538   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
1539   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1540   emit_data(disp, rspec.reloc(), call32_operand);
1541 }
1542 
1543 void Assembler::jmpb(Label& L) {
1544   if (L.is_bound()) {
1545     const int short_size = 2;
1546     address entry = target(L);
1547     assert(is8bit((entry - _code_pos) + short_size),
1548            "Dispacement too large for a short jmp");
1549     assert(entry != NULL, "jmp most probably wrong");
1550     intptr_t offs = entry - _code_pos;
1551     emit_byte(0xEB);
1552     emit_byte((offs - short_size) & 0xFF);
1553   } else {
1554     InstructionMark im(this);
1555     L.add_patch_at(code(), locator());
1556     emit_byte(0xEB);
1557     emit_byte(0);
1558   }
1559 }
1560 
1561 void Assembler::ldmxcsr( Address src) {
1562   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1563   InstructionMark im(this);
1564   prefix(src);
1565   emit_byte(0x0F);
1566   emit_byte(0xAE);
1567   emit_operand(as_Register(2), src);
1568 }
1569 
1570 void Assembler::leal(Register dst, Address src) {
1571   InstructionMark im(this);
1572 #ifdef _LP64
1573   emit_byte(0x67); // addr32
1574   prefix(src, dst);
1575 #endif // LP64
1576   emit_byte(0x8D);
1577   emit_operand(dst, src);
1578 }
1579 
1580 void Assembler::lock() {
1581   if (Atomics & 1) {
1582      // Emit either nothing, a NOP, or a NOP: prefix
1583      emit_byte(0x90) ;
1584   } else {
1585      emit_byte(0xF0);
1586   }
1587 }
1588 
1589 void Assembler::lzcntl(Register dst, Register src) {
1590   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1591   emit_byte(0xF3);
1592   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1593   emit_byte(0x0F);
1594   emit_byte(0xBD);
1595   emit_byte(0xC0 | encode);
1596 }
1597 
1598 // Emit mfence instruction
1599 void Assembler::mfence() {
1600   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1601   emit_byte( 0x0F );
1602   emit_byte( 0xAE );
1603   emit_byte( 0xF0 );
1604 }
1605 
1606 void Assembler::mov(Register dst, Register src) {
1607   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1608 }
1609 
1610 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1611   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1612   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1613   emit_byte(0x28);
1614   emit_byte(0xC0 | encode);
1615 }
1616 
1617 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1618   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1619   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
1620   emit_byte(0x28);
1621   emit_byte(0xC0 | encode);
1622 }
1623 
1624 void Assembler::movb(Register dst, Address src) {
1625   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
1626   InstructionMark im(this);
1627   prefix(src, dst, true);
1628   emit_byte(0x8A);
1629   emit_operand(dst, src);
1630 }
1631 
1632 
1633 void Assembler::movb(Address dst, int imm8) {
1634   InstructionMark im(this);
1635    prefix(dst);
1636   emit_byte(0xC6);
1637   emit_operand(rax, dst, 1);
1638   emit_byte(imm8);
1639 }
1640 
1641 
1642 void Assembler::movb(Address dst, Register src) {
1643   assert(src->has_byte_register(), "must have byte register");
1644   InstructionMark im(this);
1645   prefix(dst, src, true);
1646   emit_byte(0x88);
1647   emit_operand(src, dst);
1648 }
1649 
1650 void Assembler::movdl(XMMRegister dst, Register src) {
1651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1652   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1653   emit_byte(0x6E);
1654   emit_byte(0xC0 | encode);
1655 }
1656 
1657 void Assembler::movdl(Register dst, XMMRegister src) {
1658   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1659   // swap src/dst to get correct prefix
1660   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
1661   emit_byte(0x7E);
1662   emit_byte(0xC0 | encode);
1663 }
1664 
1665 void Assembler::movdl(XMMRegister dst, Address src) {
1666   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1667   InstructionMark im(this);
1668   simd_prefix(dst, src, VEX_SIMD_66);
1669   emit_byte(0x6E);
1670   emit_operand(dst, src);
1671 }
1672 
1673 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
1674   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1675   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1676   emit_byte(0x6F);
1677   emit_byte(0xC0 | encode);
1678 }
1679 
1680 void Assembler::movdqu(XMMRegister dst, Address src) {
1681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1682   InstructionMark im(this);
1683   simd_prefix(dst, src, VEX_SIMD_F3);
1684   emit_byte(0x6F);
1685   emit_operand(dst, src);
1686 }
1687 
1688 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
1689   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1690   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1691   emit_byte(0x6F);
1692   emit_byte(0xC0 | encode);
1693 }
1694 
1695 void Assembler::movdqu(Address dst, XMMRegister src) {
1696   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1697   InstructionMark im(this);
1698   simd_prefix(dst, src, VEX_SIMD_F3);
1699   emit_byte(0x7F);
1700   emit_operand(src, dst);
1701 }
1702 
1703 // Uses zero extension on 64bit
1704 
1705 void Assembler::movl(Register dst, int32_t imm32) {
1706   int encode = prefix_and_encode(dst->encoding());
1707   emit_byte(0xB8 | encode);
1708   emit_long(imm32);
1709 }
1710 
1711 void Assembler::movl(Register dst, Register src) {
1712   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1713   emit_byte(0x8B);
1714   emit_byte(0xC0 | encode);
1715 }
1716 
1717 void Assembler::movl(Register dst, Address src) {
1718   InstructionMark im(this);
1719   prefix(src, dst);
1720   emit_byte(0x8B);
1721   emit_operand(dst, src);
1722 }
1723 
1724 void Assembler::movl(Address dst, int32_t imm32) {
1725   InstructionMark im(this);
1726   prefix(dst);
1727   emit_byte(0xC7);
1728   emit_operand(rax, dst, 4);
1729   emit_long(imm32);
1730 }
1731 
1732 void Assembler::movl(Address dst, Register src) {
1733   InstructionMark im(this);
1734   prefix(dst, src);
1735   emit_byte(0x89);
1736   emit_operand(src, dst);
1737 }
1738 
1739 // New cpus require to use movsd and movss to avoid partial register stall
1740 // when loading from memory. But for old Opteron use movlpd instead of movsd.
1741 // The selection is done in MacroAssembler::movdbl() and movflt().
1742 void Assembler::movlpd(XMMRegister dst, Address src) {
1743   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1744   InstructionMark im(this);
1745   simd_prefix(dst, dst, src, VEX_SIMD_66);
1746   emit_byte(0x12);
1747   emit_operand(dst, src);
1748 }
1749 
1750 void Assembler::movq( MMXRegister dst, Address src ) {
1751   assert( VM_Version::supports_mmx(), "" );
1752   emit_byte(0x0F);
1753   emit_byte(0x6F);
1754   emit_operand(dst, src);
1755 }
1756 
1757 void Assembler::movq( Address dst, MMXRegister src ) {
1758   assert( VM_Version::supports_mmx(), "" );
1759   emit_byte(0x0F);
1760   emit_byte(0x7F);
1761   // workaround gcc (3.2.1-7a) bug
1762   // In that version of gcc with only an emit_operand(MMX, Address)
1763   // gcc will tail jump and try and reverse the parameters completely
1764   // obliterating dst in the process. By having a version available
1765   // that doesn't need to swap the args at the tail jump the bug is
1766   // avoided.
1767   emit_operand(dst, src);
1768 }
1769 
1770 void Assembler::movq(XMMRegister dst, Address src) {
1771   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1772   InstructionMark im(this);
1773   simd_prefix(dst, src, VEX_SIMD_F3);
1774   emit_byte(0x7E);
1775   emit_operand(dst, src);
1776 }
1777 
1778 void Assembler::movq(Address dst, XMMRegister src) {
1779   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1780   InstructionMark im(this);
1781   simd_prefix(dst, src, VEX_SIMD_66);
1782   emit_byte(0xD6);
1783   emit_operand(src, dst);
1784 }
1785 
1786 void Assembler::movsbl(Register dst, Address src) { // movsxb
1787   InstructionMark im(this);
1788   prefix(src, dst);
1789   emit_byte(0x0F);
1790   emit_byte(0xBE);
1791   emit_operand(dst, src);
1792 }
1793 
1794 void Assembler::movsbl(Register dst, Register src) { // movsxb
1795   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1796   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1797   emit_byte(0x0F);
1798   emit_byte(0xBE);
1799   emit_byte(0xC0 | encode);
1800 }
1801 
1802 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
1803   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1804   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1805   emit_byte(0x10);
1806   emit_byte(0xC0 | encode);
1807 }
1808 
1809 void Assembler::movsd(XMMRegister dst, Address src) {
1810   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1811   InstructionMark im(this);
1812   simd_prefix(dst, src, VEX_SIMD_F2);
1813   emit_byte(0x10);
1814   emit_operand(dst, src);
1815 }
1816 
1817 void Assembler::movsd(Address dst, XMMRegister src) {
1818   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1819   InstructionMark im(this);
1820   simd_prefix(dst, src, VEX_SIMD_F2);
1821   emit_byte(0x11);
1822   emit_operand(src, dst);
1823 }
1824 
1825 void Assembler::movss(XMMRegister dst, XMMRegister src) {
1826   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1827   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1828   emit_byte(0x10);
1829   emit_byte(0xC0 | encode);
1830 }
1831 
1832 void Assembler::movss(XMMRegister dst, Address src) {
1833   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1834   InstructionMark im(this);
1835   simd_prefix(dst, src, VEX_SIMD_F3);
1836   emit_byte(0x10);
1837   emit_operand(dst, src);
1838 }
1839 
1840 void Assembler::movss(Address dst, XMMRegister src) {
1841   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1842   InstructionMark im(this);
1843   simd_prefix(dst, src, VEX_SIMD_F3);
1844   emit_byte(0x11);
1845   emit_operand(src, dst);
1846 }
1847 
1848 void Assembler::movswl(Register dst, Address src) { // movsxw
1849   InstructionMark im(this);
1850   prefix(src, dst);
1851   emit_byte(0x0F);
1852   emit_byte(0xBF);
1853   emit_operand(dst, src);
1854 }
1855 
1856 void Assembler::movswl(Register dst, Register src) { // movsxw
1857   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1858   emit_byte(0x0F);
1859   emit_byte(0xBF);
1860   emit_byte(0xC0 | encode);
1861 }
1862 
1863 void Assembler::movw(Address dst, int imm16) {
1864   InstructionMark im(this);
1865 
1866   emit_byte(0x66); // switch to 16-bit mode
1867   prefix(dst);
1868   emit_byte(0xC7);
1869   emit_operand(rax, dst, 2);
1870   emit_word(imm16);
1871 }
1872 
1873 void Assembler::movw(Register dst, Address src) {
1874   InstructionMark im(this);
1875   emit_byte(0x66);
1876   prefix(src, dst);
1877   emit_byte(0x8B);
1878   emit_operand(dst, src);
1879 }
1880 
1881 void Assembler::movw(Address dst, Register src) {
1882   InstructionMark im(this);
1883   emit_byte(0x66);
1884   prefix(dst, src);
1885   emit_byte(0x89);
1886   emit_operand(src, dst);
1887 }
1888 
1889 void Assembler::movzbl(Register dst, Address src) { // movzxb
1890   InstructionMark im(this);
1891   prefix(src, dst);
1892   emit_byte(0x0F);
1893   emit_byte(0xB6);
1894   emit_operand(dst, src);
1895 }
1896 
1897 void Assembler::movzbl(Register dst, Register src) { // movzxb
1898   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1899   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1900   emit_byte(0x0F);
1901   emit_byte(0xB6);
1902   emit_byte(0xC0 | encode);
1903 }
1904 
1905 void Assembler::movzwl(Register dst, Address src) { // movzxw
1906   InstructionMark im(this);
1907   prefix(src, dst);
1908   emit_byte(0x0F);
1909   emit_byte(0xB7);
1910   emit_operand(dst, src);
1911 }
1912 
1913 void Assembler::movzwl(Register dst, Register src) { // movzxw
1914   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1915   emit_byte(0x0F);
1916   emit_byte(0xB7);
1917   emit_byte(0xC0 | encode);
1918 }
1919 
1920 void Assembler::mull(Address src) {
1921   InstructionMark im(this);
1922   prefix(src);
1923   emit_byte(0xF7);
1924   emit_operand(rsp, src);
1925 }
1926 
1927 void Assembler::mull(Register src) {
1928   int encode = prefix_and_encode(src->encoding());
1929   emit_byte(0xF7);
1930   emit_byte(0xE0 | encode);
1931 }
1932 
1933 void Assembler::mulsd(XMMRegister dst, Address src) {
1934   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1935   InstructionMark im(this);
1936   simd_prefix(dst, dst, src, VEX_SIMD_F2);
1937   emit_byte(0x59);
1938   emit_operand(dst, src);
1939 }
1940 
1941 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
1942   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1943   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1944   emit_byte(0x59);
1945   emit_byte(0xC0 | encode);
1946 }
1947 
1948 void Assembler::mulss(XMMRegister dst, Address src) {
1949   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1950   InstructionMark im(this);
1951   simd_prefix(dst, dst, src, VEX_SIMD_F3);
1952   emit_byte(0x59);
1953   emit_operand(dst, src);
1954 }
1955 
1956 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
1957   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1958   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1959   emit_byte(0x59);
1960   emit_byte(0xC0 | encode);
1961 }
1962 
1963 void Assembler::negl(Register dst) {
1964   int encode = prefix_and_encode(dst->encoding());
1965   emit_byte(0xF7);
1966   emit_byte(0xD8 | encode);
1967 }
1968 
1969 void Assembler::nop(int i) {
1970 #ifdef ASSERT
1971   assert(i > 0, " ");
1972   // The fancy nops aren't currently recognized by debuggers making it a
1973   // pain to disassemble code while debugging. If asserts are on clearly
1974   // speed is not an issue so simply use the single byte traditional nop
1975   // to do alignment.
1976 
1977   for (; i > 0 ; i--) emit_byte(0x90);
1978   return;
1979 
1980 #endif // ASSERT
1981 
1982   if (UseAddressNop && VM_Version::is_intel()) {
1983     //
1984     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
1985     //  1: 0x90
1986     //  2: 0x66 0x90
1987     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
1988     //  4: 0x0F 0x1F 0x40 0x00
1989     //  5: 0x0F 0x1F 0x44 0x00 0x00
1990     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
1991     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
1992     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1993     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1994     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1995     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1996 
1997     // The rest coding is Intel specific - don't use consecutive address nops
1998 
1999     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2000     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2001     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2002     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2003 
2004     while(i >= 15) {
2005       // For Intel don't generate consecutive addess nops (mix with regular nops)
2006       i -= 15;
2007       emit_byte(0x66);   // size prefix
2008       emit_byte(0x66);   // size prefix
2009       emit_byte(0x66);   // size prefix
2010       addr_nop_8();
2011       emit_byte(0x66);   // size prefix
2012       emit_byte(0x66);   // size prefix
2013       emit_byte(0x66);   // size prefix
2014       emit_byte(0x90);   // nop
2015     }
2016     switch (i) {
2017       case 14:
2018         emit_byte(0x66); // size prefix
2019       case 13:
2020         emit_byte(0x66); // size prefix
2021       case 12:
2022         addr_nop_8();
2023         emit_byte(0x66); // size prefix
2024         emit_byte(0x66); // size prefix
2025         emit_byte(0x66); // size prefix
2026         emit_byte(0x90); // nop
2027         break;
2028       case 11:
2029         emit_byte(0x66); // size prefix
2030       case 10:
2031         emit_byte(0x66); // size prefix
2032       case 9:
2033         emit_byte(0x66); // size prefix
2034       case 8:
2035         addr_nop_8();
2036         break;
2037       case 7:
2038         addr_nop_7();
2039         break;
2040       case 6:
2041         emit_byte(0x66); // size prefix
2042       case 5:
2043         addr_nop_5();
2044         break;
2045       case 4:
2046         addr_nop_4();
2047         break;
2048       case 3:
2049         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2050         emit_byte(0x66); // size prefix
2051       case 2:
2052         emit_byte(0x66); // size prefix
2053       case 1:
2054         emit_byte(0x90); // nop
2055         break;
2056       default:
2057         assert(i == 0, " ");
2058     }
2059     return;
2060   }
2061   if (UseAddressNop && VM_Version::is_amd()) {
2062     //
2063     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2064     //  1: 0x90
2065     //  2: 0x66 0x90
2066     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2067     //  4: 0x0F 0x1F 0x40 0x00
2068     //  5: 0x0F 0x1F 0x44 0x00 0x00
2069     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2070     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2071     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2072     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2073     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2074     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2075 
2076     // The rest coding is AMD specific - use consecutive address nops
2077 
2078     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2079     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2080     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2081     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2082     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2083     //     Size prefixes (0x66) are added for larger sizes
2084 
2085     while(i >= 22) {
2086       i -= 11;
2087       emit_byte(0x66); // size prefix
2088       emit_byte(0x66); // size prefix
2089       emit_byte(0x66); // size prefix
2090       addr_nop_8();
2091     }
2092     // Generate first nop for size between 21-12
2093     switch (i) {
2094       case 21:
2095         i -= 1;
2096         emit_byte(0x66); // size prefix
2097       case 20:
2098       case 19:
2099         i -= 1;
2100         emit_byte(0x66); // size prefix
2101       case 18:
2102       case 17:
2103         i -= 1;
2104         emit_byte(0x66); // size prefix
2105       case 16:
2106       case 15:
2107         i -= 8;
2108         addr_nop_8();
2109         break;
2110       case 14:
2111       case 13:
2112         i -= 7;
2113         addr_nop_7();
2114         break;
2115       case 12:
2116         i -= 6;
2117         emit_byte(0x66); // size prefix
2118         addr_nop_5();
2119         break;
2120       default:
2121         assert(i < 12, " ");
2122     }
2123 
2124     // Generate second nop for size between 11-1
2125     switch (i) {
2126       case 11:
2127         emit_byte(0x66); // size prefix
2128       case 10:
2129         emit_byte(0x66); // size prefix
2130       case 9:
2131         emit_byte(0x66); // size prefix
2132       case 8:
2133         addr_nop_8();
2134         break;
2135       case 7:
2136         addr_nop_7();
2137         break;
2138       case 6:
2139         emit_byte(0x66); // size prefix
2140       case 5:
2141         addr_nop_5();
2142         break;
2143       case 4:
2144         addr_nop_4();
2145         break;
2146       case 3:
2147         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2148         emit_byte(0x66); // size prefix
2149       case 2:
2150         emit_byte(0x66); // size prefix
2151       case 1:
2152         emit_byte(0x90); // nop
2153         break;
2154       default:
2155         assert(i == 0, " ");
2156     }
2157     return;
2158   }
2159 
2160   // Using nops with size prefixes "0x66 0x90".
2161   // From AMD Optimization Guide:
2162   //  1: 0x90
2163   //  2: 0x66 0x90
2164   //  3: 0x66 0x66 0x90
2165   //  4: 0x66 0x66 0x66 0x90
2166   //  5: 0x66 0x66 0x90 0x66 0x90
2167   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2168   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2169   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2170   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2171   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2172   //
2173   while(i > 12) {
2174     i -= 4;
2175     emit_byte(0x66); // size prefix
2176     emit_byte(0x66);
2177     emit_byte(0x66);
2178     emit_byte(0x90); // nop
2179   }
2180   // 1 - 12 nops
2181   if(i > 8) {
2182     if(i > 9) {
2183       i -= 1;
2184       emit_byte(0x66);
2185     }
2186     i -= 3;
2187     emit_byte(0x66);
2188     emit_byte(0x66);
2189     emit_byte(0x90);
2190   }
2191   // 1 - 8 nops
2192   if(i > 4) {
2193     if(i > 6) {
2194       i -= 1;
2195       emit_byte(0x66);
2196     }
2197     i -= 3;
2198     emit_byte(0x66);
2199     emit_byte(0x66);
2200     emit_byte(0x90);
2201   }
2202   switch (i) {
2203     case 4:
2204       emit_byte(0x66);
2205     case 3:
2206       emit_byte(0x66);
2207     case 2:
2208       emit_byte(0x66);
2209     case 1:
2210       emit_byte(0x90);
2211       break;
2212     default:
2213       assert(i == 0, " ");
2214   }
2215 }
2216 
2217 void Assembler::notl(Register dst) {
2218   int encode = prefix_and_encode(dst->encoding());
2219   emit_byte(0xF7);
2220   emit_byte(0xD0 | encode );
2221 }
2222 
2223 void Assembler::orl(Address dst, int32_t imm32) {
2224   InstructionMark im(this);
2225   prefix(dst);
2226   emit_arith_operand(0x81, rcx, dst, imm32);
2227 }
2228 
2229 void Assembler::orl(Register dst, int32_t imm32) {
2230   prefix(dst);
2231   emit_arith(0x81, 0xC8, dst, imm32);
2232 }
2233 
2234 void Assembler::orl(Register dst, Address src) {
2235   InstructionMark im(this);
2236   prefix(src, dst);
2237   emit_byte(0x0B);
2238   emit_operand(dst, src);
2239 }
2240 
2241 void Assembler::orl(Register dst, Register src) {
2242   (void) prefix_and_encode(dst->encoding(), src->encoding());
2243   emit_arith(0x0B, 0xC0, dst, src);
2244 }
2245 
2246 void Assembler::packuswb(XMMRegister dst, Address src) {
2247   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2248   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2249   InstructionMark im(this);
2250   simd_prefix(dst, dst, src, VEX_SIMD_66);
2251   emit_byte(0x67);
2252   emit_operand(dst, src);
2253 }
2254 
2255 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2257   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
2258   emit_byte(0x67);
2259   emit_byte(0xC0 | encode);
2260 }
2261 
2262 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2263   assert(VM_Version::supports_sse4_2(), "");
2264   InstructionMark im(this);
2265   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2266   emit_byte(0x61);
2267   emit_operand(dst, src);
2268   emit_byte(imm8);
2269 }
2270 
2271 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2272   assert(VM_Version::supports_sse4_2(), "");
2273   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2274   emit_byte(0x61);
2275   emit_byte(0xC0 | encode);
2276   emit_byte(imm8);
2277 }
2278 
2279 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2280   assert(VM_Version::supports_sse4_1(), "");
2281   InstructionMark im(this);
2282   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2283   emit_byte(0x30);
2284   emit_operand(dst, src);
2285 }
2286 
2287 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2288   assert(VM_Version::supports_sse4_1(), "");
2289   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2290   emit_byte(0x30);
2291   emit_byte(0xC0 | encode);
2292 }
2293 
2294 // generic
2295 void Assembler::pop(Register dst) {
2296   int encode = prefix_and_encode(dst->encoding());
2297   emit_byte(0x58 | encode);
2298 }
2299 
2300 void Assembler::popcntl(Register dst, Address src) {
2301   assert(VM_Version::supports_popcnt(), "must support");
2302   InstructionMark im(this);
2303   emit_byte(0xF3);
2304   prefix(src, dst);
2305   emit_byte(0x0F);
2306   emit_byte(0xB8);
2307   emit_operand(dst, src);
2308 }
2309 
2310 void Assembler::popcntl(Register dst, Register src) {
2311   assert(VM_Version::supports_popcnt(), "must support");
2312   emit_byte(0xF3);
2313   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2314   emit_byte(0x0F);
2315   emit_byte(0xB8);
2316   emit_byte(0xC0 | encode);
2317 }
2318 
2319 void Assembler::popf() {
2320   emit_byte(0x9D);
2321 }
2322 
2323 #ifndef _LP64 // no 32bit push/pop on amd64
2324 void Assembler::popl(Address dst) {
2325   // NOTE: this will adjust stack by 8byte on 64bits
2326   InstructionMark im(this);
2327   prefix(dst);
2328   emit_byte(0x8F);
2329   emit_operand(rax, dst);
2330 }
2331 #endif
2332 
2333 void Assembler::prefetch_prefix(Address src) {
2334   prefix(src);
2335   emit_byte(0x0F);
2336 }
2337 
2338 void Assembler::prefetchnta(Address src) {
2339   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2340   InstructionMark im(this);
2341   prefetch_prefix(src);
2342   emit_byte(0x18);
2343   emit_operand(rax, src); // 0, src
2344 }
2345 
2346 void Assembler::prefetchr(Address src) {
2347   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2348   InstructionMark im(this);
2349   prefetch_prefix(src);
2350   emit_byte(0x0D);
2351   emit_operand(rax, src); // 0, src
2352 }
2353 
2354 void Assembler::prefetcht0(Address src) {
2355   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2356   InstructionMark im(this);
2357   prefetch_prefix(src);
2358   emit_byte(0x18);
2359   emit_operand(rcx, src); // 1, src
2360 }
2361 
2362 void Assembler::prefetcht1(Address src) {
2363   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2364   InstructionMark im(this);
2365   prefetch_prefix(src);
2366   emit_byte(0x18);
2367   emit_operand(rdx, src); // 2, src
2368 }
2369 
2370 void Assembler::prefetcht2(Address src) {
2371   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2372   InstructionMark im(this);
2373   prefetch_prefix(src);
2374   emit_byte(0x18);
2375   emit_operand(rbx, src); // 3, src
2376 }
2377 
2378 void Assembler::prefetchw(Address src) {
2379   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2380   InstructionMark im(this);
2381   prefetch_prefix(src);
2382   emit_byte(0x0D);
2383   emit_operand(rcx, src); // 1, src
2384 }
2385 
2386 void Assembler::prefix(Prefix p) {
2387   a_byte(p);
2388 }
2389 
2390 void Assembler::por(XMMRegister dst, XMMRegister src) {
2391   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2392   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
2393   emit_byte(0xEB);
2394   emit_byte(0xC0 | encode);
2395 }
2396 
2397 void Assembler::por(XMMRegister dst, Address src) {
2398   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2399   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2400   InstructionMark im(this);
2401   simd_prefix(dst, dst, src, VEX_SIMD_66);
2402   emit_byte(0xEB);
2403   emit_operand(dst, src);
2404 }
2405 
2406 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
2407   assert(isByte(mode), "invalid value");
2408   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2409   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
2410   emit_byte(0x70);
2411   emit_byte(0xC0 | encode);
2412   emit_byte(mode & 0xFF);
2413 
2414 }
2415 
2416 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
2417   assert(isByte(mode), "invalid value");
2418   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2419   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2420   InstructionMark im(this);
2421   simd_prefix(dst, src, VEX_SIMD_66);
2422   emit_byte(0x70);
2423   emit_operand(dst, src);
2424   emit_byte(mode & 0xFF);
2425 }
2426 
2427 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
2428   assert(isByte(mode), "invalid value");
2429   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2430   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
2431   emit_byte(0x70);
2432   emit_byte(0xC0 | encode);
2433   emit_byte(mode & 0xFF);
2434 }
2435 
2436 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
2437   assert(isByte(mode), "invalid value");
2438   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2439   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2440   InstructionMark im(this);
2441   simd_prefix(dst, src, VEX_SIMD_F2);
2442   emit_byte(0x70);
2443   emit_operand(dst, src);
2444   emit_byte(mode & 0xFF);
2445 }
2446 
2447 void Assembler::psrlq(XMMRegister dst, int shift) {
2448   // Shift 64 bit value logically right by specified number of bits.
2449   // HMM Table D-1 says sse2 or mmx.
2450   // Do not confuse it with psrldq SSE2 instruction which
2451   // shifts 128 bit value in xmm register by number of bytes.
2452   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2453   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
2454   emit_byte(0x73);
2455   emit_byte(0xC0 | encode);
2456   emit_byte(shift);
2457 }
2458 
2459 void Assembler::psrldq(XMMRegister dst, int shift) {
2460   // Shift 128 bit value in xmm register by number of bytes.
2461   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2462   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
2463   emit_byte(0x73);
2464   emit_byte(0xC0 | encode);
2465   emit_byte(shift);
2466 }
2467 
2468 void Assembler::ptest(XMMRegister dst, Address src) {
2469   assert(VM_Version::supports_sse4_1(), "");
2470   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2471   InstructionMark im(this);
2472   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2473   emit_byte(0x17);
2474   emit_operand(dst, src);
2475 }
2476 
2477 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2478   assert(VM_Version::supports_sse4_1(), "");
2479   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2480   emit_byte(0x17);
2481   emit_byte(0xC0 | encode);
2482 }
2483 
2484 void Assembler::punpcklbw(XMMRegister dst, Address src) {
2485   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2486   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2487   InstructionMark im(this);
2488   simd_prefix(dst, dst, src, VEX_SIMD_66);
2489   emit_byte(0x60);
2490   emit_operand(dst, src);
2491 }
2492 
2493 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
2494   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2495   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
2496   emit_byte(0x60);
2497   emit_byte(0xC0 | encode);
2498 }
2499 
2500 void Assembler::punpckldq(XMMRegister dst, Address src) {
2501   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2502   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2503   InstructionMark im(this);
2504   simd_prefix(dst, dst, src, VEX_SIMD_66);
2505   emit_byte(0x62);
2506   emit_operand(dst, src);
2507 }
2508 
2509 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2510   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2511   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
2512   emit_byte(0x62);
2513   emit_byte(0xC0 | encode);
2514 }
2515 
2516 void Assembler::push(int32_t imm32) {
2517   // in 64bits we push 64bits onto the stack but only
2518   // take a 32bit immediate
2519   emit_byte(0x68);
2520   emit_long(imm32);
2521 }
2522 
2523 void Assembler::push(Register src) {
2524   int encode = prefix_and_encode(src->encoding());
2525 
2526   emit_byte(0x50 | encode);
2527 }
2528 
2529 void Assembler::pushf() {
2530   emit_byte(0x9C);
2531 }
2532 
2533 #ifndef _LP64 // no 32bit push/pop on amd64
2534 void Assembler::pushl(Address src) {
2535   // Note this will push 64bit on 64bit
2536   InstructionMark im(this);
2537   prefix(src);
2538   emit_byte(0xFF);
2539   emit_operand(rsi, src);
2540 }
2541 #endif
2542 
2543 void Assembler::pxor(XMMRegister dst, Address src) {
2544   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2545   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2546   InstructionMark im(this);
2547   simd_prefix(dst, dst, src, VEX_SIMD_66);
2548   emit_byte(0xEF);
2549   emit_operand(dst, src);
2550 }
2551 
2552 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
2553   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2554   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
2555   emit_byte(0xEF);
2556   emit_byte(0xC0 | encode);
2557 }
2558 
2559 void Assembler::rcll(Register dst, int imm8) {
2560   assert(isShiftCount(imm8), "illegal shift count");
2561   int encode = prefix_and_encode(dst->encoding());
2562   if (imm8 == 1) {
2563     emit_byte(0xD1);
2564     emit_byte(0xD0 | encode);
2565   } else {
2566     emit_byte(0xC1);
2567     emit_byte(0xD0 | encode);
2568     emit_byte(imm8);
2569   }
2570 }
2571 
2572 // copies data from [esi] to [edi] using rcx pointer sized words
2573 // generic
2574 void Assembler::rep_mov() {
2575   emit_byte(0xF3);
2576   // MOVSQ
2577   LP64_ONLY(prefix(REX_W));
2578   emit_byte(0xA5);
2579 }
2580 
2581 // sets rcx pointer sized words with rax, value at [edi]
2582 // generic
2583 void Assembler::rep_set() { // rep_set
2584   emit_byte(0xF3);
2585   // STOSQ
2586   LP64_ONLY(prefix(REX_W));
2587   emit_byte(0xAB);
2588 }
2589 
2590 // scans rcx pointer sized words at [edi] for occurance of rax,
2591 // generic
2592 void Assembler::repne_scan() { // repne_scan
2593   emit_byte(0xF2);
2594   // SCASQ
2595   LP64_ONLY(prefix(REX_W));
2596   emit_byte(0xAF);
2597 }
2598 
2599 #ifdef _LP64
2600 // scans rcx 4 byte words at [edi] for occurance of rax,
2601 // generic
2602 void Assembler::repne_scanl() { // repne_scan
2603   emit_byte(0xF2);
2604   // SCASL
2605   emit_byte(0xAF);
2606 }
2607 #endif
2608 
2609 void Assembler::ret(int imm16) {
2610   if (imm16 == 0) {
2611     emit_byte(0xC3);
2612   } else {
2613     emit_byte(0xC2);
2614     emit_word(imm16);
2615   }
2616 }
2617 
2618 void Assembler::sahf() {
2619 #ifdef _LP64
2620   // Not supported in 64bit mode
2621   ShouldNotReachHere();
2622 #endif
2623   emit_byte(0x9E);
2624 }
2625 
2626 void Assembler::sarl(Register dst, int imm8) {
2627   int encode = prefix_and_encode(dst->encoding());
2628   assert(isShiftCount(imm8), "illegal shift count");
2629   if (imm8 == 1) {
2630     emit_byte(0xD1);
2631     emit_byte(0xF8 | encode);
2632   } else {
2633     emit_byte(0xC1);
2634     emit_byte(0xF8 | encode);
2635     emit_byte(imm8);
2636   }
2637 }
2638 
2639 void Assembler::sarl(Register dst) {
2640   int encode = prefix_and_encode(dst->encoding());
2641   emit_byte(0xD3);
2642   emit_byte(0xF8 | encode);
2643 }
2644 
2645 void Assembler::sbbl(Address dst, int32_t imm32) {
2646   InstructionMark im(this);
2647   prefix(dst);
2648   emit_arith_operand(0x81, rbx, dst, imm32);
2649 }
2650 
2651 void Assembler::sbbl(Register dst, int32_t imm32) {
2652   prefix(dst);
2653   emit_arith(0x81, 0xD8, dst, imm32);
2654 }
2655 
2656 
2657 void Assembler::sbbl(Register dst, Address src) {
2658   InstructionMark im(this);
2659   prefix(src, dst);
2660   emit_byte(0x1B);
2661   emit_operand(dst, src);
2662 }
2663 
2664 void Assembler::sbbl(Register dst, Register src) {
2665   (void) prefix_and_encode(dst->encoding(), src->encoding());
2666   emit_arith(0x1B, 0xC0, dst, src);
2667 }
2668 
2669 void Assembler::setb(Condition cc, Register dst) {
2670   assert(0 <= cc && cc < 16, "illegal cc");
2671   int encode = prefix_and_encode(dst->encoding(), true);
2672   emit_byte(0x0F);
2673   emit_byte(0x90 | cc);
2674   emit_byte(0xC0 | encode);
2675 }
2676 
2677 void Assembler::shll(Register dst, int imm8) {
2678   assert(isShiftCount(imm8), "illegal shift count");
2679   int encode = prefix_and_encode(dst->encoding());
2680   if (imm8 == 1 ) {
2681     emit_byte(0xD1);
2682     emit_byte(0xE0 | encode);
2683   } else {
2684     emit_byte(0xC1);
2685     emit_byte(0xE0 | encode);
2686     emit_byte(imm8);
2687   }
2688 }
2689 
2690 void Assembler::shll(Register dst) {
2691   int encode = prefix_and_encode(dst->encoding());
2692   emit_byte(0xD3);
2693   emit_byte(0xE0 | encode);
2694 }
2695 
2696 void Assembler::shrl(Register dst, int imm8) {
2697   assert(isShiftCount(imm8), "illegal shift count");
2698   int encode = prefix_and_encode(dst->encoding());
2699   emit_byte(0xC1);
2700   emit_byte(0xE8 | encode);
2701   emit_byte(imm8);
2702 }
2703 
2704 void Assembler::shrl(Register dst) {
2705   int encode = prefix_and_encode(dst->encoding());
2706   emit_byte(0xD3);
2707   emit_byte(0xE8 | encode);
2708 }
2709 
2710 // copies a single word from [esi] to [edi]
2711 void Assembler::smovl() {
2712   emit_byte(0xA5);
2713 }
2714 
2715 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2716   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2717   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
2718   emit_byte(0x51);
2719   emit_byte(0xC0 | encode);
2720 }
2721 
2722 void Assembler::sqrtsd(XMMRegister dst, Address src) {
2723   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2724   InstructionMark im(this);
2725   simd_prefix(dst, dst, src, VEX_SIMD_F2);
2726   emit_byte(0x51);
2727   emit_operand(dst, src);
2728 }
2729 
2730 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
2731   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2732   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
2733   emit_byte(0x51);
2734   emit_byte(0xC0 | encode);
2735 }
2736 
2737 void Assembler::sqrtss(XMMRegister dst, Address src) {
2738   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2739   InstructionMark im(this);
2740   simd_prefix(dst, dst, src, VEX_SIMD_F3);
2741   emit_byte(0x51);
2742   emit_operand(dst, src);
2743 }
2744 
2745 void Assembler::stmxcsr( Address dst) {
2746   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2747   InstructionMark im(this);
2748   prefix(dst);
2749   emit_byte(0x0F);
2750   emit_byte(0xAE);
2751   emit_operand(as_Register(3), dst);
2752 }
2753 
2754 void Assembler::subl(Address dst, int32_t imm32) {
2755   InstructionMark im(this);
2756   prefix(dst);
2757   emit_arith_operand(0x81, rbp, dst, imm32);
2758 }
2759 
2760 void Assembler::subl(Address dst, Register src) {
2761   InstructionMark im(this);
2762   prefix(dst, src);
2763   emit_byte(0x29);
2764   emit_operand(src, dst);
2765 }
2766 
2767 void Assembler::subl(Register dst, int32_t imm32) {
2768   prefix(dst);
2769   emit_arith(0x81, 0xE8, dst, imm32);
2770 }
2771 
2772 void Assembler::subl(Register dst, Address src) {
2773   InstructionMark im(this);
2774   prefix(src, dst);
2775   emit_byte(0x2B);
2776   emit_operand(dst, src);
2777 }
2778 
2779 void Assembler::subl(Register dst, Register src) {
2780   (void) prefix_and_encode(dst->encoding(), src->encoding());
2781   emit_arith(0x2B, 0xC0, dst, src);
2782 }
2783 
2784 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2785   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2786   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
2787   emit_byte(0x5C);
2788   emit_byte(0xC0 | encode);
2789 }
2790 
2791 void Assembler::subsd(XMMRegister dst, Address src) {
2792   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2793   InstructionMark im(this);
2794   simd_prefix(dst, dst, src, VEX_SIMD_F2);
2795   emit_byte(0x5C);
2796   emit_operand(dst, src);
2797 }
2798 
2799 void Assembler::subss(XMMRegister dst, XMMRegister src) {
2800   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2801   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
2802   emit_byte(0x5C);
2803   emit_byte(0xC0 | encode);
2804 }
2805 
2806 void Assembler::subss(XMMRegister dst, Address src) {
2807   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2808   InstructionMark im(this);
2809   simd_prefix(dst, dst, src, VEX_SIMD_F3);
2810   emit_byte(0x5C);
2811   emit_operand(dst, src);
2812 }
2813 
2814 void Assembler::testb(Register dst, int imm8) {
2815   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2816   (void) prefix_and_encode(dst->encoding(), true);
2817   emit_arith_b(0xF6, 0xC0, dst, imm8);
2818 }
2819 
2820 void Assembler::testl(Register dst, int32_t imm32) {
2821   // not using emit_arith because test
2822   // doesn't support sign-extension of
2823   // 8bit operands
2824   int encode = dst->encoding();
2825   if (encode == 0) {
2826     emit_byte(0xA9);
2827   } else {
2828     encode = prefix_and_encode(encode);
2829     emit_byte(0xF7);
2830     emit_byte(0xC0 | encode);
2831   }
2832   emit_long(imm32);
2833 }
2834 
2835 void Assembler::testl(Register dst, Register src) {
2836   (void) prefix_and_encode(dst->encoding(), src->encoding());
2837   emit_arith(0x85, 0xC0, dst, src);
2838 }
2839 
2840 void Assembler::testl(Register dst, Address  src) {
2841   InstructionMark im(this);
2842   prefix(src, dst);
2843   emit_byte(0x85);
2844   emit_operand(dst, src);
2845 }
2846 
2847 void Assembler::ucomisd(XMMRegister dst, Address src) {
2848   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2849   InstructionMark im(this);
2850   simd_prefix(dst, src, VEX_SIMD_66);
2851   emit_byte(0x2E);
2852   emit_operand(dst, src);
2853 }
2854 
2855 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
2856   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2857   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
2858   emit_byte(0x2E);
2859   emit_byte(0xC0 | encode);
2860 }
2861 
2862 void Assembler::ucomiss(XMMRegister dst, Address src) {
2863   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2864   InstructionMark im(this);
2865   simd_prefix(dst, src, VEX_SIMD_NONE);
2866   emit_byte(0x2E);
2867   emit_operand(dst, src);
2868 }
2869 
2870 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
2871   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2872   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
2873   emit_byte(0x2E);
2874   emit_byte(0xC0 | encode);
2875 }
2876 
2877 
2878 void Assembler::xaddl(Address dst, Register src) {
2879   InstructionMark im(this);
2880   prefix(dst, src);
2881   emit_byte(0x0F);
2882   emit_byte(0xC1);
2883   emit_operand(src, dst);
2884 }
2885 
2886 void Assembler::xchgl(Register dst, Address src) { // xchg
2887   InstructionMark im(this);
2888   prefix(src, dst);
2889   emit_byte(0x87);
2890   emit_operand(dst, src);
2891 }
2892 
2893 void Assembler::xchgl(Register dst, Register src) {
2894   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2895   emit_byte(0x87);
2896   emit_byte(0xc0 | encode);
2897 }
2898 
2899 void Assembler::xorl(Register dst, int32_t imm32) {
2900   prefix(dst);
2901   emit_arith(0x81, 0xF0, dst, imm32);
2902 }
2903 
2904 void Assembler::xorl(Register dst, Address src) {
2905   InstructionMark im(this);
2906   prefix(src, dst);
2907   emit_byte(0x33);
2908   emit_operand(dst, src);
2909 }
2910 
2911 void Assembler::xorl(Register dst, Register src) {
2912   (void) prefix_and_encode(dst->encoding(), src->encoding());
2913   emit_arith(0x33, 0xC0, dst, src);
2914 }
2915 
2916 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
2917   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2918   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
2919   emit_byte(0x57);
2920   emit_byte(0xC0 | encode);
2921 }
2922 
2923 void Assembler::xorpd(XMMRegister dst, Address src) {
2924   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2925   InstructionMark im(this);
2926   simd_prefix(dst, dst, src, VEX_SIMD_66);
2927   emit_byte(0x57);
2928   emit_operand(dst, src);
2929 }
2930 
2931 
2932 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
2933   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2934   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
2935   emit_byte(0x57);
2936   emit_byte(0xC0 | encode);
2937 }
2938 
2939 void Assembler::xorps(XMMRegister dst, Address src) {
2940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2941   InstructionMark im(this);
2942   simd_prefix(dst, dst, src, VEX_SIMD_NONE);
2943   emit_byte(0x57);
2944   emit_operand(dst, src);
2945 }
2946 
2947 #ifndef _LP64
2948 // 32bit only pieces of the assembler
2949 
2950 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
2951   // NO PREFIX AS NEVER 64BIT
2952   InstructionMark im(this);
2953   emit_byte(0x81);
2954   emit_byte(0xF8 | src1->encoding());
2955   emit_data(imm32, rspec, 0);
2956 }
2957 
2958 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
2959   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
2960   InstructionMark im(this);
2961   emit_byte(0x81);
2962   emit_operand(rdi, src1);
2963   emit_data(imm32, rspec, 0);
2964 }
2965 
2966 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
2967 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
2968 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
2969 void Assembler::cmpxchg8(Address adr) {
2970   InstructionMark im(this);
2971   emit_byte(0x0F);
2972   emit_byte(0xc7);
2973   emit_operand(rcx, adr);
2974 }
2975 
2976 void Assembler::decl(Register dst) {
2977   // Don't use it directly. Use MacroAssembler::decrementl() instead.
2978  emit_byte(0x48 | dst->encoding());
2979 }
2980 
2981 #endif // _LP64
2982 
2983 // 64bit typically doesn't use the x87 but needs to for the trig funcs
2984 
2985 void Assembler::fabs() {
2986   emit_byte(0xD9);
2987   emit_byte(0xE1);
2988 }
2989 
2990 void Assembler::fadd(int i) {
2991   emit_farith(0xD8, 0xC0, i);
2992 }
2993 
2994 void Assembler::fadd_d(Address src) {
2995   InstructionMark im(this);
2996   emit_byte(0xDC);
2997   emit_operand32(rax, src);
2998 }
2999 
3000 void Assembler::fadd_s(Address src) {
3001   InstructionMark im(this);
3002   emit_byte(0xD8);
3003   emit_operand32(rax, src);
3004 }
3005 
3006 void Assembler::fadda(int i) {
3007   emit_farith(0xDC, 0xC0, i);
3008 }
3009 
3010 void Assembler::faddp(int i) {
3011   emit_farith(0xDE, 0xC0, i);
3012 }
3013 
3014 void Assembler::fchs() {
3015   emit_byte(0xD9);
3016   emit_byte(0xE0);
3017 }
3018 
3019 void Assembler::fcom(int i) {
3020   emit_farith(0xD8, 0xD0, i);
3021 }
3022 
3023 void Assembler::fcomp(int i) {
3024   emit_farith(0xD8, 0xD8, i);
3025 }
3026 
3027 void Assembler::fcomp_d(Address src) {
3028   InstructionMark im(this);
3029   emit_byte(0xDC);
3030   emit_operand32(rbx, src);
3031 }
3032 
3033 void Assembler::fcomp_s(Address src) {
3034   InstructionMark im(this);
3035   emit_byte(0xD8);
3036   emit_operand32(rbx, src);
3037 }
3038 
3039 void Assembler::fcompp() {
3040   emit_byte(0xDE);
3041   emit_byte(0xD9);
3042 }
3043 
3044 void Assembler::fcos() {
3045   emit_byte(0xD9);
3046   emit_byte(0xFF);
3047 }
3048 
3049 void Assembler::fdecstp() {
3050   emit_byte(0xD9);
3051   emit_byte(0xF6);
3052 }
3053 
3054 void Assembler::fdiv(int i) {
3055   emit_farith(0xD8, 0xF0, i);
3056 }
3057 
3058 void Assembler::fdiv_d(Address src) {
3059   InstructionMark im(this);
3060   emit_byte(0xDC);
3061   emit_operand32(rsi, src);
3062 }
3063 
3064 void Assembler::fdiv_s(Address src) {
3065   InstructionMark im(this);
3066   emit_byte(0xD8);
3067   emit_operand32(rsi, src);
3068 }
3069 
3070 void Assembler::fdiva(int i) {
3071   emit_farith(0xDC, 0xF8, i);
3072 }
3073 
3074 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
3075 //       is erroneous for some of the floating-point instructions below.
3076 
3077 void Assembler::fdivp(int i) {
3078   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
3079 }
3080 
3081 void Assembler::fdivr(int i) {
3082   emit_farith(0xD8, 0xF8, i);
3083 }
3084 
3085 void Assembler::fdivr_d(Address src) {
3086   InstructionMark im(this);
3087   emit_byte(0xDC);
3088   emit_operand32(rdi, src);
3089 }
3090 
3091 void Assembler::fdivr_s(Address src) {
3092   InstructionMark im(this);
3093   emit_byte(0xD8);
3094   emit_operand32(rdi, src);
3095 }
3096 
3097 void Assembler::fdivra(int i) {
3098   emit_farith(0xDC, 0xF0, i);
3099 }
3100 
3101 void Assembler::fdivrp(int i) {
3102   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
3103 }
3104 
3105 void Assembler::ffree(int i) {
3106   emit_farith(0xDD, 0xC0, i);
3107 }
3108 
3109 void Assembler::fild_d(Address adr) {
3110   InstructionMark im(this);
3111   emit_byte(0xDF);
3112   emit_operand32(rbp, adr);
3113 }
3114 
3115 void Assembler::fild_s(Address adr) {
3116   InstructionMark im(this);
3117   emit_byte(0xDB);
3118   emit_operand32(rax, adr);
3119 }
3120 
3121 void Assembler::fincstp() {
3122   emit_byte(0xD9);
3123   emit_byte(0xF7);
3124 }
3125 
3126 void Assembler::finit() {
3127   emit_byte(0x9B);
3128   emit_byte(0xDB);
3129   emit_byte(0xE3);
3130 }
3131 
3132 void Assembler::fist_s(Address adr) {
3133   InstructionMark im(this);
3134   emit_byte(0xDB);
3135   emit_operand32(rdx, adr);
3136 }
3137 
3138 void Assembler::fistp_d(Address adr) {
3139   InstructionMark im(this);
3140   emit_byte(0xDF);
3141   emit_operand32(rdi, adr);
3142 }
3143 
3144 void Assembler::fistp_s(Address adr) {
3145   InstructionMark im(this);
3146   emit_byte(0xDB);
3147   emit_operand32(rbx, adr);
3148 }
3149 
3150 void Assembler::fld1() {
3151   emit_byte(0xD9);
3152   emit_byte(0xE8);
3153 }
3154 
3155 void Assembler::fld_d(Address adr) {
3156   InstructionMark im(this);
3157   emit_byte(0xDD);
3158   emit_operand32(rax, adr);
3159 }
3160 
3161 void Assembler::fld_s(Address adr) {
3162   InstructionMark im(this);
3163   emit_byte(0xD9);
3164   emit_operand32(rax, adr);
3165 }
3166 
3167 
3168 void Assembler::fld_s(int index) {
3169   emit_farith(0xD9, 0xC0, index);
3170 }
3171 
3172 void Assembler::fld_x(Address adr) {
3173   InstructionMark im(this);
3174   emit_byte(0xDB);
3175   emit_operand32(rbp, adr);
3176 }
3177 
3178 void Assembler::fldcw(Address src) {
3179   InstructionMark im(this);
3180   emit_byte(0xd9);
3181   emit_operand32(rbp, src);
3182 }
3183 
3184 void Assembler::fldenv(Address src) {
3185   InstructionMark im(this);
3186   emit_byte(0xD9);
3187   emit_operand32(rsp, src);
3188 }
3189 
3190 void Assembler::fldlg2() {
3191   emit_byte(0xD9);
3192   emit_byte(0xEC);
3193 }
3194 
3195 void Assembler::fldln2() {
3196   emit_byte(0xD9);
3197   emit_byte(0xED);
3198 }
3199 
3200 void Assembler::fldz() {
3201   emit_byte(0xD9);
3202   emit_byte(0xEE);
3203 }
3204 
3205 void Assembler::flog() {
3206   fldln2();
3207   fxch();
3208   fyl2x();
3209 }
3210 
3211 void Assembler::flog10() {
3212   fldlg2();
3213   fxch();
3214   fyl2x();
3215 }
3216 
3217 void Assembler::fmul(int i) {
3218   emit_farith(0xD8, 0xC8, i);
3219 }
3220 
3221 void Assembler::fmul_d(Address src) {
3222   InstructionMark im(this);
3223   emit_byte(0xDC);
3224   emit_operand32(rcx, src);
3225 }
3226 
3227 void Assembler::fmul_s(Address src) {
3228   InstructionMark im(this);
3229   emit_byte(0xD8);
3230   emit_operand32(rcx, src);
3231 }
3232 
3233 void Assembler::fmula(int i) {
3234   emit_farith(0xDC, 0xC8, i);
3235 }
3236 
3237 void Assembler::fmulp(int i) {
3238   emit_farith(0xDE, 0xC8, i);
3239 }
3240 
3241 void Assembler::fnsave(Address dst) {
3242   InstructionMark im(this);
3243   emit_byte(0xDD);
3244   emit_operand32(rsi, dst);
3245 }
3246 
3247 void Assembler::fnstcw(Address src) {
3248   InstructionMark im(this);
3249   emit_byte(0x9B);
3250   emit_byte(0xD9);
3251   emit_operand32(rdi, src);
3252 }
3253 
3254 void Assembler::fnstsw_ax() {
3255   emit_byte(0xdF);
3256   emit_byte(0xE0);
3257 }
3258 
3259 void Assembler::fprem() {
3260   emit_byte(0xD9);
3261   emit_byte(0xF8);
3262 }
3263 
3264 void Assembler::fprem1() {
3265   emit_byte(0xD9);
3266   emit_byte(0xF5);
3267 }
3268 
3269 void Assembler::frstor(Address src) {
3270   InstructionMark im(this);
3271   emit_byte(0xDD);
3272   emit_operand32(rsp, src);
3273 }
3274 
3275 void Assembler::fsin() {
3276   emit_byte(0xD9);
3277   emit_byte(0xFE);
3278 }
3279 
3280 void Assembler::fsqrt() {
3281   emit_byte(0xD9);
3282   emit_byte(0xFA);
3283 }
3284 
3285 void Assembler::fst_d(Address adr) {
3286   InstructionMark im(this);
3287   emit_byte(0xDD);
3288   emit_operand32(rdx, adr);
3289 }
3290 
3291 void Assembler::fst_s(Address adr) {
3292   InstructionMark im(this);
3293   emit_byte(0xD9);
3294   emit_operand32(rdx, adr);
3295 }
3296 
3297 void Assembler::fstp_d(Address adr) {
3298   InstructionMark im(this);
3299   emit_byte(0xDD);
3300   emit_operand32(rbx, adr);
3301 }
3302 
3303 void Assembler::fstp_d(int index) {
3304   emit_farith(0xDD, 0xD8, index);
3305 }
3306 
3307 void Assembler::fstp_s(Address adr) {
3308   InstructionMark im(this);
3309   emit_byte(0xD9);
3310   emit_operand32(rbx, adr);
3311 }
3312 
3313 void Assembler::fstp_x(Address adr) {
3314   InstructionMark im(this);
3315   emit_byte(0xDB);
3316   emit_operand32(rdi, adr);
3317 }
3318 
3319 void Assembler::fsub(int i) {
3320   emit_farith(0xD8, 0xE0, i);
3321 }
3322 
3323 void Assembler::fsub_d(Address src) {
3324   InstructionMark im(this);
3325   emit_byte(0xDC);
3326   emit_operand32(rsp, src);
3327 }
3328 
3329 void Assembler::fsub_s(Address src) {
3330   InstructionMark im(this);
3331   emit_byte(0xD8);
3332   emit_operand32(rsp, src);
3333 }
3334 
3335 void Assembler::fsuba(int i) {
3336   emit_farith(0xDC, 0xE8, i);
3337 }
3338 
3339 void Assembler::fsubp(int i) {
3340   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
3341 }
3342 
3343 void Assembler::fsubr(int i) {
3344   emit_farith(0xD8, 0xE8, i);
3345 }
3346 
3347 void Assembler::fsubr_d(Address src) {
3348   InstructionMark im(this);
3349   emit_byte(0xDC);
3350   emit_operand32(rbp, src);
3351 }
3352 
3353 void Assembler::fsubr_s(Address src) {
3354   InstructionMark im(this);
3355   emit_byte(0xD8);
3356   emit_operand32(rbp, src);
3357 }
3358 
3359 void Assembler::fsubra(int i) {
3360   emit_farith(0xDC, 0xE0, i);
3361 }
3362 
3363 void Assembler::fsubrp(int i) {
3364   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
3365 }
3366 
3367 void Assembler::ftan() {
3368   emit_byte(0xD9);
3369   emit_byte(0xF2);
3370   emit_byte(0xDD);
3371   emit_byte(0xD8);
3372 }
3373 
3374 void Assembler::ftst() {
3375   emit_byte(0xD9);
3376   emit_byte(0xE4);
3377 }
3378 
3379 void Assembler::fucomi(int i) {
3380   // make sure the instruction is supported (introduced for P6, together with cmov)
3381   guarantee(VM_Version::supports_cmov(), "illegal instruction");
3382   emit_farith(0xDB, 0xE8, i);
3383 }
3384 
3385 void Assembler::fucomip(int i) {
3386   // make sure the instruction is supported (introduced for P6, together with cmov)
3387   guarantee(VM_Version::supports_cmov(), "illegal instruction");
3388   emit_farith(0xDF, 0xE8, i);
3389 }
3390 
3391 void Assembler::fwait() {
3392   emit_byte(0x9B);
3393 }
3394 
3395 void Assembler::fxch(int i) {
3396   emit_farith(0xD9, 0xC8, i);
3397 }
3398 
3399 void Assembler::fyl2x() {
3400   emit_byte(0xD9);
3401   emit_byte(0xF1);
3402 }
3403 
3404 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
3405 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
3406 
3407 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
3408   if (pre > 0) {
3409     emit_byte(simd_pre[pre]);
3410   }
3411   if (rex_w) {
3412     prefixq(adr, xreg);
3413   } else {
3414     prefix(adr, xreg);
3415   }
3416   if (opc > 0) {
3417     emit_byte(0x0F);
3418     int opc2 = simd_opc[opc];
3419     if (opc2 > 0) {
3420       emit_byte(opc2);
3421     }
3422   }
3423 }
3424 
3425 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
3426   if (pre > 0) {
3427     emit_byte(simd_pre[pre]);
3428   }
3429   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
3430                           prefix_and_encode(dst_enc, src_enc);
3431   if (opc > 0) {
3432     emit_byte(0x0F);
3433     int opc2 = simd_opc[opc];
3434     if (opc2 > 0) {
3435       emit_byte(opc2);
3436     }
3437   }
3438   return encode;
3439 }
3440 
3441 
3442 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
3443   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
3444     prefix(VEX_3bytes);
3445 
3446     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
3447     byte1 = (~byte1) & 0xE0;
3448     byte1 |= opc;
3449     a_byte(byte1);
3450 
3451     int byte2 = ((~nds_enc) & 0xf) << 3;
3452     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
3453     emit_byte(byte2);
3454   } else {
3455     prefix(VEX_2bytes);
3456 
3457     int byte1 = vex_r ? VEX_R : 0;
3458     byte1 = (~byte1) & 0x80;
3459     byte1 |= ((~nds_enc) & 0xf) << 3;
3460     byte1 |= (vector256 ? 4 : 0) | pre;
3461     emit_byte(byte1);
3462   }
3463 }
3464 
3465 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
3466   bool vex_r = (xreg_enc >= 8);
3467   bool vex_b = adr.base_needs_rex();
3468   bool vex_x = adr.index_needs_rex();
3469   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
3470 }
3471 
3472 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
3473   bool vex_r = (dst_enc >= 8);
3474   bool vex_b = (src_enc >= 8);
3475   bool vex_x = false;
3476   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
3477   return (((dst_enc & 7) << 3) | (src_enc & 7));
3478 }
3479 
3480 
3481 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
3482   if (UseAVX > 0) {
3483     int xreg_enc = xreg->encoding();
3484     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
3485     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
3486   } else {
3487     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
3488     rex_prefix(adr, xreg, pre, opc, rex_w);
3489   }
3490 }
3491 
3492 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
3493   int dst_enc = dst->encoding();
3494   int src_enc = src->encoding();
3495   if (UseAVX > 0) {
3496     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3497     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
3498   } else {
3499     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
3500     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
3501   }
3502 }
3503 
3504 #ifndef _LP64
3505 
3506 void Assembler::incl(Register dst) {
3507   // Don't use it directly. Use MacroAssembler::incrementl() instead.
3508   emit_byte(0x40 | dst->encoding());
3509 }
3510 
3511 void Assembler::lea(Register dst, Address src) {
3512   leal(dst, src);
3513 }
3514 
3515 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
3516   InstructionMark im(this);
3517   emit_byte(0xC7);
3518   emit_operand(rax, dst);
3519   emit_data((int)imm32, rspec, 0);
3520 }
3521 
3522 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
3523   InstructionMark im(this);
3524   int encode = prefix_and_encode(dst->encoding());
3525   emit_byte(0xB8 | encode);
3526   emit_data((int)imm32, rspec, 0);
3527 }
3528 
3529 void Assembler::popa() { // 32bit
3530   emit_byte(0x61);
3531 }
3532 
3533 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
3534   InstructionMark im(this);
3535   emit_byte(0x68);
3536   emit_data(imm32, rspec, 0);
3537 }
3538 
3539 void Assembler::pusha() { // 32bit
3540   emit_byte(0x60);
3541 }
3542 
3543 void Assembler::set_byte_if_not_zero(Register dst) {
3544   emit_byte(0x0F);
3545   emit_byte(0x95);
3546   emit_byte(0xE0 | dst->encoding());
3547 }
3548 
3549 void Assembler::shldl(Register dst, Register src) {
3550   emit_byte(0x0F);
3551   emit_byte(0xA5);
3552   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
3553 }
3554 
3555 void Assembler::shrdl(Register dst, Register src) {
3556   emit_byte(0x0F);
3557   emit_byte(0xAD);
3558   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
3559 }
3560 
3561 #else // LP64
3562 
3563 void Assembler::set_byte_if_not_zero(Register dst) {
3564   int enc = prefix_and_encode(dst->encoding(), true);
3565   emit_byte(0x0F);
3566   emit_byte(0x95);
3567   emit_byte(0xE0 | enc);
3568 }
3569 
3570 // 64bit only pieces of the assembler
3571 // This should only be used by 64bit instructions that can use rip-relative
3572 // it cannot be used by instructions that want an immediate value.
3573 
3574 bool Assembler::reachable(AddressLiteral adr) {
3575   int64_t disp;
3576   // None will force a 64bit literal to the code stream. Likely a placeholder
3577   // for something that will be patched later and we need to certain it will
3578   // always be reachable.
3579   if (adr.reloc() == relocInfo::none) {
3580     return false;
3581   }
3582   if (adr.reloc() == relocInfo::internal_word_type) {
3583     // This should be rip relative and easily reachable.
3584     return true;
3585   }
3586   if (adr.reloc() == relocInfo::virtual_call_type ||
3587       adr.reloc() == relocInfo::opt_virtual_call_type ||
3588       adr.reloc() == relocInfo::static_call_type ||
3589       adr.reloc() == relocInfo::static_stub_type ) {
3590     // This should be rip relative within the code cache and easily
3591     // reachable until we get huge code caches. (At which point
3592     // ic code is going to have issues).
3593     return true;
3594   }
3595   if (adr.reloc() != relocInfo::external_word_type &&
3596       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
3597       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
3598       adr.reloc() != relocInfo::runtime_call_type ) {
3599     return false;
3600   }
3601 
3602   // Stress the correction code
3603   if (ForceUnreachable) {
3604     // Must be runtimecall reloc, see if it is in the codecache
3605     // Flipping stuff in the codecache to be unreachable causes issues
3606     // with things like inline caches where the additional instructions
3607     // are not handled.
3608     if (CodeCache::find_blob(adr._target) == NULL) {
3609       return false;
3610     }
3611   }
3612   // For external_word_type/runtime_call_type if it is reachable from where we
3613   // are now (possibly a temp buffer) and where we might end up
3614   // anywhere in the codeCache then we are always reachable.
3615   // This would have to change if we ever save/restore shared code
3616   // to be more pessimistic.
3617   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
3618   if (!is_simm32(disp)) return false;
3619   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
3620   if (!is_simm32(disp)) return false;
3621 
3622   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
3623 
3624   // Because rip relative is a disp + address_of_next_instruction and we
3625   // don't know the value of address_of_next_instruction we apply a fudge factor
3626   // to make sure we will be ok no matter the size of the instruction we get placed into.
3627   // We don't have to fudge the checks above here because they are already worst case.
3628 
3629   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
3630   // + 4 because better safe than sorry.
3631   const int fudge = 12 + 4;
3632   if (disp < 0) {
3633     disp -= fudge;
3634   } else {
3635     disp += fudge;
3636   }
3637   return is_simm32(disp);
3638 }
3639 
3640 // Check if the polling page is not reachable from the code cache using rip-relative
3641 // addressing.
3642 bool Assembler::is_polling_page_far() {
3643   intptr_t addr = (intptr_t)os::get_polling_page();
3644   return ForceUnreachable ||
3645          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
3646          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
3647 }
3648 
3649 void Assembler::emit_data64(jlong data,
3650                             relocInfo::relocType rtype,
3651                             int format) {
3652   if (rtype == relocInfo::none) {
3653     emit_long64(data);
3654   } else {
3655     emit_data64(data, Relocation::spec_simple(rtype), format);
3656   }
3657 }
3658 
3659 void Assembler::emit_data64(jlong data,
3660                             RelocationHolder const& rspec,
3661                             int format) {
3662   assert(imm_operand == 0, "default format must be immediate in this file");
3663   assert(imm_operand == format, "must be immediate");
3664   assert(inst_mark() != NULL, "must be inside InstructionMark");
3665   // Do not use AbstractAssembler::relocate, which is not intended for
3666   // embedded words.  Instead, relocate to the enclosing instruction.
3667   code_section()->relocate(inst_mark(), rspec, format);
3668 #ifdef ASSERT
3669   check_relocation(rspec, format);
3670 #endif
3671   emit_long64(data);
3672 }
3673 
3674 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
3675   if (reg_enc >= 8) {
3676     prefix(REX_B);
3677     reg_enc -= 8;
3678   } else if (byteinst && reg_enc >= 4) {
3679     prefix(REX);
3680   }
3681   return reg_enc;
3682 }
3683 
3684 int Assembler::prefixq_and_encode(int reg_enc) {
3685   if (reg_enc < 8) {
3686     prefix(REX_W);
3687   } else {
3688     prefix(REX_WB);
3689     reg_enc -= 8;
3690   }
3691   return reg_enc;
3692 }
3693 
3694 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
3695   if (dst_enc < 8) {
3696     if (src_enc >= 8) {
3697       prefix(REX_B);
3698       src_enc -= 8;
3699     } else if (byteinst && src_enc >= 4) {
3700       prefix(REX);
3701     }
3702   } else {
3703     if (src_enc < 8) {
3704       prefix(REX_R);
3705     } else {
3706       prefix(REX_RB);
3707       src_enc -= 8;
3708     }
3709     dst_enc -= 8;
3710   }
3711   return dst_enc << 3 | src_enc;
3712 }
3713 
3714 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
3715   if (dst_enc < 8) {
3716     if (src_enc < 8) {
3717       prefix(REX_W);
3718     } else {
3719       prefix(REX_WB);
3720       src_enc -= 8;
3721     }
3722   } else {
3723     if (src_enc < 8) {
3724       prefix(REX_WR);
3725     } else {
3726       prefix(REX_WRB);
3727       src_enc -= 8;
3728     }
3729     dst_enc -= 8;
3730   }
3731   return dst_enc << 3 | src_enc;
3732 }
3733 
3734 void Assembler::prefix(Register reg) {
3735   if (reg->encoding() >= 8) {
3736     prefix(REX_B);
3737   }
3738 }
3739 
3740 void Assembler::prefix(Address adr) {
3741   if (adr.base_needs_rex()) {
3742     if (adr.index_needs_rex()) {
3743       prefix(REX_XB);
3744     } else {
3745       prefix(REX_B);
3746     }
3747   } else {
3748     if (adr.index_needs_rex()) {
3749       prefix(REX_X);
3750     }
3751   }
3752 }
3753 
3754 void Assembler::prefixq(Address adr) {
3755   if (adr.base_needs_rex()) {
3756     if (adr.index_needs_rex()) {
3757       prefix(REX_WXB);
3758     } else {
3759       prefix(REX_WB);
3760     }
3761   } else {
3762     if (adr.index_needs_rex()) {
3763       prefix(REX_WX);
3764     } else {
3765       prefix(REX_W);
3766     }
3767   }
3768 }
3769 
3770 
3771 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
3772   if (reg->encoding() < 8) {
3773     if (adr.base_needs_rex()) {
3774       if (adr.index_needs_rex()) {
3775         prefix(REX_XB);
3776       } else {
3777         prefix(REX_B);
3778       }
3779     } else {
3780       if (adr.index_needs_rex()) {
3781         prefix(REX_X);
3782       } else if (byteinst && reg->encoding() >= 4 ) {
3783         prefix(REX);
3784       }
3785     }
3786   } else {
3787     if (adr.base_needs_rex()) {
3788       if (adr.index_needs_rex()) {
3789         prefix(REX_RXB);
3790       } else {
3791         prefix(REX_RB);
3792       }
3793     } else {
3794       if (adr.index_needs_rex()) {
3795         prefix(REX_RX);
3796       } else {
3797         prefix(REX_R);
3798       }
3799     }
3800   }
3801 }
3802 
3803 void Assembler::prefixq(Address adr, Register src) {
3804   if (src->encoding() < 8) {
3805     if (adr.base_needs_rex()) {
3806       if (adr.index_needs_rex()) {
3807         prefix(REX_WXB);
3808       } else {
3809         prefix(REX_WB);
3810       }
3811     } else {
3812       if (adr.index_needs_rex()) {
3813         prefix(REX_WX);
3814       } else {
3815         prefix(REX_W);
3816       }
3817     }
3818   } else {
3819     if (adr.base_needs_rex()) {
3820       if (adr.index_needs_rex()) {
3821         prefix(REX_WRXB);
3822       } else {
3823         prefix(REX_WRB);
3824       }
3825     } else {
3826       if (adr.index_needs_rex()) {
3827         prefix(REX_WRX);
3828       } else {
3829         prefix(REX_WR);
3830       }
3831     }
3832   }
3833 }
3834 
3835 void Assembler::prefix(Address adr, XMMRegister reg) {
3836   if (reg->encoding() < 8) {
3837     if (adr.base_needs_rex()) {
3838       if (adr.index_needs_rex()) {
3839         prefix(REX_XB);
3840       } else {
3841         prefix(REX_B);
3842       }
3843     } else {
3844       if (adr.index_needs_rex()) {
3845         prefix(REX_X);
3846       }
3847     }
3848   } else {
3849     if (adr.base_needs_rex()) {
3850       if (adr.index_needs_rex()) {
3851         prefix(REX_RXB);
3852       } else {
3853         prefix(REX_RB);
3854       }
3855     } else {
3856       if (adr.index_needs_rex()) {
3857         prefix(REX_RX);
3858       } else {
3859         prefix(REX_R);
3860       }
3861     }
3862   }
3863 }
3864 
3865 void Assembler::prefixq(Address adr, XMMRegister src) {
3866   if (src->encoding() < 8) {
3867     if (adr.base_needs_rex()) {
3868       if (adr.index_needs_rex()) {
3869         prefix(REX_WXB);
3870       } else {
3871         prefix(REX_WB);
3872       }
3873     } else {
3874       if (adr.index_needs_rex()) {
3875         prefix(REX_WX);
3876       } else {
3877         prefix(REX_W);
3878       }
3879     }
3880   } else {
3881     if (adr.base_needs_rex()) {
3882       if (adr.index_needs_rex()) {
3883         prefix(REX_WRXB);
3884       } else {
3885         prefix(REX_WRB);
3886       }
3887     } else {
3888       if (adr.index_needs_rex()) {
3889         prefix(REX_WRX);
3890       } else {
3891         prefix(REX_WR);
3892       }
3893     }
3894   }
3895 }
3896 
3897 void Assembler::adcq(Register dst, int32_t imm32) {
3898   (void) prefixq_and_encode(dst->encoding());
3899   emit_arith(0x81, 0xD0, dst, imm32);
3900 }
3901 
3902 void Assembler::adcq(Register dst, Address src) {
3903   InstructionMark im(this);
3904   prefixq(src, dst);
3905   emit_byte(0x13);
3906   emit_operand(dst, src);
3907 }
3908 
3909 void Assembler::adcq(Register dst, Register src) {
3910   (int) prefixq_and_encode(dst->encoding(), src->encoding());
3911   emit_arith(0x13, 0xC0, dst, src);
3912 }
3913 
3914 void Assembler::addq(Address dst, int32_t imm32) {
3915   InstructionMark im(this);
3916   prefixq(dst);
3917   emit_arith_operand(0x81, rax, dst,imm32);
3918 }
3919 
3920 void Assembler::addq(Address dst, Register src) {
3921   InstructionMark im(this);
3922   prefixq(dst, src);
3923   emit_byte(0x01);
3924   emit_operand(src, dst);
3925 }
3926 
3927 void Assembler::addq(Register dst, int32_t imm32) {
3928   (void) prefixq_and_encode(dst->encoding());
3929   emit_arith(0x81, 0xC0, dst, imm32);
3930 }
3931 
3932 void Assembler::addq(Register dst, Address src) {
3933   InstructionMark im(this);
3934   prefixq(src, dst);
3935   emit_byte(0x03);
3936   emit_operand(dst, src);
3937 }
3938 
3939 void Assembler::addq(Register dst, Register src) {
3940   (void) prefixq_and_encode(dst->encoding(), src->encoding());
3941   emit_arith(0x03, 0xC0, dst, src);
3942 }
3943 
3944 void Assembler::andq(Address dst, int32_t imm32) {
3945   InstructionMark im(this);
3946   prefixq(dst);
3947   emit_byte(0x81);
3948   emit_operand(rsp, dst, 4);
3949   emit_long(imm32);
3950 }
3951 
3952 void Assembler::andq(Register dst, int32_t imm32) {
3953   (void) prefixq_and_encode(dst->encoding());
3954   emit_arith(0x81, 0xE0, dst, imm32);
3955 }
3956 
3957 void Assembler::andq(Register dst, Address src) {
3958   InstructionMark im(this);
3959   prefixq(src, dst);
3960   emit_byte(0x23);
3961   emit_operand(dst, src);
3962 }
3963 
3964 void Assembler::andq(Register dst, Register src) {
3965   (int) prefixq_and_encode(dst->encoding(), src->encoding());
3966   emit_arith(0x23, 0xC0, dst, src);
3967 }
3968 
3969 void Assembler::bsfq(Register dst, Register src) {
3970   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3971   emit_byte(0x0F);
3972   emit_byte(0xBC);
3973   emit_byte(0xC0 | encode);
3974 }
3975 
3976 void Assembler::bsrq(Register dst, Register src) {
3977   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
3978   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3979   emit_byte(0x0F);
3980   emit_byte(0xBD);
3981   emit_byte(0xC0 | encode);
3982 }
3983 
3984 void Assembler::bswapq(Register reg) {
3985   int encode = prefixq_and_encode(reg->encoding());
3986   emit_byte(0x0F);
3987   emit_byte(0xC8 | encode);
3988 }
3989 
3990 void Assembler::cdqq() {
3991   prefix(REX_W);
3992   emit_byte(0x99);
3993 }
3994 
3995 void Assembler::clflush(Address adr) {
3996   prefix(adr);
3997   emit_byte(0x0F);
3998   emit_byte(0xAE);
3999   emit_operand(rdi, adr);
4000 }
4001 
4002 void Assembler::cmovq(Condition cc, Register dst, Register src) {
4003   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4004   emit_byte(0x0F);
4005   emit_byte(0x40 | cc);
4006   emit_byte(0xC0 | encode);
4007 }
4008 
4009 void Assembler::cmovq(Condition cc, Register dst, Address src) {
4010   InstructionMark im(this);
4011   prefixq(src, dst);
4012   emit_byte(0x0F);
4013   emit_byte(0x40 | cc);
4014   emit_operand(dst, src);
4015 }
4016 
4017 void Assembler::cmpq(Address dst, int32_t imm32) {
4018   InstructionMark im(this);
4019   prefixq(dst);
4020   emit_byte(0x81);
4021   emit_operand(rdi, dst, 4);
4022   emit_long(imm32);
4023 }
4024 
4025 void Assembler::cmpq(Register dst, int32_t imm32) {
4026   (void) prefixq_and_encode(dst->encoding());
4027   emit_arith(0x81, 0xF8, dst, imm32);
4028 }
4029 
4030 void Assembler::cmpq(Address dst, Register src) {
4031   InstructionMark im(this);
4032   prefixq(dst, src);
4033   emit_byte(0x3B);
4034   emit_operand(src, dst);
4035 }
4036 
4037 void Assembler::cmpq(Register dst, Register src) {
4038   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4039   emit_arith(0x3B, 0xC0, dst, src);
4040 }
4041 
4042 void Assembler::cmpq(Register dst, Address  src) {
4043   InstructionMark im(this);
4044   prefixq(src, dst);
4045   emit_byte(0x3B);
4046   emit_operand(dst, src);
4047 }
4048 
4049 void Assembler::cmpxchgq(Register reg, Address adr) {
4050   InstructionMark im(this);
4051   prefixq(adr, reg);
4052   emit_byte(0x0F);
4053   emit_byte(0xB1);
4054   emit_operand(reg, adr);
4055 }
4056 
4057 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
4058   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4059   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
4060   emit_byte(0x2A);
4061   emit_byte(0xC0 | encode);
4062 }
4063 
4064 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
4065   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4066   InstructionMark im(this);
4067   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
4068   emit_byte(0x2A);
4069   emit_operand(dst, src);
4070 }
4071 
4072 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
4073   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4074   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
4075   emit_byte(0x2A);
4076   emit_byte(0xC0 | encode);
4077 }
4078 
4079 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
4080   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4081   InstructionMark im(this);
4082   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
4083   emit_byte(0x2A);
4084   emit_operand(dst, src);
4085 }
4086 
4087 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
4088   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4089   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
4090   emit_byte(0x2C);
4091   emit_byte(0xC0 | encode);
4092 }
4093 
4094 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
4095   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4096   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
4097   emit_byte(0x2C);
4098   emit_byte(0xC0 | encode);
4099 }
4100 
4101 void Assembler::decl(Register dst) {
4102   // Don't use it directly. Use MacroAssembler::decrementl() instead.
4103   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
4104   int encode = prefix_and_encode(dst->encoding());
4105   emit_byte(0xFF);
4106   emit_byte(0xC8 | encode);
4107 }
4108 
4109 void Assembler::decq(Register dst) {
4110   // Don't use it directly. Use MacroAssembler::decrementq() instead.
4111   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
4112   int encode = prefixq_and_encode(dst->encoding());
4113   emit_byte(0xFF);
4114   emit_byte(0xC8 | encode);
4115 }
4116 
4117 void Assembler::decq(Address dst) {
4118   // Don't use it directly. Use MacroAssembler::decrementq() instead.
4119   InstructionMark im(this);
4120   prefixq(dst);
4121   emit_byte(0xFF);
4122   emit_operand(rcx, dst);
4123 }
4124 
4125 void Assembler::fxrstor(Address src) {
4126   prefixq(src);
4127   emit_byte(0x0F);
4128   emit_byte(0xAE);
4129   emit_operand(as_Register(1), src);
4130 }
4131 
4132 void Assembler::fxsave(Address dst) {
4133   prefixq(dst);
4134   emit_byte(0x0F);
4135   emit_byte(0xAE);
4136   emit_operand(as_Register(0), dst);
4137 }
4138 
4139 void Assembler::idivq(Register src) {
4140   int encode = prefixq_and_encode(src->encoding());
4141   emit_byte(0xF7);
4142   emit_byte(0xF8 | encode);
4143 }
4144 
4145 void Assembler::imulq(Register dst, Register src) {
4146   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4147   emit_byte(0x0F);
4148   emit_byte(0xAF);
4149   emit_byte(0xC0 | encode);
4150 }
4151 
4152 void Assembler::imulq(Register dst, Register src, int value) {
4153   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4154   if (is8bit(value)) {
4155     emit_byte(0x6B);
4156     emit_byte(0xC0 | encode);
4157     emit_byte(value & 0xFF);
4158   } else {
4159     emit_byte(0x69);
4160     emit_byte(0xC0 | encode);
4161     emit_long(value);
4162   }
4163 }
4164 
4165 void Assembler::incl(Register dst) {
4166   // Don't use it directly. Use MacroAssembler::incrementl() instead.
4167   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
4168   int encode = prefix_and_encode(dst->encoding());
4169   emit_byte(0xFF);
4170   emit_byte(0xC0 | encode);
4171 }
4172 
4173 void Assembler::incq(Register dst) {
4174   // Don't use it directly. Use MacroAssembler::incrementq() instead.
4175   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
4176   int encode = prefixq_and_encode(dst->encoding());
4177   emit_byte(0xFF);
4178   emit_byte(0xC0 | encode);
4179 }
4180 
4181 void Assembler::incq(Address dst) {
4182   // Don't use it directly. Use MacroAssembler::incrementq() instead.
4183   InstructionMark im(this);
4184   prefixq(dst);
4185   emit_byte(0xFF);
4186   emit_operand(rax, dst);
4187 }
4188 
4189 void Assembler::lea(Register dst, Address src) {
4190   leaq(dst, src);
4191 }
4192 
4193 void Assembler::leaq(Register dst, Address src) {
4194   InstructionMark im(this);
4195   prefixq(src, dst);
4196   emit_byte(0x8D);
4197   emit_operand(dst, src);
4198 }
4199 
4200 void Assembler::mov64(Register dst, int64_t imm64) {
4201   InstructionMark im(this);
4202   int encode = prefixq_and_encode(dst->encoding());
4203   emit_byte(0xB8 | encode);
4204   emit_long64(imm64);
4205 }
4206 
4207 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
4208   InstructionMark im(this);
4209   int encode = prefixq_and_encode(dst->encoding());
4210   emit_byte(0xB8 | encode);
4211   emit_data64(imm64, rspec);
4212 }
4213 
4214 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
4215   InstructionMark im(this);
4216   int encode = prefix_and_encode(dst->encoding());
4217   emit_byte(0xB8 | encode);
4218   emit_data((int)imm32, rspec, narrow_oop_operand);
4219 }
4220 
4221 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
4222   InstructionMark im(this);
4223   prefix(dst);
4224   emit_byte(0xC7);
4225   emit_operand(rax, dst, 4);
4226   emit_data((int)imm32, rspec, narrow_oop_operand);
4227 }
4228 
4229 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
4230   InstructionMark im(this);
4231   int encode = prefix_and_encode(src1->encoding());
4232   emit_byte(0x81);
4233   emit_byte(0xF8 | encode);
4234   emit_data((int)imm32, rspec, narrow_oop_operand);
4235 }
4236 
4237 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
4238   InstructionMark im(this);
4239   prefix(src1);
4240   emit_byte(0x81);
4241   emit_operand(rax, src1, 4);
4242   emit_data((int)imm32, rspec, narrow_oop_operand);
4243 }
4244 
4245 void Assembler::lzcntq(Register dst, Register src) {
4246   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
4247   emit_byte(0xF3);
4248   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4249   emit_byte(0x0F);
4250   emit_byte(0xBD);
4251   emit_byte(0xC0 | encode);
4252 }
4253 
4254 void Assembler::movdq(XMMRegister dst, Register src) {
4255   // table D-1 says MMX/SSE2
4256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4257   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
4258   emit_byte(0x6E);
4259   emit_byte(0xC0 | encode);
4260 }
4261 
4262 void Assembler::movdq(Register dst, XMMRegister src) {
4263   // table D-1 says MMX/SSE2
4264   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4265   // swap src/dst to get correct prefix
4266   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
4267   emit_byte(0x7E);
4268   emit_byte(0xC0 | encode);
4269 }
4270 
4271 void Assembler::movq(Register dst, Register src) {
4272   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4273   emit_byte(0x8B);
4274   emit_byte(0xC0 | encode);
4275 }
4276 
4277 void Assembler::movq(Register dst, Address src) {
4278   InstructionMark im(this);
4279   prefixq(src, dst);
4280   emit_byte(0x8B);
4281   emit_operand(dst, src);
4282 }
4283 
4284 void Assembler::movq(Address dst, Register src) {
4285   InstructionMark im(this);
4286   prefixq(dst, src);
4287   emit_byte(0x89);
4288   emit_operand(src, dst);
4289 }
4290 
4291 void Assembler::movsbq(Register dst, Address src) {
4292   InstructionMark im(this);
4293   prefixq(src, dst);
4294   emit_byte(0x0F);
4295   emit_byte(0xBE);
4296   emit_operand(dst, src);
4297 }
4298 
4299 void Assembler::movsbq(Register dst, Register src) {
4300   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4301   emit_byte(0x0F);
4302   emit_byte(0xBE);
4303   emit_byte(0xC0 | encode);
4304 }
4305 
4306 void Assembler::movslq(Register dst, int32_t imm32) {
4307   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
4308   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
4309   // as a result we shouldn't use until tested at runtime...
4310   ShouldNotReachHere();
4311   InstructionMark im(this);
4312   int encode = prefixq_and_encode(dst->encoding());
4313   emit_byte(0xC7 | encode);
4314   emit_long(imm32);
4315 }
4316 
4317 void Assembler::movslq(Address dst, int32_t imm32) {
4318   assert(is_simm32(imm32), "lost bits");
4319   InstructionMark im(this);
4320   prefixq(dst);
4321   emit_byte(0xC7);
4322   emit_operand(rax, dst, 4);
4323   emit_long(imm32);
4324 }
4325 
4326 void Assembler::movslq(Register dst, Address src) {
4327   InstructionMark im(this);
4328   prefixq(src, dst);
4329   emit_byte(0x63);
4330   emit_operand(dst, src);
4331 }
4332 
4333 void Assembler::movslq(Register dst, Register src) {
4334   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4335   emit_byte(0x63);
4336   emit_byte(0xC0 | encode);
4337 }
4338 
4339 void Assembler::movswq(Register dst, Address src) {
4340   InstructionMark im(this);
4341   prefixq(src, dst);
4342   emit_byte(0x0F);
4343   emit_byte(0xBF);
4344   emit_operand(dst, src);
4345 }
4346 
4347 void Assembler::movswq(Register dst, Register src) {
4348   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4349   emit_byte(0x0F);
4350   emit_byte(0xBF);
4351   emit_byte(0xC0 | encode);
4352 }
4353 
4354 void Assembler::movzbq(Register dst, Address src) {
4355   InstructionMark im(this);
4356   prefixq(src, dst);
4357   emit_byte(0x0F);
4358   emit_byte(0xB6);
4359   emit_operand(dst, src);
4360 }
4361 
4362 void Assembler::movzbq(Register dst, Register src) {
4363   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4364   emit_byte(0x0F);
4365   emit_byte(0xB6);
4366   emit_byte(0xC0 | encode);
4367 }
4368 
4369 void Assembler::movzwq(Register dst, Address src) {
4370   InstructionMark im(this);
4371   prefixq(src, dst);
4372   emit_byte(0x0F);
4373   emit_byte(0xB7);
4374   emit_operand(dst, src);
4375 }
4376 
4377 void Assembler::movzwq(Register dst, Register src) {
4378   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4379   emit_byte(0x0F);
4380   emit_byte(0xB7);
4381   emit_byte(0xC0 | encode);
4382 }
4383 
4384 void Assembler::negq(Register dst) {
4385   int encode = prefixq_and_encode(dst->encoding());
4386   emit_byte(0xF7);
4387   emit_byte(0xD8 | encode);
4388 }
4389 
4390 void Assembler::notq(Register dst) {
4391   int encode = prefixq_and_encode(dst->encoding());
4392   emit_byte(0xF7);
4393   emit_byte(0xD0 | encode);
4394 }
4395 
4396 void Assembler::orq(Address dst, int32_t imm32) {
4397   InstructionMark im(this);
4398   prefixq(dst);
4399   emit_byte(0x81);
4400   emit_operand(rcx, dst, 4);
4401   emit_long(imm32);
4402 }
4403 
4404 void Assembler::orq(Register dst, int32_t imm32) {
4405   (void) prefixq_and_encode(dst->encoding());
4406   emit_arith(0x81, 0xC8, dst, imm32);
4407 }
4408 
4409 void Assembler::orq(Register dst, Address src) {
4410   InstructionMark im(this);
4411   prefixq(src, dst);
4412   emit_byte(0x0B);
4413   emit_operand(dst, src);
4414 }
4415 
4416 void Assembler::orq(Register dst, Register src) {
4417   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4418   emit_arith(0x0B, 0xC0, dst, src);
4419 }
4420 
4421 void Assembler::popa() { // 64bit
4422   movq(r15, Address(rsp, 0));
4423   movq(r14, Address(rsp, wordSize));
4424   movq(r13, Address(rsp, 2 * wordSize));
4425   movq(r12, Address(rsp, 3 * wordSize));
4426   movq(r11, Address(rsp, 4 * wordSize));
4427   movq(r10, Address(rsp, 5 * wordSize));
4428   movq(r9,  Address(rsp, 6 * wordSize));
4429   movq(r8,  Address(rsp, 7 * wordSize));
4430   movq(rdi, Address(rsp, 8 * wordSize));
4431   movq(rsi, Address(rsp, 9 * wordSize));
4432   movq(rbp, Address(rsp, 10 * wordSize));
4433   // skip rsp
4434   movq(rbx, Address(rsp, 12 * wordSize));
4435   movq(rdx, Address(rsp, 13 * wordSize));
4436   movq(rcx, Address(rsp, 14 * wordSize));
4437   movq(rax, Address(rsp, 15 * wordSize));
4438 
4439   addq(rsp, 16 * wordSize);
4440 }
4441 
4442 void Assembler::popcntq(Register dst, Address src) {
4443   assert(VM_Version::supports_popcnt(), "must support");
4444   InstructionMark im(this);
4445   emit_byte(0xF3);
4446   prefixq(src, dst);
4447   emit_byte(0x0F);
4448   emit_byte(0xB8);
4449   emit_operand(dst, src);
4450 }
4451 
4452 void Assembler::popcntq(Register dst, Register src) {
4453   assert(VM_Version::supports_popcnt(), "must support");
4454   emit_byte(0xF3);
4455   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4456   emit_byte(0x0F);
4457   emit_byte(0xB8);
4458   emit_byte(0xC0 | encode);
4459 }
4460 
4461 void Assembler::popq(Address dst) {
4462   InstructionMark im(this);
4463   prefixq(dst);
4464   emit_byte(0x8F);
4465   emit_operand(rax, dst);
4466 }
4467 
4468 void Assembler::pusha() { // 64bit
4469   // we have to store original rsp.  ABI says that 128 bytes
4470   // below rsp are local scratch.
4471   movq(Address(rsp, -5 * wordSize), rsp);
4472 
4473   subq(rsp, 16 * wordSize);
4474 
4475   movq(Address(rsp, 15 * wordSize), rax);
4476   movq(Address(rsp, 14 * wordSize), rcx);
4477   movq(Address(rsp, 13 * wordSize), rdx);
4478   movq(Address(rsp, 12 * wordSize), rbx);
4479   // skip rsp
4480   movq(Address(rsp, 10 * wordSize), rbp);
4481   movq(Address(rsp, 9 * wordSize), rsi);
4482   movq(Address(rsp, 8 * wordSize), rdi);
4483   movq(Address(rsp, 7 * wordSize), r8);
4484   movq(Address(rsp, 6 * wordSize), r9);
4485   movq(Address(rsp, 5 * wordSize), r10);
4486   movq(Address(rsp, 4 * wordSize), r11);
4487   movq(Address(rsp, 3 * wordSize), r12);
4488   movq(Address(rsp, 2 * wordSize), r13);
4489   movq(Address(rsp, wordSize), r14);
4490   movq(Address(rsp, 0), r15);
4491 }
4492 
4493 void Assembler::pushq(Address src) {
4494   InstructionMark im(this);
4495   prefixq(src);
4496   emit_byte(0xFF);
4497   emit_operand(rsi, src);
4498 }
4499 
4500 void Assembler::rclq(Register dst, int imm8) {
4501   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4502   int encode = prefixq_and_encode(dst->encoding());
4503   if (imm8 == 1) {
4504     emit_byte(0xD1);
4505     emit_byte(0xD0 | encode);
4506   } else {
4507     emit_byte(0xC1);
4508     emit_byte(0xD0 | encode);
4509     emit_byte(imm8);
4510   }
4511 }
4512 void Assembler::sarq(Register dst, int imm8) {
4513   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4514   int encode = prefixq_and_encode(dst->encoding());
4515   if (imm8 == 1) {
4516     emit_byte(0xD1);
4517     emit_byte(0xF8 | encode);
4518   } else {
4519     emit_byte(0xC1);
4520     emit_byte(0xF8 | encode);
4521     emit_byte(imm8);
4522   }
4523 }
4524 
4525 void Assembler::sarq(Register dst) {
4526   int encode = prefixq_and_encode(dst->encoding());
4527   emit_byte(0xD3);
4528   emit_byte(0xF8 | encode);
4529 }
4530 
4531 void Assembler::sbbq(Address dst, int32_t imm32) {
4532   InstructionMark im(this);
4533   prefixq(dst);
4534   emit_arith_operand(0x81, rbx, dst, imm32);
4535 }
4536 
4537 void Assembler::sbbq(Register dst, int32_t imm32) {
4538   (void) prefixq_and_encode(dst->encoding());
4539   emit_arith(0x81, 0xD8, dst, imm32);
4540 }
4541 
4542 void Assembler::sbbq(Register dst, Address src) {
4543   InstructionMark im(this);
4544   prefixq(src, dst);
4545   emit_byte(0x1B);
4546   emit_operand(dst, src);
4547 }
4548 
4549 void Assembler::sbbq(Register dst, Register src) {
4550   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4551   emit_arith(0x1B, 0xC0, dst, src);
4552 }
4553 
4554 void Assembler::shlq(Register dst, int imm8) {
4555   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4556   int encode = prefixq_and_encode(dst->encoding());
4557   if (imm8 == 1) {
4558     emit_byte(0xD1);
4559     emit_byte(0xE0 | encode);
4560   } else {
4561     emit_byte(0xC1);
4562     emit_byte(0xE0 | encode);
4563     emit_byte(imm8);
4564   }
4565 }
4566 
4567 void Assembler::shlq(Register dst) {
4568   int encode = prefixq_and_encode(dst->encoding());
4569   emit_byte(0xD3);
4570   emit_byte(0xE0 | encode);
4571 }
4572 
4573 void Assembler::shrq(Register dst, int imm8) {
4574   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4575   int encode = prefixq_and_encode(dst->encoding());
4576   emit_byte(0xC1);
4577   emit_byte(0xE8 | encode);
4578   emit_byte(imm8);
4579 }
4580 
4581 void Assembler::shrq(Register dst) {
4582   int encode = prefixq_and_encode(dst->encoding());
4583   emit_byte(0xD3);
4584   emit_byte(0xE8 | encode);
4585 }
4586 
4587 void Assembler::subq(Address dst, int32_t imm32) {
4588   InstructionMark im(this);
4589   prefixq(dst);
4590   emit_arith_operand(0x81, rbp, dst, imm32);
4591 }
4592 
4593 void Assembler::subq(Address dst, Register src) {
4594   InstructionMark im(this);
4595   prefixq(dst, src);
4596   emit_byte(0x29);
4597   emit_operand(src, dst);
4598 }
4599 
4600 void Assembler::subq(Register dst, int32_t imm32) {
4601   (void) prefixq_and_encode(dst->encoding());
4602   emit_arith(0x81, 0xE8, dst, imm32);
4603 }
4604 
4605 void Assembler::subq(Register dst, Address src) {
4606   InstructionMark im(this);
4607   prefixq(src, dst);
4608   emit_byte(0x2B);
4609   emit_operand(dst, src);
4610 }
4611 
4612 void Assembler::subq(Register dst, Register src) {
4613   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4614   emit_arith(0x2B, 0xC0, dst, src);
4615 }
4616 
4617 void Assembler::testq(Register dst, int32_t imm32) {
4618   // not using emit_arith because test
4619   // doesn't support sign-extension of
4620   // 8bit operands
4621   int encode = dst->encoding();
4622   if (encode == 0) {
4623     prefix(REX_W);
4624     emit_byte(0xA9);
4625   } else {
4626     encode = prefixq_and_encode(encode);
4627     emit_byte(0xF7);
4628     emit_byte(0xC0 | encode);
4629   }
4630   emit_long(imm32);
4631 }
4632 
4633 void Assembler::testq(Register dst, Register src) {
4634   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4635   emit_arith(0x85, 0xC0, dst, src);
4636 }
4637 
4638 void Assembler::xaddq(Address dst, Register src) {
4639   InstructionMark im(this);
4640   prefixq(dst, src);
4641   emit_byte(0x0F);
4642   emit_byte(0xC1);
4643   emit_operand(src, dst);
4644 }
4645 
4646 void Assembler::xchgq(Register dst, Address src) {
4647   InstructionMark im(this);
4648   prefixq(src, dst);
4649   emit_byte(0x87);
4650   emit_operand(dst, src);
4651 }
4652 
4653 void Assembler::xchgq(Register dst, Register src) {
4654   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4655   emit_byte(0x87);
4656   emit_byte(0xc0 | encode);
4657 }
4658 
4659 void Assembler::xorq(Register dst, Register src) {
4660   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4661   emit_arith(0x33, 0xC0, dst, src);
4662 }
4663 
4664 void Assembler::xorq(Register dst, Address src) {
4665   InstructionMark im(this);
4666   prefixq(src, dst);
4667   emit_byte(0x33);
4668   emit_operand(dst, src);
4669 }
4670 
4671 #endif // !LP64
4672 
4673 static Assembler::Condition reverse[] = {
4674     Assembler::noOverflow     /* overflow      = 0x0 */ ,
4675     Assembler::overflow       /* noOverflow    = 0x1 */ ,
4676     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
4677     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
4678     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
4679     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
4680     Assembler::above          /* belowEqual    = 0x6 */ ,
4681     Assembler::belowEqual     /* above         = 0x7 */ ,
4682     Assembler::positive       /* negative      = 0x8 */ ,
4683     Assembler::negative       /* positive      = 0x9 */ ,
4684     Assembler::noParity       /* parity        = 0xa */ ,
4685     Assembler::parity         /* noParity      = 0xb */ ,
4686     Assembler::greaterEqual   /* less          = 0xc */ ,
4687     Assembler::less           /* greaterEqual  = 0xd */ ,
4688     Assembler::greater        /* lessEqual     = 0xe */ ,
4689     Assembler::lessEqual      /* greater       = 0xf, */
4690 
4691 };
4692 
4693 
4694 // Implementation of MacroAssembler
4695 
4696 // First all the versions that have distinct versions depending on 32/64 bit
4697 // Unless the difference is trivial (1 line or so).
4698 
4699 #ifndef _LP64
4700 
4701 // 32bit versions
4702 
4703 Address MacroAssembler::as_Address(AddressLiteral adr) {
4704   return Address(adr.target(), adr.rspec());
4705 }
4706 
4707 Address MacroAssembler::as_Address(ArrayAddress adr) {
4708   return Address::make_array(adr);
4709 }
4710 
4711 int MacroAssembler::biased_locking_enter(Register lock_reg,
4712                                          Register obj_reg,
4713                                          Register swap_reg,
4714                                          Register tmp_reg,
4715                                          bool swap_reg_contains_mark,
4716                                          Label& done,
4717                                          Label* slow_case,
4718                                          BiasedLockingCounters* counters) {
4719   assert(UseBiasedLocking, "why call this otherwise?");
4720   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
4721   assert_different_registers(lock_reg, obj_reg, swap_reg);
4722 
4723   if (PrintBiasedLockingStatistics && counters == NULL)
4724     counters = BiasedLocking::counters();
4725 
4726   bool need_tmp_reg = false;
4727   if (tmp_reg == noreg) {
4728     need_tmp_reg = true;
4729     tmp_reg = lock_reg;
4730   } else {
4731     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
4732   }
4733   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
4734   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
4735   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
4736   Address saved_mark_addr(lock_reg, 0);
4737 
4738   // Biased locking
4739   // See whether the lock is currently biased toward our thread and
4740   // whether the epoch is still valid
4741   // Note that the runtime guarantees sufficient alignment of JavaThread
4742   // pointers to allow age to be placed into low bits
4743   // First check to see whether biasing is even enabled for this object
4744   Label cas_label;
4745   int null_check_offset = -1;
4746   if (!swap_reg_contains_mark) {
4747     null_check_offset = offset();
4748     movl(swap_reg, mark_addr);
4749   }
4750   if (need_tmp_reg) {
4751     push(tmp_reg);
4752   }
4753   movl(tmp_reg, swap_reg);
4754   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
4755   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
4756   if (need_tmp_reg) {
4757     pop(tmp_reg);
4758   }
4759   jcc(Assembler::notEqual, cas_label);
4760   // The bias pattern is present in the object's header. Need to check
4761   // whether the bias owner and the epoch are both still current.
4762   // Note that because there is no current thread register on x86 we
4763   // need to store off the mark word we read out of the object to
4764   // avoid reloading it and needing to recheck invariants below. This
4765   // store is unfortunate but it makes the overall code shorter and
4766   // simpler.
4767   movl(saved_mark_addr, swap_reg);
4768   if (need_tmp_reg) {
4769     push(tmp_reg);
4770   }
4771   get_thread(tmp_reg);
4772   xorl(swap_reg, tmp_reg);
4773   if (swap_reg_contains_mark) {
4774     null_check_offset = offset();
4775   }
4776   movl(tmp_reg, klass_addr);
4777   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4778   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
4779   if (need_tmp_reg) {
4780     pop(tmp_reg);
4781   }
4782   if (counters != NULL) {
4783     cond_inc32(Assembler::zero,
4784                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
4785   }
4786   jcc(Assembler::equal, done);
4787 
4788   Label try_revoke_bias;
4789   Label try_rebias;
4790 
4791   // At this point we know that the header has the bias pattern and
4792   // that we are not the bias owner in the current epoch. We need to
4793   // figure out more details about the state of the header in order to
4794   // know what operations can be legally performed on the object's
4795   // header.
4796 
4797   // If the low three bits in the xor result aren't clear, that means
4798   // the prototype header is no longer biased and we have to revoke
4799   // the bias on this object.
4800   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
4801   jcc(Assembler::notZero, try_revoke_bias);
4802 
4803   // Biasing is still enabled for this data type. See whether the
4804   // epoch of the current bias is still valid, meaning that the epoch
4805   // bits of the mark word are equal to the epoch bits of the
4806   // prototype header. (Note that the prototype header's epoch bits
4807   // only change at a safepoint.) If not, attempt to rebias the object
4808   // toward the current thread. Note that we must be absolutely sure
4809   // that the current epoch is invalid in order to do this because
4810   // otherwise the manipulations it performs on the mark word are
4811   // illegal.
4812   testl(swap_reg, markOopDesc::epoch_mask_in_place);
4813   jcc(Assembler::notZero, try_rebias);
4814 
4815   // The epoch of the current bias is still valid but we know nothing
4816   // about the owner; it might be set or it might be clear. Try to
4817   // acquire the bias of the object using an atomic operation. If this
4818   // fails we will go in to the runtime to revoke the object's bias.
4819   // Note that we first construct the presumed unbiased header so we
4820   // don't accidentally blow away another thread's valid bias.
4821   movl(swap_reg, saved_mark_addr);
4822   andl(swap_reg,
4823        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
4824   if (need_tmp_reg) {
4825     push(tmp_reg);
4826   }
4827   get_thread(tmp_reg);
4828   orl(tmp_reg, swap_reg);
4829   if (os::is_MP()) {
4830     lock();
4831   }
4832   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
4833   if (need_tmp_reg) {
4834     pop(tmp_reg);
4835   }
4836   // If the biasing toward our thread failed, this means that
4837   // another thread succeeded in biasing it toward itself and we
4838   // need to revoke that bias. The revocation will occur in the
4839   // interpreter runtime in the slow case.
4840   if (counters != NULL) {
4841     cond_inc32(Assembler::zero,
4842                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
4843   }
4844   if (slow_case != NULL) {
4845     jcc(Assembler::notZero, *slow_case);
4846   }
4847   jmp(done);
4848 
4849   bind(try_rebias);
4850   // At this point we know the epoch has expired, meaning that the
4851   // current "bias owner", if any, is actually invalid. Under these
4852   // circumstances _only_, we are allowed to use the current header's
4853   // value as the comparison value when doing the cas to acquire the
4854   // bias in the current epoch. In other words, we allow transfer of
4855   // the bias from one thread to another directly in this situation.
4856   //
4857   // FIXME: due to a lack of registers we currently blow away the age
4858   // bits in this situation. Should attempt to preserve them.
4859   if (need_tmp_reg) {
4860     push(tmp_reg);
4861   }
4862   get_thread(tmp_reg);
4863   movl(swap_reg, klass_addr);
4864   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4865   movl(swap_reg, saved_mark_addr);
4866   if (os::is_MP()) {
4867     lock();
4868   }
4869   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
4870   if (need_tmp_reg) {
4871     pop(tmp_reg);
4872   }
4873   // If the biasing toward our thread failed, then another thread
4874   // succeeded in biasing it toward itself and we need to revoke that
4875   // bias. The revocation will occur in the runtime in the slow case.
4876   if (counters != NULL) {
4877     cond_inc32(Assembler::zero,
4878                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
4879   }
4880   if (slow_case != NULL) {
4881     jcc(Assembler::notZero, *slow_case);
4882   }
4883   jmp(done);
4884 
4885   bind(try_revoke_bias);
4886   // The prototype mark in the klass doesn't have the bias bit set any
4887   // more, indicating that objects of this data type are not supposed
4888   // to be biased any more. We are going to try to reset the mark of
4889   // this object to the prototype value and fall through to the
4890   // CAS-based locking scheme. Note that if our CAS fails, it means
4891   // that another thread raced us for the privilege of revoking the
4892   // bias of this particular object, so it's okay to continue in the
4893   // normal locking code.
4894   //
4895   // FIXME: due to a lack of registers we currently blow away the age
4896   // bits in this situation. Should attempt to preserve them.
4897   movl(swap_reg, saved_mark_addr);
4898   if (need_tmp_reg) {
4899     push(tmp_reg);
4900   }
4901   movl(tmp_reg, klass_addr);
4902   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4903   if (os::is_MP()) {
4904     lock();
4905   }
4906   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
4907   if (need_tmp_reg) {
4908     pop(tmp_reg);
4909   }
4910   // Fall through to the normal CAS-based lock, because no matter what
4911   // the result of the above CAS, some thread must have succeeded in
4912   // removing the bias bit from the object's header.
4913   if (counters != NULL) {
4914     cond_inc32(Assembler::zero,
4915                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
4916   }
4917 
4918   bind(cas_label);
4919 
4920   return null_check_offset;
4921 }
4922 void MacroAssembler::call_VM_leaf_base(address entry_point,
4923                                        int number_of_arguments) {
4924   call(RuntimeAddress(entry_point));
4925   increment(rsp, number_of_arguments * wordSize);
4926 }
4927 
4928 void MacroAssembler::cmpoop(Address src1, jobject obj) {
4929   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
4930 }
4931 
4932 void MacroAssembler::cmpoop(Register src1, jobject obj) {
4933   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
4934 }
4935 
4936 void MacroAssembler::extend_sign(Register hi, Register lo) {
4937   // According to Intel Doc. AP-526, "Integer Divide", p.18.
4938   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
4939     cdql();
4940   } else {
4941     movl(hi, lo);
4942     sarl(hi, 31);
4943   }
4944 }
4945 
4946 void MacroAssembler::fat_nop() {
4947   // A 5 byte nop that is safe for patching (see patch_verified_entry)
4948   emit_byte(0x26); // es:
4949   emit_byte(0x2e); // cs:
4950   emit_byte(0x64); // fs:
4951   emit_byte(0x65); // gs:
4952   emit_byte(0x90);
4953 }
4954 
4955 void MacroAssembler::jC2(Register tmp, Label& L) {
4956   // set parity bit if FPU flag C2 is set (via rax)
4957   save_rax(tmp);
4958   fwait(); fnstsw_ax();
4959   sahf();
4960   restore_rax(tmp);
4961   // branch
4962   jcc(Assembler::parity, L);
4963 }
4964 
4965 void MacroAssembler::jnC2(Register tmp, Label& L) {
4966   // set parity bit if FPU flag C2 is set (via rax)
4967   save_rax(tmp);
4968   fwait(); fnstsw_ax();
4969   sahf();
4970   restore_rax(tmp);
4971   // branch
4972   jcc(Assembler::noParity, L);
4973 }
4974 
4975 // 32bit can do a case table jump in one instruction but we no longer allow the base
4976 // to be installed in the Address class
4977 void MacroAssembler::jump(ArrayAddress entry) {
4978   jmp(as_Address(entry));
4979 }
4980 
4981 // Note: y_lo will be destroyed
4982 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
4983   // Long compare for Java (semantics as described in JVM spec.)
4984   Label high, low, done;
4985 
4986   cmpl(x_hi, y_hi);
4987   jcc(Assembler::less, low);
4988   jcc(Assembler::greater, high);
4989   // x_hi is the return register
4990   xorl(x_hi, x_hi);
4991   cmpl(x_lo, y_lo);
4992   jcc(Assembler::below, low);
4993   jcc(Assembler::equal, done);
4994 
4995   bind(high);
4996   xorl(x_hi, x_hi);
4997   increment(x_hi);
4998   jmp(done);
4999 
5000   bind(low);
5001   xorl(x_hi, x_hi);
5002   decrementl(x_hi);
5003 
5004   bind(done);
5005 }
5006 
5007 void MacroAssembler::lea(Register dst, AddressLiteral src) {
5008     mov_literal32(dst, (int32_t)src.target(), src.rspec());
5009 }
5010 
5011 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
5012   // leal(dst, as_Address(adr));
5013   // see note in movl as to why we must use a move
5014   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
5015 }
5016 
5017 void MacroAssembler::leave() {
5018   mov(rsp, rbp);
5019   pop(rbp);
5020 }
5021 
5022 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
5023   // Multiplication of two Java long values stored on the stack
5024   // as illustrated below. Result is in rdx:rax.
5025   //
5026   // rsp ---> [  ??  ] \               \
5027   //            ....    | y_rsp_offset  |
5028   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
5029   //          [ y_hi ]                  | (in bytes)
5030   //            ....                    |
5031   //          [ x_lo ]                 /
5032   //          [ x_hi ]
5033   //            ....
5034   //
5035   // Basic idea: lo(result) = lo(x_lo * y_lo)
5036   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
5037   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
5038   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
5039   Label quick;
5040   // load x_hi, y_hi and check if quick
5041   // multiplication is possible
5042   movl(rbx, x_hi);
5043   movl(rcx, y_hi);
5044   movl(rax, rbx);
5045   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
5046   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
5047   // do full multiplication
5048   // 1st step
5049   mull(y_lo);                                    // x_hi * y_lo
5050   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
5051   // 2nd step
5052   movl(rax, x_lo);
5053   mull(rcx);                                     // x_lo * y_hi
5054   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
5055   // 3rd step
5056   bind(quick);                                   // note: rbx, = 0 if quick multiply!
5057   movl(rax, x_lo);
5058   mull(y_lo);                                    // x_lo * y_lo
5059   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
5060 }
5061 
5062 void MacroAssembler::lneg(Register hi, Register lo) {
5063   negl(lo);
5064   adcl(hi, 0);
5065   negl(hi);
5066 }
5067 
5068 void MacroAssembler::lshl(Register hi, Register lo) {
5069   // Java shift left long support (semantics as described in JVM spec., p.305)
5070   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
5071   // shift value is in rcx !
5072   assert(hi != rcx, "must not use rcx");
5073   assert(lo != rcx, "must not use rcx");
5074   const Register s = rcx;                        // shift count
5075   const int      n = BitsPerWord;
5076   Label L;
5077   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
5078   cmpl(s, n);                                    // if (s < n)
5079   jcc(Assembler::less, L);                       // else (s >= n)
5080   movl(hi, lo);                                  // x := x << n
5081   xorl(lo, lo);
5082   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
5083   bind(L);                                       // s (mod n) < n
5084   shldl(hi, lo);                                 // x := x << s
5085   shll(lo);
5086 }
5087 
5088 
5089 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
5090   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
5091   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
5092   assert(hi != rcx, "must not use rcx");
5093   assert(lo != rcx, "must not use rcx");
5094   const Register s = rcx;                        // shift count
5095   const int      n = BitsPerWord;
5096   Label L;
5097   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
5098   cmpl(s, n);                                    // if (s < n)
5099   jcc(Assembler::less, L);                       // else (s >= n)
5100   movl(lo, hi);                                  // x := x >> n
5101   if (sign_extension) sarl(hi, 31);
5102   else                xorl(hi, hi);
5103   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
5104   bind(L);                                       // s (mod n) < n
5105   shrdl(lo, hi);                                 // x := x >> s
5106   if (sign_extension) sarl(hi);
5107   else                shrl(hi);
5108 }
5109 
5110 void MacroAssembler::movoop(Register dst, jobject obj) {
5111   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
5112 }
5113 
5114 void MacroAssembler::movoop(Address dst, jobject obj) {
5115   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
5116 }
5117 
5118 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
5119   if (src.is_lval()) {
5120     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
5121   } else {
5122     movl(dst, as_Address(src));
5123   }
5124 }
5125 
5126 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
5127   movl(as_Address(dst), src);
5128 }
5129 
5130 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
5131   movl(dst, as_Address(src));
5132 }
5133 
5134 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
5135 void MacroAssembler::movptr(Address dst, intptr_t src) {
5136   movl(dst, src);
5137 }
5138 
5139 
5140 void MacroAssembler::pop_callee_saved_registers() {
5141   pop(rcx);
5142   pop(rdx);
5143   pop(rdi);
5144   pop(rsi);
5145 }
5146 
5147 void MacroAssembler::pop_fTOS() {
5148   fld_d(Address(rsp, 0));
5149   addl(rsp, 2 * wordSize);
5150 }
5151 
5152 void MacroAssembler::push_callee_saved_registers() {
5153   push(rsi);
5154   push(rdi);
5155   push(rdx);
5156   push(rcx);
5157 }
5158 
5159 void MacroAssembler::push_fTOS() {
5160   subl(rsp, 2 * wordSize);
5161   fstp_d(Address(rsp, 0));
5162 }
5163 
5164 
5165 void MacroAssembler::pushoop(jobject obj) {
5166   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
5167 }
5168 
5169 
5170 void MacroAssembler::pushptr(AddressLiteral src) {
5171   if (src.is_lval()) {
5172     push_literal32((int32_t)src.target(), src.rspec());
5173   } else {
5174     pushl(as_Address(src));
5175   }
5176 }
5177 
5178 void MacroAssembler::set_word_if_not_zero(Register dst) {
5179   xorl(dst, dst);
5180   set_byte_if_not_zero(dst);
5181 }
5182 
5183 static void pass_arg0(MacroAssembler* masm, Register arg) {
5184   masm->push(arg);
5185 }
5186 
5187 static void pass_arg1(MacroAssembler* masm, Register arg) {
5188   masm->push(arg);
5189 }
5190 
5191 static void pass_arg2(MacroAssembler* masm, Register arg) {
5192   masm->push(arg);
5193 }
5194 
5195 static void pass_arg3(MacroAssembler* masm, Register arg) {
5196   masm->push(arg);
5197 }
5198 
5199 #ifndef PRODUCT
5200 extern "C" void findpc(intptr_t x);
5201 #endif
5202 
5203 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
5204   // In order to get locks to work, we need to fake a in_VM state
5205   JavaThread* thread = JavaThread::current();
5206   JavaThreadState saved_state = thread->thread_state();
5207   thread->set_thread_state(_thread_in_vm);
5208   if (ShowMessageBoxOnError) {
5209     JavaThread* thread = JavaThread::current();
5210     JavaThreadState saved_state = thread->thread_state();
5211     thread->set_thread_state(_thread_in_vm);
5212     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
5213       ttyLocker ttyl;
5214       BytecodeCounter::print();
5215     }
5216     // To see where a verify_oop failed, get $ebx+40/X for this frame.
5217     // This is the value of eip which points to where verify_oop will return.
5218     if (os::message_box(msg, "Execution stopped, print registers?")) {
5219       ttyLocker ttyl;
5220       tty->print_cr("eip = 0x%08x", eip);
5221 #ifndef PRODUCT
5222       if ((WizardMode || Verbose) && PrintMiscellaneous) {
5223         tty->cr();
5224         findpc(eip);
5225         tty->cr();
5226       }
5227 #endif
5228       tty->print_cr("rax = 0x%08x", rax);
5229       tty->print_cr("rbx = 0x%08x", rbx);
5230       tty->print_cr("rcx = 0x%08x", rcx);
5231       tty->print_cr("rdx = 0x%08x", rdx);
5232       tty->print_cr("rdi = 0x%08x", rdi);
5233       tty->print_cr("rsi = 0x%08x", rsi);
5234       tty->print_cr("rbp = 0x%08x", rbp);
5235       tty->print_cr("rsp = 0x%08x", rsp);
5236       BREAKPOINT;
5237       assert(false, "start up GDB");
5238     }
5239   } else {
5240     ttyLocker ttyl;
5241     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
5242     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
5243   }
5244   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
5245 }
5246 
5247 void MacroAssembler::stop(const char* msg) {
5248   ExternalAddress message((address)msg);
5249   // push address of message
5250   pushptr(message.addr());
5251   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
5252   pusha();                                           // push registers
5253   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
5254   hlt();
5255 }
5256 
5257 void MacroAssembler::warn(const char* msg) {
5258   push_CPU_state();
5259 
5260   ExternalAddress message((address) msg);
5261   // push address of message
5262   pushptr(message.addr());
5263 
5264   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
5265   addl(rsp, wordSize);       // discard argument
5266   pop_CPU_state();
5267 }
5268 
5269 #else // _LP64
5270 
5271 // 64 bit versions
5272 
5273 Address MacroAssembler::as_Address(AddressLiteral adr) {
5274   // amd64 always does this as a pc-rel
5275   // we can be absolute or disp based on the instruction type
5276   // jmp/call are displacements others are absolute
5277   assert(!adr.is_lval(), "must be rval");
5278   assert(reachable(adr), "must be");
5279   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
5280 
5281 }
5282 
5283 Address MacroAssembler::as_Address(ArrayAddress adr) {
5284   AddressLiteral base = adr.base();
5285   lea(rscratch1, base);
5286   Address index = adr.index();
5287   assert(index._disp == 0, "must not have disp"); // maybe it can?
5288   Address array(rscratch1, index._index, index._scale, index._disp);
5289   return array;
5290 }
5291 
5292 int MacroAssembler::biased_locking_enter(Register lock_reg,
5293                                          Register obj_reg,
5294                                          Register swap_reg,
5295                                          Register tmp_reg,
5296                                          bool swap_reg_contains_mark,
5297                                          Label& done,
5298                                          Label* slow_case,
5299                                          BiasedLockingCounters* counters) {
5300   assert(UseBiasedLocking, "why call this otherwise?");
5301   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
5302   assert(tmp_reg != noreg, "tmp_reg must be supplied");
5303   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
5304   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
5305   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
5306   Address saved_mark_addr(lock_reg, 0);
5307 
5308   if (PrintBiasedLockingStatistics && counters == NULL)
5309     counters = BiasedLocking::counters();
5310 
5311   // Biased locking
5312   // See whether the lock is currently biased toward our thread and
5313   // whether the epoch is still valid
5314   // Note that the runtime guarantees sufficient alignment of JavaThread
5315   // pointers to allow age to be placed into low bits
5316   // First check to see whether biasing is even enabled for this object
5317   Label cas_label;
5318   int null_check_offset = -1;
5319   if (!swap_reg_contains_mark) {
5320     null_check_offset = offset();
5321     movq(swap_reg, mark_addr);
5322   }
5323   movq(tmp_reg, swap_reg);
5324   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
5325   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
5326   jcc(Assembler::notEqual, cas_label);
5327   // The bias pattern is present in the object's header. Need to check
5328   // whether the bias owner and the epoch are both still current.
5329   load_prototype_header(tmp_reg, obj_reg);
5330   orq(tmp_reg, r15_thread);
5331   xorq(tmp_reg, swap_reg);
5332   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
5333   if (counters != NULL) {
5334     cond_inc32(Assembler::zero,
5335                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
5336   }
5337   jcc(Assembler::equal, done);
5338 
5339   Label try_revoke_bias;
5340   Label try_rebias;
5341 
5342   // At this point we know that the header has the bias pattern and
5343   // that we are not the bias owner in the current epoch. We need to
5344   // figure out more details about the state of the header in order to
5345   // know what operations can be legally performed on the object's
5346   // header.
5347 
5348   // If the low three bits in the xor result aren't clear, that means
5349   // the prototype header is no longer biased and we have to revoke
5350   // the bias on this object.
5351   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
5352   jcc(Assembler::notZero, try_revoke_bias);
5353 
5354   // Biasing is still enabled for this data type. See whether the
5355   // epoch of the current bias is still valid, meaning that the epoch
5356   // bits of the mark word are equal to the epoch bits of the
5357   // prototype header. (Note that the prototype header's epoch bits
5358   // only change at a safepoint.) If not, attempt to rebias the object
5359   // toward the current thread. Note that we must be absolutely sure
5360   // that the current epoch is invalid in order to do this because
5361   // otherwise the manipulations it performs on the mark word are
5362   // illegal.
5363   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
5364   jcc(Assembler::notZero, try_rebias);
5365 
5366   // The epoch of the current bias is still valid but we know nothing
5367   // about the owner; it might be set or it might be clear. Try to
5368   // acquire the bias of the object using an atomic operation. If this
5369   // fails we will go in to the runtime to revoke the object's bias.
5370   // Note that we first construct the presumed unbiased header so we
5371   // don't accidentally blow away another thread's valid bias.
5372   andq(swap_reg,
5373        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
5374   movq(tmp_reg, swap_reg);
5375   orq(tmp_reg, r15_thread);
5376   if (os::is_MP()) {
5377     lock();
5378   }
5379   cmpxchgq(tmp_reg, Address(obj_reg, 0));
5380   // If the biasing toward our thread failed, this means that
5381   // another thread succeeded in biasing it toward itself and we
5382   // need to revoke that bias. The revocation will occur in the
5383   // interpreter runtime in the slow case.
5384   if (counters != NULL) {
5385     cond_inc32(Assembler::zero,
5386                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
5387   }
5388   if (slow_case != NULL) {
5389     jcc(Assembler::notZero, *slow_case);
5390   }
5391   jmp(done);
5392 
5393   bind(try_rebias);
5394   // At this point we know the epoch has expired, meaning that the
5395   // current "bias owner", if any, is actually invalid. Under these
5396   // circumstances _only_, we are allowed to use the current header's
5397   // value as the comparison value when doing the cas to acquire the
5398   // bias in the current epoch. In other words, we allow transfer of
5399   // the bias from one thread to another directly in this situation.
5400   //
5401   // FIXME: due to a lack of registers we currently blow away the age
5402   // bits in this situation. Should attempt to preserve them.
5403   load_prototype_header(tmp_reg, obj_reg);
5404   orq(tmp_reg, r15_thread);
5405   if (os::is_MP()) {
5406     lock();
5407   }
5408   cmpxchgq(tmp_reg, Address(obj_reg, 0));
5409   // If the biasing toward our thread failed, then another thread
5410   // succeeded in biasing it toward itself and we need to revoke that
5411   // bias. The revocation will occur in the runtime in the slow case.
5412   if (counters != NULL) {
5413     cond_inc32(Assembler::zero,
5414                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
5415   }
5416   if (slow_case != NULL) {
5417     jcc(Assembler::notZero, *slow_case);
5418   }
5419   jmp(done);
5420 
5421   bind(try_revoke_bias);
5422   // The prototype mark in the klass doesn't have the bias bit set any
5423   // more, indicating that objects of this data type are not supposed
5424   // to be biased any more. We are going to try to reset the mark of
5425   // this object to the prototype value and fall through to the
5426   // CAS-based locking scheme. Note that if our CAS fails, it means
5427   // that another thread raced us for the privilege of revoking the
5428   // bias of this particular object, so it's okay to continue in the
5429   // normal locking code.
5430   //
5431   // FIXME: due to a lack of registers we currently blow away the age
5432   // bits in this situation. Should attempt to preserve them.
5433   load_prototype_header(tmp_reg, obj_reg);
5434   if (os::is_MP()) {
5435     lock();
5436   }
5437   cmpxchgq(tmp_reg, Address(obj_reg, 0));
5438   // Fall through to the normal CAS-based lock, because no matter what
5439   // the result of the above CAS, some thread must have succeeded in
5440   // removing the bias bit from the object's header.
5441   if (counters != NULL) {
5442     cond_inc32(Assembler::zero,
5443                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
5444   }
5445 
5446   bind(cas_label);
5447 
5448   return null_check_offset;
5449 }
5450 
5451 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
5452   Label L, E;
5453 
5454 #ifdef _WIN64
5455   // Windows always allocates space for it's register args
5456   assert(num_args <= 4, "only register arguments supported");
5457   subq(rsp,  frame::arg_reg_save_area_bytes);
5458 #endif
5459 
5460   // Align stack if necessary
5461   testl(rsp, 15);
5462   jcc(Assembler::zero, L);
5463 
5464   subq(rsp, 8);
5465   {
5466     call(RuntimeAddress(entry_point));
5467   }
5468   addq(rsp, 8);
5469   jmp(E);
5470 
5471   bind(L);
5472   {
5473     call(RuntimeAddress(entry_point));
5474   }
5475 
5476   bind(E);
5477 
5478 #ifdef _WIN64
5479   // restore stack pointer
5480   addq(rsp, frame::arg_reg_save_area_bytes);
5481 #endif
5482 
5483 }
5484 
5485 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
5486   assert(!src2.is_lval(), "should use cmpptr");
5487 
5488   if (reachable(src2)) {
5489     cmpq(src1, as_Address(src2));
5490   } else {
5491     lea(rscratch1, src2);
5492     Assembler::cmpq(src1, Address(rscratch1, 0));
5493   }
5494 }
5495 
5496 int MacroAssembler::corrected_idivq(Register reg) {
5497   // Full implementation of Java ldiv and lrem; checks for special
5498   // case as described in JVM spec., p.243 & p.271.  The function
5499   // returns the (pc) offset of the idivl instruction - may be needed
5500   // for implicit exceptions.
5501   //
5502   //         normal case                           special case
5503   //
5504   // input : rax: dividend                         min_long
5505   //         reg: divisor   (may not be eax/edx)   -1
5506   //
5507   // output: rax: quotient  (= rax idiv reg)       min_long
5508   //         rdx: remainder (= rax irem reg)       0
5509   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
5510   static const int64_t min_long = 0x8000000000000000;
5511   Label normal_case, special_case;
5512 
5513   // check for special case
5514   cmp64(rax, ExternalAddress((address) &min_long));
5515   jcc(Assembler::notEqual, normal_case);
5516   xorl(rdx, rdx); // prepare rdx for possible special case (where
5517                   // remainder = 0)
5518   cmpq(reg, -1);
5519   jcc(Assembler::equal, special_case);
5520 
5521   // handle normal case
5522   bind(normal_case);
5523   cdqq();
5524   int idivq_offset = offset();
5525   idivq(reg);
5526 
5527   // normal and special case exit
5528   bind(special_case);
5529 
5530   return idivq_offset;
5531 }
5532 
5533 void MacroAssembler::decrementq(Register reg, int value) {
5534   if (value == min_jint) { subq(reg, value); return; }
5535   if (value <  0) { incrementq(reg, -value); return; }
5536   if (value == 0) {                        ; return; }
5537   if (value == 1 && UseIncDec) { decq(reg) ; return; }
5538   /* else */      { subq(reg, value)       ; return; }
5539 }
5540 
5541 void MacroAssembler::decrementq(Address dst, int value) {
5542   if (value == min_jint) { subq(dst, value); return; }
5543   if (value <  0) { incrementq(dst, -value); return; }
5544   if (value == 0) {                        ; return; }
5545   if (value == 1 && UseIncDec) { decq(dst) ; return; }
5546   /* else */      { subq(dst, value)       ; return; }
5547 }
5548 
5549 void MacroAssembler::fat_nop() {
5550   // A 5 byte nop that is safe for patching (see patch_verified_entry)
5551   // Recommened sequence from 'Software Optimization Guide for the AMD
5552   // Hammer Processor'
5553   emit_byte(0x66);
5554   emit_byte(0x66);
5555   emit_byte(0x90);
5556   emit_byte(0x66);
5557   emit_byte(0x90);
5558 }
5559 
5560 void MacroAssembler::incrementq(Register reg, int value) {
5561   if (value == min_jint) { addq(reg, value); return; }
5562   if (value <  0) { decrementq(reg, -value); return; }
5563   if (value == 0) {                        ; return; }
5564   if (value == 1 && UseIncDec) { incq(reg) ; return; }
5565   /* else */      { addq(reg, value)       ; return; }
5566 }
5567 
5568 void MacroAssembler::incrementq(Address dst, int value) {
5569   if (value == min_jint) { addq(dst, value); return; }
5570   if (value <  0) { decrementq(dst, -value); return; }
5571   if (value == 0) {                        ; return; }
5572   if (value == 1 && UseIncDec) { incq(dst) ; return; }
5573   /* else */      { addq(dst, value)       ; return; }
5574 }
5575 
5576 // 32bit can do a case table jump in one instruction but we no longer allow the base
5577 // to be installed in the Address class
5578 void MacroAssembler::jump(ArrayAddress entry) {
5579   lea(rscratch1, entry.base());
5580   Address dispatch = entry.index();
5581   assert(dispatch._base == noreg, "must be");
5582   dispatch._base = rscratch1;
5583   jmp(dispatch);
5584 }
5585 
5586 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
5587   ShouldNotReachHere(); // 64bit doesn't use two regs
5588   cmpq(x_lo, y_lo);
5589 }
5590 
5591 void MacroAssembler::lea(Register dst, AddressLiteral src) {
5592     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
5593 }
5594 
5595 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
5596   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
5597   movptr(dst, rscratch1);
5598 }
5599 
5600 void MacroAssembler::leave() {
5601   // %%% is this really better? Why not on 32bit too?
5602   emit_byte(0xC9); // LEAVE
5603 }
5604 
5605 void MacroAssembler::lneg(Register hi, Register lo) {
5606   ShouldNotReachHere(); // 64bit doesn't use two regs
5607   negq(lo);
5608 }
5609 
5610 void MacroAssembler::movoop(Register dst, jobject obj) {
5611   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
5612 }
5613 
5614 void MacroAssembler::movoop(Address dst, jobject obj) {
5615   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
5616   movq(dst, rscratch1);
5617 }
5618 
5619 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
5620   if (src.is_lval()) {
5621     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
5622   } else {
5623     if (reachable(src)) {
5624       movq(dst, as_Address(src));
5625     } else {
5626       lea(rscratch1, src);
5627       movq(dst, Address(rscratch1,0));
5628     }
5629   }
5630 }
5631 
5632 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
5633   movq(as_Address(dst), src);
5634 }
5635 
5636 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
5637   movq(dst, as_Address(src));
5638 }
5639 
5640 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
5641 void MacroAssembler::movptr(Address dst, intptr_t src) {
5642   mov64(rscratch1, src);
5643   movq(dst, rscratch1);
5644 }
5645 
5646 // These are mostly for initializing NULL
5647 void MacroAssembler::movptr(Address dst, int32_t src) {
5648   movslq(dst, src);
5649 }
5650 
5651 void MacroAssembler::movptr(Register dst, int32_t src) {
5652   mov64(dst, (intptr_t)src);
5653 }
5654 
5655 void MacroAssembler::pushoop(jobject obj) {
5656   movoop(rscratch1, obj);
5657   push(rscratch1);
5658 }
5659 
5660 void MacroAssembler::pushptr(AddressLiteral src) {
5661   lea(rscratch1, src);
5662   if (src.is_lval()) {
5663     push(rscratch1);
5664   } else {
5665     pushq(Address(rscratch1, 0));
5666   }
5667 }
5668 
5669 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
5670                                            bool clear_pc) {
5671   // we must set sp to zero to clear frame
5672   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
5673   // must clear fp, so that compiled frames are not confused; it is
5674   // possible that we need it only for debugging
5675   if (clear_fp) {
5676     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
5677   }
5678 
5679   if (clear_pc) {
5680     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
5681   }
5682 }
5683 
5684 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
5685                                          Register last_java_fp,
5686                                          address  last_java_pc) {
5687   // determine last_java_sp register
5688   if (!last_java_sp->is_valid()) {
5689     last_java_sp = rsp;
5690   }
5691 
5692   // last_java_fp is optional
5693   if (last_java_fp->is_valid()) {
5694     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
5695            last_java_fp);
5696   }
5697 
5698   // last_java_pc is optional
5699   if (last_java_pc != NULL) {
5700     Address java_pc(r15_thread,
5701                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
5702     lea(rscratch1, InternalAddress(last_java_pc));
5703     movptr(java_pc, rscratch1);
5704   }
5705 
5706   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
5707 }
5708 
5709 static void pass_arg0(MacroAssembler* masm, Register arg) {
5710   if (c_rarg0 != arg ) {
5711     masm->mov(c_rarg0, arg);
5712   }
5713 }
5714 
5715 static void pass_arg1(MacroAssembler* masm, Register arg) {
5716   if (c_rarg1 != arg ) {
5717     masm->mov(c_rarg1, arg);
5718   }
5719 }
5720 
5721 static void pass_arg2(MacroAssembler* masm, Register arg) {
5722   if (c_rarg2 != arg ) {
5723     masm->mov(c_rarg2, arg);
5724   }
5725 }
5726 
5727 static void pass_arg3(MacroAssembler* masm, Register arg) {
5728   if (c_rarg3 != arg ) {
5729     masm->mov(c_rarg3, arg);
5730   }
5731 }
5732 
5733 void MacroAssembler::stop(const char* msg) {
5734   address rip = pc();
5735   pusha(); // get regs on stack
5736   lea(c_rarg0, ExternalAddress((address) msg));
5737   lea(c_rarg1, InternalAddress(rip));
5738   movq(c_rarg2, rsp); // pass pointer to regs array
5739   andq(rsp, -16); // align stack as required by ABI
5740   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
5741   hlt();
5742 }
5743 
5744 void MacroAssembler::warn(const char* msg) {
5745   push(rsp);
5746   andq(rsp, -16);     // align stack as required by push_CPU_state and call
5747 
5748   push_CPU_state();   // keeps alignment at 16 bytes
5749   lea(c_rarg0, ExternalAddress((address) msg));
5750   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
5751   pop_CPU_state();
5752   pop(rsp);
5753 }
5754 
5755 #ifndef PRODUCT
5756 extern "C" void findpc(intptr_t x);
5757 #endif
5758 
5759 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
5760   // In order to get locks to work, we need to fake a in_VM state
5761   if (ShowMessageBoxOnError ) {
5762     JavaThread* thread = JavaThread::current();
5763     JavaThreadState saved_state = thread->thread_state();
5764     thread->set_thread_state(_thread_in_vm);
5765 #ifndef PRODUCT
5766     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
5767       ttyLocker ttyl;
5768       BytecodeCounter::print();
5769     }
5770 #endif
5771     // To see where a verify_oop failed, get $ebx+40/X for this frame.
5772     // XXX correct this offset for amd64
5773     // This is the value of eip which points to where verify_oop will return.
5774     if (os::message_box(msg, "Execution stopped, print registers?")) {
5775       ttyLocker ttyl;
5776       tty->print_cr("rip = 0x%016lx", pc);
5777 #ifndef PRODUCT
5778       tty->cr();
5779       findpc(pc);
5780       tty->cr();
5781 #endif
5782       tty->print_cr("rax = 0x%016lx", regs[15]);
5783       tty->print_cr("rbx = 0x%016lx", regs[12]);
5784       tty->print_cr("rcx = 0x%016lx", regs[14]);
5785       tty->print_cr("rdx = 0x%016lx", regs[13]);
5786       tty->print_cr("rdi = 0x%016lx", regs[8]);
5787       tty->print_cr("rsi = 0x%016lx", regs[9]);
5788       tty->print_cr("rbp = 0x%016lx", regs[10]);
5789       tty->print_cr("rsp = 0x%016lx", regs[11]);
5790       tty->print_cr("r8  = 0x%016lx", regs[7]);
5791       tty->print_cr("r9  = 0x%016lx", regs[6]);
5792       tty->print_cr("r10 = 0x%016lx", regs[5]);
5793       tty->print_cr("r11 = 0x%016lx", regs[4]);
5794       tty->print_cr("r12 = 0x%016lx", regs[3]);
5795       tty->print_cr("r13 = 0x%016lx", regs[2]);
5796       tty->print_cr("r14 = 0x%016lx", regs[1]);
5797       tty->print_cr("r15 = 0x%016lx", regs[0]);
5798       BREAKPOINT;
5799     }
5800     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
5801   } else {
5802     ttyLocker ttyl;
5803     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
5804                     msg);
5805     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
5806   }
5807 }
5808 
5809 #endif // _LP64
5810 
5811 // Now versions that are common to 32/64 bit
5812 
5813 void MacroAssembler::addptr(Register dst, int32_t imm32) {
5814   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
5815 }
5816 
5817 void MacroAssembler::addptr(Register dst, Register src) {
5818   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
5819 }
5820 
5821 void MacroAssembler::addptr(Address dst, Register src) {
5822   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
5823 }
5824 
5825 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
5826   if (reachable(src)) {
5827     Assembler::addsd(dst, as_Address(src));
5828   } else {
5829     lea(rscratch1, src);
5830     Assembler::addsd(dst, Address(rscratch1, 0));
5831   }
5832 }
5833 
5834 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
5835   if (reachable(src)) {
5836     addss(dst, as_Address(src));
5837   } else {
5838     lea(rscratch1, src);
5839     addss(dst, Address(rscratch1, 0));
5840   }
5841 }
5842 
5843 void MacroAssembler::align(int modulus) {
5844   if (offset() % modulus != 0) {
5845     nop(modulus - (offset() % modulus));
5846   }
5847 }
5848 
5849 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
5850   // Used in sign-masking with aligned address.
5851   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
5852   if (reachable(src)) {
5853     Assembler::andpd(dst, as_Address(src));
5854   } else {
5855     lea(rscratch1, src);
5856     Assembler::andpd(dst, Address(rscratch1, 0));
5857   }
5858 }
5859 
5860 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
5861   // Used in sign-masking with aligned address.
5862   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
5863   if (reachable(src)) {
5864     Assembler::andps(dst, as_Address(src));
5865   } else {
5866     lea(rscratch1, src);
5867     Assembler::andps(dst, Address(rscratch1, 0));
5868   }
5869 }
5870 
5871 void MacroAssembler::andptr(Register dst, int32_t imm32) {
5872   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
5873 }
5874 
5875 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
5876   pushf();
5877   if (os::is_MP())
5878     lock();
5879   incrementl(counter_addr);
5880   popf();
5881 }
5882 
5883 // Writes to stack successive pages until offset reached to check for
5884 // stack overflow + shadow pages.  This clobbers tmp.
5885 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5886   movptr(tmp, rsp);
5887   // Bang stack for total size given plus shadow page size.
5888   // Bang one page at a time because large size can bang beyond yellow and
5889   // red zones.
5890   Label loop;
5891   bind(loop);
5892   movl(Address(tmp, (-os::vm_page_size())), size );
5893   subptr(tmp, os::vm_page_size());
5894   subl(size, os::vm_page_size());
5895   jcc(Assembler::greater, loop);
5896 
5897   // Bang down shadow pages too.
5898   // The -1 because we already subtracted 1 page.
5899   for (int i = 0; i< StackShadowPages-1; i++) {
5900     // this could be any sized move but this is can be a debugging crumb
5901     // so the bigger the better.
5902     movptr(Address(tmp, (-i*os::vm_page_size())), size );
5903   }
5904 }
5905 
5906 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
5907   assert(UseBiasedLocking, "why call this otherwise?");
5908 
5909   // Check for biased locking unlock case, which is a no-op
5910   // Note: we do not have to check the thread ID for two reasons.
5911   // First, the interpreter checks for IllegalMonitorStateException at
5912   // a higher level. Second, if the bias was revoked while we held the
5913   // lock, the object could not be rebiased toward another thread, so
5914   // the bias bit would be clear.
5915   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
5916   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
5917   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
5918   jcc(Assembler::equal, done);
5919 }
5920 
5921 void MacroAssembler::c2bool(Register x) {
5922   // implements x == 0 ? 0 : 1
5923   // note: must only look at least-significant byte of x
5924   //       since C-style booleans are stored in one byte
5925   //       only! (was bug)
5926   andl(x, 0xFF);
5927   setb(Assembler::notZero, x);
5928 }
5929 
5930 // Wouldn't need if AddressLiteral version had new name
5931 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
5932   Assembler::call(L, rtype);
5933 }
5934 
5935 void MacroAssembler::call(Register entry) {
5936   Assembler::call(entry);
5937 }
5938 
5939 void MacroAssembler::call(AddressLiteral entry) {
5940   if (reachable(entry)) {
5941     Assembler::call_literal(entry.target(), entry.rspec());
5942   } else {
5943     lea(rscratch1, entry);
5944     Assembler::call(rscratch1);
5945   }
5946 }
5947 
5948 // Implementation of call_VM versions
5949 
5950 void MacroAssembler::call_VM(Register oop_result,
5951                              address entry_point,
5952                              bool check_exceptions) {
5953   Label C, E;
5954   call(C, relocInfo::none);
5955   jmp(E);
5956 
5957   bind(C);
5958   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
5959   ret(0);
5960 
5961   bind(E);
5962 }
5963 
5964 void MacroAssembler::call_VM(Register oop_result,
5965                              address entry_point,
5966                              Register arg_1,
5967                              bool check_exceptions) {
5968   Label C, E;
5969   call(C, relocInfo::none);
5970   jmp(E);
5971 
5972   bind(C);
5973   pass_arg1(this, arg_1);
5974   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
5975   ret(0);
5976 
5977   bind(E);
5978 }
5979 
5980 void MacroAssembler::call_VM(Register oop_result,
5981                              address entry_point,
5982                              Register arg_1,
5983                              Register arg_2,
5984                              bool check_exceptions) {
5985   Label C, E;
5986   call(C, relocInfo::none);
5987   jmp(E);
5988 
5989   bind(C);
5990 
5991   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5992 
5993   pass_arg2(this, arg_2);
5994   pass_arg1(this, arg_1);
5995   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
5996   ret(0);
5997 
5998   bind(E);
5999 }
6000 
6001 void MacroAssembler::call_VM(Register oop_result,
6002                              address entry_point,
6003                              Register arg_1,
6004                              Register arg_2,
6005                              Register arg_3,
6006                              bool check_exceptions) {
6007   Label C, E;
6008   call(C, relocInfo::none);
6009   jmp(E);
6010 
6011   bind(C);
6012 
6013   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
6014   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
6015   pass_arg3(this, arg_3);
6016 
6017   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
6018   pass_arg2(this, arg_2);
6019 
6020   pass_arg1(this, arg_1);
6021   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
6022   ret(0);
6023 
6024   bind(E);
6025 }
6026 
6027 void MacroAssembler::call_VM(Register oop_result,
6028                              Register last_java_sp,
6029                              address entry_point,
6030                              int number_of_arguments,
6031                              bool check_exceptions) {
6032   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
6033   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
6034 }
6035 
6036 void MacroAssembler::call_VM(Register oop_result,
6037                              Register last_java_sp,
6038                              address entry_point,
6039                              Register arg_1,
6040                              bool check_exceptions) {
6041   pass_arg1(this, arg_1);
6042   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
6043 }
6044 
6045 void MacroAssembler::call_VM(Register oop_result,
6046                              Register last_java_sp,
6047                              address entry_point,
6048                              Register arg_1,
6049                              Register arg_2,
6050                              bool check_exceptions) {
6051 
6052   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
6053   pass_arg2(this, arg_2);
6054   pass_arg1(this, arg_1);
6055   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
6056 }
6057 
6058 void MacroAssembler::call_VM(Register oop_result,
6059                              Register last_java_sp,
6060                              address entry_point,
6061                              Register arg_1,
6062                              Register arg_2,
6063                              Register arg_3,
6064                              bool check_exceptions) {
6065   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
6066   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
6067   pass_arg3(this, arg_3);
6068   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
6069   pass_arg2(this, arg_2);
6070   pass_arg1(this, arg_1);
6071   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
6072 }
6073 
6074 void MacroAssembler::super_call_VM(Register oop_result,
6075                                    Register last_java_sp,
6076                                    address entry_point,
6077                                    int number_of_arguments,
6078                                    bool check_exceptions) {
6079   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
6080   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
6081 }
6082 
6083 void MacroAssembler::super_call_VM(Register oop_result,
6084                                    Register last_java_sp,
6085                                    address entry_point,
6086                                    Register arg_1,
6087                                    bool check_exceptions) {
6088   pass_arg1(this, arg_1);
6089   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
6090 }
6091 
6092 void MacroAssembler::super_call_VM(Register oop_result,
6093                                    Register last_java_sp,
6094                                    address entry_point,
6095                                    Register arg_1,
6096                                    Register arg_2,
6097                                    bool check_exceptions) {
6098 
6099   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
6100   pass_arg2(this, arg_2);
6101   pass_arg1(this, arg_1);
6102   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
6103 }
6104 
6105 void MacroAssembler::super_call_VM(Register oop_result,
6106                                    Register last_java_sp,
6107                                    address entry_point,
6108                                    Register arg_1,
6109                                    Register arg_2,
6110                                    Register arg_3,
6111                                    bool check_exceptions) {
6112   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
6113   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
6114   pass_arg3(this, arg_3);
6115   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
6116   pass_arg2(this, arg_2);
6117   pass_arg1(this, arg_1);
6118   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
6119 }
6120 
6121 void MacroAssembler::call_VM_base(Register oop_result,
6122                                   Register java_thread,
6123                                   Register last_java_sp,
6124                                   address  entry_point,
6125                                   int      number_of_arguments,
6126                                   bool     check_exceptions) {
6127   // determine java_thread register
6128   if (!java_thread->is_valid()) {
6129 #ifdef _LP64
6130     java_thread = r15_thread;
6131 #else
6132     java_thread = rdi;
6133     get_thread(java_thread);
6134 #endif // LP64
6135   }
6136   // determine last_java_sp register
6137   if (!last_java_sp->is_valid()) {
6138     last_java_sp = rsp;
6139   }
6140   // debugging support
6141   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
6142   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
6143 #ifdef ASSERT
6144   LP64_ONLY(if (UseCompressedOops) verify_heapbase("call_VM_base");)
6145 #endif // ASSERT
6146 
6147   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
6148   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
6149 
6150   // push java thread (becomes first argument of C function)
6151 
6152   NOT_LP64(push(java_thread); number_of_arguments++);
6153   LP64_ONLY(mov(c_rarg0, r15_thread));
6154 
6155   // set last Java frame before call
6156   assert(last_java_sp != rbp, "can't use ebp/rbp");
6157 
6158   // Only interpreter should have to set fp
6159   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
6160 
6161   // do the call, remove parameters
6162   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
6163 
6164   // restore the thread (cannot use the pushed argument since arguments
6165   // may be overwritten by C code generated by an optimizing compiler);
6166   // however can use the register value directly if it is callee saved.
6167   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
6168     // rdi & rsi (also r15) are callee saved -> nothing to do
6169 #ifdef ASSERT
6170     guarantee(java_thread != rax, "change this code");
6171     push(rax);
6172     { Label L;
6173       get_thread(rax);
6174       cmpptr(java_thread, rax);
6175       jcc(Assembler::equal, L);
6176       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
6177       bind(L);
6178     }
6179     pop(rax);
6180 #endif
6181   } else {
6182     get_thread(java_thread);
6183   }
6184   // reset last Java frame
6185   // Only interpreter should have to clear fp
6186   reset_last_Java_frame(java_thread, true, false);
6187 
6188 #ifndef CC_INTERP
6189    // C++ interp handles this in the interpreter
6190   check_and_handle_popframe(java_thread);
6191   check_and_handle_earlyret(java_thread);
6192 #endif /* CC_INTERP */
6193 
6194   if (check_exceptions) {
6195     // check for pending exceptions (java_thread is set upon return)
6196     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
6197 #ifndef _LP64
6198     jump_cc(Assembler::notEqual,
6199             RuntimeAddress(StubRoutines::forward_exception_entry()));
6200 #else
6201     // This used to conditionally jump to forward_exception however it is
6202     // possible if we relocate that the branch will not reach. So we must jump
6203     // around so we can always reach
6204 
6205     Label ok;
6206     jcc(Assembler::equal, ok);
6207     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
6208     bind(ok);
6209 #endif // LP64
6210   }
6211 
6212   // get oop result if there is one and reset the value in the thread
6213   if (oop_result->is_valid()) {
6214     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
6215     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
6216     verify_oop(oop_result, "broken oop in call_VM_base");
6217   }
6218 }
6219 
6220 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
6221 
6222   // Calculate the value for last_Java_sp
6223   // somewhat subtle. call_VM does an intermediate call
6224   // which places a return address on the stack just under the
6225   // stack pointer as the user finsihed with it. This allows
6226   // use to retrieve last_Java_pc from last_Java_sp[-1].
6227   // On 32bit we then have to push additional args on the stack to accomplish
6228   // the actual requested call. On 64bit call_VM only can use register args
6229   // so the only extra space is the return address that call_VM created.
6230   // This hopefully explains the calculations here.
6231 
6232 #ifdef _LP64
6233   // We've pushed one address, correct last_Java_sp
6234   lea(rax, Address(rsp, wordSize));
6235 #else
6236   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
6237 #endif // LP64
6238 
6239   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
6240 
6241 }
6242 
6243 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
6244   call_VM_leaf_base(entry_point, number_of_arguments);
6245 }
6246 
6247 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
6248   pass_arg0(this, arg_0);
6249   call_VM_leaf(entry_point, 1);
6250 }
6251 
6252 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
6253 
6254   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
6255   pass_arg1(this, arg_1);
6256   pass_arg0(this, arg_0);
6257   call_VM_leaf(entry_point, 2);
6258 }
6259 
6260 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
6261   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
6262   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
6263   pass_arg2(this, arg_2);
6264   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
6265   pass_arg1(this, arg_1);
6266   pass_arg0(this, arg_0);
6267   call_VM_leaf(entry_point, 3);
6268 }
6269 
6270 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
6271   pass_arg0(this, arg_0);
6272   MacroAssembler::call_VM_leaf_base(entry_point, 1);
6273 }
6274 
6275 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
6276 
6277   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
6278   pass_arg1(this, arg_1);
6279   pass_arg0(this, arg_0);
6280   MacroAssembler::call_VM_leaf_base(entry_point, 2);
6281 }
6282 
6283 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
6284   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
6285   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
6286   pass_arg2(this, arg_2);
6287   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
6288   pass_arg1(this, arg_1);
6289   pass_arg0(this, arg_0);
6290   MacroAssembler::call_VM_leaf_base(entry_point, 3);
6291 }
6292 
6293 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
6294   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
6295   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
6296   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
6297   pass_arg3(this, arg_3);
6298   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
6299   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
6300   pass_arg2(this, arg_2);
6301   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
6302   pass_arg1(this, arg_1);
6303   pass_arg0(this, arg_0);
6304   MacroAssembler::call_VM_leaf_base(entry_point, 4);
6305 }
6306 
6307 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
6308 }
6309 
6310 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
6311 }
6312 
6313 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
6314   if (reachable(src1)) {
6315     cmpl(as_Address(src1), imm);
6316   } else {
6317     lea(rscratch1, src1);
6318     cmpl(Address(rscratch1, 0), imm);
6319   }
6320 }
6321 
6322 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
6323   assert(!src2.is_lval(), "use cmpptr");
6324   if (reachable(src2)) {
6325     cmpl(src1, as_Address(src2));
6326   } else {
6327     lea(rscratch1, src2);
6328     cmpl(src1, Address(rscratch1, 0));
6329   }
6330 }
6331 
6332 void MacroAssembler::cmp32(Register src1, int32_t imm) {
6333   Assembler::cmpl(src1, imm);
6334 }
6335 
6336 void MacroAssembler::cmp32(Register src1, Address src2) {
6337   Assembler::cmpl(src1, src2);
6338 }
6339 
6340 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
6341   ucomisd(opr1, opr2);
6342 
6343   Label L;
6344   if (unordered_is_less) {
6345     movl(dst, -1);
6346     jcc(Assembler::parity, L);
6347     jcc(Assembler::below , L);
6348     movl(dst, 0);
6349     jcc(Assembler::equal , L);
6350     increment(dst);
6351   } else { // unordered is greater
6352     movl(dst, 1);
6353     jcc(Assembler::parity, L);
6354     jcc(Assembler::above , L);
6355     movl(dst, 0);
6356     jcc(Assembler::equal , L);
6357     decrementl(dst);
6358   }
6359   bind(L);
6360 }
6361 
6362 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
6363   ucomiss(opr1, opr2);
6364 
6365   Label L;
6366   if (unordered_is_less) {
6367     movl(dst, -1);
6368     jcc(Assembler::parity, L);
6369     jcc(Assembler::below , L);
6370     movl(dst, 0);
6371     jcc(Assembler::equal , L);
6372     increment(dst);
6373   } else { // unordered is greater
6374     movl(dst, 1);
6375     jcc(Assembler::parity, L);
6376     jcc(Assembler::above , L);
6377     movl(dst, 0);
6378     jcc(Assembler::equal , L);
6379     decrementl(dst);
6380   }
6381   bind(L);
6382 }
6383 
6384 
6385 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
6386   if (reachable(src1)) {
6387     cmpb(as_Address(src1), imm);
6388   } else {
6389     lea(rscratch1, src1);
6390     cmpb(Address(rscratch1, 0), imm);
6391   }
6392 }
6393 
6394 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
6395 #ifdef _LP64
6396   if (src2.is_lval()) {
6397     movptr(rscratch1, src2);
6398     Assembler::cmpq(src1, rscratch1);
6399   } else if (reachable(src2)) {
6400     cmpq(src1, as_Address(src2));
6401   } else {
6402     lea(rscratch1, src2);
6403     Assembler::cmpq(src1, Address(rscratch1, 0));
6404   }
6405 #else
6406   if (src2.is_lval()) {
6407     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
6408   } else {
6409     cmpl(src1, as_Address(src2));
6410   }
6411 #endif // _LP64
6412 }
6413 
6414 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
6415   assert(src2.is_lval(), "not a mem-mem compare");
6416 #ifdef _LP64
6417   // moves src2's literal address
6418   movptr(rscratch1, src2);
6419   Assembler::cmpq(src1, rscratch1);
6420 #else
6421   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
6422 #endif // _LP64
6423 }
6424 
6425 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
6426   if (reachable(adr)) {
6427     if (os::is_MP())
6428       lock();
6429     cmpxchgptr(reg, as_Address(adr));
6430   } else {
6431     lea(rscratch1, adr);
6432     if (os::is_MP())
6433       lock();
6434     cmpxchgptr(reg, Address(rscratch1, 0));
6435   }
6436 }
6437 
6438 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
6439   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
6440 }
6441 
6442 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
6443   if (reachable(src)) {
6444     Assembler::comisd(dst, as_Address(src));
6445   } else {
6446     lea(rscratch1, src);
6447     Assembler::comisd(dst, Address(rscratch1, 0));
6448   }
6449 }
6450 
6451 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
6452   if (reachable(src)) {
6453     Assembler::comiss(dst, as_Address(src));
6454   } else {
6455     lea(rscratch1, src);
6456     Assembler::comiss(dst, Address(rscratch1, 0));
6457   }
6458 }
6459 
6460 
6461 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
6462   Condition negated_cond = negate_condition(cond);
6463   Label L;
6464   jcc(negated_cond, L);
6465   atomic_incl(counter_addr);
6466   bind(L);
6467 }
6468 
6469 int MacroAssembler::corrected_idivl(Register reg) {
6470   // Full implementation of Java idiv and irem; checks for
6471   // special case as described in JVM spec., p.243 & p.271.
6472   // The function returns the (pc) offset of the idivl
6473   // instruction - may be needed for implicit exceptions.
6474   //
6475   //         normal case                           special case
6476   //
6477   // input : rax,: dividend                         min_int
6478   //         reg: divisor   (may not be rax,/rdx)   -1
6479   //
6480   // output: rax,: quotient  (= rax, idiv reg)       min_int
6481   //         rdx: remainder (= rax, irem reg)       0
6482   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
6483   const int min_int = 0x80000000;
6484   Label normal_case, special_case;
6485 
6486   // check for special case
6487   cmpl(rax, min_int);
6488   jcc(Assembler::notEqual, normal_case);
6489   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
6490   cmpl(reg, -1);
6491   jcc(Assembler::equal, special_case);
6492 
6493   // handle normal case
6494   bind(normal_case);
6495   cdql();
6496   int idivl_offset = offset();
6497   idivl(reg);
6498 
6499   // normal and special case exit
6500   bind(special_case);
6501 
6502   return idivl_offset;
6503 }
6504 
6505 
6506 
6507 void MacroAssembler::decrementl(Register reg, int value) {
6508   if (value == min_jint) {subl(reg, value) ; return; }
6509   if (value <  0) { incrementl(reg, -value); return; }
6510   if (value == 0) {                        ; return; }
6511   if (value == 1 && UseIncDec) { decl(reg) ; return; }
6512   /* else */      { subl(reg, value)       ; return; }
6513 }
6514 
6515 void MacroAssembler::decrementl(Address dst, int value) {
6516   if (value == min_jint) {subl(dst, value) ; return; }
6517   if (value <  0) { incrementl(dst, -value); return; }
6518   if (value == 0) {                        ; return; }
6519   if (value == 1 && UseIncDec) { decl(dst) ; return; }
6520   /* else */      { subl(dst, value)       ; return; }
6521 }
6522 
6523 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
6524   assert (shift_value > 0, "illegal shift value");
6525   Label _is_positive;
6526   testl (reg, reg);
6527   jcc (Assembler::positive, _is_positive);
6528   int offset = (1 << shift_value) - 1 ;
6529 
6530   if (offset == 1) {
6531     incrementl(reg);
6532   } else {
6533     addl(reg, offset);
6534   }
6535 
6536   bind (_is_positive);
6537   sarl(reg, shift_value);
6538 }
6539 
6540 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
6541   if (reachable(src)) {
6542     Assembler::divsd(dst, as_Address(src));
6543   } else {
6544     lea(rscratch1, src);
6545     Assembler::divsd(dst, Address(rscratch1, 0));
6546   }
6547 }
6548 
6549 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
6550   if (reachable(src)) {
6551     Assembler::divss(dst, as_Address(src));
6552   } else {
6553     lea(rscratch1, src);
6554     Assembler::divss(dst, Address(rscratch1, 0));
6555   }
6556 }
6557 
6558 // !defined(COMPILER2) is because of stupid core builds
6559 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
6560 void MacroAssembler::empty_FPU_stack() {
6561   if (VM_Version::supports_mmx()) {
6562     emms();
6563   } else {
6564     for (int i = 8; i-- > 0; ) ffree(i);
6565   }
6566 }
6567 #endif // !LP64 || C1 || !C2
6568 
6569 
6570 // Defines obj, preserves var_size_in_bytes
6571 void MacroAssembler::eden_allocate(Register obj,
6572                                    Register var_size_in_bytes,
6573                                    int con_size_in_bytes,
6574                                    Register t1,
6575                                    Label& slow_case) {
6576   assert(obj == rax, "obj must be in rax, for cmpxchg");
6577   assert_different_registers(obj, var_size_in_bytes, t1);
6578   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
6579     jmp(slow_case);
6580   } else {
6581     Register end = t1;
6582     Label retry;
6583     bind(retry);
6584     ExternalAddress heap_top((address) Universe::heap()->top_addr());
6585     movptr(obj, heap_top);
6586     if (var_size_in_bytes == noreg) {
6587       lea(end, Address(obj, con_size_in_bytes));
6588     } else {
6589       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
6590     }
6591     // if end < obj then we wrapped around => object too long => slow case
6592     cmpptr(end, obj);
6593     jcc(Assembler::below, slow_case);
6594     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
6595     jcc(Assembler::above, slow_case);
6596     // Compare obj with the top addr, and if still equal, store the new top addr in
6597     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
6598     // it otherwise. Use lock prefix for atomicity on MPs.
6599     locked_cmpxchgptr(end, heap_top);
6600     jcc(Assembler::notEqual, retry);
6601   }
6602 }
6603 
6604 void MacroAssembler::enter() {
6605   push(rbp);
6606   mov(rbp, rsp);
6607 }
6608 
6609 void MacroAssembler::fcmp(Register tmp) {
6610   fcmp(tmp, 1, true, true);
6611 }
6612 
6613 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
6614   assert(!pop_right || pop_left, "usage error");
6615   if (VM_Version::supports_cmov()) {
6616     assert(tmp == noreg, "unneeded temp");
6617     if (pop_left) {
6618       fucomip(index);
6619     } else {
6620       fucomi(index);
6621     }
6622     if (pop_right) {
6623       fpop();
6624     }
6625   } else {
6626     assert(tmp != noreg, "need temp");
6627     if (pop_left) {
6628       if (pop_right) {
6629         fcompp();
6630       } else {
6631         fcomp(index);
6632       }
6633     } else {
6634       fcom(index);
6635     }
6636     // convert FPU condition into eflags condition via rax,
6637     save_rax(tmp);
6638     fwait(); fnstsw_ax();
6639     sahf();
6640     restore_rax(tmp);
6641   }
6642   // condition codes set as follows:
6643   //
6644   // CF (corresponds to C0) if x < y
6645   // PF (corresponds to C2) if unordered
6646   // ZF (corresponds to C3) if x = y
6647 }
6648 
6649 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
6650   fcmp2int(dst, unordered_is_less, 1, true, true);
6651 }
6652 
6653 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
6654   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
6655   Label L;
6656   if (unordered_is_less) {
6657     movl(dst, -1);
6658     jcc(Assembler::parity, L);
6659     jcc(Assembler::below , L);
6660     movl(dst, 0);
6661     jcc(Assembler::equal , L);
6662     increment(dst);
6663   } else { // unordered is greater
6664     movl(dst, 1);
6665     jcc(Assembler::parity, L);
6666     jcc(Assembler::above , L);
6667     movl(dst, 0);
6668     jcc(Assembler::equal , L);
6669     decrementl(dst);
6670   }
6671   bind(L);
6672 }
6673 
6674 void MacroAssembler::fld_d(AddressLiteral src) {
6675   fld_d(as_Address(src));
6676 }
6677 
6678 void MacroAssembler::fld_s(AddressLiteral src) {
6679   fld_s(as_Address(src));
6680 }
6681 
6682 void MacroAssembler::fld_x(AddressLiteral src) {
6683   Assembler::fld_x(as_Address(src));
6684 }
6685 
6686 void MacroAssembler::fldcw(AddressLiteral src) {
6687   Assembler::fldcw(as_Address(src));
6688 }
6689 
6690 void MacroAssembler::fpop() {
6691   ffree();
6692   fincstp();
6693 }
6694 
6695 void MacroAssembler::fremr(Register tmp) {
6696   save_rax(tmp);
6697   { Label L;
6698     bind(L);
6699     fprem();
6700     fwait(); fnstsw_ax();
6701 #ifdef _LP64
6702     testl(rax, 0x400);
6703     jcc(Assembler::notEqual, L);
6704 #else
6705     sahf();
6706     jcc(Assembler::parity, L);
6707 #endif // _LP64
6708   }
6709   restore_rax(tmp);
6710   // Result is in ST0.
6711   // Note: fxch & fpop to get rid of ST1
6712   // (otherwise FPU stack could overflow eventually)
6713   fxch(1);
6714   fpop();
6715 }
6716 
6717 
6718 void MacroAssembler::incrementl(AddressLiteral dst) {
6719   if (reachable(dst)) {
6720     incrementl(as_Address(dst));
6721   } else {
6722     lea(rscratch1, dst);
6723     incrementl(Address(rscratch1, 0));
6724   }
6725 }
6726 
6727 void MacroAssembler::incrementl(ArrayAddress dst) {
6728   incrementl(as_Address(dst));
6729 }
6730 
6731 void MacroAssembler::incrementl(Register reg, int value) {
6732   if (value == min_jint) {addl(reg, value) ; return; }
6733   if (value <  0) { decrementl(reg, -value); return; }
6734   if (value == 0) {                        ; return; }
6735   if (value == 1 && UseIncDec) { incl(reg) ; return; }
6736   /* else */      { addl(reg, value)       ; return; }
6737 }
6738 
6739 void MacroAssembler::incrementl(Address dst, int value) {
6740   if (value == min_jint) {addl(dst, value) ; return; }
6741   if (value <  0) { decrementl(dst, -value); return; }
6742   if (value == 0) {                        ; return; }
6743   if (value == 1 && UseIncDec) { incl(dst) ; return; }
6744   /* else */      { addl(dst, value)       ; return; }
6745 }
6746 
6747 void MacroAssembler::jump(AddressLiteral dst) {
6748   if (reachable(dst)) {
6749     jmp_literal(dst.target(), dst.rspec());
6750   } else {
6751     lea(rscratch1, dst);
6752     jmp(rscratch1);
6753   }
6754 }
6755 
6756 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
6757   if (reachable(dst)) {
6758     InstructionMark im(this);
6759     relocate(dst.reloc());
6760     const int short_size = 2;
6761     const int long_size = 6;
6762     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
6763     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
6764       // 0111 tttn #8-bit disp
6765       emit_byte(0x70 | cc);
6766       emit_byte((offs - short_size) & 0xFF);
6767     } else {
6768       // 0000 1111 1000 tttn #32-bit disp
6769       emit_byte(0x0F);
6770       emit_byte(0x80 | cc);
6771       emit_long(offs - long_size);
6772     }
6773   } else {
6774 #ifdef ASSERT
6775     warning("reversing conditional branch");
6776 #endif /* ASSERT */
6777     Label skip;
6778     jccb(reverse[cc], skip);
6779     lea(rscratch1, dst);
6780     Assembler::jmp(rscratch1);
6781     bind(skip);
6782   }
6783 }
6784 
6785 void MacroAssembler::ldmxcsr(AddressLiteral src) {
6786   if (reachable(src)) {
6787     Assembler::ldmxcsr(as_Address(src));
6788   } else {
6789     lea(rscratch1, src);
6790     Assembler::ldmxcsr(Address(rscratch1, 0));
6791   }
6792 }
6793 
6794 int MacroAssembler::load_signed_byte(Register dst, Address src) {
6795   int off;
6796   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
6797     off = offset();
6798     movsbl(dst, src); // movsxb
6799   } else {
6800     off = load_unsigned_byte(dst, src);
6801     shll(dst, 24);
6802     sarl(dst, 24);
6803   }
6804   return off;
6805 }
6806 
6807 // Note: load_signed_short used to be called load_signed_word.
6808 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
6809 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
6810 // The term "word" in HotSpot means a 32- or 64-bit machine word.
6811 int MacroAssembler::load_signed_short(Register dst, Address src) {
6812   int off;
6813   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
6814     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
6815     // version but this is what 64bit has always done. This seems to imply
6816     // that users are only using 32bits worth.
6817     off = offset();
6818     movswl(dst, src); // movsxw
6819   } else {
6820     off = load_unsigned_short(dst, src);
6821     shll(dst, 16);
6822     sarl(dst, 16);
6823   }
6824   return off;
6825 }
6826 
6827 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
6828   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
6829   // and "3.9 Partial Register Penalties", p. 22).
6830   int off;
6831   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
6832     off = offset();
6833     movzbl(dst, src); // movzxb
6834   } else {
6835     xorl(dst, dst);
6836     off = offset();
6837     movb(dst, src);
6838   }
6839   return off;
6840 }
6841 
6842 // Note: load_unsigned_short used to be called load_unsigned_word.
6843 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
6844   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
6845   // and "3.9 Partial Register Penalties", p. 22).
6846   int off;
6847   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
6848     off = offset();
6849     movzwl(dst, src); // movzxw
6850   } else {
6851     xorl(dst, dst);
6852     off = offset();
6853     movw(dst, src);
6854   }
6855   return off;
6856 }
6857 
6858 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
6859   switch (size_in_bytes) {
6860 #ifndef _LP64
6861   case  8:
6862     assert(dst2 != noreg, "second dest register required");
6863     movl(dst,  src);
6864     movl(dst2, src.plus_disp(BytesPerInt));
6865     break;
6866 #else
6867   case  8:  movq(dst, src); break;
6868 #endif
6869   case  4:  movl(dst, src); break;
6870   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
6871   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
6872   default:  ShouldNotReachHere();
6873   }
6874 }
6875 
6876 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
6877   switch (size_in_bytes) {
6878 #ifndef _LP64
6879   case  8:
6880     assert(src2 != noreg, "second source register required");
6881     movl(dst,                        src);
6882     movl(dst.plus_disp(BytesPerInt), src2);
6883     break;
6884 #else
6885   case  8:  movq(dst, src); break;
6886 #endif
6887   case  4:  movl(dst, src); break;
6888   case  2:  movw(dst, src); break;
6889   case  1:  movb(dst, src); break;
6890   default:  ShouldNotReachHere();
6891   }
6892 }
6893 
6894 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
6895   if (reachable(dst)) {
6896     movl(as_Address(dst), src);
6897   } else {
6898     lea(rscratch1, dst);
6899     movl(Address(rscratch1, 0), src);
6900   }
6901 }
6902 
6903 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
6904   if (reachable(src)) {
6905     movl(dst, as_Address(src));
6906   } else {
6907     lea(rscratch1, src);
6908     movl(dst, Address(rscratch1, 0));
6909   }
6910 }
6911 
6912 // C++ bool manipulation
6913 
6914 void MacroAssembler::movbool(Register dst, Address src) {
6915   if(sizeof(bool) == 1)
6916     movb(dst, src);
6917   else if(sizeof(bool) == 2)
6918     movw(dst, src);
6919   else if(sizeof(bool) == 4)
6920     movl(dst, src);
6921   else
6922     // unsupported
6923     ShouldNotReachHere();
6924 }
6925 
6926 void MacroAssembler::movbool(Address dst, bool boolconst) {
6927   if(sizeof(bool) == 1)
6928     movb(dst, (int) boolconst);
6929   else if(sizeof(bool) == 2)
6930     movw(dst, (int) boolconst);
6931   else if(sizeof(bool) == 4)
6932     movl(dst, (int) boolconst);
6933   else
6934     // unsupported
6935     ShouldNotReachHere();
6936 }
6937 
6938 void MacroAssembler::movbool(Address dst, Register src) {
6939   if(sizeof(bool) == 1)
6940     movb(dst, src);
6941   else if(sizeof(bool) == 2)
6942     movw(dst, src);
6943   else if(sizeof(bool) == 4)
6944     movl(dst, src);
6945   else
6946     // unsupported
6947     ShouldNotReachHere();
6948 }
6949 
6950 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
6951   movb(as_Address(dst), src);
6952 }
6953 
6954 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
6955   if (reachable(src)) {
6956     if (UseXmmLoadAndClearUpper) {
6957       movsd (dst, as_Address(src));
6958     } else {
6959       movlpd(dst, as_Address(src));
6960     }
6961   } else {
6962     lea(rscratch1, src);
6963     if (UseXmmLoadAndClearUpper) {
6964       movsd (dst, Address(rscratch1, 0));
6965     } else {
6966       movlpd(dst, Address(rscratch1, 0));
6967     }
6968   }
6969 }
6970 
6971 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
6972   if (reachable(src)) {
6973     movss(dst, as_Address(src));
6974   } else {
6975     lea(rscratch1, src);
6976     movss(dst, Address(rscratch1, 0));
6977   }
6978 }
6979 
6980 void MacroAssembler::movptr(Register dst, Register src) {
6981   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
6982 }
6983 
6984 void MacroAssembler::movptr(Register dst, Address src) {
6985   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
6986 }
6987 
6988 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
6989 void MacroAssembler::movptr(Register dst, intptr_t src) {
6990   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
6991 }
6992 
6993 void MacroAssembler::movptr(Address dst, Register src) {
6994   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
6995 }
6996 
6997 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
6998   if (reachable(src)) {
6999     Assembler::movsd(dst, as_Address(src));
7000   } else {
7001     lea(rscratch1, src);
7002     Assembler::movsd(dst, Address(rscratch1, 0));
7003   }
7004 }
7005 
7006 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
7007   if (reachable(src)) {
7008     Assembler::movss(dst, as_Address(src));
7009   } else {
7010     lea(rscratch1, src);
7011     Assembler::movss(dst, Address(rscratch1, 0));
7012   }
7013 }
7014 
7015 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
7016   if (reachable(src)) {
7017     Assembler::mulsd(dst, as_Address(src));
7018   } else {
7019     lea(rscratch1, src);
7020     Assembler::mulsd(dst, Address(rscratch1, 0));
7021   }
7022 }
7023 
7024 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
7025   if (reachable(src)) {
7026     Assembler::mulss(dst, as_Address(src));
7027   } else {
7028     lea(rscratch1, src);
7029     Assembler::mulss(dst, Address(rscratch1, 0));
7030   }
7031 }
7032 
7033 void MacroAssembler::null_check(Register reg, int offset) {
7034   if (needs_explicit_null_check(offset)) {
7035     // provoke OS NULL exception if reg = NULL by
7036     // accessing M[reg] w/o changing any (non-CC) registers
7037     // NOTE: cmpl is plenty here to provoke a segv
7038     cmpptr(rax, Address(reg, 0));
7039     // Note: should probably use testl(rax, Address(reg, 0));
7040     //       may be shorter code (however, this version of
7041     //       testl needs to be implemented first)
7042   } else {
7043     // nothing to do, (later) access of M[reg + offset]
7044     // will provoke OS NULL exception if reg = NULL
7045   }
7046 }
7047 
7048 void MacroAssembler::os_breakpoint() {
7049   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
7050   // (e.g., MSVC can't call ps() otherwise)
7051   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
7052 }
7053 
7054 void MacroAssembler::pop_CPU_state() {
7055   pop_FPU_state();
7056   pop_IU_state();
7057 }
7058 
7059 void MacroAssembler::pop_FPU_state() {
7060   NOT_LP64(frstor(Address(rsp, 0));)
7061   LP64_ONLY(fxrstor(Address(rsp, 0));)
7062   addptr(rsp, FPUStateSizeInWords * wordSize);
7063 }
7064 
7065 void MacroAssembler::pop_IU_state() {
7066   popa();
7067   LP64_ONLY(addq(rsp, 8));
7068   popf();
7069 }
7070 
7071 // Save Integer and Float state
7072 // Warning: Stack must be 16 byte aligned (64bit)
7073 void MacroAssembler::push_CPU_state() {
7074   push_IU_state();
7075   push_FPU_state();
7076 }
7077 
7078 void MacroAssembler::push_FPU_state() {
7079   subptr(rsp, FPUStateSizeInWords * wordSize);
7080 #ifndef _LP64
7081   fnsave(Address(rsp, 0));
7082   fwait();
7083 #else
7084   fxsave(Address(rsp, 0));
7085 #endif // LP64
7086 }
7087 
7088 void MacroAssembler::push_IU_state() {
7089   // Push flags first because pusha kills them
7090   pushf();
7091   // Make sure rsp stays 16-byte aligned
7092   LP64_ONLY(subq(rsp, 8));
7093   pusha();
7094 }
7095 
7096 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
7097   // determine java_thread register
7098   if (!java_thread->is_valid()) {
7099     java_thread = rdi;
7100     get_thread(java_thread);
7101   }
7102   // we must set sp to zero to clear frame
7103   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
7104   if (clear_fp) {
7105     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
7106   }
7107 
7108   if (clear_pc)
7109     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
7110 
7111 }
7112 
7113 void MacroAssembler::restore_rax(Register tmp) {
7114   if (tmp == noreg) pop(rax);
7115   else if (tmp != rax) mov(rax, tmp);
7116 }
7117 
7118 void MacroAssembler::round_to(Register reg, int modulus) {
7119   addptr(reg, modulus - 1);
7120   andptr(reg, -modulus);
7121 }
7122 
7123 void MacroAssembler::save_rax(Register tmp) {
7124   if (tmp == noreg) push(rax);
7125   else if (tmp != rax) mov(tmp, rax);
7126 }
7127 
7128 // Write serialization page so VM thread can do a pseudo remote membar.
7129 // We use the current thread pointer to calculate a thread specific
7130 // offset to write to within the page. This minimizes bus traffic
7131 // due to cache line collision.
7132 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
7133   movl(tmp, thread);
7134   shrl(tmp, os::get_serialize_page_shift_count());
7135   andl(tmp, (os::vm_page_size() - sizeof(int)));
7136 
7137   Address index(noreg, tmp, Address::times_1);
7138   ExternalAddress page(os::get_memory_serialize_page());
7139 
7140   // Size of store must match masking code above
7141   movl(as_Address(ArrayAddress(page, index)), tmp);
7142 }
7143 
7144 // Calls to C land
7145 //
7146 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
7147 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
7148 // has to be reset to 0. This is required to allow proper stack traversal.
7149 void MacroAssembler::set_last_Java_frame(Register java_thread,
7150                                          Register last_java_sp,
7151                                          Register last_java_fp,
7152                                          address  last_java_pc) {
7153   // determine java_thread register
7154   if (!java_thread->is_valid()) {
7155     java_thread = rdi;
7156     get_thread(java_thread);
7157   }
7158   // determine last_java_sp register
7159   if (!last_java_sp->is_valid()) {
7160     last_java_sp = rsp;
7161   }
7162 
7163   // last_java_fp is optional
7164 
7165   if (last_java_fp->is_valid()) {
7166     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
7167   }
7168 
7169   // last_java_pc is optional
7170 
7171   if (last_java_pc != NULL) {
7172     lea(Address(java_thread,
7173                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
7174         InternalAddress(last_java_pc));
7175 
7176   }
7177   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
7178 }
7179 
7180 void MacroAssembler::shlptr(Register dst, int imm8) {
7181   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
7182 }
7183 
7184 void MacroAssembler::shrptr(Register dst, int imm8) {
7185   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
7186 }
7187 
7188 void MacroAssembler::sign_extend_byte(Register reg) {
7189   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
7190     movsbl(reg, reg); // movsxb
7191   } else {
7192     shll(reg, 24);
7193     sarl(reg, 24);
7194   }
7195 }
7196 
7197 void MacroAssembler::sign_extend_short(Register reg) {
7198   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
7199     movswl(reg, reg); // movsxw
7200   } else {
7201     shll(reg, 16);
7202     sarl(reg, 16);
7203   }
7204 }
7205 
7206 void MacroAssembler::testl(Register dst, AddressLiteral src) {
7207   assert(reachable(src), "Address should be reachable");
7208   testl(dst, as_Address(src));
7209 }
7210 
7211 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
7212   if (reachable(src)) {
7213     Assembler::sqrtsd(dst, as_Address(src));
7214   } else {
7215     lea(rscratch1, src);
7216     Assembler::sqrtsd(dst, Address(rscratch1, 0));
7217   }
7218 }
7219 
7220 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
7221   if (reachable(src)) {
7222     Assembler::sqrtss(dst, as_Address(src));
7223   } else {
7224     lea(rscratch1, src);
7225     Assembler::sqrtss(dst, Address(rscratch1, 0));
7226   }
7227 }
7228 
7229 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
7230   if (reachable(src)) {
7231     Assembler::subsd(dst, as_Address(src));
7232   } else {
7233     lea(rscratch1, src);
7234     Assembler::subsd(dst, Address(rscratch1, 0));
7235   }
7236 }
7237 
7238 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
7239   if (reachable(src)) {
7240     Assembler::subss(dst, as_Address(src));
7241   } else {
7242     lea(rscratch1, src);
7243     Assembler::subss(dst, Address(rscratch1, 0));
7244   }
7245 }
7246 
7247 //////////////////////////////////////////////////////////////////////////////////
7248 #ifndef SERIALGC
7249 
7250 void MacroAssembler::g1_write_barrier_pre(Register obj,
7251                                           Register pre_val,
7252                                           Register thread,
7253                                           Register tmp,
7254                                           bool tosca_live,
7255                                           bool expand_call) {
7256 
7257   // If expand_call is true then we expand the call_VM_leaf macro
7258   // directly to skip generating the check by
7259   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
7260 
7261 #ifdef _LP64
7262   assert(thread == r15_thread, "must be");
7263 #endif // _LP64
7264 
7265   Label done;
7266   Label runtime;
7267 
7268   assert(pre_val != noreg, "check this code");
7269 
7270   if (obj != noreg) {
7271     assert_different_registers(obj, pre_val, tmp);
7272     assert(pre_val != rax, "check this code");
7273   }
7274 
7275   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
7276                                        PtrQueue::byte_offset_of_active()));
7277   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
7278                                        PtrQueue::byte_offset_of_index()));
7279   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
7280                                        PtrQueue::byte_offset_of_buf()));
7281 
7282 
7283   // Is marking active?
7284   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
7285     cmpl(in_progress, 0);
7286   } else {
7287     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
7288     cmpb(in_progress, 0);
7289   }
7290   jcc(Assembler::equal, done);
7291 
7292   // Do we need to load the previous value?
7293   if (obj != noreg) {
7294     load_heap_oop(pre_val, Address(obj, 0));
7295   }
7296 
7297   // Is the previous value null?
7298   cmpptr(pre_val, (int32_t) NULL_WORD);
7299   jcc(Assembler::equal, done);
7300 
7301   // Can we store original value in the thread's buffer?
7302   // Is index == 0?
7303   // (The index field is typed as size_t.)
7304 
7305   movptr(tmp, index);                   // tmp := *index_adr
7306   cmpptr(tmp, 0);                       // tmp == 0?
7307   jcc(Assembler::equal, runtime);       // If yes, goto runtime
7308 
7309   subptr(tmp, wordSize);                // tmp := tmp - wordSize
7310   movptr(index, tmp);                   // *index_adr := tmp
7311   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
7312 
7313   // Record the previous value
7314   movptr(Address(tmp, 0), pre_val);
7315   jmp(done);
7316 
7317   bind(runtime);
7318   // save the live input values
7319   if(tosca_live) push(rax);
7320 
7321   if (obj != noreg && obj != rax)
7322     push(obj);
7323 
7324   if (pre_val != rax)
7325     push(pre_val);
7326 
7327   // Calling the runtime using the regular call_VM_leaf mechanism generates
7328   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
7329   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
7330   //
7331   // If we care generating the pre-barrier without a frame (e.g. in the
7332   // intrinsified Reference.get() routine) then ebp might be pointing to
7333   // the caller frame and so this check will most likely fail at runtime.
7334   //
7335   // Expanding the call directly bypasses the generation of the check.
7336   // So when we do not have have a full interpreter frame on the stack
7337   // expand_call should be passed true.
7338 
7339   NOT_LP64( push(thread); )
7340 
7341   if (expand_call) {
7342     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
7343     pass_arg1(this, thread);
7344     pass_arg0(this, pre_val);
7345     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
7346   } else {
7347     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
7348   }
7349 
7350   NOT_LP64( pop(thread); )
7351 
7352   // save the live input values
7353   if (pre_val != rax)
7354     pop(pre_val);
7355 
7356   if (obj != noreg && obj != rax)
7357     pop(obj);
7358 
7359   if(tosca_live) pop(rax);
7360 
7361   bind(done);
7362 }
7363 
7364 void MacroAssembler::g1_write_barrier_post(Register store_addr,
7365                                            Register new_val,
7366                                            Register thread,
7367                                            Register tmp,
7368                                            Register tmp2) {
7369 #ifdef _LP64
7370   assert(thread == r15_thread, "must be");
7371 #endif // _LP64
7372 
7373   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
7374                                        PtrQueue::byte_offset_of_index()));
7375   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
7376                                        PtrQueue::byte_offset_of_buf()));
7377 
7378   BarrierSet* bs = Universe::heap()->barrier_set();
7379   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
7380   Label done;
7381   Label runtime;
7382 
7383   // Does store cross heap regions?
7384 
7385   movptr(tmp, store_addr);
7386   xorptr(tmp, new_val);
7387   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
7388   jcc(Assembler::equal, done);
7389 
7390   // crosses regions, storing NULL?
7391 
7392   cmpptr(new_val, (int32_t) NULL_WORD);
7393   jcc(Assembler::equal, done);
7394 
7395   // storing region crossing non-NULL, is card already dirty?
7396 
7397   ExternalAddress cardtable((address) ct->byte_map_base);
7398   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
7399 #ifdef _LP64
7400   const Register card_addr = tmp;
7401 
7402   movq(card_addr, store_addr);
7403   shrq(card_addr, CardTableModRefBS::card_shift);
7404 
7405   lea(tmp2, cardtable);
7406 
7407   // get the address of the card
7408   addq(card_addr, tmp2);
7409 #else
7410   const Register card_index = tmp;
7411 
7412   movl(card_index, store_addr);
7413   shrl(card_index, CardTableModRefBS::card_shift);
7414 
7415   Address index(noreg, card_index, Address::times_1);
7416   const Register card_addr = tmp;
7417   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
7418 #endif
7419   cmpb(Address(card_addr, 0), 0);
7420   jcc(Assembler::equal, done);
7421 
7422   // storing a region crossing, non-NULL oop, card is clean.
7423   // dirty card and log.
7424 
7425   movb(Address(card_addr, 0), 0);
7426 
7427   cmpl(queue_index, 0);
7428   jcc(Assembler::equal, runtime);
7429   subl(queue_index, wordSize);
7430   movptr(tmp2, buffer);
7431 #ifdef _LP64
7432   movslq(rscratch1, queue_index);
7433   addq(tmp2, rscratch1);
7434   movq(Address(tmp2, 0), card_addr);
7435 #else
7436   addl(tmp2, queue_index);
7437   movl(Address(tmp2, 0), card_index);
7438 #endif
7439   jmp(done);
7440 
7441   bind(runtime);
7442   // save the live input values
7443   push(store_addr);
7444   push(new_val);
7445 #ifdef _LP64
7446   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
7447 #else
7448   push(thread);
7449   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
7450   pop(thread);
7451 #endif
7452   pop(new_val);
7453   pop(store_addr);
7454 
7455   bind(done);
7456 }
7457 
7458 #endif // SERIALGC
7459 //////////////////////////////////////////////////////////////////////////////////
7460 
7461 
7462 void MacroAssembler::store_check(Register obj) {
7463   // Does a store check for the oop in register obj. The content of
7464   // register obj is destroyed afterwards.
7465   store_check_part_1(obj);
7466   store_check_part_2(obj);
7467 }
7468 
7469 void MacroAssembler::store_check(Register obj, Address dst) {
7470   store_check(obj);
7471 }
7472 
7473 
7474 // split the store check operation so that other instructions can be scheduled inbetween
7475 void MacroAssembler::store_check_part_1(Register obj) {
7476   BarrierSet* bs = Universe::heap()->barrier_set();
7477   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
7478   shrptr(obj, CardTableModRefBS::card_shift);
7479 }
7480 
7481 void MacroAssembler::store_check_part_2(Register obj) {
7482   BarrierSet* bs = Universe::heap()->barrier_set();
7483   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
7484   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
7485   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
7486 
7487   // The calculation for byte_map_base is as follows:
7488   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
7489   // So this essentially converts an address to a displacement and
7490   // it will never need to be relocated. On 64bit however the value may be too
7491   // large for a 32bit displacement
7492 
7493   intptr_t disp = (intptr_t) ct->byte_map_base;
7494   if (is_simm32(disp)) {
7495     Address cardtable(noreg, obj, Address::times_1, disp);
7496     movb(cardtable, 0);
7497   } else {
7498     // By doing it as an ExternalAddress disp could be converted to a rip-relative
7499     // displacement and done in a single instruction given favorable mapping and
7500     // a smarter version of as_Address. Worst case it is two instructions which
7501     // is no worse off then loading disp into a register and doing as a simple
7502     // Address() as above.
7503     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
7504     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
7505     // in some cases we'll get a single instruction version.
7506 
7507     ExternalAddress cardtable((address)disp);
7508     Address index(noreg, obj, Address::times_1);
7509     movb(as_Address(ArrayAddress(cardtable, index)), 0);
7510   }
7511 }
7512 
7513 void MacroAssembler::subptr(Register dst, int32_t imm32) {
7514   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
7515 }
7516 
7517 void MacroAssembler::subptr(Register dst, Register src) {
7518   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
7519 }
7520 
7521 // C++ bool manipulation
7522 void MacroAssembler::testbool(Register dst) {
7523   if(sizeof(bool) == 1)
7524     testb(dst, 0xff);
7525   else if(sizeof(bool) == 2) {
7526     // testw implementation needed for two byte bools
7527     ShouldNotReachHere();
7528   } else if(sizeof(bool) == 4)
7529     testl(dst, dst);
7530   else
7531     // unsupported
7532     ShouldNotReachHere();
7533 }
7534 
7535 void MacroAssembler::testptr(Register dst, Register src) {
7536   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
7537 }
7538 
7539 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
7540 void MacroAssembler::tlab_allocate(Register obj,
7541                                    Register var_size_in_bytes,
7542                                    int con_size_in_bytes,
7543                                    Register t1,
7544                                    Register t2,
7545                                    Label& slow_case) {
7546   assert_different_registers(obj, t1, t2);
7547   assert_different_registers(obj, var_size_in_bytes, t1);
7548   Register end = t2;
7549   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
7550 
7551   verify_tlab();
7552 
7553   NOT_LP64(get_thread(thread));
7554 
7555   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
7556   if (var_size_in_bytes == noreg) {
7557     lea(end, Address(obj, con_size_in_bytes));
7558   } else {
7559     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
7560   }
7561   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
7562   jcc(Assembler::above, slow_case);
7563 
7564   // update the tlab top pointer
7565   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
7566 
7567   // recover var_size_in_bytes if necessary
7568   if (var_size_in_bytes == end) {
7569     subptr(var_size_in_bytes, obj);
7570   }
7571   verify_tlab();
7572 }
7573 
7574 // Preserves rbx, and rdx.
7575 Register MacroAssembler::tlab_refill(Label& retry,
7576                                      Label& try_eden,
7577                                      Label& slow_case) {
7578   Register top = rax;
7579   Register t1  = rcx;
7580   Register t2  = rsi;
7581   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
7582   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
7583   Label do_refill, discard_tlab;
7584 
7585   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
7586     // No allocation in the shared eden.
7587     jmp(slow_case);
7588   }
7589 
7590   NOT_LP64(get_thread(thread_reg));
7591 
7592   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
7593   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
7594 
7595   // calculate amount of free space
7596   subptr(t1, top);
7597   shrptr(t1, LogHeapWordSize);
7598 
7599   // Retain tlab and allocate object in shared space if
7600   // the amount free in the tlab is too large to discard.
7601   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
7602   jcc(Assembler::lessEqual, discard_tlab);
7603 
7604   // Retain
7605   // %%% yuck as movptr...
7606   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
7607   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
7608   if (TLABStats) {
7609     // increment number of slow_allocations
7610     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
7611   }
7612   jmp(try_eden);
7613 
7614   bind(discard_tlab);
7615   if (TLABStats) {
7616     // increment number of refills
7617     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
7618     // accumulate wastage -- t1 is amount free in tlab
7619     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
7620   }
7621 
7622   // if tlab is currently allocated (top or end != null) then
7623   // fill [top, end + alignment_reserve) with array object
7624   testptr(top, top);
7625   jcc(Assembler::zero, do_refill);
7626 
7627   // set up the mark word
7628   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
7629   // set the length to the remaining space
7630   subptr(t1, typeArrayOopDesc::header_size(T_INT));
7631   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
7632   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
7633   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
7634   // set klass to intArrayKlass
7635   // dubious reloc why not an oop reloc?
7636   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
7637   // store klass last.  concurrent gcs assumes klass length is valid if
7638   // klass field is not null.
7639   store_klass(top, t1);
7640 
7641   movptr(t1, top);
7642   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
7643   incr_allocated_bytes(thread_reg, t1, 0);
7644 
7645   // refill the tlab with an eden allocation
7646   bind(do_refill);
7647   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
7648   shlptr(t1, LogHeapWordSize);
7649   // allocate new tlab, address returned in top
7650   eden_allocate(top, t1, 0, t2, slow_case);
7651 
7652   // Check that t1 was preserved in eden_allocate.
7653 #ifdef ASSERT
7654   if (UseTLAB) {
7655     Label ok;
7656     Register tsize = rsi;
7657     assert_different_registers(tsize, thread_reg, t1);
7658     push(tsize);
7659     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
7660     shlptr(tsize, LogHeapWordSize);
7661     cmpptr(t1, tsize);
7662     jcc(Assembler::equal, ok);
7663     stop("assert(t1 != tlab size)");
7664     should_not_reach_here();
7665 
7666     bind(ok);
7667     pop(tsize);
7668   }
7669 #endif
7670   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
7671   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
7672   addptr(top, t1);
7673   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
7674   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
7675   verify_tlab();
7676   jmp(retry);
7677 
7678   return thread_reg; // for use by caller
7679 }
7680 
7681 void MacroAssembler::incr_allocated_bytes(Register thread,
7682                                           Register var_size_in_bytes,
7683                                           int con_size_in_bytes,
7684                                           Register t1) {
7685 #ifdef _LP64
7686   if (var_size_in_bytes->is_valid()) {
7687     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
7688   } else {
7689     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
7690   }
7691 #else
7692   if (!thread->is_valid()) {
7693     assert(t1->is_valid(), "need temp reg");
7694     thread = t1;
7695     get_thread(thread);
7696   }
7697 
7698   if (var_size_in_bytes->is_valid()) {
7699     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
7700   } else {
7701     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
7702   }
7703   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
7704 #endif
7705 }
7706 
7707 static const double     pi_4 =  0.7853981633974483;
7708 
7709 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
7710   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
7711   // was attempted in this code; unfortunately it appears that the
7712   // switch to 80-bit precision and back causes this to be
7713   // unprofitable compared with simply performing a runtime call if
7714   // the argument is out of the (-pi/4, pi/4) range.
7715 
7716   Register tmp = noreg;
7717   if (!VM_Version::supports_cmov()) {
7718     // fcmp needs a temporary so preserve rbx,
7719     tmp = rbx;
7720     push(tmp);
7721   }
7722 
7723   Label slow_case, done;
7724 
7725   ExternalAddress pi4_adr = (address)&pi_4;
7726   if (reachable(pi4_adr)) {
7727     // x ?<= pi/4
7728     fld_d(pi4_adr);
7729     fld_s(1);                // Stack:  X  PI/4  X
7730     fabs();                  // Stack: |X| PI/4  X
7731     fcmp(tmp);
7732     jcc(Assembler::above, slow_case);
7733 
7734     // fastest case: -pi/4 <= x <= pi/4
7735     switch(trig) {
7736     case 's':
7737       fsin();
7738       break;
7739     case 'c':
7740       fcos();
7741       break;
7742     case 't':
7743       ftan();
7744       break;
7745     default:
7746       assert(false, "bad intrinsic");
7747       break;
7748     }
7749     jmp(done);
7750   }
7751 
7752   // slow case: runtime call
7753   bind(slow_case);
7754   // Preserve registers across runtime call
7755   pusha();
7756   int incoming_argument_and_return_value_offset = -1;
7757   if (num_fpu_regs_in_use > 1) {
7758     // Must preserve all other FPU regs (could alternatively convert
7759     // SharedRuntime::dsin and dcos into assembly routines known not to trash
7760     // FPU state, but can not trust C compiler)
7761     NEEDS_CLEANUP;
7762     // NOTE that in this case we also push the incoming argument to
7763     // the stack and restore it later; we also use this stack slot to
7764     // hold the return value from dsin or dcos.
7765     for (int i = 0; i < num_fpu_regs_in_use; i++) {
7766       subptr(rsp, sizeof(jdouble));
7767       fstp_d(Address(rsp, 0));
7768     }
7769     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
7770     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
7771   }
7772   subptr(rsp, sizeof(jdouble));
7773   fstp_d(Address(rsp, 0));
7774 #ifdef _LP64
7775   movdbl(xmm0, Address(rsp, 0));
7776 #endif // _LP64
7777 
7778   // NOTE: we must not use call_VM_leaf here because that requires a
7779   // complete interpreter frame in debug mode -- same bug as 4387334
7780   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
7781   // do proper 64bit abi
7782 
7783   NEEDS_CLEANUP;
7784   // Need to add stack banging before this runtime call if it needs to
7785   // be taken; however, there is no generic stack banging routine at
7786   // the MacroAssembler level
7787   switch(trig) {
7788   case 's':
7789     {
7790       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
7791     }
7792     break;
7793   case 'c':
7794     {
7795       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
7796     }
7797     break;
7798   case 't':
7799     {
7800       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
7801     }
7802     break;
7803   default:
7804     assert(false, "bad intrinsic");
7805     break;
7806   }
7807 #ifdef _LP64
7808     movsd(Address(rsp, 0), xmm0);
7809     fld_d(Address(rsp, 0));
7810 #endif // _LP64
7811   addptr(rsp, sizeof(jdouble));
7812   if (num_fpu_regs_in_use > 1) {
7813     // Must save return value to stack and then restore entire FPU stack
7814     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
7815     for (int i = 0; i < num_fpu_regs_in_use; i++) {
7816       fld_d(Address(rsp, 0));
7817       addptr(rsp, sizeof(jdouble));
7818     }
7819   }
7820   popa();
7821 
7822   // Come here with result in F-TOS
7823   bind(done);
7824 
7825   if (tmp != noreg) {
7826     pop(tmp);
7827   }
7828 }
7829 
7830 
7831 // Look up the method for a megamorphic invokeinterface call.
7832 // The target method is determined by <intf_klass, itable_index>.
7833 // The receiver klass is in recv_klass.
7834 // On success, the result will be in method_result, and execution falls through.
7835 // On failure, execution transfers to the given label.
7836 void MacroAssembler::lookup_interface_method(Register recv_klass,
7837                                              Register intf_klass,
7838                                              RegisterOrConstant itable_index,
7839                                              Register method_result,
7840                                              Register scan_temp,
7841                                              Label& L_no_such_interface) {
7842   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
7843   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
7844          "caller must use same register for non-constant itable index as for method");
7845 
7846   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
7847   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
7848   int itentry_off = itableMethodEntry::method_offset_in_bytes();
7849   int scan_step   = itableOffsetEntry::size() * wordSize;
7850   int vte_size    = vtableEntry::size() * wordSize;
7851   Address::ScaleFactor times_vte_scale = Address::times_ptr;
7852   assert(vte_size == wordSize, "else adjust times_vte_scale");
7853 
7854   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
7855 
7856   // %%% Could store the aligned, prescaled offset in the klassoop.
7857   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
7858   if (HeapWordsPerLong > 1) {
7859     // Round up to align_object_offset boundary
7860     // see code for instanceKlass::start_of_itable!
7861     round_to(scan_temp, BytesPerLong);
7862   }
7863 
7864   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
7865   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
7866   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
7867 
7868   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
7869   //   if (scan->interface() == intf) {
7870   //     result = (klass + scan->offset() + itable_index);
7871   //   }
7872   // }
7873   Label search, found_method;
7874 
7875   for (int peel = 1; peel >= 0; peel--) {
7876     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
7877     cmpptr(intf_klass, method_result);
7878 
7879     if (peel) {
7880       jccb(Assembler::equal, found_method);
7881     } else {
7882       jccb(Assembler::notEqual, search);
7883       // (invert the test to fall through to found_method...)
7884     }
7885 
7886     if (!peel)  break;
7887 
7888     bind(search);
7889 
7890     // Check that the previous entry is non-null.  A null entry means that
7891     // the receiver class doesn't implement the interface, and wasn't the
7892     // same as when the caller was compiled.
7893     testptr(method_result, method_result);
7894     jcc(Assembler::zero, L_no_such_interface);
7895     addptr(scan_temp, scan_step);
7896   }
7897 
7898   bind(found_method);
7899 
7900   // Got a hit.
7901   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
7902   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
7903 }
7904 
7905 
7906 void MacroAssembler::check_klass_subtype(Register sub_klass,
7907                            Register super_klass,
7908                            Register temp_reg,
7909                            Label& L_success) {
7910   Label L_failure;
7911   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
7912   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
7913   bind(L_failure);
7914 }
7915 
7916 
7917 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
7918                                                    Register super_klass,
7919                                                    Register temp_reg,
7920                                                    Label* L_success,
7921                                                    Label* L_failure,
7922                                                    Label* L_slow_path,
7923                                         RegisterOrConstant super_check_offset) {
7924   assert_different_registers(sub_klass, super_klass, temp_reg);
7925   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
7926   if (super_check_offset.is_register()) {
7927     assert_different_registers(sub_klass, super_klass,
7928                                super_check_offset.as_register());
7929   } else if (must_load_sco) {
7930     assert(temp_reg != noreg, "supply either a temp or a register offset");
7931   }
7932 
7933   Label L_fallthrough;
7934   int label_nulls = 0;
7935   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
7936   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
7937   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
7938   assert(label_nulls <= 1, "at most one NULL in the batch");
7939 
7940   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
7941                    Klass::secondary_super_cache_offset_in_bytes());
7942   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
7943                     Klass::super_check_offset_offset_in_bytes());
7944   Address super_check_offset_addr(super_klass, sco_offset);
7945 
7946   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
7947   // range of a jccb.  If this routine grows larger, reconsider at
7948   // least some of these.
7949 #define local_jcc(assembler_cond, label)                                \
7950   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
7951   else                             jcc( assembler_cond, label) /*omit semi*/
7952 
7953   // Hacked jmp, which may only be used just before L_fallthrough.
7954 #define final_jmp(label)                                                \
7955   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
7956   else                            jmp(label)                /*omit semi*/
7957 
7958   // If the pointers are equal, we are done (e.g., String[] elements).
7959   // This self-check enables sharing of secondary supertype arrays among
7960   // non-primary types such as array-of-interface.  Otherwise, each such
7961   // type would need its own customized SSA.
7962   // We move this check to the front of the fast path because many
7963   // type checks are in fact trivially successful in this manner,
7964   // so we get a nicely predicted branch right at the start of the check.
7965   cmpptr(sub_klass, super_klass);
7966   local_jcc(Assembler::equal, *L_success);
7967 
7968   // Check the supertype display:
7969   if (must_load_sco) {
7970     // Positive movl does right thing on LP64.
7971     movl(temp_reg, super_check_offset_addr);
7972     super_check_offset = RegisterOrConstant(temp_reg);
7973   }
7974   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
7975   cmpptr(super_klass, super_check_addr); // load displayed supertype
7976 
7977   // This check has worked decisively for primary supers.
7978   // Secondary supers are sought in the super_cache ('super_cache_addr').
7979   // (Secondary supers are interfaces and very deeply nested subtypes.)
7980   // This works in the same check above because of a tricky aliasing
7981   // between the super_cache and the primary super display elements.
7982   // (The 'super_check_addr' can address either, as the case requires.)
7983   // Note that the cache is updated below if it does not help us find
7984   // what we need immediately.
7985   // So if it was a primary super, we can just fail immediately.
7986   // Otherwise, it's the slow path for us (no success at this point).
7987 
7988   if (super_check_offset.is_register()) {
7989     local_jcc(Assembler::equal, *L_success);
7990     cmpl(super_check_offset.as_register(), sc_offset);
7991     if (L_failure == &L_fallthrough) {
7992       local_jcc(Assembler::equal, *L_slow_path);
7993     } else {
7994       local_jcc(Assembler::notEqual, *L_failure);
7995       final_jmp(*L_slow_path);
7996     }
7997   } else if (super_check_offset.as_constant() == sc_offset) {
7998     // Need a slow path; fast failure is impossible.
7999     if (L_slow_path == &L_fallthrough) {
8000       local_jcc(Assembler::equal, *L_success);
8001     } else {
8002       local_jcc(Assembler::notEqual, *L_slow_path);
8003       final_jmp(*L_success);
8004     }
8005   } else {
8006     // No slow path; it's a fast decision.
8007     if (L_failure == &L_fallthrough) {
8008       local_jcc(Assembler::equal, *L_success);
8009     } else {
8010       local_jcc(Assembler::notEqual, *L_failure);
8011       final_jmp(*L_success);
8012     }
8013   }
8014 
8015   bind(L_fallthrough);
8016 
8017 #undef local_jcc
8018 #undef final_jmp
8019 }
8020 
8021 
8022 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
8023                                                    Register super_klass,
8024                                                    Register temp_reg,
8025                                                    Register temp2_reg,
8026                                                    Label* L_success,
8027                                                    Label* L_failure,
8028                                                    bool set_cond_codes) {
8029   assert_different_registers(sub_klass, super_klass, temp_reg);
8030   if (temp2_reg != noreg)
8031     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
8032 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
8033 
8034   Label L_fallthrough;
8035   int label_nulls = 0;
8036   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
8037   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
8038   assert(label_nulls <= 1, "at most one NULL in the batch");
8039 
8040   // a couple of useful fields in sub_klass:
8041   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
8042                    Klass::secondary_supers_offset_in_bytes());
8043   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
8044                    Klass::secondary_super_cache_offset_in_bytes());
8045   Address secondary_supers_addr(sub_klass, ss_offset);
8046   Address super_cache_addr(     sub_klass, sc_offset);
8047 
8048   // Do a linear scan of the secondary super-klass chain.
8049   // This code is rarely used, so simplicity is a virtue here.
8050   // The repne_scan instruction uses fixed registers, which we must spill.
8051   // Don't worry too much about pre-existing connections with the input regs.
8052 
8053   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
8054   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
8055 
8056   // Get super_klass value into rax (even if it was in rdi or rcx).
8057   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
8058   if (super_klass != rax || UseCompressedOops) {
8059     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
8060     mov(rax, super_klass);
8061   }
8062   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
8063   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
8064 
8065 #ifndef PRODUCT
8066   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
8067   ExternalAddress pst_counter_addr((address) pst_counter);
8068   NOT_LP64(  incrementl(pst_counter_addr) );
8069   LP64_ONLY( lea(rcx, pst_counter_addr) );
8070   LP64_ONLY( incrementl(Address(rcx, 0)) );
8071 #endif //PRODUCT
8072 
8073   // We will consult the secondary-super array.
8074   movptr(rdi, secondary_supers_addr);
8075   // Load the array length.  (Positive movl does right thing on LP64.)
8076   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
8077   // Skip to start of data.
8078   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
8079 
8080   // Scan RCX words at [RDI] for an occurrence of RAX.
8081   // Set NZ/Z based on last compare.
8082   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
8083   // not change flags (only scas instruction which is repeated sets flags).
8084   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
8085 #ifdef _LP64
8086   // This part is tricky, as values in supers array could be 32 or 64 bit wide
8087   // and we store values in objArrays always encoded, thus we need to encode
8088   // the value of rax before repne.  Note that rax is dead after the repne.
8089   if (UseCompressedOops) {
8090     encode_heap_oop_not_null(rax); // Changes flags.
8091     // The superclass is never null; it would be a basic system error if a null
8092     // pointer were to sneak in here.  Note that we have already loaded the
8093     // Klass::super_check_offset from the super_klass in the fast path,
8094     // so if there is a null in that register, we are already in the afterlife.
8095     testl(rax,rax); // Set Z = 0
8096     repne_scanl();
8097   } else
8098 #endif // _LP64
8099   {
8100     testptr(rax,rax); // Set Z = 0
8101     repne_scan();
8102   }
8103   // Unspill the temp. registers:
8104   if (pushed_rdi)  pop(rdi);
8105   if (pushed_rcx)  pop(rcx);
8106   if (pushed_rax)  pop(rax);
8107 
8108   if (set_cond_codes) {
8109     // Special hack for the AD files:  rdi is guaranteed non-zero.
8110     assert(!pushed_rdi, "rdi must be left non-NULL");
8111     // Also, the condition codes are properly set Z/NZ on succeed/failure.
8112   }
8113 
8114   if (L_failure == &L_fallthrough)
8115         jccb(Assembler::notEqual, *L_failure);
8116   else  jcc(Assembler::notEqual, *L_failure);
8117 
8118   // Success.  Cache the super we found and proceed in triumph.
8119   movptr(super_cache_addr, super_klass);
8120 
8121   if (L_success != &L_fallthrough) {
8122     jmp(*L_success);
8123   }
8124 
8125 #undef IS_A_TEMP
8126 
8127   bind(L_fallthrough);
8128 }
8129 
8130 
8131 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
8132   if (reachable(src)) {
8133     Assembler::ucomisd(dst, as_Address(src));
8134   } else {
8135     lea(rscratch1, src);
8136     Assembler::ucomisd(dst, Address(rscratch1, 0));
8137   }
8138 }
8139 
8140 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
8141   if (reachable(src)) {
8142     Assembler::ucomiss(dst, as_Address(src));
8143   } else {
8144     lea(rscratch1, src);
8145     Assembler::ucomiss(dst, Address(rscratch1, 0));
8146   }
8147 }
8148 
8149 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
8150   // Used in sign-bit flipping with aligned address.
8151   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
8152   if (reachable(src)) {
8153     Assembler::xorpd(dst, as_Address(src));
8154   } else {
8155     lea(rscratch1, src);
8156     Assembler::xorpd(dst, Address(rscratch1, 0));
8157   }
8158 }
8159 
8160 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
8161   // Used in sign-bit flipping with aligned address.
8162   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
8163   if (reachable(src)) {
8164     Assembler::xorps(dst, as_Address(src));
8165   } else {
8166     lea(rscratch1, src);
8167     Assembler::xorps(dst, Address(rscratch1, 0));
8168   }
8169 }
8170 
8171 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
8172   if (VM_Version::supports_cmov()) {
8173     cmovl(cc, dst, src);
8174   } else {
8175     Label L;
8176     jccb(negate_condition(cc), L);
8177     movl(dst, src);
8178     bind(L);
8179   }
8180 }
8181 
8182 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
8183   if (VM_Version::supports_cmov()) {
8184     cmovl(cc, dst, src);
8185   } else {
8186     Label L;
8187     jccb(negate_condition(cc), L);
8188     movl(dst, src);
8189     bind(L);
8190   }
8191 }
8192 
8193 void MacroAssembler::verify_oop(Register reg, const char* s) {
8194   if (!VerifyOops) return;
8195 
8196   // Pass register number to verify_oop_subroutine
8197   char* b = new char[strlen(s) + 50];
8198   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
8199 #ifdef _LP64
8200   push(rscratch1);                    // save r10, trashed by movptr()
8201 #endif
8202   push(rax);                          // save rax,
8203   push(reg);                          // pass register argument
8204   ExternalAddress buffer((address) b);
8205   // avoid using pushptr, as it modifies scratch registers
8206   // and our contract is not to modify anything
8207   movptr(rax, buffer.addr());
8208   push(rax);
8209   // call indirectly to solve generation ordering problem
8210   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
8211   call(rax);
8212   // Caller pops the arguments (oop, message) and restores rax, r10
8213 }
8214 
8215 
8216 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
8217                                                       Register tmp,
8218                                                       int offset) {
8219   intptr_t value = *delayed_value_addr;
8220   if (value != 0)
8221     return RegisterOrConstant(value + offset);
8222 
8223   // load indirectly to solve generation ordering problem
8224   movptr(tmp, ExternalAddress((address) delayed_value_addr));
8225 
8226 #ifdef ASSERT
8227   { Label L;
8228     testptr(tmp, tmp);
8229     if (WizardMode) {
8230       jcc(Assembler::notZero, L);
8231       char* buf = new char[40];
8232       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
8233       stop(buf);
8234     } else {
8235       jccb(Assembler::notZero, L);
8236       hlt();
8237     }
8238     bind(L);
8239   }
8240 #endif
8241 
8242   if (offset != 0)
8243     addptr(tmp, offset);
8244 
8245   return RegisterOrConstant(tmp);
8246 }
8247 
8248 
8249 // registers on entry:
8250 //  - rax ('check' register): required MethodType
8251 //  - rcx: method handle
8252 //  - rdx, rsi, or ?: killable temp
8253 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
8254                                               Register temp_reg,
8255                                               Label& wrong_method_type) {
8256   Address type_addr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg));
8257   // compare method type against that of the receiver
8258   if (UseCompressedOops) {
8259     load_heap_oop(temp_reg, type_addr);
8260     cmpptr(mtype_reg, temp_reg);
8261   } else {
8262     cmpptr(mtype_reg, type_addr);
8263   }
8264   jcc(Assembler::notEqual, wrong_method_type);
8265 }
8266 
8267 
8268 // A method handle has a "vmslots" field which gives the size of its
8269 // argument list in JVM stack slots.  This field is either located directly
8270 // in every method handle, or else is indirectly accessed through the
8271 // method handle's MethodType.  This macro hides the distinction.
8272 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
8273                                                 Register temp_reg) {
8274   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
8275   // load mh.type.form.vmslots
8276   Register temp2_reg = vmslots_reg;
8277   load_heap_oop(temp2_reg, Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)));
8278   load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)));
8279   movl(vmslots_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
8280 }
8281 
8282 
8283 // registers on entry:
8284 //  - rcx: method handle
8285 //  - rdx: killable temp (interpreted only)
8286 //  - rax: killable temp (compiled only)
8287 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
8288   assert(mh_reg == rcx, "caller must put MH object in rcx");
8289   assert_different_registers(mh_reg, temp_reg);
8290 
8291   // pick out the interpreted side of the handler
8292   // NOTE: vmentry is not an oop!
8293   movptr(temp_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
8294 
8295   // off we go...
8296   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
8297 
8298   // for the various stubs which take control at this point,
8299   // see MethodHandles::generate_method_handle_stub
8300 }
8301 
8302 
8303 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
8304                                          int extra_slot_offset) {
8305   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
8306   int stackElementSize = Interpreter::stackElementSize;
8307   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
8308 #ifdef ASSERT
8309   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
8310   assert(offset1 - offset == stackElementSize, "correct arithmetic");
8311 #endif
8312   Register             scale_reg    = noreg;
8313   Address::ScaleFactor scale_factor = Address::no_scale;
8314   if (arg_slot.is_constant()) {
8315     offset += arg_slot.as_constant() * stackElementSize;
8316   } else {
8317     scale_reg    = arg_slot.as_register();
8318     scale_factor = Address::times(stackElementSize);
8319   }
8320   offset += wordSize;           // return PC is on stack
8321   return Address(rsp, scale_reg, scale_factor, offset);
8322 }
8323 
8324 
8325 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
8326   if (!VerifyOops) return;
8327 
8328   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
8329   // Pass register number to verify_oop_subroutine
8330   char* b = new char[strlen(s) + 50];
8331   sprintf(b, "verify_oop_addr: %s", s);
8332 
8333 #ifdef _LP64
8334   push(rscratch1);                    // save r10, trashed by movptr()
8335 #endif
8336   push(rax);                          // save rax,
8337   // addr may contain rsp so we will have to adjust it based on the push
8338   // we just did (and on 64 bit we do two pushes)
8339   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
8340   // stores rax into addr which is backwards of what was intended.
8341   if (addr.uses(rsp)) {
8342     lea(rax, addr);
8343     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
8344   } else {
8345     pushptr(addr);
8346   }
8347 
8348   ExternalAddress buffer((address) b);
8349   // pass msg argument
8350   // avoid using pushptr, as it modifies scratch registers
8351   // and our contract is not to modify anything
8352   movptr(rax, buffer.addr());
8353   push(rax);
8354 
8355   // call indirectly to solve generation ordering problem
8356   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
8357   call(rax);
8358   // Caller pops the arguments (addr, message) and restores rax, r10.
8359 }
8360 
8361 void MacroAssembler::verify_tlab() {
8362 #ifdef ASSERT
8363   if (UseTLAB && VerifyOops) {
8364     Label next, ok;
8365     Register t1 = rsi;
8366     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
8367 
8368     push(t1);
8369     NOT_LP64(push(thread_reg));
8370     NOT_LP64(get_thread(thread_reg));
8371 
8372     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
8373     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
8374     jcc(Assembler::aboveEqual, next);
8375     stop("assert(top >= start)");
8376     should_not_reach_here();
8377 
8378     bind(next);
8379     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
8380     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
8381     jcc(Assembler::aboveEqual, ok);
8382     stop("assert(top <= end)");
8383     should_not_reach_here();
8384 
8385     bind(ok);
8386     NOT_LP64(pop(thread_reg));
8387     pop(t1);
8388   }
8389 #endif
8390 }
8391 
8392 class ControlWord {
8393  public:
8394   int32_t _value;
8395 
8396   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
8397   int  precision_control() const       { return  (_value >>  8) & 3      ; }
8398   bool precision() const               { return ((_value >>  5) & 1) != 0; }
8399   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
8400   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
8401   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
8402   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
8403   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
8404 
8405   void print() const {
8406     // rounding control
8407     const char* rc;
8408     switch (rounding_control()) {
8409       case 0: rc = "round near"; break;
8410       case 1: rc = "round down"; break;
8411       case 2: rc = "round up  "; break;
8412       case 3: rc = "chop      "; break;
8413     };
8414     // precision control
8415     const char* pc;
8416     switch (precision_control()) {
8417       case 0: pc = "24 bits "; break;
8418       case 1: pc = "reserved"; break;
8419       case 2: pc = "53 bits "; break;
8420       case 3: pc = "64 bits "; break;
8421     };
8422     // flags
8423     char f[9];
8424     f[0] = ' ';
8425     f[1] = ' ';
8426     f[2] = (precision   ()) ? 'P' : 'p';
8427     f[3] = (underflow   ()) ? 'U' : 'u';
8428     f[4] = (overflow    ()) ? 'O' : 'o';
8429     f[5] = (zero_divide ()) ? 'Z' : 'z';
8430     f[6] = (denormalized()) ? 'D' : 'd';
8431     f[7] = (invalid     ()) ? 'I' : 'i';
8432     f[8] = '\x0';
8433     // output
8434     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
8435   }
8436 
8437 };
8438 
8439 class StatusWord {
8440  public:
8441   int32_t _value;
8442 
8443   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
8444   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
8445   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
8446   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
8447   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
8448   int  top() const                     { return  (_value >> 11) & 7      ; }
8449   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
8450   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
8451   bool precision() const               { return ((_value >>  5) & 1) != 0; }
8452   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
8453   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
8454   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
8455   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
8456   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
8457 
8458   void print() const {
8459     // condition codes
8460     char c[5];
8461     c[0] = (C3()) ? '3' : '-';
8462     c[1] = (C2()) ? '2' : '-';
8463     c[2] = (C1()) ? '1' : '-';
8464     c[3] = (C0()) ? '0' : '-';
8465     c[4] = '\x0';
8466     // flags
8467     char f[9];
8468     f[0] = (error_status()) ? 'E' : '-';
8469     f[1] = (stack_fault ()) ? 'S' : '-';
8470     f[2] = (precision   ()) ? 'P' : '-';
8471     f[3] = (underflow   ()) ? 'U' : '-';
8472     f[4] = (overflow    ()) ? 'O' : '-';
8473     f[5] = (zero_divide ()) ? 'Z' : '-';
8474     f[6] = (denormalized()) ? 'D' : '-';
8475     f[7] = (invalid     ()) ? 'I' : '-';
8476     f[8] = '\x0';
8477     // output
8478     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
8479   }
8480 
8481 };
8482 
8483 class TagWord {
8484  public:
8485   int32_t _value;
8486 
8487   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
8488 
8489   void print() const {
8490     printf("%04x", _value & 0xFFFF);
8491   }
8492 
8493 };
8494 
8495 class FPU_Register {
8496  public:
8497   int32_t _m0;
8498   int32_t _m1;
8499   int16_t _ex;
8500 
8501   bool is_indefinite() const           {
8502     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
8503   }
8504 
8505   void print() const {
8506     char  sign = (_ex < 0) ? '-' : '+';
8507     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
8508     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
8509   };
8510 
8511 };
8512 
8513 class FPU_State {
8514  public:
8515   enum {
8516     register_size       = 10,
8517     number_of_registers =  8,
8518     register_mask       =  7
8519   };
8520 
8521   ControlWord  _control_word;
8522   StatusWord   _status_word;
8523   TagWord      _tag_word;
8524   int32_t      _error_offset;
8525   int32_t      _error_selector;
8526   int32_t      _data_offset;
8527   int32_t      _data_selector;
8528   int8_t       _register[register_size * number_of_registers];
8529 
8530   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
8531   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
8532 
8533   const char* tag_as_string(int tag) const {
8534     switch (tag) {
8535       case 0: return "valid";
8536       case 1: return "zero";
8537       case 2: return "special";
8538       case 3: return "empty";
8539     }
8540     ShouldNotReachHere();
8541     return NULL;
8542   }
8543 
8544   void print() const {
8545     // print computation registers
8546     { int t = _status_word.top();
8547       for (int i = 0; i < number_of_registers; i++) {
8548         int j = (i - t) & register_mask;
8549         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
8550         st(j)->print();
8551         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
8552       }
8553     }
8554     printf("\n");
8555     // print control registers
8556     printf("ctrl = "); _control_word.print(); printf("\n");
8557     printf("stat = "); _status_word .print(); printf("\n");
8558     printf("tags = "); _tag_word    .print(); printf("\n");
8559   }
8560 
8561 };
8562 
8563 class Flag_Register {
8564  public:
8565   int32_t _value;
8566 
8567   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
8568   bool direction() const               { return ((_value >> 10) & 1) != 0; }
8569   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
8570   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
8571   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
8572   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
8573   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
8574 
8575   void print() const {
8576     // flags
8577     char f[8];
8578     f[0] = (overflow       ()) ? 'O' : '-';
8579     f[1] = (direction      ()) ? 'D' : '-';
8580     f[2] = (sign           ()) ? 'S' : '-';
8581     f[3] = (zero           ()) ? 'Z' : '-';
8582     f[4] = (auxiliary_carry()) ? 'A' : '-';
8583     f[5] = (parity         ()) ? 'P' : '-';
8584     f[6] = (carry          ()) ? 'C' : '-';
8585     f[7] = '\x0';
8586     // output
8587     printf("%08x  flags = %s", _value, f);
8588   }
8589 
8590 };
8591 
8592 class IU_Register {
8593  public:
8594   int32_t _value;
8595 
8596   void print() const {
8597     printf("%08x  %11d", _value, _value);
8598   }
8599 
8600 };
8601 
8602 class IU_State {
8603  public:
8604   Flag_Register _eflags;
8605   IU_Register   _rdi;
8606   IU_Register   _rsi;
8607   IU_Register   _rbp;
8608   IU_Register   _rsp;
8609   IU_Register   _rbx;
8610   IU_Register   _rdx;
8611   IU_Register   _rcx;
8612   IU_Register   _rax;
8613 
8614   void print() const {
8615     // computation registers
8616     printf("rax,  = "); _rax.print(); printf("\n");
8617     printf("rbx,  = "); _rbx.print(); printf("\n");
8618     printf("rcx  = "); _rcx.print(); printf("\n");
8619     printf("rdx  = "); _rdx.print(); printf("\n");
8620     printf("rdi  = "); _rdi.print(); printf("\n");
8621     printf("rsi  = "); _rsi.print(); printf("\n");
8622     printf("rbp,  = "); _rbp.print(); printf("\n");
8623     printf("rsp  = "); _rsp.print(); printf("\n");
8624     printf("\n");
8625     // control registers
8626     printf("flgs = "); _eflags.print(); printf("\n");
8627   }
8628 };
8629 
8630 
8631 class CPU_State {
8632  public:
8633   FPU_State _fpu_state;
8634   IU_State  _iu_state;
8635 
8636   void print() const {
8637     printf("--------------------------------------------------\n");
8638     _iu_state .print();
8639     printf("\n");
8640     _fpu_state.print();
8641     printf("--------------------------------------------------\n");
8642   }
8643 
8644 };
8645 
8646 
8647 static void _print_CPU_state(CPU_State* state) {
8648   state->print();
8649 };
8650 
8651 
8652 void MacroAssembler::print_CPU_state() {
8653   push_CPU_state();
8654   push(rsp);                // pass CPU state
8655   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
8656   addptr(rsp, wordSize);       // discard argument
8657   pop_CPU_state();
8658 }
8659 
8660 
8661 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
8662   static int counter = 0;
8663   FPU_State* fs = &state->_fpu_state;
8664   counter++;
8665   // For leaf calls, only verify that the top few elements remain empty.
8666   // We only need 1 empty at the top for C2 code.
8667   if( stack_depth < 0 ) {
8668     if( fs->tag_for_st(7) != 3 ) {
8669       printf("FPR7 not empty\n");
8670       state->print();
8671       assert(false, "error");
8672       return false;
8673     }
8674     return true;                // All other stack states do not matter
8675   }
8676 
8677   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
8678          "bad FPU control word");
8679 
8680   // compute stack depth
8681   int i = 0;
8682   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
8683   int d = i;
8684   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
8685   // verify findings
8686   if (i != FPU_State::number_of_registers) {
8687     // stack not contiguous
8688     printf("%s: stack not contiguous at ST%d\n", s, i);
8689     state->print();
8690     assert(false, "error");
8691     return false;
8692   }
8693   // check if computed stack depth corresponds to expected stack depth
8694   if (stack_depth < 0) {
8695     // expected stack depth is -stack_depth or less
8696     if (d > -stack_depth) {
8697       // too many elements on the stack
8698       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
8699       state->print();
8700       assert(false, "error");
8701       return false;
8702     }
8703   } else {
8704     // expected stack depth is stack_depth
8705     if (d != stack_depth) {
8706       // wrong stack depth
8707       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
8708       state->print();
8709       assert(false, "error");
8710       return false;
8711     }
8712   }
8713   // everything is cool
8714   return true;
8715 }
8716 
8717 
8718 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
8719   if (!VerifyFPU) return;
8720   push_CPU_state();
8721   push(rsp);                // pass CPU state
8722   ExternalAddress msg((address) s);
8723   // pass message string s
8724   pushptr(msg.addr());
8725   push(stack_depth);        // pass stack depth
8726   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
8727   addptr(rsp, 3 * wordSize);   // discard arguments
8728   // check for error
8729   { Label L;
8730     testl(rax, rax);
8731     jcc(Assembler::notZero, L);
8732     int3();                  // break if error condition
8733     bind(L);
8734   }
8735   pop_CPU_state();
8736 }
8737 
8738 void MacroAssembler::load_klass(Register dst, Register src) {
8739 #ifdef _LP64
8740   if (UseCompressedOops) {
8741     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8742     decode_heap_oop_not_null(dst);
8743   } else
8744 #endif
8745     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8746 }
8747 
8748 void MacroAssembler::load_prototype_header(Register dst, Register src) {
8749 #ifdef _LP64
8750   if (UseCompressedOops) {
8751     assert (Universe::heap() != NULL, "java heap should be initialized");
8752     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8753     if (Universe::narrow_oop_shift() != 0) {
8754       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8755       if (LogMinObjAlignmentInBytes == Address::times_8) {
8756         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8757       } else {
8758         // OK to use shift since we don't need to preserve flags.
8759         shlq(dst, LogMinObjAlignmentInBytes);
8760         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8761       }
8762     } else {
8763       movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8764     }
8765   } else
8766 #endif
8767   {
8768     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8769     movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8770   }
8771 }
8772 
8773 void MacroAssembler::store_klass(Register dst, Register src) {
8774 #ifdef _LP64
8775   if (UseCompressedOops) {
8776     encode_heap_oop_not_null(src);
8777     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
8778   } else
8779 #endif
8780     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
8781 }
8782 
8783 void MacroAssembler::load_heap_oop(Register dst, Address src) {
8784 #ifdef _LP64
8785   if (UseCompressedOops) {
8786     movl(dst, src);
8787     decode_heap_oop(dst);
8788   } else
8789 #endif
8790     movptr(dst, src);
8791 }
8792 
8793 // Doesn't do verfication, generates fixed size code
8794 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
8795 #ifdef _LP64
8796   if (UseCompressedOops) {
8797     movl(dst, src);
8798     decode_heap_oop_not_null(dst);
8799   } else
8800 #endif
8801     movptr(dst, src);
8802 }
8803 
8804 void MacroAssembler::store_heap_oop(Address dst, Register src) {
8805 #ifdef _LP64
8806   if (UseCompressedOops) {
8807     assert(!dst.uses(src), "not enough registers");
8808     encode_heap_oop(src);
8809     movl(dst, src);
8810   } else
8811 #endif
8812     movptr(dst, src);
8813 }
8814 
8815 // Used for storing NULLs.
8816 void MacroAssembler::store_heap_oop_null(Address dst) {
8817 #ifdef _LP64
8818   if (UseCompressedOops) {
8819     movl(dst, (int32_t)NULL_WORD);
8820   } else {
8821     movslq(dst, (int32_t)NULL_WORD);
8822   }
8823 #else
8824   movl(dst, (int32_t)NULL_WORD);
8825 #endif
8826 }
8827 
8828 #ifdef _LP64
8829 void MacroAssembler::store_klass_gap(Register dst, Register src) {
8830   if (UseCompressedOops) {
8831     // Store to klass gap in destination
8832     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
8833   }
8834 }
8835 
8836 #ifdef ASSERT
8837 void MacroAssembler::verify_heapbase(const char* msg) {
8838   assert (UseCompressedOops, "should be compressed");
8839   assert (Universe::heap() != NULL, "java heap should be initialized");
8840   if (CheckCompressedOops) {
8841     Label ok;
8842     push(rscratch1); // cmpptr trashes rscratch1
8843     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
8844     jcc(Assembler::equal, ok);
8845     stop(msg);
8846     bind(ok);
8847     pop(rscratch1);
8848   }
8849 }
8850 #endif
8851 
8852 // Algorithm must match oop.inline.hpp encode_heap_oop.
8853 void MacroAssembler::encode_heap_oop(Register r) {
8854 #ifdef ASSERT
8855   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
8856 #endif
8857   verify_oop(r, "broken oop in encode_heap_oop");
8858   if (Universe::narrow_oop_base() == NULL) {
8859     if (Universe::narrow_oop_shift() != 0) {
8860       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8861       shrq(r, LogMinObjAlignmentInBytes);
8862     }
8863     return;
8864   }
8865   testq(r, r);
8866   cmovq(Assembler::equal, r, r12_heapbase);
8867   subq(r, r12_heapbase);
8868   shrq(r, LogMinObjAlignmentInBytes);
8869 }
8870 
8871 void MacroAssembler::encode_heap_oop_not_null(Register r) {
8872 #ifdef ASSERT
8873   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
8874   if (CheckCompressedOops) {
8875     Label ok;
8876     testq(r, r);
8877     jcc(Assembler::notEqual, ok);
8878     stop("null oop passed to encode_heap_oop_not_null");
8879     bind(ok);
8880   }
8881 #endif
8882   verify_oop(r, "broken oop in encode_heap_oop_not_null");
8883   if (Universe::narrow_oop_base() != NULL) {
8884     subq(r, r12_heapbase);
8885   }
8886   if (Universe::narrow_oop_shift() != 0) {
8887     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8888     shrq(r, LogMinObjAlignmentInBytes);
8889   }
8890 }
8891 
8892 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
8893 #ifdef ASSERT
8894   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
8895   if (CheckCompressedOops) {
8896     Label ok;
8897     testq(src, src);
8898     jcc(Assembler::notEqual, ok);
8899     stop("null oop passed to encode_heap_oop_not_null2");
8900     bind(ok);
8901   }
8902 #endif
8903   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
8904   if (dst != src) {
8905     movq(dst, src);
8906   }
8907   if (Universe::narrow_oop_base() != NULL) {
8908     subq(dst, r12_heapbase);
8909   }
8910   if (Universe::narrow_oop_shift() != 0) {
8911     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8912     shrq(dst, LogMinObjAlignmentInBytes);
8913   }
8914 }
8915 
8916 void  MacroAssembler::decode_heap_oop(Register r) {
8917 #ifdef ASSERT
8918   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
8919 #endif
8920   if (Universe::narrow_oop_base() == NULL) {
8921     if (Universe::narrow_oop_shift() != 0) {
8922       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8923       shlq(r, LogMinObjAlignmentInBytes);
8924     }
8925   } else {
8926     Label done;
8927     shlq(r, LogMinObjAlignmentInBytes);
8928     jccb(Assembler::equal, done);
8929     addq(r, r12_heapbase);
8930     bind(done);
8931   }
8932   verify_oop(r, "broken oop in decode_heap_oop");
8933 }
8934 
8935 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
8936   // Note: it will change flags
8937   assert (UseCompressedOops, "should only be used for compressed headers");
8938   assert (Universe::heap() != NULL, "java heap should be initialized");
8939   // Cannot assert, unverified entry point counts instructions (see .ad file)
8940   // vtableStubs also counts instructions in pd_code_size_limit.
8941   // Also do not verify_oop as this is called by verify_oop.
8942   if (Universe::narrow_oop_shift() != 0) {
8943     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8944     shlq(r, LogMinObjAlignmentInBytes);
8945     if (Universe::narrow_oop_base() != NULL) {
8946       addq(r, r12_heapbase);
8947     }
8948   } else {
8949     assert (Universe::narrow_oop_base() == NULL, "sanity");
8950   }
8951 }
8952 
8953 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
8954   // Note: it will change flags
8955   assert (UseCompressedOops, "should only be used for compressed headers");
8956   assert (Universe::heap() != NULL, "java heap should be initialized");
8957   // Cannot assert, unverified entry point counts instructions (see .ad file)
8958   // vtableStubs also counts instructions in pd_code_size_limit.
8959   // Also do not verify_oop as this is called by verify_oop.
8960   if (Universe::narrow_oop_shift() != 0) {
8961     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8962     if (LogMinObjAlignmentInBytes == Address::times_8) {
8963       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
8964     } else {
8965       if (dst != src) {
8966         movq(dst, src);
8967       }
8968       shlq(dst, LogMinObjAlignmentInBytes);
8969       if (Universe::narrow_oop_base() != NULL) {
8970         addq(dst, r12_heapbase);
8971       }
8972     }
8973   } else {
8974     assert (Universe::narrow_oop_base() == NULL, "sanity");
8975     if (dst != src) {
8976       movq(dst, src);
8977     }
8978   }
8979 }
8980 
8981 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
8982   assert (UseCompressedOops, "should only be used for compressed headers");
8983   assert (Universe::heap() != NULL, "java heap should be initialized");
8984   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8985   int oop_index = oop_recorder()->find_index(obj);
8986   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8987   mov_narrow_oop(dst, oop_index, rspec);
8988 }
8989 
8990 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
8991   assert (UseCompressedOops, "should only be used for compressed headers");
8992   assert (Universe::heap() != NULL, "java heap should be initialized");
8993   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8994   int oop_index = oop_recorder()->find_index(obj);
8995   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8996   mov_narrow_oop(dst, oop_index, rspec);
8997 }
8998 
8999 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
9000   assert (UseCompressedOops, "should only be used for compressed headers");
9001   assert (Universe::heap() != NULL, "java heap should be initialized");
9002   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
9003   int oop_index = oop_recorder()->find_index(obj);
9004   RelocationHolder rspec = oop_Relocation::spec(oop_index);
9005   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
9006 }
9007 
9008 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
9009   assert (UseCompressedOops, "should only be used for compressed headers");
9010   assert (Universe::heap() != NULL, "java heap should be initialized");
9011   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
9012   int oop_index = oop_recorder()->find_index(obj);
9013   RelocationHolder rspec = oop_Relocation::spec(oop_index);
9014   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
9015 }
9016 
9017 void MacroAssembler::reinit_heapbase() {
9018   if (UseCompressedOops) {
9019     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
9020   }
9021 }
9022 #endif // _LP64
9023 
9024 // IndexOf for constant substrings with size >= 8 chars
9025 // which don't need to be loaded through stack.
9026 void MacroAssembler::string_indexofC8(Register str1, Register str2,
9027                                       Register cnt1, Register cnt2,
9028                                       int int_cnt2,  Register result,
9029                                       XMMRegister vec, Register tmp) {
9030   assert(UseSSE42Intrinsics, "SSE4.2 is required");
9031 
9032   // This method uses pcmpestri inxtruction with bound registers
9033   //   inputs:
9034   //     xmm - substring
9035   //     rax - substring length (elements count)
9036   //     mem - scanned string
9037   //     rdx - string length (elements count)
9038   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
9039   //   outputs:
9040   //     rcx - matched index in string
9041   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
9042 
9043   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
9044         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
9045         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
9046 
9047   // Note, inline_string_indexOf() generates checks:
9048   // if (substr.count > string.count) return -1;
9049   // if (substr.count == 0) return 0;
9050   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
9051 
9052   // Load substring.
9053   movdqu(vec, Address(str2, 0));
9054   movl(cnt2, int_cnt2);
9055   movptr(result, str1); // string addr
9056 
9057   if (int_cnt2 > 8) {
9058     jmpb(SCAN_TO_SUBSTR);
9059 
9060     // Reload substr for rescan, this code
9061     // is executed only for large substrings (> 8 chars)
9062     bind(RELOAD_SUBSTR);
9063     movdqu(vec, Address(str2, 0));
9064     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
9065 
9066     bind(RELOAD_STR);
9067     // We came here after the beginning of the substring was
9068     // matched but the rest of it was not so we need to search
9069     // again. Start from the next element after the previous match.
9070 
9071     // cnt2 is number of substring reminding elements and
9072     // cnt1 is number of string reminding elements when cmp failed.
9073     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
9074     subl(cnt1, cnt2);
9075     addl(cnt1, int_cnt2);
9076     movl(cnt2, int_cnt2); // Now restore cnt2
9077 
9078     decrementl(cnt1);     // Shift to next element
9079     cmpl(cnt1, cnt2);
9080     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
9081 
9082     addptr(result, 2);
9083 
9084   } // (int_cnt2 > 8)
9085 
9086   // Scan string for start of substr in 16-byte vectors
9087   bind(SCAN_TO_SUBSTR);
9088   pcmpestri(vec, Address(result, 0), 0x0d);
9089   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
9090   subl(cnt1, 8);
9091   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
9092   cmpl(cnt1, cnt2);
9093   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
9094   addptr(result, 16);
9095   jmpb(SCAN_TO_SUBSTR);
9096 
9097   // Found a potential substr
9098   bind(FOUND_CANDIDATE);
9099   // Matched whole vector if first element matched (tmp(rcx) == 0).
9100   if (int_cnt2 == 8) {
9101     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
9102   } else { // int_cnt2 > 8
9103     jccb(Assembler::overflow, FOUND_SUBSTR);
9104   }
9105   // After pcmpestri tmp(rcx) contains matched element index
9106   // Compute start addr of substr
9107   lea(result, Address(result, tmp, Address::times_2));
9108 
9109   // Make sure string is still long enough
9110   subl(cnt1, tmp);
9111   cmpl(cnt1, cnt2);
9112   if (int_cnt2 == 8) {
9113     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
9114   } else { // int_cnt2 > 8
9115     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
9116   }
9117   // Left less then substring.
9118 
9119   bind(RET_NOT_FOUND);
9120   movl(result, -1);
9121   jmpb(EXIT);
9122 
9123   if (int_cnt2 > 8) {
9124     // This code is optimized for the case when whole substring
9125     // is matched if its head is matched.
9126     bind(MATCH_SUBSTR_HEAD);
9127     pcmpestri(vec, Address(result, 0), 0x0d);
9128     // Reload only string if does not match
9129     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
9130 
9131     Label CONT_SCAN_SUBSTR;
9132     // Compare the rest of substring (> 8 chars).
9133     bind(FOUND_SUBSTR);
9134     // First 8 chars are already matched.
9135     negptr(cnt2);
9136     addptr(cnt2, 8);
9137 
9138     bind(SCAN_SUBSTR);
9139     subl(cnt1, 8);
9140     cmpl(cnt2, -8); // Do not read beyond substring
9141     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
9142     // Back-up strings to avoid reading beyond substring:
9143     // cnt1 = cnt1 - cnt2 + 8
9144     addl(cnt1, cnt2); // cnt2 is negative
9145     addl(cnt1, 8);
9146     movl(cnt2, 8); negptr(cnt2);
9147     bind(CONT_SCAN_SUBSTR);
9148     if (int_cnt2 < (int)G) {
9149       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
9150       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
9151     } else {
9152       // calculate index in register to avoid integer overflow (int_cnt2*2)
9153       movl(tmp, int_cnt2);
9154       addptr(tmp, cnt2);
9155       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
9156       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
9157     }
9158     // Need to reload strings pointers if not matched whole vector
9159     jccb(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
9160     addptr(cnt2, 8);
9161     jccb(Assembler::negative, SCAN_SUBSTR);
9162     // Fall through if found full substring
9163 
9164   } // (int_cnt2 > 8)
9165 
9166   bind(RET_FOUND);
9167   // Found result if we matched full small substring.
9168   // Compute substr offset
9169   subptr(result, str1);
9170   shrl(result, 1); // index
9171   bind(EXIT);
9172 
9173 } // string_indexofC8
9174 
9175 // Small strings are loaded through stack if they cross page boundary.
9176 void MacroAssembler::string_indexof(Register str1, Register str2,
9177                                     Register cnt1, Register cnt2,
9178                                     int int_cnt2,  Register result,
9179                                     XMMRegister vec, Register tmp) {
9180   assert(UseSSE42Intrinsics, "SSE4.2 is required");
9181   //
9182   // int_cnt2 is length of small (< 8 chars) constant substring
9183   // or (-1) for non constant substring in which case its length
9184   // is in cnt2 register.
9185   //
9186   // Note, inline_string_indexOf() generates checks:
9187   // if (substr.count > string.count) return -1;
9188   // if (substr.count == 0) return 0;
9189   //
9190   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
9191 
9192   // This method uses pcmpestri inxtruction with bound registers
9193   //   inputs:
9194   //     xmm - substring
9195   //     rax - substring length (elements count)
9196   //     mem - scanned string
9197   //     rdx - string length (elements count)
9198   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
9199   //   outputs:
9200   //     rcx - matched index in string
9201   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
9202 
9203   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
9204         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
9205         FOUND_CANDIDATE;
9206 
9207   { //========================================================
9208     // We don't know where these strings are located
9209     // and we can't read beyond them. Load them through stack.
9210     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
9211 
9212     movptr(tmp, rsp); // save old SP
9213 
9214     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
9215       if (int_cnt2 == 1) {  // One char
9216         load_unsigned_short(result, Address(str2, 0));
9217         movdl(vec, result); // move 32 bits
9218       } else if (int_cnt2 == 2) { // Two chars
9219         movdl(vec, Address(str2, 0)); // move 32 bits
9220       } else if (int_cnt2 == 4) { // Four chars
9221         movq(vec, Address(str2, 0));  // move 64 bits
9222       } else { // cnt2 = { 3, 5, 6, 7 }
9223         // Array header size is 12 bytes in 32-bit VM
9224         // + 6 bytes for 3 chars == 18 bytes,
9225         // enough space to load vec and shift.
9226         assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
9227         movdqu(vec, Address(str2, (int_cnt2*2)-16));
9228         psrldq(vec, 16-(int_cnt2*2));
9229       }
9230     } else { // not constant substring
9231       cmpl(cnt2, 8);
9232       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
9233 
9234       // We can read beyond string if srt+16 does not cross page boundary
9235       // since heaps are aligned and mapped by pages.
9236       assert(os::vm_page_size() < (int)G, "default page should be small");
9237       movl(result, str2); // We need only low 32 bits
9238       andl(result, (os::vm_page_size()-1));
9239       cmpl(result, (os::vm_page_size()-16));
9240       jccb(Assembler::belowEqual, CHECK_STR);
9241 
9242       // Move small strings to stack to allow load 16 bytes into vec.
9243       subptr(rsp, 16);
9244       int stk_offset = wordSize-2;
9245       push(cnt2);
9246 
9247       bind(COPY_SUBSTR);
9248       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
9249       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
9250       decrement(cnt2);
9251       jccb(Assembler::notZero, COPY_SUBSTR);
9252 
9253       pop(cnt2);
9254       movptr(str2, rsp);  // New substring address
9255     } // non constant
9256 
9257     bind(CHECK_STR);
9258     cmpl(cnt1, 8);
9259     jccb(Assembler::aboveEqual, BIG_STRINGS);
9260 
9261     // Check cross page boundary.
9262     movl(result, str1); // We need only low 32 bits
9263     andl(result, (os::vm_page_size()-1));
9264     cmpl(result, (os::vm_page_size()-16));
9265     jccb(Assembler::belowEqual, BIG_STRINGS);
9266 
9267     subptr(rsp, 16);
9268     int stk_offset = -2;
9269     if (int_cnt2 < 0) { // not constant
9270       push(cnt2);
9271       stk_offset += wordSize;
9272     }
9273     movl(cnt2, cnt1);
9274 
9275     bind(COPY_STR);
9276     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
9277     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
9278     decrement(cnt2);
9279     jccb(Assembler::notZero, COPY_STR);
9280 
9281     if (int_cnt2 < 0) { // not constant
9282       pop(cnt2);
9283     }
9284     movptr(str1, rsp);  // New string address
9285 
9286     bind(BIG_STRINGS);
9287     // Load substring.
9288     if (int_cnt2 < 0) { // -1
9289       movdqu(vec, Address(str2, 0));
9290       push(cnt2);       // substr count
9291       push(str2);       // substr addr
9292       push(str1);       // string addr
9293     } else {
9294       // Small (< 8 chars) constant substrings are loaded already.
9295       movl(cnt2, int_cnt2);
9296     }
9297     push(tmp);  // original SP
9298 
9299   } // Finished loading
9300 
9301   //========================================================
9302   // Start search
9303   //
9304 
9305   movptr(result, str1); // string addr
9306 
9307   if (int_cnt2  < 0) {  // Only for non constant substring
9308     jmpb(SCAN_TO_SUBSTR);
9309 
9310     // SP saved at sp+0
9311     // String saved at sp+1*wordSize
9312     // Substr saved at sp+2*wordSize
9313     // Substr count saved at sp+3*wordSize
9314 
9315     // Reload substr for rescan, this code
9316     // is executed only for large substrings (> 8 chars)
9317     bind(RELOAD_SUBSTR);
9318     movptr(str2, Address(rsp, 2*wordSize));
9319     movl(cnt2, Address(rsp, 3*wordSize));
9320     movdqu(vec, Address(str2, 0));
9321     // We came here after the beginning of the substring was
9322     // matched but the rest of it was not so we need to search
9323     // again. Start from the next element after the previous match.
9324     subptr(str1, result); // Restore counter
9325     shrl(str1, 1);
9326     addl(cnt1, str1);
9327     decrementl(cnt1);   // Shift to next element
9328     cmpl(cnt1, cnt2);
9329     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
9330 
9331     addptr(result, 2);
9332   } // non constant
9333 
9334   // Scan string for start of substr in 16-byte vectors
9335   bind(SCAN_TO_SUBSTR);
9336   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
9337   pcmpestri(vec, Address(result, 0), 0x0d);
9338   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
9339   subl(cnt1, 8);
9340   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
9341   cmpl(cnt1, cnt2);
9342   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
9343   addptr(result, 16);
9344 
9345   bind(ADJUST_STR);
9346   cmpl(cnt1, 8); // Do not read beyond string
9347   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
9348   // Back-up string to avoid reading beyond string.
9349   lea(result, Address(result, cnt1, Address::times_2, -16));
9350   movl(cnt1, 8);
9351   jmpb(SCAN_TO_SUBSTR);
9352 
9353   // Found a potential substr
9354   bind(FOUND_CANDIDATE);
9355   // After pcmpestri tmp(rcx) contains matched element index
9356 
9357   // Make sure string is still long enough
9358   subl(cnt1, tmp);
9359   cmpl(cnt1, cnt2);
9360   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
9361   // Left less then substring.
9362 
9363   bind(RET_NOT_FOUND);
9364   movl(result, -1);
9365   jmpb(CLEANUP);
9366 
9367   bind(FOUND_SUBSTR);
9368   // Compute start addr of substr
9369   lea(result, Address(result, tmp, Address::times_2));
9370 
9371   if (int_cnt2 > 0) { // Constant substring
9372     // Repeat search for small substring (< 8 chars)
9373     // from new point without reloading substring.
9374     // Have to check that we don't read beyond string.
9375     cmpl(tmp, 8-int_cnt2);
9376     jccb(Assembler::greater, ADJUST_STR);
9377     // Fall through if matched whole substring.
9378   } else { // non constant
9379     assert(int_cnt2 == -1, "should be != 0");
9380 
9381     addl(tmp, cnt2);
9382     // Found result if we matched whole substring.
9383     cmpl(tmp, 8);
9384     jccb(Assembler::lessEqual, RET_FOUND);
9385 
9386     // Repeat search for small substring (<= 8 chars)
9387     // from new point 'str1' without reloading substring.
9388     cmpl(cnt2, 8);
9389     // Have to check that we don't read beyond string.
9390     jccb(Assembler::lessEqual, ADJUST_STR);
9391 
9392     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
9393     // Compare the rest of substring (> 8 chars).
9394     movptr(str1, result);
9395 
9396     cmpl(tmp, cnt2);
9397     // First 8 chars are already matched.
9398     jccb(Assembler::equal, CHECK_NEXT);
9399 
9400     bind(SCAN_SUBSTR);
9401     pcmpestri(vec, Address(str1, 0), 0x0d);
9402     // Need to reload strings pointers if not matched whole vector
9403     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
9404 
9405     bind(CHECK_NEXT);
9406     subl(cnt2, 8);
9407     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
9408     addptr(str1, 16);
9409     addptr(str2, 16);
9410     subl(cnt1, 8);
9411     cmpl(cnt2, 8); // Do not read beyond substring
9412     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
9413     // Back-up strings to avoid reading beyond substring.
9414     lea(str2, Address(str2, cnt2, Address::times_2, -16));
9415     lea(str1, Address(str1, cnt2, Address::times_2, -16));
9416     subl(cnt1, cnt2);
9417     movl(cnt2, 8);
9418     addl(cnt1, 8);
9419     bind(CONT_SCAN_SUBSTR);
9420     movdqu(vec, Address(str2, 0));
9421     jmpb(SCAN_SUBSTR);
9422 
9423     bind(RET_FOUND_LONG);
9424     movptr(str1, Address(rsp, wordSize));
9425   } // non constant
9426 
9427   bind(RET_FOUND);
9428   // Compute substr offset
9429   subptr(result, str1);
9430   shrl(result, 1); // index
9431 
9432   bind(CLEANUP);
9433   pop(rsp); // restore SP
9434 
9435 } // string_indexof
9436 
9437 // Compare strings.
9438 void MacroAssembler::string_compare(Register str1, Register str2,
9439                                     Register cnt1, Register cnt2, Register result,
9440                                     XMMRegister vec1) {
9441   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
9442 
9443   // Compute the minimum of the string lengths and the
9444   // difference of the string lengths (stack).
9445   // Do the conditional move stuff
9446   movl(result, cnt1);
9447   subl(cnt1, cnt2);
9448   push(cnt1);
9449   cmov32(Assembler::lessEqual, cnt2, result);
9450 
9451   // Is the minimum length zero?
9452   testl(cnt2, cnt2);
9453   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
9454 
9455   // Load first characters
9456   load_unsigned_short(result, Address(str1, 0));
9457   load_unsigned_short(cnt1, Address(str2, 0));
9458 
9459   // Compare first characters
9460   subl(result, cnt1);
9461   jcc(Assembler::notZero,  POP_LABEL);
9462   decrementl(cnt2);
9463   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
9464 
9465   {
9466     // Check after comparing first character to see if strings are equivalent
9467     Label LSkip2;
9468     // Check if the strings start at same location
9469     cmpptr(str1, str2);
9470     jccb(Assembler::notEqual, LSkip2);
9471 
9472     // Check if the length difference is zero (from stack)
9473     cmpl(Address(rsp, 0), 0x0);
9474     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
9475 
9476     // Strings might not be equivalent
9477     bind(LSkip2);
9478   }
9479 
9480   Address::ScaleFactor scale = Address::times_2;
9481   int stride = 8;
9482 
9483   // Advance to next element
9484   addptr(str1, 16/stride);
9485   addptr(str2, 16/stride);
9486 
9487   if (UseSSE42Intrinsics) {
9488     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
9489     int pcmpmask = 0x19;
9490     // Setup to compare 16-byte vectors
9491     movl(result, cnt2);
9492     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
9493     jccb(Assembler::zero, COMPARE_TAIL);
9494 
9495     lea(str1, Address(str1, result, scale));
9496     lea(str2, Address(str2, result, scale));
9497     negptr(result);
9498 
9499     // pcmpestri
9500     //   inputs:
9501     //     vec1- substring
9502     //     rax - negative string length (elements count)
9503     //     mem - scaned string
9504     //     rdx - string length (elements count)
9505     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
9506     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
9507     //   outputs:
9508     //     rcx - first mismatched element index
9509     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
9510 
9511     bind(COMPARE_WIDE_VECTORS);
9512     movdqu(vec1, Address(str1, result, scale));
9513     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
9514     // After pcmpestri cnt1(rcx) contains mismatched element index
9515 
9516     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
9517     addptr(result, stride);
9518     subptr(cnt2, stride);
9519     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
9520 
9521     // compare wide vectors tail
9522     testl(result, result);
9523     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
9524 
9525     movl(cnt2, stride);
9526     movl(result, stride);
9527     negptr(result);
9528     movdqu(vec1, Address(str1, result, scale));
9529     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
9530     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
9531 
9532     // Mismatched characters in the vectors
9533     bind(VECTOR_NOT_EQUAL);
9534     addptr(result, cnt1);
9535     movptr(cnt2, result);
9536     load_unsigned_short(result, Address(str1, cnt2, scale));
9537     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
9538     subl(result, cnt1);
9539     jmpb(POP_LABEL);
9540 
9541     bind(COMPARE_TAIL); // limit is zero
9542     movl(cnt2, result);
9543     // Fallthru to tail compare
9544   }
9545 
9546   // Shift str2 and str1 to the end of the arrays, negate min
9547   lea(str1, Address(str1, cnt2, scale, 0));
9548   lea(str2, Address(str2, cnt2, scale, 0));
9549   negptr(cnt2);
9550 
9551   // Compare the rest of the elements
9552   bind(WHILE_HEAD_LABEL);
9553   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
9554   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
9555   subl(result, cnt1);
9556   jccb(Assembler::notZero, POP_LABEL);
9557   increment(cnt2);
9558   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
9559 
9560   // Strings are equal up to min length.  Return the length difference.
9561   bind(LENGTH_DIFF_LABEL);
9562   pop(result);
9563   jmpb(DONE_LABEL);
9564 
9565   // Discard the stored length difference
9566   bind(POP_LABEL);
9567   pop(cnt1);
9568 
9569   // That's it
9570   bind(DONE_LABEL);
9571 }
9572 
9573 // Compare char[] arrays aligned to 4 bytes or substrings.
9574 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
9575                                         Register limit, Register result, Register chr,
9576                                         XMMRegister vec1, XMMRegister vec2) {
9577   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
9578 
9579   int length_offset  = arrayOopDesc::length_offset_in_bytes();
9580   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
9581 
9582   // Check the input args
9583   cmpptr(ary1, ary2);
9584   jcc(Assembler::equal, TRUE_LABEL);
9585 
9586   if (is_array_equ) {
9587     // Need additional checks for arrays_equals.
9588     testptr(ary1, ary1);
9589     jcc(Assembler::zero, FALSE_LABEL);
9590     testptr(ary2, ary2);
9591     jcc(Assembler::zero, FALSE_LABEL);
9592 
9593     // Check the lengths
9594     movl(limit, Address(ary1, length_offset));
9595     cmpl(limit, Address(ary2, length_offset));
9596     jcc(Assembler::notEqual, FALSE_LABEL);
9597   }
9598 
9599   // count == 0
9600   testl(limit, limit);
9601   jcc(Assembler::zero, TRUE_LABEL);
9602 
9603   if (is_array_equ) {
9604     // Load array address
9605     lea(ary1, Address(ary1, base_offset));
9606     lea(ary2, Address(ary2, base_offset));
9607   }
9608 
9609   shll(limit, 1);      // byte count != 0
9610   movl(result, limit); // copy
9611 
9612   if (UseSSE42Intrinsics) {
9613     // With SSE4.2, use double quad vector compare
9614     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
9615 
9616     // Compare 16-byte vectors
9617     andl(result, 0x0000000e);  //   tail count (in bytes)
9618     andl(limit, 0xfffffff0);   // vector count (in bytes)
9619     jccb(Assembler::zero, COMPARE_TAIL);
9620 
9621     lea(ary1, Address(ary1, limit, Address::times_1));
9622     lea(ary2, Address(ary2, limit, Address::times_1));
9623     negptr(limit);
9624 
9625     bind(COMPARE_WIDE_VECTORS);
9626     movdqu(vec1, Address(ary1, limit, Address::times_1));
9627     movdqu(vec2, Address(ary2, limit, Address::times_1));
9628     pxor(vec1, vec2);
9629 
9630     ptest(vec1, vec1);
9631     jccb(Assembler::notZero, FALSE_LABEL);
9632     addptr(limit, 16);
9633     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
9634 
9635     testl(result, result);
9636     jccb(Assembler::zero, TRUE_LABEL);
9637 
9638     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
9639     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
9640     pxor(vec1, vec2);
9641 
9642     ptest(vec1, vec1);
9643     jccb(Assembler::notZero, FALSE_LABEL);
9644     jmpb(TRUE_LABEL);
9645 
9646     bind(COMPARE_TAIL); // limit is zero
9647     movl(limit, result);
9648     // Fallthru to tail compare
9649   }
9650 
9651   // Compare 4-byte vectors
9652   andl(limit, 0xfffffffc); // vector count (in bytes)
9653   jccb(Assembler::zero, COMPARE_CHAR);
9654 
9655   lea(ary1, Address(ary1, limit, Address::times_1));
9656   lea(ary2, Address(ary2, limit, Address::times_1));
9657   negptr(limit);
9658 
9659   bind(COMPARE_VECTORS);
9660   movl(chr, Address(ary1, limit, Address::times_1));
9661   cmpl(chr, Address(ary2, limit, Address::times_1));
9662   jccb(Assembler::notEqual, FALSE_LABEL);
9663   addptr(limit, 4);
9664   jcc(Assembler::notZero, COMPARE_VECTORS);
9665 
9666   // Compare trailing char (final 2 bytes), if any
9667   bind(COMPARE_CHAR);
9668   testl(result, 0x2);   // tail  char
9669   jccb(Assembler::zero, TRUE_LABEL);
9670   load_unsigned_short(chr, Address(ary1, 0));
9671   load_unsigned_short(limit, Address(ary2, 0));
9672   cmpl(chr, limit);
9673   jccb(Assembler::notEqual, FALSE_LABEL);
9674 
9675   bind(TRUE_LABEL);
9676   movl(result, 1);   // return true
9677   jmpb(DONE);
9678 
9679   bind(FALSE_LABEL);
9680   xorl(result, result); // return false
9681 
9682   // That's it
9683   bind(DONE);
9684 }
9685 
9686 #ifdef PRODUCT
9687 #define BLOCK_COMMENT(str) /* nothing */
9688 #else
9689 #define BLOCK_COMMENT(str) block_comment(str)
9690 #endif
9691 
9692 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
9693 void MacroAssembler::generate_fill(BasicType t, bool aligned,
9694                                    Register to, Register value, Register count,
9695                                    Register rtmp, XMMRegister xtmp) {
9696   assert_different_registers(to, value, count, rtmp);
9697   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
9698   Label L_fill_2_bytes, L_fill_4_bytes;
9699 
9700   int shift = -1;
9701   switch (t) {
9702     case T_BYTE:
9703       shift = 2;
9704       break;
9705     case T_SHORT:
9706       shift = 1;
9707       break;
9708     case T_INT:
9709       shift = 0;
9710       break;
9711     default: ShouldNotReachHere();
9712   }
9713 
9714   if (t == T_BYTE) {
9715     andl(value, 0xff);
9716     movl(rtmp, value);
9717     shll(rtmp, 8);
9718     orl(value, rtmp);
9719   }
9720   if (t == T_SHORT) {
9721     andl(value, 0xffff);
9722   }
9723   if (t == T_BYTE || t == T_SHORT) {
9724     movl(rtmp, value);
9725     shll(rtmp, 16);
9726     orl(value, rtmp);
9727   }
9728 
9729   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
9730   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
9731   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
9732     // align source address at 4 bytes address boundary
9733     if (t == T_BYTE) {
9734       // One byte misalignment happens only for byte arrays
9735       testptr(to, 1);
9736       jccb(Assembler::zero, L_skip_align1);
9737       movb(Address(to, 0), value);
9738       increment(to);
9739       decrement(count);
9740       BIND(L_skip_align1);
9741     }
9742     // Two bytes misalignment happens only for byte and short (char) arrays
9743     testptr(to, 2);
9744     jccb(Assembler::zero, L_skip_align2);
9745     movw(Address(to, 0), value);
9746     addptr(to, 2);
9747     subl(count, 1<<(shift-1));
9748     BIND(L_skip_align2);
9749   }
9750   if (UseSSE < 2) {
9751     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
9752     // Fill 32-byte chunks
9753     subl(count, 8 << shift);
9754     jcc(Assembler::less, L_check_fill_8_bytes);
9755     align(16);
9756 
9757     BIND(L_fill_32_bytes_loop);
9758 
9759     for (int i = 0; i < 32; i += 4) {
9760       movl(Address(to, i), value);
9761     }
9762 
9763     addptr(to, 32);
9764     subl(count, 8 << shift);
9765     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
9766     BIND(L_check_fill_8_bytes);
9767     addl(count, 8 << shift);
9768     jccb(Assembler::zero, L_exit);
9769     jmpb(L_fill_8_bytes);
9770 
9771     //
9772     // length is too short, just fill qwords
9773     //
9774     BIND(L_fill_8_bytes_loop);
9775     movl(Address(to, 0), value);
9776     movl(Address(to, 4), value);
9777     addptr(to, 8);
9778     BIND(L_fill_8_bytes);
9779     subl(count, 1 << (shift + 1));
9780     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
9781     // fall through to fill 4 bytes
9782   } else {
9783     Label L_fill_32_bytes;
9784     if (!UseUnalignedLoadStores) {
9785       // align to 8 bytes, we know we are 4 byte aligned to start
9786       testptr(to, 4);
9787       jccb(Assembler::zero, L_fill_32_bytes);
9788       movl(Address(to, 0), value);
9789       addptr(to, 4);
9790       subl(count, 1<<shift);
9791     }
9792     BIND(L_fill_32_bytes);
9793     {
9794       assert( UseSSE >= 2, "supported cpu only" );
9795       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
9796       // Fill 32-byte chunks
9797       movdl(xtmp, value);
9798       pshufd(xtmp, xtmp, 0);
9799 
9800       subl(count, 8 << shift);
9801       jcc(Assembler::less, L_check_fill_8_bytes);
9802       align(16);
9803 
9804       BIND(L_fill_32_bytes_loop);
9805 
9806       if (UseUnalignedLoadStores) {
9807         movdqu(Address(to, 0), xtmp);
9808         movdqu(Address(to, 16), xtmp);
9809       } else {
9810         movq(Address(to, 0), xtmp);
9811         movq(Address(to, 8), xtmp);
9812         movq(Address(to, 16), xtmp);
9813         movq(Address(to, 24), xtmp);
9814       }
9815 
9816       addptr(to, 32);
9817       subl(count, 8 << shift);
9818       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
9819       BIND(L_check_fill_8_bytes);
9820       addl(count, 8 << shift);
9821       jccb(Assembler::zero, L_exit);
9822       jmpb(L_fill_8_bytes);
9823 
9824       //
9825       // length is too short, just fill qwords
9826       //
9827       BIND(L_fill_8_bytes_loop);
9828       movq(Address(to, 0), xtmp);
9829       addptr(to, 8);
9830       BIND(L_fill_8_bytes);
9831       subl(count, 1 << (shift + 1));
9832       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
9833     }
9834   }
9835   // fill trailing 4 bytes
9836   BIND(L_fill_4_bytes);
9837   testl(count, 1<<shift);
9838   jccb(Assembler::zero, L_fill_2_bytes);
9839   movl(Address(to, 0), value);
9840   if (t == T_BYTE || t == T_SHORT) {
9841     addptr(to, 4);
9842     BIND(L_fill_2_bytes);
9843     // fill trailing 2 bytes
9844     testl(count, 1<<(shift-1));
9845     jccb(Assembler::zero, L_fill_byte);
9846     movw(Address(to, 0), value);
9847     if (t == T_BYTE) {
9848       addptr(to, 2);
9849       BIND(L_fill_byte);
9850       // fill trailing byte
9851       testl(count, 1);
9852       jccb(Assembler::zero, L_exit);
9853       movb(Address(to, 0), value);
9854     } else {
9855       BIND(L_fill_byte);
9856     }
9857   } else {
9858     BIND(L_fill_2_bytes);
9859   }
9860   BIND(L_exit);
9861 }
9862 #undef BIND
9863 #undef BLOCK_COMMENT
9864 
9865 
9866 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9867   switch (cond) {
9868     // Note some conditions are synonyms for others
9869     case Assembler::zero:         return Assembler::notZero;
9870     case Assembler::notZero:      return Assembler::zero;
9871     case Assembler::less:         return Assembler::greaterEqual;
9872     case Assembler::lessEqual:    return Assembler::greater;
9873     case Assembler::greater:      return Assembler::lessEqual;
9874     case Assembler::greaterEqual: return Assembler::less;
9875     case Assembler::below:        return Assembler::aboveEqual;
9876     case Assembler::belowEqual:   return Assembler::above;
9877     case Assembler::above:        return Assembler::belowEqual;
9878     case Assembler::aboveEqual:   return Assembler::below;
9879     case Assembler::overflow:     return Assembler::noOverflow;
9880     case Assembler::noOverflow:   return Assembler::overflow;
9881     case Assembler::negative:     return Assembler::positive;
9882     case Assembler::positive:     return Assembler::negative;
9883     case Assembler::parity:       return Assembler::noParity;
9884     case Assembler::noParity:     return Assembler::parity;
9885   }
9886   ShouldNotReachHere(); return Assembler::overflow;
9887 }
9888 
9889 SkipIfEqual::SkipIfEqual(
9890     MacroAssembler* masm, const bool* flag_addr, bool value) {
9891   _masm = masm;
9892   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9893   _masm->jcc(Assembler::equal, _label);
9894 }
9895 
9896 SkipIfEqual::~SkipIfEqual() {
9897   _masm->bind(_label);
9898 }