1 //
   2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 extern bool use_block_zeroing(Node* count);
 464 
 465 // Macros to extract hi & lo halves from a long pair.
 466 // G0 is not part of any long pair, so assert on that.
 467 // Prevents accidentally using G1 instead of G0.
 468 #define LONG_HI_REG(x) (x)
 469 #define LONG_LO_REG(x) (x)
 470 
 471 %}
 472 
 473 source %{
 474 #define __ _masm.
 475 
 476 // tertiary op of a LoadP or StoreP encoding
 477 #define REGP_OP true
 478 
 479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 481 static Register reg_to_register_object(int register_encoding);
 482 
 483 // Used by the DFA in dfa_sparc.cpp.
 484 // Check for being able to use a V9 branch-on-register.  Requires a
 485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 486 // extended.  Doesn't work following an integer ADD, for example, because of
 487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 489 // replace them with zero, which could become sign-extension in a different OS
 490 // release.  There's no obvious reason why an interrupt will ever fill these
 491 // bits with non-zero junk (the registers are reloaded with standard LD
 492 // instructions which either zero-fill or sign-fill).
 493 bool can_branch_register( Node *bol, Node *cmp ) {
 494   if( !BranchOnRegister ) return false;
 495 #ifdef _LP64
 496   if( cmp->Opcode() == Op_CmpP )
 497     return true;  // No problems with pointer compares
 498 #endif
 499   if( cmp->Opcode() == Op_CmpL )
 500     return true;  // No problems with long compares
 501 
 502   if( !SparcV9RegsHiBitsZero ) return false;
 503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 504       bol->as_Bool()->_test._test != BoolTest::eq )
 505      return false;
 506 
 507   // Check for comparing against a 'safe' value.  Any operation which
 508   // clears out the high word is safe.  Thus, loads and certain shifts
 509   // are safe, as are non-negative constants.  Any operation which
 510   // preserves zero bits in the high word is safe as long as each of its
 511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 512   // inputs are safe.  At present, the only important case to recognize
 513   // seems to be loads.  Constants should fold away, and shifts &
 514   // logicals can use the 'cc' forms.
 515   Node *x = cmp->in(1);
 516   if( x->is_Load() ) return true;
 517   if( x->is_Phi() ) {
 518     for( uint i = 1; i < x->req(); i++ )
 519       if( !x->in(i)->is_Load() )
 520         return false;
 521     return true;
 522   }
 523   return false;
 524 }
 525 
 526 bool use_block_zeroing(Node* count) {
 527   // Use BIS for zeroing if count is not constant
 528   // or it is >= BlockZeroingLowLimit.
 529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 530 }
 531 
 532 // ****************************************************************************
 533 
 534 // REQUIRED FUNCTIONALITY
 535 
 536 // !!!!! Special hack to get all type of calls to specify the byte offset
 537 //       from the start of the call to the point where the return address
 538 //       will point.
 539 //       The "return address" is the address of the call instruction, plus 8.
 540 
 541 int MachCallStaticJavaNode::ret_addr_offset() {
 542   int offset = NativeCall::instruction_size;  // call; delay slot
 543   if (_method_handle_invoke)
 544     offset += 4;  // restore SP
 545   return offset;
 546 }
 547 
 548 int MachCallDynamicJavaNode::ret_addr_offset() {
 549   int vtable_index = this->_vtable_index;
 550   if (vtable_index < 0) {
 551     // must be invalid_vtable_index, not nonvirtual_vtable_index
 552     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 553     return (NativeMovConstReg::instruction_size +
 554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 555   } else {
 556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 557     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 559     int klass_load_size;
 560     if (UseCompressedOops) {
 561       assert(Universe::heap() != NULL, "java heap should be initialized");
 562       if (Universe::narrow_oop_base() == NULL)
 563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 564       else
 565         klass_load_size = 3*BytesPerInstWord;
 566     } else {
 567       klass_load_size = 1*BytesPerInstWord;
 568     }
 569     if (Assembler::is_simm13(v_off)) {
 570       return klass_load_size +
 571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 572              NativeCall::instruction_size);  // call; delay slot
 573     } else {
 574       return klass_load_size +
 575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 576              NativeCall::instruction_size);  // call; delay slot
 577     }
 578   }
 579 }
 580 
 581 int MachCallRuntimeNode::ret_addr_offset() {
 582 #ifdef _LP64
 583   if (MacroAssembler::is_far_target(entry_point())) {
 584     return NativeFarCall::instruction_size;
 585   } else {
 586     return NativeCall::instruction_size;
 587   }
 588 #else
 589   return NativeCall::instruction_size;  // call; delay slot
 590 #endif
 591 }
 592 
 593 // Indicate if the safepoint node needs the polling page as an input.
 594 // Since Sparc does not have absolute addressing, it does.
 595 bool SafePointNode::needs_polling_address_input() {
 596   return true;
 597 }
 598 
 599 // emit an interrupt that is caught by the debugger (for debugging compiler)
 600 void emit_break(CodeBuffer &cbuf) {
 601   MacroAssembler _masm(&cbuf);
 602   __ breakpoint_trap();
 603 }
 604 
 605 #ifndef PRODUCT
 606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 607   st->print("TA");
 608 }
 609 #endif
 610 
 611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 612   emit_break(cbuf);
 613 }
 614 
 615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 616   return MachNode::size(ra_);
 617 }
 618 
 619 // Traceable jump
 620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 621   MacroAssembler _masm(&cbuf);
 622   Register rdest = reg_to_register_object(jump_target);
 623   __ JMP(rdest, 0);
 624   __ delayed()->nop();
 625 }
 626 
 627 // Traceable jump and set exception pc
 628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 629   MacroAssembler _masm(&cbuf);
 630   Register rdest = reg_to_register_object(jump_target);
 631   __ JMP(rdest, 0);
 632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 633 }
 634 
 635 void emit_nop(CodeBuffer &cbuf) {
 636   MacroAssembler _masm(&cbuf);
 637   __ nop();
 638 }
 639 
 640 void emit_illtrap(CodeBuffer &cbuf) {
 641   MacroAssembler _masm(&cbuf);
 642   __ illtrap(0);
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 651   const Node* addr = n->get_base_and_disp(offset, adr_type);
 652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 655   atype = atype->add_offset(offset);
 656   assert(disp32 == offset, "wrong disp32");
 657   return atype->_offset;
 658 }
 659 
 660 
 661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 662   assert(n->rule() != loadUB_rule, "");
 663 
 664   intptr_t offset = 0;
 665   Node* addr = n->in(2);
 666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 668     Node* a = addr->in(2/*AddPNode::Address*/);
 669     Node* o = addr->in(3/*AddPNode::Offset*/);
 670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 672     assert(atype->isa_oop_ptr(), "still an oop");
 673   }
 674   offset = atype->is_ptr()->_offset;
 675   if (offset != Type::OffsetBot)  offset += disp32;
 676   return offset;
 677 }
 678 
 679 static inline jdouble replicate_immI(int con, int count, int width) {
 680   // Load a constant replicated "count" times with width "width"
 681   int bit_width = width * 8;
 682   jlong elt_val = con;
 683   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 684   jlong val = elt_val;
 685   for (int i = 0; i < count - 1; i++) {
 686     val <<= bit_width;
 687     val |= elt_val;
 688   }
 689   jdouble dval = *((jdouble*) &val);  // coerce to double type
 690   return dval;
 691 }
 692 
 693 // Standard Sparc opcode form2 field breakdown
 694 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 695   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 696   int op = (f30 << 30) |
 697            (f29 << 29) |
 698            (f25 << 25) |
 699            (f22 << 22) |
 700            (f20 << 20) |
 701            (f19 << 19) |
 702            (f0  <<  0);
 703   cbuf.insts()->emit_int32(op);
 704 }
 705 
 706 // Standard Sparc opcode form2 field breakdown
 707 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 708   f0 >>= 10;           // Drop 10 bits
 709   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 710   int op = (f30 << 30) |
 711            (f25 << 25) |
 712            (f22 << 22) |
 713            (f0  <<  0);
 714   cbuf.insts()->emit_int32(op);
 715 }
 716 
 717 // Standard Sparc opcode form3 field breakdown
 718 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 719   int op = (f30 << 30) |
 720            (f25 << 25) |
 721            (f19 << 19) |
 722            (f14 << 14) |
 723            (f5  <<  5) |
 724            (f0  <<  0);
 725   cbuf.insts()->emit_int32(op);
 726 }
 727 
 728 // Standard Sparc opcode form3 field breakdown
 729 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 730   simm13 &= (1<<13)-1; // Mask to 13 bits
 731   int op = (f30 << 30) |
 732            (f25 << 25) |
 733            (f19 << 19) |
 734            (f14 << 14) |
 735            (1   << 13) | // bit to indicate immediate-mode
 736            (simm13<<0);
 737   cbuf.insts()->emit_int32(op);
 738 }
 739 
 740 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 741   simm10 &= (1<<10)-1; // Mask to 10 bits
 742   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 743 }
 744 
 745 #ifdef ASSERT
 746 // Helper function for VerifyOops in emit_form3_mem_reg
 747 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 748   warning("VerifyOops encountered unexpected instruction:");
 749   n->dump(2);
 750   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 751 }
 752 #endif
 753 
 754 
 755 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 756                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 757 
 758 #ifdef ASSERT
 759   // The following code implements the +VerifyOops feature.
 760   // It verifies oop values which are loaded into or stored out of
 761   // the current method activation.  +VerifyOops complements techniques
 762   // like ScavengeALot, because it eagerly inspects oops in transit,
 763   // as they enter or leave the stack, as opposed to ScavengeALot,
 764   // which inspects oops "at rest", in the stack or heap, at safepoints.
 765   // For this reason, +VerifyOops can sometimes detect bugs very close
 766   // to their point of creation.  It can also serve as a cross-check
 767   // on the validity of oop maps, when used toegether with ScavengeALot.
 768 
 769   // It would be good to verify oops at other points, especially
 770   // when an oop is used as a base pointer for a load or store.
 771   // This is presently difficult, because it is hard to know when
 772   // a base address is biased or not.  (If we had such information,
 773   // it would be easy and useful to make a two-argument version of
 774   // verify_oop which unbiases the base, and performs verification.)
 775 
 776   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 777   bool is_verified_oop_base  = false;
 778   bool is_verified_oop_load  = false;
 779   bool is_verified_oop_store = false;
 780   int tmp_enc = -1;
 781   if (VerifyOops && src1_enc != R_SP_enc) {
 782     // classify the op, mainly for an assert check
 783     int st_op = 0, ld_op = 0;
 784     switch (primary) {
 785     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 786     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 787     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 788     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 789     case Assembler::std_op3:  st_op = Op_StoreL; break;
 790     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 791     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 792 
 793     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 794     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 795     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 796     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 797     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 798     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 799     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 800     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 801     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 802     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 803     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 804 
 805     default: ShouldNotReachHere();
 806     }
 807     if (tertiary == REGP_OP) {
 808       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 809       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 810       else                          ShouldNotReachHere();
 811       if (st_op) {
 812         // a store
 813         // inputs are (0:control, 1:memory, 2:address, 3:value)
 814         Node* n2 = n->in(3);
 815         if (n2 != NULL) {
 816           const Type* t = n2->bottom_type();
 817           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 818         }
 819       } else {
 820         // a load
 821         const Type* t = n->bottom_type();
 822         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 823       }
 824     }
 825 
 826     if (ld_op) {
 827       // a Load
 828       // inputs are (0:control, 1:memory, 2:address)
 829       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 830           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 831           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 832           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 833           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 834           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 835           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 836           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 837           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 838           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 839           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 840           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 841           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 842           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 843           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 844           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
 845           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
 846           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
 847           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
 848           !(n->rule() == loadUB_rule)) {
 849         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 850       }
 851     } else if (st_op) {
 852       // a Store
 853       // inputs are (0:control, 1:memory, 2:address, 3:value)
 854       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 855           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 856           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 857           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 858           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 859           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
 860           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
 861           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
 862           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 863         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 864       }
 865     }
 866 
 867     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 868       Node* addr = n->in(2);
 869       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 870         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 871         if (atype != NULL) {
 872           intptr_t offset = get_offset_from_base(n, atype, disp32);
 873           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 874           if (offset != offset_2) {
 875             get_offset_from_base(n, atype, disp32);
 876             get_offset_from_base_2(n, atype, disp32);
 877           }
 878           assert(offset == offset_2, "different offsets");
 879           if (offset == disp32) {
 880             // we now know that src1 is a true oop pointer
 881             is_verified_oop_base = true;
 882             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 883               if( primary == Assembler::ldd_op3 ) {
 884                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 885               } else {
 886                 tmp_enc = dst_enc;
 887                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 888                 assert(src1_enc != dst_enc, "");
 889               }
 890             }
 891           }
 892           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 893                        || offset == oopDesc::mark_offset_in_bytes())) {
 894                       // loading the mark should not be allowed either, but
 895                       // we don't check this since it conflicts with InlineObjectHash
 896                       // usage of LoadINode to get the mark. We could keep the
 897                       // check if we create a new LoadMarkNode
 898             // but do not verify the object before its header is initialized
 899             ShouldNotReachHere();
 900           }
 901         }
 902       }
 903     }
 904   }
 905 #endif
 906 
 907   uint instr;
 908   instr = (Assembler::ldst_op << 30)
 909         | (dst_enc        << 25)
 910         | (primary        << 19)
 911         | (src1_enc       << 14);
 912 
 913   uint index = src2_enc;
 914   int disp = disp32;
 915 
 916   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 917     disp += STACK_BIAS;
 918 
 919   // We should have a compiler bailout here rather than a guarantee.
 920   // Better yet would be some mechanism to handle variable-size matches correctly.
 921   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 922 
 923   if( disp == 0 ) {
 924     // use reg-reg form
 925     // bit 13 is already zero
 926     instr |= index;
 927   } else {
 928     // use reg-imm form
 929     instr |= 0x00002000;          // set bit 13 to one
 930     instr |= disp & 0x1FFF;
 931   }
 932 
 933   cbuf.insts()->emit_int32(instr);
 934 
 935 #ifdef ASSERT
 936   {
 937     MacroAssembler _masm(&cbuf);
 938     if (is_verified_oop_base) {
 939       __ verify_oop(reg_to_register_object(src1_enc));
 940     }
 941     if (is_verified_oop_store) {
 942       __ verify_oop(reg_to_register_object(dst_enc));
 943     }
 944     if (tmp_enc != -1) {
 945       __ mov(O7, reg_to_register_object(tmp_enc));
 946     }
 947     if (is_verified_oop_load) {
 948       __ verify_oop(reg_to_register_object(dst_enc));
 949     }
 950   }
 951 #endif
 952 }
 953 
 954 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 955   // The method which records debug information at every safepoint
 956   // expects the call to be the first instruction in the snippet as
 957   // it creates a PcDesc structure which tracks the offset of a call
 958   // from the start of the codeBlob. This offset is computed as
 959   // code_end() - code_begin() of the code which has been emitted
 960   // so far.
 961   // In this particular case we have skirted around the problem by
 962   // putting the "mov" instruction in the delay slot but the problem
 963   // may bite us again at some other point and a cleaner/generic
 964   // solution using relocations would be needed.
 965   MacroAssembler _masm(&cbuf);
 966   __ set_inst_mark();
 967 
 968   // We flush the current window just so that there is a valid stack copy
 969   // the fact that the current window becomes active again instantly is
 970   // not a problem there is nothing live in it.
 971 
 972 #ifdef ASSERT
 973   int startpos = __ offset();
 974 #endif /* ASSERT */
 975 
 976   __ call((address)entry_point, rtype);
 977 
 978   if (preserve_g2)   __ delayed()->mov(G2, L7);
 979   else __ delayed()->nop();
 980 
 981   if (preserve_g2)   __ mov(L7, G2);
 982 
 983 #ifdef ASSERT
 984   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 985 #ifdef _LP64
 986     // Trash argument dump slots.
 987     __ set(0xb0b8ac0db0b8ac0d, G1);
 988     __ mov(G1, G5);
 989     __ stx(G1, SP, STACK_BIAS + 0x80);
 990     __ stx(G1, SP, STACK_BIAS + 0x88);
 991     __ stx(G1, SP, STACK_BIAS + 0x90);
 992     __ stx(G1, SP, STACK_BIAS + 0x98);
 993     __ stx(G1, SP, STACK_BIAS + 0xA0);
 994     __ stx(G1, SP, STACK_BIAS + 0xA8);
 995 #else // _LP64
 996     // this is also a native call, so smash the first 7 stack locations,
 997     // and the various registers
 998 
 999     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1000     // while [SP+0x44..0x58] are the argument dump slots.
1001     __ set((intptr_t)0xbaadf00d, G1);
1002     __ mov(G1, G5);
1003     __ sllx(G1, 32, G1);
1004     __ or3(G1, G5, G1);
1005     __ mov(G1, G5);
1006     __ stx(G1, SP, 0x40);
1007     __ stx(G1, SP, 0x48);
1008     __ stx(G1, SP, 0x50);
1009     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1010 #endif // _LP64
1011   }
1012 #endif /*ASSERT*/
1013 }
1014 
1015 //=============================================================================
1016 // REQUIRED FUNCTIONALITY for encoding
1017 void emit_lo(CodeBuffer &cbuf, int val) {  }
1018 void emit_hi(CodeBuffer &cbuf, int val) {  }
1019 
1020 
1021 //=============================================================================
1022 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1023 
1024 int Compile::ConstantTable::calculate_table_base_offset() const {
1025   if (UseRDPCForConstantTableBase) {
1026     // The table base offset might be less but then it fits into
1027     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1028     return Assembler::min_simm13();
1029   } else {
1030     int offset = -(size() / 2);
1031     if (!Assembler::is_simm13(offset)) {
1032       offset = Assembler::min_simm13();
1033     }
1034     return offset;
1035   }
1036 }
1037 
1038 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1039   Compile* C = ra_->C;
1040   Compile::ConstantTable& constant_table = C->constant_table();
1041   MacroAssembler _masm(&cbuf);
1042 
1043   Register r = as_Register(ra_->get_encode(this));
1044   CodeSection* consts_section = __ code()->consts();
1045   int consts_size = consts_section->align_at_start(consts_section->size());
1046   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1047 
1048   if (UseRDPCForConstantTableBase) {
1049     // For the following RDPC logic to work correctly the consts
1050     // section must be allocated right before the insts section.  This
1051     // assert checks for that.  The layout and the SECT_* constants
1052     // are defined in src/share/vm/asm/codeBuffer.hpp.
1053     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1054     int insts_offset = __ offset();
1055 
1056     // Layout:
1057     //
1058     // |----------- consts section ------------|----------- insts section -----------...
1059     // |------ constant table -----|- padding -|------------------x----
1060     //                                                            \ current PC (RDPC instruction)
1061     // |<------------- consts_size ----------->|<- insts_offset ->|
1062     //                                                            \ table base
1063     // The table base offset is later added to the load displacement
1064     // so it has to be negative.
1065     int table_base_offset = -(consts_size + insts_offset);
1066     int disp;
1067 
1068     // If the displacement from the current PC to the constant table
1069     // base fits into simm13 we set the constant table base to the
1070     // current PC.
1071     if (Assembler::is_simm13(table_base_offset)) {
1072       constant_table.set_table_base_offset(table_base_offset);
1073       disp = 0;
1074     } else {
1075       // Otherwise we set the constant table base offset to the
1076       // maximum negative displacement of load instructions to keep
1077       // the disp as small as possible:
1078       //
1079       // |<------------- consts_size ----------->|<- insts_offset ->|
1080       // |<--------- min_simm13 --------->|<-------- disp --------->|
1081       //                                  \ table base
1082       table_base_offset = Assembler::min_simm13();
1083       constant_table.set_table_base_offset(table_base_offset);
1084       disp = (consts_size + insts_offset) + table_base_offset;
1085     }
1086 
1087     __ rdpc(r);
1088 
1089     if (disp != 0) {
1090       assert(r != O7, "need temporary");
1091       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1092     }
1093   }
1094   else {
1095     // Materialize the constant table base.
1096     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1097     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1098     AddressLiteral base(baseaddr, rspec);
1099     __ set(base, r);
1100   }
1101 }
1102 
1103 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1104   if (UseRDPCForConstantTableBase) {
1105     // This is really the worst case but generally it's only 1 instruction.
1106     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1107   } else {
1108     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1109   }
1110 }
1111 
1112 #ifndef PRODUCT
1113 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1114   char reg[128];
1115   ra_->dump_register(this, reg);
1116   if (UseRDPCForConstantTableBase) {
1117     st->print("RDPC   %s\t! constant table base", reg);
1118   } else {
1119     st->print("SET    &constanttable,%s\t! constant table base", reg);
1120   }
1121 }
1122 #endif
1123 
1124 
1125 //=============================================================================
1126 
1127 #ifndef PRODUCT
1128 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1129   Compile* C = ra_->C;
1130 
1131   for (int i = 0; i < OptoPrologueNops; i++) {
1132     st->print_cr("NOP"); st->print("\t");
1133   }
1134 
1135   if( VerifyThread ) {
1136     st->print_cr("Verify_Thread"); st->print("\t");
1137   }
1138 
1139   size_t framesize = C->frame_slots() << LogBytesPerInt;
1140 
1141   // Calls to C2R adapters often do not accept exceptional returns.
1142   // We require that their callers must bang for them.  But be careful, because
1143   // some VM calls (such as call site linkage) can use several kilobytes of
1144   // stack.  But the stack safety zone should account for that.
1145   // See bugs 4446381, 4468289, 4497237.
1146   if (C->need_stack_bang(framesize)) {
1147     st->print_cr("! stack bang"); st->print("\t");
1148   }
1149 
1150   if (Assembler::is_simm13(-framesize)) {
1151     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1152   } else {
1153     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1154     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1155     st->print   ("SAVE   R_SP,R_G3,R_SP");
1156   }
1157 
1158 }
1159 #endif
1160 
1161 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1162   Compile* C = ra_->C;
1163   MacroAssembler _masm(&cbuf);
1164 
1165   for (int i = 0; i < OptoPrologueNops; i++) {
1166     __ nop();
1167   }
1168 
1169   __ verify_thread();
1170 
1171   size_t framesize = C->frame_slots() << LogBytesPerInt;
1172   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1173   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1174 
1175   // Calls to C2R adapters often do not accept exceptional returns.
1176   // We require that their callers must bang for them.  But be careful, because
1177   // some VM calls (such as call site linkage) can use several kilobytes of
1178   // stack.  But the stack safety zone should account for that.
1179   // See bugs 4446381, 4468289, 4497237.
1180   if (C->need_stack_bang(framesize)) {
1181     __ generate_stack_overflow_check(framesize);
1182   }
1183 
1184   if (Assembler::is_simm13(-framesize)) {
1185     __ save(SP, -framesize, SP);
1186   } else {
1187     __ sethi(-framesize & ~0x3ff, G3);
1188     __ add(G3, -framesize & 0x3ff, G3);
1189     __ save(SP, G3, SP);
1190   }
1191   C->set_frame_complete( __ offset() );
1192 
1193   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1194     // NOTE: We set the table base offset here because users might be
1195     // emitted before MachConstantBaseNode.
1196     Compile::ConstantTable& constant_table = C->constant_table();
1197     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1198   }
1199 }
1200 
1201 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1202   return MachNode::size(ra_);
1203 }
1204 
1205 int MachPrologNode::reloc() const {
1206   return 10; // a large enough number
1207 }
1208 
1209 //=============================================================================
1210 #ifndef PRODUCT
1211 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1212   Compile* C = ra_->C;
1213 
1214   if( do_polling() && ra_->C->is_method_compilation() ) {
1215     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1216 #ifdef _LP64
1217     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1218 #else
1219     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1220 #endif
1221   }
1222 
1223   if( do_polling() )
1224     st->print("RET\n\t");
1225 
1226   st->print("RESTORE");
1227 }
1228 #endif
1229 
1230 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1231   MacroAssembler _masm(&cbuf);
1232   Compile* C = ra_->C;
1233 
1234   __ verify_thread();
1235 
1236   // If this does safepoint polling, then do it here
1237   if( do_polling() && ra_->C->is_method_compilation() ) {
1238     AddressLiteral polling_page(os::get_polling_page());
1239     __ sethi(polling_page, L0);
1240     __ relocate(relocInfo::poll_return_type);
1241     __ ld_ptr( L0, 0, G0 );
1242   }
1243 
1244   // If this is a return, then stuff the restore in the delay slot
1245   if( do_polling() ) {
1246     __ ret();
1247     __ delayed()->restore();
1248   } else {
1249     __ restore();
1250   }
1251 }
1252 
1253 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1254   return MachNode::size(ra_);
1255 }
1256 
1257 int MachEpilogNode::reloc() const {
1258   return 16; // a large enough number
1259 }
1260 
1261 const Pipeline * MachEpilogNode::pipeline() const {
1262   return MachNode::pipeline_class();
1263 }
1264 
1265 int MachEpilogNode::safepoint_offset() const {
1266   assert( do_polling(), "no return for this epilog node");
1267   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1268 }
1269 
1270 //=============================================================================
1271 
1272 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1273 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1274 static enum RC rc_class( OptoReg::Name reg ) {
1275   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1276   if (OptoReg::is_stack(reg)) return rc_stack;
1277   VMReg r = OptoReg::as_VMReg(reg);
1278   if (r->is_Register()) return rc_int;
1279   assert(r->is_FloatRegister(), "must be");
1280   return rc_float;
1281 }
1282 
1283 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1284   if( cbuf ) {
1285     // Better yet would be some mechanism to handle variable-size matches correctly
1286     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1287       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1288     } else {
1289       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1290     }
1291   }
1292 #ifndef PRODUCT
1293   else if( !do_size ) {
1294     if( size != 0 ) st->print("\n\t");
1295     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1296     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1297   }
1298 #endif
1299   return size+4;
1300 }
1301 
1302 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1303   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1304 #ifndef PRODUCT
1305   else if( !do_size ) {
1306     if( size != 0 ) st->print("\n\t");
1307     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1308   }
1309 #endif
1310   return size+4;
1311 }
1312 
1313 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1314                                         PhaseRegAlloc *ra_,
1315                                         bool do_size,
1316                                         outputStream* st ) const {
1317   // Get registers to move
1318   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1319   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1320   OptoReg::Name dst_second = ra_->get_reg_second(this );
1321   OptoReg::Name dst_first = ra_->get_reg_first(this );
1322 
1323   enum RC src_second_rc = rc_class(src_second);
1324   enum RC src_first_rc = rc_class(src_first);
1325   enum RC dst_second_rc = rc_class(dst_second);
1326   enum RC dst_first_rc = rc_class(dst_first);
1327 
1328   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1329 
1330   // Generate spill code!
1331   int size = 0;
1332 
1333   if( src_first == dst_first && src_second == dst_second )
1334     return size;            // Self copy, no move
1335 
1336   // --------------------------------------
1337   // Check for mem-mem move.  Load into unused float registers and fall into
1338   // the float-store case.
1339   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1340     int offset = ra_->reg2offset(src_first);
1341     // Further check for aligned-adjacent pair, so we can use a double load
1342     if( (src_first&1)==0 && src_first+1 == src_second ) {
1343       src_second    = OptoReg::Name(R_F31_num);
1344       src_second_rc = rc_float;
1345       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1346     } else {
1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1348     }
1349     src_first    = OptoReg::Name(R_F30_num);
1350     src_first_rc = rc_float;
1351   }
1352 
1353   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1354     int offset = ra_->reg2offset(src_second);
1355     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1356     src_second    = OptoReg::Name(R_F31_num);
1357     src_second_rc = rc_float;
1358   }
1359 
1360   // --------------------------------------
1361   // Check for float->int copy; requires a trip through memory
1362   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1363     int offset = frame::register_save_words*wordSize;
1364     if (cbuf) {
1365       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1366       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1367       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1368       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1369     }
1370 #ifndef PRODUCT
1371     else if (!do_size) {
1372       if (size != 0) st->print("\n\t");
1373       st->print(  "SUB    R_SP,16,R_SP\n");
1374       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1375       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1376       st->print("\tADD    R_SP,16,R_SP\n");
1377     }
1378 #endif
1379     size += 16;
1380   }
1381 
1382   // Check for float->int copy on T4
1383   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1384     // Further check for aligned-adjacent pair, so we can use a double move
1385     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1386       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1387     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1388   }
1389   // Check for int->float copy on T4
1390   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1391     // Further check for aligned-adjacent pair, so we can use a double move
1392     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1393       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1394     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1395   }
1396 
1397   // --------------------------------------
1398   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1399   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1400   // hardware does the flop for me.  Doubles are always aligned, so no problem
1401   // there.  Misaligned sources only come from native-long-returns (handled
1402   // special below).
1403 #ifndef _LP64
1404   if( src_first_rc == rc_int &&     // source is already big-endian
1405       src_second_rc != rc_bad &&    // 64-bit move
1406       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1407     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1408     // Do the big-endian flop.
1409     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1410     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1411   }
1412 #endif
1413 
1414   // --------------------------------------
1415   // Check for integer reg-reg copy
1416   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1417 #ifndef _LP64
1418     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1419       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1420       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1421       //       operand contains the least significant word of the 64-bit value and vice versa.
1422       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1423       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1424       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1425       if( cbuf ) {
1426         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1427         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1428         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1429 #ifndef PRODUCT
1430       } else if( !do_size ) {
1431         if( size != 0 ) st->print("\n\t");
1432         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1433         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1434         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1435 #endif
1436       }
1437       return size+12;
1438     }
1439     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1440       // returning a long value in I0/I1
1441       // a SpillCopy must be able to target a return instruction's reg_class
1442       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1443       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1444       //       operand contains the least significant word of the 64-bit value and vice versa.
1445       OptoReg::Name tdest = dst_first;
1446 
1447       if (src_first == dst_first) {
1448         tdest = OptoReg::Name(R_O7_num);
1449         size += 4;
1450       }
1451 
1452       if( cbuf ) {
1453         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1454         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1455         // ShrL_reg_imm6
1456         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1457         // ShrR_reg_imm6  src, 0, dst
1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1459         if (tdest != dst_first) {
1460           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1461         }
1462       }
1463 #ifndef PRODUCT
1464       else if( !do_size ) {
1465         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1466         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1467         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1468         if (tdest != dst_first) {
1469           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1470         }
1471       }
1472 #endif // PRODUCT
1473       return size+8;
1474     }
1475 #endif // !_LP64
1476     // Else normal reg-reg copy
1477     assert( src_second != dst_first, "smashed second before evacuating it" );
1478     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1479     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1480     // This moves an aligned adjacent pair.
1481     // See if we are done.
1482     if( src_first+1 == src_second && dst_first+1 == dst_second )
1483       return size;
1484   }
1485 
1486   // Check for integer store
1487   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1488     int offset = ra_->reg2offset(dst_first);
1489     // Further check for aligned-adjacent pair, so we can use a double store
1490     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1491       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1492     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1493   }
1494 
1495   // Check for integer load
1496   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1497     int offset = ra_->reg2offset(src_first);
1498     // Further check for aligned-adjacent pair, so we can use a double load
1499     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1500       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1501     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1502   }
1503 
1504   // Check for float reg-reg copy
1505   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1506     // Further check for aligned-adjacent pair, so we can use a double move
1507     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1508       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1509     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1510   }
1511 
1512   // Check for float store
1513   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1514     int offset = ra_->reg2offset(dst_first);
1515     // Further check for aligned-adjacent pair, so we can use a double store
1516     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1517       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1518     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1519   }
1520 
1521   // Check for float load
1522   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1523     int offset = ra_->reg2offset(src_first);
1524     // Further check for aligned-adjacent pair, so we can use a double load
1525     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1526       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1527     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1528   }
1529 
1530   // --------------------------------------------------------------------
1531   // Check for hi bits still needing moving.  Only happens for misaligned
1532   // arguments to native calls.
1533   if( src_second == dst_second )
1534     return size;               // Self copy; no move
1535   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1536 
1537 #ifndef _LP64
1538   // In the LP64 build, all registers can be moved as aligned/adjacent
1539   // pairs, so there's never any need to move the high bits separately.
1540   // The 32-bit builds have to deal with the 32-bit ABI which can force
1541   // all sorts of silly alignment problems.
1542 
1543   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1544   // 32-bits of a 64-bit register, but are needed in low bits of another
1545   // register (else it's a hi-bits-to-hi-bits copy which should have
1546   // happened already as part of a 64-bit move)
1547   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1548     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1549     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1550     // Shift src_second down to dst_second's low bits.
1551     if( cbuf ) {
1552       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1553 #ifndef PRODUCT
1554     } else if( !do_size ) {
1555       if( size != 0 ) st->print("\n\t");
1556       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1557 #endif
1558     }
1559     return size+4;
1560   }
1561 
1562   // Check for high word integer store.  Must down-shift the hi bits
1563   // into a temp register, then fall into the case of storing int bits.
1564   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1565     // Shift src_second down to dst_second's low bits.
1566     if( cbuf ) {
1567       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1568 #ifndef PRODUCT
1569     } else if( !do_size ) {
1570       if( size != 0 ) st->print("\n\t");
1571       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1572 #endif
1573     }
1574     size+=4;
1575     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1576   }
1577 
1578   // Check for high word integer load
1579   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1580     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1581 
1582   // Check for high word integer store
1583   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1584     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1585 
1586   // Check for high word float store
1587   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1588     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1589 
1590 #endif // !_LP64
1591 
1592   Unimplemented();
1593 }
1594 
1595 #ifndef PRODUCT
1596 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1597   implementation( NULL, ra_, false, st );
1598 }
1599 #endif
1600 
1601 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1602   implementation( &cbuf, ra_, false, NULL );
1603 }
1604 
1605 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1606   return implementation( NULL, ra_, true, NULL );
1607 }
1608 
1609 //=============================================================================
1610 #ifndef PRODUCT
1611 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1612   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1613 }
1614 #endif
1615 
1616 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1617   MacroAssembler _masm(&cbuf);
1618   for(int i = 0; i < _count; i += 1) {
1619     __ nop();
1620   }
1621 }
1622 
1623 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1624   return 4 * _count;
1625 }
1626 
1627 
1628 //=============================================================================
1629 #ifndef PRODUCT
1630 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1631   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1632   int reg = ra_->get_reg_first(this);
1633   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1634 }
1635 #endif
1636 
1637 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1638   MacroAssembler _masm(&cbuf);
1639   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1640   int reg = ra_->get_encode(this);
1641 
1642   if (Assembler::is_simm13(offset)) {
1643      __ add(SP, offset, reg_to_register_object(reg));
1644   } else {
1645      __ set(offset, O7);
1646      __ add(SP, O7, reg_to_register_object(reg));
1647   }
1648 }
1649 
1650 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1651   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1652   assert(ra_ == ra_->C->regalloc(), "sanity");
1653   return ra_->C->scratch_emit_size(this);
1654 }
1655 
1656 //=============================================================================
1657 
1658 // emit call stub, compiled java to interpretor
1659 void emit_java_to_interp(CodeBuffer &cbuf ) {
1660 
1661   // Stub is fixed up when the corresponding call is converted from calling
1662   // compiled code to calling interpreted code.
1663   // set (empty), G5
1664   // jmp -1
1665 
1666   address mark = cbuf.insts_mark();  // get mark within main instrs section
1667 
1668   MacroAssembler _masm(&cbuf);
1669 
1670   address base =
1671   __ start_a_stub(Compile::MAX_stubs_size);
1672   if (base == NULL)  return;  // CodeBuffer::expand failed
1673 
1674   // static stub relocation stores the instruction address of the call
1675   __ relocate(static_stub_Relocation::spec(mark));
1676 
1677   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1678 
1679   __ set_inst_mark();
1680   AddressLiteral addrlit(-1);
1681   __ JUMP(addrlit, G3, 0);
1682 
1683   __ delayed()->nop();
1684 
1685   // Update current stubs pointer and restore code_end.
1686   __ end_a_stub();
1687 }
1688 
1689 // size of call stub, compiled java to interpretor
1690 uint size_java_to_interp() {
1691   // This doesn't need to be accurate but it must be larger or equal to
1692   // the real size of the stub.
1693   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1694           NativeJump::instruction_size + // sethi; jmp; nop
1695           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1696 }
1697 // relocation entries for call stub, compiled java to interpretor
1698 uint reloc_java_to_interp() {
1699   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1700 }
1701 
1702 
1703 //=============================================================================
1704 #ifndef PRODUCT
1705 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1706   st->print_cr("\nUEP:");
1707 #ifdef    _LP64
1708   if (UseCompressedOops) {
1709     assert(Universe::heap() != NULL, "java heap should be initialized");
1710     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1711     st->print_cr("\tSLL    R_G5,3,R_G5");
1712     if (Universe::narrow_oop_base() != NULL)
1713       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1714   } else {
1715     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1716   }
1717   st->print_cr("\tCMP    R_G5,R_G3" );
1718   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1719 #else  // _LP64
1720   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1721   st->print_cr("\tCMP    R_G5,R_G3" );
1722   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1723 #endif // _LP64
1724 }
1725 #endif
1726 
1727 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1728   MacroAssembler _masm(&cbuf);
1729   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1730   Register temp_reg   = G3;
1731   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1732 
1733   // Load klass from receiver
1734   __ load_klass(O0, temp_reg);
1735   // Compare against expected klass
1736   __ cmp(temp_reg, G5_ic_reg);
1737   // Branch to miss code, checks xcc or icc depending
1738   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1739 }
1740 
1741 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1742   return MachNode::size(ra_);
1743 }
1744 
1745 
1746 //=============================================================================
1747 
1748 uint size_exception_handler() {
1749   if (TraceJumps) {
1750     return (400); // just a guess
1751   }
1752   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1753 }
1754 
1755 uint size_deopt_handler() {
1756   if (TraceJumps) {
1757     return (400); // just a guess
1758   }
1759   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1760 }
1761 
1762 // Emit exception handler code.
1763 int emit_exception_handler(CodeBuffer& cbuf) {
1764   Register temp_reg = G3;
1765   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1766   MacroAssembler _masm(&cbuf);
1767 
1768   address base =
1769   __ start_a_stub(size_exception_handler());
1770   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1771 
1772   int offset = __ offset();
1773 
1774   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1775   __ delayed()->nop();
1776 
1777   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1778 
1779   __ end_a_stub();
1780 
1781   return offset;
1782 }
1783 
1784 int emit_deopt_handler(CodeBuffer& cbuf) {
1785   // Can't use any of the current frame's registers as we may have deopted
1786   // at a poll and everything (including G3) can be live.
1787   Register temp_reg = L0;
1788   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1789   MacroAssembler _masm(&cbuf);
1790 
1791   address base =
1792   __ start_a_stub(size_deopt_handler());
1793   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1794 
1795   int offset = __ offset();
1796   __ save_frame(0);
1797   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1798   __ delayed()->restore();
1799 
1800   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1801 
1802   __ end_a_stub();
1803   return offset;
1804 
1805 }
1806 
1807 // Given a register encoding, produce a Integer Register object
1808 static Register reg_to_register_object(int register_encoding) {
1809   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1810   return as_Register(register_encoding);
1811 }
1812 
1813 // Given a register encoding, produce a single-precision Float Register object
1814 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1815   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1816   return as_SingleFloatRegister(register_encoding);
1817 }
1818 
1819 // Given a register encoding, produce a double-precision Float Register object
1820 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1821   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1822   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1823   return as_DoubleFloatRegister(register_encoding);
1824 }
1825 
1826 const bool Matcher::match_rule_supported(int opcode) {
1827   if (!has_match_rule(opcode))
1828     return false;
1829 
1830   switch (opcode) {
1831   case Op_CountLeadingZerosI:
1832   case Op_CountLeadingZerosL:
1833   case Op_CountTrailingZerosI:
1834   case Op_CountTrailingZerosL:
1835   case Op_PopCountI:
1836   case Op_PopCountL:
1837     if (!UsePopCountInstruction)
1838       return false;
1839     break;
1840   }
1841 
1842   return true;  // Per default match rules are supported.
1843 }
1844 
1845 int Matcher::regnum_to_fpu_offset(int regnum) {
1846   return regnum - 32; // The FP registers are in the second chunk
1847 }
1848 
1849 #ifdef ASSERT
1850 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1851 #endif
1852 
1853 // Vector width in bytes
1854 const uint Matcher::vector_width_in_bytes(void) {
1855   return 8;
1856 }
1857 
1858 // Vector ideal reg
1859 const uint Matcher::vector_ideal_reg(void) {
1860   return Op_RegD;
1861 }
1862 
1863 // USII supports fxtof through the whole range of number, USIII doesn't
1864 const bool Matcher::convL2FSupported(void) {
1865   return VM_Version::has_fast_fxtof();
1866 }
1867 
1868 // Is this branch offset short enough that a short branch can be used?
1869 //
1870 // NOTE: If the platform does not provide any short branch variants, then
1871 //       this method should return false for offset 0.
1872 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1873   // The passed offset is relative to address of the branch.
1874   // Don't need to adjust the offset.
1875   return UseCBCond && Assembler::is_simm12(offset);
1876 }
1877 
1878 const bool Matcher::isSimpleConstant64(jlong value) {
1879   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1880   // Depends on optimizations in MacroAssembler::setx.
1881   int hi = (int)(value >> 32);
1882   int lo = (int)(value & ~0);
1883   return (hi == 0) || (hi == -1) || (lo == 0);
1884 }
1885 
1886 // No scaling for the parameter the ClearArray node.
1887 const bool Matcher::init_array_count_is_in_bytes = true;
1888 
1889 // Threshold size for cleararray.
1890 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1891 
1892 // No additional cost for CMOVL.
1893 const int Matcher::long_cmove_cost() { return 0; }
1894 
1895 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1896 const int Matcher::float_cmove_cost() {
1897   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1898 }
1899 
1900 // Should the Matcher clone shifts on addressing modes, expecting them to
1901 // be subsumed into complex addressing expressions or compute them into
1902 // registers?  True for Intel but false for most RISCs
1903 const bool Matcher::clone_shift_expressions = false;
1904 
1905 // Do we need to mask the count passed to shift instructions or does
1906 // the cpu only look at the lower 5/6 bits anyway?
1907 const bool Matcher::need_masked_shift_count = false;
1908 
1909 bool Matcher::narrow_oop_use_complex_address() {
1910   NOT_LP64(ShouldNotCallThis());
1911   assert(UseCompressedOops, "only for compressed oops code");
1912   return false;
1913 }
1914 
1915 // Is it better to copy float constants, or load them directly from memory?
1916 // Intel can load a float constant from a direct address, requiring no
1917 // extra registers.  Most RISCs will have to materialize an address into a
1918 // register first, so they would do better to copy the constant from stack.
1919 const bool Matcher::rematerialize_float_constants = false;
1920 
1921 // If CPU can load and store mis-aligned doubles directly then no fixup is
1922 // needed.  Else we split the double into 2 integer pieces and move it
1923 // piece-by-piece.  Only happens when passing doubles into C code as the
1924 // Java calling convention forces doubles to be aligned.
1925 #ifdef _LP64
1926 const bool Matcher::misaligned_doubles_ok = true;
1927 #else
1928 const bool Matcher::misaligned_doubles_ok = false;
1929 #endif
1930 
1931 // No-op on SPARC.
1932 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1933 }
1934 
1935 // Advertise here if the CPU requires explicit rounding operations
1936 // to implement the UseStrictFP mode.
1937 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1938 
1939 // Are floats conerted to double when stored to stack during deoptimization?
1940 // Sparc does not handle callee-save floats.
1941 bool Matcher::float_in_double() { return false; }
1942 
1943 // Do ints take an entire long register or just half?
1944 // Note that we if-def off of _LP64.
1945 // The relevant question is how the int is callee-saved.  In _LP64
1946 // the whole long is written but de-opt'ing will have to extract
1947 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1948 #ifdef _LP64
1949 const bool Matcher::int_in_long = true;
1950 #else
1951 const bool Matcher::int_in_long = false;
1952 #endif
1953 
1954 // Return whether or not this register is ever used as an argument.  This
1955 // function is used on startup to build the trampoline stubs in generateOptoStub.
1956 // Registers not mentioned will be killed by the VM call in the trampoline, and
1957 // arguments in those registers not be available to the callee.
1958 bool Matcher::can_be_java_arg( int reg ) {
1959   // Standard sparc 6 args in registers
1960   if( reg == R_I0_num ||
1961       reg == R_I1_num ||
1962       reg == R_I2_num ||
1963       reg == R_I3_num ||
1964       reg == R_I4_num ||
1965       reg == R_I5_num ) return true;
1966 #ifdef _LP64
1967   // 64-bit builds can pass 64-bit pointers and longs in
1968   // the high I registers
1969   if( reg == R_I0H_num ||
1970       reg == R_I1H_num ||
1971       reg == R_I2H_num ||
1972       reg == R_I3H_num ||
1973       reg == R_I4H_num ||
1974       reg == R_I5H_num ) return true;
1975 
1976   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1977     return true;
1978   }
1979 
1980 #else
1981   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1982   // Longs cannot be passed in O regs, because O regs become I regs
1983   // after a 'save' and I regs get their high bits chopped off on
1984   // interrupt.
1985   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1986   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1987 #endif
1988   // A few float args in registers
1989   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1990 
1991   return false;
1992 }
1993 
1994 bool Matcher::is_spillable_arg( int reg ) {
1995   return can_be_java_arg(reg);
1996 }
1997 
1998 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1999   // Use hardware SDIVX instruction when it is
2000   // faster than a code which use multiply.
2001   return VM_Version::has_fast_idiv();
2002 }
2003 
2004 // Register for DIVI projection of divmodI
2005 RegMask Matcher::divI_proj_mask() {
2006   ShouldNotReachHere();
2007   return RegMask();
2008 }
2009 
2010 // Register for MODI projection of divmodI
2011 RegMask Matcher::modI_proj_mask() {
2012   ShouldNotReachHere();
2013   return RegMask();
2014 }
2015 
2016 // Register for DIVL projection of divmodL
2017 RegMask Matcher::divL_proj_mask() {
2018   ShouldNotReachHere();
2019   return RegMask();
2020 }
2021 
2022 // Register for MODL projection of divmodL
2023 RegMask Matcher::modL_proj_mask() {
2024   ShouldNotReachHere();
2025   return RegMask();
2026 }
2027 
2028 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2029   return L7_REGP_mask();
2030 }
2031 
2032 %}
2033 
2034 
2035 // The intptr_t operand types, defined by textual substitution.
2036 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2037 #ifdef _LP64
2038 #define immX      immL
2039 #define immX13    immL13
2040 #define immX13m7  immL13m7
2041 #define iRegX     iRegL
2042 #define g1RegX    g1RegL
2043 #else
2044 #define immX      immI
2045 #define immX13    immI13
2046 #define immX13m7  immI13m7
2047 #define iRegX     iRegI
2048 #define g1RegX    g1RegI
2049 #endif
2050 
2051 //----------ENCODING BLOCK-----------------------------------------------------
2052 // This block specifies the encoding classes used by the compiler to output
2053 // byte streams.  Encoding classes are parameterized macros used by
2054 // Machine Instruction Nodes in order to generate the bit encoding of the
2055 // instruction.  Operands specify their base encoding interface with the
2056 // interface keyword.  There are currently supported four interfaces,
2057 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2058 // operand to generate a function which returns its register number when
2059 // queried.   CONST_INTER causes an operand to generate a function which
2060 // returns the value of the constant when queried.  MEMORY_INTER causes an
2061 // operand to generate four functions which return the Base Register, the
2062 // Index Register, the Scale Value, and the Offset Value of the operand when
2063 // queried.  COND_INTER causes an operand to generate six functions which
2064 // return the encoding code (ie - encoding bits for the instruction)
2065 // associated with each basic boolean condition for a conditional instruction.
2066 //
2067 // Instructions specify two basic values for encoding.  Again, a function
2068 // is available to check if the constant displacement is an oop. They use the
2069 // ins_encode keyword to specify their encoding classes (which must be
2070 // a sequence of enc_class names, and their parameters, specified in
2071 // the encoding block), and they use the
2072 // opcode keyword to specify, in order, their primary, secondary, and
2073 // tertiary opcode.  Only the opcode sections which a particular instruction
2074 // needs for encoding need to be specified.
2075 encode %{
2076   enc_class enc_untested %{
2077 #ifdef ASSERT
2078     MacroAssembler _masm(&cbuf);
2079     __ untested("encoding");
2080 #endif
2081   %}
2082 
2083   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2084     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2085                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2086   %}
2087 
2088   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2089     emit_form3_mem_reg(cbuf, this, $primary, -1,
2090                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2091   %}
2092 
2093   enc_class form3_mem_prefetch_read( memory mem ) %{
2094     emit_form3_mem_reg(cbuf, this, $primary, -1,
2095                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2096   %}
2097 
2098   enc_class form3_mem_prefetch_write( memory mem ) %{
2099     emit_form3_mem_reg(cbuf, this, $primary, -1,
2100                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2101   %}
2102 
2103   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2104     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2105     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2106     guarantee($mem$$index == R_G0_enc, "double index?");
2107     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2108     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2109     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2110     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2111   %}
2112 
2113   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2114     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2115     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2116     guarantee($mem$$index == R_G0_enc, "double index?");
2117     // Load long with 2 instructions
2118     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2119     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2120   %}
2121 
2122   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2123   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2124     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2125     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2126   %}
2127 
2128   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2129     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2130     if( $rs2$$reg != $rd$$reg )
2131       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2132   %}
2133 
2134   // Target lo half of long
2135   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2136     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2137     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2138       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2139   %}
2140 
2141   // Source lo half of long
2142   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2143     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2144     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2145       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2146   %}
2147 
2148   // Target hi half of long
2149   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2150     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2151   %}
2152 
2153   // Source lo half of long, and leave it sign extended.
2154   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2155     // Sign extend low half
2156     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2157   %}
2158 
2159   // Source hi half of long, and leave it sign extended.
2160   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2161     // Shift high half to low half
2162     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2163   %}
2164 
2165   // Source hi half of long
2166   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2167     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2168     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2169       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2170   %}
2171 
2172   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2173     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2174   %}
2175 
2176   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2177     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2178     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2179   %}
2180 
2181   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2182     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2183     // clear if nothing else is happening
2184     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2185     // blt,a,pn done
2186     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2187     // mov dst,-1 in delay slot
2188     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2189   %}
2190 
2191   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2192     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2193   %}
2194 
2195   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2196     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2197   %}
2198 
2199   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2200     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2201   %}
2202 
2203   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2204     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2205   %}
2206 
2207   enc_class move_return_pc_to_o1() %{
2208     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2209   %}
2210 
2211 #ifdef _LP64
2212   /* %%% merge with enc_to_bool */
2213   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2214     MacroAssembler _masm(&cbuf);
2215 
2216     Register   src_reg = reg_to_register_object($src$$reg);
2217     Register   dst_reg = reg_to_register_object($dst$$reg);
2218     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2219   %}
2220 #endif
2221 
2222   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2223     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2224     MacroAssembler _masm(&cbuf);
2225 
2226     Register   p_reg = reg_to_register_object($p$$reg);
2227     Register   q_reg = reg_to_register_object($q$$reg);
2228     Register   y_reg = reg_to_register_object($y$$reg);
2229     Register tmp_reg = reg_to_register_object($tmp$$reg);
2230 
2231     __ subcc( p_reg, q_reg,   p_reg );
2232     __ add  ( p_reg, y_reg, tmp_reg );
2233     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2234   %}
2235 
2236   enc_class form_d2i_helper(regD src, regF dst) %{
2237     // fcmp %fcc0,$src,$src
2238     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2239     // branch %fcc0 not-nan, predict taken
2240     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2241     // fdtoi $src,$dst
2242     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2243     // fitos $dst,$dst (if nan)
2244     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2245     // clear $dst (if nan)
2246     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2247     // carry on here...
2248   %}
2249 
2250   enc_class form_d2l_helper(regD src, regD dst) %{
2251     // fcmp %fcc0,$src,$src  check for NAN
2252     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2253     // branch %fcc0 not-nan, predict taken
2254     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2255     // fdtox $src,$dst   convert in delay slot
2256     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2257     // fxtod $dst,$dst  (if nan)
2258     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2259     // clear $dst (if nan)
2260     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2261     // carry on here...
2262   %}
2263 
2264   enc_class form_f2i_helper(regF src, regF dst) %{
2265     // fcmps %fcc0,$src,$src
2266     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2267     // branch %fcc0 not-nan, predict taken
2268     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2269     // fstoi $src,$dst
2270     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2271     // fitos $dst,$dst (if nan)
2272     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2273     // clear $dst (if nan)
2274     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2275     // carry on here...
2276   %}
2277 
2278   enc_class form_f2l_helper(regF src, regD dst) %{
2279     // fcmps %fcc0,$src,$src
2280     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2281     // branch %fcc0 not-nan, predict taken
2282     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2283     // fstox $src,$dst
2284     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2285     // fxtod $dst,$dst (if nan)
2286     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2287     // clear $dst (if nan)
2288     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2289     // carry on here...
2290   %}
2291 
2292   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2293   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2294   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2295   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2296 
2297   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2298 
2299   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2300   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2301 
2302   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2303     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2304   %}
2305 
2306   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2307     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2308   %}
2309 
2310   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2311     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2312   %}
2313 
2314   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2315     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2316   %}
2317 
2318   enc_class form3_convI2F(regF rs2, regF rd) %{
2319     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2320   %}
2321 
2322   // Encloding class for traceable jumps
2323   enc_class form_jmpl(g3RegP dest) %{
2324     emit_jmpl(cbuf, $dest$$reg);
2325   %}
2326 
2327   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2328     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2329   %}
2330 
2331   enc_class form2_nop() %{
2332     emit_nop(cbuf);
2333   %}
2334 
2335   enc_class form2_illtrap() %{
2336     emit_illtrap(cbuf);
2337   %}
2338 
2339 
2340   // Compare longs and convert into -1, 0, 1.
2341   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2342     // CMP $src1,$src2
2343     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2344     // blt,a,pn done
2345     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2346     // mov dst,-1 in delay slot
2347     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2348     // bgt,a,pn done
2349     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2350     // mov dst,1 in delay slot
2351     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2352     // CLR    $dst
2353     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2354   %}
2355 
2356   enc_class enc_PartialSubtypeCheck() %{
2357     MacroAssembler _masm(&cbuf);
2358     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2359     __ delayed()->nop();
2360   %}
2361 
2362   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2363     MacroAssembler _masm(&cbuf);
2364     Label* L = $labl$$label;
2365     Assembler::Predict predict_taken =
2366       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2367 
2368     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2369     __ delayed()->nop();
2370   %}
2371 
2372   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2373     MacroAssembler _masm(&cbuf);
2374     Label* L = $labl$$label;
2375     Assembler::Predict predict_taken =
2376       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2377 
2378     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2379     __ delayed()->nop();
2380   %}
2381 
2382   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2383     int op = (Assembler::arith_op << 30) |
2384              ($dst$$reg << 25) |
2385              (Assembler::movcc_op3 << 19) |
2386              (1 << 18) |                    // cc2 bit for 'icc'
2387              ($cmp$$cmpcode << 14) |
2388              (0 << 13) |                    // select register move
2389              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2390              ($src$$reg << 0);
2391     cbuf.insts()->emit_int32(op);
2392   %}
2393 
2394   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2395     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2396     int op = (Assembler::arith_op << 30) |
2397              ($dst$$reg << 25) |
2398              (Assembler::movcc_op3 << 19) |
2399              (1 << 18) |                    // cc2 bit for 'icc'
2400              ($cmp$$cmpcode << 14) |
2401              (1 << 13) |                    // select immediate move
2402              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2403              (simm11 << 0);
2404     cbuf.insts()->emit_int32(op);
2405   %}
2406 
2407   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2408     int op = (Assembler::arith_op << 30) |
2409              ($dst$$reg << 25) |
2410              (Assembler::movcc_op3 << 19) |
2411              (0 << 18) |                    // cc2 bit for 'fccX'
2412              ($cmp$$cmpcode << 14) |
2413              (0 << 13) |                    // select register move
2414              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2415              ($src$$reg << 0);
2416     cbuf.insts()->emit_int32(op);
2417   %}
2418 
2419   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2420     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2421     int op = (Assembler::arith_op << 30) |
2422              ($dst$$reg << 25) |
2423              (Assembler::movcc_op3 << 19) |
2424              (0 << 18) |                    // cc2 bit for 'fccX'
2425              ($cmp$$cmpcode << 14) |
2426              (1 << 13) |                    // select immediate move
2427              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2428              (simm11 << 0);
2429     cbuf.insts()->emit_int32(op);
2430   %}
2431 
2432   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2433     int op = (Assembler::arith_op << 30) |
2434              ($dst$$reg << 25) |
2435              (Assembler::fpop2_op3 << 19) |
2436              (0 << 18) |
2437              ($cmp$$cmpcode << 14) |
2438              (1 << 13) |                    // select register move
2439              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2440              ($primary << 5) |              // select single, double or quad
2441              ($src$$reg << 0);
2442     cbuf.insts()->emit_int32(op);
2443   %}
2444 
2445   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2446     int op = (Assembler::arith_op << 30) |
2447              ($dst$$reg << 25) |
2448              (Assembler::fpop2_op3 << 19) |
2449              (0 << 18) |
2450              ($cmp$$cmpcode << 14) |
2451              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2452              ($primary << 5) |              // select single, double or quad
2453              ($src$$reg << 0);
2454     cbuf.insts()->emit_int32(op);
2455   %}
2456 
2457   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2458   // the condition comes from opcode-field instead of an argument.
2459   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2460     int op = (Assembler::arith_op << 30) |
2461              ($dst$$reg << 25) |
2462              (Assembler::movcc_op3 << 19) |
2463              (1 << 18) |                    // cc2 bit for 'icc'
2464              ($primary << 14) |
2465              (0 << 13) |                    // select register move
2466              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2467              ($src$$reg << 0);
2468     cbuf.insts()->emit_int32(op);
2469   %}
2470 
2471   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2472     int op = (Assembler::arith_op << 30) |
2473              ($dst$$reg << 25) |
2474              (Assembler::movcc_op3 << 19) |
2475              (6 << 16) |                    // cc2 bit for 'xcc'
2476              ($primary << 14) |
2477              (0 << 13) |                    // select register move
2478              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2479              ($src$$reg << 0);
2480     cbuf.insts()->emit_int32(op);
2481   %}
2482 
2483   enc_class Set13( immI13 src, iRegI rd ) %{
2484     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2485   %}
2486 
2487   enc_class SetHi22( immI src, iRegI rd ) %{
2488     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2489   %}
2490 
2491   enc_class Set32( immI src, iRegI rd ) %{
2492     MacroAssembler _masm(&cbuf);
2493     __ set($src$$constant, reg_to_register_object($rd$$reg));
2494   %}
2495 
2496   enc_class call_epilog %{
2497     if( VerifyStackAtCalls ) {
2498       MacroAssembler _masm(&cbuf);
2499       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2500       Register temp_reg = G3;
2501       __ add(SP, framesize, temp_reg);
2502       __ cmp(temp_reg, FP);
2503       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2504     }
2505   %}
2506 
2507   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2508   // to G1 so the register allocator will not have to deal with the misaligned register
2509   // pair.
2510   enc_class adjust_long_from_native_call %{
2511 #ifndef _LP64
2512     if (returns_long()) {
2513       //    sllx  O0,32,O0
2514       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2515       //    srl   O1,0,O1
2516       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2517       //    or    O0,O1,G1
2518       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2519     }
2520 #endif
2521   %}
2522 
2523   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2524     // CALL directly to the runtime
2525     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2526     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2527                     /*preserve_g2=*/true);
2528   %}
2529 
2530   enc_class preserve_SP %{
2531     MacroAssembler _masm(&cbuf);
2532     __ mov(SP, L7_mh_SP_save);
2533   %}
2534 
2535   enc_class restore_SP %{
2536     MacroAssembler _masm(&cbuf);
2537     __ mov(L7_mh_SP_save, SP);
2538   %}
2539 
2540   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2541     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2542     // who we intended to call.
2543     if ( !_method ) {
2544       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2545     } else if (_optimized_virtual) {
2546       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2547     } else {
2548       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2549     }
2550     if( _method ) {  // Emit stub for static call
2551       emit_java_to_interp(cbuf);
2552     }
2553   %}
2554 
2555   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2556     MacroAssembler _masm(&cbuf);
2557     __ set_inst_mark();
2558     int vtable_index = this->_vtable_index;
2559     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2560     if (vtable_index < 0) {
2561       // must be invalid_vtable_index, not nonvirtual_vtable_index
2562       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2563       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2564       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2565       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2566       // !!!!!
2567       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2568       // emit_call_dynamic_prologue( cbuf );
2569       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2570 
2571       address  virtual_call_oop_addr = __ inst_mark();
2572       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2573       // who we intended to call.
2574       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2575       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2576     } else {
2577       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2578       // Just go thru the vtable
2579       // get receiver klass (receiver already checked for non-null)
2580       // If we end up going thru a c2i adapter interpreter expects method in G5
2581       int off = __ offset();
2582       __ load_klass(O0, G3_scratch);
2583       int klass_load_size;
2584       if (UseCompressedOops) {
2585         assert(Universe::heap() != NULL, "java heap should be initialized");
2586         if (Universe::narrow_oop_base() == NULL)
2587           klass_load_size = 2*BytesPerInstWord;
2588         else
2589           klass_load_size = 3*BytesPerInstWord;
2590       } else {
2591         klass_load_size = 1*BytesPerInstWord;
2592       }
2593       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2594       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2595       if (Assembler::is_simm13(v_off)) {
2596         __ ld_ptr(G3, v_off, G5_method);
2597       } else {
2598         // Generate 2 instructions
2599         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2600         __ or3(G5_method, v_off & 0x3ff, G5_method);
2601         // ld_ptr, set_hi, set
2602         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2603                "Unexpected instruction size(s)");
2604         __ ld_ptr(G3, G5_method, G5_method);
2605       }
2606       // NOTE: for vtable dispatches, the vtable entry will never be null.
2607       // However it may very well end up in handle_wrong_method if the
2608       // method is abstract for the particular class.
2609       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2610       // jump to target (either compiled code or c2iadapter)
2611       __ jmpl(G3_scratch, G0, O7);
2612       __ delayed()->nop();
2613     }
2614   %}
2615 
2616   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2617     MacroAssembler _masm(&cbuf);
2618 
2619     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2620     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2621                               // we might be calling a C2I adapter which needs it.
2622 
2623     assert(temp_reg != G5_ic_reg, "conflicting registers");
2624     // Load nmethod
2625     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2626 
2627     // CALL to compiled java, indirect the contents of G3
2628     __ set_inst_mark();
2629     __ callr(temp_reg, G0);
2630     __ delayed()->nop();
2631   %}
2632 
2633 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2634     MacroAssembler _masm(&cbuf);
2635     Register Rdividend = reg_to_register_object($src1$$reg);
2636     Register Rdivisor = reg_to_register_object($src2$$reg);
2637     Register Rresult = reg_to_register_object($dst$$reg);
2638 
2639     __ sra(Rdivisor, 0, Rdivisor);
2640     __ sra(Rdividend, 0, Rdividend);
2641     __ sdivx(Rdividend, Rdivisor, Rresult);
2642 %}
2643 
2644 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2645     MacroAssembler _masm(&cbuf);
2646 
2647     Register Rdividend = reg_to_register_object($src1$$reg);
2648     int divisor = $imm$$constant;
2649     Register Rresult = reg_to_register_object($dst$$reg);
2650 
2651     __ sra(Rdividend, 0, Rdividend);
2652     __ sdivx(Rdividend, divisor, Rresult);
2653 %}
2654 
2655 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2656     MacroAssembler _masm(&cbuf);
2657     Register Rsrc1 = reg_to_register_object($src1$$reg);
2658     Register Rsrc2 = reg_to_register_object($src2$$reg);
2659     Register Rdst  = reg_to_register_object($dst$$reg);
2660 
2661     __ sra( Rsrc1, 0, Rsrc1 );
2662     __ sra( Rsrc2, 0, Rsrc2 );
2663     __ mulx( Rsrc1, Rsrc2, Rdst );
2664     __ srlx( Rdst, 32, Rdst );
2665 %}
2666 
2667 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2668     MacroAssembler _masm(&cbuf);
2669     Register Rdividend = reg_to_register_object($src1$$reg);
2670     Register Rdivisor = reg_to_register_object($src2$$reg);
2671     Register Rresult = reg_to_register_object($dst$$reg);
2672     Register Rscratch = reg_to_register_object($scratch$$reg);
2673 
2674     assert(Rdividend != Rscratch, "");
2675     assert(Rdivisor  != Rscratch, "");
2676 
2677     __ sra(Rdividend, 0, Rdividend);
2678     __ sra(Rdivisor, 0, Rdivisor);
2679     __ sdivx(Rdividend, Rdivisor, Rscratch);
2680     __ mulx(Rscratch, Rdivisor, Rscratch);
2681     __ sub(Rdividend, Rscratch, Rresult);
2682 %}
2683 
2684 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2685     MacroAssembler _masm(&cbuf);
2686 
2687     Register Rdividend = reg_to_register_object($src1$$reg);
2688     int divisor = $imm$$constant;
2689     Register Rresult = reg_to_register_object($dst$$reg);
2690     Register Rscratch = reg_to_register_object($scratch$$reg);
2691 
2692     assert(Rdividend != Rscratch, "");
2693 
2694     __ sra(Rdividend, 0, Rdividend);
2695     __ sdivx(Rdividend, divisor, Rscratch);
2696     __ mulx(Rscratch, divisor, Rscratch);
2697     __ sub(Rdividend, Rscratch, Rresult);
2698 %}
2699 
2700 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2701     MacroAssembler _masm(&cbuf);
2702 
2703     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2704     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2705 
2706     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2707 %}
2708 
2709 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2710     MacroAssembler _masm(&cbuf);
2711 
2712     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2713     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2714 
2715     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2716 %}
2717 
2718 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2719     MacroAssembler _masm(&cbuf);
2720 
2721     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2722     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2723 
2724     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2725 %}
2726 
2727 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2728     MacroAssembler _masm(&cbuf);
2729 
2730     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2731     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2732 
2733     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2734 %}
2735 
2736 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2737     MacroAssembler _masm(&cbuf);
2738 
2739     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2740     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2741 
2742     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2743 %}
2744 
2745 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2746     MacroAssembler _masm(&cbuf);
2747 
2748     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2749     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2750 
2751     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2752 %}
2753 
2754 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2755     MacroAssembler _masm(&cbuf);
2756 
2757     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2758     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2759 
2760     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2761 %}
2762 
2763 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2764     MacroAssembler _masm(&cbuf);
2765 
2766     Register Roop  = reg_to_register_object($oop$$reg);
2767     Register Rbox  = reg_to_register_object($box$$reg);
2768     Register Rscratch = reg_to_register_object($scratch$$reg);
2769     Register Rmark =    reg_to_register_object($scratch2$$reg);
2770 
2771     assert(Roop  != Rscratch, "");
2772     assert(Roop  != Rmark, "");
2773     assert(Rbox  != Rscratch, "");
2774     assert(Rbox  != Rmark, "");
2775 
2776     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2777 %}
2778 
2779 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2780     MacroAssembler _masm(&cbuf);
2781 
2782     Register Roop  = reg_to_register_object($oop$$reg);
2783     Register Rbox  = reg_to_register_object($box$$reg);
2784     Register Rscratch = reg_to_register_object($scratch$$reg);
2785     Register Rmark =    reg_to_register_object($scratch2$$reg);
2786 
2787     assert(Roop  != Rscratch, "");
2788     assert(Roop  != Rmark, "");
2789     assert(Rbox  != Rscratch, "");
2790     assert(Rbox  != Rmark, "");
2791 
2792     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2793   %}
2794 
2795   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2796     MacroAssembler _masm(&cbuf);
2797     Register Rmem = reg_to_register_object($mem$$reg);
2798     Register Rold = reg_to_register_object($old$$reg);
2799     Register Rnew = reg_to_register_object($new$$reg);
2800 
2801     // casx_under_lock picks 1 of 3 encodings:
2802     // For 32-bit pointers you get a 32-bit CAS
2803     // For 64-bit pointers you get a 64-bit CASX
2804     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2805     __ cmp( Rold, Rnew );
2806   %}
2807 
2808   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2809     Register Rmem = reg_to_register_object($mem$$reg);
2810     Register Rold = reg_to_register_object($old$$reg);
2811     Register Rnew = reg_to_register_object($new$$reg);
2812 
2813     MacroAssembler _masm(&cbuf);
2814     __ mov(Rnew, O7);
2815     __ casx(Rmem, Rold, O7);
2816     __ cmp( Rold, O7 );
2817   %}
2818 
2819   // raw int cas, used for compareAndSwap
2820   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2821     Register Rmem = reg_to_register_object($mem$$reg);
2822     Register Rold = reg_to_register_object($old$$reg);
2823     Register Rnew = reg_to_register_object($new$$reg);
2824 
2825     MacroAssembler _masm(&cbuf);
2826     __ mov(Rnew, O7);
2827     __ cas(Rmem, Rold, O7);
2828     __ cmp( Rold, O7 );
2829   %}
2830 
2831   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2832     Register Rres = reg_to_register_object($res$$reg);
2833 
2834     MacroAssembler _masm(&cbuf);
2835     __ mov(1, Rres);
2836     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2837   %}
2838 
2839   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2840     Register Rres = reg_to_register_object($res$$reg);
2841 
2842     MacroAssembler _masm(&cbuf);
2843     __ mov(1, Rres);
2844     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2845   %}
2846 
2847   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2848     MacroAssembler _masm(&cbuf);
2849     Register Rdst = reg_to_register_object($dst$$reg);
2850     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2851                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2852     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2853                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2854 
2855     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2856     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2857   %}
2858 
2859 
2860   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2861     Label Ldone, Lloop;
2862     MacroAssembler _masm(&cbuf);
2863 
2864     Register   str1_reg = reg_to_register_object($str1$$reg);
2865     Register   str2_reg = reg_to_register_object($str2$$reg);
2866     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2867     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2868     Register result_reg = reg_to_register_object($result$$reg);
2869 
2870     assert(result_reg != str1_reg &&
2871            result_reg != str2_reg &&
2872            result_reg != cnt1_reg &&
2873            result_reg != cnt2_reg ,
2874            "need different registers");
2875 
2876     // Compute the minimum of the string lengths(str1_reg) and the
2877     // difference of the string lengths (stack)
2878 
2879     // See if the lengths are different, and calculate min in str1_reg.
2880     // Stash diff in O7 in case we need it for a tie-breaker.
2881     Label Lskip;
2882     __ subcc(cnt1_reg, cnt2_reg, O7);
2883     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2884     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2885     // cnt2 is shorter, so use its count:
2886     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2887     __ bind(Lskip);
2888 
2889     // reallocate cnt1_reg, cnt2_reg, result_reg
2890     // Note:  limit_reg holds the string length pre-scaled by 2
2891     Register limit_reg =   cnt1_reg;
2892     Register  chr2_reg =   cnt2_reg;
2893     Register  chr1_reg = result_reg;
2894     // str{12} are the base pointers
2895 
2896     // Is the minimum length zero?
2897     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2898     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2899     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2900 
2901     // Load first characters
2902     __ lduh(str1_reg, 0, chr1_reg);
2903     __ lduh(str2_reg, 0, chr2_reg);
2904 
2905     // Compare first characters
2906     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2907     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2908     assert(chr1_reg == result_reg, "result must be pre-placed");
2909     __ delayed()->nop();
2910 
2911     {
2912       // Check after comparing first character to see if strings are equivalent
2913       Label LSkip2;
2914       // Check if the strings start at same location
2915       __ cmp(str1_reg, str2_reg);
2916       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2917       __ delayed()->nop();
2918 
2919       // Check if the length difference is zero (in O7)
2920       __ cmp(G0, O7);
2921       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2922       __ delayed()->mov(G0, result_reg);  // result is zero
2923 
2924       // Strings might not be equal
2925       __ bind(LSkip2);
2926     }
2927 
2928     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2929     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2930     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2931 
2932     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2933     __ add(str1_reg, limit_reg, str1_reg);
2934     __ add(str2_reg, limit_reg, str2_reg);
2935     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2936 
2937     // Compare the rest of the characters
2938     __ lduh(str1_reg, limit_reg, chr1_reg);
2939     __ bind(Lloop);
2940     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2941     __ lduh(str2_reg, limit_reg, chr2_reg);
2942     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2943     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2944     assert(chr1_reg == result_reg, "result must be pre-placed");
2945     __ delayed()->inccc(limit_reg, sizeof(jchar));
2946     // annul LDUH if branch is not taken to prevent access past end of string
2947     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2948     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2949 
2950     // If strings are equal up to min length, return the length difference.
2951     __ mov(O7, result_reg);
2952 
2953     // Otherwise, return the difference between the first mismatched chars.
2954     __ bind(Ldone);
2955   %}
2956 
2957 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2958     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2959     MacroAssembler _masm(&cbuf);
2960 
2961     Register   str1_reg = reg_to_register_object($str1$$reg);
2962     Register   str2_reg = reg_to_register_object($str2$$reg);
2963     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2964     Register   tmp1_reg = O7;
2965     Register result_reg = reg_to_register_object($result$$reg);
2966 
2967     assert(result_reg != str1_reg &&
2968            result_reg != str2_reg &&
2969            result_reg !=  cnt_reg &&
2970            result_reg != tmp1_reg ,
2971            "need different registers");
2972 
2973     __ cmp(str1_reg, str2_reg); //same char[] ?
2974     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2975     __ delayed()->add(G0, 1, result_reg);
2976 
2977     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
2978     __ delayed()->add(G0, 1, result_reg); // count == 0
2979 
2980     //rename registers
2981     Register limit_reg =    cnt_reg;
2982     Register  chr1_reg = result_reg;
2983     Register  chr2_reg =   tmp1_reg;
2984 
2985     //check for alignment and position the pointers to the ends
2986     __ or3(str1_reg, str2_reg, chr1_reg);
2987     __ andcc(chr1_reg, 0x3, chr1_reg);
2988     // notZero means at least one not 4-byte aligned.
2989     // We could optimize the case when both arrays are not aligned
2990     // but it is not frequent case and it requires additional checks.
2991     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2992     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2993 
2994     // Compare char[] arrays aligned to 4 bytes.
2995     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2996                           chr1_reg, chr2_reg, Ldone);
2997     __ ba(Ldone);
2998     __ delayed()->add(G0, 1, result_reg);
2999 
3000     // char by char compare
3001     __ bind(Lchar);
3002     __ add(str1_reg, limit_reg, str1_reg);
3003     __ add(str2_reg, limit_reg, str2_reg);
3004     __ neg(limit_reg); //negate count
3005 
3006     __ lduh(str1_reg, limit_reg, chr1_reg);
3007     // Lchar_loop
3008     __ bind(Lchar_loop);
3009     __ lduh(str2_reg, limit_reg, chr2_reg);
3010     __ cmp(chr1_reg, chr2_reg);
3011     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3012     __ delayed()->mov(G0, result_reg); //not equal
3013     __ inccc(limit_reg, sizeof(jchar));
3014     // annul LDUH if branch is not taken to prevent access past end of string
3015     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3016     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3017 
3018     __ add(G0, 1, result_reg);  //equal
3019 
3020     __ bind(Ldone);
3021   %}
3022 
3023 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3024     Label Lvector, Ldone, Lloop;
3025     MacroAssembler _masm(&cbuf);
3026 
3027     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3028     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3029     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3030     Register   tmp2_reg = O7;
3031     Register result_reg = reg_to_register_object($result$$reg);
3032 
3033     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3034     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3035 
3036     // return true if the same array
3037     __ cmp(ary1_reg, ary2_reg);
3038     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3039     __ delayed()->add(G0, 1, result_reg); // equal
3040 
3041     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3042     __ delayed()->mov(G0, result_reg);    // not equal
3043 
3044     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3045     __ delayed()->mov(G0, result_reg);    // not equal
3046 
3047     //load the lengths of arrays
3048     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3049     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3050 
3051     // return false if the two arrays are not equal length
3052     __ cmp(tmp1_reg, tmp2_reg);
3053     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3054     __ delayed()->mov(G0, result_reg);     // not equal
3055 
3056     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3057     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3058 
3059     // load array addresses
3060     __ add(ary1_reg, base_offset, ary1_reg);
3061     __ add(ary2_reg, base_offset, ary2_reg);
3062 
3063     // renaming registers
3064     Register chr1_reg  =  result_reg; // for characters in ary1
3065     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3066     Register limit_reg =  tmp1_reg;   // length
3067 
3068     // set byte count
3069     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3070 
3071     // Compare char[] arrays aligned to 4 bytes.
3072     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3073                           chr1_reg, chr2_reg, Ldone);
3074     __ add(G0, 1, result_reg); // equals
3075 
3076     __ bind(Ldone);
3077   %}
3078 
3079   enc_class enc_rethrow() %{
3080     cbuf.set_insts_mark();
3081     Register temp_reg = G3;
3082     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3083     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3084     MacroAssembler _masm(&cbuf);
3085 #ifdef ASSERT
3086     __ save_frame(0);
3087     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3088     __ sethi(last_rethrow_addrlit, L1);
3089     Address addr(L1, last_rethrow_addrlit.low10());
3090     __ get_pc(L2);
3091     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3092     __ st_ptr(L2, addr);
3093     __ restore();
3094 #endif
3095     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3096     __ delayed()->nop();
3097   %}
3098 
3099   enc_class emit_mem_nop() %{
3100     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3101     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3102   %}
3103 
3104   enc_class emit_fadd_nop() %{
3105     // Generates the instruction FMOVS f31,f31
3106     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3107   %}
3108 
3109   enc_class emit_br_nop() %{
3110     // Generates the instruction BPN,PN .
3111     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3112   %}
3113 
3114   enc_class enc_membar_acquire %{
3115     MacroAssembler _masm(&cbuf);
3116     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3117   %}
3118 
3119   enc_class enc_membar_release %{
3120     MacroAssembler _masm(&cbuf);
3121     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3122   %}
3123 
3124   enc_class enc_membar_volatile %{
3125     MacroAssembler _masm(&cbuf);
3126     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3127   %}
3128 
3129   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3130     MacroAssembler _masm(&cbuf);
3131     Register src_reg = reg_to_register_object($src$$reg);
3132     Register dst_reg = reg_to_register_object($dst$$reg);
3133     __ sllx(src_reg, 56, dst_reg);
3134     __ srlx(dst_reg,  8, O7);
3135     __ or3 (dst_reg, O7, dst_reg);
3136     __ srlx(dst_reg, 16, O7);
3137     __ or3 (dst_reg, O7, dst_reg);
3138     __ srlx(dst_reg, 32, O7);
3139     __ or3 (dst_reg, O7, dst_reg);
3140   %}
3141 
3142   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3143     MacroAssembler _masm(&cbuf);
3144     Register src_reg = reg_to_register_object($src$$reg);
3145     Register dst_reg = reg_to_register_object($dst$$reg);
3146     __ sll(src_reg, 24, dst_reg);
3147     __ srl(dst_reg,  8, O7);
3148     __ or3(dst_reg, O7, dst_reg);
3149     __ srl(dst_reg, 16, O7);
3150     __ or3(dst_reg, O7, dst_reg);
3151   %}
3152 
3153   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3154     MacroAssembler _masm(&cbuf);
3155     Register src_reg = reg_to_register_object($src$$reg);
3156     Register dst_reg = reg_to_register_object($dst$$reg);
3157     __ sllx(src_reg, 48, dst_reg);
3158     __ srlx(dst_reg, 16, O7);
3159     __ or3 (dst_reg, O7, dst_reg);
3160     __ srlx(dst_reg, 32, O7);
3161     __ or3 (dst_reg, O7, dst_reg);
3162   %}
3163 
3164   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3165     MacroAssembler _masm(&cbuf);
3166     Register src_reg = reg_to_register_object($src$$reg);
3167     Register dst_reg = reg_to_register_object($dst$$reg);
3168     __ sllx(src_reg, 32, dst_reg);
3169     __ srlx(dst_reg, 32, O7);
3170     __ or3 (dst_reg, O7, dst_reg);
3171   %}
3172 
3173 %}
3174 
3175 //----------FRAME--------------------------------------------------------------
3176 // Definition of frame structure and management information.
3177 //
3178 //  S T A C K   L A Y O U T    Allocators stack-slot number
3179 //                             |   (to get allocators register number
3180 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3181 //  r   CALLER     |        |
3182 //  o     |        +--------+      pad to even-align allocators stack-slot
3183 //  w     V        |  pad0  |        numbers; owned by CALLER
3184 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3185 //  h     ^        |   in   |  5
3186 //        |        |  args  |  4   Holes in incoming args owned by SELF
3187 //  |     |        |        |  3
3188 //  |     |        +--------+
3189 //  V     |        | old out|      Empty on Intel, window on Sparc
3190 //        |    old |preserve|      Must be even aligned.
3191 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3192 //        |        |   in   |  3   area for Intel ret address
3193 //     Owned by    |preserve|      Empty on Sparc.
3194 //       SELF      +--------+
3195 //        |        |  pad2  |  2   pad to align old SP
3196 //        |        +--------+  1
3197 //        |        | locks  |  0
3198 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3199 //        |        |  pad1  | 11   pad to align new SP
3200 //        |        +--------+
3201 //        |        |        | 10
3202 //        |        | spills |  9   spills
3203 //        V        |        |  8   (pad0 slot for callee)
3204 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3205 //        ^        |  out   |  7
3206 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3207 //     Owned by    +--------+
3208 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3209 //        |    new |preserve|      Must be even-aligned.
3210 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3211 //        |        |        |
3212 //
3213 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3214 //         known from SELF's arguments and the Java calling convention.
3215 //         Region 6-7 is determined per call site.
3216 // Note 2: If the calling convention leaves holes in the incoming argument
3217 //         area, those holes are owned by SELF.  Holes in the outgoing area
3218 //         are owned by the CALLEE.  Holes should not be nessecary in the
3219 //         incoming area, as the Java calling convention is completely under
3220 //         the control of the AD file.  Doubles can be sorted and packed to
3221 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3222 //         varargs C calling conventions.
3223 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3224 //         even aligned with pad0 as needed.
3225 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3226 //         region 6-11 is even aligned; it may be padded out more so that
3227 //         the region from SP to FP meets the minimum stack alignment.
3228 
3229 frame %{
3230   // What direction does stack grow in (assumed to be same for native & Java)
3231   stack_direction(TOWARDS_LOW);
3232 
3233   // These two registers define part of the calling convention
3234   // between compiled code and the interpreter.
3235   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3236   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3237 
3238   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3239   cisc_spilling_operand_name(indOffset);
3240 
3241   // Number of stack slots consumed by a Monitor enter
3242 #ifdef _LP64
3243   sync_stack_slots(2);
3244 #else
3245   sync_stack_slots(1);
3246 #endif
3247 
3248   // Compiled code's Frame Pointer
3249   frame_pointer(R_SP);
3250 
3251   // Stack alignment requirement
3252   stack_alignment(StackAlignmentInBytes);
3253   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3254   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3255 
3256   // Number of stack slots between incoming argument block and the start of
3257   // a new frame.  The PROLOG must add this many slots to the stack.  The
3258   // EPILOG must remove this many slots.
3259   in_preserve_stack_slots(0);
3260 
3261   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3262   // for calls to C.  Supports the var-args backing area for register parms.
3263   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3264 #ifdef _LP64
3265   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3266   varargs_C_out_slots_killed(12);
3267 #else
3268   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3269   varargs_C_out_slots_killed( 7);
3270 #endif
3271 
3272   // The after-PROLOG location of the return address.  Location of
3273   // return address specifies a type (REG or STACK) and a number
3274   // representing the register number (i.e. - use a register name) or
3275   // stack slot.
3276   return_addr(REG R_I7);          // Ret Addr is in register I7
3277 
3278   // Body of function which returns an OptoRegs array locating
3279   // arguments either in registers or in stack slots for calling
3280   // java
3281   calling_convention %{
3282     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3283 
3284   %}
3285 
3286   // Body of function which returns an OptoRegs array locating
3287   // arguments either in registers or in stack slots for callin
3288   // C.
3289   c_calling_convention %{
3290     // This is obviously always outgoing
3291     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3292   %}
3293 
3294   // Location of native (C/C++) and interpreter return values.  This is specified to
3295   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3296   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3297   // to and from the register pairs is done by the appropriate call and epilog
3298   // opcodes.  This simplifies the register allocator.
3299   c_return_value %{
3300     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3301 #ifdef     _LP64
3302     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3303     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3304     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3305     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3306 #else  // !_LP64
3307     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3308     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3309     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3310     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3311 #endif
3312     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3313                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3314   %}
3315 
3316   // Location of compiled Java return values.  Same as C
3317   return_value %{
3318     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3319 #ifdef     _LP64
3320     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3321     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3322     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3323     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3324 #else  // !_LP64
3325     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3326     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3327     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3328     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3329 #endif
3330     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3331                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3332   %}
3333 
3334 %}
3335 
3336 
3337 //----------ATTRIBUTES---------------------------------------------------------
3338 //----------Operand Attributes-------------------------------------------------
3339 op_attrib op_cost(1);          // Required cost attribute
3340 
3341 //----------Instruction Attributes---------------------------------------------
3342 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3343 ins_attrib ins_size(32);           // Required size attribute (in bits)
3344 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3345 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3346                                    // non-matching short branch variant of some
3347                                                             // long branch?
3348 
3349 //----------OPERANDS-----------------------------------------------------------
3350 // Operand definitions must precede instruction definitions for correct parsing
3351 // in the ADLC because operands constitute user defined types which are used in
3352 // instruction definitions.
3353 
3354 //----------Simple Operands----------------------------------------------------
3355 // Immediate Operands
3356 // Integer Immediate: 32-bit
3357 operand immI() %{
3358   match(ConI);
3359 
3360   op_cost(0);
3361   // formats are generated automatically for constants and base registers
3362   format %{ %}
3363   interface(CONST_INTER);
3364 %}
3365 
3366 // Integer Immediate: 8-bit
3367 operand immI8() %{
3368   predicate(Assembler::is_simm8(n->get_int()));
3369   match(ConI);
3370   op_cost(0);
3371   format %{ %}
3372   interface(CONST_INTER);
3373 %}
3374 
3375 // Integer Immediate: 13-bit
3376 operand immI13() %{
3377   predicate(Assembler::is_simm13(n->get_int()));
3378   match(ConI);
3379   op_cost(0);
3380 
3381   format %{ %}
3382   interface(CONST_INTER);
3383 %}
3384 
3385 // Integer Immediate: 13-bit minus 7
3386 operand immI13m7() %{
3387   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3388   match(ConI);
3389   op_cost(0);
3390 
3391   format %{ %}
3392   interface(CONST_INTER);
3393 %}
3394 
3395 // Integer Immediate: 16-bit
3396 operand immI16() %{
3397   predicate(Assembler::is_simm16(n->get_int()));
3398   match(ConI);
3399   op_cost(0);
3400   format %{ %}
3401   interface(CONST_INTER);
3402 %}
3403 
3404 // Unsigned (positive) Integer Immediate: 13-bit
3405 operand immU13() %{
3406   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3407   match(ConI);
3408   op_cost(0);
3409 
3410   format %{ %}
3411   interface(CONST_INTER);
3412 %}
3413 
3414 // Integer Immediate: 6-bit
3415 operand immU6() %{
3416   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3417   match(ConI);
3418   op_cost(0);
3419   format %{ %}
3420   interface(CONST_INTER);
3421 %}
3422 
3423 // Integer Immediate: 11-bit
3424 operand immI11() %{
3425   predicate(Assembler::is_simm11(n->get_int()));
3426   match(ConI);
3427   op_cost(0);
3428   format %{ %}
3429   interface(CONST_INTER);
3430 %}
3431 
3432 // Integer Immediate: 5-bit
3433 operand immI5() %{
3434   predicate(Assembler::is_simm5(n->get_int()));
3435   match(ConI);
3436   op_cost(0);
3437   format %{ %}
3438   interface(CONST_INTER);
3439 %}
3440 
3441 // Integer Immediate: 0-bit
3442 operand immI0() %{
3443   predicate(n->get_int() == 0);
3444   match(ConI);
3445   op_cost(0);
3446 
3447   format %{ %}
3448   interface(CONST_INTER);
3449 %}
3450 
3451 // Integer Immediate: the value 10
3452 operand immI10() %{
3453   predicate(n->get_int() == 10);
3454   match(ConI);
3455   op_cost(0);
3456 
3457   format %{ %}
3458   interface(CONST_INTER);
3459 %}
3460 
3461 // Integer Immediate: the values 0-31
3462 operand immU5() %{
3463   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3464   match(ConI);
3465   op_cost(0);
3466 
3467   format %{ %}
3468   interface(CONST_INTER);
3469 %}
3470 
3471 // Integer Immediate: the values 1-31
3472 operand immI_1_31() %{
3473   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3474   match(ConI);
3475   op_cost(0);
3476 
3477   format %{ %}
3478   interface(CONST_INTER);
3479 %}
3480 
3481 // Integer Immediate: the values 32-63
3482 operand immI_32_63() %{
3483   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3484   match(ConI);
3485   op_cost(0);
3486 
3487   format %{ %}
3488   interface(CONST_INTER);
3489 %}
3490 
3491 // Immediates for special shifts (sign extend)
3492 
3493 // Integer Immediate: the value 16
3494 operand immI_16() %{
3495   predicate(n->get_int() == 16);
3496   match(ConI);
3497   op_cost(0);
3498 
3499   format %{ %}
3500   interface(CONST_INTER);
3501 %}
3502 
3503 // Integer Immediate: the value 24
3504 operand immI_24() %{
3505   predicate(n->get_int() == 24);
3506   match(ConI);
3507   op_cost(0);
3508 
3509   format %{ %}
3510   interface(CONST_INTER);
3511 %}
3512 
3513 // Integer Immediate: the value 255
3514 operand immI_255() %{
3515   predicate( n->get_int() == 255 );
3516   match(ConI);
3517   op_cost(0);
3518 
3519   format %{ %}
3520   interface(CONST_INTER);
3521 %}
3522 
3523 // Integer Immediate: the value 65535
3524 operand immI_65535() %{
3525   predicate(n->get_int() == 65535);
3526   match(ConI);
3527   op_cost(0);
3528 
3529   format %{ %}
3530   interface(CONST_INTER);
3531 %}
3532 
3533 // Long Immediate: the value FF
3534 operand immL_FF() %{
3535   predicate( n->get_long() == 0xFFL );
3536   match(ConL);
3537   op_cost(0);
3538 
3539   format %{ %}
3540   interface(CONST_INTER);
3541 %}
3542 
3543 // Long Immediate: the value FFFF
3544 operand immL_FFFF() %{
3545   predicate( n->get_long() == 0xFFFFL );
3546   match(ConL);
3547   op_cost(0);
3548 
3549   format %{ %}
3550   interface(CONST_INTER);
3551 %}
3552 
3553 // Pointer Immediate: 32 or 64-bit
3554 operand immP() %{
3555   match(ConP);
3556 
3557   op_cost(5);
3558   // formats are generated automatically for constants and base registers
3559   format %{ %}
3560   interface(CONST_INTER);
3561 %}
3562 
3563 #ifdef _LP64
3564 // Pointer Immediate: 64-bit
3565 operand immP_set() %{
3566   predicate(!VM_Version::is_niagara_plus());
3567   match(ConP);
3568 
3569   op_cost(5);
3570   // formats are generated automatically for constants and base registers
3571   format %{ %}
3572   interface(CONST_INTER);
3573 %}
3574 
3575 // Pointer Immediate: 64-bit
3576 // From Niagara2 processors on a load should be better than materializing.
3577 operand immP_load() %{
3578   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3579   match(ConP);
3580 
3581   op_cost(5);
3582   // formats are generated automatically for constants and base registers
3583   format %{ %}
3584   interface(CONST_INTER);
3585 %}
3586 
3587 // Pointer Immediate: 64-bit
3588 operand immP_no_oop_cheap() %{
3589   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3590   match(ConP);
3591 
3592   op_cost(5);
3593   // formats are generated automatically for constants and base registers
3594   format %{ %}
3595   interface(CONST_INTER);
3596 %}
3597 #endif
3598 
3599 operand immP13() %{
3600   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3601   match(ConP);
3602   op_cost(0);
3603 
3604   format %{ %}
3605   interface(CONST_INTER);
3606 %}
3607 
3608 operand immP0() %{
3609   predicate(n->get_ptr() == 0);
3610   match(ConP);
3611   op_cost(0);
3612 
3613   format %{ %}
3614   interface(CONST_INTER);
3615 %}
3616 
3617 operand immP_poll() %{
3618   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3619   match(ConP);
3620 
3621   // formats are generated automatically for constants and base registers
3622   format %{ %}
3623   interface(CONST_INTER);
3624 %}
3625 
3626 // Pointer Immediate
3627 operand immN()
3628 %{
3629   match(ConN);
3630 
3631   op_cost(10);
3632   format %{ %}
3633   interface(CONST_INTER);
3634 %}
3635 
3636 // NULL Pointer Immediate
3637 operand immN0()
3638 %{
3639   predicate(n->get_narrowcon() == 0);
3640   match(ConN);
3641 
3642   op_cost(0);
3643   format %{ %}
3644   interface(CONST_INTER);
3645 %}
3646 
3647 operand immL() %{
3648   match(ConL);
3649   op_cost(40);
3650   // formats are generated automatically for constants and base registers
3651   format %{ %}
3652   interface(CONST_INTER);
3653 %}
3654 
3655 operand immL0() %{
3656   predicate(n->get_long() == 0L);
3657   match(ConL);
3658   op_cost(0);
3659   // formats are generated automatically for constants and base registers
3660   format %{ %}
3661   interface(CONST_INTER);
3662 %}
3663 
3664 // Integer Immediate: 5-bit
3665 operand immL5() %{
3666   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3667   match(ConL);
3668   op_cost(0);
3669   format %{ %}
3670   interface(CONST_INTER);
3671 %}
3672 
3673 // Long Immediate: 13-bit
3674 operand immL13() %{
3675   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3676   match(ConL);
3677   op_cost(0);
3678 
3679   format %{ %}
3680   interface(CONST_INTER);
3681 %}
3682 
3683 // Long Immediate: 13-bit minus 7
3684 operand immL13m7() %{
3685   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3686   match(ConL);
3687   op_cost(0);
3688 
3689   format %{ %}
3690   interface(CONST_INTER);
3691 %}
3692 
3693 // Long Immediate: low 32-bit mask
3694 operand immL_32bits() %{
3695   predicate(n->get_long() == 0xFFFFFFFFL);
3696   match(ConL);
3697   op_cost(0);
3698 
3699   format %{ %}
3700   interface(CONST_INTER);
3701 %}
3702 
3703 // Long Immediate: cheap (materialize in <= 3 instructions)
3704 operand immL_cheap() %{
3705   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3706   match(ConL);
3707   op_cost(0);
3708 
3709   format %{ %}
3710   interface(CONST_INTER);
3711 %}
3712 
3713 // Long Immediate: expensive (materialize in > 3 instructions)
3714 operand immL_expensive() %{
3715   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3716   match(ConL);
3717   op_cost(0);
3718 
3719   format %{ %}
3720   interface(CONST_INTER);
3721 %}
3722 
3723 // Double Immediate
3724 operand immD() %{
3725   match(ConD);
3726 
3727   op_cost(40);
3728   format %{ %}
3729   interface(CONST_INTER);
3730 %}
3731 
3732 operand immD0() %{
3733 #ifdef _LP64
3734   // on 64-bit architectures this comparision is faster
3735   predicate(jlong_cast(n->getd()) == 0);
3736 #else
3737   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3738 #endif
3739   match(ConD);
3740 
3741   op_cost(0);
3742   format %{ %}
3743   interface(CONST_INTER);
3744 %}
3745 
3746 // Float Immediate
3747 operand immF() %{
3748   match(ConF);
3749 
3750   op_cost(20);
3751   format %{ %}
3752   interface(CONST_INTER);
3753 %}
3754 
3755 // Float Immediate: 0
3756 operand immF0() %{
3757   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3758   match(ConF);
3759 
3760   op_cost(0);
3761   format %{ %}
3762   interface(CONST_INTER);
3763 %}
3764 
3765 // Integer Register Operands
3766 // Integer Register
3767 operand iRegI() %{
3768   constraint(ALLOC_IN_RC(int_reg));
3769   match(RegI);
3770 
3771   match(notemp_iRegI);
3772   match(g1RegI);
3773   match(o0RegI);
3774   match(iRegIsafe);
3775 
3776   format %{ %}
3777   interface(REG_INTER);
3778 %}
3779 
3780 operand notemp_iRegI() %{
3781   constraint(ALLOC_IN_RC(notemp_int_reg));
3782   match(RegI);
3783 
3784   match(o0RegI);
3785 
3786   format %{ %}
3787   interface(REG_INTER);
3788 %}
3789 
3790 operand o0RegI() %{
3791   constraint(ALLOC_IN_RC(o0_regI));
3792   match(iRegI);
3793 
3794   format %{ %}
3795   interface(REG_INTER);
3796 %}
3797 
3798 // Pointer Register
3799 operand iRegP() %{
3800   constraint(ALLOC_IN_RC(ptr_reg));
3801   match(RegP);
3802 
3803   match(lock_ptr_RegP);
3804   match(g1RegP);
3805   match(g2RegP);
3806   match(g3RegP);
3807   match(g4RegP);
3808   match(i0RegP);
3809   match(o0RegP);
3810   match(o1RegP);
3811   match(l7RegP);
3812 
3813   format %{ %}
3814   interface(REG_INTER);
3815 %}
3816 
3817 operand sp_ptr_RegP() %{
3818   constraint(ALLOC_IN_RC(sp_ptr_reg));
3819   match(RegP);
3820   match(iRegP);
3821 
3822   format %{ %}
3823   interface(REG_INTER);
3824 %}
3825 
3826 operand lock_ptr_RegP() %{
3827   constraint(ALLOC_IN_RC(lock_ptr_reg));
3828   match(RegP);
3829   match(i0RegP);
3830   match(o0RegP);
3831   match(o1RegP);
3832   match(l7RegP);
3833 
3834   format %{ %}
3835   interface(REG_INTER);
3836 %}
3837 
3838 operand g1RegP() %{
3839   constraint(ALLOC_IN_RC(g1_regP));
3840   match(iRegP);
3841 
3842   format %{ %}
3843   interface(REG_INTER);
3844 %}
3845 
3846 operand g2RegP() %{
3847   constraint(ALLOC_IN_RC(g2_regP));
3848   match(iRegP);
3849 
3850   format %{ %}
3851   interface(REG_INTER);
3852 %}
3853 
3854 operand g3RegP() %{
3855   constraint(ALLOC_IN_RC(g3_regP));
3856   match(iRegP);
3857 
3858   format %{ %}
3859   interface(REG_INTER);
3860 %}
3861 
3862 operand g1RegI() %{
3863   constraint(ALLOC_IN_RC(g1_regI));
3864   match(iRegI);
3865 
3866   format %{ %}
3867   interface(REG_INTER);
3868 %}
3869 
3870 operand g3RegI() %{
3871   constraint(ALLOC_IN_RC(g3_regI));
3872   match(iRegI);
3873 
3874   format %{ %}
3875   interface(REG_INTER);
3876 %}
3877 
3878 operand g4RegI() %{
3879   constraint(ALLOC_IN_RC(g4_regI));
3880   match(iRegI);
3881 
3882   format %{ %}
3883   interface(REG_INTER);
3884 %}
3885 
3886 operand g4RegP() %{
3887   constraint(ALLOC_IN_RC(g4_regP));
3888   match(iRegP);
3889 
3890   format %{ %}
3891   interface(REG_INTER);
3892 %}
3893 
3894 operand i0RegP() %{
3895   constraint(ALLOC_IN_RC(i0_regP));
3896   match(iRegP);
3897 
3898   format %{ %}
3899   interface(REG_INTER);
3900 %}
3901 
3902 operand o0RegP() %{
3903   constraint(ALLOC_IN_RC(o0_regP));
3904   match(iRegP);
3905 
3906   format %{ %}
3907   interface(REG_INTER);
3908 %}
3909 
3910 operand o1RegP() %{
3911   constraint(ALLOC_IN_RC(o1_regP));
3912   match(iRegP);
3913 
3914   format %{ %}
3915   interface(REG_INTER);
3916 %}
3917 
3918 operand o2RegP() %{
3919   constraint(ALLOC_IN_RC(o2_regP));
3920   match(iRegP);
3921 
3922   format %{ %}
3923   interface(REG_INTER);
3924 %}
3925 
3926 operand o7RegP() %{
3927   constraint(ALLOC_IN_RC(o7_regP));
3928   match(iRegP);
3929 
3930   format %{ %}
3931   interface(REG_INTER);
3932 %}
3933 
3934 operand l7RegP() %{
3935   constraint(ALLOC_IN_RC(l7_regP));
3936   match(iRegP);
3937 
3938   format %{ %}
3939   interface(REG_INTER);
3940 %}
3941 
3942 operand o7RegI() %{
3943   constraint(ALLOC_IN_RC(o7_regI));
3944   match(iRegI);
3945 
3946   format %{ %}
3947   interface(REG_INTER);
3948 %}
3949 
3950 operand iRegN() %{
3951   constraint(ALLOC_IN_RC(int_reg));
3952   match(RegN);
3953 
3954   format %{ %}
3955   interface(REG_INTER);
3956 %}
3957 
3958 // Long Register
3959 operand iRegL() %{
3960   constraint(ALLOC_IN_RC(long_reg));
3961   match(RegL);
3962 
3963   format %{ %}
3964   interface(REG_INTER);
3965 %}
3966 
3967 operand o2RegL() %{
3968   constraint(ALLOC_IN_RC(o2_regL));
3969   match(iRegL);
3970 
3971   format %{ %}
3972   interface(REG_INTER);
3973 %}
3974 
3975 operand o7RegL() %{
3976   constraint(ALLOC_IN_RC(o7_regL));
3977   match(iRegL);
3978 
3979   format %{ %}
3980   interface(REG_INTER);
3981 %}
3982 
3983 operand g1RegL() %{
3984   constraint(ALLOC_IN_RC(g1_regL));
3985   match(iRegL);
3986 
3987   format %{ %}
3988   interface(REG_INTER);
3989 %}
3990 
3991 operand g3RegL() %{
3992   constraint(ALLOC_IN_RC(g3_regL));
3993   match(iRegL);
3994 
3995   format %{ %}
3996   interface(REG_INTER);
3997 %}
3998 
3999 // Int Register safe
4000 // This is 64bit safe
4001 operand iRegIsafe() %{
4002   constraint(ALLOC_IN_RC(long_reg));
4003 
4004   match(iRegI);
4005 
4006   format %{ %}
4007   interface(REG_INTER);
4008 %}
4009 
4010 // Condition Code Flag Register
4011 operand flagsReg() %{
4012   constraint(ALLOC_IN_RC(int_flags));
4013   match(RegFlags);
4014 
4015   format %{ "ccr" %} // both ICC and XCC
4016   interface(REG_INTER);
4017 %}
4018 
4019 // Condition Code Register, unsigned comparisons.
4020 operand flagsRegU() %{
4021   constraint(ALLOC_IN_RC(int_flags));
4022   match(RegFlags);
4023 
4024   format %{ "icc_U" %}
4025   interface(REG_INTER);
4026 %}
4027 
4028 // Condition Code Register, pointer comparisons.
4029 operand flagsRegP() %{
4030   constraint(ALLOC_IN_RC(int_flags));
4031   match(RegFlags);
4032 
4033 #ifdef _LP64
4034   format %{ "xcc_P" %}
4035 #else
4036   format %{ "icc_P" %}
4037 #endif
4038   interface(REG_INTER);
4039 %}
4040 
4041 // Condition Code Register, long comparisons.
4042 operand flagsRegL() %{
4043   constraint(ALLOC_IN_RC(int_flags));
4044   match(RegFlags);
4045 
4046   format %{ "xcc_L" %}
4047   interface(REG_INTER);
4048 %}
4049 
4050 // Condition Code Register, floating comparisons, unordered same as "less".
4051 operand flagsRegF() %{
4052   constraint(ALLOC_IN_RC(float_flags));
4053   match(RegFlags);
4054   match(flagsRegF0);
4055 
4056   format %{ %}
4057   interface(REG_INTER);
4058 %}
4059 
4060 operand flagsRegF0() %{
4061   constraint(ALLOC_IN_RC(float_flag0));
4062   match(RegFlags);
4063 
4064   format %{ %}
4065   interface(REG_INTER);
4066 %}
4067 
4068 
4069 // Condition Code Flag Register used by long compare
4070 operand flagsReg_long_LTGE() %{
4071   constraint(ALLOC_IN_RC(int_flags));
4072   match(RegFlags);
4073   format %{ "icc_LTGE" %}
4074   interface(REG_INTER);
4075 %}
4076 operand flagsReg_long_EQNE() %{
4077   constraint(ALLOC_IN_RC(int_flags));
4078   match(RegFlags);
4079   format %{ "icc_EQNE" %}
4080   interface(REG_INTER);
4081 %}
4082 operand flagsReg_long_LEGT() %{
4083   constraint(ALLOC_IN_RC(int_flags));
4084   match(RegFlags);
4085   format %{ "icc_LEGT" %}
4086   interface(REG_INTER);
4087 %}
4088 
4089 
4090 operand regD() %{
4091   constraint(ALLOC_IN_RC(dflt_reg));
4092   match(RegD);
4093 
4094   match(regD_low);
4095 
4096   format %{ %}
4097   interface(REG_INTER);
4098 %}
4099 
4100 operand regF() %{
4101   constraint(ALLOC_IN_RC(sflt_reg));
4102   match(RegF);
4103 
4104   format %{ %}
4105   interface(REG_INTER);
4106 %}
4107 
4108 operand regD_low() %{
4109   constraint(ALLOC_IN_RC(dflt_low_reg));
4110   match(regD);
4111 
4112   format %{ %}
4113   interface(REG_INTER);
4114 %}
4115 
4116 // Special Registers
4117 
4118 // Method Register
4119 operand inline_cache_regP(iRegP reg) %{
4120   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4121   match(reg);
4122   format %{ %}
4123   interface(REG_INTER);
4124 %}
4125 
4126 operand interpreter_method_oop_regP(iRegP reg) %{
4127   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4128   match(reg);
4129   format %{ %}
4130   interface(REG_INTER);
4131 %}
4132 
4133 
4134 //----------Complex Operands---------------------------------------------------
4135 // Indirect Memory Reference
4136 operand indirect(sp_ptr_RegP reg) %{
4137   constraint(ALLOC_IN_RC(sp_ptr_reg));
4138   match(reg);
4139 
4140   op_cost(100);
4141   format %{ "[$reg]" %}
4142   interface(MEMORY_INTER) %{
4143     base($reg);
4144     index(0x0);
4145     scale(0x0);
4146     disp(0x0);
4147   %}
4148 %}
4149 
4150 // Indirect with simm13 Offset
4151 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4152   constraint(ALLOC_IN_RC(sp_ptr_reg));
4153   match(AddP reg offset);
4154 
4155   op_cost(100);
4156   format %{ "[$reg + $offset]" %}
4157   interface(MEMORY_INTER) %{
4158     base($reg);
4159     index(0x0);
4160     scale(0x0);
4161     disp($offset);
4162   %}
4163 %}
4164 
4165 // Indirect with simm13 Offset minus 7
4166 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4167   constraint(ALLOC_IN_RC(sp_ptr_reg));
4168   match(AddP reg offset);
4169 
4170   op_cost(100);
4171   format %{ "[$reg + $offset]" %}
4172   interface(MEMORY_INTER) %{
4173     base($reg);
4174     index(0x0);
4175     scale(0x0);
4176     disp($offset);
4177   %}
4178 %}
4179 
4180 // Note:  Intel has a swapped version also, like this:
4181 //operand indOffsetX(iRegI reg, immP offset) %{
4182 //  constraint(ALLOC_IN_RC(int_reg));
4183 //  match(AddP offset reg);
4184 //
4185 //  op_cost(100);
4186 //  format %{ "[$reg + $offset]" %}
4187 //  interface(MEMORY_INTER) %{
4188 //    base($reg);
4189 //    index(0x0);
4190 //    scale(0x0);
4191 //    disp($offset);
4192 //  %}
4193 //%}
4194 //// However, it doesn't make sense for SPARC, since
4195 // we have no particularly good way to embed oops in
4196 // single instructions.
4197 
4198 // Indirect with Register Index
4199 operand indIndex(iRegP addr, iRegX index) %{
4200   constraint(ALLOC_IN_RC(ptr_reg));
4201   match(AddP addr index);
4202 
4203   op_cost(100);
4204   format %{ "[$addr + $index]" %}
4205   interface(MEMORY_INTER) %{
4206     base($addr);
4207     index($index);
4208     scale(0x0);
4209     disp(0x0);
4210   %}
4211 %}
4212 
4213 //----------Special Memory Operands--------------------------------------------
4214 // Stack Slot Operand - This operand is used for loading and storing temporary
4215 //                      values on the stack where a match requires a value to
4216 //                      flow through memory.
4217 operand stackSlotI(sRegI reg) %{
4218   constraint(ALLOC_IN_RC(stack_slots));
4219   op_cost(100);
4220   //match(RegI);
4221   format %{ "[$reg]" %}
4222   interface(MEMORY_INTER) %{
4223     base(0xE);   // R_SP
4224     index(0x0);
4225     scale(0x0);
4226     disp($reg);  // Stack Offset
4227   %}
4228 %}
4229 
4230 operand stackSlotP(sRegP reg) %{
4231   constraint(ALLOC_IN_RC(stack_slots));
4232   op_cost(100);
4233   //match(RegP);
4234   format %{ "[$reg]" %}
4235   interface(MEMORY_INTER) %{
4236     base(0xE);   // R_SP
4237     index(0x0);
4238     scale(0x0);
4239     disp($reg);  // Stack Offset
4240   %}
4241 %}
4242 
4243 operand stackSlotF(sRegF reg) %{
4244   constraint(ALLOC_IN_RC(stack_slots));
4245   op_cost(100);
4246   //match(RegF);
4247   format %{ "[$reg]" %}
4248   interface(MEMORY_INTER) %{
4249     base(0xE);   // R_SP
4250     index(0x0);
4251     scale(0x0);
4252     disp($reg);  // Stack Offset
4253   %}
4254 %}
4255 operand stackSlotD(sRegD reg) %{
4256   constraint(ALLOC_IN_RC(stack_slots));
4257   op_cost(100);
4258   //match(RegD);
4259   format %{ "[$reg]" %}
4260   interface(MEMORY_INTER) %{
4261     base(0xE);   // R_SP
4262     index(0x0);
4263     scale(0x0);
4264     disp($reg);  // Stack Offset
4265   %}
4266 %}
4267 operand stackSlotL(sRegL reg) %{
4268   constraint(ALLOC_IN_RC(stack_slots));
4269   op_cost(100);
4270   //match(RegL);
4271   format %{ "[$reg]" %}
4272   interface(MEMORY_INTER) %{
4273     base(0xE);   // R_SP
4274     index(0x0);
4275     scale(0x0);
4276     disp($reg);  // Stack Offset
4277   %}
4278 %}
4279 
4280 // Operands for expressing Control Flow
4281 // NOTE:  Label is a predefined operand which should not be redefined in
4282 //        the AD file.  It is generically handled within the ADLC.
4283 
4284 //----------Conditional Branch Operands----------------------------------------
4285 // Comparison Op  - This is the operation of the comparison, and is limited to
4286 //                  the following set of codes:
4287 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4288 //
4289 // Other attributes of the comparison, such as unsignedness, are specified
4290 // by the comparison instruction that sets a condition code flags register.
4291 // That result is represented by a flags operand whose subtype is appropriate
4292 // to the unsignedness (etc.) of the comparison.
4293 //
4294 // Later, the instruction which matches both the Comparison Op (a Bool) and
4295 // the flags (produced by the Cmp) specifies the coding of the comparison op
4296 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4297 
4298 operand cmpOp() %{
4299   match(Bool);
4300 
4301   format %{ "" %}
4302   interface(COND_INTER) %{
4303     equal(0x1);
4304     not_equal(0x9);
4305     less(0x3);
4306     greater_equal(0xB);
4307     less_equal(0x2);
4308     greater(0xA);
4309   %}
4310 %}
4311 
4312 // Comparison Op, unsigned
4313 operand cmpOpU() %{
4314   match(Bool);
4315 
4316   format %{ "u" %}
4317   interface(COND_INTER) %{
4318     equal(0x1);
4319     not_equal(0x9);
4320     less(0x5);
4321     greater_equal(0xD);
4322     less_equal(0x4);
4323     greater(0xC);
4324   %}
4325 %}
4326 
4327 // Comparison Op, pointer (same as unsigned)
4328 operand cmpOpP() %{
4329   match(Bool);
4330 
4331   format %{ "p" %}
4332   interface(COND_INTER) %{
4333     equal(0x1);
4334     not_equal(0x9);
4335     less(0x5);
4336     greater_equal(0xD);
4337     less_equal(0x4);
4338     greater(0xC);
4339   %}
4340 %}
4341 
4342 // Comparison Op, branch-register encoding
4343 operand cmpOp_reg() %{
4344   match(Bool);
4345 
4346   format %{ "" %}
4347   interface(COND_INTER) %{
4348     equal        (0x1);
4349     not_equal    (0x5);
4350     less         (0x3);
4351     greater_equal(0x7);
4352     less_equal   (0x2);
4353     greater      (0x6);
4354   %}
4355 %}
4356 
4357 // Comparison Code, floating, unordered same as less
4358 operand cmpOpF() %{
4359   match(Bool);
4360 
4361   format %{ "fl" %}
4362   interface(COND_INTER) %{
4363     equal(0x9);
4364     not_equal(0x1);
4365     less(0x3);
4366     greater_equal(0xB);
4367     less_equal(0xE);
4368     greater(0x6);
4369   %}
4370 %}
4371 
4372 // Used by long compare
4373 operand cmpOp_commute() %{
4374   match(Bool);
4375 
4376   format %{ "" %}
4377   interface(COND_INTER) %{
4378     equal(0x1);
4379     not_equal(0x9);
4380     less(0xA);
4381     greater_equal(0x2);
4382     less_equal(0xB);
4383     greater(0x3);
4384   %}
4385 %}
4386 
4387 //----------OPERAND CLASSES----------------------------------------------------
4388 // Operand Classes are groups of operands that are used to simplify
4389 // instruction definitions by not requiring the AD writer to specify separate
4390 // instructions for every form of operand when the instruction accepts
4391 // multiple operand types with the same basic encoding and format.  The classic
4392 // case of this is memory operands.
4393 opclass memory( indirect, indOffset13, indIndex );
4394 opclass indIndexMemory( indIndex );
4395 
4396 //----------PIPELINE-----------------------------------------------------------
4397 pipeline %{
4398 
4399 //----------ATTRIBUTES---------------------------------------------------------
4400 attributes %{
4401   fixed_size_instructions;           // Fixed size instructions
4402   branch_has_delay_slot;             // Branch has delay slot following
4403   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4404   instruction_unit_size = 4;         // An instruction is 4 bytes long
4405   instruction_fetch_unit_size = 16;  // The processor fetches one line
4406   instruction_fetch_units = 1;       // of 16 bytes
4407 
4408   // List of nop instructions
4409   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4410 %}
4411 
4412 //----------RESOURCES----------------------------------------------------------
4413 // Resources are the functional units available to the machine
4414 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4415 
4416 //----------PIPELINE DESCRIPTION-----------------------------------------------
4417 // Pipeline Description specifies the stages in the machine's pipeline
4418 
4419 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4420 
4421 //----------PIPELINE CLASSES---------------------------------------------------
4422 // Pipeline Classes describe the stages in which input and output are
4423 // referenced by the hardware pipeline.
4424 
4425 // Integer ALU reg-reg operation
4426 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4427     single_instruction;
4428     dst   : E(write);
4429     src1  : R(read);
4430     src2  : R(read);
4431     IALU  : R;
4432 %}
4433 
4434 // Integer ALU reg-reg long operation
4435 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4436     instruction_count(2);
4437     dst   : E(write);
4438     src1  : R(read);
4439     src2  : R(read);
4440     IALU  : R;
4441     IALU  : R;
4442 %}
4443 
4444 // Integer ALU reg-reg long dependent operation
4445 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4446     instruction_count(1); multiple_bundles;
4447     dst   : E(write);
4448     src1  : R(read);
4449     src2  : R(read);
4450     cr    : E(write);
4451     IALU  : R(2);
4452 %}
4453 
4454 // Integer ALU reg-imm operaion
4455 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4456     single_instruction;
4457     dst   : E(write);
4458     src1  : R(read);
4459     IALU  : R;
4460 %}
4461 
4462 // Integer ALU reg-reg operation with condition code
4463 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4464     single_instruction;
4465     dst   : E(write);
4466     cr    : E(write);
4467     src1  : R(read);
4468     src2  : R(read);
4469     IALU  : R;
4470 %}
4471 
4472 // Integer ALU reg-imm operation with condition code
4473 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4474     single_instruction;
4475     dst   : E(write);
4476     cr    : E(write);
4477     src1  : R(read);
4478     IALU  : R;
4479 %}
4480 
4481 // Integer ALU zero-reg operation
4482 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4483     single_instruction;
4484     dst   : E(write);
4485     src2  : R(read);
4486     IALU  : R;
4487 %}
4488 
4489 // Integer ALU zero-reg operation with condition code only
4490 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4491     single_instruction;
4492     cr    : E(write);
4493     src   : R(read);
4494     IALU  : R;
4495 %}
4496 
4497 // Integer ALU reg-reg operation with condition code only
4498 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4499     single_instruction;
4500     cr    : E(write);
4501     src1  : R(read);
4502     src2  : R(read);
4503     IALU  : R;
4504 %}
4505 
4506 // Integer ALU reg-imm operation with condition code only
4507 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4508     single_instruction;
4509     cr    : E(write);
4510     src1  : R(read);
4511     IALU  : R;
4512 %}
4513 
4514 // Integer ALU reg-reg-zero operation with condition code only
4515 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4516     single_instruction;
4517     cr    : E(write);
4518     src1  : R(read);
4519     src2  : R(read);
4520     IALU  : R;
4521 %}
4522 
4523 // Integer ALU reg-imm-zero operation with condition code only
4524 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4525     single_instruction;
4526     cr    : E(write);
4527     src1  : R(read);
4528     IALU  : R;
4529 %}
4530 
4531 // Integer ALU reg-reg operation with condition code, src1 modified
4532 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4533     single_instruction;
4534     cr    : E(write);
4535     src1  : E(write);
4536     src1  : R(read);
4537     src2  : R(read);
4538     IALU  : R;
4539 %}
4540 
4541 // Integer ALU reg-imm operation with condition code, src1 modified
4542 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4543     single_instruction;
4544     cr    : E(write);
4545     src1  : E(write);
4546     src1  : R(read);
4547     IALU  : R;
4548 %}
4549 
4550 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4551     multiple_bundles;
4552     dst   : E(write)+4;
4553     cr    : E(write);
4554     src1  : R(read);
4555     src2  : R(read);
4556     IALU  : R(3);
4557     BR    : R(2);
4558 %}
4559 
4560 // Integer ALU operation
4561 pipe_class ialu_none(iRegI dst) %{
4562     single_instruction;
4563     dst   : E(write);
4564     IALU  : R;
4565 %}
4566 
4567 // Integer ALU reg operation
4568 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4569     single_instruction; may_have_no_code;
4570     dst   : E(write);
4571     src   : R(read);
4572     IALU  : R;
4573 %}
4574 
4575 // Integer ALU reg conditional operation
4576 // This instruction has a 1 cycle stall, and cannot execute
4577 // in the same cycle as the instruction setting the condition
4578 // code. We kludge this by pretending to read the condition code
4579 // 1 cycle earlier, and by marking the functional units as busy
4580 // for 2 cycles with the result available 1 cycle later than
4581 // is really the case.
4582 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4583     single_instruction;
4584     op2_out : C(write);
4585     op1     : R(read);
4586     cr      : R(read);       // This is really E, with a 1 cycle stall
4587     BR      : R(2);
4588     MS      : R(2);
4589 %}
4590 
4591 #ifdef _LP64
4592 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4593     instruction_count(1); multiple_bundles;
4594     dst     : C(write)+1;
4595     src     : R(read)+1;
4596     IALU    : R(1);
4597     BR      : E(2);
4598     MS      : E(2);
4599 %}
4600 #endif
4601 
4602 // Integer ALU reg operation
4603 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4604     single_instruction; may_have_no_code;
4605     dst   : E(write);
4606     src   : R(read);
4607     IALU  : R;
4608 %}
4609 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4610     single_instruction; may_have_no_code;
4611     dst   : E(write);
4612     src   : R(read);
4613     IALU  : R;
4614 %}
4615 
4616 // Two integer ALU reg operations
4617 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4618     instruction_count(2);
4619     dst   : E(write);
4620     src   : R(read);
4621     A0    : R;
4622     A1    : R;
4623 %}
4624 
4625 // Two integer ALU reg operations
4626 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4627     instruction_count(2); may_have_no_code;
4628     dst   : E(write);
4629     src   : R(read);
4630     A0    : R;
4631     A1    : R;
4632 %}
4633 
4634 // Integer ALU imm operation
4635 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4636     single_instruction;
4637     dst   : E(write);
4638     IALU  : R;
4639 %}
4640 
4641 // Integer ALU reg-reg with carry operation
4642 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4643     single_instruction;
4644     dst   : E(write);
4645     src1  : R(read);
4646     src2  : R(read);
4647     IALU  : R;
4648 %}
4649 
4650 // Integer ALU cc operation
4651 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4652     single_instruction;
4653     dst   : E(write);
4654     cc    : R(read);
4655     IALU  : R;
4656 %}
4657 
4658 // Integer ALU cc / second IALU operation
4659 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4660     instruction_count(1); multiple_bundles;
4661     dst   : E(write)+1;
4662     src   : R(read);
4663     IALU  : R;
4664 %}
4665 
4666 // Integer ALU cc / second IALU operation
4667 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4668     instruction_count(1); multiple_bundles;
4669     dst   : E(write)+1;
4670     p     : R(read);
4671     q     : R(read);
4672     IALU  : R;
4673 %}
4674 
4675 // Integer ALU hi-lo-reg operation
4676 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4677     instruction_count(1); multiple_bundles;
4678     dst   : E(write)+1;
4679     IALU  : R(2);
4680 %}
4681 
4682 // Float ALU hi-lo-reg operation (with temp)
4683 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4684     instruction_count(1); multiple_bundles;
4685     dst   : E(write)+1;
4686     IALU  : R(2);
4687 %}
4688 
4689 // Long Constant
4690 pipe_class loadConL( iRegL dst, immL src ) %{
4691     instruction_count(2); multiple_bundles;
4692     dst   : E(write)+1;
4693     IALU  : R(2);
4694     IALU  : R(2);
4695 %}
4696 
4697 // Pointer Constant
4698 pipe_class loadConP( iRegP dst, immP src ) %{
4699     instruction_count(0); multiple_bundles;
4700     fixed_latency(6);
4701 %}
4702 
4703 // Polling Address
4704 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4705 #ifdef _LP64
4706     instruction_count(0); multiple_bundles;
4707     fixed_latency(6);
4708 #else
4709     dst   : E(write);
4710     IALU  : R;
4711 #endif
4712 %}
4713 
4714 // Long Constant small
4715 pipe_class loadConLlo( iRegL dst, immL src ) %{
4716     instruction_count(2);
4717     dst   : E(write);
4718     IALU  : R;
4719     IALU  : R;
4720 %}
4721 
4722 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4723 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4724     instruction_count(1); multiple_bundles;
4725     src   : R(read);
4726     dst   : M(write)+1;
4727     IALU  : R;
4728     MS    : E;
4729 %}
4730 
4731 // Integer ALU nop operation
4732 pipe_class ialu_nop() %{
4733     single_instruction;
4734     IALU  : R;
4735 %}
4736 
4737 // Integer ALU nop operation
4738 pipe_class ialu_nop_A0() %{
4739     single_instruction;
4740     A0    : R;
4741 %}
4742 
4743 // Integer ALU nop operation
4744 pipe_class ialu_nop_A1() %{
4745     single_instruction;
4746     A1    : R;
4747 %}
4748 
4749 // Integer Multiply reg-reg operation
4750 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4751     single_instruction;
4752     dst   : E(write);
4753     src1  : R(read);
4754     src2  : R(read);
4755     MS    : R(5);
4756 %}
4757 
4758 // Integer Multiply reg-imm operation
4759 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4760     single_instruction;
4761     dst   : E(write);
4762     src1  : R(read);
4763     MS    : R(5);
4764 %}
4765 
4766 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4767     single_instruction;
4768     dst   : E(write)+4;
4769     src1  : R(read);
4770     src2  : R(read);
4771     MS    : R(6);
4772 %}
4773 
4774 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4775     single_instruction;
4776     dst   : E(write)+4;
4777     src1  : R(read);
4778     MS    : R(6);
4779 %}
4780 
4781 // Integer Divide reg-reg
4782 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4783     instruction_count(1); multiple_bundles;
4784     dst   : E(write);
4785     temp  : E(write);
4786     src1  : R(read);
4787     src2  : R(read);
4788     temp  : R(read);
4789     MS    : R(38);
4790 %}
4791 
4792 // Integer Divide reg-imm
4793 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4794     instruction_count(1); multiple_bundles;
4795     dst   : E(write);
4796     temp  : E(write);
4797     src1  : R(read);
4798     temp  : R(read);
4799     MS    : R(38);
4800 %}
4801 
4802 // Long Divide
4803 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4804     dst  : E(write)+71;
4805     src1 : R(read);
4806     src2 : R(read)+1;
4807     MS   : R(70);
4808 %}
4809 
4810 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4811     dst  : E(write)+71;
4812     src1 : R(read);
4813     MS   : R(70);
4814 %}
4815 
4816 // Floating Point Add Float
4817 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4818     single_instruction;
4819     dst   : X(write);
4820     src1  : E(read);
4821     src2  : E(read);
4822     FA    : R;
4823 %}
4824 
4825 // Floating Point Add Double
4826 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4827     single_instruction;
4828     dst   : X(write);
4829     src1  : E(read);
4830     src2  : E(read);
4831     FA    : R;
4832 %}
4833 
4834 // Floating Point Conditional Move based on integer flags
4835 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4836     single_instruction;
4837     dst   : X(write);
4838     src   : E(read);
4839     cr    : R(read);
4840     FA    : R(2);
4841     BR    : R(2);
4842 %}
4843 
4844 // Floating Point Conditional Move based on integer flags
4845 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4846     single_instruction;
4847     dst   : X(write);
4848     src   : E(read);
4849     cr    : R(read);
4850     FA    : R(2);
4851     BR    : R(2);
4852 %}
4853 
4854 // Floating Point Multiply Float
4855 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4856     single_instruction;
4857     dst   : X(write);
4858     src1  : E(read);
4859     src2  : E(read);
4860     FM    : R;
4861 %}
4862 
4863 // Floating Point Multiply Double
4864 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4865     single_instruction;
4866     dst   : X(write);
4867     src1  : E(read);
4868     src2  : E(read);
4869     FM    : R;
4870 %}
4871 
4872 // Floating Point Divide Float
4873 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4874     single_instruction;
4875     dst   : X(write);
4876     src1  : E(read);
4877     src2  : E(read);
4878     FM    : R;
4879     FDIV  : C(14);
4880 %}
4881 
4882 // Floating Point Divide Double
4883 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4884     single_instruction;
4885     dst   : X(write);
4886     src1  : E(read);
4887     src2  : E(read);
4888     FM    : R;
4889     FDIV  : C(17);
4890 %}
4891 
4892 // Floating Point Move/Negate/Abs Float
4893 pipe_class faddF_reg(regF dst, regF src) %{
4894     single_instruction;
4895     dst   : W(write);
4896     src   : E(read);
4897     FA    : R(1);
4898 %}
4899 
4900 // Floating Point Move/Negate/Abs Double
4901 pipe_class faddD_reg(regD dst, regD src) %{
4902     single_instruction;
4903     dst   : W(write);
4904     src   : E(read);
4905     FA    : R;
4906 %}
4907 
4908 // Floating Point Convert F->D
4909 pipe_class fcvtF2D(regD dst, regF src) %{
4910     single_instruction;
4911     dst   : X(write);
4912     src   : E(read);
4913     FA    : R;
4914 %}
4915 
4916 // Floating Point Convert I->D
4917 pipe_class fcvtI2D(regD dst, regF src) %{
4918     single_instruction;
4919     dst   : X(write);
4920     src   : E(read);
4921     FA    : R;
4922 %}
4923 
4924 // Floating Point Convert LHi->D
4925 pipe_class fcvtLHi2D(regD dst, regD src) %{
4926     single_instruction;
4927     dst   : X(write);
4928     src   : E(read);
4929     FA    : R;
4930 %}
4931 
4932 // Floating Point Convert L->D
4933 pipe_class fcvtL2D(regD dst, regF src) %{
4934     single_instruction;
4935     dst   : X(write);
4936     src   : E(read);
4937     FA    : R;
4938 %}
4939 
4940 // Floating Point Convert L->F
4941 pipe_class fcvtL2F(regD dst, regF src) %{
4942     single_instruction;
4943     dst   : X(write);
4944     src   : E(read);
4945     FA    : R;
4946 %}
4947 
4948 // Floating Point Convert D->F
4949 pipe_class fcvtD2F(regD dst, regF src) %{
4950     single_instruction;
4951     dst   : X(write);
4952     src   : E(read);
4953     FA    : R;
4954 %}
4955 
4956 // Floating Point Convert I->L
4957 pipe_class fcvtI2L(regD dst, regF src) %{
4958     single_instruction;
4959     dst   : X(write);
4960     src   : E(read);
4961     FA    : R;
4962 %}
4963 
4964 // Floating Point Convert D->F
4965 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4966     instruction_count(1); multiple_bundles;
4967     dst   : X(write)+6;
4968     src   : E(read);
4969     FA    : R;
4970 %}
4971 
4972 // Floating Point Convert D->L
4973 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4974     instruction_count(1); multiple_bundles;
4975     dst   : X(write)+6;
4976     src   : E(read);
4977     FA    : R;
4978 %}
4979 
4980 // Floating Point Convert F->I
4981 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4982     instruction_count(1); multiple_bundles;
4983     dst   : X(write)+6;
4984     src   : E(read);
4985     FA    : R;
4986 %}
4987 
4988 // Floating Point Convert F->L
4989 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4990     instruction_count(1); multiple_bundles;
4991     dst   : X(write)+6;
4992     src   : E(read);
4993     FA    : R;
4994 %}
4995 
4996 // Floating Point Convert I->F
4997 pipe_class fcvtI2F(regF dst, regF src) %{
4998     single_instruction;
4999     dst   : X(write);
5000     src   : E(read);
5001     FA    : R;
5002 %}
5003 
5004 // Floating Point Compare
5005 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
5006     single_instruction;
5007     cr    : X(write);
5008     src1  : E(read);
5009     src2  : E(read);
5010     FA    : R;
5011 %}
5012 
5013 // Floating Point Compare
5014 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5015     single_instruction;
5016     cr    : X(write);
5017     src1  : E(read);
5018     src2  : E(read);
5019     FA    : R;
5020 %}
5021 
5022 // Floating Add Nop
5023 pipe_class fadd_nop() %{
5024     single_instruction;
5025     FA  : R;
5026 %}
5027 
5028 // Integer Store to Memory
5029 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5030     single_instruction;
5031     mem   : R(read);
5032     src   : C(read);
5033     MS    : R;
5034 %}
5035 
5036 // Integer Store to Memory
5037 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5038     single_instruction;
5039     mem   : R(read);
5040     src   : C(read);
5041     MS    : R;
5042 %}
5043 
5044 // Integer Store Zero to Memory
5045 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5046     single_instruction;
5047     mem   : R(read);
5048     MS    : R;
5049 %}
5050 
5051 // Special Stack Slot Store
5052 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5053     single_instruction;
5054     stkSlot : R(read);
5055     src     : C(read);
5056     MS      : R;
5057 %}
5058 
5059 // Special Stack Slot Store
5060 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5061     instruction_count(2); multiple_bundles;
5062     stkSlot : R(read);
5063     src     : C(read);
5064     MS      : R(2);
5065 %}
5066 
5067 // Float Store
5068 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5069     single_instruction;
5070     mem : R(read);
5071     src : C(read);
5072     MS  : R;
5073 %}
5074 
5075 // Float Store
5076 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5077     single_instruction;
5078     mem : R(read);
5079     MS  : R;
5080 %}
5081 
5082 // Double Store
5083 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5084     instruction_count(1);
5085     mem : R(read);
5086     src : C(read);
5087     MS  : R;
5088 %}
5089 
5090 // Double Store
5091 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5092     single_instruction;
5093     mem : R(read);
5094     MS  : R;
5095 %}
5096 
5097 // Special Stack Slot Float Store
5098 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5099     single_instruction;
5100     stkSlot : R(read);
5101     src     : C(read);
5102     MS      : R;
5103 %}
5104 
5105 // Special Stack Slot Double Store
5106 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5107     single_instruction;
5108     stkSlot : R(read);
5109     src     : C(read);
5110     MS      : R;
5111 %}
5112 
5113 // Integer Load (when sign bit propagation not needed)
5114 pipe_class iload_mem(iRegI dst, memory mem) %{
5115     single_instruction;
5116     mem : R(read);
5117     dst : C(write);
5118     MS  : R;
5119 %}
5120 
5121 // Integer Load from stack operand
5122 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5123     single_instruction;
5124     mem : R(read);
5125     dst : C(write);
5126     MS  : R;
5127 %}
5128 
5129 // Integer Load (when sign bit propagation or masking is needed)
5130 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5131     single_instruction;
5132     mem : R(read);
5133     dst : M(write);
5134     MS  : R;
5135 %}
5136 
5137 // Float Load
5138 pipe_class floadF_mem(regF dst, memory mem) %{
5139     single_instruction;
5140     mem : R(read);
5141     dst : M(write);
5142     MS  : R;
5143 %}
5144 
5145 // Float Load
5146 pipe_class floadD_mem(regD dst, memory mem) %{
5147     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5148     mem : R(read);
5149     dst : M(write);
5150     MS  : R;
5151 %}
5152 
5153 // Float Load
5154 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5155     single_instruction;
5156     stkSlot : R(read);
5157     dst : M(write);
5158     MS  : R;
5159 %}
5160 
5161 // Float Load
5162 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5163     single_instruction;
5164     stkSlot : R(read);
5165     dst : M(write);
5166     MS  : R;
5167 %}
5168 
5169 // Memory Nop
5170 pipe_class mem_nop() %{
5171     single_instruction;
5172     MS  : R;
5173 %}
5174 
5175 pipe_class sethi(iRegP dst, immI src) %{
5176     single_instruction;
5177     dst  : E(write);
5178     IALU : R;
5179 %}
5180 
5181 pipe_class loadPollP(iRegP poll) %{
5182     single_instruction;
5183     poll : R(read);
5184     MS   : R;
5185 %}
5186 
5187 pipe_class br(Universe br, label labl) %{
5188     single_instruction_with_delay_slot;
5189     BR  : R;
5190 %}
5191 
5192 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5193     single_instruction_with_delay_slot;
5194     cr    : E(read);
5195     BR    : R;
5196 %}
5197 
5198 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5199     single_instruction_with_delay_slot;
5200     op1 : E(read);
5201     BR  : R;
5202     MS  : R;
5203 %}
5204 
5205 // Compare and branch
5206 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5207     instruction_count(2); has_delay_slot;
5208     cr    : E(write);
5209     src1  : R(read);
5210     src2  : R(read);
5211     IALU  : R;
5212     BR    : R;
5213 %}
5214 
5215 // Compare and branch
5216 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5217     instruction_count(2); has_delay_slot;
5218     cr    : E(write);
5219     src1  : R(read);
5220     IALU  : R;
5221     BR    : R;
5222 %}
5223 
5224 // Compare and branch using cbcond
5225 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5226     single_instruction;
5227     src1  : E(read);
5228     src2  : E(read);
5229     IALU  : R;
5230     BR    : R;
5231 %}
5232 
5233 // Compare and branch using cbcond
5234 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5235     single_instruction;
5236     src1  : E(read);
5237     IALU  : R;
5238     BR    : R;
5239 %}
5240 
5241 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5242     single_instruction_with_delay_slot;
5243     cr    : E(read);
5244     BR    : R;
5245 %}
5246 
5247 pipe_class br_nop() %{
5248     single_instruction;
5249     BR  : R;
5250 %}
5251 
5252 pipe_class simple_call(method meth) %{
5253     instruction_count(2); multiple_bundles; force_serialization;
5254     fixed_latency(100);
5255     BR  : R(1);
5256     MS  : R(1);
5257     A0  : R(1);
5258 %}
5259 
5260 pipe_class compiled_call(method meth) %{
5261     instruction_count(1); multiple_bundles; force_serialization;
5262     fixed_latency(100);
5263     MS  : R(1);
5264 %}
5265 
5266 pipe_class call(method meth) %{
5267     instruction_count(0); multiple_bundles; force_serialization;
5268     fixed_latency(100);
5269 %}
5270 
5271 pipe_class tail_call(Universe ignore, label labl) %{
5272     single_instruction; has_delay_slot;
5273     fixed_latency(100);
5274     BR  : R(1);
5275     MS  : R(1);
5276 %}
5277 
5278 pipe_class ret(Universe ignore) %{
5279     single_instruction; has_delay_slot;
5280     BR  : R(1);
5281     MS  : R(1);
5282 %}
5283 
5284 pipe_class ret_poll(g3RegP poll) %{
5285     instruction_count(3); has_delay_slot;
5286     poll : E(read);
5287     MS   : R;
5288 %}
5289 
5290 // The real do-nothing guy
5291 pipe_class empty( ) %{
5292     instruction_count(0);
5293 %}
5294 
5295 pipe_class long_memory_op() %{
5296     instruction_count(0); multiple_bundles; force_serialization;
5297     fixed_latency(25);
5298     MS  : R(1);
5299 %}
5300 
5301 // Check-cast
5302 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5303     array : R(read);
5304     match  : R(read);
5305     IALU   : R(2);
5306     BR     : R(2);
5307     MS     : R;
5308 %}
5309 
5310 // Convert FPU flags into +1,0,-1
5311 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5312     src1  : E(read);
5313     src2  : E(read);
5314     dst   : E(write);
5315     FA    : R;
5316     MS    : R(2);
5317     BR    : R(2);
5318 %}
5319 
5320 // Compare for p < q, and conditionally add y
5321 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5322     p     : E(read);
5323     q     : E(read);
5324     y     : E(read);
5325     IALU  : R(3)
5326 %}
5327 
5328 // Perform a compare, then move conditionally in a branch delay slot.
5329 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5330     src2   : E(read);
5331     srcdst : E(read);
5332     IALU   : R;
5333     BR     : R;
5334 %}
5335 
5336 // Define the class for the Nop node
5337 define %{
5338    MachNop = ialu_nop;
5339 %}
5340 
5341 %}
5342 
5343 //----------INSTRUCTIONS-------------------------------------------------------
5344 
5345 //------------Special Stack Slot instructions - no match rules-----------------
5346 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5347   // No match rule to avoid chain rule match.
5348   effect(DEF dst, USE src);
5349   ins_cost(MEMORY_REF_COST);
5350   size(4);
5351   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5352   opcode(Assembler::ldf_op3);
5353   ins_encode(simple_form3_mem_reg(src, dst));
5354   ins_pipe(floadF_stk);
5355 %}
5356 
5357 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5358   // No match rule to avoid chain rule match.
5359   effect(DEF dst, USE src);
5360   ins_cost(MEMORY_REF_COST);
5361   size(4);
5362   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5363   opcode(Assembler::lddf_op3);
5364   ins_encode(simple_form3_mem_reg(src, dst));
5365   ins_pipe(floadD_stk);
5366 %}
5367 
5368 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5369   // No match rule to avoid chain rule match.
5370   effect(DEF dst, USE src);
5371   ins_cost(MEMORY_REF_COST);
5372   size(4);
5373   format %{ "STF    $src,$dst\t! regF to stkI" %}
5374   opcode(Assembler::stf_op3);
5375   ins_encode(simple_form3_mem_reg(dst, src));
5376   ins_pipe(fstoreF_stk_reg);
5377 %}
5378 
5379 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5380   // No match rule to avoid chain rule match.
5381   effect(DEF dst, USE src);
5382   ins_cost(MEMORY_REF_COST);
5383   size(4);
5384   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5385   opcode(Assembler::stdf_op3);
5386   ins_encode(simple_form3_mem_reg(dst, src));
5387   ins_pipe(fstoreD_stk_reg);
5388 %}
5389 
5390 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5391   effect(DEF dst, USE src);
5392   ins_cost(MEMORY_REF_COST*2);
5393   size(8);
5394   format %{ "STW    $src,$dst.hi\t! long\n\t"
5395             "STW    R_G0,$dst.lo" %}
5396   opcode(Assembler::stw_op3);
5397   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5398   ins_pipe(lstoreI_stk_reg);
5399 %}
5400 
5401 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5402   // No match rule to avoid chain rule match.
5403   effect(DEF dst, USE src);
5404   ins_cost(MEMORY_REF_COST);
5405   size(4);
5406   format %{ "STX    $src,$dst\t! regL to stkD" %}
5407   opcode(Assembler::stx_op3);
5408   ins_encode(simple_form3_mem_reg( dst, src ) );
5409   ins_pipe(istore_stk_reg);
5410 %}
5411 
5412 //---------- Chain stack slots between similar types --------
5413 
5414 // Load integer from stack slot
5415 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5416   match(Set dst src);
5417   ins_cost(MEMORY_REF_COST);
5418 
5419   size(4);
5420   format %{ "LDUW   $src,$dst\t!stk" %}
5421   opcode(Assembler::lduw_op3);
5422   ins_encode(simple_form3_mem_reg( src, dst ) );
5423   ins_pipe(iload_mem);
5424 %}
5425 
5426 // Store integer to stack slot
5427 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5428   match(Set dst src);
5429   ins_cost(MEMORY_REF_COST);
5430 
5431   size(4);
5432   format %{ "STW    $src,$dst\t!stk" %}
5433   opcode(Assembler::stw_op3);
5434   ins_encode(simple_form3_mem_reg( dst, src ) );
5435   ins_pipe(istore_mem_reg);
5436 %}
5437 
5438 // Load long from stack slot
5439 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5440   match(Set dst src);
5441 
5442   ins_cost(MEMORY_REF_COST);
5443   size(4);
5444   format %{ "LDX    $src,$dst\t! long" %}
5445   opcode(Assembler::ldx_op3);
5446   ins_encode(simple_form3_mem_reg( src, dst ) );
5447   ins_pipe(iload_mem);
5448 %}
5449 
5450 // Store long to stack slot
5451 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5452   match(Set dst src);
5453 
5454   ins_cost(MEMORY_REF_COST);
5455   size(4);
5456   format %{ "STX    $src,$dst\t! long" %}
5457   opcode(Assembler::stx_op3);
5458   ins_encode(simple_form3_mem_reg( dst, src ) );
5459   ins_pipe(istore_mem_reg);
5460 %}
5461 
5462 #ifdef _LP64
5463 // Load pointer from stack slot, 64-bit encoding
5464 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5465   match(Set dst src);
5466   ins_cost(MEMORY_REF_COST);
5467   size(4);
5468   format %{ "LDX    $src,$dst\t!ptr" %}
5469   opcode(Assembler::ldx_op3);
5470   ins_encode(simple_form3_mem_reg( src, dst ) );
5471   ins_pipe(iload_mem);
5472 %}
5473 
5474 // Store pointer to stack slot
5475 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5476   match(Set dst src);
5477   ins_cost(MEMORY_REF_COST);
5478   size(4);
5479   format %{ "STX    $src,$dst\t!ptr" %}
5480   opcode(Assembler::stx_op3);
5481   ins_encode(simple_form3_mem_reg( dst, src ) );
5482   ins_pipe(istore_mem_reg);
5483 %}
5484 #else // _LP64
5485 // Load pointer from stack slot, 32-bit encoding
5486 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5487   match(Set dst src);
5488   ins_cost(MEMORY_REF_COST);
5489   format %{ "LDUW   $src,$dst\t!ptr" %}
5490   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5491   ins_encode(simple_form3_mem_reg( src, dst ) );
5492   ins_pipe(iload_mem);
5493 %}
5494 
5495 // Store pointer to stack slot
5496 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5497   match(Set dst src);
5498   ins_cost(MEMORY_REF_COST);
5499   format %{ "STW    $src,$dst\t!ptr" %}
5500   opcode(Assembler::stw_op3, Assembler::ldst_op);
5501   ins_encode(simple_form3_mem_reg( dst, src ) );
5502   ins_pipe(istore_mem_reg);
5503 %}
5504 #endif // _LP64
5505 
5506 //------------Special Nop instructions for bundling - no match rules-----------
5507 // Nop using the A0 functional unit
5508 instruct Nop_A0() %{
5509   ins_cost(0);
5510 
5511   format %{ "NOP    ! Alu Pipeline" %}
5512   opcode(Assembler::or_op3, Assembler::arith_op);
5513   ins_encode( form2_nop() );
5514   ins_pipe(ialu_nop_A0);
5515 %}
5516 
5517 // Nop using the A1 functional unit
5518 instruct Nop_A1( ) %{
5519   ins_cost(0);
5520 
5521   format %{ "NOP    ! Alu Pipeline" %}
5522   opcode(Assembler::or_op3, Assembler::arith_op);
5523   ins_encode( form2_nop() );
5524   ins_pipe(ialu_nop_A1);
5525 %}
5526 
5527 // Nop using the memory functional unit
5528 instruct Nop_MS( ) %{
5529   ins_cost(0);
5530 
5531   format %{ "NOP    ! Memory Pipeline" %}
5532   ins_encode( emit_mem_nop );
5533   ins_pipe(mem_nop);
5534 %}
5535 
5536 // Nop using the floating add functional unit
5537 instruct Nop_FA( ) %{
5538   ins_cost(0);
5539 
5540   format %{ "NOP    ! Floating Add Pipeline" %}
5541   ins_encode( emit_fadd_nop );
5542   ins_pipe(fadd_nop);
5543 %}
5544 
5545 // Nop using the branch functional unit
5546 instruct Nop_BR( ) %{
5547   ins_cost(0);
5548 
5549   format %{ "NOP    ! Branch Pipeline" %}
5550   ins_encode( emit_br_nop );
5551   ins_pipe(br_nop);
5552 %}
5553 
5554 //----------Load/Store/Move Instructions---------------------------------------
5555 //----------Load Instructions--------------------------------------------------
5556 // Load Byte (8bit signed)
5557 instruct loadB(iRegI dst, memory mem) %{
5558   match(Set dst (LoadB mem));
5559   ins_cost(MEMORY_REF_COST);
5560 
5561   size(4);
5562   format %{ "LDSB   $mem,$dst\t! byte" %}
5563   ins_encode %{
5564     __ ldsb($mem$$Address, $dst$$Register);
5565   %}
5566   ins_pipe(iload_mask_mem);
5567 %}
5568 
5569 // Load Byte (8bit signed) into a Long Register
5570 instruct loadB2L(iRegL dst, memory mem) %{
5571   match(Set dst (ConvI2L (LoadB mem)));
5572   ins_cost(MEMORY_REF_COST);
5573 
5574   size(4);
5575   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5576   ins_encode %{
5577     __ ldsb($mem$$Address, $dst$$Register);
5578   %}
5579   ins_pipe(iload_mask_mem);
5580 %}
5581 
5582 // Load Unsigned Byte (8bit UNsigned) into an int reg
5583 instruct loadUB(iRegI dst, memory mem) %{
5584   match(Set dst (LoadUB mem));
5585   ins_cost(MEMORY_REF_COST);
5586 
5587   size(4);
5588   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5589   ins_encode %{
5590     __ ldub($mem$$Address, $dst$$Register);
5591   %}
5592   ins_pipe(iload_mem);
5593 %}
5594 
5595 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5596 instruct loadUB2L(iRegL dst, memory mem) %{
5597   match(Set dst (ConvI2L (LoadUB mem)));
5598   ins_cost(MEMORY_REF_COST);
5599 
5600   size(4);
5601   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5602   ins_encode %{
5603     __ ldub($mem$$Address, $dst$$Register);
5604   %}
5605   ins_pipe(iload_mem);
5606 %}
5607 
5608 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5609 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5610   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5611   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5612 
5613   size(2*4);
5614   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5615             "AND    $dst,$mask,$dst" %}
5616   ins_encode %{
5617     __ ldub($mem$$Address, $dst$$Register);
5618     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5619   %}
5620   ins_pipe(iload_mem);
5621 %}
5622 
5623 // Load Short (16bit signed)
5624 instruct loadS(iRegI dst, memory mem) %{
5625   match(Set dst (LoadS mem));
5626   ins_cost(MEMORY_REF_COST);
5627 
5628   size(4);
5629   format %{ "LDSH   $mem,$dst\t! short" %}
5630   ins_encode %{
5631     __ ldsh($mem$$Address, $dst$$Register);
5632   %}
5633   ins_pipe(iload_mask_mem);
5634 %}
5635 
5636 // Load Short (16 bit signed) to Byte (8 bit signed)
5637 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5638   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5639   ins_cost(MEMORY_REF_COST);
5640 
5641   size(4);
5642 
5643   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5644   ins_encode %{
5645     __ ldsb($mem$$Address, $dst$$Register, 1);
5646   %}
5647   ins_pipe(iload_mask_mem);
5648 %}
5649 
5650 // Load Short (16bit signed) into a Long Register
5651 instruct loadS2L(iRegL dst, memory mem) %{
5652   match(Set dst (ConvI2L (LoadS mem)));
5653   ins_cost(MEMORY_REF_COST);
5654 
5655   size(4);
5656   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5657   ins_encode %{
5658     __ ldsh($mem$$Address, $dst$$Register);
5659   %}
5660   ins_pipe(iload_mask_mem);
5661 %}
5662 
5663 // Load Unsigned Short/Char (16bit UNsigned)
5664 instruct loadUS(iRegI dst, memory mem) %{
5665   match(Set dst (LoadUS mem));
5666   ins_cost(MEMORY_REF_COST);
5667 
5668   size(4);
5669   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5670   ins_encode %{
5671     __ lduh($mem$$Address, $dst$$Register);
5672   %}
5673   ins_pipe(iload_mem);
5674 %}
5675 
5676 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5677 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5678   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5679   ins_cost(MEMORY_REF_COST);
5680 
5681   size(4);
5682   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5683   ins_encode %{
5684     __ ldsb($mem$$Address, $dst$$Register, 1);
5685   %}
5686   ins_pipe(iload_mask_mem);
5687 %}
5688 
5689 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5690 instruct loadUS2L(iRegL dst, memory mem) %{
5691   match(Set dst (ConvI2L (LoadUS mem)));
5692   ins_cost(MEMORY_REF_COST);
5693 
5694   size(4);
5695   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5696   ins_encode %{
5697     __ lduh($mem$$Address, $dst$$Register);
5698   %}
5699   ins_pipe(iload_mem);
5700 %}
5701 
5702 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5703 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5704   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5705   ins_cost(MEMORY_REF_COST);
5706 
5707   size(4);
5708   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5709   ins_encode %{
5710     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5711   %}
5712   ins_pipe(iload_mem);
5713 %}
5714 
5715 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5716 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5717   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5718   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5719 
5720   size(2*4);
5721   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5722             "AND    $dst,$mask,$dst" %}
5723   ins_encode %{
5724     Register Rdst = $dst$$Register;
5725     __ lduh($mem$$Address, Rdst);
5726     __ and3(Rdst, $mask$$constant, Rdst);
5727   %}
5728   ins_pipe(iload_mem);
5729 %}
5730 
5731 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5732 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5733   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5734   effect(TEMP dst, TEMP tmp);
5735   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5736 
5737   size((3+1)*4);  // set may use two instructions.
5738   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5739             "SET    $mask,$tmp\n\t"
5740             "AND    $dst,$tmp,$dst" %}
5741   ins_encode %{
5742     Register Rdst = $dst$$Register;
5743     Register Rtmp = $tmp$$Register;
5744     __ lduh($mem$$Address, Rdst);
5745     __ set($mask$$constant, Rtmp);
5746     __ and3(Rdst, Rtmp, Rdst);
5747   %}
5748   ins_pipe(iload_mem);
5749 %}
5750 
5751 // Load Integer
5752 instruct loadI(iRegI dst, memory mem) %{
5753   match(Set dst (LoadI mem));
5754   ins_cost(MEMORY_REF_COST);
5755 
5756   size(4);
5757   format %{ "LDUW   $mem,$dst\t! int" %}
5758   ins_encode %{
5759     __ lduw($mem$$Address, $dst$$Register);
5760   %}
5761   ins_pipe(iload_mem);
5762 %}
5763 
5764 // Load Integer to Byte (8 bit signed)
5765 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5766   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5767   ins_cost(MEMORY_REF_COST);
5768 
5769   size(4);
5770 
5771   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5772   ins_encode %{
5773     __ ldsb($mem$$Address, $dst$$Register, 3);
5774   %}
5775   ins_pipe(iload_mask_mem);
5776 %}
5777 
5778 // Load Integer to Unsigned Byte (8 bit UNsigned)
5779 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5780   match(Set dst (AndI (LoadI mem) mask));
5781   ins_cost(MEMORY_REF_COST);
5782 
5783   size(4);
5784 
5785   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5786   ins_encode %{
5787     __ ldub($mem$$Address, $dst$$Register, 3);
5788   %}
5789   ins_pipe(iload_mask_mem);
5790 %}
5791 
5792 // Load Integer to Short (16 bit signed)
5793 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5794   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5795   ins_cost(MEMORY_REF_COST);
5796 
5797   size(4);
5798 
5799   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5800   ins_encode %{
5801     __ ldsh($mem$$Address, $dst$$Register, 2);
5802   %}
5803   ins_pipe(iload_mask_mem);
5804 %}
5805 
5806 // Load Integer to Unsigned Short (16 bit UNsigned)
5807 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5808   match(Set dst (AndI (LoadI mem) mask));
5809   ins_cost(MEMORY_REF_COST);
5810 
5811   size(4);
5812 
5813   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5814   ins_encode %{
5815     __ lduh($mem$$Address, $dst$$Register, 2);
5816   %}
5817   ins_pipe(iload_mask_mem);
5818 %}
5819 
5820 // Load Integer into a Long Register
5821 instruct loadI2L(iRegL dst, memory mem) %{
5822   match(Set dst (ConvI2L (LoadI mem)));
5823   ins_cost(MEMORY_REF_COST);
5824 
5825   size(4);
5826   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5827   ins_encode %{
5828     __ ldsw($mem$$Address, $dst$$Register);
5829   %}
5830   ins_pipe(iload_mask_mem);
5831 %}
5832 
5833 // Load Integer with mask 0xFF into a Long Register
5834 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5835   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5836   ins_cost(MEMORY_REF_COST);
5837 
5838   size(4);
5839   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5840   ins_encode %{
5841     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5842   %}
5843   ins_pipe(iload_mem);
5844 %}
5845 
5846 // Load Integer with mask 0xFFFF into a Long Register
5847 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5848   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5849   ins_cost(MEMORY_REF_COST);
5850 
5851   size(4);
5852   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5853   ins_encode %{
5854     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5855   %}
5856   ins_pipe(iload_mem);
5857 %}
5858 
5859 // Load Integer with a 13-bit mask into a Long Register
5860 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5861   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5862   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5863 
5864   size(2*4);
5865   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5866             "AND    $dst,$mask,$dst" %}
5867   ins_encode %{
5868     Register Rdst = $dst$$Register;
5869     __ lduw($mem$$Address, Rdst);
5870     __ and3(Rdst, $mask$$constant, Rdst);
5871   %}
5872   ins_pipe(iload_mem);
5873 %}
5874 
5875 // Load Integer with a 32-bit mask into a Long Register
5876 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5877   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5878   effect(TEMP dst, TEMP tmp);
5879   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5880 
5881   size((3+1)*4);  // set may use two instructions.
5882   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5883             "SET    $mask,$tmp\n\t"
5884             "AND    $dst,$tmp,$dst" %}
5885   ins_encode %{
5886     Register Rdst = $dst$$Register;
5887     Register Rtmp = $tmp$$Register;
5888     __ lduw($mem$$Address, Rdst);
5889     __ set($mask$$constant, Rtmp);
5890     __ and3(Rdst, Rtmp, Rdst);
5891   %}
5892   ins_pipe(iload_mem);
5893 %}
5894 
5895 // Load Unsigned Integer into a Long Register
5896 instruct loadUI2L(iRegL dst, memory mem) %{
5897   match(Set dst (LoadUI2L mem));
5898   ins_cost(MEMORY_REF_COST);
5899 
5900   size(4);
5901   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5902   ins_encode %{
5903     __ lduw($mem$$Address, $dst$$Register);
5904   %}
5905   ins_pipe(iload_mem);
5906 %}
5907 
5908 // Load Long - aligned
5909 instruct loadL(iRegL dst, memory mem ) %{
5910   match(Set dst (LoadL mem));
5911   ins_cost(MEMORY_REF_COST);
5912 
5913   size(4);
5914   format %{ "LDX    $mem,$dst\t! long" %}
5915   ins_encode %{
5916     __ ldx($mem$$Address, $dst$$Register);
5917   %}
5918   ins_pipe(iload_mem);
5919 %}
5920 
5921 // Load Long - UNaligned
5922 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5923   match(Set dst (LoadL_unaligned mem));
5924   effect(KILL tmp);
5925   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5926   size(16);
5927   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5928           "\tLDUW   $mem  ,$dst\n"
5929           "\tSLLX   #32, $dst, $dst\n"
5930           "\tOR     $dst, R_O7, $dst" %}
5931   opcode(Assembler::lduw_op3);
5932   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5933   ins_pipe(iload_mem);
5934 %}
5935 
5936 // Load Aligned Packed Byte into a Double Register
5937 instruct loadA8B(regD dst, memory mem) %{
5938   match(Set dst (Load8B mem));
5939   ins_cost(MEMORY_REF_COST);
5940   size(4);
5941   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5942   opcode(Assembler::lddf_op3);
5943   ins_encode(simple_form3_mem_reg( mem, dst ) );
5944   ins_pipe(floadD_mem);
5945 %}
5946 
5947 // Load Aligned Packed Char into a Double Register
5948 instruct loadA4C(regD dst, memory mem) %{
5949   match(Set dst (Load4C mem));
5950   ins_cost(MEMORY_REF_COST);
5951   size(4);
5952   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5953   opcode(Assembler::lddf_op3);
5954   ins_encode(simple_form3_mem_reg( mem, dst ) );
5955   ins_pipe(floadD_mem);
5956 %}
5957 
5958 // Load Aligned Packed Short into a Double Register
5959 instruct loadA4S(regD dst, memory mem) %{
5960   match(Set dst (Load4S mem));
5961   ins_cost(MEMORY_REF_COST);
5962   size(4);
5963   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5964   opcode(Assembler::lddf_op3);
5965   ins_encode(simple_form3_mem_reg( mem, dst ) );
5966   ins_pipe(floadD_mem);
5967 %}
5968 
5969 // Load Aligned Packed Int into a Double Register
5970 instruct loadA2I(regD dst, memory mem) %{
5971   match(Set dst (Load2I mem));
5972   ins_cost(MEMORY_REF_COST);
5973   size(4);
5974   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5975   opcode(Assembler::lddf_op3);
5976   ins_encode(simple_form3_mem_reg( mem, dst ) );
5977   ins_pipe(floadD_mem);
5978 %}
5979 
5980 // Load Range
5981 instruct loadRange(iRegI dst, memory mem) %{
5982   match(Set dst (LoadRange mem));
5983   ins_cost(MEMORY_REF_COST);
5984 
5985   size(4);
5986   format %{ "LDUW   $mem,$dst\t! range" %}
5987   opcode(Assembler::lduw_op3);
5988   ins_encode(simple_form3_mem_reg( mem, dst ) );
5989   ins_pipe(iload_mem);
5990 %}
5991 
5992 // Load Integer into %f register (for fitos/fitod)
5993 instruct loadI_freg(regF dst, memory mem) %{
5994   match(Set dst (LoadI mem));
5995   ins_cost(MEMORY_REF_COST);
5996   size(4);
5997 
5998   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5999   opcode(Assembler::ldf_op3);
6000   ins_encode(simple_form3_mem_reg( mem, dst ) );
6001   ins_pipe(floadF_mem);
6002 %}
6003 
6004 // Load Pointer
6005 instruct loadP(iRegP dst, memory mem) %{
6006   match(Set dst (LoadP mem));
6007   ins_cost(MEMORY_REF_COST);
6008   size(4);
6009 
6010 #ifndef _LP64
6011   format %{ "LDUW   $mem,$dst\t! ptr" %}
6012   ins_encode %{
6013     __ lduw($mem$$Address, $dst$$Register);
6014   %}
6015 #else
6016   format %{ "LDX    $mem,$dst\t! ptr" %}
6017   ins_encode %{
6018     __ ldx($mem$$Address, $dst$$Register);
6019   %}
6020 #endif
6021   ins_pipe(iload_mem);
6022 %}
6023 
6024 // Load Compressed Pointer
6025 instruct loadN(iRegN dst, memory mem) %{
6026   match(Set dst (LoadN mem));
6027   ins_cost(MEMORY_REF_COST);
6028   size(4);
6029 
6030   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
6031   ins_encode %{
6032     __ lduw($mem$$Address, $dst$$Register);
6033   %}
6034   ins_pipe(iload_mem);
6035 %}
6036 
6037 // Load Klass Pointer
6038 instruct loadKlass(iRegP dst, memory mem) %{
6039   match(Set dst (LoadKlass mem));
6040   ins_cost(MEMORY_REF_COST);
6041   size(4);
6042 
6043 #ifndef _LP64
6044   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
6045   ins_encode %{
6046     __ lduw($mem$$Address, $dst$$Register);
6047   %}
6048 #else
6049   format %{ "LDX    $mem,$dst\t! klass ptr" %}
6050   ins_encode %{
6051     __ ldx($mem$$Address, $dst$$Register);
6052   %}
6053 #endif
6054   ins_pipe(iload_mem);
6055 %}
6056 
6057 // Load narrow Klass Pointer
6058 instruct loadNKlass(iRegN dst, memory mem) %{
6059   match(Set dst (LoadNKlass mem));
6060   ins_cost(MEMORY_REF_COST);
6061   size(4);
6062 
6063   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6064   ins_encode %{
6065     __ lduw($mem$$Address, $dst$$Register);
6066   %}
6067   ins_pipe(iload_mem);
6068 %}
6069 
6070 // Load Double
6071 instruct loadD(regD dst, memory mem) %{
6072   match(Set dst (LoadD mem));
6073   ins_cost(MEMORY_REF_COST);
6074 
6075   size(4);
6076   format %{ "LDDF   $mem,$dst" %}
6077   opcode(Assembler::lddf_op3);
6078   ins_encode(simple_form3_mem_reg( mem, dst ) );
6079   ins_pipe(floadD_mem);
6080 %}
6081 
6082 // Load Double - UNaligned
6083 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6084   match(Set dst (LoadD_unaligned mem));
6085   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6086   size(8);
6087   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6088           "\tLDF    $mem+4,$dst.lo\t!" %}
6089   opcode(Assembler::ldf_op3);
6090   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6091   ins_pipe(iload_mem);
6092 %}
6093 
6094 // Load Float
6095 instruct loadF(regF dst, memory mem) %{
6096   match(Set dst (LoadF mem));
6097   ins_cost(MEMORY_REF_COST);
6098 
6099   size(4);
6100   format %{ "LDF    $mem,$dst" %}
6101   opcode(Assembler::ldf_op3);
6102   ins_encode(simple_form3_mem_reg( mem, dst ) );
6103   ins_pipe(floadF_mem);
6104 %}
6105 
6106 // Load Constant
6107 instruct loadConI( iRegI dst, immI src ) %{
6108   match(Set dst src);
6109   ins_cost(DEFAULT_COST * 3/2);
6110   format %{ "SET    $src,$dst" %}
6111   ins_encode( Set32(src, dst) );
6112   ins_pipe(ialu_hi_lo_reg);
6113 %}
6114 
6115 instruct loadConI13( iRegI dst, immI13 src ) %{
6116   match(Set dst src);
6117 
6118   size(4);
6119   format %{ "MOV    $src,$dst" %}
6120   ins_encode( Set13( src, dst ) );
6121   ins_pipe(ialu_imm);
6122 %}
6123 
6124 #ifndef _LP64
6125 instruct loadConP(iRegP dst, immP con) %{
6126   match(Set dst con);
6127   ins_cost(DEFAULT_COST * 3/2);
6128   format %{ "SET    $con,$dst\t!ptr" %}
6129   ins_encode %{
6130     // [RGV] This next line should be generated from ADLC
6131     if (_opnds[1]->constant_is_oop()) {
6132       intptr_t val = $con$$constant;
6133       __ set_oop_constant((jobject) val, $dst$$Register);
6134     } else {          // non-oop pointers, e.g. card mark base, heap top
6135       __ set($con$$constant, $dst$$Register);
6136     }
6137   %}
6138   ins_pipe(loadConP);
6139 %}
6140 #else
6141 instruct loadConP_set(iRegP dst, immP_set con) %{
6142   match(Set dst con);
6143   ins_cost(DEFAULT_COST * 3/2);
6144   format %{ "SET    $con,$dst\t! ptr" %}
6145   ins_encode %{
6146     // [RGV] This next line should be generated from ADLC
6147     if (_opnds[1]->constant_is_oop()) {
6148       intptr_t val = $con$$constant;
6149       __ set_oop_constant((jobject) val, $dst$$Register);
6150     } else {          // non-oop pointers, e.g. card mark base, heap top
6151       __ set($con$$constant, $dst$$Register);
6152     }
6153   %}
6154   ins_pipe(loadConP);
6155 %}
6156 
6157 instruct loadConP_load(iRegP dst, immP_load con) %{
6158   match(Set dst con);
6159   ins_cost(MEMORY_REF_COST);
6160   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6161   ins_encode %{
6162     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6163     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6164   %}
6165   ins_pipe(loadConP);
6166 %}
6167 
6168 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6169   match(Set dst con);
6170   ins_cost(DEFAULT_COST * 3/2);
6171   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6172   ins_encode %{
6173     __ set($con$$constant, $dst$$Register);
6174   %}
6175   ins_pipe(loadConP);
6176 %}
6177 #endif // _LP64
6178 
6179 instruct loadConP0(iRegP dst, immP0 src) %{
6180   match(Set dst src);
6181 
6182   size(4);
6183   format %{ "CLR    $dst\t!ptr" %}
6184   ins_encode %{
6185     __ clr($dst$$Register);
6186   %}
6187   ins_pipe(ialu_imm);
6188 %}
6189 
6190 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6191   match(Set dst src);
6192   ins_cost(DEFAULT_COST);
6193   format %{ "SET    $src,$dst\t!ptr" %}
6194   ins_encode %{
6195     AddressLiteral polling_page(os::get_polling_page());
6196     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6197   %}
6198   ins_pipe(loadConP_poll);
6199 %}
6200 
6201 instruct loadConN0(iRegN dst, immN0 src) %{
6202   match(Set dst src);
6203 
6204   size(4);
6205   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6206   ins_encode %{
6207     __ clr($dst$$Register);
6208   %}
6209   ins_pipe(ialu_imm);
6210 %}
6211 
6212 instruct loadConN(iRegN dst, immN src) %{
6213   match(Set dst src);
6214   ins_cost(DEFAULT_COST * 3/2);
6215   format %{ "SET    $src,$dst\t! compressed ptr" %}
6216   ins_encode %{
6217     Register dst = $dst$$Register;
6218     __ set_narrow_oop((jobject)$src$$constant, dst);
6219   %}
6220   ins_pipe(ialu_hi_lo_reg);
6221 %}
6222 
6223 // Materialize long value (predicated by immL_cheap).
6224 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6225   match(Set dst con);
6226   effect(KILL tmp);
6227   ins_cost(DEFAULT_COST * 3);
6228   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6229   ins_encode %{
6230     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6231   %}
6232   ins_pipe(loadConL);
6233 %}
6234 
6235 // Load long value from constant table (predicated by immL_expensive).
6236 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6237   match(Set dst con);
6238   ins_cost(MEMORY_REF_COST);
6239   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6240   ins_encode %{
6241       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6242     __ ldx($constanttablebase, con_offset, $dst$$Register);
6243   %}
6244   ins_pipe(loadConL);
6245 %}
6246 
6247 instruct loadConL0( iRegL dst, immL0 src ) %{
6248   match(Set dst src);
6249   ins_cost(DEFAULT_COST);
6250   size(4);
6251   format %{ "CLR    $dst\t! long" %}
6252   ins_encode( Set13( src, dst ) );
6253   ins_pipe(ialu_imm);
6254 %}
6255 
6256 instruct loadConL13( iRegL dst, immL13 src ) %{
6257   match(Set dst src);
6258   ins_cost(DEFAULT_COST * 2);
6259 
6260   size(4);
6261   format %{ "MOV    $src,$dst\t! long" %}
6262   ins_encode( Set13( src, dst ) );
6263   ins_pipe(ialu_imm);
6264 %}
6265 
6266 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6267   match(Set dst con);
6268   effect(KILL tmp);
6269   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6270   ins_encode %{
6271       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6272     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6273   %}
6274   ins_pipe(loadConFD);
6275 %}
6276 
6277 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6278   match(Set dst con);
6279   effect(KILL tmp);
6280   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6281   ins_encode %{
6282     // XXX This is a quick fix for 6833573.
6283     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6284     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6285     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6286   %}
6287   ins_pipe(loadConFD);
6288 %}
6289 
6290 // Prefetch instructions.
6291 // Must be safe to execute with invalid address (cannot fault).
6292 
6293 instruct prefetchr( memory mem ) %{
6294   match( PrefetchRead mem );
6295   ins_cost(MEMORY_REF_COST);
6296   size(4);
6297 
6298   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6299   opcode(Assembler::prefetch_op3);
6300   ins_encode( form3_mem_prefetch_read( mem ) );
6301   ins_pipe(iload_mem);
6302 %}
6303 
6304 instruct prefetchw( memory mem ) %{
6305   match( PrefetchWrite mem );
6306   ins_cost(MEMORY_REF_COST);
6307   size(4);
6308 
6309   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6310   opcode(Assembler::prefetch_op3);
6311   ins_encode( form3_mem_prefetch_write( mem ) );
6312   ins_pipe(iload_mem);
6313 %}
6314 
6315 // Prefetch instructions for allocation.
6316 
6317 instruct prefetchAlloc( memory mem ) %{
6318   predicate(AllocatePrefetchInstr == 0);
6319   match( PrefetchAllocation mem );
6320   ins_cost(MEMORY_REF_COST);
6321   size(4);
6322 
6323   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6324   opcode(Assembler::prefetch_op3);
6325   ins_encode( form3_mem_prefetch_write( mem ) );
6326   ins_pipe(iload_mem);
6327 %}
6328 
6329 // Use BIS instruction to prefetch for allocation.
6330 // Could fault, need space at the end of TLAB.
6331 instruct prefetchAlloc_bis( iRegP dst ) %{
6332   predicate(AllocatePrefetchInstr == 1);
6333   match( PrefetchAllocation dst );
6334   ins_cost(MEMORY_REF_COST);
6335   size(4);
6336 
6337   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6338   ins_encode %{
6339     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6340   %}
6341   ins_pipe(istore_mem_reg);
6342 %}
6343 
6344 // Next code is used for finding next cache line address to prefetch.
6345 #ifndef _LP64
6346 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6347   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6348   ins_cost(DEFAULT_COST);
6349   size(4);
6350 
6351   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6352   ins_encode %{
6353     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6354   %}
6355   ins_pipe(ialu_reg_imm);
6356 %}
6357 #else
6358 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6359   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6360   ins_cost(DEFAULT_COST);
6361   size(4);
6362 
6363   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6364   ins_encode %{
6365     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6366   %}
6367   ins_pipe(ialu_reg_imm);
6368 %}
6369 #endif
6370 
6371 //----------Store Instructions-------------------------------------------------
6372 // Store Byte
6373 instruct storeB(memory mem, iRegI src) %{
6374   match(Set mem (StoreB mem src));
6375   ins_cost(MEMORY_REF_COST);
6376 
6377   size(4);
6378   format %{ "STB    $src,$mem\t! byte" %}
6379   opcode(Assembler::stb_op3);
6380   ins_encode(simple_form3_mem_reg( mem, src ) );
6381   ins_pipe(istore_mem_reg);
6382 %}
6383 
6384 instruct storeB0(memory mem, immI0 src) %{
6385   match(Set mem (StoreB mem src));
6386   ins_cost(MEMORY_REF_COST);
6387 
6388   size(4);
6389   format %{ "STB    $src,$mem\t! byte" %}
6390   opcode(Assembler::stb_op3);
6391   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6392   ins_pipe(istore_mem_zero);
6393 %}
6394 
6395 instruct storeCM0(memory mem, immI0 src) %{
6396   match(Set mem (StoreCM mem src));
6397   ins_cost(MEMORY_REF_COST);
6398 
6399   size(4);
6400   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6401   opcode(Assembler::stb_op3);
6402   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6403   ins_pipe(istore_mem_zero);
6404 %}
6405 
6406 // Store Char/Short
6407 instruct storeC(memory mem, iRegI src) %{
6408   match(Set mem (StoreC mem src));
6409   ins_cost(MEMORY_REF_COST);
6410 
6411   size(4);
6412   format %{ "STH    $src,$mem\t! short" %}
6413   opcode(Assembler::sth_op3);
6414   ins_encode(simple_form3_mem_reg( mem, src ) );
6415   ins_pipe(istore_mem_reg);
6416 %}
6417 
6418 instruct storeC0(memory mem, immI0 src) %{
6419   match(Set mem (StoreC mem src));
6420   ins_cost(MEMORY_REF_COST);
6421 
6422   size(4);
6423   format %{ "STH    $src,$mem\t! short" %}
6424   opcode(Assembler::sth_op3);
6425   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6426   ins_pipe(istore_mem_zero);
6427 %}
6428 
6429 // Store Integer
6430 instruct storeI(memory mem, iRegI src) %{
6431   match(Set mem (StoreI mem src));
6432   ins_cost(MEMORY_REF_COST);
6433 
6434   size(4);
6435   format %{ "STW    $src,$mem" %}
6436   opcode(Assembler::stw_op3);
6437   ins_encode(simple_form3_mem_reg( mem, src ) );
6438   ins_pipe(istore_mem_reg);
6439 %}
6440 
6441 // Store Long
6442 instruct storeL(memory mem, iRegL src) %{
6443   match(Set mem (StoreL mem src));
6444   ins_cost(MEMORY_REF_COST);
6445   size(4);
6446   format %{ "STX    $src,$mem\t! long" %}
6447   opcode(Assembler::stx_op3);
6448   ins_encode(simple_form3_mem_reg( mem, src ) );
6449   ins_pipe(istore_mem_reg);
6450 %}
6451 
6452 instruct storeI0(memory mem, immI0 src) %{
6453   match(Set mem (StoreI mem src));
6454   ins_cost(MEMORY_REF_COST);
6455 
6456   size(4);
6457   format %{ "STW    $src,$mem" %}
6458   opcode(Assembler::stw_op3);
6459   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6460   ins_pipe(istore_mem_zero);
6461 %}
6462 
6463 instruct storeL0(memory mem, immL0 src) %{
6464   match(Set mem (StoreL mem src));
6465   ins_cost(MEMORY_REF_COST);
6466 
6467   size(4);
6468   format %{ "STX    $src,$mem" %}
6469   opcode(Assembler::stx_op3);
6470   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6471   ins_pipe(istore_mem_zero);
6472 %}
6473 
6474 // Store Integer from float register (used after fstoi)
6475 instruct storeI_Freg(memory mem, regF src) %{
6476   match(Set mem (StoreI mem src));
6477   ins_cost(MEMORY_REF_COST);
6478 
6479   size(4);
6480   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6481   opcode(Assembler::stf_op3);
6482   ins_encode(simple_form3_mem_reg( mem, src ) );
6483   ins_pipe(fstoreF_mem_reg);
6484 %}
6485 
6486 // Store Pointer
6487 instruct storeP(memory dst, sp_ptr_RegP src) %{
6488   match(Set dst (StoreP dst src));
6489   ins_cost(MEMORY_REF_COST);
6490   size(4);
6491 
6492 #ifndef _LP64
6493   format %{ "STW    $src,$dst\t! ptr" %}
6494   opcode(Assembler::stw_op3, 0, REGP_OP);
6495 #else
6496   format %{ "STX    $src,$dst\t! ptr" %}
6497   opcode(Assembler::stx_op3, 0, REGP_OP);
6498 #endif
6499   ins_encode( form3_mem_reg( dst, src ) );
6500   ins_pipe(istore_mem_spORreg);
6501 %}
6502 
6503 instruct storeP0(memory dst, immP0 src) %{
6504   match(Set dst (StoreP dst src));
6505   ins_cost(MEMORY_REF_COST);
6506   size(4);
6507 
6508 #ifndef _LP64
6509   format %{ "STW    $src,$dst\t! ptr" %}
6510   opcode(Assembler::stw_op3, 0, REGP_OP);
6511 #else
6512   format %{ "STX    $src,$dst\t! ptr" %}
6513   opcode(Assembler::stx_op3, 0, REGP_OP);
6514 #endif
6515   ins_encode( form3_mem_reg( dst, R_G0 ) );
6516   ins_pipe(istore_mem_zero);
6517 %}
6518 
6519 // Store Compressed Pointer
6520 instruct storeN(memory dst, iRegN src) %{
6521    match(Set dst (StoreN dst src));
6522    ins_cost(MEMORY_REF_COST);
6523    size(4);
6524 
6525    format %{ "STW    $src,$dst\t! compressed ptr" %}
6526    ins_encode %{
6527      Register base = as_Register($dst$$base);
6528      Register index = as_Register($dst$$index);
6529      Register src = $src$$Register;
6530      if (index != G0) {
6531        __ stw(src, base, index);
6532      } else {
6533        __ stw(src, base, $dst$$disp);
6534      }
6535    %}
6536    ins_pipe(istore_mem_spORreg);
6537 %}
6538 
6539 instruct storeN0(memory dst, immN0 src) %{
6540    match(Set dst (StoreN dst src));
6541    ins_cost(MEMORY_REF_COST);
6542    size(4);
6543 
6544    format %{ "STW    $src,$dst\t! compressed ptr" %}
6545    ins_encode %{
6546      Register base = as_Register($dst$$base);
6547      Register index = as_Register($dst$$index);
6548      if (index != G0) {
6549        __ stw(0, base, index);
6550      } else {
6551        __ stw(0, base, $dst$$disp);
6552      }
6553    %}
6554    ins_pipe(istore_mem_zero);
6555 %}
6556 
6557 // Store Double
6558 instruct storeD( memory mem, regD src) %{
6559   match(Set mem (StoreD mem src));
6560   ins_cost(MEMORY_REF_COST);
6561 
6562   size(4);
6563   format %{ "STDF   $src,$mem" %}
6564   opcode(Assembler::stdf_op3);
6565   ins_encode(simple_form3_mem_reg( mem, src ) );
6566   ins_pipe(fstoreD_mem_reg);
6567 %}
6568 
6569 instruct storeD0( memory mem, immD0 src) %{
6570   match(Set mem (StoreD mem src));
6571   ins_cost(MEMORY_REF_COST);
6572 
6573   size(4);
6574   format %{ "STX    $src,$mem" %}
6575   opcode(Assembler::stx_op3);
6576   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6577   ins_pipe(fstoreD_mem_zero);
6578 %}
6579 
6580 // Store Float
6581 instruct storeF( memory mem, regF src) %{
6582   match(Set mem (StoreF mem src));
6583   ins_cost(MEMORY_REF_COST);
6584 
6585   size(4);
6586   format %{ "STF    $src,$mem" %}
6587   opcode(Assembler::stf_op3);
6588   ins_encode(simple_form3_mem_reg( mem, src ) );
6589   ins_pipe(fstoreF_mem_reg);
6590 %}
6591 
6592 instruct storeF0( memory mem, immF0 src) %{
6593   match(Set mem (StoreF mem src));
6594   ins_cost(MEMORY_REF_COST);
6595 
6596   size(4);
6597   format %{ "STW    $src,$mem\t! storeF0" %}
6598   opcode(Assembler::stw_op3);
6599   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6600   ins_pipe(fstoreF_mem_zero);
6601 %}
6602 
6603 // Store Aligned Packed Bytes in Double register to memory
6604 instruct storeA8B(memory mem, regD src) %{
6605   match(Set mem (Store8B mem src));
6606   ins_cost(MEMORY_REF_COST);
6607   size(4);
6608   format %{ "STDF   $src,$mem\t! packed8B" %}
6609   opcode(Assembler::stdf_op3);
6610   ins_encode(simple_form3_mem_reg( mem, src ) );
6611   ins_pipe(fstoreD_mem_reg);
6612 %}
6613 
6614 // Convert oop pointer into compressed form
6615 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6616   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6617   match(Set dst (EncodeP src));
6618   format %{ "encode_heap_oop $src, $dst" %}
6619   ins_encode %{
6620     __ encode_heap_oop($src$$Register, $dst$$Register);
6621   %}
6622   ins_pipe(ialu_reg);
6623 %}
6624 
6625 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6626   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6627   match(Set dst (EncodeP src));
6628   format %{ "encode_heap_oop_not_null $src, $dst" %}
6629   ins_encode %{
6630     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6631   %}
6632   ins_pipe(ialu_reg);
6633 %}
6634 
6635 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6636   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6637             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6638   match(Set dst (DecodeN src));
6639   format %{ "decode_heap_oop $src, $dst" %}
6640   ins_encode %{
6641     __ decode_heap_oop($src$$Register, $dst$$Register);
6642   %}
6643   ins_pipe(ialu_reg);
6644 %}
6645 
6646 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6647   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6648             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6649   match(Set dst (DecodeN src));
6650   format %{ "decode_heap_oop_not_null $src, $dst" %}
6651   ins_encode %{
6652     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6653   %}
6654   ins_pipe(ialu_reg);
6655 %}
6656 
6657 
6658 // Store Zero into Aligned Packed Bytes
6659 instruct storeA8B0(memory mem, immI0 zero) %{
6660   match(Set mem (Store8B mem zero));
6661   ins_cost(MEMORY_REF_COST);
6662   size(4);
6663   format %{ "STX    $zero,$mem\t! packed8B" %}
6664   opcode(Assembler::stx_op3);
6665   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6666   ins_pipe(fstoreD_mem_zero);
6667 %}
6668 
6669 // Store Aligned Packed Chars/Shorts in Double register to memory
6670 instruct storeA4C(memory mem, regD src) %{
6671   match(Set mem (Store4C mem src));
6672   ins_cost(MEMORY_REF_COST);
6673   size(4);
6674   format %{ "STDF   $src,$mem\t! packed4C" %}
6675   opcode(Assembler::stdf_op3);
6676   ins_encode(simple_form3_mem_reg( mem, src ) );
6677   ins_pipe(fstoreD_mem_reg);
6678 %}
6679 
6680 // Store Zero into Aligned Packed Chars/Shorts
6681 instruct storeA4C0(memory mem, immI0 zero) %{
6682   match(Set mem (Store4C mem (Replicate4C zero)));
6683   ins_cost(MEMORY_REF_COST);
6684   size(4);
6685   format %{ "STX    $zero,$mem\t! packed4C" %}
6686   opcode(Assembler::stx_op3);
6687   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6688   ins_pipe(fstoreD_mem_zero);
6689 %}
6690 
6691 // Store Aligned Packed Ints in Double register to memory
6692 instruct storeA2I(memory mem, regD src) %{
6693   match(Set mem (Store2I mem src));
6694   ins_cost(MEMORY_REF_COST);
6695   size(4);
6696   format %{ "STDF   $src,$mem\t! packed2I" %}
6697   opcode(Assembler::stdf_op3);
6698   ins_encode(simple_form3_mem_reg( mem, src ) );
6699   ins_pipe(fstoreD_mem_reg);
6700 %}
6701 
6702 // Store Zero into Aligned Packed Ints
6703 instruct storeA2I0(memory mem, immI0 zero) %{
6704   match(Set mem (Store2I mem zero));
6705   ins_cost(MEMORY_REF_COST);
6706   size(4);
6707   format %{ "STX    $zero,$mem\t! packed2I" %}
6708   opcode(Assembler::stx_op3);
6709   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6710   ins_pipe(fstoreD_mem_zero);
6711 %}
6712 
6713 
6714 //----------MemBar Instructions-----------------------------------------------
6715 // Memory barrier flavors
6716 
6717 instruct membar_acquire() %{
6718   match(MemBarAcquire);
6719   ins_cost(4*MEMORY_REF_COST);
6720 
6721   size(0);
6722   format %{ "MEMBAR-acquire" %}
6723   ins_encode( enc_membar_acquire );
6724   ins_pipe(long_memory_op);
6725 %}
6726 
6727 instruct membar_acquire_lock() %{
6728   match(MemBarAcquireLock);
6729   ins_cost(0);
6730 
6731   size(0);
6732   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6733   ins_encode( );
6734   ins_pipe(empty);
6735 %}
6736 
6737 instruct membar_release() %{
6738   match(MemBarRelease);
6739   ins_cost(4*MEMORY_REF_COST);
6740 
6741   size(0);
6742   format %{ "MEMBAR-release" %}
6743   ins_encode( enc_membar_release );
6744   ins_pipe(long_memory_op);
6745 %}
6746 
6747 instruct membar_release_lock() %{
6748   match(MemBarReleaseLock);
6749   ins_cost(0);
6750 
6751   size(0);
6752   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6753   ins_encode( );
6754   ins_pipe(empty);
6755 %}
6756 
6757 instruct membar_volatile() %{
6758   match(MemBarVolatile);
6759   ins_cost(4*MEMORY_REF_COST);
6760 
6761   size(4);
6762   format %{ "MEMBAR-volatile" %}
6763   ins_encode( enc_membar_volatile );
6764   ins_pipe(long_memory_op);
6765 %}
6766 
6767 instruct unnecessary_membar_volatile() %{
6768   match(MemBarVolatile);
6769   predicate(Matcher::post_store_load_barrier(n));
6770   ins_cost(0);
6771 
6772   size(0);
6773   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6774   ins_encode( );
6775   ins_pipe(empty);
6776 %}
6777 
6778 instruct membar_storestore() %{
6779   match(MemBarStoreStore);
6780   ins_cost(0);
6781 
6782   size(0);
6783   format %{ "!MEMBAR-storestore (empty encoding)" %}
6784   ins_encode( );
6785   ins_pipe(empty);
6786 %}
6787 
6788 //----------Register Move Instructions-----------------------------------------
6789 instruct roundDouble_nop(regD dst) %{
6790   match(Set dst (RoundDouble dst));
6791   ins_cost(0);
6792   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6793   ins_encode( );
6794   ins_pipe(empty);
6795 %}
6796 
6797 
6798 instruct roundFloat_nop(regF dst) %{
6799   match(Set dst (RoundFloat dst));
6800   ins_cost(0);
6801   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6802   ins_encode( );
6803   ins_pipe(empty);
6804 %}
6805 
6806 
6807 // Cast Index to Pointer for unsafe natives
6808 instruct castX2P(iRegX src, iRegP dst) %{
6809   match(Set dst (CastX2P src));
6810 
6811   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6812   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6813   ins_pipe(ialu_reg);
6814 %}
6815 
6816 // Cast Pointer to Index for unsafe natives
6817 instruct castP2X(iRegP src, iRegX dst) %{
6818   match(Set dst (CastP2X src));
6819 
6820   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6821   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6822   ins_pipe(ialu_reg);
6823 %}
6824 
6825 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6826   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6827   match(Set stkSlot src);   // chain rule
6828   ins_cost(MEMORY_REF_COST);
6829   format %{ "STDF   $src,$stkSlot\t!stk" %}
6830   opcode(Assembler::stdf_op3);
6831   ins_encode(simple_form3_mem_reg(stkSlot, src));
6832   ins_pipe(fstoreD_stk_reg);
6833 %}
6834 
6835 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6836   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6837   match(Set dst stkSlot);   // chain rule
6838   ins_cost(MEMORY_REF_COST);
6839   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6840   opcode(Assembler::lddf_op3);
6841   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6842   ins_pipe(floadD_stk);
6843 %}
6844 
6845 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6846   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6847   match(Set stkSlot src);   // chain rule
6848   ins_cost(MEMORY_REF_COST);
6849   format %{ "STF   $src,$stkSlot\t!stk" %}
6850   opcode(Assembler::stf_op3);
6851   ins_encode(simple_form3_mem_reg(stkSlot, src));
6852   ins_pipe(fstoreF_stk_reg);
6853 %}
6854 
6855 //----------Conditional Move---------------------------------------------------
6856 // Conditional move
6857 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6858   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6859   ins_cost(150);
6860   format %{ "MOV$cmp $pcc,$src,$dst" %}
6861   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6862   ins_pipe(ialu_reg);
6863 %}
6864 
6865 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6866   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6867   ins_cost(140);
6868   format %{ "MOV$cmp $pcc,$src,$dst" %}
6869   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6870   ins_pipe(ialu_imm);
6871 %}
6872 
6873 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6874   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6875   ins_cost(150);
6876   size(4);
6877   format %{ "MOV$cmp  $icc,$src,$dst" %}
6878   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6879   ins_pipe(ialu_reg);
6880 %}
6881 
6882 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6883   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6884   ins_cost(140);
6885   size(4);
6886   format %{ "MOV$cmp  $icc,$src,$dst" %}
6887   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6888   ins_pipe(ialu_imm);
6889 %}
6890 
6891 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6892   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6893   ins_cost(150);
6894   size(4);
6895   format %{ "MOV$cmp  $icc,$src,$dst" %}
6896   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6897   ins_pipe(ialu_reg);
6898 %}
6899 
6900 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6901   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6902   ins_cost(140);
6903   size(4);
6904   format %{ "MOV$cmp  $icc,$src,$dst" %}
6905   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6906   ins_pipe(ialu_imm);
6907 %}
6908 
6909 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6910   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6911   ins_cost(150);
6912   size(4);
6913   format %{ "MOV$cmp $fcc,$src,$dst" %}
6914   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6915   ins_pipe(ialu_reg);
6916 %}
6917 
6918 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6919   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6920   ins_cost(140);
6921   size(4);
6922   format %{ "MOV$cmp $fcc,$src,$dst" %}
6923   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6924   ins_pipe(ialu_imm);
6925 %}
6926 
6927 // Conditional move for RegN. Only cmov(reg,reg).
6928 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6929   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6930   ins_cost(150);
6931   format %{ "MOV$cmp $pcc,$src,$dst" %}
6932   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6933   ins_pipe(ialu_reg);
6934 %}
6935 
6936 // This instruction also works with CmpN so we don't need cmovNN_reg.
6937 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6938   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6939   ins_cost(150);
6940   size(4);
6941   format %{ "MOV$cmp  $icc,$src,$dst" %}
6942   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6943   ins_pipe(ialu_reg);
6944 %}
6945 
6946 // This instruction also works with CmpN so we don't need cmovNN_reg.
6947 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6948   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6949   ins_cost(150);
6950   size(4);
6951   format %{ "MOV$cmp  $icc,$src,$dst" %}
6952   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6953   ins_pipe(ialu_reg);
6954 %}
6955 
6956 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6957   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6958   ins_cost(150);
6959   size(4);
6960   format %{ "MOV$cmp $fcc,$src,$dst" %}
6961   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6962   ins_pipe(ialu_reg);
6963 %}
6964 
6965 // Conditional move
6966 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6967   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6968   ins_cost(150);
6969   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6970   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6971   ins_pipe(ialu_reg);
6972 %}
6973 
6974 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6975   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6976   ins_cost(140);
6977   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6978   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6979   ins_pipe(ialu_imm);
6980 %}
6981 
6982 // This instruction also works with CmpN so we don't need cmovPN_reg.
6983 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6984   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6985   ins_cost(150);
6986 
6987   size(4);
6988   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6989   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6990   ins_pipe(ialu_reg);
6991 %}
6992 
6993 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6994   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6995   ins_cost(150);
6996 
6997   size(4);
6998   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6999   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7000   ins_pipe(ialu_reg);
7001 %}
7002 
7003 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
7004   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
7005   ins_cost(140);
7006 
7007   size(4);
7008   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
7009   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
7010   ins_pipe(ialu_imm);
7011 %}
7012 
7013 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
7014   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
7015   ins_cost(140);
7016 
7017   size(4);
7018   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
7019   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
7020   ins_pipe(ialu_imm);
7021 %}
7022 
7023 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
7024   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
7025   ins_cost(150);
7026   size(4);
7027   format %{ "MOV$cmp $fcc,$src,$dst" %}
7028   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7029   ins_pipe(ialu_imm);
7030 %}
7031 
7032 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
7033   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
7034   ins_cost(140);
7035   size(4);
7036   format %{ "MOV$cmp $fcc,$src,$dst" %}
7037   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
7038   ins_pipe(ialu_imm);
7039 %}
7040 
7041 // Conditional move
7042 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
7043   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
7044   ins_cost(150);
7045   opcode(0x101);
7046   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7047   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7048   ins_pipe(int_conditional_float_move);
7049 %}
7050 
7051 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
7052   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7053   ins_cost(150);
7054 
7055   size(4);
7056   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7057   opcode(0x101);
7058   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7059   ins_pipe(int_conditional_float_move);
7060 %}
7061 
7062 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
7063   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7064   ins_cost(150);
7065 
7066   size(4);
7067   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7068   opcode(0x101);
7069   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7070   ins_pipe(int_conditional_float_move);
7071 %}
7072 
7073 // Conditional move,
7074 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7075   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7076   ins_cost(150);
7077   size(4);
7078   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7079   opcode(0x1);
7080   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7081   ins_pipe(int_conditional_double_move);
7082 %}
7083 
7084 // Conditional move
7085 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7086   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7087   ins_cost(150);
7088   size(4);
7089   opcode(0x102);
7090   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7091   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7092   ins_pipe(int_conditional_double_move);
7093 %}
7094 
7095 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7096   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7097   ins_cost(150);
7098 
7099   size(4);
7100   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7101   opcode(0x102);
7102   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7103   ins_pipe(int_conditional_double_move);
7104 %}
7105 
7106 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7107   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7108   ins_cost(150);
7109 
7110   size(4);
7111   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7112   opcode(0x102);
7113   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7114   ins_pipe(int_conditional_double_move);
7115 %}
7116 
7117 // Conditional move,
7118 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7119   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7120   ins_cost(150);
7121   size(4);
7122   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7123   opcode(0x2);
7124   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7125   ins_pipe(int_conditional_double_move);
7126 %}
7127 
7128 // Conditional move
7129 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7130   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7131   ins_cost(150);
7132   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7133   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7134   ins_pipe(ialu_reg);
7135 %}
7136 
7137 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7138   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7139   ins_cost(140);
7140   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7141   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7142   ins_pipe(ialu_imm);
7143 %}
7144 
7145 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7146   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7147   ins_cost(150);
7148 
7149   size(4);
7150   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7151   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7152   ins_pipe(ialu_reg);
7153 %}
7154 
7155 
7156 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7157   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7158   ins_cost(150);
7159 
7160   size(4);
7161   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7162   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7163   ins_pipe(ialu_reg);
7164 %}
7165 
7166 
7167 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7168   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7169   ins_cost(150);
7170 
7171   size(4);
7172   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7173   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7174   ins_pipe(ialu_reg);
7175 %}
7176 
7177 
7178 
7179 //----------OS and Locking Instructions----------------------------------------
7180 
7181 // This name is KNOWN by the ADLC and cannot be changed.
7182 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7183 // for this guy.
7184 instruct tlsLoadP(g2RegP dst) %{
7185   match(Set dst (ThreadLocal));
7186 
7187   size(0);
7188   ins_cost(0);
7189   format %{ "# TLS is in G2" %}
7190   ins_encode( /*empty encoding*/ );
7191   ins_pipe(ialu_none);
7192 %}
7193 
7194 instruct checkCastPP( iRegP dst ) %{
7195   match(Set dst (CheckCastPP dst));
7196 
7197   size(0);
7198   format %{ "# checkcastPP of $dst" %}
7199   ins_encode( /*empty encoding*/ );
7200   ins_pipe(empty);
7201 %}
7202 
7203 
7204 instruct castPP( iRegP dst ) %{
7205   match(Set dst (CastPP dst));
7206   format %{ "# castPP of $dst" %}
7207   ins_encode( /*empty encoding*/ );
7208   ins_pipe(empty);
7209 %}
7210 
7211 instruct castII( iRegI dst ) %{
7212   match(Set dst (CastII dst));
7213   format %{ "# castII of $dst" %}
7214   ins_encode( /*empty encoding*/ );
7215   ins_cost(0);
7216   ins_pipe(empty);
7217 %}
7218 
7219 //----------Arithmetic Instructions--------------------------------------------
7220 // Addition Instructions
7221 // Register Addition
7222 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7223   match(Set dst (AddI src1 src2));
7224 
7225   size(4);
7226   format %{ "ADD    $src1,$src2,$dst" %}
7227   ins_encode %{
7228     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7229   %}
7230   ins_pipe(ialu_reg_reg);
7231 %}
7232 
7233 // Immediate Addition
7234 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7235   match(Set dst (AddI src1 src2));
7236 
7237   size(4);
7238   format %{ "ADD    $src1,$src2,$dst" %}
7239   opcode(Assembler::add_op3, Assembler::arith_op);
7240   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7241   ins_pipe(ialu_reg_imm);
7242 %}
7243 
7244 // Pointer Register Addition
7245 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7246   match(Set dst (AddP src1 src2));
7247 
7248   size(4);
7249   format %{ "ADD    $src1,$src2,$dst" %}
7250   opcode(Assembler::add_op3, Assembler::arith_op);
7251   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7252   ins_pipe(ialu_reg_reg);
7253 %}
7254 
7255 // Pointer Immediate Addition
7256 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7257   match(Set dst (AddP src1 src2));
7258 
7259   size(4);
7260   format %{ "ADD    $src1,$src2,$dst" %}
7261   opcode(Assembler::add_op3, Assembler::arith_op);
7262   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7263   ins_pipe(ialu_reg_imm);
7264 %}
7265 
7266 // Long Addition
7267 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7268   match(Set dst (AddL src1 src2));
7269 
7270   size(4);
7271   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7272   opcode(Assembler::add_op3, Assembler::arith_op);
7273   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7274   ins_pipe(ialu_reg_reg);
7275 %}
7276 
7277 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7278   match(Set dst (AddL src1 con));
7279 
7280   size(4);
7281   format %{ "ADD    $src1,$con,$dst" %}
7282   opcode(Assembler::add_op3, Assembler::arith_op);
7283   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7284   ins_pipe(ialu_reg_imm);
7285 %}
7286 
7287 //----------Conditional_store--------------------------------------------------
7288 // Conditional-store of the updated heap-top.
7289 // Used during allocation of the shared heap.
7290 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7291 
7292 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7293 instruct loadPLocked(iRegP dst, memory mem) %{
7294   match(Set dst (LoadPLocked mem));
7295   ins_cost(MEMORY_REF_COST);
7296 
7297 #ifndef _LP64
7298   size(4);
7299   format %{ "LDUW   $mem,$dst\t! ptr" %}
7300   opcode(Assembler::lduw_op3, 0, REGP_OP);
7301 #else
7302   format %{ "LDX    $mem,$dst\t! ptr" %}
7303   opcode(Assembler::ldx_op3, 0, REGP_OP);
7304 #endif
7305   ins_encode( form3_mem_reg( mem, dst ) );
7306   ins_pipe(iload_mem);
7307 %}
7308 
7309 // LoadL-locked.  Same as a regular long load when used with a compare-swap
7310 instruct loadLLocked(iRegL dst, memory mem) %{
7311   match(Set dst (LoadLLocked mem));
7312   ins_cost(MEMORY_REF_COST);
7313   size(4);
7314   format %{ "LDX    $mem,$dst\t! long" %}
7315   opcode(Assembler::ldx_op3);
7316   ins_encode(simple_form3_mem_reg( mem, dst ) );
7317   ins_pipe(iload_mem);
7318 %}
7319 
7320 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7321   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7322   effect( KILL newval );
7323   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7324             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7325   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7326   ins_pipe( long_memory_op );
7327 %}
7328 
7329 // Conditional-store of an int value.
7330 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7331   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7332   effect( KILL newval );
7333   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7334             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7335   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7336   ins_pipe( long_memory_op );
7337 %}
7338 
7339 // Conditional-store of a long value.
7340 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7341   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7342   effect( KILL newval );
7343   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7344             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7345   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7346   ins_pipe( long_memory_op );
7347 %}
7348 
7349 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7350 
7351 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7352   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7353   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7354   format %{
7355             "MOV    $newval,O7\n\t"
7356             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7357             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7358             "MOV    1,$res\n\t"
7359             "MOVne  xcc,R_G0,$res"
7360   %}
7361   ins_encode( enc_casx(mem_ptr, oldval, newval),
7362               enc_lflags_ne_to_boolean(res) );
7363   ins_pipe( long_memory_op );
7364 %}
7365 
7366 
7367 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7368   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7369   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7370   format %{
7371             "MOV    $newval,O7\n\t"
7372             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7373             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7374             "MOV    1,$res\n\t"
7375             "MOVne  icc,R_G0,$res"
7376   %}
7377   ins_encode( enc_casi(mem_ptr, oldval, newval),
7378               enc_iflags_ne_to_boolean(res) );
7379   ins_pipe( long_memory_op );
7380 %}
7381 
7382 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7383   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7384   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7385   format %{
7386             "MOV    $newval,O7\n\t"
7387             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7388             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7389             "MOV    1,$res\n\t"
7390             "MOVne  xcc,R_G0,$res"
7391   %}
7392 #ifdef _LP64
7393   ins_encode( enc_casx(mem_ptr, oldval, newval),
7394               enc_lflags_ne_to_boolean(res) );
7395 #else
7396   ins_encode( enc_casi(mem_ptr, oldval, newval),
7397               enc_iflags_ne_to_boolean(res) );
7398 #endif
7399   ins_pipe( long_memory_op );
7400 %}
7401 
7402 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7403   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7404   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7405   format %{
7406             "MOV    $newval,O7\n\t"
7407             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7408             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7409             "MOV    1,$res\n\t"
7410             "MOVne  icc,R_G0,$res"
7411   %}
7412   ins_encode( enc_casi(mem_ptr, oldval, newval),
7413               enc_iflags_ne_to_boolean(res) );
7414   ins_pipe( long_memory_op );
7415 %}
7416 
7417 //---------------------
7418 // Subtraction Instructions
7419 // Register Subtraction
7420 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7421   match(Set dst (SubI src1 src2));
7422 
7423   size(4);
7424   format %{ "SUB    $src1,$src2,$dst" %}
7425   opcode(Assembler::sub_op3, Assembler::arith_op);
7426   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7427   ins_pipe(ialu_reg_reg);
7428 %}
7429 
7430 // Immediate Subtraction
7431 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7432   match(Set dst (SubI src1 src2));
7433 
7434   size(4);
7435   format %{ "SUB    $src1,$src2,$dst" %}
7436   opcode(Assembler::sub_op3, Assembler::arith_op);
7437   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7438   ins_pipe(ialu_reg_imm);
7439 %}
7440 
7441 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7442   match(Set dst (SubI zero src2));
7443 
7444   size(4);
7445   format %{ "NEG    $src2,$dst" %}
7446   opcode(Assembler::sub_op3, Assembler::arith_op);
7447   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7448   ins_pipe(ialu_zero_reg);
7449 %}
7450 
7451 // Long subtraction
7452 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7453   match(Set dst (SubL src1 src2));
7454 
7455   size(4);
7456   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7457   opcode(Assembler::sub_op3, Assembler::arith_op);
7458   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7459   ins_pipe(ialu_reg_reg);
7460 %}
7461 
7462 // Immediate Subtraction
7463 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7464   match(Set dst (SubL src1 con));
7465 
7466   size(4);
7467   format %{ "SUB    $src1,$con,$dst\t! long" %}
7468   opcode(Assembler::sub_op3, Assembler::arith_op);
7469   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7470   ins_pipe(ialu_reg_imm);
7471 %}
7472 
7473 // Long negation
7474 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7475   match(Set dst (SubL zero src2));
7476 
7477   size(4);
7478   format %{ "NEG    $src2,$dst\t! long" %}
7479   opcode(Assembler::sub_op3, Assembler::arith_op);
7480   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7481   ins_pipe(ialu_zero_reg);
7482 %}
7483 
7484 // Multiplication Instructions
7485 // Integer Multiplication
7486 // Register Multiplication
7487 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7488   match(Set dst (MulI src1 src2));
7489 
7490   size(4);
7491   format %{ "MULX   $src1,$src2,$dst" %}
7492   opcode(Assembler::mulx_op3, Assembler::arith_op);
7493   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7494   ins_pipe(imul_reg_reg);
7495 %}
7496 
7497 // Immediate Multiplication
7498 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7499   match(Set dst (MulI src1 src2));
7500 
7501   size(4);
7502   format %{ "MULX   $src1,$src2,$dst" %}
7503   opcode(Assembler::mulx_op3, Assembler::arith_op);
7504   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7505   ins_pipe(imul_reg_imm);
7506 %}
7507 
7508 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7509   match(Set dst (MulL src1 src2));
7510   ins_cost(DEFAULT_COST * 5);
7511   size(4);
7512   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7513   opcode(Assembler::mulx_op3, Assembler::arith_op);
7514   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7515   ins_pipe(mulL_reg_reg);
7516 %}
7517 
7518 // Immediate Multiplication
7519 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7520   match(Set dst (MulL src1 src2));
7521   ins_cost(DEFAULT_COST * 5);
7522   size(4);
7523   format %{ "MULX   $src1,$src2,$dst" %}
7524   opcode(Assembler::mulx_op3, Assembler::arith_op);
7525   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7526   ins_pipe(mulL_reg_imm);
7527 %}
7528 
7529 // Integer Division
7530 // Register Division
7531 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7532   match(Set dst (DivI src1 src2));
7533   ins_cost((2+71)*DEFAULT_COST);
7534 
7535   format %{ "SRA     $src2,0,$src2\n\t"
7536             "SRA     $src1,0,$src1\n\t"
7537             "SDIVX   $src1,$src2,$dst" %}
7538   ins_encode( idiv_reg( src1, src2, dst ) );
7539   ins_pipe(sdiv_reg_reg);
7540 %}
7541 
7542 // Immediate Division
7543 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7544   match(Set dst (DivI src1 src2));
7545   ins_cost((2+71)*DEFAULT_COST);
7546 
7547   format %{ "SRA     $src1,0,$src1\n\t"
7548             "SDIVX   $src1,$src2,$dst" %}
7549   ins_encode( idiv_imm( src1, src2, dst ) );
7550   ins_pipe(sdiv_reg_imm);
7551 %}
7552 
7553 //----------Div-By-10-Expansion------------------------------------------------
7554 // Extract hi bits of a 32x32->64 bit multiply.
7555 // Expand rule only, not matched
7556 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7557   effect( DEF dst, USE src1, USE src2 );
7558   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7559             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7560   ins_encode( enc_mul_hi(dst,src1,src2));
7561   ins_pipe(sdiv_reg_reg);
7562 %}
7563 
7564 // Magic constant, reciprocal of 10
7565 instruct loadConI_x66666667(iRegIsafe dst) %{
7566   effect( DEF dst );
7567 
7568   size(8);
7569   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7570   ins_encode( Set32(0x66666667, dst) );
7571   ins_pipe(ialu_hi_lo_reg);
7572 %}
7573 
7574 // Register Shift Right Arithmetic Long by 32-63
7575 instruct sra_31( iRegI dst, iRegI src ) %{
7576   effect( DEF dst, USE src );
7577   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7578   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7579   ins_pipe(ialu_reg_reg);
7580 %}
7581 
7582 // Arithmetic Shift Right by 8-bit immediate
7583 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7584   effect( DEF dst, USE src );
7585   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7586   opcode(Assembler::sra_op3, Assembler::arith_op);
7587   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7588   ins_pipe(ialu_reg_imm);
7589 %}
7590 
7591 // Integer DIV with 10
7592 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7593   match(Set dst (DivI src div));
7594   ins_cost((6+6)*DEFAULT_COST);
7595   expand %{
7596     iRegIsafe tmp1;               // Killed temps;
7597     iRegIsafe tmp2;               // Killed temps;
7598     iRegI tmp3;                   // Killed temps;
7599     iRegI tmp4;                   // Killed temps;
7600     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7601     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7602     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7603     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7604     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7605   %}
7606 %}
7607 
7608 // Register Long Division
7609 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7610   match(Set dst (DivL src1 src2));
7611   ins_cost(DEFAULT_COST*71);
7612   size(4);
7613   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7614   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7615   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7616   ins_pipe(divL_reg_reg);
7617 %}
7618 
7619 // Register Long Division
7620 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7621   match(Set dst (DivL src1 src2));
7622   ins_cost(DEFAULT_COST*71);
7623   size(4);
7624   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7625   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7626   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7627   ins_pipe(divL_reg_imm);
7628 %}
7629 
7630 // Integer Remainder
7631 // Register Remainder
7632 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7633   match(Set dst (ModI src1 src2));
7634   effect( KILL ccr, KILL temp);
7635 
7636   format %{ "SREM   $src1,$src2,$dst" %}
7637   ins_encode( irem_reg(src1, src2, dst, temp) );
7638   ins_pipe(sdiv_reg_reg);
7639 %}
7640 
7641 // Immediate Remainder
7642 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7643   match(Set dst (ModI src1 src2));
7644   effect( KILL ccr, KILL temp);
7645 
7646   format %{ "SREM   $src1,$src2,$dst" %}
7647   ins_encode( irem_imm(src1, src2, dst, temp) );
7648   ins_pipe(sdiv_reg_imm);
7649 %}
7650 
7651 // Register Long Remainder
7652 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7653   effect(DEF dst, USE src1, USE src2);
7654   size(4);
7655   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7656   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7657   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7658   ins_pipe(divL_reg_reg);
7659 %}
7660 
7661 // Register Long Division
7662 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7663   effect(DEF dst, USE src1, USE src2);
7664   size(4);
7665   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7666   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7667   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7668   ins_pipe(divL_reg_imm);
7669 %}
7670 
7671 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7672   effect(DEF dst, USE src1, USE src2);
7673   size(4);
7674   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7675   opcode(Assembler::mulx_op3, Assembler::arith_op);
7676   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7677   ins_pipe(mulL_reg_reg);
7678 %}
7679 
7680 // Immediate Multiplication
7681 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7682   effect(DEF dst, USE src1, USE src2);
7683   size(4);
7684   format %{ "MULX   $src1,$src2,$dst" %}
7685   opcode(Assembler::mulx_op3, Assembler::arith_op);
7686   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7687   ins_pipe(mulL_reg_imm);
7688 %}
7689 
7690 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7691   effect(DEF dst, USE src1, USE src2);
7692   size(4);
7693   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7694   opcode(Assembler::sub_op3, Assembler::arith_op);
7695   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7696   ins_pipe(ialu_reg_reg);
7697 %}
7698 
7699 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7700   effect(DEF dst, USE src1, USE src2);
7701   size(4);
7702   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7703   opcode(Assembler::sub_op3, Assembler::arith_op);
7704   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7705   ins_pipe(ialu_reg_reg);
7706 %}
7707 
7708 // Register Long Remainder
7709 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7710   match(Set dst (ModL src1 src2));
7711   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7712   expand %{
7713     iRegL tmp1;
7714     iRegL tmp2;
7715     divL_reg_reg_1(tmp1, src1, src2);
7716     mulL_reg_reg_1(tmp2, tmp1, src2);
7717     subL_reg_reg_1(dst,  src1, tmp2);
7718   %}
7719 %}
7720 
7721 // Register Long Remainder
7722 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7723   match(Set dst (ModL src1 src2));
7724   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7725   expand %{
7726     iRegL tmp1;
7727     iRegL tmp2;
7728     divL_reg_imm13_1(tmp1, src1, src2);
7729     mulL_reg_imm13_1(tmp2, tmp1, src2);
7730     subL_reg_reg_2  (dst,  src1, tmp2);
7731   %}
7732 %}
7733 
7734 // Integer Shift Instructions
7735 // Register Shift Left
7736 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7737   match(Set dst (LShiftI src1 src2));
7738 
7739   size(4);
7740   format %{ "SLL    $src1,$src2,$dst" %}
7741   opcode(Assembler::sll_op3, Assembler::arith_op);
7742   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7743   ins_pipe(ialu_reg_reg);
7744 %}
7745 
7746 // Register Shift Left Immediate
7747 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7748   match(Set dst (LShiftI src1 src2));
7749 
7750   size(4);
7751   format %{ "SLL    $src1,$src2,$dst" %}
7752   opcode(Assembler::sll_op3, Assembler::arith_op);
7753   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7754   ins_pipe(ialu_reg_imm);
7755 %}
7756 
7757 // Register Shift Left
7758 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7759   match(Set dst (LShiftL src1 src2));
7760 
7761   size(4);
7762   format %{ "SLLX   $src1,$src2,$dst" %}
7763   opcode(Assembler::sllx_op3, Assembler::arith_op);
7764   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7765   ins_pipe(ialu_reg_reg);
7766 %}
7767 
7768 // Register Shift Left Immediate
7769 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7770   match(Set dst (LShiftL src1 src2));
7771 
7772   size(4);
7773   format %{ "SLLX   $src1,$src2,$dst" %}
7774   opcode(Assembler::sllx_op3, Assembler::arith_op);
7775   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7776   ins_pipe(ialu_reg_imm);
7777 %}
7778 
7779 // Register Arithmetic Shift Right
7780 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7781   match(Set dst (RShiftI src1 src2));
7782   size(4);
7783   format %{ "SRA    $src1,$src2,$dst" %}
7784   opcode(Assembler::sra_op3, Assembler::arith_op);
7785   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7786   ins_pipe(ialu_reg_reg);
7787 %}
7788 
7789 // Register Arithmetic Shift Right Immediate
7790 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7791   match(Set dst (RShiftI src1 src2));
7792 
7793   size(4);
7794   format %{ "SRA    $src1,$src2,$dst" %}
7795   opcode(Assembler::sra_op3, Assembler::arith_op);
7796   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7797   ins_pipe(ialu_reg_imm);
7798 %}
7799 
7800 // Register Shift Right Arithmatic Long
7801 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7802   match(Set dst (RShiftL src1 src2));
7803 
7804   size(4);
7805   format %{ "SRAX   $src1,$src2,$dst" %}
7806   opcode(Assembler::srax_op3, Assembler::arith_op);
7807   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7808   ins_pipe(ialu_reg_reg);
7809 %}
7810 
7811 // Register Shift Left Immediate
7812 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7813   match(Set dst (RShiftL src1 src2));
7814 
7815   size(4);
7816   format %{ "SRAX   $src1,$src2,$dst" %}
7817   opcode(Assembler::srax_op3, Assembler::arith_op);
7818   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7819   ins_pipe(ialu_reg_imm);
7820 %}
7821 
7822 // Register Shift Right
7823 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7824   match(Set dst (URShiftI src1 src2));
7825 
7826   size(4);
7827   format %{ "SRL    $src1,$src2,$dst" %}
7828   opcode(Assembler::srl_op3, Assembler::arith_op);
7829   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7830   ins_pipe(ialu_reg_reg);
7831 %}
7832 
7833 // Register Shift Right Immediate
7834 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7835   match(Set dst (URShiftI src1 src2));
7836 
7837   size(4);
7838   format %{ "SRL    $src1,$src2,$dst" %}
7839   opcode(Assembler::srl_op3, Assembler::arith_op);
7840   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7841   ins_pipe(ialu_reg_imm);
7842 %}
7843 
7844 // Register Shift Right
7845 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7846   match(Set dst (URShiftL src1 src2));
7847 
7848   size(4);
7849   format %{ "SRLX   $src1,$src2,$dst" %}
7850   opcode(Assembler::srlx_op3, Assembler::arith_op);
7851   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7852   ins_pipe(ialu_reg_reg);
7853 %}
7854 
7855 // Register Shift Right Immediate
7856 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7857   match(Set dst (URShiftL src1 src2));
7858 
7859   size(4);
7860   format %{ "SRLX   $src1,$src2,$dst" %}
7861   opcode(Assembler::srlx_op3, Assembler::arith_op);
7862   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7863   ins_pipe(ialu_reg_imm);
7864 %}
7865 
7866 // Register Shift Right Immediate with a CastP2X
7867 #ifdef _LP64
7868 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7869   match(Set dst (URShiftL (CastP2X src1) src2));
7870   size(4);
7871   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7872   opcode(Assembler::srlx_op3, Assembler::arith_op);
7873   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7874   ins_pipe(ialu_reg_imm);
7875 %}
7876 #else
7877 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7878   match(Set dst (URShiftI (CastP2X src1) src2));
7879   size(4);
7880   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7881   opcode(Assembler::srl_op3, Assembler::arith_op);
7882   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7883   ins_pipe(ialu_reg_imm);
7884 %}
7885 #endif
7886 
7887 
7888 //----------Floating Point Arithmetic Instructions-----------------------------
7889 
7890 //  Add float single precision
7891 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7892   match(Set dst (AddF src1 src2));
7893 
7894   size(4);
7895   format %{ "FADDS  $src1,$src2,$dst" %}
7896   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7897   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7898   ins_pipe(faddF_reg_reg);
7899 %}
7900 
7901 //  Add float double precision
7902 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7903   match(Set dst (AddD src1 src2));
7904 
7905   size(4);
7906   format %{ "FADDD  $src1,$src2,$dst" %}
7907   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7908   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7909   ins_pipe(faddD_reg_reg);
7910 %}
7911 
7912 //  Sub float single precision
7913 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7914   match(Set dst (SubF src1 src2));
7915 
7916   size(4);
7917   format %{ "FSUBS  $src1,$src2,$dst" %}
7918   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7919   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7920   ins_pipe(faddF_reg_reg);
7921 %}
7922 
7923 //  Sub float double precision
7924 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7925   match(Set dst (SubD src1 src2));
7926 
7927   size(4);
7928   format %{ "FSUBD  $src1,$src2,$dst" %}
7929   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7930   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7931   ins_pipe(faddD_reg_reg);
7932 %}
7933 
7934 //  Mul float single precision
7935 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7936   match(Set dst (MulF src1 src2));
7937 
7938   size(4);
7939   format %{ "FMULS  $src1,$src2,$dst" %}
7940   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7941   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7942   ins_pipe(fmulF_reg_reg);
7943 %}
7944 
7945 //  Mul float double precision
7946 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7947   match(Set dst (MulD src1 src2));
7948 
7949   size(4);
7950   format %{ "FMULD  $src1,$src2,$dst" %}
7951   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7952   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7953   ins_pipe(fmulD_reg_reg);
7954 %}
7955 
7956 //  Div float single precision
7957 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7958   match(Set dst (DivF src1 src2));
7959 
7960   size(4);
7961   format %{ "FDIVS  $src1,$src2,$dst" %}
7962   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7963   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7964   ins_pipe(fdivF_reg_reg);
7965 %}
7966 
7967 //  Div float double precision
7968 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7969   match(Set dst (DivD src1 src2));
7970 
7971   size(4);
7972   format %{ "FDIVD  $src1,$src2,$dst" %}
7973   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7974   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7975   ins_pipe(fdivD_reg_reg);
7976 %}
7977 
7978 //  Absolute float double precision
7979 instruct absD_reg(regD dst, regD src) %{
7980   match(Set dst (AbsD src));
7981 
7982   format %{ "FABSd  $src,$dst" %}
7983   ins_encode(fabsd(dst, src));
7984   ins_pipe(faddD_reg);
7985 %}
7986 
7987 //  Absolute float single precision
7988 instruct absF_reg(regF dst, regF src) %{
7989   match(Set dst (AbsF src));
7990 
7991   format %{ "FABSs  $src,$dst" %}
7992   ins_encode(fabss(dst, src));
7993   ins_pipe(faddF_reg);
7994 %}
7995 
7996 instruct negF_reg(regF dst, regF src) %{
7997   match(Set dst (NegF src));
7998 
7999   size(4);
8000   format %{ "FNEGs  $src,$dst" %}
8001   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
8002   ins_encode(form3_opf_rs2F_rdF(src, dst));
8003   ins_pipe(faddF_reg);
8004 %}
8005 
8006 instruct negD_reg(regD dst, regD src) %{
8007   match(Set dst (NegD src));
8008 
8009   format %{ "FNEGd  $src,$dst" %}
8010   ins_encode(fnegd(dst, src));
8011   ins_pipe(faddD_reg);
8012 %}
8013 
8014 //  Sqrt float double precision
8015 instruct sqrtF_reg_reg(regF dst, regF src) %{
8016   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8017 
8018   size(4);
8019   format %{ "FSQRTS $src,$dst" %}
8020   ins_encode(fsqrts(dst, src));
8021   ins_pipe(fdivF_reg_reg);
8022 %}
8023 
8024 //  Sqrt float double precision
8025 instruct sqrtD_reg_reg(regD dst, regD src) %{
8026   match(Set dst (SqrtD src));
8027 
8028   size(4);
8029   format %{ "FSQRTD $src,$dst" %}
8030   ins_encode(fsqrtd(dst, src));
8031   ins_pipe(fdivD_reg_reg);
8032 %}
8033 
8034 //----------Logical Instructions-----------------------------------------------
8035 // And Instructions
8036 // Register And
8037 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8038   match(Set dst (AndI src1 src2));
8039 
8040   size(4);
8041   format %{ "AND    $src1,$src2,$dst" %}
8042   opcode(Assembler::and_op3, Assembler::arith_op);
8043   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8044   ins_pipe(ialu_reg_reg);
8045 %}
8046 
8047 // Immediate And
8048 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8049   match(Set dst (AndI src1 src2));
8050 
8051   size(4);
8052   format %{ "AND    $src1,$src2,$dst" %}
8053   opcode(Assembler::and_op3, Assembler::arith_op);
8054   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8055   ins_pipe(ialu_reg_imm);
8056 %}
8057 
8058 // Register And Long
8059 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8060   match(Set dst (AndL src1 src2));
8061 
8062   ins_cost(DEFAULT_COST);
8063   size(4);
8064   format %{ "AND    $src1,$src2,$dst\t! long" %}
8065   opcode(Assembler::and_op3, Assembler::arith_op);
8066   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8067   ins_pipe(ialu_reg_reg);
8068 %}
8069 
8070 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8071   match(Set dst (AndL src1 con));
8072 
8073   ins_cost(DEFAULT_COST);
8074   size(4);
8075   format %{ "AND    $src1,$con,$dst\t! long" %}
8076   opcode(Assembler::and_op3, Assembler::arith_op);
8077   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8078   ins_pipe(ialu_reg_imm);
8079 %}
8080 
8081 // Or Instructions
8082 // Register Or
8083 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8084   match(Set dst (OrI src1 src2));
8085 
8086   size(4);
8087   format %{ "OR     $src1,$src2,$dst" %}
8088   opcode(Assembler::or_op3, Assembler::arith_op);
8089   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8090   ins_pipe(ialu_reg_reg);
8091 %}
8092 
8093 // Immediate Or
8094 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8095   match(Set dst (OrI src1 src2));
8096 
8097   size(4);
8098   format %{ "OR     $src1,$src2,$dst" %}
8099   opcode(Assembler::or_op3, Assembler::arith_op);
8100   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8101   ins_pipe(ialu_reg_imm);
8102 %}
8103 
8104 // Register Or Long
8105 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8106   match(Set dst (OrL src1 src2));
8107 
8108   ins_cost(DEFAULT_COST);
8109   size(4);
8110   format %{ "OR     $src1,$src2,$dst\t! long" %}
8111   opcode(Assembler::or_op3, Assembler::arith_op);
8112   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8113   ins_pipe(ialu_reg_reg);
8114 %}
8115 
8116 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8117   match(Set dst (OrL src1 con));
8118   ins_cost(DEFAULT_COST*2);
8119 
8120   ins_cost(DEFAULT_COST);
8121   size(4);
8122   format %{ "OR     $src1,$con,$dst\t! long" %}
8123   opcode(Assembler::or_op3, Assembler::arith_op);
8124   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8125   ins_pipe(ialu_reg_imm);
8126 %}
8127 
8128 #ifndef _LP64
8129 
8130 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8131 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8132   match(Set dst (OrI src1 (CastP2X src2)));
8133 
8134   size(4);
8135   format %{ "OR     $src1,$src2,$dst" %}
8136   opcode(Assembler::or_op3, Assembler::arith_op);
8137   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8138   ins_pipe(ialu_reg_reg);
8139 %}
8140 
8141 #else
8142 
8143 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8144   match(Set dst (OrL src1 (CastP2X src2)));
8145 
8146   ins_cost(DEFAULT_COST);
8147   size(4);
8148   format %{ "OR     $src1,$src2,$dst\t! long" %}
8149   opcode(Assembler::or_op3, Assembler::arith_op);
8150   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8151   ins_pipe(ialu_reg_reg);
8152 %}
8153 
8154 #endif
8155 
8156 // Xor Instructions
8157 // Register Xor
8158 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8159   match(Set dst (XorI src1 src2));
8160 
8161   size(4);
8162   format %{ "XOR    $src1,$src2,$dst" %}
8163   opcode(Assembler::xor_op3, Assembler::arith_op);
8164   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8165   ins_pipe(ialu_reg_reg);
8166 %}
8167 
8168 // Immediate Xor
8169 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8170   match(Set dst (XorI src1 src2));
8171 
8172   size(4);
8173   format %{ "XOR    $src1,$src2,$dst" %}
8174   opcode(Assembler::xor_op3, Assembler::arith_op);
8175   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8176   ins_pipe(ialu_reg_imm);
8177 %}
8178 
8179 // Register Xor Long
8180 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8181   match(Set dst (XorL src1 src2));
8182 
8183   ins_cost(DEFAULT_COST);
8184   size(4);
8185   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8186   opcode(Assembler::xor_op3, Assembler::arith_op);
8187   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8188   ins_pipe(ialu_reg_reg);
8189 %}
8190 
8191 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8192   match(Set dst (XorL src1 con));
8193 
8194   ins_cost(DEFAULT_COST);
8195   size(4);
8196   format %{ "XOR    $src1,$con,$dst\t! long" %}
8197   opcode(Assembler::xor_op3, Assembler::arith_op);
8198   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8199   ins_pipe(ialu_reg_imm);
8200 %}
8201 
8202 //----------Convert to Boolean-------------------------------------------------
8203 // Nice hack for 32-bit tests but doesn't work for
8204 // 64-bit pointers.
8205 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8206   match(Set dst (Conv2B src));
8207   effect( KILL ccr );
8208   ins_cost(DEFAULT_COST*2);
8209   format %{ "CMP    R_G0,$src\n\t"
8210             "ADDX   R_G0,0,$dst" %}
8211   ins_encode( enc_to_bool( src, dst ) );
8212   ins_pipe(ialu_reg_ialu);
8213 %}
8214 
8215 #ifndef _LP64
8216 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8217   match(Set dst (Conv2B src));
8218   effect( KILL ccr );
8219   ins_cost(DEFAULT_COST*2);
8220   format %{ "CMP    R_G0,$src\n\t"
8221             "ADDX   R_G0,0,$dst" %}
8222   ins_encode( enc_to_bool( src, dst ) );
8223   ins_pipe(ialu_reg_ialu);
8224 %}
8225 #else
8226 instruct convP2B( iRegI dst, iRegP src ) %{
8227   match(Set dst (Conv2B src));
8228   ins_cost(DEFAULT_COST*2);
8229   format %{ "MOV    $src,$dst\n\t"
8230             "MOVRNZ $src,1,$dst" %}
8231   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8232   ins_pipe(ialu_clr_and_mover);
8233 %}
8234 #endif
8235 
8236 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8237   match(Set dst (CmpLTMask src zero));
8238   effect(KILL ccr);
8239   size(4);
8240   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8241   ins_encode %{
8242     __ sra($src$$Register, 31, $dst$$Register);
8243   %}
8244   ins_pipe(ialu_reg_imm);
8245 %}
8246 
8247 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8248   match(Set dst (CmpLTMask p q));
8249   effect( KILL ccr );
8250   ins_cost(DEFAULT_COST*4);
8251   format %{ "CMP    $p,$q\n\t"
8252             "MOV    #0,$dst\n\t"
8253             "BLT,a  .+8\n\t"
8254             "MOV    #-1,$dst" %}
8255   ins_encode( enc_ltmask(p,q,dst) );
8256   ins_pipe(ialu_reg_reg_ialu);
8257 %}
8258 
8259 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8260   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8261   effect(KILL ccr, TEMP tmp);
8262   ins_cost(DEFAULT_COST*3);
8263 
8264   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8265             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8266             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8267   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8268   ins_pipe( cadd_cmpltmask );
8269 %}
8270 
8271 
8272 //-----------------------------------------------------------------
8273 // Direct raw moves between float and general registers using VIS3.
8274 
8275 //  ins_pipe(faddF_reg);
8276 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8277   predicate(UseVIS >= 3);
8278   match(Set dst (MoveF2I src));
8279 
8280   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8281   ins_encode %{
8282     __ movstouw($src$$FloatRegister, $dst$$Register);
8283   %}
8284   ins_pipe(ialu_reg_reg);
8285 %}
8286 
8287 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8288   predicate(UseVIS >= 3);
8289   match(Set dst (MoveI2F src));
8290 
8291   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8292   ins_encode %{
8293     __ movwtos($src$$Register, $dst$$FloatRegister);
8294   %}
8295   ins_pipe(ialu_reg_reg);
8296 %}
8297 
8298 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8299   predicate(UseVIS >= 3);
8300   match(Set dst (MoveD2L src));
8301 
8302   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8303   ins_encode %{
8304     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8305   %}
8306   ins_pipe(ialu_reg_reg);
8307 %}
8308 
8309 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8310   predicate(UseVIS >= 3);
8311   match(Set dst (MoveL2D src));
8312 
8313   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8314   ins_encode %{
8315     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8316   %}
8317   ins_pipe(ialu_reg_reg);
8318 %}
8319 
8320 
8321 // Raw moves between float and general registers using stack.
8322 
8323 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8324   match(Set dst (MoveF2I src));
8325   effect(DEF dst, USE src);
8326   ins_cost(MEMORY_REF_COST);
8327 
8328   size(4);
8329   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8330   opcode(Assembler::lduw_op3);
8331   ins_encode(simple_form3_mem_reg( src, dst ) );
8332   ins_pipe(iload_mem);
8333 %}
8334 
8335 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8336   match(Set dst (MoveI2F src));
8337   effect(DEF dst, USE src);
8338   ins_cost(MEMORY_REF_COST);
8339 
8340   size(4);
8341   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8342   opcode(Assembler::ldf_op3);
8343   ins_encode(simple_form3_mem_reg(src, dst));
8344   ins_pipe(floadF_stk);
8345 %}
8346 
8347 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8348   match(Set dst (MoveD2L src));
8349   effect(DEF dst, USE src);
8350   ins_cost(MEMORY_REF_COST);
8351 
8352   size(4);
8353   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8354   opcode(Assembler::ldx_op3);
8355   ins_encode(simple_form3_mem_reg( src, dst ) );
8356   ins_pipe(iload_mem);
8357 %}
8358 
8359 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8360   match(Set dst (MoveL2D src));
8361   effect(DEF dst, USE src);
8362   ins_cost(MEMORY_REF_COST);
8363 
8364   size(4);
8365   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8366   opcode(Assembler::lddf_op3);
8367   ins_encode(simple_form3_mem_reg(src, dst));
8368   ins_pipe(floadD_stk);
8369 %}
8370 
8371 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8372   match(Set dst (MoveF2I src));
8373   effect(DEF dst, USE src);
8374   ins_cost(MEMORY_REF_COST);
8375 
8376   size(4);
8377   format %{ "STF   $src,$dst\t! MoveF2I" %}
8378   opcode(Assembler::stf_op3);
8379   ins_encode(simple_form3_mem_reg(dst, src));
8380   ins_pipe(fstoreF_stk_reg);
8381 %}
8382 
8383 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8384   match(Set dst (MoveI2F src));
8385   effect(DEF dst, USE src);
8386   ins_cost(MEMORY_REF_COST);
8387 
8388   size(4);
8389   format %{ "STW    $src,$dst\t! MoveI2F" %}
8390   opcode(Assembler::stw_op3);
8391   ins_encode(simple_form3_mem_reg( dst, src ) );
8392   ins_pipe(istore_mem_reg);
8393 %}
8394 
8395 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8396   match(Set dst (MoveD2L src));
8397   effect(DEF dst, USE src);
8398   ins_cost(MEMORY_REF_COST);
8399 
8400   size(4);
8401   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8402   opcode(Assembler::stdf_op3);
8403   ins_encode(simple_form3_mem_reg(dst, src));
8404   ins_pipe(fstoreD_stk_reg);
8405 %}
8406 
8407 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8408   match(Set dst (MoveL2D src));
8409   effect(DEF dst, USE src);
8410   ins_cost(MEMORY_REF_COST);
8411 
8412   size(4);
8413   format %{ "STX    $src,$dst\t! MoveL2D" %}
8414   opcode(Assembler::stx_op3);
8415   ins_encode(simple_form3_mem_reg( dst, src ) );
8416   ins_pipe(istore_mem_reg);
8417 %}
8418 
8419 
8420 //----------Arithmetic Conversion Instructions---------------------------------
8421 // The conversions operations are all Alpha sorted.  Please keep it that way!
8422 
8423 instruct convD2F_reg(regF dst, regD src) %{
8424   match(Set dst (ConvD2F src));
8425   size(4);
8426   format %{ "FDTOS  $src,$dst" %}
8427   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8428   ins_encode(form3_opf_rs2D_rdF(src, dst));
8429   ins_pipe(fcvtD2F);
8430 %}
8431 
8432 
8433 // Convert a double to an int in a float register.
8434 // If the double is a NAN, stuff a zero in instead.
8435 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8436   effect(DEF dst, USE src, KILL fcc0);
8437   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8438             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8439             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8440             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8441             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8442       "skip:" %}
8443   ins_encode(form_d2i_helper(src,dst));
8444   ins_pipe(fcvtD2I);
8445 %}
8446 
8447 instruct convD2I_stk(stackSlotI dst, regD src) %{
8448   match(Set dst (ConvD2I src));
8449   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8450   expand %{
8451     regF tmp;
8452     convD2I_helper(tmp, src);
8453     regF_to_stkI(dst, tmp);
8454   %}
8455 %}
8456 
8457 instruct convD2I_reg(iRegI dst, regD src) %{
8458   predicate(UseVIS >= 3);
8459   match(Set dst (ConvD2I src));
8460   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8461   expand %{
8462     regF tmp;
8463     convD2I_helper(tmp, src);
8464     MoveF2I_reg_reg(dst, tmp);
8465   %}
8466 %}
8467 
8468 
8469 // Convert a double to a long in a double register.
8470 // If the double is a NAN, stuff a zero in instead.
8471 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8472   effect(DEF dst, USE src, KILL fcc0);
8473   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8474             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8475             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8476             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8477             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8478       "skip:" %}
8479   ins_encode(form_d2l_helper(src,dst));
8480   ins_pipe(fcvtD2L);
8481 %}
8482 
8483 instruct convD2L_stk(stackSlotL dst, regD src) %{
8484   match(Set dst (ConvD2L src));
8485   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8486   expand %{
8487     regD tmp;
8488     convD2L_helper(tmp, src);
8489     regD_to_stkL(dst, tmp);
8490   %}
8491 %}
8492 
8493 instruct convD2L_reg(iRegL dst, regD src) %{
8494   predicate(UseVIS >= 3);
8495   match(Set dst (ConvD2L src));
8496   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8497   expand %{
8498     regD tmp;
8499     convD2L_helper(tmp, src);
8500     MoveD2L_reg_reg(dst, tmp);
8501   %}
8502 %}
8503 
8504 
8505 instruct convF2D_reg(regD dst, regF src) %{
8506   match(Set dst (ConvF2D src));
8507   format %{ "FSTOD  $src,$dst" %}
8508   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8509   ins_encode(form3_opf_rs2F_rdD(src, dst));
8510   ins_pipe(fcvtF2D);
8511 %}
8512 
8513 
8514 // Convert a float to an int in a float register.
8515 // If the float is a NAN, stuff a zero in instead.
8516 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8517   effect(DEF dst, USE src, KILL fcc0);
8518   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8519             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8520             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8521             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8522             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8523       "skip:" %}
8524   ins_encode(form_f2i_helper(src,dst));
8525   ins_pipe(fcvtF2I);
8526 %}
8527 
8528 instruct convF2I_stk(stackSlotI dst, regF src) %{
8529   match(Set dst (ConvF2I src));
8530   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8531   expand %{
8532     regF tmp;
8533     convF2I_helper(tmp, src);
8534     regF_to_stkI(dst, tmp);
8535   %}
8536 %}
8537 
8538 instruct convF2I_reg(iRegI dst, regF src) %{
8539   predicate(UseVIS >= 3);
8540   match(Set dst (ConvF2I src));
8541   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8542   expand %{
8543     regF tmp;
8544     convF2I_helper(tmp, src);
8545     MoveF2I_reg_reg(dst, tmp);
8546   %}
8547 %}
8548 
8549 
8550 // Convert a float to a long in a float register.
8551 // If the float is a NAN, stuff a zero in instead.
8552 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8553   effect(DEF dst, USE src, KILL fcc0);
8554   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8555             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8556             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8557             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8558             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8559       "skip:" %}
8560   ins_encode(form_f2l_helper(src,dst));
8561   ins_pipe(fcvtF2L);
8562 %}
8563 
8564 instruct convF2L_stk(stackSlotL dst, regF src) %{
8565   match(Set dst (ConvF2L src));
8566   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8567   expand %{
8568     regD tmp;
8569     convF2L_helper(tmp, src);
8570     regD_to_stkL(dst, tmp);
8571   %}
8572 %}
8573 
8574 instruct convF2L_reg(iRegL dst, regF src) %{
8575   predicate(UseVIS >= 3);
8576   match(Set dst (ConvF2L src));
8577   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8578   expand %{
8579     regD tmp;
8580     convF2L_helper(tmp, src);
8581     MoveD2L_reg_reg(dst, tmp);
8582   %}
8583 %}
8584 
8585 
8586 instruct convI2D_helper(regD dst, regF tmp) %{
8587   effect(USE tmp, DEF dst);
8588   format %{ "FITOD  $tmp,$dst" %}
8589   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8590   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8591   ins_pipe(fcvtI2D);
8592 %}
8593 
8594 instruct convI2D_stk(stackSlotI src, regD dst) %{
8595   match(Set dst (ConvI2D src));
8596   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8597   expand %{
8598     regF tmp;
8599     stkI_to_regF(tmp, src);
8600     convI2D_helper(dst, tmp);
8601   %}
8602 %}
8603 
8604 instruct convI2D_reg(regD_low dst, iRegI src) %{
8605   predicate(UseVIS >= 3);
8606   match(Set dst (ConvI2D src));
8607   expand %{
8608     regF tmp;
8609     MoveI2F_reg_reg(tmp, src);
8610     convI2D_helper(dst, tmp);
8611   %}
8612 %}
8613 
8614 instruct convI2D_mem(regD_low dst, memory mem) %{
8615   match(Set dst (ConvI2D (LoadI mem)));
8616   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8617   size(8);
8618   format %{ "LDF    $mem,$dst\n\t"
8619             "FITOD  $dst,$dst" %}
8620   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8621   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8622   ins_pipe(floadF_mem);
8623 %}
8624 
8625 
8626 instruct convI2F_helper(regF dst, regF tmp) %{
8627   effect(DEF dst, USE tmp);
8628   format %{ "FITOS  $tmp,$dst" %}
8629   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8630   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8631   ins_pipe(fcvtI2F);
8632 %}
8633 
8634 instruct convI2F_stk(regF dst, stackSlotI src) %{
8635   match(Set dst (ConvI2F src));
8636   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8637   expand %{
8638     regF tmp;
8639     stkI_to_regF(tmp,src);
8640     convI2F_helper(dst, tmp);
8641   %}
8642 %}
8643 
8644 instruct convI2F_reg(regF dst, iRegI src) %{
8645   predicate(UseVIS >= 3);
8646   match(Set dst (ConvI2F src));
8647   ins_cost(DEFAULT_COST);
8648   expand %{
8649     regF tmp;
8650     MoveI2F_reg_reg(tmp, src);
8651     convI2F_helper(dst, tmp);
8652   %}
8653 %}
8654 
8655 instruct convI2F_mem( regF dst, memory mem ) %{
8656   match(Set dst (ConvI2F (LoadI mem)));
8657   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8658   size(8);
8659   format %{ "LDF    $mem,$dst\n\t"
8660             "FITOS  $dst,$dst" %}
8661   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8662   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8663   ins_pipe(floadF_mem);
8664 %}
8665 
8666 
8667 instruct convI2L_reg(iRegL dst, iRegI src) %{
8668   match(Set dst (ConvI2L src));
8669   size(4);
8670   format %{ "SRA    $src,0,$dst\t! int->long" %}
8671   opcode(Assembler::sra_op3, Assembler::arith_op);
8672   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8673   ins_pipe(ialu_reg_reg);
8674 %}
8675 
8676 // Zero-extend convert int to long
8677 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8678   match(Set dst (AndL (ConvI2L src) mask) );
8679   size(4);
8680   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8681   opcode(Assembler::srl_op3, Assembler::arith_op);
8682   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8683   ins_pipe(ialu_reg_reg);
8684 %}
8685 
8686 // Zero-extend long
8687 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8688   match(Set dst (AndL src mask) );
8689   size(4);
8690   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8691   opcode(Assembler::srl_op3, Assembler::arith_op);
8692   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8693   ins_pipe(ialu_reg_reg);
8694 %}
8695 
8696 
8697 //-----------
8698 // Long to Double conversion using V8 opcodes.
8699 // Still useful because cheetah traps and becomes
8700 // amazingly slow for some common numbers.
8701 
8702 // Magic constant, 0x43300000
8703 instruct loadConI_x43300000(iRegI dst) %{
8704   effect(DEF dst);
8705   size(4);
8706   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8707   ins_encode(SetHi22(0x43300000, dst));
8708   ins_pipe(ialu_none);
8709 %}
8710 
8711 // Magic constant, 0x41f00000
8712 instruct loadConI_x41f00000(iRegI dst) %{
8713   effect(DEF dst);
8714   size(4);
8715   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8716   ins_encode(SetHi22(0x41f00000, dst));
8717   ins_pipe(ialu_none);
8718 %}
8719 
8720 // Construct a double from two float halves
8721 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8722   effect(DEF dst, USE src1, USE src2);
8723   size(8);
8724   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8725             "FMOVS  $src2.lo,$dst.lo" %}
8726   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8727   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8728   ins_pipe(faddD_reg_reg);
8729 %}
8730 
8731 // Convert integer in high half of a double register (in the lower half of
8732 // the double register file) to double
8733 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8734   effect(DEF dst, USE src);
8735   size(4);
8736   format %{ "FITOD  $src,$dst" %}
8737   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8738   ins_encode(form3_opf_rs2D_rdD(src, dst));
8739   ins_pipe(fcvtLHi2D);
8740 %}
8741 
8742 // Add float double precision
8743 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8744   effect(DEF dst, USE src1, USE src2);
8745   size(4);
8746   format %{ "FADDD  $src1,$src2,$dst" %}
8747   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8748   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8749   ins_pipe(faddD_reg_reg);
8750 %}
8751 
8752 // Sub float double precision
8753 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8754   effect(DEF dst, USE src1, USE src2);
8755   size(4);
8756   format %{ "FSUBD  $src1,$src2,$dst" %}
8757   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8758   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8759   ins_pipe(faddD_reg_reg);
8760 %}
8761 
8762 // Mul float double precision
8763 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8764   effect(DEF dst, USE src1, USE src2);
8765   size(4);
8766   format %{ "FMULD  $src1,$src2,$dst" %}
8767   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8768   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8769   ins_pipe(fmulD_reg_reg);
8770 %}
8771 
8772 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8773   match(Set dst (ConvL2D src));
8774   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8775 
8776   expand %{
8777     regD_low   tmpsrc;
8778     iRegI      ix43300000;
8779     iRegI      ix41f00000;
8780     stackSlotL lx43300000;
8781     stackSlotL lx41f00000;
8782     regD_low   dx43300000;
8783     regD       dx41f00000;
8784     regD       tmp1;
8785     regD_low   tmp2;
8786     regD       tmp3;
8787     regD       tmp4;
8788 
8789     stkL_to_regD(tmpsrc, src);
8790 
8791     loadConI_x43300000(ix43300000);
8792     loadConI_x41f00000(ix41f00000);
8793     regI_to_stkLHi(lx43300000, ix43300000);
8794     regI_to_stkLHi(lx41f00000, ix41f00000);
8795     stkL_to_regD(dx43300000, lx43300000);
8796     stkL_to_regD(dx41f00000, lx41f00000);
8797 
8798     convI2D_regDHi_regD(tmp1, tmpsrc);
8799     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8800     subD_regD_regD(tmp3, tmp2, dx43300000);
8801     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8802     addD_regD_regD(dst, tmp3, tmp4);
8803   %}
8804 %}
8805 
8806 // Long to Double conversion using fast fxtof
8807 instruct convL2D_helper(regD dst, regD tmp) %{
8808   effect(DEF dst, USE tmp);
8809   size(4);
8810   format %{ "FXTOD  $tmp,$dst" %}
8811   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8812   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8813   ins_pipe(fcvtL2D);
8814 %}
8815 
8816 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8817   predicate(VM_Version::has_fast_fxtof());
8818   match(Set dst (ConvL2D src));
8819   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8820   expand %{
8821     regD tmp;
8822     stkL_to_regD(tmp, src);
8823     convL2D_helper(dst, tmp);
8824   %}
8825 %}
8826 
8827 instruct convL2D_reg(regD dst, iRegL src) %{
8828   predicate(UseVIS >= 3);
8829   match(Set dst (ConvL2D src));
8830   expand %{
8831     regD tmp;
8832     MoveL2D_reg_reg(tmp, src);
8833     convL2D_helper(dst, tmp);
8834   %}
8835 %}
8836 
8837 // Long to Float conversion using fast fxtof
8838 instruct convL2F_helper(regF dst, regD tmp) %{
8839   effect(DEF dst, USE tmp);
8840   size(4);
8841   format %{ "FXTOS  $tmp,$dst" %}
8842   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8843   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8844   ins_pipe(fcvtL2F);
8845 %}
8846 
8847 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8848   match(Set dst (ConvL2F src));
8849   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8850   expand %{
8851     regD tmp;
8852     stkL_to_regD(tmp, src);
8853     convL2F_helper(dst, tmp);
8854   %}
8855 %}
8856 
8857 instruct convL2F_reg(regF dst, iRegL src) %{
8858   predicate(UseVIS >= 3);
8859   match(Set dst (ConvL2F src));
8860   ins_cost(DEFAULT_COST);
8861   expand %{
8862     regD tmp;
8863     MoveL2D_reg_reg(tmp, src);
8864     convL2F_helper(dst, tmp);
8865   %}
8866 %}
8867 
8868 //-----------
8869 
8870 instruct convL2I_reg(iRegI dst, iRegL src) %{
8871   match(Set dst (ConvL2I src));
8872 #ifndef _LP64
8873   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8874   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8875   ins_pipe(ialu_move_reg_I_to_L);
8876 #else
8877   size(4);
8878   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8879   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8880   ins_pipe(ialu_reg);
8881 #endif
8882 %}
8883 
8884 // Register Shift Right Immediate
8885 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8886   match(Set dst (ConvL2I (RShiftL src cnt)));
8887 
8888   size(4);
8889   format %{ "SRAX   $src,$cnt,$dst" %}
8890   opcode(Assembler::srax_op3, Assembler::arith_op);
8891   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8892   ins_pipe(ialu_reg_imm);
8893 %}
8894 
8895 // Replicate scalar to packed byte values in Double register
8896 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8897   effect(DEF dst, USE src);
8898   format %{ "SLLX  $src,56,$dst\n\t"
8899             "SRLX  $dst, 8,O7\n\t"
8900             "OR    $dst,O7,$dst\n\t"
8901             "SRLX  $dst,16,O7\n\t"
8902             "OR    $dst,O7,$dst\n\t"
8903             "SRLX  $dst,32,O7\n\t"
8904             "OR    $dst,O7,$dst\t! replicate8B" %}
8905   ins_encode( enc_repl8b(src, dst));
8906   ins_pipe(ialu_reg);
8907 %}
8908 
8909 // Replicate scalar to packed byte values in Double register
8910 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8911   match(Set dst (Replicate8B src));
8912   expand %{
8913     iRegL tmp;
8914     Repl8B_reg_helper(tmp, src);
8915     regL_to_stkD(dst, tmp);
8916   %}
8917 %}
8918 
8919 // Replicate scalar constant to packed byte values in Double register
8920 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
8921   match(Set dst (Replicate8B con));
8922   effect(KILL tmp);
8923   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
8924   ins_encode %{
8925     // XXX This is a quick fix for 6833573.
8926     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
8927     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
8928     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8929   %}
8930   ins_pipe(loadConFD);
8931 %}
8932 
8933 // Replicate scalar to packed char values into stack slot
8934 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8935   effect(DEF dst, USE src);
8936   format %{ "SLLX  $src,48,$dst\n\t"
8937             "SRLX  $dst,16,O7\n\t"
8938             "OR    $dst,O7,$dst\n\t"
8939             "SRLX  $dst,32,O7\n\t"
8940             "OR    $dst,O7,$dst\t! replicate4C" %}
8941   ins_encode( enc_repl4s(src, dst) );
8942   ins_pipe(ialu_reg);
8943 %}
8944 
8945 // Replicate scalar to packed char values into stack slot
8946 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8947   match(Set dst (Replicate4C src));
8948   expand %{
8949     iRegL tmp;
8950     Repl4C_reg_helper(tmp, src);
8951     regL_to_stkD(dst, tmp);
8952   %}
8953 %}
8954 
8955 // Replicate scalar constant to packed char values in Double register
8956 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
8957   match(Set dst (Replicate4C con));
8958   effect(KILL tmp);
8959   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
8960   ins_encode %{
8961     // XXX This is a quick fix for 6833573.
8962     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8963     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8964     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8965   %}
8966   ins_pipe(loadConFD);
8967 %}
8968 
8969 // Replicate scalar to packed short values into stack slot
8970 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8971   effect(DEF dst, USE src);
8972   format %{ "SLLX  $src,48,$dst\n\t"
8973             "SRLX  $dst,16,O7\n\t"
8974             "OR    $dst,O7,$dst\n\t"
8975             "SRLX  $dst,32,O7\n\t"
8976             "OR    $dst,O7,$dst\t! replicate4S" %}
8977   ins_encode( enc_repl4s(src, dst) );
8978   ins_pipe(ialu_reg);
8979 %}
8980 
8981 // Replicate scalar to packed short values into stack slot
8982 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8983   match(Set dst (Replicate4S src));
8984   expand %{
8985     iRegL tmp;
8986     Repl4S_reg_helper(tmp, src);
8987     regL_to_stkD(dst, tmp);
8988   %}
8989 %}
8990 
8991 // Replicate scalar constant to packed short values in Double register
8992 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
8993   match(Set dst (Replicate4S con));
8994   effect(KILL tmp);
8995   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
8996   ins_encode %{
8997     // XXX This is a quick fix for 6833573.
8998     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8999     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
9000     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
9001   %}
9002   ins_pipe(loadConFD);
9003 %}
9004 
9005 // Replicate scalar to packed int values in Double register
9006 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
9007   effect(DEF dst, USE src);
9008   format %{ "SLLX  $src,32,$dst\n\t"
9009             "SRLX  $dst,32,O7\n\t"
9010             "OR    $dst,O7,$dst\t! replicate2I" %}
9011   ins_encode( enc_repl2i(src, dst));
9012   ins_pipe(ialu_reg);
9013 %}
9014 
9015 // Replicate scalar to packed int values in Double register
9016 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
9017   match(Set dst (Replicate2I src));
9018   expand %{
9019     iRegL tmp;
9020     Repl2I_reg_helper(tmp, src);
9021     regL_to_stkD(dst, tmp);
9022   %}
9023 %}
9024 
9025 // Replicate scalar zero constant to packed int values in Double register
9026 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
9027   match(Set dst (Replicate2I con));
9028   effect(KILL tmp);
9029   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
9030   ins_encode %{
9031     // XXX This is a quick fix for 6833573.
9032     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
9033     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
9034     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
9035   %}
9036   ins_pipe(loadConFD);
9037 %}
9038 
9039 //----------Control Flow Instructions------------------------------------------
9040 // Compare Instructions
9041 // Compare Integers
9042 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
9043   match(Set icc (CmpI op1 op2));
9044   effect( DEF icc, USE op1, USE op2 );
9045 
9046   size(4);
9047   format %{ "CMP    $op1,$op2" %}
9048   opcode(Assembler::subcc_op3, Assembler::arith_op);
9049   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9050   ins_pipe(ialu_cconly_reg_reg);
9051 %}
9052 
9053 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
9054   match(Set icc (CmpU op1 op2));
9055 
9056   size(4);
9057   format %{ "CMP    $op1,$op2\t! unsigned" %}
9058   opcode(Assembler::subcc_op3, Assembler::arith_op);
9059   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9060   ins_pipe(ialu_cconly_reg_reg);
9061 %}
9062 
9063 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
9064   match(Set icc (CmpI op1 op2));
9065   effect( DEF icc, USE op1 );
9066 
9067   size(4);
9068   format %{ "CMP    $op1,$op2" %}
9069   opcode(Assembler::subcc_op3, Assembler::arith_op);
9070   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9071   ins_pipe(ialu_cconly_reg_imm);
9072 %}
9073 
9074 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
9075   match(Set icc (CmpI (AndI op1 op2) zero));
9076 
9077   size(4);
9078   format %{ "BTST   $op2,$op1" %}
9079   opcode(Assembler::andcc_op3, Assembler::arith_op);
9080   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9081   ins_pipe(ialu_cconly_reg_reg_zero);
9082 %}
9083 
9084 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
9085   match(Set icc (CmpI (AndI op1 op2) zero));
9086 
9087   size(4);
9088   format %{ "BTST   $op2,$op1" %}
9089   opcode(Assembler::andcc_op3, Assembler::arith_op);
9090   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9091   ins_pipe(ialu_cconly_reg_imm_zero);
9092 %}
9093 
9094 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
9095   match(Set xcc (CmpL op1 op2));
9096   effect( DEF xcc, USE op1, USE op2 );
9097 
9098   size(4);
9099   format %{ "CMP    $op1,$op2\t\t! long" %}
9100   opcode(Assembler::subcc_op3, Assembler::arith_op);
9101   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9102   ins_pipe(ialu_cconly_reg_reg);
9103 %}
9104 
9105 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
9106   match(Set xcc (CmpL op1 con));
9107   effect( DEF xcc, USE op1, USE con );
9108 
9109   size(4);
9110   format %{ "CMP    $op1,$con\t\t! long" %}
9111   opcode(Assembler::subcc_op3, Assembler::arith_op);
9112   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9113   ins_pipe(ialu_cconly_reg_reg);
9114 %}
9115 
9116 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
9117   match(Set xcc (CmpL (AndL op1 op2) zero));
9118   effect( DEF xcc, USE op1, USE op2 );
9119 
9120   size(4);
9121   format %{ "BTST   $op1,$op2\t\t! long" %}
9122   opcode(Assembler::andcc_op3, Assembler::arith_op);
9123   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9124   ins_pipe(ialu_cconly_reg_reg);
9125 %}
9126 
9127 // useful for checking the alignment of a pointer:
9128 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
9129   match(Set xcc (CmpL (AndL op1 con) zero));
9130   effect( DEF xcc, USE op1, USE con );
9131 
9132   size(4);
9133   format %{ "BTST   $op1,$con\t\t! long" %}
9134   opcode(Assembler::andcc_op3, Assembler::arith_op);
9135   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9136   ins_pipe(ialu_cconly_reg_reg);
9137 %}
9138 
9139 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
9140   match(Set icc (CmpU op1 op2));
9141 
9142   size(4);
9143   format %{ "CMP    $op1,$op2\t! unsigned" %}
9144   opcode(Assembler::subcc_op3, Assembler::arith_op);
9145   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9146   ins_pipe(ialu_cconly_reg_imm);
9147 %}
9148 
9149 // Compare Pointers
9150 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
9151   match(Set pcc (CmpP op1 op2));
9152 
9153   size(4);
9154   format %{ "CMP    $op1,$op2\t! ptr" %}
9155   opcode(Assembler::subcc_op3, Assembler::arith_op);
9156   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9157   ins_pipe(ialu_cconly_reg_reg);
9158 %}
9159 
9160 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9161   match(Set pcc (CmpP op1 op2));
9162 
9163   size(4);
9164   format %{ "CMP    $op1,$op2\t! ptr" %}
9165   opcode(Assembler::subcc_op3, Assembler::arith_op);
9166   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9167   ins_pipe(ialu_cconly_reg_imm);
9168 %}
9169 
9170 // Compare Narrow oops
9171 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9172   match(Set icc (CmpN op1 op2));
9173 
9174   size(4);
9175   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9176   opcode(Assembler::subcc_op3, Assembler::arith_op);
9177   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9178   ins_pipe(ialu_cconly_reg_reg);
9179 %}
9180 
9181 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9182   match(Set icc (CmpN op1 op2));
9183 
9184   size(4);
9185   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9186   opcode(Assembler::subcc_op3, Assembler::arith_op);
9187   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9188   ins_pipe(ialu_cconly_reg_imm);
9189 %}
9190 
9191 //----------Max and Min--------------------------------------------------------
9192 // Min Instructions
9193 // Conditional move for min
9194 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9195   effect( USE_DEF op2, USE op1, USE icc );
9196 
9197   size(4);
9198   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9199   opcode(Assembler::less);
9200   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9201   ins_pipe(ialu_reg_flags);
9202 %}
9203 
9204 // Min Register with Register.
9205 instruct minI_eReg(iRegI op1, iRegI op2) %{
9206   match(Set op2 (MinI op1 op2));
9207   ins_cost(DEFAULT_COST*2);
9208   expand %{
9209     flagsReg icc;
9210     compI_iReg(icc,op1,op2);
9211     cmovI_reg_lt(op2,op1,icc);
9212   %}
9213 %}
9214 
9215 // Max Instructions
9216 // Conditional move for max
9217 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9218   effect( USE_DEF op2, USE op1, USE icc );
9219   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9220   opcode(Assembler::greater);
9221   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9222   ins_pipe(ialu_reg_flags);
9223 %}
9224 
9225 // Max Register with Register
9226 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9227   match(Set op2 (MaxI op1 op2));
9228   ins_cost(DEFAULT_COST*2);
9229   expand %{
9230     flagsReg icc;
9231     compI_iReg(icc,op1,op2);
9232     cmovI_reg_gt(op2,op1,icc);
9233   %}
9234 %}
9235 
9236 
9237 //----------Float Compares----------------------------------------------------
9238 // Compare floating, generate condition code
9239 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9240   match(Set fcc (CmpF src1 src2));
9241 
9242   size(4);
9243   format %{ "FCMPs  $fcc,$src1,$src2" %}
9244   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9245   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9246   ins_pipe(faddF_fcc_reg_reg_zero);
9247 %}
9248 
9249 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9250   match(Set fcc (CmpD src1 src2));
9251 
9252   size(4);
9253   format %{ "FCMPd  $fcc,$src1,$src2" %}
9254   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9255   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9256   ins_pipe(faddD_fcc_reg_reg_zero);
9257 %}
9258 
9259 
9260 // Compare floating, generate -1,0,1
9261 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9262   match(Set dst (CmpF3 src1 src2));
9263   effect(KILL fcc0);
9264   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9265   format %{ "fcmpl  $dst,$src1,$src2" %}
9266   // Primary = float
9267   opcode( true );
9268   ins_encode( floating_cmp( dst, src1, src2 ) );
9269   ins_pipe( floating_cmp );
9270 %}
9271 
9272 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9273   match(Set dst (CmpD3 src1 src2));
9274   effect(KILL fcc0);
9275   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9276   format %{ "dcmpl  $dst,$src1,$src2" %}
9277   // Primary = double (not float)
9278   opcode( false );
9279   ins_encode( floating_cmp( dst, src1, src2 ) );
9280   ins_pipe( floating_cmp );
9281 %}
9282 
9283 //----------Branches---------------------------------------------------------
9284 // Jump
9285 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9286 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9287   match(Jump switch_val);
9288   effect(TEMP table);
9289 
9290   ins_cost(350);
9291 
9292   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9293              "LD     [O7 + $switch_val], O7\n\t"
9294              "JUMP   O7" %}
9295   ins_encode %{
9296     // Calculate table address into a register.
9297     Register table_reg;
9298     Register label_reg = O7;
9299     // If we are calculating the size of this instruction don't trust
9300     // zero offsets because they might change when
9301     // MachConstantBaseNode decides to optimize the constant table
9302     // base.
9303     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9304       table_reg = $constanttablebase;
9305     } else {
9306       table_reg = O7;
9307       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9308       __ add($constanttablebase, con_offset, table_reg);
9309     }
9310 
9311     // Jump to base address + switch value
9312     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9313     __ jmp(label_reg, G0);
9314     __ delayed()->nop();
9315   %}
9316   ins_pipe(ialu_reg_reg);
9317 %}
9318 
9319 // Direct Branch.  Use V8 version with longer range.
9320 instruct branch(label labl) %{
9321   match(Goto);
9322   effect(USE labl);
9323 
9324   size(8);
9325   ins_cost(BRANCH_COST);
9326   format %{ "BA     $labl" %}
9327   ins_encode %{
9328     Label* L = $labl$$label;
9329     __ ba(*L);
9330     __ delayed()->nop();
9331   %}
9332   ins_pipe(br);
9333 %}
9334 
9335 // Direct Branch, short with no delay slot
9336 instruct branch_short(label labl) %{
9337   match(Goto);
9338   predicate(UseCBCond);
9339   effect(USE labl);
9340 
9341   size(4);
9342   ins_cost(BRANCH_COST);
9343   format %{ "BA     $labl\t! short branch" %}
9344   ins_encode %{ 
9345     Label* L = $labl$$label;
9346     assert(__ use_cbcond(*L), "back to back cbcond");
9347     __ ba_short(*L);
9348   %}
9349   ins_short_branch(1);
9350   ins_avoid_back_to_back(1);
9351   ins_pipe(cbcond_reg_imm);
9352 %}
9353 
9354 // Conditional Direct Branch
9355 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9356   match(If cmp icc);
9357   effect(USE labl);
9358 
9359   size(8);
9360   ins_cost(BRANCH_COST);
9361   format %{ "BP$cmp   $icc,$labl" %}
9362   // Prim = bits 24-22, Secnd = bits 31-30
9363   ins_encode( enc_bp( labl, cmp, icc ) );
9364   ins_pipe(br_cc);
9365 %}
9366 
9367 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9368   match(If cmp icc);
9369   effect(USE labl);
9370 
9371   ins_cost(BRANCH_COST);
9372   format %{ "BP$cmp  $icc,$labl" %}
9373   // Prim = bits 24-22, Secnd = bits 31-30
9374   ins_encode( enc_bp( labl, cmp, icc ) );
9375   ins_pipe(br_cc);
9376 %}
9377 
9378 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9379   match(If cmp pcc);
9380   effect(USE labl);
9381 
9382   size(8);
9383   ins_cost(BRANCH_COST);
9384   format %{ "BP$cmp  $pcc,$labl" %}
9385   ins_encode %{
9386     Label* L = $labl$$label;
9387     Assembler::Predict predict_taken =
9388       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9389 
9390     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9391     __ delayed()->nop();
9392   %}
9393   ins_pipe(br_cc);
9394 %}
9395 
9396 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9397   match(If cmp fcc);
9398   effect(USE labl);
9399 
9400   size(8);
9401   ins_cost(BRANCH_COST);
9402   format %{ "FBP$cmp $fcc,$labl" %}
9403   ins_encode %{
9404     Label* L = $labl$$label;
9405     Assembler::Predict predict_taken =
9406       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9407 
9408     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9409     __ delayed()->nop();
9410   %}
9411   ins_pipe(br_fcc);
9412 %}
9413 
9414 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9415   match(CountedLoopEnd cmp icc);
9416   effect(USE labl);
9417 
9418   size(8);
9419   ins_cost(BRANCH_COST);
9420   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9421   // Prim = bits 24-22, Secnd = bits 31-30
9422   ins_encode( enc_bp( labl, cmp, icc ) );
9423   ins_pipe(br_cc);
9424 %}
9425 
9426 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9427   match(CountedLoopEnd cmp icc);
9428   effect(USE labl);
9429 
9430   size(8);
9431   ins_cost(BRANCH_COST);
9432   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9433   // Prim = bits 24-22, Secnd = bits 31-30
9434   ins_encode( enc_bp( labl, cmp, icc ) );
9435   ins_pipe(br_cc);
9436 %}
9437 
9438 // Compare and branch instructions
9439 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9440   match(If cmp (CmpI op1 op2));
9441   effect(USE labl, KILL icc);
9442 
9443   size(12);
9444   ins_cost(BRANCH_COST);
9445   format %{ "CMP    $op1,$op2\t! int\n\t"
9446             "BP$cmp   $labl" %}
9447   ins_encode %{
9448     Label* L = $labl$$label;
9449     Assembler::Predict predict_taken =
9450       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9451     __ cmp($op1$$Register, $op2$$Register);
9452     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9453     __ delayed()->nop();
9454   %}
9455   ins_pipe(cmp_br_reg_reg);
9456 %}
9457 
9458 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9459   match(If cmp (CmpI op1 op2));
9460   effect(USE labl, KILL icc);
9461 
9462   size(12);
9463   ins_cost(BRANCH_COST);
9464   format %{ "CMP    $op1,$op2\t! int\n\t"
9465             "BP$cmp   $labl" %}
9466   ins_encode %{
9467     Label* L = $labl$$label;
9468     Assembler::Predict predict_taken =
9469       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9470     __ cmp($op1$$Register, $op2$$constant);
9471     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9472     __ delayed()->nop();
9473   %}
9474   ins_pipe(cmp_br_reg_imm);
9475 %}
9476 
9477 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9478   match(If cmp (CmpU op1 op2));
9479   effect(USE labl, KILL icc);
9480 
9481   size(12);
9482   ins_cost(BRANCH_COST);
9483   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9484             "BP$cmp  $labl" %}
9485   ins_encode %{
9486     Label* L = $labl$$label;
9487     Assembler::Predict predict_taken =
9488       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9489     __ cmp($op1$$Register, $op2$$Register);
9490     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9491     __ delayed()->nop();
9492   %}
9493   ins_pipe(cmp_br_reg_reg);
9494 %}
9495 
9496 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9497   match(If cmp (CmpU op1 op2));
9498   effect(USE labl, KILL icc);
9499 
9500   size(12);
9501   ins_cost(BRANCH_COST);
9502   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9503             "BP$cmp  $labl" %}
9504   ins_encode %{
9505     Label* L = $labl$$label;
9506     Assembler::Predict predict_taken =
9507       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9508     __ cmp($op1$$Register, $op2$$constant);
9509     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9510     __ delayed()->nop();
9511   %}
9512   ins_pipe(cmp_br_reg_imm);
9513 %}
9514 
9515 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9516   match(If cmp (CmpL op1 op2));
9517   effect(USE labl, KILL xcc);
9518 
9519   size(12);
9520   ins_cost(BRANCH_COST);
9521   format %{ "CMP    $op1,$op2\t! long\n\t"
9522             "BP$cmp   $labl" %}
9523   ins_encode %{
9524     Label* L = $labl$$label;
9525     Assembler::Predict predict_taken =
9526       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9527     __ cmp($op1$$Register, $op2$$Register);
9528     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9529     __ delayed()->nop();
9530   %}
9531   ins_pipe(cmp_br_reg_reg);
9532 %}
9533 
9534 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9535   match(If cmp (CmpL op1 op2));
9536   effect(USE labl, KILL xcc);
9537 
9538   size(12);
9539   ins_cost(BRANCH_COST);
9540   format %{ "CMP    $op1,$op2\t! long\n\t"
9541             "BP$cmp   $labl" %}
9542   ins_encode %{
9543     Label* L = $labl$$label;
9544     Assembler::Predict predict_taken =
9545       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9546     __ cmp($op1$$Register, $op2$$constant);
9547     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9548     __ delayed()->nop();
9549   %}
9550   ins_pipe(cmp_br_reg_imm);
9551 %}
9552 
9553 // Compare Pointers and branch
9554 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9555   match(If cmp (CmpP op1 op2));
9556   effect(USE labl, KILL pcc);
9557 
9558   size(12);
9559   ins_cost(BRANCH_COST);
9560   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9561             "B$cmp   $labl" %}
9562   ins_encode %{
9563     Label* L = $labl$$label;
9564     Assembler::Predict predict_taken =
9565       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9566     __ cmp($op1$$Register, $op2$$Register);
9567     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9568     __ delayed()->nop();
9569   %}
9570   ins_pipe(cmp_br_reg_reg);
9571 %}
9572 
9573 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9574   match(If cmp (CmpP op1 null));
9575   effect(USE labl, KILL pcc);
9576 
9577   size(12);
9578   ins_cost(BRANCH_COST);
9579   format %{ "CMP    $op1,0\t! ptr\n\t"
9580             "B$cmp   $labl" %}
9581   ins_encode %{
9582     Label* L = $labl$$label;
9583     Assembler::Predict predict_taken =
9584       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9585     __ cmp($op1$$Register, G0);
9586     // bpr() is not used here since it has shorter distance.
9587     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9588     __ delayed()->nop();
9589   %}
9590   ins_pipe(cmp_br_reg_reg);
9591 %}
9592 
9593 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9594   match(If cmp (CmpN op1 op2));
9595   effect(USE labl, KILL icc);
9596 
9597   size(12);
9598   ins_cost(BRANCH_COST);
9599   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9600             "BP$cmp   $labl" %}
9601   ins_encode %{
9602     Label* L = $labl$$label;
9603     Assembler::Predict predict_taken =
9604       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9605     __ cmp($op1$$Register, $op2$$Register);
9606     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9607     __ delayed()->nop();
9608   %}
9609   ins_pipe(cmp_br_reg_reg);
9610 %}
9611 
9612 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9613   match(If cmp (CmpN op1 null));
9614   effect(USE labl, KILL icc);
9615 
9616   size(12);
9617   ins_cost(BRANCH_COST);
9618   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9619             "BP$cmp   $labl" %}
9620   ins_encode %{
9621     Label* L = $labl$$label;
9622     Assembler::Predict predict_taken =
9623       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9624     __ cmp($op1$$Register, G0);
9625     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9626     __ delayed()->nop();
9627   %}
9628   ins_pipe(cmp_br_reg_reg);
9629 %}
9630 
9631 // Loop back branch
9632 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9633   match(CountedLoopEnd cmp (CmpI op1 op2));
9634   effect(USE labl, KILL icc);
9635 
9636   size(12);
9637   ins_cost(BRANCH_COST);
9638   format %{ "CMP    $op1,$op2\t! int\n\t"
9639             "BP$cmp   $labl\t! Loop end" %}
9640   ins_encode %{
9641     Label* L = $labl$$label;
9642     Assembler::Predict predict_taken =
9643       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9644     __ cmp($op1$$Register, $op2$$Register);
9645     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9646     __ delayed()->nop();
9647   %}
9648   ins_pipe(cmp_br_reg_reg);
9649 %}
9650 
9651 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9652   match(CountedLoopEnd cmp (CmpI op1 op2));
9653   effect(USE labl, KILL icc);
9654 
9655   size(12);
9656   ins_cost(BRANCH_COST);
9657   format %{ "CMP    $op1,$op2\t! int\n\t"
9658             "BP$cmp   $labl\t! Loop end" %}
9659   ins_encode %{
9660     Label* L = $labl$$label;
9661     Assembler::Predict predict_taken =
9662       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9663     __ cmp($op1$$Register, $op2$$constant);
9664     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9665     __ delayed()->nop();
9666   %}
9667   ins_pipe(cmp_br_reg_imm);
9668 %}
9669 
9670 // Short compare and branch instructions
9671 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9672   match(If cmp (CmpI op1 op2));
9673   predicate(UseCBCond);
9674   effect(USE labl, KILL icc);
9675 
9676   size(4);
9677   ins_cost(BRANCH_COST);
9678   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9679   ins_encode %{
9680     Label* L = $labl$$label;
9681     assert(__ use_cbcond(*L), "back to back cbcond");
9682     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9683   %}
9684   ins_short_branch(1);
9685   ins_avoid_back_to_back(1);
9686   ins_pipe(cbcond_reg_reg);
9687 %}
9688 
9689 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9690   match(If cmp (CmpI op1 op2));
9691   predicate(UseCBCond);
9692   effect(USE labl, KILL icc);
9693 
9694   size(4);
9695   ins_cost(BRANCH_COST);
9696   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9697   ins_encode %{
9698     Label* L = $labl$$label;
9699     assert(__ use_cbcond(*L), "back to back cbcond");
9700     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9701   %}
9702   ins_short_branch(1);
9703   ins_avoid_back_to_back(1);
9704   ins_pipe(cbcond_reg_imm);
9705 %}
9706 
9707 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9708   match(If cmp (CmpU op1 op2));
9709   predicate(UseCBCond);
9710   effect(USE labl, KILL icc);
9711 
9712   size(4);
9713   ins_cost(BRANCH_COST);
9714   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9715   ins_encode %{
9716     Label* L = $labl$$label;
9717     assert(__ use_cbcond(*L), "back to back cbcond");
9718     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9719   %}
9720   ins_short_branch(1);
9721   ins_avoid_back_to_back(1);
9722   ins_pipe(cbcond_reg_reg);
9723 %}
9724 
9725 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9726   match(If cmp (CmpU op1 op2));
9727   predicate(UseCBCond);
9728   effect(USE labl, KILL icc);
9729 
9730   size(4);
9731   ins_cost(BRANCH_COST);
9732   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9733   ins_encode %{
9734     Label* L = $labl$$label;
9735     assert(__ use_cbcond(*L), "back to back cbcond");
9736     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9737   %}
9738   ins_short_branch(1);
9739   ins_avoid_back_to_back(1);
9740   ins_pipe(cbcond_reg_imm);
9741 %}
9742 
9743 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9744   match(If cmp (CmpL op1 op2));
9745   predicate(UseCBCond);
9746   effect(USE labl, KILL xcc);
9747 
9748   size(4);
9749   ins_cost(BRANCH_COST);
9750   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9751   ins_encode %{
9752     Label* L = $labl$$label;
9753     assert(__ use_cbcond(*L), "back to back cbcond");
9754     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9755   %}
9756   ins_short_branch(1);
9757   ins_avoid_back_to_back(1);
9758   ins_pipe(cbcond_reg_reg);
9759 %}
9760 
9761 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9762   match(If cmp (CmpL op1 op2));
9763   predicate(UseCBCond);
9764   effect(USE labl, KILL xcc);
9765 
9766   size(4);
9767   ins_cost(BRANCH_COST);
9768   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9769   ins_encode %{
9770     Label* L = $labl$$label;
9771     assert(__ use_cbcond(*L), "back to back cbcond");
9772     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9773   %}
9774   ins_short_branch(1);
9775   ins_avoid_back_to_back(1);
9776   ins_pipe(cbcond_reg_imm);
9777 %}
9778 
9779 // Compare Pointers and branch
9780 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9781   match(If cmp (CmpP op1 op2));
9782   predicate(UseCBCond);
9783   effect(USE labl, KILL pcc);
9784 
9785   size(4);
9786   ins_cost(BRANCH_COST);
9787 #ifdef _LP64
9788   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9789 #else
9790   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9791 #endif
9792   ins_encode %{
9793     Label* L = $labl$$label;
9794     assert(__ use_cbcond(*L), "back to back cbcond");
9795     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9796   %}
9797   ins_short_branch(1);
9798   ins_avoid_back_to_back(1);
9799   ins_pipe(cbcond_reg_reg);
9800 %}
9801 
9802 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9803   match(If cmp (CmpP op1 null));
9804   predicate(UseCBCond);
9805   effect(USE labl, KILL pcc);
9806 
9807   size(4);
9808   ins_cost(BRANCH_COST);
9809 #ifdef _LP64
9810   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9811 #else
9812   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9813 #endif
9814   ins_encode %{
9815     Label* L = $labl$$label;
9816     assert(__ use_cbcond(*L), "back to back cbcond");
9817     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9818   %}
9819   ins_short_branch(1);
9820   ins_avoid_back_to_back(1);
9821   ins_pipe(cbcond_reg_reg);
9822 %}
9823 
9824 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9825   match(If cmp (CmpN op1 op2));
9826   predicate(UseCBCond);
9827   effect(USE labl, KILL icc);
9828 
9829   size(4);
9830   ins_cost(BRANCH_COST);
9831   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9832   ins_encode %{
9833     Label* L = $labl$$label;
9834     assert(__ use_cbcond(*L), "back to back cbcond");
9835     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9836   %}
9837   ins_short_branch(1);
9838   ins_avoid_back_to_back(1);
9839   ins_pipe(cbcond_reg_reg);
9840 %}
9841 
9842 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9843   match(If cmp (CmpN op1 null));
9844   predicate(UseCBCond);
9845   effect(USE labl, KILL icc);
9846 
9847   size(4);
9848   ins_cost(BRANCH_COST);
9849   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9850   ins_encode %{
9851     Label* L = $labl$$label;
9852     assert(__ use_cbcond(*L), "back to back cbcond");
9853     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9854   %}
9855   ins_short_branch(1);
9856   ins_avoid_back_to_back(1);
9857   ins_pipe(cbcond_reg_reg);
9858 %}
9859 
9860 // Loop back branch
9861 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9862   match(CountedLoopEnd cmp (CmpI op1 op2));
9863   predicate(UseCBCond);
9864   effect(USE labl, KILL icc);
9865 
9866   size(4);
9867   ins_cost(BRANCH_COST);
9868   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9869   ins_encode %{
9870     Label* L = $labl$$label;
9871     assert(__ use_cbcond(*L), "back to back cbcond");
9872     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9873   %}
9874   ins_short_branch(1);
9875   ins_avoid_back_to_back(1);
9876   ins_pipe(cbcond_reg_reg);
9877 %}
9878 
9879 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9880   match(CountedLoopEnd cmp (CmpI op1 op2));
9881   predicate(UseCBCond);
9882   effect(USE labl, KILL icc);
9883 
9884   size(4);
9885   ins_cost(BRANCH_COST);
9886   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9887   ins_encode %{
9888     Label* L = $labl$$label;
9889     assert(__ use_cbcond(*L), "back to back cbcond");
9890     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9891   %}
9892   ins_short_branch(1);
9893   ins_avoid_back_to_back(1);
9894   ins_pipe(cbcond_reg_imm);
9895 %}
9896 
9897 // Branch-on-register tests all 64 bits.  We assume that values
9898 // in 64-bit registers always remains zero or sign extended
9899 // unless our code munges the high bits.  Interrupts can chop
9900 // the high order bits to zero or sign at any time.
9901 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9902   match(If cmp (CmpI op1 zero));
9903   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9904   effect(USE labl);
9905 
9906   size(8);
9907   ins_cost(BRANCH_COST);
9908   format %{ "BR$cmp   $op1,$labl" %}
9909   ins_encode( enc_bpr( labl, cmp, op1 ) );
9910   ins_pipe(br_reg);
9911 %}
9912 
9913 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9914   match(If cmp (CmpP op1 null));
9915   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9916   effect(USE labl);
9917 
9918   size(8);
9919   ins_cost(BRANCH_COST);
9920   format %{ "BR$cmp   $op1,$labl" %}
9921   ins_encode( enc_bpr( labl, cmp, op1 ) );
9922   ins_pipe(br_reg);
9923 %}
9924 
9925 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9926   match(If cmp (CmpL op1 zero));
9927   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9928   effect(USE labl);
9929 
9930   size(8);
9931   ins_cost(BRANCH_COST);
9932   format %{ "BR$cmp   $op1,$labl" %}
9933   ins_encode( enc_bpr( labl, cmp, op1 ) );
9934   ins_pipe(br_reg);
9935 %}
9936 
9937 
9938 // ============================================================================
9939 // Long Compare
9940 //
9941 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9942 // is tricky.  The flavor of compare used depends on whether we are testing
9943 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9944 // The GE test is the negated LT test.  The LE test can be had by commuting
9945 // the operands (yielding a GE test) and then negating; negate again for the
9946 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9947 // NE test is negated from that.
9948 
9949 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9950 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9951 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9952 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9953 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9954 // foo match ends up with the wrong leaf.  One fix is to not match both
9955 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9956 // both forms beat the trinary form of long-compare and both are very useful
9957 // on Intel which has so few registers.
9958 
9959 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9960   match(If cmp xcc);
9961   effect(USE labl);
9962 
9963   size(8);
9964   ins_cost(BRANCH_COST);
9965   format %{ "BP$cmp   $xcc,$labl" %}
9966   ins_encode %{
9967     Label* L = $labl$$label;
9968     Assembler::Predict predict_taken =
9969       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9970 
9971     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9972     __ delayed()->nop();
9973   %}
9974   ins_pipe(br_cc);
9975 %}
9976 
9977 // Manifest a CmpL3 result in an integer register.  Very painful.
9978 // This is the test to avoid.
9979 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9980   match(Set dst (CmpL3 src1 src2) );
9981   effect( KILL ccr );
9982   ins_cost(6*DEFAULT_COST);
9983   size(24);
9984   format %{ "CMP    $src1,$src2\t\t! long\n"
9985           "\tBLT,a,pn done\n"
9986           "\tMOV    -1,$dst\t! delay slot\n"
9987           "\tBGT,a,pn done\n"
9988           "\tMOV    1,$dst\t! delay slot\n"
9989           "\tCLR    $dst\n"
9990     "done:"     %}
9991   ins_encode( cmpl_flag(src1,src2,dst) );
9992   ins_pipe(cmpL_reg);
9993 %}
9994 
9995 // Conditional move
9996 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9997   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9998   ins_cost(150);
9999   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
10000   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
10001   ins_pipe(ialu_reg);
10002 %}
10003 
10004 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
10005   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
10006   ins_cost(140);
10007   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
10008   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
10009   ins_pipe(ialu_imm);
10010 %}
10011 
10012 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
10013   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
10014   ins_cost(150);
10015   format %{ "MOV$cmp  $xcc,$src,$dst" %}
10016   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
10017   ins_pipe(ialu_reg);
10018 %}
10019 
10020 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
10021   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
10022   ins_cost(140);
10023   format %{ "MOV$cmp  $xcc,$src,$dst" %}
10024   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
10025   ins_pipe(ialu_imm);
10026 %}
10027 
10028 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
10029   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
10030   ins_cost(150);
10031   format %{ "MOV$cmp  $xcc,$src,$dst" %}
10032   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
10033   ins_pipe(ialu_reg);
10034 %}
10035 
10036 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
10037   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
10038   ins_cost(150);
10039   format %{ "MOV$cmp  $xcc,$src,$dst" %}
10040   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
10041   ins_pipe(ialu_reg);
10042 %}
10043 
10044 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
10045   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
10046   ins_cost(140);
10047   format %{ "MOV$cmp  $xcc,$src,$dst" %}
10048   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
10049   ins_pipe(ialu_imm);
10050 %}
10051 
10052 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
10053   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
10054   ins_cost(150);
10055   opcode(0x101);
10056   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
10057   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
10058   ins_pipe(int_conditional_float_move);
10059 %}
10060 
10061 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
10062   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
10063   ins_cost(150);
10064   opcode(0x102);
10065   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
10066   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
10067   ins_pipe(int_conditional_float_move);
10068 %}
10069 
10070 // ============================================================================
10071 // Safepoint Instruction
10072 instruct safePoint_poll(iRegP poll) %{
10073   match(SafePoint poll);
10074   effect(USE poll);
10075 
10076   size(4);
10077 #ifdef _LP64
10078   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
10079 #else
10080   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
10081 #endif
10082   ins_encode %{
10083     __ relocate(relocInfo::poll_type);
10084     __ ld_ptr($poll$$Register, 0, G0);
10085   %}
10086   ins_pipe(loadPollP);
10087 %}
10088 
10089 // ============================================================================
10090 // Call Instructions
10091 // Call Java Static Instruction
10092 instruct CallStaticJavaDirect( method meth ) %{
10093   match(CallStaticJava);
10094   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
10095   effect(USE meth);
10096 
10097   size(8);
10098   ins_cost(CALL_COST);
10099   format %{ "CALL,static  ; NOP ==> " %}
10100   ins_encode( Java_Static_Call( meth ), call_epilog );
10101   ins_pipe(simple_call);
10102 %}
10103 
10104 // Call Java Static Instruction (method handle version)
10105 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
10106   match(CallStaticJava);
10107   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
10108   effect(USE meth, KILL l7_mh_SP_save);
10109 
10110   size(16);
10111   ins_cost(CALL_COST);
10112   format %{ "CALL,static/MethodHandle" %}
10113   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
10114   ins_pipe(simple_call);
10115 %}
10116 
10117 // Call Java Dynamic Instruction
10118 instruct CallDynamicJavaDirect( method meth ) %{
10119   match(CallDynamicJava);
10120   effect(USE meth);
10121 
10122   ins_cost(CALL_COST);
10123   format %{ "SET    (empty),R_G5\n\t"
10124             "CALL,dynamic  ; NOP ==> " %}
10125   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
10126   ins_pipe(call);
10127 %}
10128 
10129 // Call Runtime Instruction
10130 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
10131   match(CallRuntime);
10132   effect(USE meth, KILL l7);
10133   ins_cost(CALL_COST);
10134   format %{ "CALL,runtime" %}
10135   ins_encode( Java_To_Runtime( meth ),
10136               call_epilog, adjust_long_from_native_call );
10137   ins_pipe(simple_call);
10138 %}
10139 
10140 // Call runtime without safepoint - same as CallRuntime
10141 instruct CallLeafDirect(method meth, l7RegP l7) %{
10142   match(CallLeaf);
10143   effect(USE meth, KILL l7);
10144   ins_cost(CALL_COST);
10145   format %{ "CALL,runtime leaf" %}
10146   ins_encode( Java_To_Runtime( meth ),
10147               call_epilog,
10148               adjust_long_from_native_call );
10149   ins_pipe(simple_call);
10150 %}
10151 
10152 // Call runtime without safepoint - same as CallLeaf
10153 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
10154   match(CallLeafNoFP);
10155   effect(USE meth, KILL l7);
10156   ins_cost(CALL_COST);
10157   format %{ "CALL,runtime leaf nofp" %}
10158   ins_encode( Java_To_Runtime( meth ),
10159               call_epilog,
10160               adjust_long_from_native_call );
10161   ins_pipe(simple_call);
10162 %}
10163 
10164 // Tail Call; Jump from runtime stub to Java code.
10165 // Also known as an 'interprocedural jump'.
10166 // Target of jump will eventually return to caller.
10167 // TailJump below removes the return address.
10168 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
10169   match(TailCall jump_target method_oop );
10170 
10171   ins_cost(CALL_COST);
10172   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
10173   ins_encode(form_jmpl(jump_target));
10174   ins_pipe(tail_call);
10175 %}
10176 
10177 
10178 // Return Instruction
10179 instruct Ret() %{
10180   match(Return);
10181 
10182   // The epilogue node did the ret already.
10183   size(0);
10184   format %{ "! return" %}
10185   ins_encode();
10186   ins_pipe(empty);
10187 %}
10188 
10189 
10190 // Tail Jump; remove the return address; jump to target.
10191 // TailCall above leaves the return address around.
10192 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10193 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10194 // "restore" before this instruction (in Epilogue), we need to materialize it
10195 // in %i0.
10196 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10197   match( TailJump jump_target ex_oop );
10198   ins_cost(CALL_COST);
10199   format %{ "! discard R_O7\n\t"
10200             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10201   ins_encode(form_jmpl_set_exception_pc(jump_target));
10202   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10203   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10204   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10205   ins_pipe(tail_call);
10206 %}
10207 
10208 // Create exception oop: created by stack-crawling runtime code.
10209 // Created exception is now available to this handler, and is setup
10210 // just prior to jumping to this handler.  No code emitted.
10211 instruct CreateException( o0RegP ex_oop )
10212 %{
10213   match(Set ex_oop (CreateEx));
10214   ins_cost(0);
10215 
10216   size(0);
10217   // use the following format syntax
10218   format %{ "! exception oop is in R_O0; no code emitted" %}
10219   ins_encode();
10220   ins_pipe(empty);
10221 %}
10222 
10223 
10224 // Rethrow exception:
10225 // The exception oop will come in the first argument position.
10226 // Then JUMP (not call) to the rethrow stub code.
10227 instruct RethrowException()
10228 %{
10229   match(Rethrow);
10230   ins_cost(CALL_COST);
10231 
10232   // use the following format syntax
10233   format %{ "Jmp    rethrow_stub" %}
10234   ins_encode(enc_rethrow);
10235   ins_pipe(tail_call);
10236 %}
10237 
10238 
10239 // Die now
10240 instruct ShouldNotReachHere( )
10241 %{
10242   match(Halt);
10243   ins_cost(CALL_COST);
10244 
10245   size(4);
10246   // Use the following format syntax
10247   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10248   ins_encode( form2_illtrap() );
10249   ins_pipe(tail_call);
10250 %}
10251 
10252 // ============================================================================
10253 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10254 // array for an instance of the superklass.  Set a hidden internal cache on a
10255 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10256 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10257 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10258   match(Set index (PartialSubtypeCheck sub super));
10259   effect( KILL pcc, KILL o7 );
10260   ins_cost(DEFAULT_COST*10);
10261   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10262   ins_encode( enc_PartialSubtypeCheck() );
10263   ins_pipe(partial_subtype_check_pipe);
10264 %}
10265 
10266 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10267   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10268   effect( KILL idx, KILL o7 );
10269   ins_cost(DEFAULT_COST*10);
10270   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10271   ins_encode( enc_PartialSubtypeCheck() );
10272   ins_pipe(partial_subtype_check_pipe);
10273 %}
10274 
10275 
10276 // ============================================================================
10277 // inlined locking and unlocking
10278 
10279 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10280   match(Set pcc (FastLock object box));
10281 
10282   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10283   ins_cost(100);
10284 
10285   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10286   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10287   ins_pipe(long_memory_op);
10288 %}
10289 
10290 
10291 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10292   match(Set pcc (FastUnlock object box));
10293   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10294   ins_cost(100);
10295 
10296   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10297   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10298   ins_pipe(long_memory_op);
10299 %}
10300 
10301 // The encodings are generic.
10302 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10303   predicate(!use_block_zeroing(n->in(2)) );
10304   match(Set dummy (ClearArray cnt base));
10305   effect(TEMP temp, KILL ccr);
10306   ins_cost(300);
10307   format %{ "MOV    $cnt,$temp\n"
10308     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10309     "        BRge   loop\t\t! Clearing loop\n"
10310     "        STX    G0,[$base+$temp]\t! delay slot" %}
10311 
10312   ins_encode %{
10313     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10314     Register nof_bytes_arg    = $cnt$$Register;
10315     Register nof_bytes_tmp    = $temp$$Register;
10316     Register base_pointer_arg = $base$$Register;
10317 
10318     Label loop;
10319     __ mov(nof_bytes_arg, nof_bytes_tmp);
10320 
10321     // Loop and clear, walking backwards through the array.
10322     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10323     __ bind(loop);
10324     __ deccc(nof_bytes_tmp, 8);
10325     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10326     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10327     // %%%% this mini-loop must not cross a cache boundary!
10328   %}
10329   ins_pipe(long_memory_op);
10330 %}
10331 
10332 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10333   predicate(use_block_zeroing(n->in(2)));
10334   match(Set dummy (ClearArray cnt base));
10335   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10336   ins_cost(300);
10337   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10338 
10339   ins_encode %{
10340 
10341     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10342     Register to    = $base$$Register;
10343     Register count = $cnt$$Register;
10344 
10345     Label Ldone;
10346     __ nop(); // Separate short branches
10347     // Use BIS for zeroing (temp is not used).
10348     __ bis_zeroing(to, count, G0, Ldone);
10349     __ bind(Ldone);
10350 
10351   %}
10352   ins_pipe(long_memory_op);
10353 %}
10354 
10355 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10356   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10357   match(Set dummy (ClearArray cnt base));
10358   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10359   ins_cost(300);
10360   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10361 
10362   ins_encode %{
10363 
10364     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10365     Register to    = $base$$Register;
10366     Register count = $cnt$$Register;
10367     Register temp  = $tmp$$Register;
10368 
10369     Label Ldone;
10370     __ nop(); // Separate short branches
10371     // Use BIS for zeroing
10372     __ bis_zeroing(to, count, temp, Ldone);
10373     __ bind(Ldone);
10374 
10375   %}
10376   ins_pipe(long_memory_op);
10377 %}
10378 
10379 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10380                         o7RegI tmp, flagsReg ccr) %{
10381   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10382   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10383   ins_cost(300);
10384   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10385   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10386   ins_pipe(long_memory_op);
10387 %}
10388 
10389 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10390                        o7RegI tmp, flagsReg ccr) %{
10391   match(Set result (StrEquals (Binary str1 str2) cnt));
10392   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10393   ins_cost(300);
10394   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10395   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10396   ins_pipe(long_memory_op);
10397 %}
10398 
10399 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10400                       o7RegI tmp2, flagsReg ccr) %{
10401   match(Set result (AryEq ary1 ary2));
10402   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10403   ins_cost(300);
10404   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10405   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10406   ins_pipe(long_memory_op);
10407 %}
10408 
10409 
10410 //---------- Zeros Count Instructions ------------------------------------------
10411 
10412 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
10413   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10414   match(Set dst (CountLeadingZerosI src));
10415   effect(TEMP dst, TEMP tmp, KILL cr);
10416 
10417   // x |= (x >> 1);
10418   // x |= (x >> 2);
10419   // x |= (x >> 4);
10420   // x |= (x >> 8);
10421   // x |= (x >> 16);
10422   // return (WORDBITS - popc(x));
10423   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10424             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10425             "OR      $dst,$tmp,$dst\n\t"
10426             "SRL     $dst,2,$tmp\n\t"
10427             "OR      $dst,$tmp,$dst\n\t"
10428             "SRL     $dst,4,$tmp\n\t"
10429             "OR      $dst,$tmp,$dst\n\t"
10430             "SRL     $dst,8,$tmp\n\t"
10431             "OR      $dst,$tmp,$dst\n\t"
10432             "SRL     $dst,16,$tmp\n\t"
10433             "OR      $dst,$tmp,$dst\n\t"
10434             "POPC    $dst,$dst\n\t"
10435             "MOV     32,$tmp\n\t"
10436             "SUB     $tmp,$dst,$dst" %}
10437   ins_encode %{
10438     Register Rdst = $dst$$Register;
10439     Register Rsrc = $src$$Register;
10440     Register Rtmp = $tmp$$Register;
10441     __ srl(Rsrc, 1,    Rtmp);
10442     __ srl(Rsrc, 0,    Rdst);
10443     __ or3(Rdst, Rtmp, Rdst);
10444     __ srl(Rdst, 2,    Rtmp);
10445     __ or3(Rdst, Rtmp, Rdst);
10446     __ srl(Rdst, 4,    Rtmp);
10447     __ or3(Rdst, Rtmp, Rdst);
10448     __ srl(Rdst, 8,    Rtmp);
10449     __ or3(Rdst, Rtmp, Rdst);
10450     __ srl(Rdst, 16,   Rtmp);
10451     __ or3(Rdst, Rtmp, Rdst);
10452     __ popc(Rdst, Rdst);
10453     __ mov(BitsPerInt, Rtmp);
10454     __ sub(Rtmp, Rdst, Rdst);
10455   %}
10456   ins_pipe(ialu_reg);
10457 %}
10458 
10459 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10460   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10461   match(Set dst (CountLeadingZerosL src));
10462   effect(TEMP dst, TEMP tmp, KILL cr);
10463 
10464   // x |= (x >> 1);
10465   // x |= (x >> 2);
10466   // x |= (x >> 4);
10467   // x |= (x >> 8);
10468   // x |= (x >> 16);
10469   // x |= (x >> 32);
10470   // return (WORDBITS - popc(x));
10471   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10472             "OR      $src,$tmp,$dst\n\t"
10473             "SRLX    $dst,2,$tmp\n\t"
10474             "OR      $dst,$tmp,$dst\n\t"
10475             "SRLX    $dst,4,$tmp\n\t"
10476             "OR      $dst,$tmp,$dst\n\t"
10477             "SRLX    $dst,8,$tmp\n\t"
10478             "OR      $dst,$tmp,$dst\n\t"
10479             "SRLX    $dst,16,$tmp\n\t"
10480             "OR      $dst,$tmp,$dst\n\t"
10481             "SRLX    $dst,32,$tmp\n\t"
10482             "OR      $dst,$tmp,$dst\n\t"
10483             "POPC    $dst,$dst\n\t"
10484             "MOV     64,$tmp\n\t"
10485             "SUB     $tmp,$dst,$dst" %}
10486   ins_encode %{
10487     Register Rdst = $dst$$Register;
10488     Register Rsrc = $src$$Register;
10489     Register Rtmp = $tmp$$Register;
10490     __ srlx(Rsrc, 1,    Rtmp);
10491     __ or3( Rsrc, Rtmp, Rdst);
10492     __ srlx(Rdst, 2,    Rtmp);
10493     __ or3( Rdst, Rtmp, Rdst);
10494     __ srlx(Rdst, 4,    Rtmp);
10495     __ or3( Rdst, Rtmp, Rdst);
10496     __ srlx(Rdst, 8,    Rtmp);
10497     __ or3( Rdst, Rtmp, Rdst);
10498     __ srlx(Rdst, 16,   Rtmp);
10499     __ or3( Rdst, Rtmp, Rdst);
10500     __ srlx(Rdst, 32,   Rtmp);
10501     __ or3( Rdst, Rtmp, Rdst);
10502     __ popc(Rdst, Rdst);
10503     __ mov(BitsPerLong, Rtmp);
10504     __ sub(Rtmp, Rdst, Rdst);
10505   %}
10506   ins_pipe(ialu_reg);
10507 %}
10508 
10509 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
10510   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10511   match(Set dst (CountTrailingZerosI src));
10512   effect(TEMP dst, KILL cr);
10513 
10514   // return popc(~x & (x - 1));
10515   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10516             "ANDN    $dst,$src,$dst\n\t"
10517             "SRL     $dst,R_G0,$dst\n\t"
10518             "POPC    $dst,$dst" %}
10519   ins_encode %{
10520     Register Rdst = $dst$$Register;
10521     Register Rsrc = $src$$Register;
10522     __ sub(Rsrc, 1, Rdst);
10523     __ andn(Rdst, Rsrc, Rdst);
10524     __ srl(Rdst, G0, Rdst);
10525     __ popc(Rdst, Rdst);
10526   %}
10527   ins_pipe(ialu_reg);
10528 %}
10529 
10530 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10531   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10532   match(Set dst (CountTrailingZerosL src));
10533   effect(TEMP dst, KILL cr);
10534 
10535   // return popc(~x & (x - 1));
10536   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10537             "ANDN    $dst,$src,$dst\n\t"
10538             "POPC    $dst,$dst" %}
10539   ins_encode %{
10540     Register Rdst = $dst$$Register;
10541     Register Rsrc = $src$$Register;
10542     __ sub(Rsrc, 1, Rdst);
10543     __ andn(Rdst, Rsrc, Rdst);
10544     __ popc(Rdst, Rdst);
10545   %}
10546   ins_pipe(ialu_reg);
10547 %}
10548 
10549 
10550 //---------- Population Count Instructions -------------------------------------
10551 
10552 instruct popCountI(iRegI dst, iRegI src) %{
10553   predicate(UsePopCountInstruction);
10554   match(Set dst (PopCountI src));
10555 
10556   format %{ "POPC   $src, $dst" %}
10557   ins_encode %{
10558     __ popc($src$$Register, $dst$$Register);
10559   %}
10560   ins_pipe(ialu_reg);
10561 %}
10562 
10563 // Note: Long.bitCount(long) returns an int.
10564 instruct popCountL(iRegI dst, iRegL src) %{
10565   predicate(UsePopCountInstruction);
10566   match(Set dst (PopCountL src));
10567 
10568   format %{ "POPC   $src, $dst" %}
10569   ins_encode %{
10570     __ popc($src$$Register, $dst$$Register);
10571   %}
10572   ins_pipe(ialu_reg);
10573 %}
10574 
10575 
10576 // ============================================================================
10577 //------------Bytes reverse--------------------------------------------------
10578 
10579 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10580   match(Set dst (ReverseBytesI src));
10581 
10582   // Op cost is artificially doubled to make sure that load or store
10583   // instructions are preferred over this one which requires a spill
10584   // onto a stack slot.
10585   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10586   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10587 
10588   ins_encode %{
10589     __ set($src$$disp + STACK_BIAS, O7);
10590     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10591   %}
10592   ins_pipe( iload_mem );
10593 %}
10594 
10595 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10596   match(Set dst (ReverseBytesL src));
10597 
10598   // Op cost is artificially doubled to make sure that load or store
10599   // instructions are preferred over this one which requires a spill
10600   // onto a stack slot.
10601   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10602   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10603 
10604   ins_encode %{
10605     __ set($src$$disp + STACK_BIAS, O7);
10606     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10607   %}
10608   ins_pipe( iload_mem );
10609 %}
10610 
10611 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10612   match(Set dst (ReverseBytesUS src));
10613 
10614   // Op cost is artificially doubled to make sure that load or store
10615   // instructions are preferred over this one which requires a spill
10616   // onto a stack slot.
10617   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10618   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10619 
10620   ins_encode %{
10621     // the value was spilled as an int so bias the load
10622     __ set($src$$disp + STACK_BIAS + 2, O7);
10623     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10624   %}
10625   ins_pipe( iload_mem );
10626 %}
10627 
10628 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10629   match(Set dst (ReverseBytesS src));
10630 
10631   // Op cost is artificially doubled to make sure that load or store
10632   // instructions are preferred over this one which requires a spill
10633   // onto a stack slot.
10634   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10635   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10636 
10637   ins_encode %{
10638     // the value was spilled as an int so bias the load
10639     __ set($src$$disp + STACK_BIAS + 2, O7);
10640     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10641   %}
10642   ins_pipe( iload_mem );
10643 %}
10644 
10645 // Load Integer reversed byte order
10646 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10647   match(Set dst (ReverseBytesI (LoadI src)));
10648 
10649   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10650   size(4);
10651   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10652 
10653   ins_encode %{
10654     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10655   %}
10656   ins_pipe(iload_mem);
10657 %}
10658 
10659 // Load Long - aligned and reversed
10660 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10661   match(Set dst (ReverseBytesL (LoadL src)));
10662 
10663   ins_cost(MEMORY_REF_COST);
10664   size(4);
10665   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10666 
10667   ins_encode %{
10668     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10669   %}
10670   ins_pipe(iload_mem);
10671 %}
10672 
10673 // Load unsigned short / char reversed byte order
10674 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10675   match(Set dst (ReverseBytesUS (LoadUS src)));
10676 
10677   ins_cost(MEMORY_REF_COST);
10678   size(4);
10679   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10680 
10681   ins_encode %{
10682     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10683   %}
10684   ins_pipe(iload_mem);
10685 %}
10686 
10687 // Load short reversed byte order
10688 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10689   match(Set dst (ReverseBytesS (LoadS src)));
10690 
10691   ins_cost(MEMORY_REF_COST);
10692   size(4);
10693   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10694 
10695   ins_encode %{
10696     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10697   %}
10698   ins_pipe(iload_mem);
10699 %}
10700 
10701 // Store Integer reversed byte order
10702 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10703   match(Set dst (StoreI dst (ReverseBytesI src)));
10704 
10705   ins_cost(MEMORY_REF_COST);
10706   size(4);
10707   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10708 
10709   ins_encode %{
10710     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10711   %}
10712   ins_pipe(istore_mem_reg);
10713 %}
10714 
10715 // Store Long reversed byte order
10716 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10717   match(Set dst (StoreL dst (ReverseBytesL src)));
10718 
10719   ins_cost(MEMORY_REF_COST);
10720   size(4);
10721   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10722 
10723   ins_encode %{
10724     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10725   %}
10726   ins_pipe(istore_mem_reg);
10727 %}
10728 
10729 // Store unsighed short/char reversed byte order
10730 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10731   match(Set dst (StoreC dst (ReverseBytesUS src)));
10732 
10733   ins_cost(MEMORY_REF_COST);
10734   size(4);
10735   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10736 
10737   ins_encode %{
10738     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10739   %}
10740   ins_pipe(istore_mem_reg);
10741 %}
10742 
10743 // Store short reversed byte order
10744 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10745   match(Set dst (StoreC dst (ReverseBytesS src)));
10746 
10747   ins_cost(MEMORY_REF_COST);
10748   size(4);
10749   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10750 
10751   ins_encode %{
10752     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10753   %}
10754   ins_pipe(istore_mem_reg);
10755 %}
10756 
10757 //----------PEEPHOLE RULES-----------------------------------------------------
10758 // These must follow all instruction definitions as they use the names
10759 // defined in the instructions definitions.
10760 //
10761 // peepmatch ( root_instr_name [preceding_instruction]* );
10762 //
10763 // peepconstraint %{
10764 // (instruction_number.operand_name relational_op instruction_number.operand_name
10765 //  [, ...] );
10766 // // instruction numbers are zero-based using left to right order in peepmatch
10767 //
10768 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10769 // // provide an instruction_number.operand_name for each operand that appears
10770 // // in the replacement instruction's match rule
10771 //
10772 // ---------VM FLAGS---------------------------------------------------------
10773 //
10774 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10775 //
10776 // Each peephole rule is given an identifying number starting with zero and
10777 // increasing by one in the order seen by the parser.  An individual peephole
10778 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10779 // on the command-line.
10780 //
10781 // ---------CURRENT LIMITATIONS----------------------------------------------
10782 //
10783 // Only match adjacent instructions in same basic block
10784 // Only equality constraints
10785 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10786 // Only one replacement instruction
10787 //
10788 // ---------EXAMPLE----------------------------------------------------------
10789 //
10790 // // pertinent parts of existing instructions in architecture description
10791 // instruct movI(eRegI dst, eRegI src) %{
10792 //   match(Set dst (CopyI src));
10793 // %}
10794 //
10795 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10796 //   match(Set dst (AddI dst src));
10797 //   effect(KILL cr);
10798 // %}
10799 //
10800 // // Change (inc mov) to lea
10801 // peephole %{
10802 //   // increment preceeded by register-register move
10803 //   peepmatch ( incI_eReg movI );
10804 //   // require that the destination register of the increment
10805 //   // match the destination register of the move
10806 //   peepconstraint ( 0.dst == 1.dst );
10807 //   // construct a replacement instruction that sets
10808 //   // the destination to ( move's source register + one )
10809 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10810 // %}
10811 //
10812 
10813 // // Change load of spilled value to only a spill
10814 // instruct storeI(memory mem, eRegI src) %{
10815 //   match(Set mem (StoreI mem src));
10816 // %}
10817 //
10818 // instruct loadI(eRegI dst, memory mem) %{
10819 //   match(Set dst (LoadI mem));
10820 // %}
10821 //
10822 // peephole %{
10823 //   peepmatch ( loadI storeI );
10824 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10825 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10826 // %}
10827 
10828 //----------SMARTSPILL RULES---------------------------------------------------
10829 // These must follow all instruction definitions as they use the names
10830 // defined in the instructions definitions.
10831 //
10832 // SPARC will probably not have any of these rules due to RISC instruction set.
10833 
10834 //----------PIPELINE-----------------------------------------------------------
10835 // Rules which define the behavior of the target architectures pipeline.