1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
  26 #define CPU_X86_VM_VM_VERSION_X86_HPP
  27 
  28 #include "runtime/globals_extension.hpp"
  29 #include "runtime/vm_version.hpp"
  30 
  31 class VM_Version : public Abstract_VM_Version {
  32 public:
  33   // cpuid result register layouts.  These are all unions of a uint32_t
  34   // (in case anyone wants access to the register as a whole) and a bitfield.
  35 
  36   union StdCpuid1Eax {
  37     uint32_t value;
  38     struct {
  39       uint32_t stepping   : 4,
  40                model      : 4,
  41                family     : 4,
  42                proc_type  : 2,
  43                           : 2,
  44                ext_model  : 4,
  45                ext_family : 8,
  46                           : 4;
  47     } bits;
  48   };
  49 
  50   union StdCpuid1Ebx { // example, unused
  51     uint32_t value;
  52     struct {
  53       uint32_t brand_id         : 8,
  54                clflush_size     : 8,
  55                threads_per_cpu  : 8,
  56                apic_id          : 8;
  57     } bits;
  58   };
  59 
  60   union StdCpuid1Ecx {
  61     uint32_t value;
  62     struct {
  63       uint32_t sse3     : 1,
  64                         : 2,
  65                monitor  : 1,
  66                         : 1,
  67                vmx      : 1,
  68                         : 1,
  69                est      : 1,
  70                         : 1,
  71                ssse3    : 1,
  72                cid      : 1,
  73                         : 2,
  74                cmpxchg16: 1,
  75                         : 4,
  76                dca      : 1,
  77                sse4_1   : 1,
  78                sse4_2   : 1,
  79                         : 2,
  80                popcnt   : 1,
  81                         : 3,
  82                osxsave  : 1,
  83                avx      : 1,
  84                         : 3;
  85     } bits;
  86   };
  87 
  88   union StdCpuid1Edx {
  89     uint32_t value;
  90     struct {
  91       uint32_t          : 4,
  92                tsc      : 1,
  93                         : 3,
  94                cmpxchg8 : 1,
  95                         : 6,
  96                cmov     : 1,
  97                         : 3,
  98                clflush  : 1,
  99                         : 3,
 100                mmx      : 1,
 101                fxsr     : 1,
 102                sse      : 1,
 103                sse2     : 1,
 104                         : 1,
 105                ht       : 1,
 106                         : 3;
 107     } bits;
 108   };
 109 
 110   union DcpCpuid4Eax {
 111     uint32_t value;
 112     struct {
 113       uint32_t cache_type    : 5,
 114                              : 21,
 115                cores_per_cpu : 6;
 116     } bits;
 117   };
 118 
 119   union DcpCpuid4Ebx {
 120     uint32_t value;
 121     struct {
 122       uint32_t L1_line_size  : 12,
 123                partitions    : 10,
 124                associativity : 10;
 125     } bits;
 126   };
 127 
 128   union TplCpuidBEbx {
 129     uint32_t value;
 130     struct {
 131       uint32_t logical_cpus : 16,
 132                             : 16;
 133     } bits;
 134   };
 135 
 136   union ExtCpuid1Ecx {
 137     uint32_t value;
 138     struct {
 139       uint32_t LahfSahf     : 1,
 140                CmpLegacy    : 1,
 141                             : 4,
 142                lzcnt        : 1,
 143                sse4a        : 1,
 144                misalignsse  : 1,
 145                prefetchw    : 1,
 146                             : 22;
 147     } bits;
 148   };
 149 
 150   union ExtCpuid1Edx {
 151     uint32_t value;
 152     struct {
 153       uint32_t           : 22,
 154                mmx_amd   : 1,
 155                mmx       : 1,
 156                fxsr      : 1,
 157                          : 4,
 158                long_mode : 1,
 159                tdnow2    : 1,
 160                tdnow     : 1;
 161     } bits;
 162   };
 163 
 164   union ExtCpuid5Ex {
 165     uint32_t value;
 166     struct {
 167       uint32_t L1_line_size : 8,
 168                L1_tag_lines : 8,
 169                L1_assoc     : 8,
 170                L1_size      : 8;
 171     } bits;
 172   };
 173 
 174   union ExtCpuid8Ecx {
 175     uint32_t value;
 176     struct {
 177       uint32_t cores_per_cpu : 8,
 178                              : 24;
 179     } bits;
 180   };
 181 
 182   union SefCpuid7Eax {
 183     uint32_t value;
 184   };
 185 
 186   union SefCpuid7Ebx {
 187     uint32_t value;
 188     struct {
 189       uint32_t fsgsbase : 1,
 190                         : 2,
 191                    bmi1 : 1,
 192                         : 1,
 193                    avx2 : 1,
 194                         : 2,
 195                    bmi2 : 1,
 196                         : 23;
 197     } bits;
 198   };
 199 
 200   union XemXcr0Eax {
 201     uint32_t value;
 202     struct {
 203       uint32_t x87 : 1,
 204                sse : 1,
 205                ymm : 1,
 206                    : 29;
 207     } bits;
 208   };
 209 
 210 protected:
 211    static int _cpu;
 212    static int _model;
 213    static int _stepping;
 214    static int _cpuFeatures;     // features returned by the "cpuid" instruction
 215                                 // 0 if this instruction is not available
 216    static const char* _features_str;
 217 
 218    enum {
 219      CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
 220      CPU_CMOV   = (1 << 1),
 221      CPU_FXSR   = (1 << 2),
 222      CPU_HT     = (1 << 3),
 223      CPU_MMX    = (1 << 4),
 224      CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
 225                                      // may not necessarily support other 3dnow instructions
 226      CPU_SSE    = (1 << 6),
 227      CPU_SSE2   = (1 << 7),
 228      CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
 229      CPU_SSSE3  = (1 << 9),
 230      CPU_SSE4A  = (1 << 10),
 231      CPU_SSE4_1 = (1 << 11),
 232      CPU_SSE4_2 = (1 << 12),
 233      CPU_POPCNT = (1 << 13),
 234      CPU_LZCNT  = (1 << 14),
 235      CPU_AVX    = (1 << 15),
 236      CPU_AVX2   = (1 << 16)
 237    } cpuFeatureFlags;
 238 
 239   // cpuid information block.  All info derived from executing cpuid with
 240   // various function numbers is stored here.  Intel and AMD info is
 241   // merged in this block: accessor methods disentangle it.
 242   //
 243   // The info block is laid out in subblocks of 4 dwords corresponding to
 244   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 245   struct CpuidInfo {
 246     // cpuid function 0
 247     uint32_t std_max_function;
 248     uint32_t std_vendor_name_0;
 249     uint32_t std_vendor_name_1;
 250     uint32_t std_vendor_name_2;
 251 
 252     // cpuid function 1
 253     StdCpuid1Eax std_cpuid1_eax;
 254     StdCpuid1Ebx std_cpuid1_ebx;
 255     StdCpuid1Ecx std_cpuid1_ecx;
 256     StdCpuid1Edx std_cpuid1_edx;
 257 
 258     // cpuid function 4 (deterministic cache parameters)
 259     DcpCpuid4Eax dcp_cpuid4_eax;
 260     DcpCpuid4Ebx dcp_cpuid4_ebx;
 261     uint32_t     dcp_cpuid4_ecx; // unused currently
 262     uint32_t     dcp_cpuid4_edx; // unused currently
 263 
 264     // cpuid function 7 (structured extended features)
 265     SefCpuid7Eax sef_cpuid7_eax;
 266     SefCpuid7Ebx sef_cpuid7_ebx;
 267     uint32_t     sef_cpuid7_ecx; // unused currently
 268     uint32_t     sef_cpuid7_edx; // unused currently
 269 
 270     // cpuid function 0xB (processor topology)
 271     // ecx = 0
 272     uint32_t     tpl_cpuidB0_eax;
 273     TplCpuidBEbx tpl_cpuidB0_ebx;
 274     uint32_t     tpl_cpuidB0_ecx; // unused currently
 275     uint32_t     tpl_cpuidB0_edx; // unused currently
 276 
 277     // ecx = 1
 278     uint32_t     tpl_cpuidB1_eax;
 279     TplCpuidBEbx tpl_cpuidB1_ebx;
 280     uint32_t     tpl_cpuidB1_ecx; // unused currently
 281     uint32_t     tpl_cpuidB1_edx; // unused currently
 282 
 283     // ecx = 2
 284     uint32_t     tpl_cpuidB2_eax;
 285     TplCpuidBEbx tpl_cpuidB2_ebx;
 286     uint32_t     tpl_cpuidB2_ecx; // unused currently
 287     uint32_t     tpl_cpuidB2_edx; // unused currently
 288 
 289     // cpuid function 0x80000000 // example, unused
 290     uint32_t ext_max_function;
 291     uint32_t ext_vendor_name_0;
 292     uint32_t ext_vendor_name_1;
 293     uint32_t ext_vendor_name_2;
 294 
 295     // cpuid function 0x80000001
 296     uint32_t     ext_cpuid1_eax; // reserved
 297     uint32_t     ext_cpuid1_ebx; // reserved
 298     ExtCpuid1Ecx ext_cpuid1_ecx;
 299     ExtCpuid1Edx ext_cpuid1_edx;
 300 
 301     // cpuid functions 0x80000002 thru 0x80000004: example, unused
 302     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
 303     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
 304     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
 305 
 306     // cpuid function 0x80000005 //AMD L1, Intel reserved
 307     uint32_t     ext_cpuid5_eax; // unused currently
 308     uint32_t     ext_cpuid5_ebx; // reserved
 309     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
 310     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 311 
 312     // cpuid function 0x80000008
 313     uint32_t     ext_cpuid8_eax; // unused currently
 314     uint32_t     ext_cpuid8_ebx; // reserved
 315     ExtCpuid8Ecx ext_cpuid8_ecx;
 316     uint32_t     ext_cpuid8_edx; // reserved
 317 
 318     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
 319     XemXcr0Eax   xem_xcr0_eax;
 320     uint32_t     xem_xcr0_edx; // reserved
 321   };
 322 
 323   // The actual cpuid info block
 324   static CpuidInfo _cpuid_info;
 325 
 326   // Extractors and predicates
 327   static uint32_t extended_cpu_family() {
 328     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 329     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 330     return result;
 331   }
 332   static uint32_t extended_cpu_model() {
 333     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 334     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 335     return result;
 336   }
 337   static uint32_t cpu_stepping() {
 338     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 339     return result;
 340   }
 341   static uint logical_processor_count() {
 342     uint result = threads_per_core();
 343     return result;
 344   }
 345   static uint32_t feature_flags() {
 346     uint32_t result = 0;
 347     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 348       result |= CPU_CX8;
 349     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 350       result |= CPU_CMOV;
 351     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
 352         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 353       result |= CPU_FXSR;
 354     // HT flag is set for multi-core processors also.
 355     if (threads_per_core() > 1)
 356       result |= CPU_HT;
 357     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
 358         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 359       result |= CPU_MMX;
 360     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 361       result |= CPU_SSE;
 362     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 363       result |= CPU_SSE2;
 364     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 365       result |= CPU_SSE3;
 366     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 367       result |= CPU_SSSE3;
 368     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 369       result |= CPU_SSE4_1;
 370     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 371       result |= CPU_SSE4_2;
 372     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 373       result |= CPU_POPCNT;
 374     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
 375         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
 376         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
 377         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
 378       result |= CPU_AVX;
 379       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
 380         result |= CPU_AVX2;
 381     }
 382 
 383     // AMD features.
 384     if (is_amd()) {
 385       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
 386           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
 387         result |= CPU_3DNOW_PREFETCH;
 388       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
 389         result |= CPU_LZCNT;
 390       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
 391         result |= CPU_SSE4A;
 392     }
 393 
 394     return result;
 395   }
 396 
 397   static void get_processor_features();
 398 
 399 public:
 400   // Offsets for cpuid asm stub
 401   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 402   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 403   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 404   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
 405   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 406   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 407   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 408   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 409   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 410   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 411   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
 412 
 413   // Initialization
 414   static void initialize();
 415 
 416   // Asserts
 417   static void assert_is_initialized() {
 418     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 419   }
 420 
 421   //
 422   // Processor family:
 423   //       3   -  386
 424   //       4   -  486
 425   //       5   -  Pentium
 426   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 427   //              Pentium M, Core Solo, Core Duo, Core2 Duo
 428   //    family 6 model:   9,        13,       14,        15
 429   //    0x0f   -  Pentium 4, Opteron
 430   //
 431   // Note: The cpu family should be used to select between
 432   //       instruction sequences which are valid on all Intel
 433   //       processors.  Use the feature test functions below to
 434   //       determine whether a particular instruction is supported.
 435   //
 436   static int  cpu_family()        { return _cpu;}
 437   static bool is_P6()             { return cpu_family() >= 6; }
 438 
 439   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
 440   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
 441 
 442   static bool supports_processor_topology() {
 443     return (_cpuid_info.std_max_function >= 0xB) &&
 444            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
 445            // Some cpus have max cpuid >= 0xB but do not support processor topology.
 446            ((_cpuid_info.tpl_cpuidB0_eax & 0x1f | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
 447   }
 448 
 449   static uint cores_per_cpu()  {
 450     uint result = 1;
 451     if (is_intel()) {
 452       if (supports_processor_topology()) {
 453         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 454                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 455       } else {
 456         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 457       }
 458     } else if (is_amd()) {
 459       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
 460     }
 461     return result;
 462   }
 463 
 464   static uint threads_per_core()  {
 465     uint result = 1;
 466     if (is_intel() && supports_processor_topology()) {
 467       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 468     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
 469       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
 470                cores_per_cpu();
 471     }
 472     return result;
 473   }
 474 
 475   static intx prefetch_data_size()  {
 476     intx result = 0;
 477     if (is_intel()) {
 478       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 479     } else if (is_amd()) {
 480       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
 481     }
 482     if (result < 32) // not defined ?
 483       result = 32;   // 32 bytes by default on x86 and other x64
 484     return result;
 485   }
 486 
 487   //
 488   // Feature identification
 489   //
 490   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
 491   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
 492   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
 493   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
 494   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
 495   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
 496   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
 497   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
 498   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
 499   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
 500   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
 501   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
 502   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
 503   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
 504   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
 505   //
 506   // AMD features
 507   //
 508   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
 509   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
 510   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
 511   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
 512 
 513   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
 514   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
 515                                            supports_sse3() && _model != 0x1C; }
 516 
 517   static bool supports_compare_and_exchange() { return true; }
 518 
 519   static const char* cpu_features()           { return _features_str; }
 520 
 521   static intx allocate_prefetch_distance() {
 522     // This method should be called before allocate_prefetch_style().
 523     //
 524     // Hardware prefetching (distance/size in bytes):
 525     // Pentium 3 -  64 /  32
 526     // Pentium 4 - 256 / 128
 527     // Athlon    -  64 /  32 ????
 528     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
 529     // Core      - 128 /  64
 530     //
 531     // Software prefetching (distance in bytes / instruction with best score):
 532     // Pentium 3 - 128 / prefetchnta
 533     // Pentium 4 - 512 / prefetchnta
 534     // Athlon    - 128 / prefetchnta
 535     // Opteron   - 256 / prefetchnta
 536     // Core      - 256 / prefetchnta
 537     // It will be used only when AllocatePrefetchStyle > 0
 538 
 539     intx count = AllocatePrefetchDistance;
 540     if (count < 0) {   // default ?
 541       if (is_amd()) {  // AMD
 542         if (supports_sse2())
 543           count = 256; // Opteron
 544         else
 545           count = 128; // Athlon
 546       } else {         // Intel
 547         if (supports_sse2())
 548           if (cpu_family() == 6) {
 549             count = 256; // Pentium M, Core, Core2
 550           } else {
 551             count = 512; // Pentium 4
 552           }
 553         else
 554           count = 128; // Pentium 3 (and all other old CPUs)
 555       }
 556     }
 557     return count;
 558   }
 559   static intx allocate_prefetch_style() {
 560     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
 561     // Return 0 if AllocatePrefetchDistance was not defined.
 562     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
 563   }
 564 
 565   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
 566   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
 567   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
 568   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
 569 
 570   // gc copy/scan is disabled if prefetchw isn't supported, because
 571   // Prefetch::write emits an inlined prefetchw on Linux.
 572   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
 573   // The used prefetcht0 instruction works for both amd64 and em64t.
 574   static intx prefetch_copy_interval_in_bytes() {
 575     intx interval = PrefetchCopyIntervalInBytes;
 576     return interval >= 0 ? interval : 576;
 577   }
 578   static intx prefetch_scan_interval_in_bytes() {
 579     intx interval = PrefetchScanIntervalInBytes;
 580     return interval >= 0 ? interval : 576;
 581   }
 582   static intx prefetch_fields_ahead() {
 583     intx count = PrefetchFieldsAhead;
 584     return count >= 0 ? count : 1;
 585   }
 586 };
 587 
 588 #endif // CPU_X86_VM_VM_VERSION_X86_HPP