1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
  26 #define CPU_X86_VM_VM_VERSION_X86_HPP
  27 
  28 #include "runtime/globals_extension.hpp"
  29 #include "runtime/vm_version.hpp"
  30 
  31 class VM_Version : public Abstract_VM_Version {
  32 public:
  33   // cpuid result register layouts.  These are all unions of a uint32_t
  34   // (in case anyone wants access to the register as a whole) and a bitfield.
  35 
  36   union StdCpuid1Eax {
  37     uint32_t value;
  38     struct {
  39       uint32_t stepping   : 4,
  40                model      : 4,
  41                family     : 4,
  42                proc_type  : 2,
  43                           : 2,
  44                ext_model  : 4,
  45                ext_family : 8,
  46                           : 4;
  47     } bits;
  48   };
  49 
  50   union StdCpuid1Ebx { // example, unused
  51     uint32_t value;
  52     struct {
  53       uint32_t brand_id         : 8,
  54                clflush_size     : 8,
  55                threads_per_cpu  : 8,
  56                apic_id          : 8;
  57     } bits;
  58   };
  59 
  60   union StdCpuid1Ecx {
  61     uint32_t value;
  62     struct {
  63       uint32_t sse3     : 1,
  64                         : 2,
  65                monitor  : 1,
  66                         : 1,
  67                vmx      : 1,
  68                         : 1,
  69                est      : 1,
  70                         : 1,
  71                ssse3    : 1,
  72                cid      : 1,
  73                         : 2,
  74                cmpxchg16: 1,
  75                         : 4,
  76                dca      : 1,
  77                sse4_1   : 1,
  78                sse4_2   : 1,
  79                         : 2,
  80                popcnt   : 1,
  81                         : 8;
  82     } bits;
  83   };
  84 
  85   union StdCpuid1Edx {
  86     uint32_t value;
  87     struct {
  88       uint32_t          : 4,
  89                tsc      : 1,
  90                         : 3,
  91                cmpxchg8 : 1,
  92                         : 6,
  93                cmov     : 1,
  94                         : 3,
  95                clflush  : 1,
  96                         : 3,
  97                mmx      : 1,
  98                fxsr     : 1,
  99                sse      : 1,
 100                sse2     : 1,
 101                         : 1,
 102                ht       : 1,
 103                         : 3;
 104     } bits;
 105   };
 106 
 107   union DcpCpuid4Eax {
 108     uint32_t value;
 109     struct {
 110       uint32_t cache_type    : 5,
 111                              : 21,
 112                cores_per_cpu : 6;
 113     } bits;
 114   };
 115 
 116   union DcpCpuid4Ebx {
 117     uint32_t value;
 118     struct {
 119       uint32_t L1_line_size  : 12,
 120                partitions    : 10,
 121                associativity : 10;
 122     } bits;
 123   };
 124 
 125   union TplCpuidBEbx {
 126     uint32_t value;
 127     struct {
 128       uint32_t logical_cpus : 16,
 129                             : 16;
 130     } bits;
 131   };
 132 
 133   union ExtCpuid1Ecx {
 134     uint32_t value;
 135     struct {
 136       uint32_t LahfSahf     : 1,
 137                CmpLegacy    : 1,
 138                             : 4,
 139                lzcnt        : 1,
 140                sse4a        : 1,
 141                misalignsse  : 1,
 142                prefetchw    : 1,
 143                             : 22;
 144     } bits;
 145   };
 146 
 147   union ExtCpuid1Edx {
 148     uint32_t value;
 149     struct {
 150       uint32_t           : 22,
 151                mmx_amd   : 1,
 152                mmx       : 1,
 153                fxsr      : 1,
 154                          : 4,
 155                long_mode : 1,
 156                tdnow2    : 1,
 157                tdnow     : 1;
 158     } bits;
 159   };
 160 
 161   union ExtCpuid5Ex {
 162     uint32_t value;
 163     struct {
 164       uint32_t L1_line_size : 8,
 165                L1_tag_lines : 8,
 166                L1_assoc     : 8,
 167                L1_size      : 8;
 168     } bits;
 169   };
 170 
 171   union ExtCpuid8Ecx {
 172     uint32_t value;
 173     struct {
 174       uint32_t cores_per_cpu : 8,
 175                              : 24;
 176     } bits;
 177   };
 178 
 179 protected:
 180    static int _cpu;
 181    static int _model;
 182    static int _stepping;
 183    static int _cpuFeatures;     // features returned by the "cpuid" instruction
 184                                 // 0 if this instruction is not available
 185    static const char* _features_str;
 186 
 187    enum {
 188      CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
 189      CPU_CMOV   = (1 << 1),
 190      CPU_FXSR   = (1 << 2),
 191      CPU_HT     = (1 << 3),
 192      CPU_MMX    = (1 << 4),
 193      CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
 194                                      // may not necessarily support other 3dnow instructions
 195      CPU_SSE    = (1 << 6),
 196      CPU_SSE2   = (1 << 7),
 197      CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
 198      CPU_SSSE3  = (1 << 9),
 199      CPU_SSE4A  = (1 << 10),
 200      CPU_SSE4_1 = (1 << 11),
 201      CPU_SSE4_2 = (1 << 12),
 202      CPU_POPCNT = (1 << 13),
 203      CPU_LZCNT  = (1 << 14)
 204    } cpuFeatureFlags;
 205 
 206   // cpuid information block.  All info derived from executing cpuid with
 207   // various function numbers is stored here.  Intel and AMD info is
 208   // merged in this block: accessor methods disentangle it.
 209   //
 210   // The info block is laid out in subblocks of 4 dwords corresponding to
 211   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 212   struct CpuidInfo {
 213     // cpuid function 0
 214     uint32_t std_max_function;
 215     uint32_t std_vendor_name_0;
 216     uint32_t std_vendor_name_1;
 217     uint32_t std_vendor_name_2;
 218 
 219     // cpuid function 1
 220     StdCpuid1Eax std_cpuid1_eax;
 221     StdCpuid1Ebx std_cpuid1_ebx;
 222     StdCpuid1Ecx std_cpuid1_ecx;
 223     StdCpuid1Edx std_cpuid1_edx;
 224 
 225     // cpuid function 4 (deterministic cache parameters)
 226     DcpCpuid4Eax dcp_cpuid4_eax;
 227     DcpCpuid4Ebx dcp_cpuid4_ebx;
 228     uint32_t     dcp_cpuid4_ecx; // unused currently
 229     uint32_t     dcp_cpuid4_edx; // unused currently
 230 
 231     // cpuid function 0xB (processor topology)
 232     // ecx = 0
 233     uint32_t     tpl_cpuidB0_eax;
 234     TplCpuidBEbx tpl_cpuidB0_ebx;
 235     uint32_t     tpl_cpuidB0_ecx; // unused currently
 236     uint32_t     tpl_cpuidB0_edx; // unused currently
 237 
 238     // ecx = 1
 239     uint32_t     tpl_cpuidB1_eax;
 240     TplCpuidBEbx tpl_cpuidB1_ebx;
 241     uint32_t     tpl_cpuidB1_ecx; // unused currently
 242     uint32_t     tpl_cpuidB1_edx; // unused currently
 243 
 244     // ecx = 2
 245     uint32_t     tpl_cpuidB2_eax;
 246     TplCpuidBEbx tpl_cpuidB2_ebx;
 247     uint32_t     tpl_cpuidB2_ecx; // unused currently
 248     uint32_t     tpl_cpuidB2_edx; // unused currently
 249 
 250     // cpuid function 0x80000000 // example, unused
 251     uint32_t ext_max_function;
 252     uint32_t ext_vendor_name_0;
 253     uint32_t ext_vendor_name_1;
 254     uint32_t ext_vendor_name_2;
 255 
 256     // cpuid function 0x80000001
 257     uint32_t     ext_cpuid1_eax; // reserved
 258     uint32_t     ext_cpuid1_ebx; // reserved
 259     ExtCpuid1Ecx ext_cpuid1_ecx;
 260     ExtCpuid1Edx ext_cpuid1_edx;
 261 
 262     // cpuid functions 0x80000002 thru 0x80000004: example, unused
 263     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
 264     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
 265     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
 266 
 267     // cpuid function 0x80000005 //AMD L1, Intel reserved
 268     uint32_t     ext_cpuid5_eax; // unused currently
 269     uint32_t     ext_cpuid5_ebx; // reserved
 270     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
 271     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 272 
 273     // cpuid function 0x80000008
 274     uint32_t     ext_cpuid8_eax; // unused currently
 275     uint32_t     ext_cpuid8_ebx; // reserved
 276     ExtCpuid8Ecx ext_cpuid8_ecx;
 277     uint32_t     ext_cpuid8_edx; // reserved
 278   };
 279 
 280   // The actual cpuid info block
 281   static CpuidInfo _cpuid_info;
 282 
 283   // Extractors and predicates
 284   static uint32_t extended_cpu_family() {
 285     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 286     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 287     return result;
 288   }
 289   static uint32_t extended_cpu_model() {
 290     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 291     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 292     return result;
 293   }
 294   static uint32_t cpu_stepping() {
 295     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 296     return result;
 297   }
 298   static uint logical_processor_count() {
 299     uint result = threads_per_core();
 300     return result;
 301   }
 302   static uint32_t feature_flags() {
 303     uint32_t result = 0;
 304     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 305       result |= CPU_CX8;
 306     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 307       result |= CPU_CMOV;
 308     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
 309         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 310       result |= CPU_FXSR;
 311     // HT flag is set for multi-core processors also.
 312     if (threads_per_core() > 1)
 313       result |= CPU_HT;
 314     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
 315         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 316       result |= CPU_MMX;
 317     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 318       result |= CPU_SSE;
 319     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 320       result |= CPU_SSE2;
 321     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 322       result |= CPU_SSE3;
 323     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 324       result |= CPU_SSSE3;
 325     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 326       result |= CPU_SSE4_1;
 327     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 328       result |= CPU_SSE4_2;
 329     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 330       result |= CPU_POPCNT;
 331 
 332     // AMD features.
 333     if (is_amd()) {
 334       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
 335           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
 336         result |= CPU_3DNOW_PREFETCH;
 337       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
 338         result |= CPU_LZCNT;
 339       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
 340         result |= CPU_SSE4A;
 341     }
 342 
 343     return result;
 344   }
 345 
 346   static void get_processor_features();
 347 
 348 public:
 349   // Offsets for cpuid asm stub
 350   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 351   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 352   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 353   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 354   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 355   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 356   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 357   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 358   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 359 
 360   // Initialization
 361   static void initialize();
 362 
 363   // Asserts
 364   static void assert_is_initialized() {
 365     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 366   }
 367 
 368   //
 369   // Processor family:
 370   //       3   -  386
 371   //       4   -  486
 372   //       5   -  Pentium
 373   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 374   //              Pentium M, Core Solo, Core Duo, Core2 Duo
 375   //    family 6 model:   9,        13,       14,        15
 376   //    0x0f   -  Pentium 4, Opteron
 377   //
 378   // Note: The cpu family should be used to select between
 379   //       instruction sequences which are valid on all Intel
 380   //       processors.  Use the feature test functions below to
 381   //       determine whether a particular instruction is supported.
 382   //
 383   static int  cpu_family()        { return _cpu;}
 384   static bool is_P6()             { return cpu_family() >= 6; }
 385 
 386   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
 387   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
 388 
 389   static bool supports_processor_topology() {
 390     return (_cpuid_info.std_max_function >= 0xB) &&
 391            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
 392            // Some cpus have max cpuid >= 0xB but do not support processor topology.
 393            ((_cpuid_info.tpl_cpuidB0_eax & 0x1f | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
 394   }
 395 
 396   static uint cores_per_cpu()  {
 397     uint result = 1;
 398     if (is_intel()) {
 399       if (supports_processor_topology()) {
 400         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 401                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 402       } else {
 403         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 404       }
 405     } else if (is_amd()) {
 406       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
 407     }
 408     return result;
 409   }
 410 
 411   static uint threads_per_core()  {
 412     uint result = 1;
 413     if (is_intel() && supports_processor_topology()) {
 414       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 415     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
 416       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
 417                cores_per_cpu();
 418     }
 419     return result;
 420   }
 421 
 422   static intx prefetch_data_size()  {
 423     intx result = 0;
 424     if (is_intel()) {
 425       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 426     } else if (is_amd()) {
 427       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
 428     }
 429     if (result < 32) // not defined ?
 430       result = 32;   // 32 bytes by default on x86 and other x64
 431     return result;
 432   }
 433 
 434   //
 435   // Feature identification
 436   //
 437   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
 438   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
 439   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
 440   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
 441   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
 442   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
 443   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
 444   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
 445   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
 446   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
 447   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
 448   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
 449   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
 450   //
 451   // AMD features
 452   //
 453   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
 454   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
 455   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
 456   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
 457 
 458   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
 459   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
 460                                            supports_sse3() && _model != 0x1C; }
 461 
 462   static bool supports_compare_and_exchange() { return true; }
 463 
 464   static const char* cpu_features()           { return _features_str; }
 465 
 466   static intx allocate_prefetch_distance() {
 467     // This method should be called before allocate_prefetch_style().
 468     //
 469     // Hardware prefetching (distance/size in bytes):
 470     // Pentium 3 -  64 /  32
 471     // Pentium 4 - 256 / 128
 472     // Athlon    -  64 /  32 ????
 473     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
 474     // Core      - 128 /  64
 475     //
 476     // Software prefetching (distance in bytes / instruction with best score):
 477     // Pentium 3 - 128 / prefetchnta
 478     // Pentium 4 - 512 / prefetchnta
 479     // Athlon    - 128 / prefetchnta
 480     // Opteron   - 256 / prefetchnta
 481     // Core      - 256 / prefetchnta
 482     // It will be used only when AllocatePrefetchStyle > 0
 483 
 484     intx count = AllocatePrefetchDistance;
 485     if (count < 0) {   // default ?
 486       if (is_amd()) {  // AMD
 487         if (supports_sse2())
 488           count = 256; // Opteron
 489         else
 490           count = 128; // Athlon
 491       } else {         // Intel
 492         if (supports_sse2())
 493           if (cpu_family() == 6) {
 494             count = 256; // Pentium M, Core, Core2
 495           } else {
 496             count = 512; // Pentium 4
 497           }
 498         else
 499           count = 128; // Pentium 3 (and all other old CPUs)
 500       }
 501     }
 502     return count;
 503   }
 504   static intx allocate_prefetch_style() {
 505     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
 506     // Return 0 if AllocatePrefetchDistance was not defined.
 507     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
 508   }
 509 
 510   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
 511   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
 512   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
 513   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
 514 
 515   // gc copy/scan is disabled if prefetchw isn't supported, because
 516   // Prefetch::write emits an inlined prefetchw on Linux.
 517   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
 518   // The used prefetcht0 instruction works for both amd64 and em64t.
 519   static intx prefetch_copy_interval_in_bytes() {
 520     intx interval = PrefetchCopyIntervalInBytes;
 521     return interval >= 0 ? interval : 576;
 522   }
 523   static intx prefetch_scan_interval_in_bytes() {
 524     intx interval = PrefetchScanIntervalInBytes;
 525     return interval >= 0 ? interval : 576;
 526   }
 527   static intx prefetch_fields_ahead() {
 528     intx count = PrefetchFieldsAhead;
 529     return count >= 0 ? count : 1;
 530   }
 531 };
 532 
 533 #endif // CPU_X86_VM_VM_VERSION_X86_HPP