1 //
   2 // Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // AMD64 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
  64 // used as byte registers)
  65 
  66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
  67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
  69 
  70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
  71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
  72 
  73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
  74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
  75 
  76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
  77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
  78 
  79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
  80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
  81 
  82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
  83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
  84 
  85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
  86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
  87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
  88 
  89 #ifdef _WIN64
  90 
  91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
  92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
  93 
  94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
  95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
  96 
  97 #else
  98 
  99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
 100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
 101 
 102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
 103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
 104 
 105 #endif
 106 
 107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
 108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
 109 
 110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
 111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
 112 
 113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
 114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
 115 
 116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
 117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
 118 
 119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
 120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
 121 
 122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
 123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
 124 
 125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
 126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
 127 
 128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
 129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
 130 
 131 
 132 // Floating Point Registers
 133 
 134 // Specify priority of register selection within phases of register
 135 // allocation.  Highest priority is first.  A useful heuristic is to
 136 // give registers a low priority when they are required by machine
 137 // instructions, like EAX and EDX on I486, and choose no-save registers
 138 // before save-on-call, & save-on-call before save-on-entry.  Registers
 139 // which participate in fixed calling sequences should come last.
 140 // Registers which are used as pairs must fall on an even boundary.
 141 
 142 alloc_class chunk0(R10,         R10_H,
 143                    R11,         R11_H,
 144                    R8,          R8_H,
 145                    R9,          R9_H,
 146                    R12,         R12_H,
 147                    RCX,         RCX_H,
 148                    RBX,         RBX_H,
 149                    RDI,         RDI_H,
 150                    RDX,         RDX_H,
 151                    RSI,         RSI_H,
 152                    RAX,         RAX_H,
 153                    RBP,         RBP_H,
 154                    R13,         R13_H,
 155                    R14,         R14_H,
 156                    R15,         R15_H,
 157                    RSP,         RSP_H);
 158 
 159 
 160 //----------Architecture Description Register Classes--------------------------
 161 // Several register classes are automatically defined based upon information in
 162 // this architecture description.
 163 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 164 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 165 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 166 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 167 //
 168 
 169 // Class for all pointer registers (including RSP)
 170 reg_class any_reg(RAX, RAX_H,
 171                   RDX, RDX_H,
 172                   RBP, RBP_H,
 173                   RDI, RDI_H,
 174                   RSI, RSI_H,
 175                   RCX, RCX_H,
 176                   RBX, RBX_H,
 177                   RSP, RSP_H,
 178                   R8,  R8_H,
 179                   R9,  R9_H,
 180                   R10, R10_H,
 181                   R11, R11_H,
 182                   R12, R12_H,
 183                   R13, R13_H,
 184                   R14, R14_H,
 185                   R15, R15_H);
 186 
 187 // Class for all pointer registers except RSP
 188 reg_class ptr_reg(RAX, RAX_H,
 189                   RDX, RDX_H,
 190                   RBP, RBP_H,
 191                   RDI, RDI_H,
 192                   RSI, RSI_H,
 193                   RCX, RCX_H,
 194                   RBX, RBX_H,
 195                   R8,  R8_H,
 196                   R9,  R9_H,
 197                   R10, R10_H,
 198                   R11, R11_H,
 199                   R13, R13_H,
 200                   R14, R14_H);
 201 
 202 // Class for all pointer registers except RAX and RSP
 203 reg_class ptr_no_rax_reg(RDX, RDX_H,
 204                          RBP, RBP_H,
 205                          RDI, RDI_H,
 206                          RSI, RSI_H,
 207                          RCX, RCX_H,
 208                          RBX, RBX_H,
 209                          R8,  R8_H,
 210                          R9,  R9_H,
 211                          R10, R10_H,
 212                          R11, R11_H,
 213                          R13, R13_H,
 214                          R14, R14_H);
 215 
 216 reg_class ptr_no_rbp_reg(RDX, RDX_H,
 217                          RAX, RAX_H,
 218                          RDI, RDI_H,
 219                          RSI, RSI_H,
 220                          RCX, RCX_H,
 221                          RBX, RBX_H,
 222                          R8,  R8_H,
 223                          R9,  R9_H,
 224                          R10, R10_H,
 225                          R11, R11_H,
 226                          R13, R13_H,
 227                          R14, R14_H);
 228 
 229 // Class for all pointer registers except RAX, RBX and RSP
 230 reg_class ptr_no_rax_rbx_reg(RDX, RDX_H,
 231                              RBP, RBP_H,
 232                              RDI, RDI_H,
 233                              RSI, RSI_H,
 234                              RCX, RCX_H,
 235                              R8,  R8_H,
 236                              R9,  R9_H,
 237                              R10, R10_H,
 238                              R11, R11_H,
 239                              R13, R13_H,
 240                              R14, R14_H);
 241 
 242 // Singleton class for RAX pointer register
 243 reg_class ptr_rax_reg(RAX, RAX_H);
 244 
 245 // Singleton class for RBX pointer register
 246 reg_class ptr_rbx_reg(RBX, RBX_H);
 247 
 248 // Singleton class for RSI pointer register
 249 reg_class ptr_rsi_reg(RSI, RSI_H);
 250 
 251 // Singleton class for RDI pointer register
 252 reg_class ptr_rdi_reg(RDI, RDI_H);
 253 
 254 // Singleton class for RBP pointer register
 255 reg_class ptr_rbp_reg(RBP, RBP_H);
 256 
 257 // Singleton class for stack pointer
 258 reg_class ptr_rsp_reg(RSP, RSP_H);
 259 
 260 // Singleton class for TLS pointer
 261 reg_class ptr_r15_reg(R15, R15_H);
 262 
 263 // Class for all long registers (except RSP)
 264 reg_class long_reg(RAX, RAX_H,
 265                    RDX, RDX_H,
 266                    RBP, RBP_H,
 267                    RDI, RDI_H,
 268                    RSI, RSI_H,
 269                    RCX, RCX_H,
 270                    RBX, RBX_H,
 271                    R8,  R8_H,
 272                    R9,  R9_H,
 273                    R10, R10_H,
 274                    R11, R11_H,
 275                    R13, R13_H,
 276                    R14, R14_H);
 277 
 278 // Class for all long registers except RAX, RDX (and RSP)
 279 reg_class long_no_rax_rdx_reg(RBP, RBP_H,
 280                               RDI, RDI_H,
 281                               RSI, RSI_H,
 282                               RCX, RCX_H,
 283                               RBX, RBX_H,
 284                               R8,  R8_H,
 285                               R9,  R9_H,
 286                               R10, R10_H,
 287                               R11, R11_H,
 288                               R13, R13_H,
 289                               R14, R14_H);
 290 
 291 // Class for all long registers except RCX (and RSP)
 292 reg_class long_no_rcx_reg(RBP, RBP_H,
 293                           RDI, RDI_H,
 294                           RSI, RSI_H,
 295                           RAX, RAX_H,
 296                           RDX, RDX_H,
 297                           RBX, RBX_H,
 298                           R8,  R8_H,
 299                           R9,  R9_H,
 300                           R10, R10_H,
 301                           R11, R11_H,
 302                           R13, R13_H,
 303                           R14, R14_H);
 304 
 305 // Class for all long registers except RAX (and RSP)
 306 reg_class long_no_rax_reg(RBP, RBP_H,
 307                           RDX, RDX_H,
 308                           RDI, RDI_H,
 309                           RSI, RSI_H,
 310                           RCX, RCX_H,
 311                           RBX, RBX_H,
 312                           R8,  R8_H,
 313                           R9,  R9_H,
 314                           R10, R10_H,
 315                           R11, R11_H,
 316                           R13, R13_H,
 317                           R14, R14_H);
 318 
 319 // Singleton class for RAX long register
 320 reg_class long_rax_reg(RAX, RAX_H);
 321 
 322 // Singleton class for RCX long register
 323 reg_class long_rcx_reg(RCX, RCX_H);
 324 
 325 // Singleton class for RDX long register
 326 reg_class long_rdx_reg(RDX, RDX_H);
 327 
 328 // Class for all int registers (except RSP)
 329 reg_class int_reg(RAX,
 330                   RDX,
 331                   RBP,
 332                   RDI,
 333                   RSI,
 334                   RCX,
 335                   RBX,
 336                   R8,
 337                   R9,
 338                   R10,
 339                   R11,
 340                   R13,
 341                   R14);
 342 
 343 // Class for all int registers except RCX (and RSP)
 344 reg_class int_no_rcx_reg(RAX,
 345                          RDX,
 346                          RBP,
 347                          RDI,
 348                          RSI,
 349                          RBX,
 350                          R8,
 351                          R9,
 352                          R10,
 353                          R11,
 354                          R13,
 355                          R14);
 356 
 357 // Class for all int registers except RAX, RDX (and RSP)
 358 reg_class int_no_rax_rdx_reg(RBP,
 359                              RDI,
 360                              RSI,
 361                              RCX,
 362                              RBX,
 363                              R8,
 364                              R9,
 365                              R10,
 366                              R11,
 367                              R13,
 368                              R14);
 369 
 370 // Singleton class for RAX int register
 371 reg_class int_rax_reg(RAX);
 372 
 373 // Singleton class for RBX int register
 374 reg_class int_rbx_reg(RBX);
 375 
 376 // Singleton class for RCX int register
 377 reg_class int_rcx_reg(RCX);
 378 
 379 // Singleton class for RCX int register
 380 reg_class int_rdx_reg(RDX);
 381 
 382 // Singleton class for RCX int register
 383 reg_class int_rdi_reg(RDI);
 384 
 385 // Singleton class for instruction pointer
 386 // reg_class ip_reg(RIP);
 387 
 388 %}
 389 
 390 //----------SOURCE BLOCK-------------------------------------------------------
 391 // This is a block of C++ code which provides values, functions, and
 392 // definitions necessary in the rest of the architecture description
 393 source %{
 394 #define   RELOC_IMM64    Assembler::imm_operand
 395 #define   RELOC_DISP32   Assembler::disp32_operand
 396 
 397 #define __ _masm.
 398 
 399 static int preserve_SP_size() {
 400   return 3;  // rex.w, op, rm(reg/reg)
 401 }
 402 
 403 // !!!!! Special hack to get all types of calls to specify the byte offset
 404 //       from the start of the call to the point where the return address
 405 //       will point.
 406 int MachCallStaticJavaNode::ret_addr_offset()
 407 {
 408   int offset = 5; // 5 bytes from start of call to where return address points
 409   if (_method_handle_invoke)
 410     offset += preserve_SP_size();
 411   return offset;
 412 }
 413 
 414 int MachCallDynamicJavaNode::ret_addr_offset()
 415 {
 416   return 15; // 15 bytes from start of call to where return address points
 417 }
 418 
 419 // In os_cpu .ad file
 420 // int MachCallRuntimeNode::ret_addr_offset()
 421 
 422 // Indicate if the safepoint node needs the polling page as an input,
 423 // it does if the polling page is more than disp32 away.
 424 bool SafePointNode::needs_polling_address_input()
 425 {
 426   return Assembler::is_polling_page_far();
 427 }
 428 
 429 //
 430 // Compute padding required for nodes which need alignment
 431 //
 432 
 433 // The address of the call instruction needs to be 4-byte aligned to
 434 // ensure that it does not span a cache line so that it can be patched.
 435 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
 436 {
 437   current_offset += 1; // skip call opcode byte
 438   return round_to(current_offset, alignment_required()) - current_offset;
 439 }
 440 
 441 // The address of the call instruction needs to be 4-byte aligned to
 442 // ensure that it does not span a cache line so that it can be patched.
 443 int CallStaticJavaHandleNode::compute_padding(int current_offset) const
 444 {
 445   current_offset += preserve_SP_size();   // skip mov rbp, rsp
 446   current_offset += 1; // skip call opcode byte
 447   return round_to(current_offset, alignment_required()) - current_offset;
 448 }
 449 
 450 // The address of the call instruction needs to be 4-byte aligned to
 451 // ensure that it does not span a cache line so that it can be patched.
 452 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
 453 {
 454   current_offset += 11; // skip movq instruction + call opcode byte
 455   return round_to(current_offset, alignment_required()) - current_offset;
 456 }
 457 
 458 // EMIT_RM()
 459 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 460   unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
 461   cbuf.insts()->emit_int8(c);
 462 }
 463 
 464 // EMIT_CC()
 465 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 466   unsigned char c = (unsigned char) (f1 | f2);
 467   cbuf.insts()->emit_int8(c);
 468 }
 469 
 470 // EMIT_OPCODE()
 471 void emit_opcode(CodeBuffer &cbuf, int code) {
 472   cbuf.insts()->emit_int8((unsigned char) code);
 473 }
 474 
 475 // EMIT_OPCODE() w/ relocation information
 476 void emit_opcode(CodeBuffer &cbuf,
 477                  int code, relocInfo::relocType reloc, int offset, int format)
 478 {
 479   cbuf.relocate(cbuf.insts_mark() + offset, reloc, format);
 480   emit_opcode(cbuf, code);
 481 }
 482 
 483 // EMIT_D8()
 484 void emit_d8(CodeBuffer &cbuf, int d8) {
 485   cbuf.insts()->emit_int8((unsigned char) d8);
 486 }
 487 
 488 // EMIT_D16()
 489 void emit_d16(CodeBuffer &cbuf, int d16) {
 490   cbuf.insts()->emit_int16(d16);
 491 }
 492 
 493 // EMIT_D32()
 494 void emit_d32(CodeBuffer &cbuf, int d32) {
 495   cbuf.insts()->emit_int32(d32);
 496 }
 497 
 498 // EMIT_D64()
 499 void emit_d64(CodeBuffer &cbuf, int64_t d64) {
 500   cbuf.insts()->emit_int64(d64);
 501 }
 502 
 503 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 504 void emit_d32_reloc(CodeBuffer& cbuf,
 505                     int d32,
 506                     relocInfo::relocType reloc,
 507                     int format)
 508 {
 509   assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
 510   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 511   cbuf.insts()->emit_int32(d32);
 512 }
 513 
 514 // emit 32 bit value and construct relocation entry from RelocationHolder
 515 void emit_d32_reloc(CodeBuffer& cbuf, int d32, RelocationHolder const& rspec, int format) {
 516 #ifdef ASSERT
 517   if (rspec.reloc()->type() == relocInfo::oop_type &&
 518       d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
 519     assert(oop((intptr_t)d32)->is_oop() && (ScavengeRootsInCode || !oop((intptr_t)d32)->is_scavengable()), "cannot embed scavengable oops in code");
 520   }
 521 #endif
 522   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 523   cbuf.insts()->emit_int32(d32);
 524 }
 525 
 526 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
 527   address next_ip = cbuf.insts_end() + 4;
 528   emit_d32_reloc(cbuf, (int) (addr - next_ip),
 529                  external_word_Relocation::spec(addr),
 530                  RELOC_DISP32);
 531 }
 532 
 533 
 534 // emit 64 bit value and construct relocation entry from relocInfo::relocType
 535 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, relocInfo::relocType reloc, int format) {
 536   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 537   cbuf.insts()->emit_int64(d64);
 538 }
 539 
 540 // emit 64 bit value and construct relocation entry from RelocationHolder
 541 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, RelocationHolder const& rspec, int format) {
 542 #ifdef ASSERT
 543   if (rspec.reloc()->type() == relocInfo::oop_type &&
 544       d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
 545     assert(oop(d64)->is_oop() && (ScavengeRootsInCode || !oop(d64)->is_scavengable()),
 546            "cannot embed scavengable oops in code");
 547   }
 548 #endif
 549   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 550   cbuf.insts()->emit_int64(d64);
 551 }
 552 
 553 // Access stack slot for load or store
 554 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
 555 {
 556   emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
 557   if (-0x80 <= disp && disp < 0x80) {
 558     emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
 559     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 560     emit_d8(cbuf, disp);     // Displacement  // R/M byte
 561   } else {
 562     emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
 563     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 564     emit_d32(cbuf, disp);     // Displacement // R/M byte
 565   }
 566 }
 567 
 568    // rRegI ereg, memory mem) %{    // emit_reg_mem
 569 void encode_RegMem(CodeBuffer &cbuf,
 570                    int reg,
 571                    int base, int index, int scale, int disp, bool disp_is_oop)
 572 {
 573   assert(!disp_is_oop, "cannot have disp");
 574   int regenc = reg & 7;
 575   int baseenc = base & 7;
 576   int indexenc = index & 7;
 577 
 578   // There is no index & no scale, use form without SIB byte
 579   if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
 580     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 581     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 582       emit_rm(cbuf, 0x0, regenc, baseenc); // *
 583     } else if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
 584       // If 8-bit displacement, mode 0x1
 585       emit_rm(cbuf, 0x1, regenc, baseenc); // *
 586       emit_d8(cbuf, disp);
 587     } else {
 588       // If 32-bit displacement
 589       if (base == -1) { // Special flag for absolute address
 590         emit_rm(cbuf, 0x0, regenc, 0x5); // *
 591         if (disp_is_oop) {
 592           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 593         } else {
 594           emit_d32(cbuf, disp);
 595         }
 596       } else {
 597         // Normal base + offset
 598         emit_rm(cbuf, 0x2, regenc, baseenc); // *
 599         if (disp_is_oop) {
 600           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 601         } else {
 602           emit_d32(cbuf, disp);
 603         }
 604       }
 605     }
 606   } else {
 607     // Else, encode with the SIB byte
 608     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 609     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 610       // If no displacement
 611       emit_rm(cbuf, 0x0, regenc, 0x4); // *
 612       emit_rm(cbuf, scale, indexenc, baseenc);
 613     } else {
 614       if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
 615         // If 8-bit displacement, mode 0x1
 616         emit_rm(cbuf, 0x1, regenc, 0x4); // *
 617         emit_rm(cbuf, scale, indexenc, baseenc);
 618         emit_d8(cbuf, disp);
 619       } else {
 620         // If 32-bit displacement
 621         if (base == 0x04 ) {
 622           emit_rm(cbuf, 0x2, regenc, 0x4);
 623           emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
 624         } else {
 625           emit_rm(cbuf, 0x2, regenc, 0x4);
 626           emit_rm(cbuf, scale, indexenc, baseenc); // *
 627         }
 628         if (disp_is_oop) {
 629           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 630         } else {
 631           emit_d32(cbuf, disp);
 632         }
 633       }
 634     }
 635   }
 636 }
 637 
 638 // This could be in MacroAssembler but it's fairly C2 specific
 639 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 640   Label exit;
 641   __ jccb(Assembler::noParity, exit);
 642   __ pushf();
 643   //
 644   // comiss/ucomiss instructions set ZF,PF,CF flags and
 645   // zero OF,AF,SF for NaN values.
 646   // Fixup flags by zeroing ZF,PF so that compare of NaN
 647   // values returns 'less than' result (CF is set).
 648   // Leave the rest of flags unchanged.
 649   //
 650   //    7 6 5 4 3 2 1 0
 651   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 652   //    0 0 1 0 1 0 1 1   (0x2B)
 653   //
 654   __ andq(Address(rsp, 0), 0xffffff2b);
 655   __ popf();
 656   __ bind(exit);
 657 }
 658 
 659 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 660   Label done;
 661   __ movl(dst, -1);
 662   __ jcc(Assembler::parity, done);
 663   __ jcc(Assembler::below, done);
 664   __ setb(Assembler::notEqual, dst);
 665   __ movzbl(dst, dst);
 666   __ bind(done);
 667 }
 668 
 669 
 670 //=============================================================================
 671 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 672 
 673 int Compile::ConstantTable::calculate_table_base_offset() const {
 674   return 0;  // absolute addressing, no offset
 675 }
 676 
 677 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 678   // Empty encoding
 679 }
 680 
 681 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 682   return 0;
 683 }
 684 
 685 #ifndef PRODUCT
 686 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 687   st->print("# MachConstantBaseNode (empty encoding)");
 688 }
 689 #endif
 690 
 691 
 692 //=============================================================================
 693 #ifndef PRODUCT
 694 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 695   Compile* C = ra_->C;
 696 
 697   int framesize = C->frame_slots() << LogBytesPerInt;
 698   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 699   // Remove wordSize for return addr which is already pushed.
 700   framesize -= wordSize;
 701 
 702   if (C->need_stack_bang(framesize)) {
 703     framesize -= wordSize;
 704     st->print("# stack bang");
 705     st->print("\n\t");
 706     st->print("pushq   rbp\t# Save rbp");
 707     if (framesize) {
 708       st->print("\n\t");
 709       st->print("subq    rsp, #%d\t# Create frame",framesize);
 710     }
 711   } else {
 712     st->print("subq    rsp, #%d\t# Create frame",framesize);
 713     st->print("\n\t");
 714     framesize -= wordSize;
 715     st->print("movq    [rsp + #%d], rbp\t# Save rbp",framesize);
 716   }
 717 
 718   if (VerifyStackAtCalls) {
 719     st->print("\n\t");
 720     framesize -= wordSize;
 721     st->print("movq    [rsp + #%d], 0xbadb100d\t# Majik cookie for stack depth check",framesize);
 722 #ifdef ASSERT
 723     st->print("\n\t");
 724     st->print("# stack alignment check");
 725 #endif
 726   }
 727   st->cr();
 728 }
 729 #endif
 730 
 731 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 732   Compile* C = ra_->C;
 733   MacroAssembler _masm(&cbuf);
 734 
 735   int framesize = C->frame_slots() << LogBytesPerInt;
 736 
 737   __ verified_entry(framesize, C->need_stack_bang(framesize), false);
 738 
 739   C->set_frame_complete(cbuf.insts_size());
 740 
 741   if (C->has_mach_constant_base_node()) {
 742     // NOTE: We set the table base offset here because users might be
 743     // emitted before MachConstantBaseNode.
 744     Compile::ConstantTable& constant_table = C->constant_table();
 745     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 746   }
 747 }
 748 
 749 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 750 {
 751   return MachNode::size(ra_); // too many variables; just compute it
 752                               // the hard way
 753 }
 754 
 755 int MachPrologNode::reloc() const
 756 {
 757   return 0; // a large enough number
 758 }
 759 
 760 //=============================================================================
 761 #ifndef PRODUCT
 762 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 763 {
 764   Compile* C = ra_->C;
 765   int framesize = C->frame_slots() << LogBytesPerInt;
 766   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 767   // Remove word for return adr already pushed
 768   // and RBP
 769   framesize -= 2*wordSize;
 770 
 771   if (framesize) {
 772     st->print_cr("addq    rsp, %d\t# Destroy frame", framesize);
 773     st->print("\t");
 774   }
 775 
 776   st->print_cr("popq   rbp");
 777   if (do_polling() && C->is_method_compilation()) {
 778     st->print("\t");
 779     if (Assembler::is_polling_page_far()) {
 780       st->print_cr("movq   rscratch1, #polling_page_address\n\t"
 781                    "testl  rax, [rscratch1]\t"
 782                    "# Safepoint: poll for GC");
 783     } else {
 784       st->print_cr("testl  rax, [rip + #offset_to_poll_page]\t"
 785                    "# Safepoint: poll for GC");
 786     }
 787   }
 788 }
 789 #endif
 790 
 791 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
 792 {
 793   Compile* C = ra_->C;
 794   int framesize = C->frame_slots() << LogBytesPerInt;
 795   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 796   // Remove word for return adr already pushed
 797   // and RBP
 798   framesize -= 2*wordSize;
 799 
 800   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 801 
 802   if (framesize) {
 803     emit_opcode(cbuf, Assembler::REX_W);
 804     if (framesize < 0x80) {
 805       emit_opcode(cbuf, 0x83); // addq rsp, #framesize
 806       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 807       emit_d8(cbuf, framesize);
 808     } else {
 809       emit_opcode(cbuf, 0x81); // addq rsp, #framesize
 810       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 811       emit_d32(cbuf, framesize);
 812     }
 813   }
 814 
 815   // popq rbp
 816   emit_opcode(cbuf, 0x58 | RBP_enc);
 817 
 818   if (do_polling() && C->is_method_compilation()) {
 819     MacroAssembler _masm(&cbuf);
 820     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 821     if (Assembler::is_polling_page_far()) {
 822       __ lea(rscratch1, polling_page);
 823       __ relocate(relocInfo::poll_return_type);
 824       __ testl(rax, Address(rscratch1, 0));
 825     } else {
 826       __ testl(rax, polling_page);
 827     }
 828   }
 829 }
 830 
 831 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
 832 {
 833   return MachNode::size(ra_); // too many variables; just compute it
 834                               // the hard way
 835 }
 836 
 837 int MachEpilogNode::reloc() const
 838 {
 839   return 2; // a large enough number
 840 }
 841 
 842 const Pipeline* MachEpilogNode::pipeline() const
 843 {
 844   return MachNode::pipeline_class();
 845 }
 846 
 847 int MachEpilogNode::safepoint_offset() const
 848 {
 849   return 0;
 850 }
 851 
 852 //=============================================================================
 853 
 854 enum RC {
 855   rc_bad,
 856   rc_int,
 857   rc_float,
 858   rc_stack
 859 };
 860 
 861 static enum RC rc_class(OptoReg::Name reg)
 862 {
 863   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 864 
 865   if (OptoReg::is_stack(reg)) return rc_stack;
 866 
 867   VMReg r = OptoReg::as_VMReg(reg);
 868 
 869   if (r->is_Register()) return rc_int;
 870 
 871   assert(r->is_XMMRegister(), "must be");
 872   return rc_float;
 873 }
 874 
 875 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
 876 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 877                           int src_hi, int dst_hi, uint ireg, outputStream* st);
 878 
 879 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
 880                             int stack_offset, int reg, uint ireg, outputStream* st);
 881 
 882 static void vec_stack_to_stack_helper(CodeBuffer *cbuf, int src_offset,
 883                                       int dst_offset, uint ireg, outputStream* st) {
 884   if (cbuf) {
 885     MacroAssembler _masm(cbuf);
 886     switch (ireg) {
 887     case Op_VecS:
 888       __ movq(Address(rsp, -8), rax);
 889       __ movl(rax, Address(rsp, src_offset));
 890       __ movl(Address(rsp, dst_offset), rax);
 891       __ movq(rax, Address(rsp, -8));
 892       break;
 893     case Op_VecD:
 894       __ pushq(Address(rsp, src_offset));
 895       __ popq (Address(rsp, dst_offset));
 896       break;
 897     case Op_VecX:
 898       __ pushq(Address(rsp, src_offset));
 899       __ popq (Address(rsp, dst_offset));
 900       __ pushq(Address(rsp, src_offset+8));
 901       __ popq (Address(rsp, dst_offset+8));
 902       break;
 903     case Op_VecY:
 904       __ vmovdqu(Address(rsp, -32), xmm0);
 905       __ vmovdqu(xmm0, Address(rsp, src_offset));
 906       __ vmovdqu(Address(rsp, dst_offset), xmm0);
 907       __ vmovdqu(xmm0, Address(rsp, -32));
 908       break;
 909     default:
 910       ShouldNotReachHere();
 911     }
 912 #ifndef PRODUCT
 913   } else {
 914     switch (ireg) {
 915     case Op_VecS:
 916       st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
 917                 "movl    rax, [rsp + #%d]\n\t"
 918                 "movl    [rsp + #%d], rax\n\t"
 919                 "movq    rax, [rsp - #8]",
 920                 src_offset, dst_offset);
 921       break;
 922     case Op_VecD:
 923       st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
 924                 "popq    [rsp + #%d]",
 925                 src_offset, dst_offset);
 926       break;
 927      case Op_VecX:
 928       st->print("pushq   [rsp + #%d]\t# 128-bit mem-mem spill\n\t"
 929                 "popq    [rsp + #%d]\n\t"
 930                 "pushq   [rsp + #%d]\n\t"
 931                 "popq    [rsp + #%d]",
 932                 src_offset, dst_offset, src_offset+8, dst_offset+8);
 933       break;
 934     case Op_VecY:
 935       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
 936                 "vmovdqu xmm0, [rsp + #%d]\n\t"
 937                 "vmovdqu [rsp + #%d], xmm0\n\t"
 938                 "vmovdqu xmm0, [rsp - #32]",
 939                 src_offset, dst_offset);
 940       break;
 941     default:
 942       ShouldNotReachHere();
 943     }
 944 #endif
 945   }
 946 }
 947 
 948 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
 949                                        PhaseRegAlloc* ra_,
 950                                        bool do_size,
 951                                        outputStream* st) const {
 952   assert(cbuf != NULL || st  != NULL, "sanity");
 953   // Get registers to move
 954   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 955   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 956   OptoReg::Name dst_second = ra_->get_reg_second(this);
 957   OptoReg::Name dst_first = ra_->get_reg_first(this);
 958 
 959   enum RC src_second_rc = rc_class(src_second);
 960   enum RC src_first_rc = rc_class(src_first);
 961   enum RC dst_second_rc = rc_class(dst_second);
 962   enum RC dst_first_rc = rc_class(dst_first);
 963 
 964   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
 965          "must move at least 1 register" );
 966 
 967   if (src_first == dst_first && src_second == dst_second) {
 968     // Self copy, no move
 969     return 0;
 970   }
 971   if (bottom_type()->isa_vect() != NULL) {
 972     uint ireg = ideal_reg();
 973     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
 974     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
 975     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
 976       // mem -> mem
 977       int src_offset = ra_->reg2offset(src_first);
 978       int dst_offset = ra_->reg2offset(dst_first);
 979       vec_stack_to_stack_helper(cbuf, src_offset, dst_offset, ireg, st);
 980     } else if (src_first_rc == rc_float && dst_first_rc == rc_float ) {
 981       vec_mov_helper(cbuf, false, src_first, dst_first, src_second, dst_second, ireg, st);
 982     } else if (src_first_rc == rc_float && dst_first_rc == rc_stack ) {
 983       int stack_offset = ra_->reg2offset(dst_first);
 984       vec_spill_helper(cbuf, false, false, stack_offset, src_first, ireg, st);
 985     } else if (src_first_rc == rc_stack && dst_first_rc == rc_float ) {
 986       int stack_offset = ra_->reg2offset(src_first);
 987       vec_spill_helper(cbuf, false, true,  stack_offset, dst_first, ireg, st);
 988     } else {
 989       ShouldNotReachHere();
 990     }
 991     return 0;
 992   }
 993   if (src_first_rc == rc_stack) {
 994     // mem ->
 995     if (dst_first_rc == rc_stack) {
 996       // mem -> mem
 997       assert(src_second != dst_first, "overlap");
 998       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
 999           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1000         // 64-bit
1001         int src_offset = ra_->reg2offset(src_first);
1002         int dst_offset = ra_->reg2offset(dst_first);
1003         if (cbuf) {
1004           MacroAssembler _masm(cbuf);
1005           __ pushq(Address(rsp, src_offset));
1006           __ popq (Address(rsp, dst_offset));
1007 #ifndef PRODUCT
1008         } else {
1009           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1010                     "popq    [rsp + #%d]",
1011                      src_offset, dst_offset);
1012 #endif
1013         }
1014       } else {
1015         // 32-bit
1016         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1017         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1018         // No pushl/popl, so:
1019         int src_offset = ra_->reg2offset(src_first);
1020         int dst_offset = ra_->reg2offset(dst_first);
1021         if (cbuf) {
1022           MacroAssembler _masm(cbuf);
1023           __ movq(Address(rsp, -8), rax);
1024           __ movl(rax, Address(rsp, src_offset));
1025           __ movl(Address(rsp, dst_offset), rax);
1026           __ movq(rax, Address(rsp, -8));
1027 #ifndef PRODUCT
1028         } else {
1029           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1030                     "movl    rax, [rsp + #%d]\n\t"
1031                     "movl    [rsp + #%d], rax\n\t"
1032                     "movq    rax, [rsp - #8]",
1033                      src_offset, dst_offset);
1034 #endif
1035         }
1036       }
1037       return 0;
1038     } else if (dst_first_rc == rc_int) {
1039       // mem -> gpr
1040       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1041           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1042         // 64-bit
1043         int offset = ra_->reg2offset(src_first);
1044         if (cbuf) {
1045           MacroAssembler _masm(cbuf);
1046           __ movq(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1047 #ifndef PRODUCT
1048         } else {
1049           st->print("movq    %s, [rsp + #%d]\t# spill",
1050                      Matcher::regName[dst_first],
1051                      offset);
1052 #endif
1053         }
1054       } else {
1055         // 32-bit
1056         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1057         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1058         int offset = ra_->reg2offset(src_first);
1059         if (cbuf) {
1060           MacroAssembler _masm(cbuf);
1061           __ movl(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1062 #ifndef PRODUCT
1063         } else {
1064           st->print("movl    %s, [rsp + #%d]\t# spill",
1065                      Matcher::regName[dst_first],
1066                      offset);
1067 #endif
1068         }
1069       }
1070       return 0;
1071     } else if (dst_first_rc == rc_float) {
1072       // mem-> xmm
1073       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1074           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1075         // 64-bit
1076         int offset = ra_->reg2offset(src_first);
1077         if (cbuf) {
1078           MacroAssembler _masm(cbuf);
1079           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1080 #ifndef PRODUCT
1081         } else {
1082           st->print("%s  %s, [rsp + #%d]\t# spill",
1083                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
1084                      Matcher::regName[dst_first],
1085                      offset);
1086 #endif
1087         }
1088       } else {
1089         // 32-bit
1090         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1091         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1092         int offset = ra_->reg2offset(src_first);
1093         if (cbuf) {
1094           MacroAssembler _masm(cbuf);
1095           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1096 #ifndef PRODUCT
1097         } else {
1098           st->print("movss   %s, [rsp + #%d]\t# spill",
1099                      Matcher::regName[dst_first],
1100                      offset);
1101 #endif
1102         }
1103       }
1104       return 0;
1105     }
1106   } else if (src_first_rc == rc_int) {
1107     // gpr ->
1108     if (dst_first_rc == rc_stack) {
1109       // gpr -> mem
1110       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1111           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1112         // 64-bit
1113         int offset = ra_->reg2offset(dst_first);
1114         if (cbuf) {
1115           MacroAssembler _masm(cbuf);
1116           __ movq(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1117 #ifndef PRODUCT
1118         } else {
1119           st->print("movq    [rsp + #%d], %s\t# spill",
1120                      offset,
1121                      Matcher::regName[src_first]);
1122 #endif
1123         }
1124       } else {
1125         // 32-bit
1126         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1127         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1128         int offset = ra_->reg2offset(dst_first);
1129         if (cbuf) {
1130           MacroAssembler _masm(cbuf);
1131           __ movl(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1132 #ifndef PRODUCT
1133         } else {
1134           st->print("movl    [rsp + #%d], %s\t# spill",
1135                      offset,
1136                      Matcher::regName[src_first]);
1137 #endif
1138         }
1139       }
1140       return 0;
1141     } else if (dst_first_rc == rc_int) {
1142       // gpr -> gpr
1143       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1144           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1145         // 64-bit
1146         if (cbuf) {
1147           MacroAssembler _masm(cbuf);
1148           __ movq(as_Register(Matcher::_regEncode[dst_first]),
1149                   as_Register(Matcher::_regEncode[src_first]));
1150 #ifndef PRODUCT
1151         } else {
1152           st->print("movq    %s, %s\t# spill",
1153                      Matcher::regName[dst_first],
1154                      Matcher::regName[src_first]);
1155 #endif
1156         }
1157         return 0;
1158       } else {
1159         // 32-bit
1160         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1161         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1162         if (cbuf) {
1163           MacroAssembler _masm(cbuf);
1164           __ movl(as_Register(Matcher::_regEncode[dst_first]),
1165                   as_Register(Matcher::_regEncode[src_first]));
1166 #ifndef PRODUCT
1167         } else {
1168           st->print("movl    %s, %s\t# spill",
1169                      Matcher::regName[dst_first],
1170                      Matcher::regName[src_first]);
1171 #endif
1172         }
1173         return 0;
1174       }
1175     } else if (dst_first_rc == rc_float) {
1176       // gpr -> xmm
1177       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1178           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1179         // 64-bit
1180         if (cbuf) {
1181           MacroAssembler _masm(cbuf);
1182           __ movdq( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1183 #ifndef PRODUCT
1184         } else {
1185           st->print("movdq   %s, %s\t# spill",
1186                      Matcher::regName[dst_first],
1187                      Matcher::regName[src_first]);
1188 #endif
1189         }
1190       } else {
1191         // 32-bit
1192         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1193         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1194         if (cbuf) {
1195           MacroAssembler _masm(cbuf);
1196           __ movdl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1197 #ifndef PRODUCT
1198         } else {
1199           st->print("movdl   %s, %s\t# spill",
1200                      Matcher::regName[dst_first],
1201                      Matcher::regName[src_first]);
1202 #endif
1203         }
1204       }
1205       return 0;
1206     }
1207   } else if (src_first_rc == rc_float) {
1208     // xmm ->
1209     if (dst_first_rc == rc_stack) {
1210       // xmm -> mem
1211       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1212           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1213         // 64-bit
1214         int offset = ra_->reg2offset(dst_first);
1215         if (cbuf) {
1216           MacroAssembler _masm(cbuf);
1217           __ movdbl( Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1218 #ifndef PRODUCT
1219         } else {
1220           st->print("movsd   [rsp + #%d], %s\t# spill",
1221                      offset,
1222                      Matcher::regName[src_first]);
1223 #endif
1224         }
1225       } else {
1226         // 32-bit
1227         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1228         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1229         int offset = ra_->reg2offset(dst_first);
1230         if (cbuf) {
1231           MacroAssembler _masm(cbuf);
1232           __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1233 #ifndef PRODUCT
1234         } else {
1235           st->print("movss   [rsp + #%d], %s\t# spill",
1236                      offset,
1237                      Matcher::regName[src_first]);
1238 #endif
1239         }
1240       }
1241       return 0;
1242     } else if (dst_first_rc == rc_int) {
1243       // xmm -> gpr
1244       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1245           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1246         // 64-bit
1247         if (cbuf) {
1248           MacroAssembler _masm(cbuf);
1249           __ movdq( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1250 #ifndef PRODUCT
1251         } else {
1252           st->print("movdq   %s, %s\t# spill",
1253                      Matcher::regName[dst_first],
1254                      Matcher::regName[src_first]);
1255 #endif
1256         }
1257       } else {
1258         // 32-bit
1259         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1260         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1261         if (cbuf) {
1262           MacroAssembler _masm(cbuf);
1263           __ movdl( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1264 #ifndef PRODUCT
1265         } else {
1266           st->print("movdl   %s, %s\t# spill",
1267                      Matcher::regName[dst_first],
1268                      Matcher::regName[src_first]);
1269 #endif
1270         }
1271       }
1272       return 0;
1273     } else if (dst_first_rc == rc_float) {
1274       // xmm -> xmm
1275       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1276           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1277         // 64-bit
1278         if (cbuf) {
1279           MacroAssembler _masm(cbuf);
1280           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1281 #ifndef PRODUCT
1282         } else {
1283           st->print("%s  %s, %s\t# spill",
1284                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
1285                      Matcher::regName[dst_first],
1286                      Matcher::regName[src_first]);
1287 #endif
1288         }
1289       } else {
1290         // 32-bit
1291         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1292         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1293         if (cbuf) {
1294           MacroAssembler _masm(cbuf);
1295           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1296 #ifndef PRODUCT
1297         } else {
1298           st->print("%s  %s, %s\t# spill",
1299                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
1300                      Matcher::regName[dst_first],
1301                      Matcher::regName[src_first]);
1302 #endif
1303         }
1304       }
1305       return 0;
1306     }
1307   }
1308 
1309   assert(0," foo ");
1310   Unimplemented();
1311   return 0;
1312 }
1313 
1314 #ifndef PRODUCT
1315 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1316   implementation(NULL, ra_, false, st);
1317 }
1318 #endif
1319 
1320 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1321   implementation(&cbuf, ra_, false, NULL);
1322 }
1323 
1324 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1325   return MachNode::size(ra_);
1326 }
1327 
1328 //=============================================================================
1329 #ifndef PRODUCT
1330 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1331 {
1332   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1333   int reg = ra_->get_reg_first(this);
1334   st->print("leaq    %s, [rsp + #%d]\t# box lock",
1335             Matcher::regName[reg], offset);
1336 }
1337 #endif
1338 
1339 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1340 {
1341   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1342   int reg = ra_->get_encode(this);
1343   if (offset >= 0x80) {
1344     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1345     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1346     emit_rm(cbuf, 0x2, reg & 7, 0x04);
1347     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1348     emit_d32(cbuf, offset);
1349   } else {
1350     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1351     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1352     emit_rm(cbuf, 0x1, reg & 7, 0x04);
1353     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1354     emit_d8(cbuf, offset);
1355   }
1356 }
1357 
1358 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
1359 {
1360   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1361   return (offset < 0x80) ? 5 : 8; // REX
1362 }
1363 
1364 //=============================================================================
1365 
1366 // emit call stub, compiled java to interpreter
1367 void emit_java_to_interp(CodeBuffer& cbuf)
1368 {
1369   // Stub is fixed up when the corresponding call is converted from
1370   // calling compiled code to calling interpreted code.
1371   // movq rbx, 0
1372   // jmp -5 # to self
1373 
1374   address mark = cbuf.insts_mark();  // get mark within main instrs section
1375 
1376   // Note that the code buffer's insts_mark is always relative to insts.
1377   // That's why we must use the macroassembler to generate a stub.
1378   MacroAssembler _masm(&cbuf);
1379 
1380   address base =
1381   __ start_a_stub(Compile::MAX_stubs_size);
1382   if (base == NULL)  return;  // CodeBuffer::expand failed
1383   // static stub relocation stores the instruction address of the call
1384   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM64);
1385   // static stub relocation also tags the methodOop in the code-stream.
1386   __ movoop(rbx, (jobject) NULL);  // method is zapped till fixup time
1387   // This is recognized as unresolved by relocs/nativeinst/ic code
1388   __ jump(RuntimeAddress(__ pc()));
1389 
1390   // Update current stubs pointer and restore insts_end.
1391   __ end_a_stub();
1392 }
1393 
1394 // size of call stub, compiled java to interpretor
1395 uint size_java_to_interp()
1396 {
1397   return 15;  // movq (1+1+8); jmp (1+4)
1398 }
1399 
1400 // relocation entries for call stub, compiled java to interpretor
1401 uint reloc_java_to_interp()
1402 {
1403   return 4; // 3 in emit_java_to_interp + 1 in Java_Static_Call
1404 }
1405 
1406 //=============================================================================
1407 #ifndef PRODUCT
1408 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1409 {
1410   if (UseCompressedOops) {
1411     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
1412     if (Universe::narrow_oop_shift() != 0) {
1413       st->print_cr("\tdecode_heap_oop_not_null rscratch1, rscratch1");
1414     }
1415     st->print_cr("\tcmpq    rax, rscratch1\t # Inline cache check");
1416   } else {
1417     st->print_cr("\tcmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t"
1418                  "# Inline cache check");
1419   }
1420   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
1421   st->print_cr("\tnop\t# nops to align entry point");
1422 }
1423 #endif
1424 
1425 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1426 {
1427   MacroAssembler masm(&cbuf);
1428   uint insts_size = cbuf.insts_size();
1429   if (UseCompressedOops) {
1430     masm.load_klass(rscratch1, j_rarg0);
1431     masm.cmpptr(rax, rscratch1);
1432   } else {
1433     masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
1434   }
1435 
1436   masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1437 
1438   /* WARNING these NOPs are critical so that verified entry point is properly
1439      4 bytes aligned for patching by NativeJump::patch_verified_entry() */
1440   int nops_cnt = 4 - ((cbuf.insts_size() - insts_size) & 0x3);
1441   if (OptoBreakpoint) {
1442     // Leave space for int3
1443     nops_cnt -= 1;
1444   }
1445   nops_cnt &= 0x3; // Do not add nops if code is aligned.
1446   if (nops_cnt > 0)
1447     masm.nop(nops_cnt);
1448 }
1449 
1450 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
1451 {
1452   return MachNode::size(ra_); // too many variables; just compute it
1453                               // the hard way
1454 }
1455 
1456 
1457 //=============================================================================
1458 uint size_exception_handler()
1459 {
1460   // NativeCall instruction size is the same as NativeJump.
1461   // Note that this value is also credited (in output.cpp) to
1462   // the size of the code section.
1463   return NativeJump::instruction_size;
1464 }
1465 
1466 // Emit exception handler code.
1467 int emit_exception_handler(CodeBuffer& cbuf)
1468 {
1469 
1470   // Note that the code buffer's insts_mark is always relative to insts.
1471   // That's why we must use the macroassembler to generate a handler.
1472   MacroAssembler _masm(&cbuf);
1473   address base =
1474   __ start_a_stub(size_exception_handler());
1475   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1476   int offset = __ offset();
1477   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1478   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1479   __ end_a_stub();
1480   return offset;
1481 }
1482 
1483 uint size_deopt_handler()
1484 {
1485   // three 5 byte instructions
1486   return 15;
1487 }
1488 
1489 // Emit deopt handler code.
1490 int emit_deopt_handler(CodeBuffer& cbuf)
1491 {
1492 
1493   // Note that the code buffer's insts_mark is always relative to insts.
1494   // That's why we must use the macroassembler to generate a handler.
1495   MacroAssembler _masm(&cbuf);
1496   address base =
1497   __ start_a_stub(size_deopt_handler());
1498   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1499   int offset = __ offset();
1500   address the_pc = (address) __ pc();
1501   Label next;
1502   // push a "the_pc" on the stack without destroying any registers
1503   // as they all may be live.
1504 
1505   // push address of "next"
1506   __ call(next, relocInfo::none); // reloc none is fine since it is a disp32
1507   __ bind(next);
1508   // adjust it so it matches "the_pc"
1509   __ subptr(Address(rsp, 0), __ offset() - offset);
1510   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1511   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1512   __ end_a_stub();
1513   return offset;
1514 }
1515 
1516 
1517 const bool Matcher::match_rule_supported(int opcode) {
1518   if (!has_match_rule(opcode))
1519     return false;
1520 
1521   switch (opcode) {
1522     case Op_PopCountI:
1523     case Op_PopCountL:
1524       if (!UsePopCountInstruction)
1525         return false;
1526     break;
1527   }
1528 
1529   return true;  // Per default match rules are supported.
1530 }
1531 
1532 int Matcher::regnum_to_fpu_offset(int regnum)
1533 {
1534   return regnum - 32; // The FP registers are in the second chunk
1535 }
1536 
1537 // This is UltraSparc specific, true just means we have fast l2f conversion
1538 const bool Matcher::convL2FSupported(void) {
1539   return true;
1540 }
1541 
1542 // Is this branch offset short enough that a short branch can be used?
1543 //
1544 // NOTE: If the platform does not provide any short branch variants, then
1545 //       this method should return false for offset 0.
1546 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1547   // The passed offset is relative to address of the branch.
1548   // On 86 a branch displacement is calculated relative to address
1549   // of a next instruction.
1550   offset -= br_size;
1551 
1552   // the short version of jmpConUCF2 contains multiple branches,
1553   // making the reach slightly less
1554   if (rule == jmpConUCF2_rule)
1555     return (-126 <= offset && offset <= 125);
1556   return (-128 <= offset && offset <= 127);
1557 }
1558 
1559 const bool Matcher::isSimpleConstant64(jlong value) {
1560   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1561   //return value == (int) value;  // Cf. storeImmL and immL32.
1562 
1563   // Probably always true, even if a temp register is required.
1564   return true;
1565 }
1566 
1567 // The ecx parameter to rep stosq for the ClearArray node is in words.
1568 const bool Matcher::init_array_count_is_in_bytes = false;
1569 
1570 // Threshold size for cleararray.
1571 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1572 
1573 // No additional cost for CMOVL.
1574 const int Matcher::long_cmove_cost() { return 0; }
1575 
1576 // No CMOVF/CMOVD with SSE2
1577 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
1578 
1579 // Should the Matcher clone shifts on addressing modes, expecting them
1580 // to be subsumed into complex addressing expressions or compute them
1581 // into registers?  True for Intel but false for most RISCs
1582 const bool Matcher::clone_shift_expressions = true;
1583 
1584 // Do we need to mask the count passed to shift instructions or does
1585 // the cpu only look at the lower 5/6 bits anyway?
1586 const bool Matcher::need_masked_shift_count = false;
1587 
1588 bool Matcher::narrow_oop_use_complex_address() {
1589   assert(UseCompressedOops, "only for compressed oops code");
1590   return (LogMinObjAlignmentInBytes <= 3);
1591 }
1592 
1593 // Is it better to copy float constants, or load them directly from
1594 // memory?  Intel can load a float constant from a direct address,
1595 // requiring no extra registers.  Most RISCs will have to materialize
1596 // an address into a register first, so they would do better to copy
1597 // the constant from stack.
1598 const bool Matcher::rematerialize_float_constants = true; // XXX
1599 
1600 // If CPU can load and store mis-aligned doubles directly then no
1601 // fixup is needed.  Else we split the double into 2 integer pieces
1602 // and move it piece-by-piece.  Only happens when passing doubles into
1603 // C code as the Java calling convention forces doubles to be aligned.
1604 const bool Matcher::misaligned_doubles_ok = true;
1605 
1606 // No-op on amd64
1607 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
1608 
1609 // Advertise here if the CPU requires explicit rounding operations to
1610 // implement the UseStrictFP mode.
1611 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1612 
1613 // Are floats conerted to double when stored to stack during deoptimization?
1614 // On x64 it is stored without convertion so we can use normal access.
1615 bool Matcher::float_in_double() { return false; }
1616 
1617 // Do ints take an entire long register or just half?
1618 const bool Matcher::int_in_long = true;
1619 
1620 // Return whether or not this register is ever used as an argument.
1621 // This function is used on startup to build the trampoline stubs in
1622 // generateOptoStub.  Registers not mentioned will be killed by the VM
1623 // call in the trampoline, and arguments in those registers not be
1624 // available to the callee.
1625 bool Matcher::can_be_java_arg(int reg)
1626 {
1627   return
1628     reg ==  RDI_num || reg == RDI_H_num ||
1629     reg ==  RSI_num || reg == RSI_H_num ||
1630     reg ==  RDX_num || reg == RDX_H_num ||
1631     reg ==  RCX_num || reg == RCX_H_num ||
1632     reg ==   R8_num || reg ==  R8_H_num ||
1633     reg ==   R9_num || reg ==  R9_H_num ||
1634     reg ==  R12_num || reg == R12_H_num ||
1635     reg == XMM0_num || reg == XMM0b_num ||
1636     reg == XMM1_num || reg == XMM1b_num ||
1637     reg == XMM2_num || reg == XMM2b_num ||
1638     reg == XMM3_num || reg == XMM3b_num ||
1639     reg == XMM4_num || reg == XMM4b_num ||
1640     reg == XMM5_num || reg == XMM5b_num ||
1641     reg == XMM6_num || reg == XMM6b_num ||
1642     reg == XMM7_num || reg == XMM7b_num;
1643 }
1644 
1645 bool Matcher::is_spillable_arg(int reg)
1646 {
1647   return can_be_java_arg(reg);
1648 }
1649 
1650 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1651   // In 64 bit mode a code which use multiply when
1652   // devisor is constant is faster than hardware
1653   // DIV instruction (it uses MulHiL).
1654   return false;
1655 }
1656 
1657 // Register for DIVI projection of divmodI
1658 RegMask Matcher::divI_proj_mask() {
1659   return INT_RAX_REG_mask();
1660 }
1661 
1662 // Register for MODI projection of divmodI
1663 RegMask Matcher::modI_proj_mask() {
1664   return INT_RDX_REG_mask();
1665 }
1666 
1667 // Register for DIVL projection of divmodL
1668 RegMask Matcher::divL_proj_mask() {
1669   return LONG_RAX_REG_mask();
1670 }
1671 
1672 // Register for MODL projection of divmodL
1673 RegMask Matcher::modL_proj_mask() {
1674   return LONG_RDX_REG_mask();
1675 }
1676 
1677 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1678   return PTR_RBP_REG_mask();
1679 }
1680 
1681 static Address build_address(int b, int i, int s, int d) {
1682   Register index = as_Register(i);
1683   Address::ScaleFactor scale = (Address::ScaleFactor)s;
1684   if (index == rsp) {
1685     index = noreg;
1686     scale = Address::no_scale;
1687   }
1688   Address addr(as_Register(b), index, scale, d);
1689   return addr;
1690 }
1691 
1692 %}
1693 
1694 //----------ENCODING BLOCK-----------------------------------------------------
1695 // This block specifies the encoding classes used by the compiler to
1696 // output byte streams.  Encoding classes are parameterized macros
1697 // used by Machine Instruction Nodes in order to generate the bit
1698 // encoding of the instruction.  Operands specify their base encoding
1699 // interface with the interface keyword.  There are currently
1700 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
1701 // COND_INTER.  REG_INTER causes an operand to generate a function
1702 // which returns its register number when queried.  CONST_INTER causes
1703 // an operand to generate a function which returns the value of the
1704 // constant when queried.  MEMORY_INTER causes an operand to generate
1705 // four functions which return the Base Register, the Index Register,
1706 // the Scale Value, and the Offset Value of the operand when queried.
1707 // COND_INTER causes an operand to generate six functions which return
1708 // the encoding code (ie - encoding bits for the instruction)
1709 // associated with each basic boolean condition for a conditional
1710 // instruction.
1711 //
1712 // Instructions specify two basic values for encoding.  Again, a
1713 // function is available to check if the constant displacement is an
1714 // oop. They use the ins_encode keyword to specify their encoding
1715 // classes (which must be a sequence of enc_class names, and their
1716 // parameters, specified in the encoding block), and they use the
1717 // opcode keyword to specify, in order, their primary, secondary, and
1718 // tertiary opcode.  Only the opcode sections which a particular
1719 // instruction needs for encoding need to be specified.
1720 encode %{
1721   // Build emit functions for each basic byte or larger field in the
1722   // intel encoding scheme (opcode, rm, sib, immediate), and call them
1723   // from C++ code in the enc_class source block.  Emit functions will
1724   // live in the main source block for now.  In future, we can
1725   // generalize this by adding a syntax that specifies the sizes of
1726   // fields in an order, so that the adlc can build the emit functions
1727   // automagically
1728 
1729   // Emit primary opcode
1730   enc_class OpcP
1731   %{
1732     emit_opcode(cbuf, $primary);
1733   %}
1734 
1735   // Emit secondary opcode
1736   enc_class OpcS
1737   %{
1738     emit_opcode(cbuf, $secondary);
1739   %}
1740 
1741   // Emit tertiary opcode
1742   enc_class OpcT
1743   %{
1744     emit_opcode(cbuf, $tertiary);
1745   %}
1746 
1747   // Emit opcode directly
1748   enc_class Opcode(immI d8)
1749   %{
1750     emit_opcode(cbuf, $d8$$constant);
1751   %}
1752 
1753   // Emit size prefix
1754   enc_class SizePrefix
1755   %{
1756     emit_opcode(cbuf, 0x66);
1757   %}
1758 
1759   enc_class reg(rRegI reg)
1760   %{
1761     emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
1762   %}
1763 
1764   enc_class reg_reg(rRegI dst, rRegI src)
1765   %{
1766     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1767   %}
1768 
1769   enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
1770   %{
1771     emit_opcode(cbuf, $opcode$$constant);
1772     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1773   %}
1774 
1775   enc_class cdql_enc(no_rax_rdx_RegI div)
1776   %{
1777     // Full implementation of Java idiv and irem; checks for
1778     // special case as described in JVM spec., p.243 & p.271.
1779     //
1780     //         normal case                           special case
1781     //
1782     // input : rax: dividend                         min_int
1783     //         reg: divisor                          -1
1784     //
1785     // output: rax: quotient  (= rax idiv reg)       min_int
1786     //         rdx: remainder (= rax irem reg)       0
1787     //
1788     //  Code sequnce:
1789     //
1790     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
1791     //    5:   75 07/08                jne    e <normal>
1792     //    7:   33 d2                   xor    %edx,%edx
1793     //  [div >= 8 -> offset + 1]
1794     //  [REX_B]
1795     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
1796     //    c:   74 03/04                je     11 <done>
1797     // 000000000000000e <normal>:
1798     //    e:   99                      cltd
1799     //  [div >= 8 -> offset + 1]
1800     //  [REX_B]
1801     //    f:   f7 f9                   idiv   $div
1802     // 0000000000000011 <done>:
1803 
1804     // cmp    $0x80000000,%eax
1805     emit_opcode(cbuf, 0x3d);
1806     emit_d8(cbuf, 0x00);
1807     emit_d8(cbuf, 0x00);
1808     emit_d8(cbuf, 0x00);
1809     emit_d8(cbuf, 0x80);
1810 
1811     // jne    e <normal>
1812     emit_opcode(cbuf, 0x75);
1813     emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
1814 
1815     // xor    %edx,%edx
1816     emit_opcode(cbuf, 0x33);
1817     emit_d8(cbuf, 0xD2);
1818 
1819     // cmp    $0xffffffffffffffff,%ecx
1820     if ($div$$reg >= 8) {
1821       emit_opcode(cbuf, Assembler::REX_B);
1822     }
1823     emit_opcode(cbuf, 0x83);
1824     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1825     emit_d8(cbuf, 0xFF);
1826 
1827     // je     11 <done>
1828     emit_opcode(cbuf, 0x74);
1829     emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
1830 
1831     // <normal>
1832     // cltd
1833     emit_opcode(cbuf, 0x99);
1834 
1835     // idivl (note: must be emitted by the user of this rule)
1836     // <done>
1837   %}
1838 
1839   enc_class cdqq_enc(no_rax_rdx_RegL div)
1840   %{
1841     // Full implementation of Java ldiv and lrem; checks for
1842     // special case as described in JVM spec., p.243 & p.271.
1843     //
1844     //         normal case                           special case
1845     //
1846     // input : rax: dividend                         min_long
1847     //         reg: divisor                          -1
1848     //
1849     // output: rax: quotient  (= rax idiv reg)       min_long
1850     //         rdx: remainder (= rax irem reg)       0
1851     //
1852     //  Code sequnce:
1853     //
1854     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
1855     //    7:   00 00 80
1856     //    a:   48 39 d0                cmp    %rdx,%rax
1857     //    d:   75 08                   jne    17 <normal>
1858     //    f:   33 d2                   xor    %edx,%edx
1859     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
1860     //   15:   74 05                   je     1c <done>
1861     // 0000000000000017 <normal>:
1862     //   17:   48 99                   cqto
1863     //   19:   48 f7 f9                idiv   $div
1864     // 000000000000001c <done>:
1865 
1866     // mov    $0x8000000000000000,%rdx
1867     emit_opcode(cbuf, Assembler::REX_W);
1868     emit_opcode(cbuf, 0xBA);
1869     emit_d8(cbuf, 0x00);
1870     emit_d8(cbuf, 0x00);
1871     emit_d8(cbuf, 0x00);
1872     emit_d8(cbuf, 0x00);
1873     emit_d8(cbuf, 0x00);
1874     emit_d8(cbuf, 0x00);
1875     emit_d8(cbuf, 0x00);
1876     emit_d8(cbuf, 0x80);
1877 
1878     // cmp    %rdx,%rax
1879     emit_opcode(cbuf, Assembler::REX_W);
1880     emit_opcode(cbuf, 0x39);
1881     emit_d8(cbuf, 0xD0);
1882 
1883     // jne    17 <normal>
1884     emit_opcode(cbuf, 0x75);
1885     emit_d8(cbuf, 0x08);
1886 
1887     // xor    %edx,%edx
1888     emit_opcode(cbuf, 0x33);
1889     emit_d8(cbuf, 0xD2);
1890 
1891     // cmp    $0xffffffffffffffff,$div
1892     emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
1893     emit_opcode(cbuf, 0x83);
1894     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1895     emit_d8(cbuf, 0xFF);
1896 
1897     // je     1e <done>
1898     emit_opcode(cbuf, 0x74);
1899     emit_d8(cbuf, 0x05);
1900 
1901     // <normal>
1902     // cqto
1903     emit_opcode(cbuf, Assembler::REX_W);
1904     emit_opcode(cbuf, 0x99);
1905 
1906     // idivq (note: must be emitted by the user of this rule)
1907     // <done>
1908   %}
1909 
1910   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1911   enc_class OpcSE(immI imm)
1912   %{
1913     // Emit primary opcode and set sign-extend bit
1914     // Check for 8-bit immediate, and set sign extend bit in opcode
1915     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
1916       emit_opcode(cbuf, $primary | 0x02);
1917     } else {
1918       // 32-bit immediate
1919       emit_opcode(cbuf, $primary);
1920     }
1921   %}
1922 
1923   enc_class OpcSErm(rRegI dst, immI imm)
1924   %{
1925     // OpcSEr/m
1926     int dstenc = $dst$$reg;
1927     if (dstenc >= 8) {
1928       emit_opcode(cbuf, Assembler::REX_B);
1929       dstenc -= 8;
1930     }
1931     // Emit primary opcode and set sign-extend bit
1932     // Check for 8-bit immediate, and set sign extend bit in opcode
1933     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
1934       emit_opcode(cbuf, $primary | 0x02);
1935     } else {
1936       // 32-bit immediate
1937       emit_opcode(cbuf, $primary);
1938     }
1939     // Emit r/m byte with secondary opcode, after primary opcode.
1940     emit_rm(cbuf, 0x3, $secondary, dstenc);
1941   %}
1942 
1943   enc_class OpcSErm_wide(rRegL dst, immI imm)
1944   %{
1945     // OpcSEr/m
1946     int dstenc = $dst$$reg;
1947     if (dstenc < 8) {
1948       emit_opcode(cbuf, Assembler::REX_W);
1949     } else {
1950       emit_opcode(cbuf, Assembler::REX_WB);
1951       dstenc -= 8;
1952     }
1953     // Emit primary opcode and set sign-extend bit
1954     // Check for 8-bit immediate, and set sign extend bit in opcode
1955     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
1956       emit_opcode(cbuf, $primary | 0x02);
1957     } else {
1958       // 32-bit immediate
1959       emit_opcode(cbuf, $primary);
1960     }
1961     // Emit r/m byte with secondary opcode, after primary opcode.
1962     emit_rm(cbuf, 0x3, $secondary, dstenc);
1963   %}
1964 
1965   enc_class Con8or32(immI imm)
1966   %{
1967     // Check for 8-bit immediate, and set sign extend bit in opcode
1968     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
1969       $$$emit8$imm$$constant;
1970     } else {
1971       // 32-bit immediate
1972       $$$emit32$imm$$constant;
1973     }
1974   %}
1975 
1976   enc_class opc2_reg(rRegI dst)
1977   %{
1978     // BSWAP
1979     emit_cc(cbuf, $secondary, $dst$$reg);
1980   %}
1981 
1982   enc_class opc3_reg(rRegI dst)
1983   %{
1984     // BSWAP
1985     emit_cc(cbuf, $tertiary, $dst$$reg);
1986   %}
1987 
1988   enc_class reg_opc(rRegI div)
1989   %{
1990     // INC, DEC, IDIV, IMOD, JMP indirect, ...
1991     emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
1992   %}
1993 
1994   enc_class enc_cmov(cmpOp cop)
1995   %{
1996     // CMOV
1997     $$$emit8$primary;
1998     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1999   %}
2000 
2001   enc_class enc_PartialSubtypeCheck()
2002   %{
2003     Register Rrdi = as_Register(RDI_enc); // result register
2004     Register Rrax = as_Register(RAX_enc); // super class
2005     Register Rrcx = as_Register(RCX_enc); // killed
2006     Register Rrsi = as_Register(RSI_enc); // sub class
2007     Label miss;
2008     const bool set_cond_codes = true;
2009 
2010     MacroAssembler _masm(&cbuf);
2011     __ check_klass_subtype_slow_path(Rrsi, Rrax, Rrcx, Rrdi,
2012                                      NULL, &miss,
2013                                      /*set_cond_codes:*/ true);
2014     if ($primary) {
2015       __ xorptr(Rrdi, Rrdi);
2016     }
2017     __ bind(miss);
2018   %}
2019 
2020   enc_class Java_To_Interpreter(method meth)
2021   %{
2022     // CALL Java_To_Interpreter
2023     // This is the instruction starting address for relocation info.
2024     cbuf.set_insts_mark();
2025     $$$emit8$primary;
2026     // CALL directly to the runtime
2027     emit_d32_reloc(cbuf,
2028                    (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2029                    runtime_call_Relocation::spec(),
2030                    RELOC_DISP32);
2031   %}
2032 
2033   enc_class Java_Static_Call(method meth)
2034   %{
2035     // JAVA STATIC CALL
2036     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
2037     // determine who we intended to call.
2038     cbuf.set_insts_mark();
2039     $$$emit8$primary;
2040 
2041     if (!_method) {
2042       emit_d32_reloc(cbuf,
2043                      (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2044                      runtime_call_Relocation::spec(),
2045                      RELOC_DISP32);
2046     } else if (_optimized_virtual) {
2047       emit_d32_reloc(cbuf,
2048                      (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2049                      opt_virtual_call_Relocation::spec(),
2050                      RELOC_DISP32);
2051     } else {
2052       emit_d32_reloc(cbuf,
2053                      (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2054                      static_call_Relocation::spec(),
2055                      RELOC_DISP32);
2056     }
2057     if (_method) {
2058       // Emit stub for static call
2059       emit_java_to_interp(cbuf);
2060     }
2061   %}
2062 
2063   enc_class Java_Dynamic_Call(method meth)
2064   %{
2065     // JAVA DYNAMIC CALL
2066     // !!!!!
2067     // Generate  "movq rax, -1", placeholder instruction to load oop-info
2068     // emit_call_dynamic_prologue( cbuf );
2069     cbuf.set_insts_mark();
2070 
2071     // movq rax, -1
2072     emit_opcode(cbuf, Assembler::REX_W);
2073     emit_opcode(cbuf, 0xB8 | RAX_enc);
2074     emit_d64_reloc(cbuf,
2075                    (int64_t) Universe::non_oop_word(),
2076                    oop_Relocation::spec_for_immediate(), RELOC_IMM64);
2077     address virtual_call_oop_addr = cbuf.insts_mark();
2078     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2079     // who we intended to call.
2080     cbuf.set_insts_mark();
2081     $$$emit8$primary;
2082     emit_d32_reloc(cbuf,
2083                    (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2084                    virtual_call_Relocation::spec(virtual_call_oop_addr),
2085                    RELOC_DISP32);
2086   %}
2087 
2088   enc_class Java_Compiled_Call(method meth)
2089   %{
2090     // JAVA COMPILED CALL
2091     int disp = in_bytes(methodOopDesc:: from_compiled_offset());
2092 
2093     // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
2094     // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
2095 
2096     // callq *disp(%rax)
2097     cbuf.set_insts_mark();
2098     $$$emit8$primary;
2099     if (disp < 0x80) {
2100       emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
2101       emit_d8(cbuf, disp); // Displacement
2102     } else {
2103       emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
2104       emit_d32(cbuf, disp); // Displacement
2105     }
2106   %}
2107 
2108   enc_class reg_opc_imm(rRegI dst, immI8 shift)
2109   %{
2110     // SAL, SAR, SHR
2111     int dstenc = $dst$$reg;
2112     if (dstenc >= 8) {
2113       emit_opcode(cbuf, Assembler::REX_B);
2114       dstenc -= 8;
2115     }
2116     $$$emit8$primary;
2117     emit_rm(cbuf, 0x3, $secondary, dstenc);
2118     $$$emit8$shift$$constant;
2119   %}
2120 
2121   enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
2122   %{
2123     // SAL, SAR, SHR
2124     int dstenc = $dst$$reg;
2125     if (dstenc < 8) {
2126       emit_opcode(cbuf, Assembler::REX_W);
2127     } else {
2128       emit_opcode(cbuf, Assembler::REX_WB);
2129       dstenc -= 8;
2130     }
2131     $$$emit8$primary;
2132     emit_rm(cbuf, 0x3, $secondary, dstenc);
2133     $$$emit8$shift$$constant;
2134   %}
2135 
2136   enc_class load_immI(rRegI dst, immI src)
2137   %{
2138     int dstenc = $dst$$reg;
2139     if (dstenc >= 8) {
2140       emit_opcode(cbuf, Assembler::REX_B);
2141       dstenc -= 8;
2142     }
2143     emit_opcode(cbuf, 0xB8 | dstenc);
2144     $$$emit32$src$$constant;
2145   %}
2146 
2147   enc_class load_immL(rRegL dst, immL src)
2148   %{
2149     int dstenc = $dst$$reg;
2150     if (dstenc < 8) {
2151       emit_opcode(cbuf, Assembler::REX_W);
2152     } else {
2153       emit_opcode(cbuf, Assembler::REX_WB);
2154       dstenc -= 8;
2155     }
2156     emit_opcode(cbuf, 0xB8 | dstenc);
2157     emit_d64(cbuf, $src$$constant);
2158   %}
2159 
2160   enc_class load_immUL32(rRegL dst, immUL32 src)
2161   %{
2162     // same as load_immI, but this time we care about zeroes in the high word
2163     int dstenc = $dst$$reg;
2164     if (dstenc >= 8) {
2165       emit_opcode(cbuf, Assembler::REX_B);
2166       dstenc -= 8;
2167     }
2168     emit_opcode(cbuf, 0xB8 | dstenc);
2169     $$$emit32$src$$constant;
2170   %}
2171 
2172   enc_class load_immL32(rRegL dst, immL32 src)
2173   %{
2174     int dstenc = $dst$$reg;
2175     if (dstenc < 8) {
2176       emit_opcode(cbuf, Assembler::REX_W);
2177     } else {
2178       emit_opcode(cbuf, Assembler::REX_WB);
2179       dstenc -= 8;
2180     }
2181     emit_opcode(cbuf, 0xC7);
2182     emit_rm(cbuf, 0x03, 0x00, dstenc);
2183     $$$emit32$src$$constant;
2184   %}
2185 
2186   enc_class load_immP31(rRegP dst, immP32 src)
2187   %{
2188     // same as load_immI, but this time we care about zeroes in the high word
2189     int dstenc = $dst$$reg;
2190     if (dstenc >= 8) {
2191       emit_opcode(cbuf, Assembler::REX_B);
2192       dstenc -= 8;
2193     }
2194     emit_opcode(cbuf, 0xB8 | dstenc);
2195     $$$emit32$src$$constant;
2196   %}
2197 
2198   enc_class load_immP(rRegP dst, immP src)
2199   %{
2200     int dstenc = $dst$$reg;
2201     if (dstenc < 8) {
2202       emit_opcode(cbuf, Assembler::REX_W);
2203     } else {
2204       emit_opcode(cbuf, Assembler::REX_WB);
2205       dstenc -= 8;
2206     }
2207     emit_opcode(cbuf, 0xB8 | dstenc);
2208     // This next line should be generated from ADLC
2209     if ($src->constant_is_oop()) {
2210       emit_d64_reloc(cbuf, $src$$constant, relocInfo::oop_type, RELOC_IMM64);
2211     } else {
2212       emit_d64(cbuf, $src$$constant);
2213     }
2214   %}
2215 
2216   enc_class Con32(immI src)
2217   %{
2218     // Output immediate
2219     $$$emit32$src$$constant;
2220   %}
2221 
2222   enc_class Con64(immL src)
2223   %{
2224     // Output immediate
2225     emit_d64($src$$constant);
2226   %}
2227 
2228   enc_class Con32F_as_bits(immF src)
2229   %{
2230     // Output Float immediate bits
2231     jfloat jf = $src$$constant;
2232     jint jf_as_bits = jint_cast(jf);
2233     emit_d32(cbuf, jf_as_bits);
2234   %}
2235 
2236   enc_class Con16(immI src)
2237   %{
2238     // Output immediate
2239     $$$emit16$src$$constant;
2240   %}
2241 
2242   // How is this different from Con32??? XXX
2243   enc_class Con_d32(immI src)
2244   %{
2245     emit_d32(cbuf,$src$$constant);
2246   %}
2247 
2248   enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
2249     // Output immediate memory reference
2250     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2251     emit_d32(cbuf, 0x00);
2252   %}
2253 
2254   enc_class lock_prefix()
2255   %{
2256     if (os::is_MP()) {
2257       emit_opcode(cbuf, 0xF0); // lock
2258     }
2259   %}
2260 
2261   enc_class REX_mem(memory mem)
2262   %{
2263     if ($mem$$base >= 8) {
2264       if ($mem$$index < 8) {
2265         emit_opcode(cbuf, Assembler::REX_B);
2266       } else {
2267         emit_opcode(cbuf, Assembler::REX_XB);
2268       }
2269     } else {
2270       if ($mem$$index >= 8) {
2271         emit_opcode(cbuf, Assembler::REX_X);
2272       }
2273     }
2274   %}
2275 
2276   enc_class REX_mem_wide(memory mem)
2277   %{
2278     if ($mem$$base >= 8) {
2279       if ($mem$$index < 8) {
2280         emit_opcode(cbuf, Assembler::REX_WB);
2281       } else {
2282         emit_opcode(cbuf, Assembler::REX_WXB);
2283       }
2284     } else {
2285       if ($mem$$index < 8) {
2286         emit_opcode(cbuf, Assembler::REX_W);
2287       } else {
2288         emit_opcode(cbuf, Assembler::REX_WX);
2289       }
2290     }
2291   %}
2292 
2293   // for byte regs
2294   enc_class REX_breg(rRegI reg)
2295   %{
2296     if ($reg$$reg >= 4) {
2297       emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2298     }
2299   %}
2300 
2301   // for byte regs
2302   enc_class REX_reg_breg(rRegI dst, rRegI src)
2303   %{
2304     if ($dst$$reg < 8) {
2305       if ($src$$reg >= 4) {
2306         emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2307       }
2308     } else {
2309       if ($src$$reg < 8) {
2310         emit_opcode(cbuf, Assembler::REX_R);
2311       } else {
2312         emit_opcode(cbuf, Assembler::REX_RB);
2313       }
2314     }
2315   %}
2316 
2317   // for byte regs
2318   enc_class REX_breg_mem(rRegI reg, memory mem)
2319   %{
2320     if ($reg$$reg < 8) {
2321       if ($mem$$base < 8) {
2322         if ($mem$$index >= 8) {
2323           emit_opcode(cbuf, Assembler::REX_X);
2324         } else if ($reg$$reg >= 4) {
2325           emit_opcode(cbuf, Assembler::REX);
2326         }
2327       } else {
2328         if ($mem$$index < 8) {
2329           emit_opcode(cbuf, Assembler::REX_B);
2330         } else {
2331           emit_opcode(cbuf, Assembler::REX_XB);
2332         }
2333       }
2334     } else {
2335       if ($mem$$base < 8) {
2336         if ($mem$$index < 8) {
2337           emit_opcode(cbuf, Assembler::REX_R);
2338         } else {
2339           emit_opcode(cbuf, Assembler::REX_RX);
2340         }
2341       } else {
2342         if ($mem$$index < 8) {
2343           emit_opcode(cbuf, Assembler::REX_RB);
2344         } else {
2345           emit_opcode(cbuf, Assembler::REX_RXB);
2346         }
2347       }
2348     }
2349   %}
2350 
2351   enc_class REX_reg(rRegI reg)
2352   %{
2353     if ($reg$$reg >= 8) {
2354       emit_opcode(cbuf, Assembler::REX_B);
2355     }
2356   %}
2357 
2358   enc_class REX_reg_wide(rRegI reg)
2359   %{
2360     if ($reg$$reg < 8) {
2361       emit_opcode(cbuf, Assembler::REX_W);
2362     } else {
2363       emit_opcode(cbuf, Assembler::REX_WB);
2364     }
2365   %}
2366 
2367   enc_class REX_reg_reg(rRegI dst, rRegI src)
2368   %{
2369     if ($dst$$reg < 8) {
2370       if ($src$$reg >= 8) {
2371         emit_opcode(cbuf, Assembler::REX_B);
2372       }
2373     } else {
2374       if ($src$$reg < 8) {
2375         emit_opcode(cbuf, Assembler::REX_R);
2376       } else {
2377         emit_opcode(cbuf, Assembler::REX_RB);
2378       }
2379     }
2380   %}
2381 
2382   enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
2383   %{
2384     if ($dst$$reg < 8) {
2385       if ($src$$reg < 8) {
2386         emit_opcode(cbuf, Assembler::REX_W);
2387       } else {
2388         emit_opcode(cbuf, Assembler::REX_WB);
2389       }
2390     } else {
2391       if ($src$$reg < 8) {
2392         emit_opcode(cbuf, Assembler::REX_WR);
2393       } else {
2394         emit_opcode(cbuf, Assembler::REX_WRB);
2395       }
2396     }
2397   %}
2398 
2399   enc_class REX_reg_mem(rRegI reg, memory mem)
2400   %{
2401     if ($reg$$reg < 8) {
2402       if ($mem$$base < 8) {
2403         if ($mem$$index >= 8) {
2404           emit_opcode(cbuf, Assembler::REX_X);
2405         }
2406       } else {
2407         if ($mem$$index < 8) {
2408           emit_opcode(cbuf, Assembler::REX_B);
2409         } else {
2410           emit_opcode(cbuf, Assembler::REX_XB);
2411         }
2412       }
2413     } else {
2414       if ($mem$$base < 8) {
2415         if ($mem$$index < 8) {
2416           emit_opcode(cbuf, Assembler::REX_R);
2417         } else {
2418           emit_opcode(cbuf, Assembler::REX_RX);
2419         }
2420       } else {
2421         if ($mem$$index < 8) {
2422           emit_opcode(cbuf, Assembler::REX_RB);
2423         } else {
2424           emit_opcode(cbuf, Assembler::REX_RXB);
2425         }
2426       }
2427     }
2428   %}
2429 
2430   enc_class REX_reg_mem_wide(rRegL reg, memory mem)
2431   %{
2432     if ($reg$$reg < 8) {
2433       if ($mem$$base < 8) {
2434         if ($mem$$index < 8) {
2435           emit_opcode(cbuf, Assembler::REX_W);
2436         } else {
2437           emit_opcode(cbuf, Assembler::REX_WX);
2438         }
2439       } else {
2440         if ($mem$$index < 8) {
2441           emit_opcode(cbuf, Assembler::REX_WB);
2442         } else {
2443           emit_opcode(cbuf, Assembler::REX_WXB);
2444         }
2445       }
2446     } else {
2447       if ($mem$$base < 8) {
2448         if ($mem$$index < 8) {
2449           emit_opcode(cbuf, Assembler::REX_WR);
2450         } else {
2451           emit_opcode(cbuf, Assembler::REX_WRX);
2452         }
2453       } else {
2454         if ($mem$$index < 8) {
2455           emit_opcode(cbuf, Assembler::REX_WRB);
2456         } else {
2457           emit_opcode(cbuf, Assembler::REX_WRXB);
2458         }
2459       }
2460     }
2461   %}
2462 
2463   enc_class reg_mem(rRegI ereg, memory mem)
2464   %{
2465     // High registers handle in encode_RegMem
2466     int reg = $ereg$$reg;
2467     int base = $mem$$base;
2468     int index = $mem$$index;
2469     int scale = $mem$$scale;
2470     int disp = $mem$$disp;
2471     bool disp_is_oop = $mem->disp_is_oop();
2472 
2473     encode_RegMem(cbuf, reg, base, index, scale, disp, disp_is_oop);
2474   %}
2475 
2476   enc_class RM_opc_mem(immI rm_opcode, memory mem)
2477   %{
2478     int rm_byte_opcode = $rm_opcode$$constant;
2479 
2480     // High registers handle in encode_RegMem
2481     int base = $mem$$base;
2482     int index = $mem$$index;
2483     int scale = $mem$$scale;
2484     int displace = $mem$$disp;
2485 
2486     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when
2487                                             // working with static
2488                                             // globals
2489     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
2490                   disp_is_oop);
2491   %}
2492 
2493   enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
2494   %{
2495     int reg_encoding = $dst$$reg;
2496     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2497     int index        = 0x04;            // 0x04 indicates no index
2498     int scale        = 0x00;            // 0x00 indicates no scale
2499     int displace     = $src1$$constant; // 0x00 indicates no displacement
2500     bool disp_is_oop = false;
2501     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
2502                   disp_is_oop);
2503   %}
2504 
2505   enc_class neg_reg(rRegI dst)
2506   %{
2507     int dstenc = $dst$$reg;
2508     if (dstenc >= 8) {
2509       emit_opcode(cbuf, Assembler::REX_B);
2510       dstenc -= 8;
2511     }
2512     // NEG $dst
2513     emit_opcode(cbuf, 0xF7);
2514     emit_rm(cbuf, 0x3, 0x03, dstenc);
2515   %}
2516 
2517   enc_class neg_reg_wide(rRegI dst)
2518   %{
2519     int dstenc = $dst$$reg;
2520     if (dstenc < 8) {
2521       emit_opcode(cbuf, Assembler::REX_W);
2522     } else {
2523       emit_opcode(cbuf, Assembler::REX_WB);
2524       dstenc -= 8;
2525     }
2526     // NEG $dst
2527     emit_opcode(cbuf, 0xF7);
2528     emit_rm(cbuf, 0x3, 0x03, dstenc);
2529   %}
2530 
2531   enc_class setLT_reg(rRegI dst)
2532   %{
2533     int dstenc = $dst$$reg;
2534     if (dstenc >= 8) {
2535       emit_opcode(cbuf, Assembler::REX_B);
2536       dstenc -= 8;
2537     } else if (dstenc >= 4) {
2538       emit_opcode(cbuf, Assembler::REX);
2539     }
2540     // SETLT $dst
2541     emit_opcode(cbuf, 0x0F);
2542     emit_opcode(cbuf, 0x9C);
2543     emit_rm(cbuf, 0x3, 0x0, dstenc);
2544   %}
2545 
2546   enc_class setNZ_reg(rRegI dst)
2547   %{
2548     int dstenc = $dst$$reg;
2549     if (dstenc >= 8) {
2550       emit_opcode(cbuf, Assembler::REX_B);
2551       dstenc -= 8;
2552     } else if (dstenc >= 4) {
2553       emit_opcode(cbuf, Assembler::REX);
2554     }
2555     // SETNZ $dst
2556     emit_opcode(cbuf, 0x0F);
2557     emit_opcode(cbuf, 0x95);
2558     emit_rm(cbuf, 0x3, 0x0, dstenc);
2559   %}
2560 
2561 
2562   // Compare the lonogs and set -1, 0, or 1 into dst
2563   enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
2564   %{
2565     int src1enc = $src1$$reg;
2566     int src2enc = $src2$$reg;
2567     int dstenc = $dst$$reg;
2568 
2569     // cmpq $src1, $src2
2570     if (src1enc < 8) {
2571       if (src2enc < 8) {
2572         emit_opcode(cbuf, Assembler::REX_W);
2573       } else {
2574         emit_opcode(cbuf, Assembler::REX_WB);
2575       }
2576     } else {
2577       if (src2enc < 8) {
2578         emit_opcode(cbuf, Assembler::REX_WR);
2579       } else {
2580         emit_opcode(cbuf, Assembler::REX_WRB);
2581       }
2582     }
2583     emit_opcode(cbuf, 0x3B);
2584     emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
2585 
2586     // movl $dst, -1
2587     if (dstenc >= 8) {
2588       emit_opcode(cbuf, Assembler::REX_B);
2589     }
2590     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
2591     emit_d32(cbuf, -1);
2592 
2593     // jl,s done
2594     emit_opcode(cbuf, 0x7C);
2595     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
2596 
2597     // setne $dst
2598     if (dstenc >= 4) {
2599       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
2600     }
2601     emit_opcode(cbuf, 0x0F);
2602     emit_opcode(cbuf, 0x95);
2603     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
2604 
2605     // movzbl $dst, $dst
2606     if (dstenc >= 4) {
2607       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
2608     }
2609     emit_opcode(cbuf, 0x0F);
2610     emit_opcode(cbuf, 0xB6);
2611     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
2612   %}
2613 
2614   enc_class Push_ResultXD(regD dst) %{
2615     MacroAssembler _masm(&cbuf);
2616     __ fstp_d(Address(rsp, 0));
2617     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2618     __ addptr(rsp, 8);
2619   %}
2620 
2621   enc_class Push_SrcXD(regD src) %{
2622     MacroAssembler _masm(&cbuf);
2623     __ subptr(rsp, 8);
2624     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2625     __ fld_d(Address(rsp, 0));
2626   %}
2627 
2628 
2629   // obj: object to lock
2630   // box: box address (header location) -- killed
2631   // tmp: rax -- killed
2632   // scr: rbx -- killed
2633   //
2634   // What follows is a direct transliteration of fast_lock() and fast_unlock()
2635   // from i486.ad.  See that file for comments.
2636   // TODO: where possible switch from movq (r, 0) to movl(r,0) and
2637   // use the shorter encoding.  (Movl clears the high-order 32-bits).
2638 
2639 
2640   enc_class Fast_Lock(rRegP obj, rRegP box, rax_RegI tmp, rRegP scr)
2641   %{
2642     Register objReg = as_Register((int)$obj$$reg);
2643     Register boxReg = as_Register((int)$box$$reg);
2644     Register tmpReg = as_Register($tmp$$reg);
2645     Register scrReg = as_Register($scr$$reg);
2646     MacroAssembler masm(&cbuf);
2647 
2648     // Verify uniqueness of register assignments -- necessary but not sufficient
2649     assert (objReg != boxReg && objReg != tmpReg &&
2650             objReg != scrReg && tmpReg != scrReg, "invariant") ;
2651 
2652     if (_counters != NULL) {
2653       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
2654     }
2655     if (EmitSync & 1) {
2656         // Without cast to int32_t a movptr will destroy r10 which is typically obj
2657         masm.movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark())) ;
2658         masm.cmpptr(rsp, (int32_t)NULL_WORD) ;
2659     } else
2660     if (EmitSync & 2) {
2661         Label DONE_LABEL;
2662         if (UseBiasedLocking) {
2663            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
2664           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
2665         }
2666         // QQQ was movl...
2667         masm.movptr(tmpReg, 0x1);
2668         masm.orptr(tmpReg, Address(objReg, 0));
2669         masm.movptr(Address(boxReg, 0), tmpReg);
2670         if (os::is_MP()) {
2671           masm.lock();
2672         }
2673         masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
2674         masm.jcc(Assembler::equal, DONE_LABEL);
2675 
2676         // Recursive locking
2677         masm.subptr(tmpReg, rsp);
2678         masm.andptr(tmpReg, 7 - os::vm_page_size());
2679         masm.movptr(Address(boxReg, 0), tmpReg);
2680 
2681         masm.bind(DONE_LABEL);
2682         masm.nop(); // avoid branch to branch
2683     } else {
2684         Label DONE_LABEL, IsInflated, Egress;
2685 
2686         masm.movptr(tmpReg, Address(objReg, 0)) ;
2687         masm.testl (tmpReg, 0x02) ;         // inflated vs stack-locked|neutral|biased
2688         masm.jcc   (Assembler::notZero, IsInflated) ;
2689 
2690         // it's stack-locked, biased or neutral
2691         // TODO: optimize markword triage order to reduce the number of
2692         // conditional branches in the most common cases.
2693         // Beware -- there's a subtle invariant that fetch of the markword
2694         // at [FETCH], below, will never observe a biased encoding (*101b).
2695         // If this invariant is not held we'll suffer exclusion (safety) failure.
2696 
2697         if (UseBiasedLocking && !UseOptoBiasInlining) {
2698           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, _counters);
2699           masm.movptr(tmpReg, Address(objReg, 0)) ;        // [FETCH]
2700         }
2701 
2702         // was q will it destroy high?
2703         masm.orl   (tmpReg, 1) ;
2704         masm.movptr(Address(boxReg, 0), tmpReg) ;
2705         if (os::is_MP()) { masm.lock(); }
2706         masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
2707         if (_counters != NULL) {
2708            masm.cond_inc32(Assembler::equal,
2709                            ExternalAddress((address) _counters->fast_path_entry_count_addr()));
2710         }
2711         masm.jcc   (Assembler::equal, DONE_LABEL);
2712 
2713         // Recursive locking
2714         masm.subptr(tmpReg, rsp);
2715         masm.andptr(tmpReg, 7 - os::vm_page_size());
2716         masm.movptr(Address(boxReg, 0), tmpReg);
2717         if (_counters != NULL) {
2718            masm.cond_inc32(Assembler::equal,
2719                            ExternalAddress((address) _counters->fast_path_entry_count_addr()));
2720         }
2721         masm.jmp   (DONE_LABEL) ;
2722 
2723         masm.bind  (IsInflated) ;
2724         // It's inflated
2725 
2726         // TODO: someday avoid the ST-before-CAS penalty by
2727         // relocating (deferring) the following ST.
2728         // We should also think about trying a CAS without having
2729         // fetched _owner.  If the CAS is successful we may
2730         // avoid an RTO->RTS upgrade on the $line.
2731         // Without cast to int32_t a movptr will destroy r10 which is typically obj
2732         masm.movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark())) ;
2733 
2734         masm.mov    (boxReg, tmpReg) ;
2735         masm.movptr (tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
2736         masm.testptr(tmpReg, tmpReg) ;
2737         masm.jcc    (Assembler::notZero, DONE_LABEL) ;
2738 
2739         // It's inflated and appears unlocked
2740         if (os::is_MP()) { masm.lock(); }
2741         masm.cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
2742         // Intentional fall-through into DONE_LABEL ...
2743 
2744         masm.bind  (DONE_LABEL) ;
2745         masm.nop   () ;                 // avoid jmp to jmp
2746     }
2747   %}
2748 
2749   // obj: object to unlock
2750   // box: box address (displaced header location), killed
2751   // RBX: killed tmp; cannot be obj nor box
2752   enc_class Fast_Unlock(rRegP obj, rax_RegP box, rRegP tmp)
2753   %{
2754 
2755     Register objReg = as_Register($obj$$reg);
2756     Register boxReg = as_Register($box$$reg);
2757     Register tmpReg = as_Register($tmp$$reg);
2758     MacroAssembler masm(&cbuf);
2759 
2760     if (EmitSync & 4) {
2761        masm.cmpptr(rsp, 0) ;
2762     } else
2763     if (EmitSync & 8) {
2764        Label DONE_LABEL;
2765        if (UseBiasedLocking) {
2766          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2767        }
2768 
2769        // Check whether the displaced header is 0
2770        //(=> recursive unlock)
2771        masm.movptr(tmpReg, Address(boxReg, 0));
2772        masm.testptr(tmpReg, tmpReg);
2773        masm.jcc(Assembler::zero, DONE_LABEL);
2774 
2775        // If not recursive lock, reset the header to displaced header
2776        if (os::is_MP()) {
2777          masm.lock();
2778        }
2779        masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2780        masm.bind(DONE_LABEL);
2781        masm.nop(); // avoid branch to branch
2782     } else {
2783        Label DONE_LABEL, Stacked, CheckSucc ;
2784 
2785        if (UseBiasedLocking && !UseOptoBiasInlining) {
2786          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2787        }
2788 
2789        masm.movptr(tmpReg, Address(objReg, 0)) ;
2790        masm.cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD) ;
2791        masm.jcc   (Assembler::zero, DONE_LABEL) ;
2792        masm.testl (tmpReg, 0x02) ;
2793        masm.jcc   (Assembler::zero, Stacked) ;
2794 
2795        // It's inflated
2796        masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
2797        masm.xorptr(boxReg, r15_thread) ;
2798        masm.orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
2799        masm.jcc   (Assembler::notZero, DONE_LABEL) ;
2800        masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
2801        masm.orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
2802        masm.jcc   (Assembler::notZero, CheckSucc) ;
2803        masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
2804        masm.jmp   (DONE_LABEL) ;
2805 
2806        if ((EmitSync & 65536) == 0) {
2807          Label LSuccess, LGoSlowPath ;
2808          masm.bind  (CheckSucc) ;
2809          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
2810          masm.jcc   (Assembler::zero, LGoSlowPath) ;
2811 
2812          // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
2813          // the explicit ST;MEMBAR combination, but masm doesn't currently support
2814          // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
2815          // are all faster when the write buffer is populated.
2816          masm.movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
2817          if (os::is_MP()) {
2818             masm.lock () ; masm.addl (Address(rsp, 0), 0) ;
2819          }
2820          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
2821          masm.jcc   (Assembler::notZero, LSuccess) ;
2822 
2823          masm.movptr (boxReg, (int32_t)NULL_WORD) ;                   // box is really EAX
2824          if (os::is_MP()) { masm.lock(); }
2825          masm.cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2826          masm.jcc   (Assembler::notEqual, LSuccess) ;
2827          // Intentional fall-through into slow-path
2828 
2829          masm.bind  (LGoSlowPath) ;
2830          masm.orl   (boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
2831          masm.jmp   (DONE_LABEL) ;
2832 
2833          masm.bind  (LSuccess) ;
2834          masm.testl (boxReg, 0) ;                      // set ICC.ZF=1 to indicate success
2835          masm.jmp   (DONE_LABEL) ;
2836        }
2837 
2838        masm.bind  (Stacked) ;
2839        masm.movptr(tmpReg, Address (boxReg, 0)) ;      // re-fetch
2840        if (os::is_MP()) { masm.lock(); }
2841        masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2842 
2843        if (EmitSync & 65536) {
2844           masm.bind (CheckSucc) ;
2845        }
2846        masm.bind(DONE_LABEL);
2847        if (EmitSync & 32768) {
2848           masm.nop();                      // avoid branch to branch
2849        }
2850     }
2851   %}
2852 
2853 
2854   enc_class enc_rethrow()
2855   %{
2856     cbuf.set_insts_mark();
2857     emit_opcode(cbuf, 0xE9); // jmp entry
2858     emit_d32_reloc(cbuf,
2859                    (int) (OptoRuntime::rethrow_stub() - cbuf.insts_end() - 4),
2860                    runtime_call_Relocation::spec(),
2861                    RELOC_DISP32);
2862   %}
2863 
2864 %}
2865 
2866 
2867 
2868 //----------FRAME--------------------------------------------------------------
2869 // Definition of frame structure and management information.
2870 //
2871 //  S T A C K   L A Y O U T    Allocators stack-slot number
2872 //                             |   (to get allocators register number
2873 //  G  Owned by    |        |  v    add OptoReg::stack0())
2874 //  r   CALLER     |        |
2875 //  o     |        +--------+      pad to even-align allocators stack-slot
2876 //  w     V        |  pad0  |        numbers; owned by CALLER
2877 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2878 //  h     ^        |   in   |  5
2879 //        |        |  args  |  4   Holes in incoming args owned by SELF
2880 //  |     |        |        |  3
2881 //  |     |        +--------+
2882 //  V     |        | old out|      Empty on Intel, window on Sparc
2883 //        |    old |preserve|      Must be even aligned.
2884 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
2885 //        |        |   in   |  3   area for Intel ret address
2886 //     Owned by    |preserve|      Empty on Sparc.
2887 //       SELF      +--------+
2888 //        |        |  pad2  |  2   pad to align old SP
2889 //        |        +--------+  1
2890 //        |        | locks  |  0
2891 //        |        +--------+----> OptoReg::stack0(), even aligned
2892 //        |        |  pad1  | 11   pad to align new SP
2893 //        |        +--------+
2894 //        |        |        | 10
2895 //        |        | spills |  9   spills
2896 //        V        |        |  8   (pad0 slot for callee)
2897 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
2898 //        ^        |  out   |  7
2899 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
2900 //     Owned by    +--------+
2901 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
2902 //        |    new |preserve|      Must be even-aligned.
2903 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
2904 //        |        |        |
2905 //
2906 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
2907 //         known from SELF's arguments and the Java calling convention.
2908 //         Region 6-7 is determined per call site.
2909 // Note 2: If the calling convention leaves holes in the incoming argument
2910 //         area, those holes are owned by SELF.  Holes in the outgoing area
2911 //         are owned by the CALLEE.  Holes should not be nessecary in the
2912 //         incoming area, as the Java calling convention is completely under
2913 //         the control of the AD file.  Doubles can be sorted and packed to
2914 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
2915 //         varargs C calling conventions.
2916 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
2917 //         even aligned with pad0 as needed.
2918 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
2919 //         region 6-11 is even aligned; it may be padded out more so that
2920 //         the region from SP to FP meets the minimum stack alignment.
2921 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
2922 //         alignment.  Region 11, pad1, may be dynamically extended so that
2923 //         SP meets the minimum alignment.
2924 
2925 frame
2926 %{
2927   // What direction does stack grow in (assumed to be same for C & Java)
2928   stack_direction(TOWARDS_LOW);
2929 
2930   // These three registers define part of the calling convention
2931   // between compiled code and the interpreter.
2932   inline_cache_reg(RAX);                // Inline Cache Register
2933   interpreter_method_oop_reg(RBX);      // Method Oop Register when
2934                                         // calling interpreter
2935 
2936   // Optional: name the operand used by cisc-spilling to access
2937   // [stack_pointer + offset]
2938   cisc_spilling_operand_name(indOffset32);
2939 
2940   // Number of stack slots consumed by locking an object
2941   sync_stack_slots(2);
2942 
2943   // Compiled code's Frame Pointer
2944   frame_pointer(RSP);
2945 
2946   // Interpreter stores its frame pointer in a register which is
2947   // stored to the stack by I2CAdaptors.
2948   // I2CAdaptors convert from interpreted java to compiled java.
2949   interpreter_frame_pointer(RBP);
2950 
2951   // Stack alignment requirement
2952   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
2953 
2954   // Number of stack slots between incoming argument block and the start of
2955   // a new frame.  The PROLOG must add this many slots to the stack.  The
2956   // EPILOG must remove this many slots.  amd64 needs two slots for
2957   // return address.
2958   in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
2959 
2960   // Number of outgoing stack slots killed above the out_preserve_stack_slots
2961   // for calls to C.  Supports the var-args backing area for register parms.
2962   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
2963 
2964   // The after-PROLOG location of the return address.  Location of
2965   // return address specifies a type (REG or STACK) and a number
2966   // representing the register number (i.e. - use a register name) or
2967   // stack slot.
2968   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
2969   // Otherwise, it is above the locks and verification slot and alignment word
2970   return_addr(STACK - 2 +
2971               round_to((Compile::current()->in_preserve_stack_slots() +
2972                         Compile::current()->fixed_slots()),
2973                        stack_alignment_in_slots()));
2974 
2975   // Body of function which returns an integer array locating
2976   // arguments either in registers or in stack slots.  Passed an array
2977   // of ideal registers called "sig" and a "length" count.  Stack-slot
2978   // offsets are based on outgoing arguments, i.e. a CALLER setting up
2979   // arguments for a CALLEE.  Incoming stack arguments are
2980   // automatically biased by the preserve_stack_slots field above.
2981 
2982   calling_convention
2983   %{
2984     // No difference between ingoing/outgoing just pass false
2985     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
2986   %}
2987 
2988   c_calling_convention
2989   %{
2990     // This is obviously always outgoing
2991     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
2992   %}
2993 
2994   // Location of compiled Java return values.  Same as C for now.
2995   return_value
2996   %{
2997     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
2998            "only return normal values");
2999 
3000     static const int lo[Op_RegL + 1] = {
3001       0,
3002       0,
3003       RAX_num,  // Op_RegN
3004       RAX_num,  // Op_RegI
3005       RAX_num,  // Op_RegP
3006       XMM0_num, // Op_RegF
3007       XMM0_num, // Op_RegD
3008       RAX_num   // Op_RegL
3009     };
3010     static const int hi[Op_RegL + 1] = {
3011       0,
3012       0,
3013       OptoReg::Bad, // Op_RegN
3014       OptoReg::Bad, // Op_RegI
3015       RAX_H_num,    // Op_RegP
3016       OptoReg::Bad, // Op_RegF
3017       XMM0b_num,    // Op_RegD
3018       RAX_H_num     // Op_RegL
3019     };
3020     // Excluded flags and vector registers.
3021     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 5, "missing type");
3022     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
3023   %}
3024 %}
3025 
3026 //----------ATTRIBUTES---------------------------------------------------------
3027 //----------Operand Attributes-------------------------------------------------
3028 op_attrib op_cost(0);        // Required cost attribute
3029 
3030 //----------Instruction Attributes---------------------------------------------
3031 ins_attrib ins_cost(100);       // Required cost attribute
3032 ins_attrib ins_size(8);         // Required size attribute (in bits)
3033 ins_attrib ins_short_branch(0); // Required flag: is this instruction
3034                                 // a non-matching short branch variant
3035                                 // of some long branch?
3036 ins_attrib ins_alignment(1);    // Required alignment attribute (must
3037                                 // be a power of 2) specifies the
3038                                 // alignment that some part of the
3039                                 // instruction (not necessarily the
3040                                 // start) requires.  If > 1, a
3041                                 // compute_padding() function must be
3042                                 // provided for the instruction
3043 
3044 //----------OPERANDS-----------------------------------------------------------
3045 // Operand definitions must precede instruction definitions for correct parsing
3046 // in the ADLC because operands constitute user defined types which are used in
3047 // instruction definitions.
3048 
3049 //----------Simple Operands----------------------------------------------------
3050 // Immediate Operands
3051 // Integer Immediate
3052 operand immI()
3053 %{
3054   match(ConI);
3055 
3056   op_cost(10);
3057   format %{ %}
3058   interface(CONST_INTER);
3059 %}
3060 
3061 // Constant for test vs zero
3062 operand immI0()
3063 %{
3064   predicate(n->get_int() == 0);
3065   match(ConI);
3066 
3067   op_cost(0);
3068   format %{ %}
3069   interface(CONST_INTER);
3070 %}
3071 
3072 // Constant for increment
3073 operand immI1()
3074 %{
3075   predicate(n->get_int() == 1);
3076   match(ConI);
3077 
3078   op_cost(0);
3079   format %{ %}
3080   interface(CONST_INTER);
3081 %}
3082 
3083 // Constant for decrement
3084 operand immI_M1()
3085 %{
3086   predicate(n->get_int() == -1);
3087   match(ConI);
3088 
3089   op_cost(0);
3090   format %{ %}
3091   interface(CONST_INTER);
3092 %}
3093 
3094 // Valid scale values for addressing modes
3095 operand immI2()
3096 %{
3097   predicate(0 <= n->get_int() && (n->get_int() <= 3));
3098   match(ConI);
3099 
3100   format %{ %}
3101   interface(CONST_INTER);
3102 %}
3103 
3104 operand immI8()
3105 %{
3106   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
3107   match(ConI);
3108 
3109   op_cost(5);
3110   format %{ %}
3111   interface(CONST_INTER);
3112 %}
3113 
3114 operand immI16()
3115 %{
3116   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
3117   match(ConI);
3118 
3119   op_cost(10);
3120   format %{ %}
3121   interface(CONST_INTER);
3122 %}
3123 
3124 // Constant for long shifts
3125 operand immI_32()
3126 %{
3127   predicate( n->get_int() == 32 );
3128   match(ConI);
3129 
3130   op_cost(0);
3131   format %{ %}
3132   interface(CONST_INTER);
3133 %}
3134 
3135 // Constant for long shifts
3136 operand immI_64()
3137 %{
3138   predicate( n->get_int() == 64 );
3139   match(ConI);
3140 
3141   op_cost(0);
3142   format %{ %}
3143   interface(CONST_INTER);
3144 %}
3145 
3146 // Pointer Immediate
3147 operand immP()
3148 %{
3149   match(ConP);
3150 
3151   op_cost(10);
3152   format %{ %}
3153   interface(CONST_INTER);
3154 %}
3155 
3156 // NULL Pointer Immediate
3157 operand immP0()
3158 %{
3159   predicate(n->get_ptr() == 0);
3160   match(ConP);
3161 
3162   op_cost(5);
3163   format %{ %}
3164   interface(CONST_INTER);
3165 %}
3166 
3167 // Pointer Immediate
3168 operand immN() %{
3169   match(ConN);
3170 
3171   op_cost(10);
3172   format %{ %}
3173   interface(CONST_INTER);
3174 %}
3175 
3176 // NULL Pointer Immediate
3177 operand immN0() %{
3178   predicate(n->get_narrowcon() == 0);
3179   match(ConN);
3180 
3181   op_cost(5);
3182   format %{ %}
3183   interface(CONST_INTER);
3184 %}
3185 
3186 operand immP31()
3187 %{
3188   predicate(!n->as_Type()->type()->isa_oopptr()
3189             && (n->get_ptr() >> 31) == 0);
3190   match(ConP);
3191 
3192   op_cost(5);
3193   format %{ %}
3194   interface(CONST_INTER);
3195 %}
3196 
3197 
3198 // Long Immediate
3199 operand immL()
3200 %{
3201   match(ConL);
3202 
3203   op_cost(20);
3204   format %{ %}
3205   interface(CONST_INTER);
3206 %}
3207 
3208 // Long Immediate 8-bit
3209 operand immL8()
3210 %{
3211   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
3212   match(ConL);
3213 
3214   op_cost(5);
3215   format %{ %}
3216   interface(CONST_INTER);
3217 %}
3218 
3219 // Long Immediate 32-bit unsigned
3220 operand immUL32()
3221 %{
3222   predicate(n->get_long() == (unsigned int) (n->get_long()));
3223   match(ConL);
3224 
3225   op_cost(10);
3226   format %{ %}
3227   interface(CONST_INTER);
3228 %}
3229 
3230 // Long Immediate 32-bit signed
3231 operand immL32()
3232 %{
3233   predicate(n->get_long() == (int) (n->get_long()));
3234   match(ConL);
3235 
3236   op_cost(15);
3237   format %{ %}
3238   interface(CONST_INTER);
3239 %}
3240 
3241 // Long Immediate zero
3242 operand immL0()
3243 %{
3244   predicate(n->get_long() == 0L);
3245   match(ConL);
3246 
3247   op_cost(10);
3248   format %{ %}
3249   interface(CONST_INTER);
3250 %}
3251 
3252 // Constant for increment
3253 operand immL1()
3254 %{
3255   predicate(n->get_long() == 1);
3256   match(ConL);
3257 
3258   format %{ %}
3259   interface(CONST_INTER);
3260 %}
3261 
3262 // Constant for decrement
3263 operand immL_M1()
3264 %{
3265   predicate(n->get_long() == -1);
3266   match(ConL);
3267 
3268   format %{ %}
3269   interface(CONST_INTER);
3270 %}
3271 
3272 // Long Immediate: the value 10
3273 operand immL10()
3274 %{
3275   predicate(n->get_long() == 10);
3276   match(ConL);
3277 
3278   format %{ %}
3279   interface(CONST_INTER);
3280 %}
3281 
3282 // Long immediate from 0 to 127.
3283 // Used for a shorter form of long mul by 10.
3284 operand immL_127()
3285 %{
3286   predicate(0 <= n->get_long() && n->get_long() < 0x80);
3287   match(ConL);
3288 
3289   op_cost(10);
3290   format %{ %}
3291   interface(CONST_INTER);
3292 %}
3293 
3294 // Long Immediate: low 32-bit mask
3295 operand immL_32bits()
3296 %{
3297   predicate(n->get_long() == 0xFFFFFFFFL);
3298   match(ConL);
3299   op_cost(20);
3300 
3301   format %{ %}
3302   interface(CONST_INTER);
3303 %}
3304 
3305 // Float Immediate zero
3306 operand immF0()
3307 %{
3308   predicate(jint_cast(n->getf()) == 0);
3309   match(ConF);
3310 
3311   op_cost(5);
3312   format %{ %}
3313   interface(CONST_INTER);
3314 %}
3315 
3316 // Float Immediate
3317 operand immF()
3318 %{
3319   match(ConF);
3320 
3321   op_cost(15);
3322   format %{ %}
3323   interface(CONST_INTER);
3324 %}
3325 
3326 // Double Immediate zero
3327 operand immD0()
3328 %{
3329   predicate(jlong_cast(n->getd()) == 0);
3330   match(ConD);
3331 
3332   op_cost(5);
3333   format %{ %}
3334   interface(CONST_INTER);
3335 %}
3336 
3337 // Double Immediate
3338 operand immD()
3339 %{
3340   match(ConD);
3341 
3342   op_cost(15);
3343   format %{ %}
3344   interface(CONST_INTER);
3345 %}
3346 
3347 // Immediates for special shifts (sign extend)
3348 
3349 // Constants for increment
3350 operand immI_16()
3351 %{
3352   predicate(n->get_int() == 16);
3353   match(ConI);
3354 
3355   format %{ %}
3356   interface(CONST_INTER);
3357 %}
3358 
3359 operand immI_24()
3360 %{
3361   predicate(n->get_int() == 24);
3362   match(ConI);
3363 
3364   format %{ %}
3365   interface(CONST_INTER);
3366 %}
3367 
3368 // Constant for byte-wide masking
3369 operand immI_255()
3370 %{
3371   predicate(n->get_int() == 255);
3372   match(ConI);
3373 
3374   format %{ %}
3375   interface(CONST_INTER);
3376 %}
3377 
3378 // Constant for short-wide masking
3379 operand immI_65535()
3380 %{
3381   predicate(n->get_int() == 65535);
3382   match(ConI);
3383 
3384   format %{ %}
3385   interface(CONST_INTER);
3386 %}
3387 
3388 // Constant for byte-wide masking
3389 operand immL_255()
3390 %{
3391   predicate(n->get_long() == 255);
3392   match(ConL);
3393 
3394   format %{ %}
3395   interface(CONST_INTER);
3396 %}
3397 
3398 // Constant for short-wide masking
3399 operand immL_65535()
3400 %{
3401   predicate(n->get_long() == 65535);
3402   match(ConL);
3403 
3404   format %{ %}
3405   interface(CONST_INTER);
3406 %}
3407 
3408 // Register Operands
3409 // Integer Register
3410 operand rRegI()
3411 %{
3412   constraint(ALLOC_IN_RC(int_reg));
3413   match(RegI);
3414 
3415   match(rax_RegI);
3416   match(rbx_RegI);
3417   match(rcx_RegI);
3418   match(rdx_RegI);
3419   match(rdi_RegI);
3420 
3421   format %{ %}
3422   interface(REG_INTER);
3423 %}
3424 
3425 // Special Registers
3426 operand rax_RegI()
3427 %{
3428   constraint(ALLOC_IN_RC(int_rax_reg));
3429   match(RegI);
3430   match(rRegI);
3431 
3432   format %{ "RAX" %}
3433   interface(REG_INTER);
3434 %}
3435 
3436 // Special Registers
3437 operand rbx_RegI()
3438 %{
3439   constraint(ALLOC_IN_RC(int_rbx_reg));
3440   match(RegI);
3441   match(rRegI);
3442 
3443   format %{ "RBX" %}
3444   interface(REG_INTER);
3445 %}
3446 
3447 operand rcx_RegI()
3448 %{
3449   constraint(ALLOC_IN_RC(int_rcx_reg));
3450   match(RegI);
3451   match(rRegI);
3452 
3453   format %{ "RCX" %}
3454   interface(REG_INTER);
3455 %}
3456 
3457 operand rdx_RegI()
3458 %{
3459   constraint(ALLOC_IN_RC(int_rdx_reg));
3460   match(RegI);
3461   match(rRegI);
3462 
3463   format %{ "RDX" %}
3464   interface(REG_INTER);
3465 %}
3466 
3467 operand rdi_RegI()
3468 %{
3469   constraint(ALLOC_IN_RC(int_rdi_reg));
3470   match(RegI);
3471   match(rRegI);
3472 
3473   format %{ "RDI" %}
3474   interface(REG_INTER);
3475 %}
3476 
3477 operand no_rcx_RegI()
3478 %{
3479   constraint(ALLOC_IN_RC(int_no_rcx_reg));
3480   match(RegI);
3481   match(rax_RegI);
3482   match(rbx_RegI);
3483   match(rdx_RegI);
3484   match(rdi_RegI);
3485 
3486   format %{ %}
3487   interface(REG_INTER);
3488 %}
3489 
3490 operand no_rax_rdx_RegI()
3491 %{
3492   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
3493   match(RegI);
3494   match(rbx_RegI);
3495   match(rcx_RegI);
3496   match(rdi_RegI);
3497 
3498   format %{ %}
3499   interface(REG_INTER);
3500 %}
3501 
3502 // Pointer Register
3503 operand any_RegP()
3504 %{
3505   constraint(ALLOC_IN_RC(any_reg));
3506   match(RegP);
3507   match(rax_RegP);
3508   match(rbx_RegP);
3509   match(rdi_RegP);
3510   match(rsi_RegP);
3511   match(rbp_RegP);
3512   match(r15_RegP);
3513   match(rRegP);
3514 
3515   format %{ %}
3516   interface(REG_INTER);
3517 %}
3518 
3519 operand rRegP()
3520 %{
3521   constraint(ALLOC_IN_RC(ptr_reg));
3522   match(RegP);
3523   match(rax_RegP);
3524   match(rbx_RegP);
3525   match(rdi_RegP);
3526   match(rsi_RegP);
3527   match(rbp_RegP);
3528   match(r15_RegP);  // See Q&A below about r15_RegP.
3529 
3530   format %{ %}
3531   interface(REG_INTER);
3532 %}
3533 
3534 operand rRegN() %{
3535   constraint(ALLOC_IN_RC(int_reg));
3536   match(RegN);
3537 
3538   format %{ %}
3539   interface(REG_INTER);
3540 %}
3541 
3542 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
3543 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
3544 // It's fine for an instruction input which expects rRegP to match a r15_RegP.
3545 // The output of an instruction is controlled by the allocator, which respects
3546 // register class masks, not match rules.  Unless an instruction mentions
3547 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
3548 // by the allocator as an input.
3549 
3550 operand no_rax_RegP()
3551 %{
3552   constraint(ALLOC_IN_RC(ptr_no_rax_reg));
3553   match(RegP);
3554   match(rbx_RegP);
3555   match(rsi_RegP);
3556   match(rdi_RegP);
3557 
3558   format %{ %}
3559   interface(REG_INTER);
3560 %}
3561 
3562 operand no_rbp_RegP()
3563 %{
3564   constraint(ALLOC_IN_RC(ptr_no_rbp_reg));
3565   match(RegP);
3566   match(rbx_RegP);
3567   match(rsi_RegP);
3568   match(rdi_RegP);
3569 
3570   format %{ %}
3571   interface(REG_INTER);
3572 %}
3573 
3574 operand no_rax_rbx_RegP()
3575 %{
3576   constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
3577   match(RegP);
3578   match(rsi_RegP);
3579   match(rdi_RegP);
3580 
3581   format %{ %}
3582   interface(REG_INTER);
3583 %}
3584 
3585 // Special Registers
3586 // Return a pointer value
3587 operand rax_RegP()
3588 %{
3589   constraint(ALLOC_IN_RC(ptr_rax_reg));
3590   match(RegP);
3591   match(rRegP);
3592 
3593   format %{ %}
3594   interface(REG_INTER);
3595 %}
3596 
3597 // Special Registers
3598 // Return a compressed pointer value
3599 operand rax_RegN()
3600 %{
3601   constraint(ALLOC_IN_RC(int_rax_reg));
3602   match(RegN);
3603   match(rRegN);
3604 
3605   format %{ %}
3606   interface(REG_INTER);
3607 %}
3608 
3609 // Used in AtomicAdd
3610 operand rbx_RegP()
3611 %{
3612   constraint(ALLOC_IN_RC(ptr_rbx_reg));
3613   match(RegP);
3614   match(rRegP);
3615 
3616   format %{ %}
3617   interface(REG_INTER);
3618 %}
3619 
3620 operand rsi_RegP()
3621 %{
3622   constraint(ALLOC_IN_RC(ptr_rsi_reg));
3623   match(RegP);
3624   match(rRegP);
3625 
3626   format %{ %}
3627   interface(REG_INTER);
3628 %}
3629 
3630 // Used in rep stosq
3631 operand rdi_RegP()
3632 %{
3633   constraint(ALLOC_IN_RC(ptr_rdi_reg));
3634   match(RegP);
3635   match(rRegP);
3636 
3637   format %{ %}
3638   interface(REG_INTER);
3639 %}
3640 
3641 operand rbp_RegP()
3642 %{
3643   constraint(ALLOC_IN_RC(ptr_rbp_reg));
3644   match(RegP);
3645   match(rRegP);
3646 
3647   format %{ %}
3648   interface(REG_INTER);
3649 %}
3650 
3651 operand r15_RegP()
3652 %{
3653   constraint(ALLOC_IN_RC(ptr_r15_reg));
3654   match(RegP);
3655   match(rRegP);
3656 
3657   format %{ %}
3658   interface(REG_INTER);
3659 %}
3660 
3661 operand rRegL()
3662 %{
3663   constraint(ALLOC_IN_RC(long_reg));
3664   match(RegL);
3665   match(rax_RegL);
3666   match(rdx_RegL);
3667 
3668   format %{ %}
3669   interface(REG_INTER);
3670 %}
3671 
3672 // Special Registers
3673 operand no_rax_rdx_RegL()
3674 %{
3675   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3676   match(RegL);
3677   match(rRegL);
3678 
3679   format %{ %}
3680   interface(REG_INTER);
3681 %}
3682 
3683 operand no_rax_RegL()
3684 %{
3685   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3686   match(RegL);
3687   match(rRegL);
3688   match(rdx_RegL);
3689 
3690   format %{ %}
3691   interface(REG_INTER);
3692 %}
3693 
3694 operand no_rcx_RegL()
3695 %{
3696   constraint(ALLOC_IN_RC(long_no_rcx_reg));
3697   match(RegL);
3698   match(rRegL);
3699 
3700   format %{ %}
3701   interface(REG_INTER);
3702 %}
3703 
3704 operand rax_RegL()
3705 %{
3706   constraint(ALLOC_IN_RC(long_rax_reg));
3707   match(RegL);
3708   match(rRegL);
3709 
3710   format %{ "RAX" %}
3711   interface(REG_INTER);
3712 %}
3713 
3714 operand rcx_RegL()
3715 %{
3716   constraint(ALLOC_IN_RC(long_rcx_reg));
3717   match(RegL);
3718   match(rRegL);
3719 
3720   format %{ %}
3721   interface(REG_INTER);
3722 %}
3723 
3724 operand rdx_RegL()
3725 %{
3726   constraint(ALLOC_IN_RC(long_rdx_reg));
3727   match(RegL);
3728   match(rRegL);
3729 
3730   format %{ %}
3731   interface(REG_INTER);
3732 %}
3733 
3734 // Flags register, used as output of compare instructions
3735 operand rFlagsReg()
3736 %{
3737   constraint(ALLOC_IN_RC(int_flags));
3738   match(RegFlags);
3739 
3740   format %{ "RFLAGS" %}
3741   interface(REG_INTER);
3742 %}
3743 
3744 // Flags register, used as output of FLOATING POINT compare instructions
3745 operand rFlagsRegU()
3746 %{
3747   constraint(ALLOC_IN_RC(int_flags));
3748   match(RegFlags);
3749 
3750   format %{ "RFLAGS_U" %}
3751   interface(REG_INTER);
3752 %}
3753 
3754 operand rFlagsRegUCF() %{
3755   constraint(ALLOC_IN_RC(int_flags));
3756   match(RegFlags);
3757   predicate(false);
3758 
3759   format %{ "RFLAGS_U_CF" %}
3760   interface(REG_INTER);
3761 %}
3762 
3763 // Float register operands
3764 operand regF()
3765 %{
3766   constraint(ALLOC_IN_RC(float_reg));
3767   match(RegF);
3768 
3769   format %{ %}
3770   interface(REG_INTER);
3771 %}
3772 
3773 // Double register operands
3774 operand regD()
3775 %{
3776   constraint(ALLOC_IN_RC(double_reg));
3777   match(RegD);
3778 
3779   format %{ %}
3780   interface(REG_INTER);
3781 %}
3782 
3783 //----------Memory Operands----------------------------------------------------
3784 // Direct Memory Operand
3785 // operand direct(immP addr)
3786 // %{
3787 //   match(addr);
3788 
3789 //   format %{ "[$addr]" %}
3790 //   interface(MEMORY_INTER) %{
3791 //     base(0xFFFFFFFF);
3792 //     index(0x4);
3793 //     scale(0x0);
3794 //     disp($addr);
3795 //   %}
3796 // %}
3797 
3798 // Indirect Memory Operand
3799 operand indirect(any_RegP reg)
3800 %{
3801   constraint(ALLOC_IN_RC(ptr_reg));
3802   match(reg);
3803 
3804   format %{ "[$reg]" %}
3805   interface(MEMORY_INTER) %{
3806     base($reg);
3807     index(0x4);
3808     scale(0x0);
3809     disp(0x0);
3810   %}
3811 %}
3812 
3813 // Indirect Memory Plus Short Offset Operand
3814 operand indOffset8(any_RegP reg, immL8 off)
3815 %{
3816   constraint(ALLOC_IN_RC(ptr_reg));
3817   match(AddP reg off);
3818 
3819   format %{ "[$reg + $off (8-bit)]" %}
3820   interface(MEMORY_INTER) %{
3821     base($reg);
3822     index(0x4);
3823     scale(0x0);
3824     disp($off);
3825   %}
3826 %}
3827 
3828 // Indirect Memory Plus Long Offset Operand
3829 operand indOffset32(any_RegP reg, immL32 off)
3830 %{
3831   constraint(ALLOC_IN_RC(ptr_reg));
3832   match(AddP reg off);
3833 
3834   format %{ "[$reg + $off (32-bit)]" %}
3835   interface(MEMORY_INTER) %{
3836     base($reg);
3837     index(0x4);
3838     scale(0x0);
3839     disp($off);
3840   %}
3841 %}
3842 
3843 // Indirect Memory Plus Index Register Plus Offset Operand
3844 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
3845 %{
3846   constraint(ALLOC_IN_RC(ptr_reg));
3847   match(AddP (AddP reg lreg) off);
3848 
3849   op_cost(10);
3850   format %{"[$reg + $off + $lreg]" %}
3851   interface(MEMORY_INTER) %{
3852     base($reg);
3853     index($lreg);
3854     scale(0x0);
3855     disp($off);
3856   %}
3857 %}
3858 
3859 // Indirect Memory Plus Index Register Plus Offset Operand
3860 operand indIndex(any_RegP reg, rRegL lreg)
3861 %{
3862   constraint(ALLOC_IN_RC(ptr_reg));
3863   match(AddP reg lreg);
3864 
3865   op_cost(10);
3866   format %{"[$reg + $lreg]" %}
3867   interface(MEMORY_INTER) %{
3868     base($reg);
3869     index($lreg);
3870     scale(0x0);
3871     disp(0x0);
3872   %}
3873 %}
3874 
3875 // Indirect Memory Times Scale Plus Index Register
3876 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
3877 %{
3878   constraint(ALLOC_IN_RC(ptr_reg));
3879   match(AddP reg (LShiftL lreg scale));
3880 
3881   op_cost(10);
3882   format %{"[$reg + $lreg << $scale]" %}
3883   interface(MEMORY_INTER) %{
3884     base($reg);
3885     index($lreg);
3886     scale($scale);
3887     disp(0x0);
3888   %}
3889 %}
3890 
3891 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3892 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
3893 %{
3894   constraint(ALLOC_IN_RC(ptr_reg));
3895   match(AddP (AddP reg (LShiftL lreg scale)) off);
3896 
3897   op_cost(10);
3898   format %{"[$reg + $off + $lreg << $scale]" %}
3899   interface(MEMORY_INTER) %{
3900     base($reg);
3901     index($lreg);
3902     scale($scale);
3903     disp($off);
3904   %}
3905 %}
3906 
3907 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
3908 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
3909 %{
3910   constraint(ALLOC_IN_RC(ptr_reg));
3911   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3912   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
3913 
3914   op_cost(10);
3915   format %{"[$reg + $off + $idx << $scale]" %}
3916   interface(MEMORY_INTER) %{
3917     base($reg);
3918     index($idx);
3919     scale($scale);
3920     disp($off);
3921   %}
3922 %}
3923 
3924 // Indirect Narrow Oop Plus Offset Operand
3925 // Note: x86 architecture doesn't support "scale * index + offset" without a base
3926 // we can't free r12 even with Universe::narrow_oop_base() == NULL.
3927 operand indCompressedOopOffset(rRegN reg, immL32 off) %{
3928   predicate(UseCompressedOops && (Universe::narrow_oop_shift() == Address::times_8));
3929   constraint(ALLOC_IN_RC(ptr_reg));
3930   match(AddP (DecodeN reg) off);
3931 
3932   op_cost(10);
3933   format %{"[R12 + $reg << 3 + $off] (compressed oop addressing)" %}
3934   interface(MEMORY_INTER) %{
3935     base(0xc); // R12
3936     index($reg);
3937     scale(0x3);
3938     disp($off);
3939   %}
3940 %}
3941 
3942 // Indirect Memory Operand
3943 operand indirectNarrow(rRegN reg)
3944 %{
3945   predicate(Universe::narrow_oop_shift() == 0);
3946   constraint(ALLOC_IN_RC(ptr_reg));
3947   match(DecodeN reg);
3948 
3949   format %{ "[$reg]" %}
3950   interface(MEMORY_INTER) %{
3951     base($reg);
3952     index(0x4);
3953     scale(0x0);
3954     disp(0x0);
3955   %}
3956 %}
3957 
3958 // Indirect Memory Plus Short Offset Operand
3959 operand indOffset8Narrow(rRegN reg, immL8 off)
3960 %{
3961   predicate(Universe::narrow_oop_shift() == 0);
3962   constraint(ALLOC_IN_RC(ptr_reg));
3963   match(AddP (DecodeN reg) off);
3964 
3965   format %{ "[$reg + $off (8-bit)]" %}
3966   interface(MEMORY_INTER) %{
3967     base($reg);
3968     index(0x4);
3969     scale(0x0);
3970     disp($off);
3971   %}
3972 %}
3973 
3974 // Indirect Memory Plus Long Offset Operand
3975 operand indOffset32Narrow(rRegN reg, immL32 off)
3976 %{
3977   predicate(Universe::narrow_oop_shift() == 0);
3978   constraint(ALLOC_IN_RC(ptr_reg));
3979   match(AddP (DecodeN reg) off);
3980 
3981   format %{ "[$reg + $off (32-bit)]" %}
3982   interface(MEMORY_INTER) %{
3983     base($reg);
3984     index(0x4);
3985     scale(0x0);
3986     disp($off);
3987   %}
3988 %}
3989 
3990 // Indirect Memory Plus Index Register Plus Offset Operand
3991 operand indIndexOffsetNarrow(rRegN reg, rRegL lreg, immL32 off)
3992 %{
3993   predicate(Universe::narrow_oop_shift() == 0);
3994   constraint(ALLOC_IN_RC(ptr_reg));
3995   match(AddP (AddP (DecodeN reg) lreg) off);
3996 
3997   op_cost(10);
3998   format %{"[$reg + $off + $lreg]" %}
3999   interface(MEMORY_INTER) %{
4000     base($reg);
4001     index($lreg);
4002     scale(0x0);
4003     disp($off);
4004   %}
4005 %}
4006 
4007 // Indirect Memory Plus Index Register Plus Offset Operand
4008 operand indIndexNarrow(rRegN reg, rRegL lreg)
4009 %{
4010   predicate(Universe::narrow_oop_shift() == 0);
4011   constraint(ALLOC_IN_RC(ptr_reg));
4012   match(AddP (DecodeN reg) lreg);
4013 
4014   op_cost(10);
4015   format %{"[$reg + $lreg]" %}
4016   interface(MEMORY_INTER) %{
4017     base($reg);
4018     index($lreg);
4019     scale(0x0);
4020     disp(0x0);
4021   %}
4022 %}
4023 
4024 // Indirect Memory Times Scale Plus Index Register
4025 operand indIndexScaleNarrow(rRegN reg, rRegL lreg, immI2 scale)
4026 %{
4027   predicate(Universe::narrow_oop_shift() == 0);
4028   constraint(ALLOC_IN_RC(ptr_reg));
4029   match(AddP (DecodeN reg) (LShiftL lreg scale));
4030 
4031   op_cost(10);
4032   format %{"[$reg + $lreg << $scale]" %}
4033   interface(MEMORY_INTER) %{
4034     base($reg);
4035     index($lreg);
4036     scale($scale);
4037     disp(0x0);
4038   %}
4039 %}
4040 
4041 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4042 operand indIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegL lreg, immI2 scale)
4043 %{
4044   predicate(Universe::narrow_oop_shift() == 0);
4045   constraint(ALLOC_IN_RC(ptr_reg));
4046   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
4047 
4048   op_cost(10);
4049   format %{"[$reg + $off + $lreg << $scale]" %}
4050   interface(MEMORY_INTER) %{
4051     base($reg);
4052     index($lreg);
4053     scale($scale);
4054     disp($off);
4055   %}
4056 %}
4057 
4058 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
4059 operand indPosIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegI idx, immI2 scale)
4060 %{
4061   constraint(ALLOC_IN_RC(ptr_reg));
4062   predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
4063   match(AddP (AddP (DecodeN reg) (LShiftL (ConvI2L idx) scale)) off);
4064 
4065   op_cost(10);
4066   format %{"[$reg + $off + $idx << $scale]" %}
4067   interface(MEMORY_INTER) %{
4068     base($reg);
4069     index($idx);
4070     scale($scale);
4071     disp($off);
4072   %}
4073 %}
4074 
4075 
4076 //----------Special Memory Operands--------------------------------------------
4077 // Stack Slot Operand - This operand is used for loading and storing temporary
4078 //                      values on the stack where a match requires a value to
4079 //                      flow through memory.
4080 operand stackSlotP(sRegP reg)
4081 %{
4082   constraint(ALLOC_IN_RC(stack_slots));
4083   // No match rule because this operand is only generated in matching
4084 
4085   format %{ "[$reg]" %}
4086   interface(MEMORY_INTER) %{
4087     base(0x4);   // RSP
4088     index(0x4);  // No Index
4089     scale(0x0);  // No Scale
4090     disp($reg);  // Stack Offset
4091   %}
4092 %}
4093 
4094 operand stackSlotI(sRegI reg)
4095 %{
4096   constraint(ALLOC_IN_RC(stack_slots));
4097   // No match rule because this operand is only generated in matching
4098 
4099   format %{ "[$reg]" %}
4100   interface(MEMORY_INTER) %{
4101     base(0x4);   // RSP
4102     index(0x4);  // No Index
4103     scale(0x0);  // No Scale
4104     disp($reg);  // Stack Offset
4105   %}
4106 %}
4107 
4108 operand stackSlotF(sRegF reg)
4109 %{
4110   constraint(ALLOC_IN_RC(stack_slots));
4111   // No match rule because this operand is only generated in matching
4112 
4113   format %{ "[$reg]" %}
4114   interface(MEMORY_INTER) %{
4115     base(0x4);   // RSP
4116     index(0x4);  // No Index
4117     scale(0x0);  // No Scale
4118     disp($reg);  // Stack Offset
4119   %}
4120 %}
4121 
4122 operand stackSlotD(sRegD reg)
4123 %{
4124   constraint(ALLOC_IN_RC(stack_slots));
4125   // No match rule because this operand is only generated in matching
4126 
4127   format %{ "[$reg]" %}
4128   interface(MEMORY_INTER) %{
4129     base(0x4);   // RSP
4130     index(0x4);  // No Index
4131     scale(0x0);  // No Scale
4132     disp($reg);  // Stack Offset
4133   %}
4134 %}
4135 operand stackSlotL(sRegL reg)
4136 %{
4137   constraint(ALLOC_IN_RC(stack_slots));
4138   // No match rule because this operand is only generated in matching
4139 
4140   format %{ "[$reg]" %}
4141   interface(MEMORY_INTER) %{
4142     base(0x4);   // RSP
4143     index(0x4);  // No Index
4144     scale(0x0);  // No Scale
4145     disp($reg);  // Stack Offset
4146   %}
4147 %}
4148 
4149 //----------Conditional Branch Operands----------------------------------------
4150 // Comparison Op  - This is the operation of the comparison, and is limited to
4151 //                  the following set of codes:
4152 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4153 //
4154 // Other attributes of the comparison, such as unsignedness, are specified
4155 // by the comparison instruction that sets a condition code flags register.
4156 // That result is represented by a flags operand whose subtype is appropriate
4157 // to the unsignedness (etc.) of the comparison.
4158 //
4159 // Later, the instruction which matches both the Comparison Op (a Bool) and
4160 // the flags (produced by the Cmp) specifies the coding of the comparison op
4161 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4162 
4163 // Comparision Code
4164 operand cmpOp()
4165 %{
4166   match(Bool);
4167 
4168   format %{ "" %}
4169   interface(COND_INTER) %{
4170     equal(0x4, "e");
4171     not_equal(0x5, "ne");
4172     less(0xC, "l");
4173     greater_equal(0xD, "ge");
4174     less_equal(0xE, "le");
4175     greater(0xF, "g");
4176   %}
4177 %}
4178 
4179 // Comparison Code, unsigned compare.  Used by FP also, with
4180 // C2 (unordered) turned into GT or LT already.  The other bits
4181 // C0 and C3 are turned into Carry & Zero flags.
4182 operand cmpOpU()
4183 %{
4184   match(Bool);
4185 
4186   format %{ "" %}
4187   interface(COND_INTER) %{
4188     equal(0x4, "e");
4189     not_equal(0x5, "ne");
4190     less(0x2, "b");
4191     greater_equal(0x3, "nb");
4192     less_equal(0x6, "be");
4193     greater(0x7, "nbe");
4194   %}
4195 %}
4196 
4197 
4198 // Floating comparisons that don't require any fixup for the unordered case
4199 operand cmpOpUCF() %{
4200   match(Bool);
4201   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4202             n->as_Bool()->_test._test == BoolTest::ge ||
4203             n->as_Bool()->_test._test == BoolTest::le ||
4204             n->as_Bool()->_test._test == BoolTest::gt);
4205   format %{ "" %}
4206   interface(COND_INTER) %{
4207     equal(0x4, "e");
4208     not_equal(0x5, "ne");
4209     less(0x2, "b");
4210     greater_equal(0x3, "nb");
4211     less_equal(0x6, "be");
4212     greater(0x7, "nbe");
4213   %}
4214 %}
4215 
4216 
4217 // Floating comparisons that can be fixed up with extra conditional jumps
4218 operand cmpOpUCF2() %{
4219   match(Bool);
4220   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4221             n->as_Bool()->_test._test == BoolTest::eq);
4222   format %{ "" %}
4223   interface(COND_INTER) %{
4224     equal(0x4, "e");
4225     not_equal(0x5, "ne");
4226     less(0x2, "b");
4227     greater_equal(0x3, "nb");
4228     less_equal(0x6, "be");
4229     greater(0x7, "nbe");
4230   %}
4231 %}
4232 
4233 
4234 //----------OPERAND CLASSES----------------------------------------------------
4235 // Operand Classes are groups of operands that are used as to simplify
4236 // instruction definitions by not requiring the AD writer to specify separate
4237 // instructions for every form of operand when the instruction accepts
4238 // multiple operand types with the same basic encoding and format.  The classic
4239 // case of this is memory operands.
4240 
4241 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
4242                indIndexScale, indIndexScaleOffset, indPosIndexScaleOffset,
4243                indCompressedOopOffset,
4244                indirectNarrow, indOffset8Narrow, indOffset32Narrow,
4245                indIndexOffsetNarrow, indIndexNarrow, indIndexScaleNarrow,
4246                indIndexScaleOffsetNarrow, indPosIndexScaleOffsetNarrow);
4247 
4248 //----------PIPELINE-----------------------------------------------------------
4249 // Rules which define the behavior of the target architectures pipeline.
4250 pipeline %{
4251 
4252 //----------ATTRIBUTES---------------------------------------------------------
4253 attributes %{
4254   variable_size_instructions;        // Fixed size instructions
4255   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
4256   instruction_unit_size = 1;         // An instruction is 1 bytes long
4257   instruction_fetch_unit_size = 16;  // The processor fetches one line
4258   instruction_fetch_units = 1;       // of 16 bytes
4259 
4260   // List of nop instructions
4261   nops( MachNop );
4262 %}
4263 
4264 //----------RESOURCES----------------------------------------------------------
4265 // Resources are the functional units available to the machine
4266 
4267 // Generic P2/P3 pipeline
4268 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
4269 // 3 instructions decoded per cycle.
4270 // 2 load/store ops per cycle, 1 branch, 1 FPU,
4271 // 3 ALU op, only ALU0 handles mul instructions.
4272 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
4273            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
4274            BR, FPU,
4275            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
4276 
4277 //----------PIPELINE DESCRIPTION-----------------------------------------------
4278 // Pipeline Description specifies the stages in the machine's pipeline
4279 
4280 // Generic P2/P3 pipeline
4281 pipe_desc(S0, S1, S2, S3, S4, S5);
4282 
4283 //----------PIPELINE CLASSES---------------------------------------------------
4284 // Pipeline Classes describe the stages in which input and output are
4285 // referenced by the hardware pipeline.
4286 
4287 // Naming convention: ialu or fpu
4288 // Then: _reg
4289 // Then: _reg if there is a 2nd register
4290 // Then: _long if it's a pair of instructions implementing a long
4291 // Then: _fat if it requires the big decoder
4292 //   Or: _mem if it requires the big decoder and a memory unit.
4293 
4294 // Integer ALU reg operation
4295 pipe_class ialu_reg(rRegI dst)
4296 %{
4297     single_instruction;
4298     dst    : S4(write);
4299     dst    : S3(read);
4300     DECODE : S0;        // any decoder
4301     ALU    : S3;        // any alu
4302 %}
4303 
4304 // Long ALU reg operation
4305 pipe_class ialu_reg_long(rRegL dst)
4306 %{
4307     instruction_count(2);
4308     dst    : S4(write);
4309     dst    : S3(read);
4310     DECODE : S0(2);     // any 2 decoders
4311     ALU    : S3(2);     // both alus
4312 %}
4313 
4314 // Integer ALU reg operation using big decoder
4315 pipe_class ialu_reg_fat(rRegI dst)
4316 %{
4317     single_instruction;
4318     dst    : S4(write);
4319     dst    : S3(read);
4320     D0     : S0;        // big decoder only
4321     ALU    : S3;        // any alu
4322 %}
4323 
4324 // Long ALU reg operation using big decoder
4325 pipe_class ialu_reg_long_fat(rRegL dst)
4326 %{
4327     instruction_count(2);
4328     dst    : S4(write);
4329     dst    : S3(read);
4330     D0     : S0(2);     // big decoder only; twice
4331     ALU    : S3(2);     // any 2 alus
4332 %}
4333 
4334 // Integer ALU reg-reg operation
4335 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
4336 %{
4337     single_instruction;
4338     dst    : S4(write);
4339     src    : S3(read);
4340     DECODE : S0;        // any decoder
4341     ALU    : S3;        // any alu
4342 %}
4343 
4344 // Long ALU reg-reg operation
4345 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
4346 %{
4347     instruction_count(2);
4348     dst    : S4(write);
4349     src    : S3(read);
4350     DECODE : S0(2);     // any 2 decoders
4351     ALU    : S3(2);     // both alus
4352 %}
4353 
4354 // Integer ALU reg-reg operation
4355 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
4356 %{
4357     single_instruction;
4358     dst    : S4(write);
4359     src    : S3(read);
4360     D0     : S0;        // big decoder only
4361     ALU    : S3;        // any alu
4362 %}
4363 
4364 // Long ALU reg-reg operation
4365 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
4366 %{
4367     instruction_count(2);
4368     dst    : S4(write);
4369     src    : S3(read);
4370     D0     : S0(2);     // big decoder only; twice
4371     ALU    : S3(2);     // both alus
4372 %}
4373 
4374 // Integer ALU reg-mem operation
4375 pipe_class ialu_reg_mem(rRegI dst, memory mem)
4376 %{
4377     single_instruction;
4378     dst    : S5(write);
4379     mem    : S3(read);
4380     D0     : S0;        // big decoder only
4381     ALU    : S4;        // any alu
4382     MEM    : S3;        // any mem
4383 %}
4384 
4385 // Integer mem operation (prefetch)
4386 pipe_class ialu_mem(memory mem)
4387 %{
4388     single_instruction;
4389     mem    : S3(read);
4390     D0     : S0;        // big decoder only
4391     MEM    : S3;        // any mem
4392 %}
4393 
4394 // Integer Store to Memory
4395 pipe_class ialu_mem_reg(memory mem, rRegI src)
4396 %{
4397     single_instruction;
4398     mem    : S3(read);
4399     src    : S5(read);
4400     D0     : S0;        // big decoder only
4401     ALU    : S4;        // any alu
4402     MEM    : S3;
4403 %}
4404 
4405 // // Long Store to Memory
4406 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
4407 // %{
4408 //     instruction_count(2);
4409 //     mem    : S3(read);
4410 //     src    : S5(read);
4411 //     D0     : S0(2);          // big decoder only; twice
4412 //     ALU    : S4(2);     // any 2 alus
4413 //     MEM    : S3(2);  // Both mems
4414 // %}
4415 
4416 // Integer Store to Memory
4417 pipe_class ialu_mem_imm(memory mem)
4418 %{
4419     single_instruction;
4420     mem    : S3(read);
4421     D0     : S0;        // big decoder only
4422     ALU    : S4;        // any alu
4423     MEM    : S3;
4424 %}
4425 
4426 // Integer ALU0 reg-reg operation
4427 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
4428 %{
4429     single_instruction;
4430     dst    : S4(write);
4431     src    : S3(read);
4432     D0     : S0;        // Big decoder only
4433     ALU0   : S3;        // only alu0
4434 %}
4435 
4436 // Integer ALU0 reg-mem operation
4437 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
4438 %{
4439     single_instruction;
4440     dst    : S5(write);
4441     mem    : S3(read);
4442     D0     : S0;        // big decoder only
4443     ALU0   : S4;        // ALU0 only
4444     MEM    : S3;        // any mem
4445 %}
4446 
4447 // Integer ALU reg-reg operation
4448 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
4449 %{
4450     single_instruction;
4451     cr     : S4(write);
4452     src1   : S3(read);
4453     src2   : S3(read);
4454     DECODE : S0;        // any decoder
4455     ALU    : S3;        // any alu
4456 %}
4457 
4458 // Integer ALU reg-imm operation
4459 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
4460 %{
4461     single_instruction;
4462     cr     : S4(write);
4463     src1   : S3(read);
4464     DECODE : S0;        // any decoder
4465     ALU    : S3;        // any alu
4466 %}
4467 
4468 // Integer ALU reg-mem operation
4469 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
4470 %{
4471     single_instruction;
4472     cr     : S4(write);
4473     src1   : S3(read);
4474     src2   : S3(read);
4475     D0     : S0;        // big decoder only
4476     ALU    : S4;        // any alu
4477     MEM    : S3;
4478 %}
4479 
4480 // Conditional move reg-reg
4481 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
4482 %{
4483     instruction_count(4);
4484     y      : S4(read);
4485     q      : S3(read);
4486     p      : S3(read);
4487     DECODE : S0(4);     // any decoder
4488 %}
4489 
4490 // Conditional move reg-reg
4491 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
4492 %{
4493     single_instruction;
4494     dst    : S4(write);
4495     src    : S3(read);
4496     cr     : S3(read);
4497     DECODE : S0;        // any decoder
4498 %}
4499 
4500 // Conditional move reg-mem
4501 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
4502 %{
4503     single_instruction;
4504     dst    : S4(write);
4505     src    : S3(read);
4506     cr     : S3(read);
4507     DECODE : S0;        // any decoder
4508     MEM    : S3;
4509 %}
4510 
4511 // Conditional move reg-reg long
4512 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
4513 %{
4514     single_instruction;
4515     dst    : S4(write);
4516     src    : S3(read);
4517     cr     : S3(read);
4518     DECODE : S0(2);     // any 2 decoders
4519 %}
4520 
4521 // XXX
4522 // // Conditional move double reg-reg
4523 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
4524 // %{
4525 //     single_instruction;
4526 //     dst    : S4(write);
4527 //     src    : S3(read);
4528 //     cr     : S3(read);
4529 //     DECODE : S0;     // any decoder
4530 // %}
4531 
4532 // Float reg-reg operation
4533 pipe_class fpu_reg(regD dst)
4534 %{
4535     instruction_count(2);
4536     dst    : S3(read);
4537     DECODE : S0(2);     // any 2 decoders
4538     FPU    : S3;
4539 %}
4540 
4541 // Float reg-reg operation
4542 pipe_class fpu_reg_reg(regD dst, regD src)
4543 %{
4544     instruction_count(2);
4545     dst    : S4(write);
4546     src    : S3(read);
4547     DECODE : S0(2);     // any 2 decoders
4548     FPU    : S3;
4549 %}
4550 
4551 // Float reg-reg operation
4552 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
4553 %{
4554     instruction_count(3);
4555     dst    : S4(write);
4556     src1   : S3(read);
4557     src2   : S3(read);
4558     DECODE : S0(3);     // any 3 decoders
4559     FPU    : S3(2);
4560 %}
4561 
4562 // Float reg-reg operation
4563 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
4564 %{
4565     instruction_count(4);
4566     dst    : S4(write);
4567     src1   : S3(read);
4568     src2   : S3(read);
4569     src3   : S3(read);
4570     DECODE : S0(4);     // any 3 decoders
4571     FPU    : S3(2);
4572 %}
4573 
4574 // Float reg-reg operation
4575 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
4576 %{
4577     instruction_count(4);
4578     dst    : S4(write);
4579     src1   : S3(read);
4580     src2   : S3(read);
4581     src3   : S3(read);
4582     DECODE : S1(3);     // any 3 decoders
4583     D0     : S0;        // Big decoder only
4584     FPU    : S3(2);
4585     MEM    : S3;
4586 %}
4587 
4588 // Float reg-mem operation
4589 pipe_class fpu_reg_mem(regD dst, memory mem)
4590 %{
4591     instruction_count(2);
4592     dst    : S5(write);
4593     mem    : S3(read);
4594     D0     : S0;        // big decoder only
4595     DECODE : S1;        // any decoder for FPU POP
4596     FPU    : S4;
4597     MEM    : S3;        // any mem
4598 %}
4599 
4600 // Float reg-mem operation
4601 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
4602 %{
4603     instruction_count(3);
4604     dst    : S5(write);
4605     src1   : S3(read);
4606     mem    : S3(read);
4607     D0     : S0;        // big decoder only
4608     DECODE : S1(2);     // any decoder for FPU POP
4609     FPU    : S4;
4610     MEM    : S3;        // any mem
4611 %}
4612 
4613 // Float mem-reg operation
4614 pipe_class fpu_mem_reg(memory mem, regD src)
4615 %{
4616     instruction_count(2);
4617     src    : S5(read);
4618     mem    : S3(read);
4619     DECODE : S0;        // any decoder for FPU PUSH
4620     D0     : S1;        // big decoder only
4621     FPU    : S4;
4622     MEM    : S3;        // any mem
4623 %}
4624 
4625 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
4626 %{
4627     instruction_count(3);
4628     src1   : S3(read);
4629     src2   : S3(read);
4630     mem    : S3(read);
4631     DECODE : S0(2);     // any decoder for FPU PUSH
4632     D0     : S1;        // big decoder only
4633     FPU    : S4;
4634     MEM    : S3;        // any mem
4635 %}
4636 
4637 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
4638 %{
4639     instruction_count(3);
4640     src1   : S3(read);
4641     src2   : S3(read);
4642     mem    : S4(read);
4643     DECODE : S0;        // any decoder for FPU PUSH
4644     D0     : S0(2);     // big decoder only
4645     FPU    : S4;
4646     MEM    : S3(2);     // any mem
4647 %}
4648 
4649 pipe_class fpu_mem_mem(memory dst, memory src1)
4650 %{
4651     instruction_count(2);
4652     src1   : S3(read);
4653     dst    : S4(read);
4654     D0     : S0(2);     // big decoder only
4655     MEM    : S3(2);     // any mem
4656 %}
4657 
4658 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
4659 %{
4660     instruction_count(3);
4661     src1   : S3(read);
4662     src2   : S3(read);
4663     dst    : S4(read);
4664     D0     : S0(3);     // big decoder only
4665     FPU    : S4;
4666     MEM    : S3(3);     // any mem
4667 %}
4668 
4669 pipe_class fpu_mem_reg_con(memory mem, regD src1)
4670 %{
4671     instruction_count(3);
4672     src1   : S4(read);
4673     mem    : S4(read);
4674     DECODE : S0;        // any decoder for FPU PUSH
4675     D0     : S0(2);     // big decoder only
4676     FPU    : S4;
4677     MEM    : S3(2);     // any mem
4678 %}
4679 
4680 // Float load constant
4681 pipe_class fpu_reg_con(regD dst)
4682 %{
4683     instruction_count(2);
4684     dst    : S5(write);
4685     D0     : S0;        // big decoder only for the load
4686     DECODE : S1;        // any decoder for FPU POP
4687     FPU    : S4;
4688     MEM    : S3;        // any mem
4689 %}
4690 
4691 // Float load constant
4692 pipe_class fpu_reg_reg_con(regD dst, regD src)
4693 %{
4694     instruction_count(3);
4695     dst    : S5(write);
4696     src    : S3(read);
4697     D0     : S0;        // big decoder only for the load
4698     DECODE : S1(2);     // any decoder for FPU POP
4699     FPU    : S4;
4700     MEM    : S3;        // any mem
4701 %}
4702 
4703 // UnConditional branch
4704 pipe_class pipe_jmp(label labl)
4705 %{
4706     single_instruction;
4707     BR   : S3;
4708 %}
4709 
4710 // Conditional branch
4711 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
4712 %{
4713     single_instruction;
4714     cr    : S1(read);
4715     BR    : S3;
4716 %}
4717 
4718 // Allocation idiom
4719 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
4720 %{
4721     instruction_count(1); force_serialization;
4722     fixed_latency(6);
4723     heap_ptr : S3(read);
4724     DECODE   : S0(3);
4725     D0       : S2;
4726     MEM      : S3;
4727     ALU      : S3(2);
4728     dst      : S5(write);
4729     BR       : S5;
4730 %}
4731 
4732 // Generic big/slow expanded idiom
4733 pipe_class pipe_slow()
4734 %{
4735     instruction_count(10); multiple_bundles; force_serialization;
4736     fixed_latency(100);
4737     D0  : S0(2);
4738     MEM : S3(2);
4739 %}
4740 
4741 // The real do-nothing guy
4742 pipe_class empty()
4743 %{
4744     instruction_count(0);
4745 %}
4746 
4747 // Define the class for the Nop node
4748 define
4749 %{
4750    MachNop = empty;
4751 %}
4752 
4753 %}
4754 
4755 //----------INSTRUCTIONS-------------------------------------------------------
4756 //
4757 // match      -- States which machine-independent subtree may be replaced
4758 //               by this instruction.
4759 // ins_cost   -- The estimated cost of this instruction is used by instruction
4760 //               selection to identify a minimum cost tree of machine
4761 //               instructions that matches a tree of machine-independent
4762 //               instructions.
4763 // format     -- A string providing the disassembly for this instruction.
4764 //               The value of an instruction's operand may be inserted
4765 //               by referring to it with a '$' prefix.
4766 // opcode     -- Three instruction opcodes may be provided.  These are referred
4767 //               to within an encode class as $primary, $secondary, and $tertiary
4768 //               rrspectively.  The primary opcode is commonly used to
4769 //               indicate the type of machine instruction, while secondary
4770 //               and tertiary are often used for prefix options or addressing
4771 //               modes.
4772 // ins_encode -- A list of encode classes with parameters. The encode class
4773 //               name must have been defined in an 'enc_class' specification
4774 //               in the encode section of the architecture description.
4775 
4776 
4777 //----------Load/Store/Move Instructions---------------------------------------
4778 //----------Load Instructions--------------------------------------------------
4779 
4780 // Load Byte (8 bit signed)
4781 instruct loadB(rRegI dst, memory mem)
4782 %{
4783   match(Set dst (LoadB mem));
4784 
4785   ins_cost(125);
4786   format %{ "movsbl  $dst, $mem\t# byte" %}
4787 
4788   ins_encode %{
4789     __ movsbl($dst$$Register, $mem$$Address);
4790   %}
4791 
4792   ins_pipe(ialu_reg_mem);
4793 %}
4794 
4795 // Load Byte (8 bit signed) into Long Register
4796 instruct loadB2L(rRegL dst, memory mem)
4797 %{
4798   match(Set dst (ConvI2L (LoadB mem)));
4799 
4800   ins_cost(125);
4801   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
4802 
4803   ins_encode %{
4804     __ movsbq($dst$$Register, $mem$$Address);
4805   %}
4806 
4807   ins_pipe(ialu_reg_mem);
4808 %}
4809 
4810 // Load Unsigned Byte (8 bit UNsigned)
4811 instruct loadUB(rRegI dst, memory mem)
4812 %{
4813   match(Set dst (LoadUB mem));
4814 
4815   ins_cost(125);
4816   format %{ "movzbl  $dst, $mem\t# ubyte" %}
4817 
4818   ins_encode %{
4819     __ movzbl($dst$$Register, $mem$$Address);
4820   %}
4821 
4822   ins_pipe(ialu_reg_mem);
4823 %}
4824 
4825 // Load Unsigned Byte (8 bit UNsigned) into Long Register
4826 instruct loadUB2L(rRegL dst, memory mem)
4827 %{
4828   match(Set dst (ConvI2L (LoadUB mem)));
4829 
4830   ins_cost(125);
4831   format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
4832 
4833   ins_encode %{
4834     __ movzbq($dst$$Register, $mem$$Address);
4835   %}
4836 
4837   ins_pipe(ialu_reg_mem);
4838 %}
4839 
4840 // Load Unsigned Byte (8 bit UNsigned) with a 8-bit mask into Long Register
4841 instruct loadUB2L_immI8(rRegL dst, memory mem, immI8 mask, rFlagsReg cr) %{
4842   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
4843   effect(KILL cr);
4844 
4845   format %{ "movzbq  $dst, $mem\t# ubyte & 8-bit mask -> long\n\t"
4846             "andl    $dst, $mask" %}
4847   ins_encode %{
4848     Register Rdst = $dst$$Register;
4849     __ movzbq(Rdst, $mem$$Address);
4850     __ andl(Rdst, $mask$$constant);
4851   %}
4852   ins_pipe(ialu_reg_mem);
4853 %}
4854 
4855 // Load Short (16 bit signed)
4856 instruct loadS(rRegI dst, memory mem)
4857 %{
4858   match(Set dst (LoadS mem));
4859 
4860   ins_cost(125);
4861   format %{ "movswl $dst, $mem\t# short" %}
4862 
4863   ins_encode %{
4864     __ movswl($dst$$Register, $mem$$Address);
4865   %}
4866 
4867   ins_pipe(ialu_reg_mem);
4868 %}
4869 
4870 // Load Short (16 bit signed) to Byte (8 bit signed)
4871 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4872   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
4873 
4874   ins_cost(125);
4875   format %{ "movsbl $dst, $mem\t# short -> byte" %}
4876   ins_encode %{
4877     __ movsbl($dst$$Register, $mem$$Address);
4878   %}
4879   ins_pipe(ialu_reg_mem);
4880 %}
4881 
4882 // Load Short (16 bit signed) into Long Register
4883 instruct loadS2L(rRegL dst, memory mem)
4884 %{
4885   match(Set dst (ConvI2L (LoadS mem)));
4886 
4887   ins_cost(125);
4888   format %{ "movswq $dst, $mem\t# short -> long" %}
4889 
4890   ins_encode %{
4891     __ movswq($dst$$Register, $mem$$Address);
4892   %}
4893 
4894   ins_pipe(ialu_reg_mem);
4895 %}
4896 
4897 // Load Unsigned Short/Char (16 bit UNsigned)
4898 instruct loadUS(rRegI dst, memory mem)
4899 %{
4900   match(Set dst (LoadUS mem));
4901 
4902   ins_cost(125);
4903   format %{ "movzwl  $dst, $mem\t# ushort/char" %}
4904 
4905   ins_encode %{
4906     __ movzwl($dst$$Register, $mem$$Address);
4907   %}
4908 
4909   ins_pipe(ialu_reg_mem);
4910 %}
4911 
4912 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
4913 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4914   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
4915 
4916   ins_cost(125);
4917   format %{ "movsbl $dst, $mem\t# ushort -> byte" %}
4918   ins_encode %{
4919     __ movsbl($dst$$Register, $mem$$Address);
4920   %}
4921   ins_pipe(ialu_reg_mem);
4922 %}
4923 
4924 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
4925 instruct loadUS2L(rRegL dst, memory mem)
4926 %{
4927   match(Set dst (ConvI2L (LoadUS mem)));
4928 
4929   ins_cost(125);
4930   format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
4931 
4932   ins_encode %{
4933     __ movzwq($dst$$Register, $mem$$Address);
4934   %}
4935 
4936   ins_pipe(ialu_reg_mem);
4937 %}
4938 
4939 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
4940 instruct loadUS2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
4941   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
4942 
4943   format %{ "movzbq  $dst, $mem\t# ushort/char & 0xFF -> long" %}
4944   ins_encode %{
4945     __ movzbq($dst$$Register, $mem$$Address);
4946   %}
4947   ins_pipe(ialu_reg_mem);
4948 %}
4949 
4950 // Load Unsigned Short/Char (16 bit UNsigned) with mask into Long Register
4951 instruct loadUS2L_immI16(rRegL dst, memory mem, immI16 mask, rFlagsReg cr) %{
4952   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
4953   effect(KILL cr);
4954 
4955   format %{ "movzwq  $dst, $mem\t# ushort/char & 16-bit mask -> long\n\t"
4956             "andl    $dst, $mask" %}
4957   ins_encode %{
4958     Register Rdst = $dst$$Register;
4959     __ movzwq(Rdst, $mem$$Address);
4960     __ andl(Rdst, $mask$$constant);
4961   %}
4962   ins_pipe(ialu_reg_mem);
4963 %}
4964 
4965 // Load Integer
4966 instruct loadI(rRegI dst, memory mem)
4967 %{
4968   match(Set dst (LoadI mem));
4969 
4970   ins_cost(125);
4971   format %{ "movl    $dst, $mem\t# int" %}
4972 
4973   ins_encode %{
4974     __ movl($dst$$Register, $mem$$Address);
4975   %}
4976 
4977   ins_pipe(ialu_reg_mem);
4978 %}
4979 
4980 // Load Integer (32 bit signed) to Byte (8 bit signed)
4981 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4982   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
4983 
4984   ins_cost(125);
4985   format %{ "movsbl  $dst, $mem\t# int -> byte" %}
4986   ins_encode %{
4987     __ movsbl($dst$$Register, $mem$$Address);
4988   %}
4989   ins_pipe(ialu_reg_mem);
4990 %}
4991 
4992 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
4993 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
4994   match(Set dst (AndI (LoadI mem) mask));
4995 
4996   ins_cost(125);
4997   format %{ "movzbl  $dst, $mem\t# int -> ubyte" %}
4998   ins_encode %{
4999     __ movzbl($dst$$Register, $mem$$Address);
5000   %}
5001   ins_pipe(ialu_reg_mem);
5002 %}
5003 
5004 // Load Integer (32 bit signed) to Short (16 bit signed)
5005 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
5006   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5007 
5008   ins_cost(125);
5009   format %{ "movswl  $dst, $mem\t# int -> short" %}
5010   ins_encode %{
5011     __ movswl($dst$$Register, $mem$$Address);
5012   %}
5013   ins_pipe(ialu_reg_mem);
5014 %}
5015 
5016 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
5017 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
5018   match(Set dst (AndI (LoadI mem) mask));
5019 
5020   ins_cost(125);
5021   format %{ "movzwl  $dst, $mem\t# int -> ushort/char" %}
5022   ins_encode %{
5023     __ movzwl($dst$$Register, $mem$$Address);
5024   %}
5025   ins_pipe(ialu_reg_mem);
5026 %}
5027 
5028 // Load Integer into Long Register
5029 instruct loadI2L(rRegL dst, memory mem)
5030 %{
5031   match(Set dst (ConvI2L (LoadI mem)));
5032 
5033   ins_cost(125);
5034   format %{ "movslq  $dst, $mem\t# int -> long" %}
5035 
5036   ins_encode %{
5037     __ movslq($dst$$Register, $mem$$Address);
5038   %}
5039 
5040   ins_pipe(ialu_reg_mem);
5041 %}
5042 
5043 // Load Integer with mask 0xFF into Long Register
5044 instruct loadI2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
5045   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5046 
5047   format %{ "movzbq  $dst, $mem\t# int & 0xFF -> long" %}
5048   ins_encode %{
5049     __ movzbq($dst$$Register, $mem$$Address);
5050   %}
5051   ins_pipe(ialu_reg_mem);
5052 %}
5053 
5054 // Load Integer with mask 0xFFFF into Long Register
5055 instruct loadI2L_immI_65535(rRegL dst, memory mem, immI_65535 mask) %{
5056   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5057 
5058   format %{ "movzwq  $dst, $mem\t# int & 0xFFFF -> long" %}
5059   ins_encode %{
5060     __ movzwq($dst$$Register, $mem$$Address);
5061   %}
5062   ins_pipe(ialu_reg_mem);
5063 %}
5064 
5065 // Load Integer with a 32-bit mask into Long Register
5066 instruct loadI2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
5067   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5068   effect(KILL cr);
5069 
5070   format %{ "movl    $dst, $mem\t# int & 32-bit mask -> long\n\t"
5071             "andl    $dst, $mask" %}
5072   ins_encode %{
5073     Register Rdst = $dst$$Register;
5074     __ movl(Rdst, $mem$$Address);
5075     __ andl(Rdst, $mask$$constant);
5076   %}
5077   ins_pipe(ialu_reg_mem);
5078 %}
5079 
5080 // Load Unsigned Integer into Long Register
5081 instruct loadUI2L(rRegL dst, memory mem)
5082 %{
5083   match(Set dst (LoadUI2L mem));
5084 
5085   ins_cost(125);
5086   format %{ "movl    $dst, $mem\t# uint -> long" %}
5087 
5088   ins_encode %{
5089     __ movl($dst$$Register, $mem$$Address);
5090   %}
5091 
5092   ins_pipe(ialu_reg_mem);
5093 %}
5094 
5095 // Load Long
5096 instruct loadL(rRegL dst, memory mem)
5097 %{
5098   match(Set dst (LoadL mem));
5099 
5100   ins_cost(125);
5101   format %{ "movq    $dst, $mem\t# long" %}
5102 
5103   ins_encode %{
5104     __ movq($dst$$Register, $mem$$Address);
5105   %}
5106 
5107   ins_pipe(ialu_reg_mem); // XXX
5108 %}
5109 
5110 // Load Range
5111 instruct loadRange(rRegI dst, memory mem)
5112 %{
5113   match(Set dst (LoadRange mem));
5114 
5115   ins_cost(125); // XXX
5116   format %{ "movl    $dst, $mem\t# range" %}
5117   opcode(0x8B);
5118   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
5119   ins_pipe(ialu_reg_mem);
5120 %}
5121 
5122 // Load Pointer
5123 instruct loadP(rRegP dst, memory mem)
5124 %{
5125   match(Set dst (LoadP mem));
5126 
5127   ins_cost(125); // XXX
5128   format %{ "movq    $dst, $mem\t# ptr" %}
5129   opcode(0x8B);
5130   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5131   ins_pipe(ialu_reg_mem); // XXX
5132 %}
5133 
5134 // Load Compressed Pointer
5135 instruct loadN(rRegN dst, memory mem)
5136 %{
5137    match(Set dst (LoadN mem));
5138 
5139    ins_cost(125); // XXX
5140    format %{ "movl    $dst, $mem\t# compressed ptr" %}
5141    ins_encode %{
5142      __ movl($dst$$Register, $mem$$Address);
5143    %}
5144    ins_pipe(ialu_reg_mem); // XXX
5145 %}
5146 
5147 
5148 // Load Klass Pointer
5149 instruct loadKlass(rRegP dst, memory mem)
5150 %{
5151   match(Set dst (LoadKlass mem));
5152 
5153   ins_cost(125); // XXX
5154   format %{ "movq    $dst, $mem\t# class" %}
5155   opcode(0x8B);
5156   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5157   ins_pipe(ialu_reg_mem); // XXX
5158 %}
5159 
5160 // Load narrow Klass Pointer
5161 instruct loadNKlass(rRegN dst, memory mem)
5162 %{
5163   match(Set dst (LoadNKlass mem));
5164 
5165   ins_cost(125); // XXX
5166   format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
5167   ins_encode %{
5168     __ movl($dst$$Register, $mem$$Address);
5169   %}
5170   ins_pipe(ialu_reg_mem); // XXX
5171 %}
5172 
5173 // Load Float
5174 instruct loadF(regF dst, memory mem)
5175 %{
5176   match(Set dst (LoadF mem));
5177 
5178   ins_cost(145); // XXX
5179   format %{ "movss   $dst, $mem\t# float" %}
5180   ins_encode %{
5181     __ movflt($dst$$XMMRegister, $mem$$Address);
5182   %}
5183   ins_pipe(pipe_slow); // XXX
5184 %}
5185 
5186 // Load Double
5187 instruct loadD_partial(regD dst, memory mem)
5188 %{
5189   predicate(!UseXmmLoadAndClearUpper);
5190   match(Set dst (LoadD mem));
5191 
5192   ins_cost(145); // XXX
5193   format %{ "movlpd  $dst, $mem\t# double" %}
5194   ins_encode %{
5195     __ movdbl($dst$$XMMRegister, $mem$$Address);
5196   %}
5197   ins_pipe(pipe_slow); // XXX
5198 %}
5199 
5200 instruct loadD(regD dst, memory mem)
5201 %{
5202   predicate(UseXmmLoadAndClearUpper);
5203   match(Set dst (LoadD mem));
5204 
5205   ins_cost(145); // XXX
5206   format %{ "movsd   $dst, $mem\t# double" %}
5207   ins_encode %{
5208     __ movdbl($dst$$XMMRegister, $mem$$Address);
5209   %}
5210   ins_pipe(pipe_slow); // XXX
5211 %}
5212 
5213 // Load Effective Address
5214 instruct leaP8(rRegP dst, indOffset8 mem)
5215 %{
5216   match(Set dst mem);
5217 
5218   ins_cost(110); // XXX
5219   format %{ "leaq    $dst, $mem\t# ptr 8" %}
5220   opcode(0x8D);
5221   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5222   ins_pipe(ialu_reg_reg_fat);
5223 %}
5224 
5225 instruct leaP32(rRegP dst, indOffset32 mem)
5226 %{
5227   match(Set dst mem);
5228 
5229   ins_cost(110);
5230   format %{ "leaq    $dst, $mem\t# ptr 32" %}
5231   opcode(0x8D);
5232   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5233   ins_pipe(ialu_reg_reg_fat);
5234 %}
5235 
5236 // instruct leaPIdx(rRegP dst, indIndex mem)
5237 // %{
5238 //   match(Set dst mem);
5239 
5240 //   ins_cost(110);
5241 //   format %{ "leaq    $dst, $mem\t# ptr idx" %}
5242 //   opcode(0x8D);
5243 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5244 //   ins_pipe(ialu_reg_reg_fat);
5245 // %}
5246 
5247 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
5248 %{
5249   match(Set dst mem);
5250 
5251   ins_cost(110);
5252   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
5253   opcode(0x8D);
5254   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5255   ins_pipe(ialu_reg_reg_fat);
5256 %}
5257 
5258 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
5259 %{
5260   match(Set dst mem);
5261 
5262   ins_cost(110);
5263   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5264   opcode(0x8D);
5265   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5266   ins_pipe(ialu_reg_reg_fat);
5267 %}
5268 
5269 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
5270 %{
5271   match(Set dst mem);
5272 
5273   ins_cost(110);
5274   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
5275   opcode(0x8D);
5276   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5277   ins_pipe(ialu_reg_reg_fat);
5278 %}
5279 
5280 instruct leaPPosIdxScaleOff(rRegP dst, indPosIndexScaleOffset mem)
5281 %{
5282   match(Set dst mem);
5283 
5284   ins_cost(110);
5285   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoff" %}
5286   opcode(0x8D);
5287   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5288   ins_pipe(ialu_reg_reg_fat);
5289 %}
5290 
5291 // Load Effective Address which uses Narrow (32-bits) oop
5292 instruct leaPCompressedOopOffset(rRegP dst, indCompressedOopOffset mem)
5293 %{
5294   predicate(UseCompressedOops && (Universe::narrow_oop_shift() != 0));
5295   match(Set dst mem);
5296 
5297   ins_cost(110);
5298   format %{ "leaq    $dst, $mem\t# ptr compressedoopoff32" %}
5299   opcode(0x8D);
5300   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5301   ins_pipe(ialu_reg_reg_fat);
5302 %}
5303 
5304 instruct leaP8Narrow(rRegP dst, indOffset8Narrow mem)
5305 %{
5306   predicate(Universe::narrow_oop_shift() == 0);
5307   match(Set dst mem);
5308 
5309   ins_cost(110); // XXX
5310   format %{ "leaq    $dst, $mem\t# ptr off8narrow" %}
5311   opcode(0x8D);
5312   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5313   ins_pipe(ialu_reg_reg_fat);
5314 %}
5315 
5316 instruct leaP32Narrow(rRegP dst, indOffset32Narrow mem)
5317 %{
5318   predicate(Universe::narrow_oop_shift() == 0);
5319   match(Set dst mem);
5320 
5321   ins_cost(110);
5322   format %{ "leaq    $dst, $mem\t# ptr off32narrow" %}
5323   opcode(0x8D);
5324   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5325   ins_pipe(ialu_reg_reg_fat);
5326 %}
5327 
5328 instruct leaPIdxOffNarrow(rRegP dst, indIndexOffsetNarrow mem)
5329 %{
5330   predicate(Universe::narrow_oop_shift() == 0);
5331   match(Set dst mem);
5332 
5333   ins_cost(110);
5334   format %{ "leaq    $dst, $mem\t# ptr idxoffnarrow" %}
5335   opcode(0x8D);
5336   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5337   ins_pipe(ialu_reg_reg_fat);
5338 %}
5339 
5340 instruct leaPIdxScaleNarrow(rRegP dst, indIndexScaleNarrow mem)
5341 %{
5342   predicate(Universe::narrow_oop_shift() == 0);
5343   match(Set dst mem);
5344 
5345   ins_cost(110);
5346   format %{ "leaq    $dst, $mem\t# ptr idxscalenarrow" %}
5347   opcode(0x8D);
5348   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5349   ins_pipe(ialu_reg_reg_fat);
5350 %}
5351 
5352 instruct leaPIdxScaleOffNarrow(rRegP dst, indIndexScaleOffsetNarrow mem)
5353 %{
5354   predicate(Universe::narrow_oop_shift() == 0);
5355   match(Set dst mem);
5356 
5357   ins_cost(110);
5358   format %{ "leaq    $dst, $mem\t# ptr idxscaleoffnarrow" %}
5359   opcode(0x8D);
5360   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5361   ins_pipe(ialu_reg_reg_fat);
5362 %}
5363 
5364 instruct leaPPosIdxScaleOffNarrow(rRegP dst, indPosIndexScaleOffsetNarrow mem)
5365 %{
5366   predicate(Universe::narrow_oop_shift() == 0);
5367   match(Set dst mem);
5368 
5369   ins_cost(110);
5370   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoffnarrow" %}
5371   opcode(0x8D);
5372   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5373   ins_pipe(ialu_reg_reg_fat);
5374 %}
5375 
5376 instruct loadConI(rRegI dst, immI src)
5377 %{
5378   match(Set dst src);
5379 
5380   format %{ "movl    $dst, $src\t# int" %}
5381   ins_encode(load_immI(dst, src));
5382   ins_pipe(ialu_reg_fat); // XXX
5383 %}
5384 
5385 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
5386 %{
5387   match(Set dst src);
5388   effect(KILL cr);
5389 
5390   ins_cost(50);
5391   format %{ "xorl    $dst, $dst\t# int" %}
5392   opcode(0x33); /* + rd */
5393   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5394   ins_pipe(ialu_reg);
5395 %}
5396 
5397 instruct loadConL(rRegL dst, immL src)
5398 %{
5399   match(Set dst src);
5400 
5401   ins_cost(150);
5402   format %{ "movq    $dst, $src\t# long" %}
5403   ins_encode(load_immL(dst, src));
5404   ins_pipe(ialu_reg);
5405 %}
5406 
5407 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
5408 %{
5409   match(Set dst src);
5410   effect(KILL cr);
5411 
5412   ins_cost(50);
5413   format %{ "xorl    $dst, $dst\t# long" %}
5414   opcode(0x33); /* + rd */
5415   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5416   ins_pipe(ialu_reg); // XXX
5417 %}
5418 
5419 instruct loadConUL32(rRegL dst, immUL32 src)
5420 %{
5421   match(Set dst src);
5422 
5423   ins_cost(60);
5424   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
5425   ins_encode(load_immUL32(dst, src));
5426   ins_pipe(ialu_reg);
5427 %}
5428 
5429 instruct loadConL32(rRegL dst, immL32 src)
5430 %{
5431   match(Set dst src);
5432 
5433   ins_cost(70);
5434   format %{ "movq    $dst, $src\t# long (32-bit)" %}
5435   ins_encode(load_immL32(dst, src));
5436   ins_pipe(ialu_reg);
5437 %}
5438 
5439 instruct loadConP(rRegP dst, immP con) %{
5440   match(Set dst con);
5441 
5442   format %{ "movq    $dst, $con\t# ptr" %}
5443   ins_encode(load_immP(dst, con));
5444   ins_pipe(ialu_reg_fat); // XXX
5445 %}
5446 
5447 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
5448 %{
5449   match(Set dst src);
5450   effect(KILL cr);
5451 
5452   ins_cost(50);
5453   format %{ "xorl    $dst, $dst\t# ptr" %}
5454   opcode(0x33); /* + rd */
5455   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5456   ins_pipe(ialu_reg);
5457 %}
5458 
5459 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
5460 %{
5461   match(Set dst src);
5462   effect(KILL cr);
5463 
5464   ins_cost(60);
5465   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
5466   ins_encode(load_immP31(dst, src));
5467   ins_pipe(ialu_reg);
5468 %}
5469 
5470 instruct loadConF(regF dst, immF con) %{
5471   match(Set dst con);
5472   ins_cost(125);
5473   format %{ "movss   $dst, [$constantaddress]\t# load from constant table: float=$con" %}
5474   ins_encode %{
5475     __ movflt($dst$$XMMRegister, $constantaddress($con));
5476   %}
5477   ins_pipe(pipe_slow);
5478 %}
5479 
5480 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
5481   match(Set dst src);
5482   effect(KILL cr);
5483   format %{ "xorq    $dst, $src\t# compressed NULL ptr" %}
5484   ins_encode %{
5485     __ xorq($dst$$Register, $dst$$Register);
5486   %}
5487   ins_pipe(ialu_reg);
5488 %}
5489 
5490 instruct loadConN(rRegN dst, immN src) %{
5491   match(Set dst src);
5492 
5493   ins_cost(125);
5494   format %{ "movl    $dst, $src\t# compressed ptr" %}
5495   ins_encode %{
5496     address con = (address)$src$$constant;
5497     if (con == NULL) {
5498       ShouldNotReachHere();
5499     } else {
5500       __ set_narrow_oop($dst$$Register, (jobject)$src$$constant);
5501     }
5502   %}
5503   ins_pipe(ialu_reg_fat); // XXX
5504 %}
5505 
5506 instruct loadConF0(regF dst, immF0 src)
5507 %{
5508   match(Set dst src);
5509   ins_cost(100);
5510 
5511   format %{ "xorps   $dst, $dst\t# float 0.0" %}
5512   ins_encode %{
5513     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
5514   %}
5515   ins_pipe(pipe_slow);
5516 %}
5517 
5518 // Use the same format since predicate() can not be used here.
5519 instruct loadConD(regD dst, immD con) %{
5520   match(Set dst con);
5521   ins_cost(125);
5522   format %{ "movsd   $dst, [$constantaddress]\t# load from constant table: double=$con" %}
5523   ins_encode %{
5524     __ movdbl($dst$$XMMRegister, $constantaddress($con));
5525   %}
5526   ins_pipe(pipe_slow);
5527 %}
5528 
5529 instruct loadConD0(regD dst, immD0 src)
5530 %{
5531   match(Set dst src);
5532   ins_cost(100);
5533 
5534   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
5535   ins_encode %{
5536     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
5537   %}
5538   ins_pipe(pipe_slow);
5539 %}
5540 
5541 instruct loadSSI(rRegI dst, stackSlotI src)
5542 %{
5543   match(Set dst src);
5544 
5545   ins_cost(125);
5546   format %{ "movl    $dst, $src\t# int stk" %}
5547   opcode(0x8B);
5548   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
5549   ins_pipe(ialu_reg_mem);
5550 %}
5551 
5552 instruct loadSSL(rRegL dst, stackSlotL src)
5553 %{
5554   match(Set dst src);
5555 
5556   ins_cost(125);
5557   format %{ "movq    $dst, $src\t# long stk" %}
5558   opcode(0x8B);
5559   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5560   ins_pipe(ialu_reg_mem);
5561 %}
5562 
5563 instruct loadSSP(rRegP dst, stackSlotP src)
5564 %{
5565   match(Set dst src);
5566 
5567   ins_cost(125);
5568   format %{ "movq    $dst, $src\t# ptr stk" %}
5569   opcode(0x8B);
5570   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5571   ins_pipe(ialu_reg_mem);
5572 %}
5573 
5574 instruct loadSSF(regF dst, stackSlotF src)
5575 %{
5576   match(Set dst src);
5577 
5578   ins_cost(125);
5579   format %{ "movss   $dst, $src\t# float stk" %}
5580   ins_encode %{
5581     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
5582   %}
5583   ins_pipe(pipe_slow); // XXX
5584 %}
5585 
5586 // Use the same format since predicate() can not be used here.
5587 instruct loadSSD(regD dst, stackSlotD src)
5588 %{
5589   match(Set dst src);
5590 
5591   ins_cost(125);
5592   format %{ "movsd   $dst, $src\t# double stk" %}
5593   ins_encode  %{
5594     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
5595   %}
5596   ins_pipe(pipe_slow); // XXX
5597 %}
5598 
5599 // Prefetch instructions.
5600 // Must be safe to execute with invalid address (cannot fault).
5601 
5602 instruct prefetchr( memory mem ) %{
5603   predicate(ReadPrefetchInstr==3);
5604   match(PrefetchRead mem);
5605   ins_cost(125);
5606 
5607   format %{ "PREFETCHR $mem\t# Prefetch into level 1 cache" %}
5608   ins_encode %{
5609     __ prefetchr($mem$$Address);
5610   %}
5611   ins_pipe(ialu_mem);
5612 %}
5613 
5614 instruct prefetchrNTA( memory mem ) %{
5615   predicate(ReadPrefetchInstr==0);
5616   match(PrefetchRead mem);
5617   ins_cost(125);
5618 
5619   format %{ "PREFETCHNTA $mem\t# Prefetch into non-temporal cache for read" %}
5620   ins_encode %{
5621     __ prefetchnta($mem$$Address);
5622   %}
5623   ins_pipe(ialu_mem);
5624 %}
5625 
5626 instruct prefetchrT0( memory mem ) %{
5627   predicate(ReadPrefetchInstr==1);
5628   match(PrefetchRead mem);
5629   ins_cost(125);
5630 
5631   format %{ "PREFETCHT0 $mem\t# prefetch into L1 and L2 caches for read" %}
5632   ins_encode %{
5633     __ prefetcht0($mem$$Address);
5634   %}
5635   ins_pipe(ialu_mem);
5636 %}
5637 
5638 instruct prefetchrT2( memory mem ) %{
5639   predicate(ReadPrefetchInstr==2);
5640   match(PrefetchRead mem);
5641   ins_cost(125);
5642 
5643   format %{ "PREFETCHT2 $mem\t# prefetch into L2 caches for read" %}
5644   ins_encode %{
5645     __ prefetcht2($mem$$Address);
5646   %}
5647   ins_pipe(ialu_mem);
5648 %}
5649 
5650 instruct prefetchwNTA( memory mem ) %{
5651   match(PrefetchWrite mem);
5652   ins_cost(125);
5653 
5654   format %{ "PREFETCHNTA $mem\t# Prefetch to non-temporal cache for write" %}
5655   ins_encode %{
5656     __ prefetchnta($mem$$Address);
5657   %}
5658   ins_pipe(ialu_mem);
5659 %}
5660 
5661 // Prefetch instructions for allocation.
5662 
5663 instruct prefetchAlloc( memory mem ) %{
5664   predicate(AllocatePrefetchInstr==3);
5665   match(PrefetchAllocation mem);
5666   ins_cost(125);
5667 
5668   format %{ "PREFETCHW $mem\t# Prefetch allocation into level 1 cache and mark modified" %}
5669   ins_encode %{
5670     __ prefetchw($mem$$Address);
5671   %}
5672   ins_pipe(ialu_mem);
5673 %}
5674 
5675 instruct prefetchAllocNTA( memory mem ) %{
5676   predicate(AllocatePrefetchInstr==0);
5677   match(PrefetchAllocation mem);
5678   ins_cost(125);
5679 
5680   format %{ "PREFETCHNTA $mem\t# Prefetch allocation to non-temporal cache for write" %}
5681   ins_encode %{
5682     __ prefetchnta($mem$$Address);
5683   %}
5684   ins_pipe(ialu_mem);
5685 %}
5686 
5687 instruct prefetchAllocT0( memory mem ) %{
5688   predicate(AllocatePrefetchInstr==1);
5689   match(PrefetchAllocation mem);
5690   ins_cost(125);
5691 
5692   format %{ "PREFETCHT0 $mem\t# Prefetch allocation to level 1 and 2 caches for write" %}
5693   ins_encode %{
5694     __ prefetcht0($mem$$Address);
5695   %}
5696   ins_pipe(ialu_mem);
5697 %}
5698 
5699 instruct prefetchAllocT2( memory mem ) %{
5700   predicate(AllocatePrefetchInstr==2);
5701   match(PrefetchAllocation mem);
5702   ins_cost(125);
5703 
5704   format %{ "PREFETCHT2 $mem\t# Prefetch allocation to level 2 cache for write" %}
5705   ins_encode %{
5706     __ prefetcht2($mem$$Address);
5707   %}
5708   ins_pipe(ialu_mem);
5709 %}
5710 
5711 //----------Store Instructions-------------------------------------------------
5712 
5713 // Store Byte
5714 instruct storeB(memory mem, rRegI src)
5715 %{
5716   match(Set mem (StoreB mem src));
5717 
5718   ins_cost(125); // XXX
5719   format %{ "movb    $mem, $src\t# byte" %}
5720   opcode(0x88);
5721   ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
5722   ins_pipe(ialu_mem_reg);
5723 %}
5724 
5725 // Store Char/Short
5726 instruct storeC(memory mem, rRegI src)
5727 %{
5728   match(Set mem (StoreC mem src));
5729 
5730   ins_cost(125); // XXX
5731   format %{ "movw    $mem, $src\t# char/short" %}
5732   opcode(0x89);
5733   ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5734   ins_pipe(ialu_mem_reg);
5735 %}
5736 
5737 // Store Integer
5738 instruct storeI(memory mem, rRegI src)
5739 %{
5740   match(Set mem (StoreI mem src));
5741 
5742   ins_cost(125); // XXX
5743   format %{ "movl    $mem, $src\t# int" %}
5744   opcode(0x89);
5745   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5746   ins_pipe(ialu_mem_reg);
5747 %}
5748 
5749 // Store Long
5750 instruct storeL(memory mem, rRegL src)
5751 %{
5752   match(Set mem (StoreL mem src));
5753 
5754   ins_cost(125); // XXX
5755   format %{ "movq    $mem, $src\t# long" %}
5756   opcode(0x89);
5757   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5758   ins_pipe(ialu_mem_reg); // XXX
5759 %}
5760 
5761 // Store Pointer
5762 instruct storeP(memory mem, any_RegP src)
5763 %{
5764   match(Set mem (StoreP mem src));
5765 
5766   ins_cost(125); // XXX
5767   format %{ "movq    $mem, $src\t# ptr" %}
5768   opcode(0x89);
5769   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5770   ins_pipe(ialu_mem_reg);
5771 %}
5772 
5773 instruct storeImmP0(memory mem, immP0 zero)
5774 %{
5775   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
5776   match(Set mem (StoreP mem zero));
5777 
5778   ins_cost(125); // XXX
5779   format %{ "movq    $mem, R12\t# ptr (R12_heapbase==0)" %}
5780   ins_encode %{
5781     __ movq($mem$$Address, r12);
5782   %}
5783   ins_pipe(ialu_mem_reg);
5784 %}
5785 
5786 // Store NULL Pointer, mark word, or other simple pointer constant.
5787 instruct storeImmP(memory mem, immP31 src)
5788 %{
5789   match(Set mem (StoreP mem src));
5790 
5791   ins_cost(150); // XXX
5792   format %{ "movq    $mem, $src\t# ptr" %}
5793   opcode(0xC7); /* C7 /0 */
5794   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
5795   ins_pipe(ialu_mem_imm);
5796 %}
5797 
5798 // Store Compressed Pointer
5799 instruct storeN(memory mem, rRegN src)
5800 %{
5801   match(Set mem (StoreN mem src));
5802 
5803   ins_cost(125); // XXX
5804   format %{ "movl    $mem, $src\t# compressed ptr" %}
5805   ins_encode %{
5806     __ movl($mem$$Address, $src$$Register);
5807   %}
5808   ins_pipe(ialu_mem_reg);
5809 %}
5810 
5811 instruct storeImmN0(memory mem, immN0 zero)
5812 %{
5813   predicate(Universe::narrow_oop_base() == NULL);
5814   match(Set mem (StoreN mem zero));
5815 
5816   ins_cost(125); // XXX
5817   format %{ "movl    $mem, R12\t# compressed ptr (R12_heapbase==0)" %}
5818   ins_encode %{
5819     __ movl($mem$$Address, r12);
5820   %}
5821   ins_pipe(ialu_mem_reg);
5822 %}
5823 
5824 instruct storeImmN(memory mem, immN src)
5825 %{
5826   match(Set mem (StoreN mem src));
5827 
5828   ins_cost(150); // XXX
5829   format %{ "movl    $mem, $src\t# compressed ptr" %}
5830   ins_encode %{
5831     address con = (address)$src$$constant;
5832     if (con == NULL) {
5833       __ movl($mem$$Address, (int32_t)0);
5834     } else {
5835       __ set_narrow_oop($mem$$Address, (jobject)$src$$constant);
5836     }
5837   %}
5838   ins_pipe(ialu_mem_imm);
5839 %}
5840 
5841 // Store Integer Immediate
5842 instruct storeImmI0(memory mem, immI0 zero)
5843 %{
5844   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
5845   match(Set mem (StoreI mem zero));
5846 
5847   ins_cost(125); // XXX
5848   format %{ "movl    $mem, R12\t# int (R12_heapbase==0)" %}
5849   ins_encode %{
5850     __ movl($mem$$Address, r12);
5851   %}
5852   ins_pipe(ialu_mem_reg);
5853 %}
5854 
5855 instruct storeImmI(memory mem, immI src)
5856 %{
5857   match(Set mem (StoreI mem src));
5858 
5859   ins_cost(150);
5860   format %{ "movl    $mem, $src\t# int" %}
5861   opcode(0xC7); /* C7 /0 */
5862   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
5863   ins_pipe(ialu_mem_imm);
5864 %}
5865 
5866 // Store Long Immediate
5867 instruct storeImmL0(memory mem, immL0 zero)
5868 %{
5869   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
5870   match(Set mem (StoreL mem zero));
5871 
5872   ins_cost(125); // XXX
5873   format %{ "movq    $mem, R12\t# long (R12_heapbase==0)" %}
5874   ins_encode %{
5875     __ movq($mem$$Address, r12);
5876   %}
5877   ins_pipe(ialu_mem_reg);
5878 %}
5879 
5880 instruct storeImmL(memory mem, immL32 src)
5881 %{
5882   match(Set mem (StoreL mem src));
5883 
5884   ins_cost(150);
5885   format %{ "movq    $mem, $src\t# long" %}
5886   opcode(0xC7); /* C7 /0 */
5887   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
5888   ins_pipe(ialu_mem_imm);
5889 %}
5890 
5891 // Store Short/Char Immediate
5892 instruct storeImmC0(memory mem, immI0 zero)
5893 %{
5894   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
5895   match(Set mem (StoreC mem zero));
5896 
5897   ins_cost(125); // XXX
5898   format %{ "movw    $mem, R12\t# short/char (R12_heapbase==0)" %}
5899   ins_encode %{
5900     __ movw($mem$$Address, r12);
5901   %}
5902   ins_pipe(ialu_mem_reg);
5903 %}
5904 
5905 instruct storeImmI16(memory mem, immI16 src)
5906 %{
5907   predicate(UseStoreImmI16);
5908   match(Set mem (StoreC mem src));
5909 
5910   ins_cost(150);
5911   format %{ "movw    $mem, $src\t# short/char" %}
5912   opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
5913   ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
5914   ins_pipe(ialu_mem_imm);
5915 %}
5916 
5917 // Store Byte Immediate
5918 instruct storeImmB0(memory mem, immI0 zero)
5919 %{
5920   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
5921   match(Set mem (StoreB mem zero));
5922 
5923   ins_cost(125); // XXX
5924   format %{ "movb    $mem, R12\t# short/char (R12_heapbase==0)" %}
5925   ins_encode %{
5926     __ movb($mem$$Address, r12);
5927   %}
5928   ins_pipe(ialu_mem_reg);
5929 %}
5930 
5931 instruct storeImmB(memory mem, immI8 src)
5932 %{
5933   match(Set mem (StoreB mem src));
5934 
5935   ins_cost(150); // XXX
5936   format %{ "movb    $mem, $src\t# byte" %}
5937   opcode(0xC6); /* C6 /0 */
5938   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
5939   ins_pipe(ialu_mem_imm);
5940 %}
5941 
5942 // Store CMS card-mark Immediate
5943 instruct storeImmCM0_reg(memory mem, immI0 zero)
5944 %{
5945   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
5946   match(Set mem (StoreCM mem zero));
5947 
5948   ins_cost(125); // XXX
5949   format %{ "movb    $mem, R12\t# CMS card-mark byte 0 (R12_heapbase==0)" %}
5950   ins_encode %{
5951     __ movb($mem$$Address, r12);
5952   %}
5953   ins_pipe(ialu_mem_reg);
5954 %}
5955 
5956 instruct storeImmCM0(memory mem, immI0 src)
5957 %{
5958   match(Set mem (StoreCM mem src));
5959 
5960   ins_cost(150); // XXX
5961   format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
5962   opcode(0xC6); /* C6 /0 */
5963   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
5964   ins_pipe(ialu_mem_imm);
5965 %}
5966 
5967 // Store Float
5968 instruct storeF(memory mem, regF src)
5969 %{
5970   match(Set mem (StoreF mem src));
5971 
5972   ins_cost(95); // XXX
5973   format %{ "movss   $mem, $src\t# float" %}
5974   ins_encode %{
5975     __ movflt($mem$$Address, $src$$XMMRegister);
5976   %}
5977   ins_pipe(pipe_slow); // XXX
5978 %}
5979 
5980 // Store immediate Float value (it is faster than store from XMM register)
5981 instruct storeF0(memory mem, immF0 zero)
5982 %{
5983   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
5984   match(Set mem (StoreF mem zero));
5985 
5986   ins_cost(25); // XXX
5987   format %{ "movl    $mem, R12\t# float 0. (R12_heapbase==0)" %}
5988   ins_encode %{
5989     __ movl($mem$$Address, r12);
5990   %}
5991   ins_pipe(ialu_mem_reg);
5992 %}
5993 
5994 instruct storeF_imm(memory mem, immF src)
5995 %{
5996   match(Set mem (StoreF mem src));
5997 
5998   ins_cost(50);
5999   format %{ "movl    $mem, $src\t# float" %}
6000   opcode(0xC7); /* C7 /0 */
6001   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6002   ins_pipe(ialu_mem_imm);
6003 %}
6004 
6005 // Store Double
6006 instruct storeD(memory mem, regD src)
6007 %{
6008   match(Set mem (StoreD mem src));
6009 
6010   ins_cost(95); // XXX
6011   format %{ "movsd   $mem, $src\t# double" %}
6012   ins_encode %{
6013     __ movdbl($mem$$Address, $src$$XMMRegister);
6014   %}
6015   ins_pipe(pipe_slow); // XXX
6016 %}
6017 
6018 // Store immediate double 0.0 (it is faster than store from XMM register)
6019 instruct storeD0_imm(memory mem, immD0 src)
6020 %{
6021   predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
6022   match(Set mem (StoreD mem src));
6023 
6024   ins_cost(50);
6025   format %{ "movq    $mem, $src\t# double 0." %}
6026   opcode(0xC7); /* C7 /0 */
6027   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6028   ins_pipe(ialu_mem_imm);
6029 %}
6030 
6031 instruct storeD0(memory mem, immD0 zero)
6032 %{
6033   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
6034   match(Set mem (StoreD mem zero));
6035 
6036   ins_cost(25); // XXX
6037   format %{ "movq    $mem, R12\t# double 0. (R12_heapbase==0)" %}
6038   ins_encode %{
6039     __ movq($mem$$Address, r12);
6040   %}
6041   ins_pipe(ialu_mem_reg);
6042 %}
6043 
6044 instruct storeSSI(stackSlotI dst, rRegI src)
6045 %{
6046   match(Set dst src);
6047 
6048   ins_cost(100);
6049   format %{ "movl    $dst, $src\t# int stk" %}
6050   opcode(0x89);
6051   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
6052   ins_pipe( ialu_mem_reg );
6053 %}
6054 
6055 instruct storeSSL(stackSlotL dst, rRegL src)
6056 %{
6057   match(Set dst src);
6058 
6059   ins_cost(100);
6060   format %{ "movq    $dst, $src\t# long stk" %}
6061   opcode(0x89);
6062   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6063   ins_pipe(ialu_mem_reg);
6064 %}
6065 
6066 instruct storeSSP(stackSlotP dst, rRegP src)
6067 %{
6068   match(Set dst src);
6069 
6070   ins_cost(100);
6071   format %{ "movq    $dst, $src\t# ptr stk" %}
6072   opcode(0x89);
6073   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6074   ins_pipe(ialu_mem_reg);
6075 %}
6076 
6077 instruct storeSSF(stackSlotF dst, regF src)
6078 %{
6079   match(Set dst src);
6080 
6081   ins_cost(95); // XXX
6082   format %{ "movss   $dst, $src\t# float stk" %}
6083   ins_encode %{
6084     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
6085   %}
6086   ins_pipe(pipe_slow); // XXX
6087 %}
6088 
6089 instruct storeSSD(stackSlotD dst, regD src)
6090 %{
6091   match(Set dst src);
6092 
6093   ins_cost(95); // XXX
6094   format %{ "movsd   $dst, $src\t# double stk" %}
6095   ins_encode %{
6096     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
6097   %}
6098   ins_pipe(pipe_slow); // XXX
6099 %}
6100 
6101 //----------BSWAP Instructions-------------------------------------------------
6102 instruct bytes_reverse_int(rRegI dst) %{
6103   match(Set dst (ReverseBytesI dst));
6104 
6105   format %{ "bswapl  $dst" %}
6106   opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
6107   ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
6108   ins_pipe( ialu_reg );
6109 %}
6110 
6111 instruct bytes_reverse_long(rRegL dst) %{
6112   match(Set dst (ReverseBytesL dst));
6113 
6114   format %{ "bswapq  $dst" %}
6115 
6116   opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
6117   ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
6118   ins_pipe( ialu_reg);
6119 %}
6120 
6121 instruct bytes_reverse_unsigned_short(rRegI dst) %{
6122   match(Set dst (ReverseBytesUS dst));
6123 
6124   format %{ "bswapl  $dst\n\t"
6125             "shrl    $dst,16\n\t" %}
6126   ins_encode %{
6127     __ bswapl($dst$$Register);
6128     __ shrl($dst$$Register, 16);
6129   %}
6130   ins_pipe( ialu_reg );
6131 %}
6132 
6133 instruct bytes_reverse_short(rRegI dst) %{
6134   match(Set dst (ReverseBytesS dst));
6135 
6136   format %{ "bswapl  $dst\n\t"
6137             "sar     $dst,16\n\t" %}
6138   ins_encode %{
6139     __ bswapl($dst$$Register);
6140     __ sarl($dst$$Register, 16);
6141   %}
6142   ins_pipe( ialu_reg );
6143 %}
6144 
6145 //---------- Zeros Count Instructions ------------------------------------------
6146 
6147 instruct countLeadingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6148   predicate(UseCountLeadingZerosInstruction);
6149   match(Set dst (CountLeadingZerosI src));
6150   effect(KILL cr);
6151 
6152   format %{ "lzcntl  $dst, $src\t# count leading zeros (int)" %}
6153   ins_encode %{
6154     __ lzcntl($dst$$Register, $src$$Register);
6155   %}
6156   ins_pipe(ialu_reg);
6157 %}
6158 
6159 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, rFlagsReg cr) %{
6160   predicate(!UseCountLeadingZerosInstruction);
6161   match(Set dst (CountLeadingZerosI src));
6162   effect(KILL cr);
6163 
6164   format %{ "bsrl    $dst, $src\t# count leading zeros (int)\n\t"
6165             "jnz     skip\n\t"
6166             "movl    $dst, -1\n"
6167       "skip:\n\t"
6168             "negl    $dst\n\t"
6169             "addl    $dst, 31" %}
6170   ins_encode %{
6171     Register Rdst = $dst$$Register;
6172     Register Rsrc = $src$$Register;
6173     Label skip;
6174     __ bsrl(Rdst, Rsrc);
6175     __ jccb(Assembler::notZero, skip);
6176     __ movl(Rdst, -1);
6177     __ bind(skip);
6178     __ negl(Rdst);
6179     __ addl(Rdst, BitsPerInt - 1);
6180   %}
6181   ins_pipe(ialu_reg);
6182 %}
6183 
6184 instruct countLeadingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6185   predicate(UseCountLeadingZerosInstruction);
6186   match(Set dst (CountLeadingZerosL src));
6187   effect(KILL cr);
6188 
6189   format %{ "lzcntq  $dst, $src\t# count leading zeros (long)" %}
6190   ins_encode %{
6191     __ lzcntq($dst$$Register, $src$$Register);
6192   %}
6193   ins_pipe(ialu_reg);
6194 %}
6195 
6196 instruct countLeadingZerosL_bsr(rRegI dst, rRegL src, rFlagsReg cr) %{
6197   predicate(!UseCountLeadingZerosInstruction);
6198   match(Set dst (CountLeadingZerosL src));
6199   effect(KILL cr);
6200 
6201   format %{ "bsrq    $dst, $src\t# count leading zeros (long)\n\t"
6202             "jnz     skip\n\t"
6203             "movl    $dst, -1\n"
6204       "skip:\n\t"
6205             "negl    $dst\n\t"
6206             "addl    $dst, 63" %}
6207   ins_encode %{
6208     Register Rdst = $dst$$Register;
6209     Register Rsrc = $src$$Register;
6210     Label skip;
6211     __ bsrq(Rdst, Rsrc);
6212     __ jccb(Assembler::notZero, skip);
6213     __ movl(Rdst, -1);
6214     __ bind(skip);
6215     __ negl(Rdst);
6216     __ addl(Rdst, BitsPerLong - 1);
6217   %}
6218   ins_pipe(ialu_reg);
6219 %}
6220 
6221 instruct countTrailingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6222   match(Set dst (CountTrailingZerosI src));
6223   effect(KILL cr);
6224 
6225   format %{ "bsfl    $dst, $src\t# count trailing zeros (int)\n\t"
6226             "jnz     done\n\t"
6227             "movl    $dst, 32\n"
6228       "done:" %}
6229   ins_encode %{
6230     Register Rdst = $dst$$Register;
6231     Label done;
6232     __ bsfl(Rdst, $src$$Register);
6233     __ jccb(Assembler::notZero, done);
6234     __ movl(Rdst, BitsPerInt);
6235     __ bind(done);
6236   %}
6237   ins_pipe(ialu_reg);
6238 %}
6239 
6240 instruct countTrailingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6241   match(Set dst (CountTrailingZerosL src));
6242   effect(KILL cr);
6243 
6244   format %{ "bsfq    $dst, $src\t# count trailing zeros (long)\n\t"
6245             "jnz     done\n\t"
6246             "movl    $dst, 64\n"
6247       "done:" %}
6248   ins_encode %{
6249     Register Rdst = $dst$$Register;
6250     Label done;
6251     __ bsfq(Rdst, $src$$Register);
6252     __ jccb(Assembler::notZero, done);
6253     __ movl(Rdst, BitsPerLong);
6254     __ bind(done);
6255   %}
6256   ins_pipe(ialu_reg);
6257 %}
6258 
6259 
6260 //---------- Population Count Instructions -------------------------------------
6261 
6262 instruct popCountI(rRegI dst, rRegI src) %{
6263   predicate(UsePopCountInstruction);
6264   match(Set dst (PopCountI src));
6265 
6266   format %{ "popcnt  $dst, $src" %}
6267   ins_encode %{
6268     __ popcntl($dst$$Register, $src$$Register);
6269   %}
6270   ins_pipe(ialu_reg);
6271 %}
6272 
6273 instruct popCountI_mem(rRegI dst, memory mem) %{
6274   predicate(UsePopCountInstruction);
6275   match(Set dst (PopCountI (LoadI mem)));
6276 
6277   format %{ "popcnt  $dst, $mem" %}
6278   ins_encode %{
6279     __ popcntl($dst$$Register, $mem$$Address);
6280   %}
6281   ins_pipe(ialu_reg);
6282 %}
6283 
6284 // Note: Long.bitCount(long) returns an int.
6285 instruct popCountL(rRegI dst, rRegL src) %{
6286   predicate(UsePopCountInstruction);
6287   match(Set dst (PopCountL src));
6288 
6289   format %{ "popcnt  $dst, $src" %}
6290   ins_encode %{
6291     __ popcntq($dst$$Register, $src$$Register);
6292   %}
6293   ins_pipe(ialu_reg);
6294 %}
6295 
6296 // Note: Long.bitCount(long) returns an int.
6297 instruct popCountL_mem(rRegI dst, memory mem) %{
6298   predicate(UsePopCountInstruction);
6299   match(Set dst (PopCountL (LoadL mem)));
6300 
6301   format %{ "popcnt  $dst, $mem" %}
6302   ins_encode %{
6303     __ popcntq($dst$$Register, $mem$$Address);
6304   %}
6305   ins_pipe(ialu_reg);
6306 %}
6307 
6308 
6309 //----------MemBar Instructions-----------------------------------------------
6310 // Memory barrier flavors
6311 
6312 instruct membar_acquire()
6313 %{
6314   match(MemBarAcquire);
6315   ins_cost(0);
6316 
6317   size(0);
6318   format %{ "MEMBAR-acquire ! (empty encoding)" %}
6319   ins_encode();
6320   ins_pipe(empty);
6321 %}
6322 
6323 instruct membar_acquire_lock()
6324 %{
6325   match(MemBarAcquireLock);
6326   ins_cost(0);
6327 
6328   size(0);
6329   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6330   ins_encode();
6331   ins_pipe(empty);
6332 %}
6333 
6334 instruct membar_release()
6335 %{
6336   match(MemBarRelease);
6337   ins_cost(0);
6338 
6339   size(0);
6340   format %{ "MEMBAR-release ! (empty encoding)" %}
6341   ins_encode();
6342   ins_pipe(empty);
6343 %}
6344 
6345 instruct membar_release_lock()
6346 %{
6347   match(MemBarReleaseLock);
6348   ins_cost(0);
6349 
6350   size(0);
6351   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6352   ins_encode();
6353   ins_pipe(empty);
6354 %}
6355 
6356 instruct membar_volatile(rFlagsReg cr) %{
6357   match(MemBarVolatile);
6358   effect(KILL cr);
6359   ins_cost(400);
6360 
6361   format %{
6362     $$template
6363     if (os::is_MP()) {
6364       $$emit$$"lock addl [rsp + #0], 0\t! membar_volatile"
6365     } else {
6366       $$emit$$"MEMBAR-volatile ! (empty encoding)"
6367     }
6368   %}
6369   ins_encode %{
6370     __ membar(Assembler::StoreLoad);
6371   %}
6372   ins_pipe(pipe_slow);
6373 %}
6374 
6375 instruct unnecessary_membar_volatile()
6376 %{
6377   match(MemBarVolatile);
6378   predicate(Matcher::post_store_load_barrier(n));
6379   ins_cost(0);
6380 
6381   size(0);
6382   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6383   ins_encode();
6384   ins_pipe(empty);
6385 %}
6386 
6387 instruct membar_storestore() %{
6388   match(MemBarStoreStore);
6389   ins_cost(0);
6390 
6391   size(0);
6392   format %{ "MEMBAR-storestore (empty encoding)" %}
6393   ins_encode( );
6394   ins_pipe(empty);
6395 %}
6396 
6397 //----------Move Instructions--------------------------------------------------
6398 
6399 instruct castX2P(rRegP dst, rRegL src)
6400 %{
6401   match(Set dst (CastX2P src));
6402 
6403   format %{ "movq    $dst, $src\t# long->ptr" %}
6404   ins_encode %{
6405     if ($dst$$reg != $src$$reg) {
6406       __ movptr($dst$$Register, $src$$Register);
6407     }
6408   %}
6409   ins_pipe(ialu_reg_reg); // XXX
6410 %}
6411 
6412 instruct castP2X(rRegL dst, rRegP src)
6413 %{
6414   match(Set dst (CastP2X src));
6415 
6416   format %{ "movq    $dst, $src\t# ptr -> long" %}
6417   ins_encode %{
6418     if ($dst$$reg != $src$$reg) {
6419       __ movptr($dst$$Register, $src$$Register);
6420     }
6421   %}
6422   ins_pipe(ialu_reg_reg); // XXX
6423 %}
6424 
6425 
6426 // Convert oop pointer into compressed form
6427 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
6428   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6429   match(Set dst (EncodeP src));
6430   effect(KILL cr);
6431   format %{ "encode_heap_oop $dst,$src" %}
6432   ins_encode %{
6433     Register s = $src$$Register;
6434     Register d = $dst$$Register;
6435     if (s != d) {
6436       __ movq(d, s);
6437     }
6438     __ encode_heap_oop(d);
6439   %}
6440   ins_pipe(ialu_reg_long);
6441 %}
6442 
6443 instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6444   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6445   match(Set dst (EncodeP src));
6446   effect(KILL cr);
6447   format %{ "encode_heap_oop_not_null $dst,$src" %}
6448   ins_encode %{
6449     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
6450   %}
6451   ins_pipe(ialu_reg_long);
6452 %}
6453 
6454 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
6455   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6456             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6457   match(Set dst (DecodeN src));
6458   effect(KILL cr);
6459   format %{ "decode_heap_oop $dst,$src" %}
6460   ins_encode %{
6461     Register s = $src$$Register;
6462     Register d = $dst$$Register;
6463     if (s != d) {
6464       __ movq(d, s);
6465     }
6466     __ decode_heap_oop(d);
6467   %}
6468   ins_pipe(ialu_reg_long);
6469 %}
6470 
6471 instruct decodeHeapOop_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6472   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6473             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6474   match(Set dst (DecodeN src));
6475   effect(KILL cr);
6476   format %{ "decode_heap_oop_not_null $dst,$src" %}
6477   ins_encode %{
6478     Register s = $src$$Register;
6479     Register d = $dst$$Register;
6480     if (s != d) {
6481       __ decode_heap_oop_not_null(d, s);
6482     } else {
6483       __ decode_heap_oop_not_null(d);
6484     }
6485   %}
6486   ins_pipe(ialu_reg_long);
6487 %}
6488 
6489 
6490 //----------Conditional Move---------------------------------------------------
6491 // Jump
6492 // dummy instruction for generating temp registers
6493 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
6494   match(Jump (LShiftL switch_val shift));
6495   ins_cost(350);
6496   predicate(false);
6497   effect(TEMP dest);
6498 
6499   format %{ "leaq    $dest, [$constantaddress]\n\t"
6500             "jmp     [$dest + $switch_val << $shift]\n\t" %}
6501   ins_encode %{
6502     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6503     // to do that and the compiler is using that register as one it can allocate.
6504     // So we build it all by hand.
6505     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
6506     // ArrayAddress dispatch(table, index);
6507     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant);
6508     __ lea($dest$$Register, $constantaddress);
6509     __ jmp(dispatch);
6510   %}
6511   ins_pipe(pipe_jmp);
6512 %}
6513 
6514 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
6515   match(Jump (AddL (LShiftL switch_val shift) offset));
6516   ins_cost(350);
6517   effect(TEMP dest);
6518 
6519   format %{ "leaq    $dest, [$constantaddress]\n\t"
6520             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
6521   ins_encode %{
6522     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6523     // to do that and the compiler is using that register as one it can allocate.
6524     // So we build it all by hand.
6525     // Address index(noreg, switch_reg, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6526     // ArrayAddress dispatch(table, index);
6527     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6528     __ lea($dest$$Register, $constantaddress);
6529     __ jmp(dispatch);
6530   %}
6531   ins_pipe(pipe_jmp);
6532 %}
6533 
6534 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
6535   match(Jump switch_val);
6536   ins_cost(350);
6537   effect(TEMP dest);
6538 
6539   format %{ "leaq    $dest, [$constantaddress]\n\t"
6540             "jmp     [$dest + $switch_val]\n\t" %}
6541   ins_encode %{
6542     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6543     // to do that and the compiler is using that register as one it can allocate.
6544     // So we build it all by hand.
6545     // Address index(noreg, switch_reg, Address::times_1);
6546     // ArrayAddress dispatch(table, index);
6547     Address dispatch($dest$$Register, $switch_val$$Register, Address::times_1);
6548     __ lea($dest$$Register, $constantaddress);
6549     __ jmp(dispatch);
6550   %}
6551   ins_pipe(pipe_jmp);
6552 %}
6553 
6554 // Conditional move
6555 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
6556 %{
6557   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6558 
6559   ins_cost(200); // XXX
6560   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6561   opcode(0x0F, 0x40);
6562   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6563   ins_pipe(pipe_cmov_reg);
6564 %}
6565 
6566 instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
6567   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6568 
6569   ins_cost(200); // XXX
6570   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6571   opcode(0x0F, 0x40);
6572   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6573   ins_pipe(pipe_cmov_reg);
6574 %}
6575 
6576 instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
6577   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6578   ins_cost(200);
6579   expand %{
6580     cmovI_regU(cop, cr, dst, src);
6581   %}
6582 %}
6583 
6584 // Conditional move
6585 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
6586   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6587 
6588   ins_cost(250); // XXX
6589   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6590   opcode(0x0F, 0x40);
6591   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6592   ins_pipe(pipe_cmov_mem);
6593 %}
6594 
6595 // Conditional move
6596 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
6597 %{
6598   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6599 
6600   ins_cost(250); // XXX
6601   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6602   opcode(0x0F, 0x40);
6603   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6604   ins_pipe(pipe_cmov_mem);
6605 %}
6606 
6607 instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
6608   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6609   ins_cost(250);
6610   expand %{
6611     cmovI_memU(cop, cr, dst, src);
6612   %}
6613 %}
6614 
6615 // Conditional move
6616 instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
6617 %{
6618   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6619 
6620   ins_cost(200); // XXX
6621   format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
6622   opcode(0x0F, 0x40);
6623   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6624   ins_pipe(pipe_cmov_reg);
6625 %}
6626 
6627 // Conditional move
6628 instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
6629 %{
6630   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6631 
6632   ins_cost(200); // XXX
6633   format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
6634   opcode(0x0F, 0x40);
6635   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6636   ins_pipe(pipe_cmov_reg);
6637 %}
6638 
6639 instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
6640   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6641   ins_cost(200);
6642   expand %{
6643     cmovN_regU(cop, cr, dst, src);
6644   %}
6645 %}
6646 
6647 // Conditional move
6648 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
6649 %{
6650   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6651 
6652   ins_cost(200); // XXX
6653   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
6654   opcode(0x0F, 0x40);
6655   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6656   ins_pipe(pipe_cmov_reg);  // XXX
6657 %}
6658 
6659 // Conditional move
6660 instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
6661 %{
6662   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6663 
6664   ins_cost(200); // XXX
6665   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
6666   opcode(0x0F, 0x40);
6667   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6668   ins_pipe(pipe_cmov_reg); // XXX
6669 %}
6670 
6671 instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
6672   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6673   ins_cost(200);
6674   expand %{
6675     cmovP_regU(cop, cr, dst, src);
6676   %}
6677 %}
6678 
6679 // DISABLED: Requires the ADLC to emit a bottom_type call that
6680 // correctly meets the two pointer arguments; one is an incoming
6681 // register but the other is a memory operand.  ALSO appears to
6682 // be buggy with implicit null checks.
6683 //
6684 //// Conditional move
6685 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
6686 //%{
6687 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6688 //  ins_cost(250);
6689 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6690 //  opcode(0x0F,0x40);
6691 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
6692 //  ins_pipe( pipe_cmov_mem );
6693 //%}
6694 //
6695 //// Conditional move
6696 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
6697 //%{
6698 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6699 //  ins_cost(250);
6700 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6701 //  opcode(0x0F,0x40);
6702 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
6703 //  ins_pipe( pipe_cmov_mem );
6704 //%}
6705 
6706 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
6707 %{
6708   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6709 
6710   ins_cost(200); // XXX
6711   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
6712   opcode(0x0F, 0x40);
6713   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6714   ins_pipe(pipe_cmov_reg);  // XXX
6715 %}
6716 
6717 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
6718 %{
6719   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
6720 
6721   ins_cost(200); // XXX
6722   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
6723   opcode(0x0F, 0x40);
6724   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
6725   ins_pipe(pipe_cmov_mem);  // XXX
6726 %}
6727 
6728 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
6729 %{
6730   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6731 
6732   ins_cost(200); // XXX
6733   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
6734   opcode(0x0F, 0x40);
6735   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6736   ins_pipe(pipe_cmov_reg); // XXX
6737 %}
6738 
6739 instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
6740   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6741   ins_cost(200);
6742   expand %{
6743     cmovL_regU(cop, cr, dst, src);
6744   %}
6745 %}
6746 
6747 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
6748 %{
6749   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
6750 
6751   ins_cost(200); // XXX
6752   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
6753   opcode(0x0F, 0x40);
6754   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
6755   ins_pipe(pipe_cmov_mem); // XXX
6756 %}
6757 
6758 instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
6759   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
6760   ins_cost(200);
6761   expand %{
6762     cmovL_memU(cop, cr, dst, src);
6763   %}
6764 %}
6765 
6766 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
6767 %{
6768   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6769 
6770   ins_cost(200); // XXX
6771   format %{ "jn$cop    skip\t# signed cmove float\n\t"
6772             "movss     $dst, $src\n"
6773     "skip:" %}
6774   ins_encode %{
6775     Label Lskip;
6776     // Invert sense of branch from sense of CMOV
6777     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6778     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
6779     __ bind(Lskip);
6780   %}
6781   ins_pipe(pipe_slow);
6782 %}
6783 
6784 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
6785 // %{
6786 //   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
6787 
6788 //   ins_cost(200); // XXX
6789 //   format %{ "jn$cop    skip\t# signed cmove float\n\t"
6790 //             "movss     $dst, $src\n"
6791 //     "skip:" %}
6792 //   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
6793 //   ins_pipe(pipe_slow);
6794 // %}
6795 
6796 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
6797 %{
6798   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6799 
6800   ins_cost(200); // XXX
6801   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
6802             "movss     $dst, $src\n"
6803     "skip:" %}
6804   ins_encode %{
6805     Label Lskip;
6806     // Invert sense of branch from sense of CMOV
6807     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6808     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
6809     __ bind(Lskip);
6810   %}
6811   ins_pipe(pipe_slow);
6812 %}
6813 
6814 instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
6815   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6816   ins_cost(200);
6817   expand %{
6818     cmovF_regU(cop, cr, dst, src);
6819   %}
6820 %}
6821 
6822 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
6823 %{
6824   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6825 
6826   ins_cost(200); // XXX
6827   format %{ "jn$cop    skip\t# signed cmove double\n\t"
6828             "movsd     $dst, $src\n"
6829     "skip:" %}
6830   ins_encode %{
6831     Label Lskip;
6832     // Invert sense of branch from sense of CMOV
6833     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6834     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
6835     __ bind(Lskip);
6836   %}
6837   ins_pipe(pipe_slow);
6838 %}
6839 
6840 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
6841 %{
6842   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6843 
6844   ins_cost(200); // XXX
6845   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
6846             "movsd     $dst, $src\n"
6847     "skip:" %}
6848   ins_encode %{
6849     Label Lskip;
6850     // Invert sense of branch from sense of CMOV
6851     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6852     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
6853     __ bind(Lskip);
6854   %}
6855   ins_pipe(pipe_slow);
6856 %}
6857 
6858 instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
6859   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6860   ins_cost(200);
6861   expand %{
6862     cmovD_regU(cop, cr, dst, src);
6863   %}
6864 %}
6865 
6866 //----------Arithmetic Instructions--------------------------------------------
6867 //----------Addition Instructions----------------------------------------------
6868 
6869 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
6870 %{
6871   match(Set dst (AddI dst src));
6872   effect(KILL cr);
6873 
6874   format %{ "addl    $dst, $src\t# int" %}
6875   opcode(0x03);
6876   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
6877   ins_pipe(ialu_reg_reg);
6878 %}
6879 
6880 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
6881 %{
6882   match(Set dst (AddI dst src));
6883   effect(KILL cr);
6884 
6885   format %{ "addl    $dst, $src\t# int" %}
6886   opcode(0x81, 0x00); /* /0 id */
6887   ins_encode(OpcSErm(dst, src), Con8or32(src));
6888   ins_pipe( ialu_reg );
6889 %}
6890 
6891 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
6892 %{
6893   match(Set dst (AddI dst (LoadI src)));
6894   effect(KILL cr);
6895 
6896   ins_cost(125); // XXX
6897   format %{ "addl    $dst, $src\t# int" %}
6898   opcode(0x03);
6899   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
6900   ins_pipe(ialu_reg_mem);
6901 %}
6902 
6903 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
6904 %{
6905   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
6906   effect(KILL cr);
6907 
6908   ins_cost(150); // XXX
6909   format %{ "addl    $dst, $src\t# int" %}
6910   opcode(0x01); /* Opcode 01 /r */
6911   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
6912   ins_pipe(ialu_mem_reg);
6913 %}
6914 
6915 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
6916 %{
6917   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
6918   effect(KILL cr);
6919 
6920   ins_cost(125); // XXX
6921   format %{ "addl    $dst, $src\t# int" %}
6922   opcode(0x81); /* Opcode 81 /0 id */
6923   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
6924   ins_pipe(ialu_mem_imm);
6925 %}
6926 
6927 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
6928 %{
6929   predicate(UseIncDec);
6930   match(Set dst (AddI dst src));
6931   effect(KILL cr);
6932 
6933   format %{ "incl    $dst\t# int" %}
6934   opcode(0xFF, 0x00); // FF /0
6935   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
6936   ins_pipe(ialu_reg);
6937 %}
6938 
6939 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
6940 %{
6941   predicate(UseIncDec);
6942   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
6943   effect(KILL cr);
6944 
6945   ins_cost(125); // XXX
6946   format %{ "incl    $dst\t# int" %}
6947   opcode(0xFF); /* Opcode FF /0 */
6948   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
6949   ins_pipe(ialu_mem_imm);
6950 %}
6951 
6952 // XXX why does that use AddI
6953 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
6954 %{
6955   predicate(UseIncDec);
6956   match(Set dst (AddI dst src));
6957   effect(KILL cr);
6958 
6959   format %{ "decl    $dst\t# int" %}
6960   opcode(0xFF, 0x01); // FF /1
6961   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
6962   ins_pipe(ialu_reg);
6963 %}
6964 
6965 // XXX why does that use AddI
6966 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
6967 %{
6968   predicate(UseIncDec);
6969   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
6970   effect(KILL cr);
6971 
6972   ins_cost(125); // XXX
6973   format %{ "decl    $dst\t# int" %}
6974   opcode(0xFF); /* Opcode FF /1 */
6975   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
6976   ins_pipe(ialu_mem_imm);
6977 %}
6978 
6979 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
6980 %{
6981   match(Set dst (AddI src0 src1));
6982 
6983   ins_cost(110);
6984   format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
6985   opcode(0x8D); /* 0x8D /r */
6986   ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
6987   ins_pipe(ialu_reg_reg);
6988 %}
6989 
6990 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
6991 %{
6992   match(Set dst (AddL dst src));
6993   effect(KILL cr);
6994 
6995   format %{ "addq    $dst, $src\t# long" %}
6996   opcode(0x03);
6997   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
6998   ins_pipe(ialu_reg_reg);
6999 %}
7000 
7001 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
7002 %{
7003   match(Set dst (AddL dst src));
7004   effect(KILL cr);
7005 
7006   format %{ "addq    $dst, $src\t# long" %}
7007   opcode(0x81, 0x00); /* /0 id */
7008   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7009   ins_pipe( ialu_reg );
7010 %}
7011 
7012 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7013 %{
7014   match(Set dst (AddL dst (LoadL src)));
7015   effect(KILL cr);
7016 
7017   ins_cost(125); // XXX
7018   format %{ "addq    $dst, $src\t# long" %}
7019   opcode(0x03);
7020   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7021   ins_pipe(ialu_reg_mem);
7022 %}
7023 
7024 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7025 %{
7026   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7027   effect(KILL cr);
7028 
7029   ins_cost(150); // XXX
7030   format %{ "addq    $dst, $src\t# long" %}
7031   opcode(0x01); /* Opcode 01 /r */
7032   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7033   ins_pipe(ialu_mem_reg);
7034 %}
7035 
7036 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7037 %{
7038   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7039   effect(KILL cr);
7040 
7041   ins_cost(125); // XXX
7042   format %{ "addq    $dst, $src\t# long" %}
7043   opcode(0x81); /* Opcode 81 /0 id */
7044   ins_encode(REX_mem_wide(dst),
7045              OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7046   ins_pipe(ialu_mem_imm);
7047 %}
7048 
7049 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
7050 %{
7051   predicate(UseIncDec);
7052   match(Set dst (AddL dst src));
7053   effect(KILL cr);
7054 
7055   format %{ "incq    $dst\t# long" %}
7056   opcode(0xFF, 0x00); // FF /0
7057   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7058   ins_pipe(ialu_reg);
7059 %}
7060 
7061 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
7062 %{
7063   predicate(UseIncDec);
7064   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7065   effect(KILL cr);
7066 
7067   ins_cost(125); // XXX
7068   format %{ "incq    $dst\t# long" %}
7069   opcode(0xFF); /* Opcode FF /0 */
7070   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
7071   ins_pipe(ialu_mem_imm);
7072 %}
7073 
7074 // XXX why does that use AddL
7075 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
7076 %{
7077   predicate(UseIncDec);
7078   match(Set dst (AddL dst src));
7079   effect(KILL cr);
7080 
7081   format %{ "decq    $dst\t# long" %}
7082   opcode(0xFF, 0x01); // FF /1
7083   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7084   ins_pipe(ialu_reg);
7085 %}
7086 
7087 // XXX why does that use AddL
7088 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
7089 %{
7090   predicate(UseIncDec);
7091   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7092   effect(KILL cr);
7093 
7094   ins_cost(125); // XXX
7095   format %{ "decq    $dst\t# long" %}
7096   opcode(0xFF); /* Opcode FF /1 */
7097   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
7098   ins_pipe(ialu_mem_imm);
7099 %}
7100 
7101 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
7102 %{
7103   match(Set dst (AddL src0 src1));
7104 
7105   ins_cost(110);
7106   format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
7107   opcode(0x8D); /* 0x8D /r */
7108   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7109   ins_pipe(ialu_reg_reg);
7110 %}
7111 
7112 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
7113 %{
7114   match(Set dst (AddP dst src));
7115   effect(KILL cr);
7116 
7117   format %{ "addq    $dst, $src\t# ptr" %}
7118   opcode(0x03);
7119   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7120   ins_pipe(ialu_reg_reg);
7121 %}
7122 
7123 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
7124 %{
7125   match(Set dst (AddP dst src));
7126   effect(KILL cr);
7127 
7128   format %{ "addq    $dst, $src\t# ptr" %}
7129   opcode(0x81, 0x00); /* /0 id */
7130   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7131   ins_pipe( ialu_reg );
7132 %}
7133 
7134 // XXX addP mem ops ????
7135 
7136 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
7137 %{
7138   match(Set dst (AddP src0 src1));
7139 
7140   ins_cost(110);
7141   format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
7142   opcode(0x8D); /* 0x8D /r */
7143   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
7144   ins_pipe(ialu_reg_reg);
7145 %}
7146 
7147 instruct checkCastPP(rRegP dst)
7148 %{
7149   match(Set dst (CheckCastPP dst));
7150 
7151   size(0);
7152   format %{ "# checkcastPP of $dst" %}
7153   ins_encode(/* empty encoding */);
7154   ins_pipe(empty);
7155 %}
7156 
7157 instruct castPP(rRegP dst)
7158 %{
7159   match(Set dst (CastPP dst));
7160 
7161   size(0);
7162   format %{ "# castPP of $dst" %}
7163   ins_encode(/* empty encoding */);
7164   ins_pipe(empty);
7165 %}
7166 
7167 instruct castII(rRegI dst)
7168 %{
7169   match(Set dst (CastII dst));
7170 
7171   size(0);
7172   format %{ "# castII of $dst" %}
7173   ins_encode(/* empty encoding */);
7174   ins_cost(0);
7175   ins_pipe(empty);
7176 %}
7177 
7178 // LoadP-locked same as a regular LoadP when used with compare-swap
7179 instruct loadPLocked(rRegP dst, memory mem)
7180 %{
7181   match(Set dst (LoadPLocked mem));
7182 
7183   ins_cost(125); // XXX
7184   format %{ "movq    $dst, $mem\t# ptr locked" %}
7185   opcode(0x8B);
7186   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7187   ins_pipe(ialu_reg_mem); // XXX
7188 %}
7189 
7190 // LoadL-locked - same as a regular LoadL when used with compare-swap
7191 instruct loadLLocked(rRegL dst, memory mem)
7192 %{
7193   match(Set dst (LoadLLocked mem));
7194 
7195   ins_cost(125); // XXX
7196   format %{ "movq    $dst, $mem\t# long locked" %}
7197   opcode(0x8B);
7198   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7199   ins_pipe(ialu_reg_mem); // XXX
7200 %}
7201 
7202 // Conditional-store of the updated heap-top.
7203 // Used during allocation of the shared heap.
7204 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7205 
7206 instruct storePConditional(memory heap_top_ptr,
7207                            rax_RegP oldval, rRegP newval,
7208                            rFlagsReg cr)
7209 %{
7210   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7211 
7212   format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
7213             "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
7214   opcode(0x0F, 0xB1);
7215   ins_encode(lock_prefix,
7216              REX_reg_mem_wide(newval, heap_top_ptr),
7217              OpcP, OpcS,
7218              reg_mem(newval, heap_top_ptr));
7219   ins_pipe(pipe_cmpxchg);
7220 %}
7221 
7222 // Conditional-store of an int value.
7223 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7224 instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
7225 %{
7226   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7227   effect(KILL oldval);
7228 
7229   format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7230   opcode(0x0F, 0xB1);
7231   ins_encode(lock_prefix,
7232              REX_reg_mem(newval, mem),
7233              OpcP, OpcS,
7234              reg_mem(newval, mem));
7235   ins_pipe(pipe_cmpxchg);
7236 %}
7237 
7238 // Conditional-store of a long value.
7239 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7240 instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
7241 %{
7242   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7243   effect(KILL oldval);
7244 
7245   format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7246   opcode(0x0F, 0xB1);
7247   ins_encode(lock_prefix,
7248              REX_reg_mem_wide(newval, mem),
7249              OpcP, OpcS,
7250              reg_mem(newval, mem));
7251   ins_pipe(pipe_cmpxchg);
7252 %}
7253 
7254 
7255 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7256 instruct compareAndSwapP(rRegI res,
7257                          memory mem_ptr,
7258                          rax_RegP oldval, rRegP newval,
7259                          rFlagsReg cr)
7260 %{
7261   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7262   effect(KILL cr, KILL oldval);
7263 
7264   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7265             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7266             "sete    $res\n\t"
7267             "movzbl  $res, $res" %}
7268   opcode(0x0F, 0xB1);
7269   ins_encode(lock_prefix,
7270              REX_reg_mem_wide(newval, mem_ptr),
7271              OpcP, OpcS,
7272              reg_mem(newval, mem_ptr),
7273              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7274              REX_reg_breg(res, res), // movzbl
7275              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7276   ins_pipe( pipe_cmpxchg );
7277 %}
7278 
7279 instruct compareAndSwapL(rRegI res,
7280                          memory mem_ptr,
7281                          rax_RegL oldval, rRegL newval,
7282                          rFlagsReg cr)
7283 %{
7284   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7285   effect(KILL cr, KILL oldval);
7286 
7287   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7288             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7289             "sete    $res\n\t"
7290             "movzbl  $res, $res" %}
7291   opcode(0x0F, 0xB1);
7292   ins_encode(lock_prefix,
7293              REX_reg_mem_wide(newval, mem_ptr),
7294              OpcP, OpcS,
7295              reg_mem(newval, mem_ptr),
7296              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7297              REX_reg_breg(res, res), // movzbl
7298              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7299   ins_pipe( pipe_cmpxchg );
7300 %}
7301 
7302 instruct compareAndSwapI(rRegI res,
7303                          memory mem_ptr,
7304                          rax_RegI oldval, rRegI newval,
7305                          rFlagsReg cr)
7306 %{
7307   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7308   effect(KILL cr, KILL oldval);
7309 
7310   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7311             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7312             "sete    $res\n\t"
7313             "movzbl  $res, $res" %}
7314   opcode(0x0F, 0xB1);
7315   ins_encode(lock_prefix,
7316              REX_reg_mem(newval, mem_ptr),
7317              OpcP, OpcS,
7318              reg_mem(newval, mem_ptr),
7319              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7320              REX_reg_breg(res, res), // movzbl
7321              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7322   ins_pipe( pipe_cmpxchg );
7323 %}
7324 
7325 
7326 instruct compareAndSwapN(rRegI res,
7327                           memory mem_ptr,
7328                           rax_RegN oldval, rRegN newval,
7329                           rFlagsReg cr) %{
7330   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7331   effect(KILL cr, KILL oldval);
7332 
7333   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7334             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7335             "sete    $res\n\t"
7336             "movzbl  $res, $res" %}
7337   opcode(0x0F, 0xB1);
7338   ins_encode(lock_prefix,
7339              REX_reg_mem(newval, mem_ptr),
7340              OpcP, OpcS,
7341              reg_mem(newval, mem_ptr),
7342              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7343              REX_reg_breg(res, res), // movzbl
7344              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7345   ins_pipe( pipe_cmpxchg );
7346 %}
7347 
7348 //----------Subtraction Instructions-------------------------------------------
7349 
7350 // Integer Subtraction Instructions
7351 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7352 %{
7353   match(Set dst (SubI dst src));
7354   effect(KILL cr);
7355 
7356   format %{ "subl    $dst, $src\t# int" %}
7357   opcode(0x2B);
7358   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7359   ins_pipe(ialu_reg_reg);
7360 %}
7361 
7362 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7363 %{
7364   match(Set dst (SubI dst src));
7365   effect(KILL cr);
7366 
7367   format %{ "subl    $dst, $src\t# int" %}
7368   opcode(0x81, 0x05);  /* Opcode 81 /5 */
7369   ins_encode(OpcSErm(dst, src), Con8or32(src));
7370   ins_pipe(ialu_reg);
7371 %}
7372 
7373 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7374 %{
7375   match(Set dst (SubI dst (LoadI src)));
7376   effect(KILL cr);
7377 
7378   ins_cost(125);
7379   format %{ "subl    $dst, $src\t# int" %}
7380   opcode(0x2B);
7381   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7382   ins_pipe(ialu_reg_mem);
7383 %}
7384 
7385 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7386 %{
7387   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7388   effect(KILL cr);
7389 
7390   ins_cost(150);
7391   format %{ "subl    $dst, $src\t# int" %}
7392   opcode(0x29); /* Opcode 29 /r */
7393   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7394   ins_pipe(ialu_mem_reg);
7395 %}
7396 
7397 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
7398 %{
7399   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7400   effect(KILL cr);
7401 
7402   ins_cost(125); // XXX
7403   format %{ "subl    $dst, $src\t# int" %}
7404   opcode(0x81); /* Opcode 81 /5 id */
7405   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
7406   ins_pipe(ialu_mem_imm);
7407 %}
7408 
7409 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7410 %{
7411   match(Set dst (SubL dst src));
7412   effect(KILL cr);
7413 
7414   format %{ "subq    $dst, $src\t# long" %}
7415   opcode(0x2B);
7416   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7417   ins_pipe(ialu_reg_reg);
7418 %}
7419 
7420 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
7421 %{
7422   match(Set dst (SubL dst src));
7423   effect(KILL cr);
7424 
7425   format %{ "subq    $dst, $src\t# long" %}
7426   opcode(0x81, 0x05);  /* Opcode 81 /5 */
7427   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7428   ins_pipe(ialu_reg);
7429 %}
7430 
7431 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7432 %{
7433   match(Set dst (SubL dst (LoadL src)));
7434   effect(KILL cr);
7435 
7436   ins_cost(125);
7437   format %{ "subq    $dst, $src\t# long" %}
7438   opcode(0x2B);
7439   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7440   ins_pipe(ialu_reg_mem);
7441 %}
7442 
7443 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7444 %{
7445   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
7446   effect(KILL cr);
7447 
7448   ins_cost(150);
7449   format %{ "subq    $dst, $src\t# long" %}
7450   opcode(0x29); /* Opcode 29 /r */
7451   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7452   ins_pipe(ialu_mem_reg);
7453 %}
7454 
7455 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7456 %{
7457   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
7458   effect(KILL cr);
7459 
7460   ins_cost(125); // XXX
7461   format %{ "subq    $dst, $src\t# long" %}
7462   opcode(0x81); /* Opcode 81 /5 id */
7463   ins_encode(REX_mem_wide(dst),
7464              OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
7465   ins_pipe(ialu_mem_imm);
7466 %}
7467 
7468 // Subtract from a pointer
7469 // XXX hmpf???
7470 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
7471 %{
7472   match(Set dst (AddP dst (SubI zero src)));
7473   effect(KILL cr);
7474 
7475   format %{ "subq    $dst, $src\t# ptr - int" %}
7476   opcode(0x2B);
7477   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7478   ins_pipe(ialu_reg_reg);
7479 %}
7480 
7481 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
7482 %{
7483   match(Set dst (SubI zero dst));
7484   effect(KILL cr);
7485 
7486   format %{ "negl    $dst\t# int" %}
7487   opcode(0xF7, 0x03);  // Opcode F7 /3
7488   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7489   ins_pipe(ialu_reg);
7490 %}
7491 
7492 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
7493 %{
7494   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
7495   effect(KILL cr);
7496 
7497   format %{ "negl    $dst\t# int" %}
7498   opcode(0xF7, 0x03);  // Opcode F7 /3
7499   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
7500   ins_pipe(ialu_reg);
7501 %}
7502 
7503 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
7504 %{
7505   match(Set dst (SubL zero dst));
7506   effect(KILL cr);
7507 
7508   format %{ "negq    $dst\t# long" %}
7509   opcode(0xF7, 0x03);  // Opcode F7 /3
7510   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7511   ins_pipe(ialu_reg);
7512 %}
7513 
7514 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
7515 %{
7516   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
7517   effect(KILL cr);
7518 
7519   format %{ "negq    $dst\t# long" %}
7520   opcode(0xF7, 0x03);  // Opcode F7 /3
7521   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
7522   ins_pipe(ialu_reg);
7523 %}
7524 
7525 
7526 //----------Multiplication/Division Instructions-------------------------------
7527 // Integer Multiplication Instructions
7528 // Multiply Register
7529 
7530 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7531 %{
7532   match(Set dst (MulI dst src));
7533   effect(KILL cr);
7534 
7535   ins_cost(300);
7536   format %{ "imull   $dst, $src\t# int" %}
7537   opcode(0x0F, 0xAF);
7538   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
7539   ins_pipe(ialu_reg_reg_alu0);
7540 %}
7541 
7542 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
7543 %{
7544   match(Set dst (MulI src imm));
7545   effect(KILL cr);
7546 
7547   ins_cost(300);
7548   format %{ "imull   $dst, $src, $imm\t# int" %}
7549   opcode(0x69); /* 69 /r id */
7550   ins_encode(REX_reg_reg(dst, src),
7551              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
7552   ins_pipe(ialu_reg_reg_alu0);
7553 %}
7554 
7555 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
7556 %{
7557   match(Set dst (MulI dst (LoadI src)));
7558   effect(KILL cr);
7559 
7560   ins_cost(350);
7561   format %{ "imull   $dst, $src\t# int" %}
7562   opcode(0x0F, 0xAF);
7563   ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
7564   ins_pipe(ialu_reg_mem_alu0);
7565 %}
7566 
7567 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
7568 %{
7569   match(Set dst (MulI (LoadI src) imm));
7570   effect(KILL cr);
7571 
7572   ins_cost(300);
7573   format %{ "imull   $dst, $src, $imm\t# int" %}
7574   opcode(0x69); /* 69 /r id */
7575   ins_encode(REX_reg_mem(dst, src),
7576              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
7577   ins_pipe(ialu_reg_mem_alu0);
7578 %}
7579 
7580 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7581 %{
7582   match(Set dst (MulL dst src));
7583   effect(KILL cr);
7584 
7585   ins_cost(300);
7586   format %{ "imulq   $dst, $src\t# long" %}
7587   opcode(0x0F, 0xAF);
7588   ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
7589   ins_pipe(ialu_reg_reg_alu0);
7590 %}
7591 
7592 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
7593 %{
7594   match(Set dst (MulL src imm));
7595   effect(KILL cr);
7596 
7597   ins_cost(300);
7598   format %{ "imulq   $dst, $src, $imm\t# long" %}
7599   opcode(0x69); /* 69 /r id */
7600   ins_encode(REX_reg_reg_wide(dst, src),
7601              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
7602   ins_pipe(ialu_reg_reg_alu0);
7603 %}
7604 
7605 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
7606 %{
7607   match(Set dst (MulL dst (LoadL src)));
7608   effect(KILL cr);
7609 
7610   ins_cost(350);
7611   format %{ "imulq   $dst, $src\t# long" %}
7612   opcode(0x0F, 0xAF);
7613   ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
7614   ins_pipe(ialu_reg_mem_alu0);
7615 %}
7616 
7617 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
7618 %{
7619   match(Set dst (MulL (LoadL src) imm));
7620   effect(KILL cr);
7621 
7622   ins_cost(300);
7623   format %{ "imulq   $dst, $src, $imm\t# long" %}
7624   opcode(0x69); /* 69 /r id */
7625   ins_encode(REX_reg_mem_wide(dst, src),
7626              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
7627   ins_pipe(ialu_reg_mem_alu0);
7628 %}
7629 
7630 instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
7631 %{
7632   match(Set dst (MulHiL src rax));
7633   effect(USE_KILL rax, KILL cr);
7634 
7635   ins_cost(300);
7636   format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
7637   opcode(0xF7, 0x5); /* Opcode F7 /5 */
7638   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
7639   ins_pipe(ialu_reg_reg_alu0);
7640 %}
7641 
7642 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
7643                    rFlagsReg cr)
7644 %{
7645   match(Set rax (DivI rax div));
7646   effect(KILL rdx, KILL cr);
7647 
7648   ins_cost(30*100+10*100); // XXX
7649   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
7650             "jne,s   normal\n\t"
7651             "xorl    rdx, rdx\n\t"
7652             "cmpl    $div, -1\n\t"
7653             "je,s    done\n"
7654     "normal: cdql\n\t"
7655             "idivl   $div\n"
7656     "done:"        %}
7657   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7658   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
7659   ins_pipe(ialu_reg_reg_alu0);
7660 %}
7661 
7662 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
7663                    rFlagsReg cr)
7664 %{
7665   match(Set rax (DivL rax div));
7666   effect(KILL rdx, KILL cr);
7667 
7668   ins_cost(30*100+10*100); // XXX
7669   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
7670             "cmpq    rax, rdx\n\t"
7671             "jne,s   normal\n\t"
7672             "xorl    rdx, rdx\n\t"
7673             "cmpq    $div, -1\n\t"
7674             "je,s    done\n"
7675     "normal: cdqq\n\t"
7676             "idivq   $div\n"
7677     "done:"        %}
7678   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7679   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
7680   ins_pipe(ialu_reg_reg_alu0);
7681 %}
7682 
7683 // Integer DIVMOD with Register, both quotient and mod results
7684 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
7685                              rFlagsReg cr)
7686 %{
7687   match(DivModI rax div);
7688   effect(KILL cr);
7689 
7690   ins_cost(30*100+10*100); // XXX
7691   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
7692             "jne,s   normal\n\t"
7693             "xorl    rdx, rdx\n\t"
7694             "cmpl    $div, -1\n\t"
7695             "je,s    done\n"
7696     "normal: cdql\n\t"
7697             "idivl   $div\n"
7698     "done:"        %}
7699   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7700   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
7701   ins_pipe(pipe_slow);
7702 %}
7703 
7704 // Long DIVMOD with Register, both quotient and mod results
7705 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
7706                              rFlagsReg cr)
7707 %{
7708   match(DivModL rax div);
7709   effect(KILL cr);
7710 
7711   ins_cost(30*100+10*100); // XXX
7712   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
7713             "cmpq    rax, rdx\n\t"
7714             "jne,s   normal\n\t"
7715             "xorl    rdx, rdx\n\t"
7716             "cmpq    $div, -1\n\t"
7717             "je,s    done\n"
7718     "normal: cdqq\n\t"
7719             "idivq   $div\n"
7720     "done:"        %}
7721   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7722   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
7723   ins_pipe(pipe_slow);
7724 %}
7725 
7726 //----------- DivL-By-Constant-Expansions--------------------------------------
7727 // DivI cases are handled by the compiler
7728 
7729 // Magic constant, reciprocal of 10
7730 instruct loadConL_0x6666666666666667(rRegL dst)
7731 %{
7732   effect(DEF dst);
7733 
7734   format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
7735   ins_encode(load_immL(dst, 0x6666666666666667));
7736   ins_pipe(ialu_reg);
7737 %}
7738 
7739 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
7740 %{
7741   effect(DEF dst, USE src, USE_KILL rax, KILL cr);
7742 
7743   format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
7744   opcode(0xF7, 0x5); /* Opcode F7 /5 */
7745   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
7746   ins_pipe(ialu_reg_reg_alu0);
7747 %}
7748 
7749 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
7750 %{
7751   effect(USE_DEF dst, KILL cr);
7752 
7753   format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
7754   opcode(0xC1, 0x7); /* C1 /7 ib */
7755   ins_encode(reg_opc_imm_wide(dst, 0x3F));
7756   ins_pipe(ialu_reg);
7757 %}
7758 
7759 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
7760 %{
7761   effect(USE_DEF dst, KILL cr);
7762 
7763   format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
7764   opcode(0xC1, 0x7); /* C1 /7 ib */
7765   ins_encode(reg_opc_imm_wide(dst, 0x2));
7766   ins_pipe(ialu_reg);
7767 %}
7768 
7769 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
7770 %{
7771   match(Set dst (DivL src div));
7772 
7773   ins_cost((5+8)*100);
7774   expand %{
7775     rax_RegL rax;                     // Killed temp
7776     rFlagsReg cr;                     // Killed
7777     loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
7778     mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
7779     sarL_rReg_63(src, cr);            // sarq  src, 63
7780     sarL_rReg_2(dst, cr);             // sarq  rdx, 2
7781     subL_rReg(dst, src, cr);          // subl  rdx, src
7782   %}
7783 %}
7784 
7785 //-----------------------------------------------------------------------------
7786 
7787 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
7788                    rFlagsReg cr)
7789 %{
7790   match(Set rdx (ModI rax div));
7791   effect(KILL rax, KILL cr);
7792 
7793   ins_cost(300); // XXX
7794   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
7795             "jne,s   normal\n\t"
7796             "xorl    rdx, rdx\n\t"
7797             "cmpl    $div, -1\n\t"
7798             "je,s    done\n"
7799     "normal: cdql\n\t"
7800             "idivl   $div\n"
7801     "done:"        %}
7802   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7803   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
7804   ins_pipe(ialu_reg_reg_alu0);
7805 %}
7806 
7807 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
7808                    rFlagsReg cr)
7809 %{
7810   match(Set rdx (ModL rax div));
7811   effect(KILL rax, KILL cr);
7812 
7813   ins_cost(300); // XXX
7814   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
7815             "cmpq    rax, rdx\n\t"
7816             "jne,s   normal\n\t"
7817             "xorl    rdx, rdx\n\t"
7818             "cmpq    $div, -1\n\t"
7819             "je,s    done\n"
7820     "normal: cdqq\n\t"
7821             "idivq   $div\n"
7822     "done:"        %}
7823   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7824   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
7825   ins_pipe(ialu_reg_reg_alu0);
7826 %}
7827 
7828 // Integer Shift Instructions
7829 // Shift Left by one
7830 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
7831 %{
7832   match(Set dst (LShiftI dst shift));
7833   effect(KILL cr);
7834 
7835   format %{ "sall    $dst, $shift" %}
7836   opcode(0xD1, 0x4); /* D1 /4 */
7837   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7838   ins_pipe(ialu_reg);
7839 %}
7840 
7841 // Shift Left by one
7842 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
7843 %{
7844   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
7845   effect(KILL cr);
7846 
7847   format %{ "sall    $dst, $shift\t" %}
7848   opcode(0xD1, 0x4); /* D1 /4 */
7849   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
7850   ins_pipe(ialu_mem_imm);
7851 %}
7852 
7853 // Shift Left by 8-bit immediate
7854 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
7855 %{
7856   match(Set dst (LShiftI dst shift));
7857   effect(KILL cr);
7858 
7859   format %{ "sall    $dst, $shift" %}
7860   opcode(0xC1, 0x4); /* C1 /4 ib */
7861   ins_encode(reg_opc_imm(dst, shift));
7862   ins_pipe(ialu_reg);
7863 %}
7864 
7865 // Shift Left by 8-bit immediate
7866 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
7867 %{
7868   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
7869   effect(KILL cr);
7870 
7871   format %{ "sall    $dst, $shift" %}
7872   opcode(0xC1, 0x4); /* C1 /4 ib */
7873   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
7874   ins_pipe(ialu_mem_imm);
7875 %}
7876 
7877 // Shift Left by variable
7878 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
7879 %{
7880   match(Set dst (LShiftI dst shift));
7881   effect(KILL cr);
7882 
7883   format %{ "sall    $dst, $shift" %}
7884   opcode(0xD3, 0x4); /* D3 /4 */
7885   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7886   ins_pipe(ialu_reg_reg);
7887 %}
7888 
7889 // Shift Left by variable
7890 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
7891 %{
7892   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
7893   effect(KILL cr);
7894 
7895   format %{ "sall    $dst, $shift" %}
7896   opcode(0xD3, 0x4); /* D3 /4 */
7897   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
7898   ins_pipe(ialu_mem_reg);
7899 %}
7900 
7901 // Arithmetic shift right by one
7902 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
7903 %{
7904   match(Set dst (RShiftI dst shift));
7905   effect(KILL cr);
7906 
7907   format %{ "sarl    $dst, $shift" %}
7908   opcode(0xD1, 0x7); /* D1 /7 */
7909   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7910   ins_pipe(ialu_reg);
7911 %}
7912 
7913 // Arithmetic shift right by one
7914 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
7915 %{
7916   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
7917   effect(KILL cr);
7918 
7919   format %{ "sarl    $dst, $shift" %}
7920   opcode(0xD1, 0x7); /* D1 /7 */
7921   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
7922   ins_pipe(ialu_mem_imm);
7923 %}
7924 
7925 // Arithmetic Shift Right by 8-bit immediate
7926 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
7927 %{
7928   match(Set dst (RShiftI dst shift));
7929   effect(KILL cr);
7930 
7931   format %{ "sarl    $dst, $shift" %}
7932   opcode(0xC1, 0x7); /* C1 /7 ib */
7933   ins_encode(reg_opc_imm(dst, shift));
7934   ins_pipe(ialu_mem_imm);
7935 %}
7936 
7937 // Arithmetic Shift Right by 8-bit immediate
7938 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
7939 %{
7940   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
7941   effect(KILL cr);
7942 
7943   format %{ "sarl    $dst, $shift" %}
7944   opcode(0xC1, 0x7); /* C1 /7 ib */
7945   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
7946   ins_pipe(ialu_mem_imm);
7947 %}
7948 
7949 // Arithmetic Shift Right by variable
7950 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
7951 %{
7952   match(Set dst (RShiftI dst shift));
7953   effect(KILL cr);
7954 
7955   format %{ "sarl    $dst, $shift" %}
7956   opcode(0xD3, 0x7); /* D3 /7 */
7957   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7958   ins_pipe(ialu_reg_reg);
7959 %}
7960 
7961 // Arithmetic Shift Right by variable
7962 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
7963 %{
7964   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
7965   effect(KILL cr);
7966 
7967   format %{ "sarl    $dst, $shift" %}
7968   opcode(0xD3, 0x7); /* D3 /7 */
7969   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
7970   ins_pipe(ialu_mem_reg);
7971 %}
7972 
7973 // Logical shift right by one
7974 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
7975 %{
7976   match(Set dst (URShiftI dst shift));
7977   effect(KILL cr);
7978 
7979   format %{ "shrl    $dst, $shift" %}
7980   opcode(0xD1, 0x5); /* D1 /5 */
7981   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7982   ins_pipe(ialu_reg);
7983 %}
7984 
7985 // Logical shift right by one
7986 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
7987 %{
7988   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
7989   effect(KILL cr);
7990 
7991   format %{ "shrl    $dst, $shift" %}
7992   opcode(0xD1, 0x5); /* D1 /5 */
7993   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
7994   ins_pipe(ialu_mem_imm);
7995 %}
7996 
7997 // Logical Shift Right by 8-bit immediate
7998 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
7999 %{
8000   match(Set dst (URShiftI dst shift));
8001   effect(KILL cr);
8002 
8003   format %{ "shrl    $dst, $shift" %}
8004   opcode(0xC1, 0x5); /* C1 /5 ib */
8005   ins_encode(reg_opc_imm(dst, shift));
8006   ins_pipe(ialu_reg);
8007 %}
8008 
8009 // Logical Shift Right by 8-bit immediate
8010 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8011 %{
8012   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8013   effect(KILL cr);
8014 
8015   format %{ "shrl    $dst, $shift" %}
8016   opcode(0xC1, 0x5); /* C1 /5 ib */
8017   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8018   ins_pipe(ialu_mem_imm);
8019 %}
8020 
8021 // Logical Shift Right by variable
8022 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8023 %{
8024   match(Set dst (URShiftI dst shift));
8025   effect(KILL cr);
8026 
8027   format %{ "shrl    $dst, $shift" %}
8028   opcode(0xD3, 0x5); /* D3 /5 */
8029   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8030   ins_pipe(ialu_reg_reg);
8031 %}
8032 
8033 // Logical Shift Right by variable
8034 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8035 %{
8036   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8037   effect(KILL cr);
8038 
8039   format %{ "shrl    $dst, $shift" %}
8040   opcode(0xD3, 0x5); /* D3 /5 */
8041   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8042   ins_pipe(ialu_mem_reg);
8043 %}
8044 
8045 // Long Shift Instructions
8046 // Shift Left by one
8047 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8048 %{
8049   match(Set dst (LShiftL dst shift));
8050   effect(KILL cr);
8051 
8052   format %{ "salq    $dst, $shift" %}
8053   opcode(0xD1, 0x4); /* D1 /4 */
8054   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8055   ins_pipe(ialu_reg);
8056 %}
8057 
8058 // Shift Left by one
8059 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8060 %{
8061   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8062   effect(KILL cr);
8063 
8064   format %{ "salq    $dst, $shift" %}
8065   opcode(0xD1, 0x4); /* D1 /4 */
8066   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8067   ins_pipe(ialu_mem_imm);
8068 %}
8069 
8070 // Shift Left by 8-bit immediate
8071 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8072 %{
8073   match(Set dst (LShiftL dst shift));
8074   effect(KILL cr);
8075 
8076   format %{ "salq    $dst, $shift" %}
8077   opcode(0xC1, 0x4); /* C1 /4 ib */
8078   ins_encode(reg_opc_imm_wide(dst, shift));
8079   ins_pipe(ialu_reg);
8080 %}
8081 
8082 // Shift Left by 8-bit immediate
8083 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8084 %{
8085   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8086   effect(KILL cr);
8087 
8088   format %{ "salq    $dst, $shift" %}
8089   opcode(0xC1, 0x4); /* C1 /4 ib */
8090   ins_encode(REX_mem_wide(dst), OpcP,
8091              RM_opc_mem(secondary, dst), Con8or32(shift));
8092   ins_pipe(ialu_mem_imm);
8093 %}
8094 
8095 // Shift Left by variable
8096 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8097 %{
8098   match(Set dst (LShiftL dst shift));
8099   effect(KILL cr);
8100 
8101   format %{ "salq    $dst, $shift" %}
8102   opcode(0xD3, 0x4); /* D3 /4 */
8103   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8104   ins_pipe(ialu_reg_reg);
8105 %}
8106 
8107 // Shift Left by variable
8108 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8109 %{
8110   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8111   effect(KILL cr);
8112 
8113   format %{ "salq    $dst, $shift" %}
8114   opcode(0xD3, 0x4); /* D3 /4 */
8115   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8116   ins_pipe(ialu_mem_reg);
8117 %}
8118 
8119 // Arithmetic shift right by one
8120 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8121 %{
8122   match(Set dst (RShiftL dst shift));
8123   effect(KILL cr);
8124 
8125   format %{ "sarq    $dst, $shift" %}
8126   opcode(0xD1, 0x7); /* D1 /7 */
8127   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8128   ins_pipe(ialu_reg);
8129 %}
8130 
8131 // Arithmetic shift right by one
8132 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8133 %{
8134   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8135   effect(KILL cr);
8136 
8137   format %{ "sarq    $dst, $shift" %}
8138   opcode(0xD1, 0x7); /* D1 /7 */
8139   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8140   ins_pipe(ialu_mem_imm);
8141 %}
8142 
8143 // Arithmetic Shift Right by 8-bit immediate
8144 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8145 %{
8146   match(Set dst (RShiftL dst shift));
8147   effect(KILL cr);
8148 
8149   format %{ "sarq    $dst, $shift" %}
8150   opcode(0xC1, 0x7); /* C1 /7 ib */
8151   ins_encode(reg_opc_imm_wide(dst, shift));
8152   ins_pipe(ialu_mem_imm);
8153 %}
8154 
8155 // Arithmetic Shift Right by 8-bit immediate
8156 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8157 %{
8158   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8159   effect(KILL cr);
8160 
8161   format %{ "sarq    $dst, $shift" %}
8162   opcode(0xC1, 0x7); /* C1 /7 ib */
8163   ins_encode(REX_mem_wide(dst), OpcP,
8164              RM_opc_mem(secondary, dst), Con8or32(shift));
8165   ins_pipe(ialu_mem_imm);
8166 %}
8167 
8168 // Arithmetic Shift Right by variable
8169 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8170 %{
8171   match(Set dst (RShiftL dst shift));
8172   effect(KILL cr);
8173 
8174   format %{ "sarq    $dst, $shift" %}
8175   opcode(0xD3, 0x7); /* D3 /7 */
8176   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8177   ins_pipe(ialu_reg_reg);
8178 %}
8179 
8180 // Arithmetic Shift Right by variable
8181 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8182 %{
8183   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8184   effect(KILL cr);
8185 
8186   format %{ "sarq    $dst, $shift" %}
8187   opcode(0xD3, 0x7); /* D3 /7 */
8188   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8189   ins_pipe(ialu_mem_reg);
8190 %}
8191 
8192 // Logical shift right by one
8193 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8194 %{
8195   match(Set dst (URShiftL dst shift));
8196   effect(KILL cr);
8197 
8198   format %{ "shrq    $dst, $shift" %}
8199   opcode(0xD1, 0x5); /* D1 /5 */
8200   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
8201   ins_pipe(ialu_reg);
8202 %}
8203 
8204 // Logical shift right by one
8205 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8206 %{
8207   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8208   effect(KILL cr);
8209 
8210   format %{ "shrq    $dst, $shift" %}
8211   opcode(0xD1, 0x5); /* D1 /5 */
8212   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8213   ins_pipe(ialu_mem_imm);
8214 %}
8215 
8216 // Logical Shift Right by 8-bit immediate
8217 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8218 %{
8219   match(Set dst (URShiftL dst shift));
8220   effect(KILL cr);
8221 
8222   format %{ "shrq    $dst, $shift" %}
8223   opcode(0xC1, 0x5); /* C1 /5 ib */
8224   ins_encode(reg_opc_imm_wide(dst, shift));
8225   ins_pipe(ialu_reg);
8226 %}
8227 
8228 
8229 // Logical Shift Right by 8-bit immediate
8230 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8231 %{
8232   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8233   effect(KILL cr);
8234 
8235   format %{ "shrq    $dst, $shift" %}
8236   opcode(0xC1, 0x5); /* C1 /5 ib */
8237   ins_encode(REX_mem_wide(dst), OpcP,
8238              RM_opc_mem(secondary, dst), Con8or32(shift));
8239   ins_pipe(ialu_mem_imm);
8240 %}
8241 
8242 // Logical Shift Right by variable
8243 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8244 %{
8245   match(Set dst (URShiftL dst shift));
8246   effect(KILL cr);
8247 
8248   format %{ "shrq    $dst, $shift" %}
8249   opcode(0xD3, 0x5); /* D3 /5 */
8250   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8251   ins_pipe(ialu_reg_reg);
8252 %}
8253 
8254 // Logical Shift Right by variable
8255 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8256 %{
8257   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8258   effect(KILL cr);
8259 
8260   format %{ "shrq    $dst, $shift" %}
8261   opcode(0xD3, 0x5); /* D3 /5 */
8262   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8263   ins_pipe(ialu_mem_reg);
8264 %}
8265 
8266 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8267 // This idiom is used by the compiler for the i2b bytecode.
8268 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
8269 %{
8270   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8271 
8272   format %{ "movsbl  $dst, $src\t# i2b" %}
8273   opcode(0x0F, 0xBE);
8274   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8275   ins_pipe(ialu_reg_reg);
8276 %}
8277 
8278 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8279 // This idiom is used by the compiler the i2s bytecode.
8280 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
8281 %{
8282   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8283 
8284   format %{ "movswl  $dst, $src\t# i2s" %}
8285   opcode(0x0F, 0xBF);
8286   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8287   ins_pipe(ialu_reg_reg);
8288 %}
8289 
8290 // ROL/ROR instructions
8291 
8292 // ROL expand
8293 instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
8294   effect(KILL cr, USE_DEF dst);
8295 
8296   format %{ "roll    $dst" %}
8297   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
8298   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8299   ins_pipe(ialu_reg);
8300 %}
8301 
8302 instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
8303   effect(USE_DEF dst, USE shift, KILL cr);
8304 
8305   format %{ "roll    $dst, $shift" %}
8306   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
8307   ins_encode( reg_opc_imm(dst, shift) );
8308   ins_pipe(ialu_reg);
8309 %}
8310 
8311 instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
8312 %{
8313   effect(USE_DEF dst, USE shift, KILL cr);
8314 
8315   format %{ "roll    $dst, $shift" %}
8316   opcode(0xD3, 0x0); /* Opcode D3 /0 */
8317   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8318   ins_pipe(ialu_reg_reg);
8319 %}
8320 // end of ROL expand
8321 
8322 // Rotate Left by one
8323 instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
8324 %{
8325   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8326 
8327   expand %{
8328     rolI_rReg_imm1(dst, cr);
8329   %}
8330 %}
8331 
8332 // Rotate Left by 8-bit immediate
8333 instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
8334 %{
8335   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8336   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8337 
8338   expand %{
8339     rolI_rReg_imm8(dst, lshift, cr);
8340   %}
8341 %}
8342 
8343 // Rotate Left by variable
8344 instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8345 %{
8346   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8347 
8348   expand %{
8349     rolI_rReg_CL(dst, shift, cr);
8350   %}
8351 %}
8352 
8353 // Rotate Left by variable
8354 instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
8355 %{
8356   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8357 
8358   expand %{
8359     rolI_rReg_CL(dst, shift, cr);
8360   %}
8361 %}
8362 
8363 // ROR expand
8364 instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
8365 %{
8366   effect(USE_DEF dst, KILL cr);
8367 
8368   format %{ "rorl    $dst" %}
8369   opcode(0xD1, 0x1); /* D1 /1 */
8370   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8371   ins_pipe(ialu_reg);
8372 %}
8373 
8374 instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
8375 %{
8376   effect(USE_DEF dst, USE shift, KILL cr);
8377 
8378   format %{ "rorl    $dst, $shift" %}
8379   opcode(0xC1, 0x1); /* C1 /1 ib */
8380   ins_encode(reg_opc_imm(dst, shift));
8381   ins_pipe(ialu_reg);
8382 %}
8383 
8384 instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
8385 %{
8386   effect(USE_DEF dst, USE shift, KILL cr);
8387 
8388   format %{ "rorl    $dst, $shift" %}
8389   opcode(0xD3, 0x1); /* D3 /1 */
8390   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8391   ins_pipe(ialu_reg_reg);
8392 %}
8393 // end of ROR expand
8394 
8395 // Rotate Right by one
8396 instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
8397 %{
8398   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8399 
8400   expand %{
8401     rorI_rReg_imm1(dst, cr);
8402   %}
8403 %}
8404 
8405 // Rotate Right by 8-bit immediate
8406 instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
8407 %{
8408   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8409   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8410 
8411   expand %{
8412     rorI_rReg_imm8(dst, rshift, cr);
8413   %}
8414 %}
8415 
8416 // Rotate Right by variable
8417 instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8418 %{
8419   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8420 
8421   expand %{
8422     rorI_rReg_CL(dst, shift, cr);
8423   %}
8424 %}
8425 
8426 // Rotate Right by variable
8427 instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
8428 %{
8429   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8430 
8431   expand %{
8432     rorI_rReg_CL(dst, shift, cr);
8433   %}
8434 %}
8435 
8436 // for long rotate
8437 // ROL expand
8438 instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
8439   effect(USE_DEF dst, KILL cr);
8440 
8441   format %{ "rolq    $dst" %}
8442   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
8443   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8444   ins_pipe(ialu_reg);
8445 %}
8446 
8447 instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
8448   effect(USE_DEF dst, USE shift, KILL cr);
8449 
8450   format %{ "rolq    $dst, $shift" %}
8451   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
8452   ins_encode( reg_opc_imm_wide(dst, shift) );
8453   ins_pipe(ialu_reg);
8454 %}
8455 
8456 instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
8457 %{
8458   effect(USE_DEF dst, USE shift, KILL cr);
8459 
8460   format %{ "rolq    $dst, $shift" %}
8461   opcode(0xD3, 0x0); /* Opcode D3 /0 */
8462   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8463   ins_pipe(ialu_reg_reg);
8464 %}
8465 // end of ROL expand
8466 
8467 // Rotate Left by one
8468 instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
8469 %{
8470   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
8471 
8472   expand %{
8473     rolL_rReg_imm1(dst, cr);
8474   %}
8475 %}
8476 
8477 // Rotate Left by 8-bit immediate
8478 instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
8479 %{
8480   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
8481   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
8482 
8483   expand %{
8484     rolL_rReg_imm8(dst, lshift, cr);
8485   %}
8486 %}
8487 
8488 // Rotate Left by variable
8489 instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8490 %{
8491   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
8492 
8493   expand %{
8494     rolL_rReg_CL(dst, shift, cr);
8495   %}
8496 %}
8497 
8498 // Rotate Left by variable
8499 instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
8500 %{
8501   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
8502 
8503   expand %{
8504     rolL_rReg_CL(dst, shift, cr);
8505   %}
8506 %}
8507 
8508 // ROR expand
8509 instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
8510 %{
8511   effect(USE_DEF dst, KILL cr);
8512 
8513   format %{ "rorq    $dst" %}
8514   opcode(0xD1, 0x1); /* D1 /1 */
8515   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8516   ins_pipe(ialu_reg);
8517 %}
8518 
8519 instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
8520 %{
8521   effect(USE_DEF dst, USE shift, KILL cr);
8522 
8523   format %{ "rorq    $dst, $shift" %}
8524   opcode(0xC1, 0x1); /* C1 /1 ib */
8525   ins_encode(reg_opc_imm_wide(dst, shift));
8526   ins_pipe(ialu_reg);
8527 %}
8528 
8529 instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
8530 %{
8531   effect(USE_DEF dst, USE shift, KILL cr);
8532 
8533   format %{ "rorq    $dst, $shift" %}
8534   opcode(0xD3, 0x1); /* D3 /1 */
8535   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8536   ins_pipe(ialu_reg_reg);
8537 %}
8538 // end of ROR expand
8539 
8540 // Rotate Right by one
8541 instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
8542 %{
8543   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
8544 
8545   expand %{
8546     rorL_rReg_imm1(dst, cr);
8547   %}
8548 %}
8549 
8550 // Rotate Right by 8-bit immediate
8551 instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
8552 %{
8553   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
8554   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
8555 
8556   expand %{
8557     rorL_rReg_imm8(dst, rshift, cr);
8558   %}
8559 %}
8560 
8561 // Rotate Right by variable
8562 instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8563 %{
8564   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
8565 
8566   expand %{
8567     rorL_rReg_CL(dst, shift, cr);
8568   %}
8569 %}
8570 
8571 // Rotate Right by variable
8572 instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
8573 %{
8574   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
8575 
8576   expand %{
8577     rorL_rReg_CL(dst, shift, cr);
8578   %}
8579 %}
8580 
8581 // Logical Instructions
8582 
8583 // Integer Logical Instructions
8584 
8585 // And Instructions
8586 // And Register with Register
8587 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8588 %{
8589   match(Set dst (AndI dst src));
8590   effect(KILL cr);
8591 
8592   format %{ "andl    $dst, $src\t# int" %}
8593   opcode(0x23);
8594   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8595   ins_pipe(ialu_reg_reg);
8596 %}
8597 
8598 // And Register with Immediate 255
8599 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
8600 %{
8601   match(Set dst (AndI dst src));
8602 
8603   format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
8604   opcode(0x0F, 0xB6);
8605   ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
8606   ins_pipe(ialu_reg);
8607 %}
8608 
8609 // And Register with Immediate 255 and promote to long
8610 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
8611 %{
8612   match(Set dst (ConvI2L (AndI src mask)));
8613 
8614   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
8615   opcode(0x0F, 0xB6);
8616   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8617   ins_pipe(ialu_reg);
8618 %}
8619 
8620 // And Register with Immediate 65535
8621 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
8622 %{
8623   match(Set dst (AndI dst src));
8624 
8625   format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
8626   opcode(0x0F, 0xB7);
8627   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
8628   ins_pipe(ialu_reg);
8629 %}
8630 
8631 // And Register with Immediate 65535 and promote to long
8632 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
8633 %{
8634   match(Set dst (ConvI2L (AndI src mask)));
8635 
8636   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
8637   opcode(0x0F, 0xB7);
8638   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8639   ins_pipe(ialu_reg);
8640 %}
8641 
8642 // And Register with Immediate
8643 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8644 %{
8645   match(Set dst (AndI dst src));
8646   effect(KILL cr);
8647 
8648   format %{ "andl    $dst, $src\t# int" %}
8649   opcode(0x81, 0x04); /* Opcode 81 /4 */
8650   ins_encode(OpcSErm(dst, src), Con8or32(src));
8651   ins_pipe(ialu_reg);
8652 %}
8653 
8654 // And Register with Memory
8655 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8656 %{
8657   match(Set dst (AndI dst (LoadI src)));
8658   effect(KILL cr);
8659 
8660   ins_cost(125);
8661   format %{ "andl    $dst, $src\t# int" %}
8662   opcode(0x23);
8663   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8664   ins_pipe(ialu_reg_mem);
8665 %}
8666 
8667 // And Memory with Register
8668 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8669 %{
8670   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8671   effect(KILL cr);
8672 
8673   ins_cost(150);
8674   format %{ "andl    $dst, $src\t# int" %}
8675   opcode(0x21); /* Opcode 21 /r */
8676   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8677   ins_pipe(ialu_mem_reg);
8678 %}
8679 
8680 // And Memory with Immediate
8681 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
8682 %{
8683   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8684   effect(KILL cr);
8685 
8686   ins_cost(125);
8687   format %{ "andl    $dst, $src\t# int" %}
8688   opcode(0x81, 0x4); /* Opcode 81 /4 id */
8689   ins_encode(REX_mem(dst), OpcSE(src),
8690              RM_opc_mem(secondary, dst), Con8or32(src));
8691   ins_pipe(ialu_mem_imm);
8692 %}
8693 
8694 // Or Instructions
8695 // Or Register with Register
8696 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8697 %{
8698   match(Set dst (OrI dst src));
8699   effect(KILL cr);
8700 
8701   format %{ "orl     $dst, $src\t# int" %}
8702   opcode(0x0B);
8703   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8704   ins_pipe(ialu_reg_reg);
8705 %}
8706 
8707 // Or Register with Immediate
8708 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8709 %{
8710   match(Set dst (OrI dst src));
8711   effect(KILL cr);
8712 
8713   format %{ "orl     $dst, $src\t# int" %}
8714   opcode(0x81, 0x01); /* Opcode 81 /1 id */
8715   ins_encode(OpcSErm(dst, src), Con8or32(src));
8716   ins_pipe(ialu_reg);
8717 %}
8718 
8719 // Or Register with Memory
8720 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8721 %{
8722   match(Set dst (OrI dst (LoadI src)));
8723   effect(KILL cr);
8724 
8725   ins_cost(125);
8726   format %{ "orl     $dst, $src\t# int" %}
8727   opcode(0x0B);
8728   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8729   ins_pipe(ialu_reg_mem);
8730 %}
8731 
8732 // Or Memory with Register
8733 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8734 %{
8735   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8736   effect(KILL cr);
8737 
8738   ins_cost(150);
8739   format %{ "orl     $dst, $src\t# int" %}
8740   opcode(0x09); /* Opcode 09 /r */
8741   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8742   ins_pipe(ialu_mem_reg);
8743 %}
8744 
8745 // Or Memory with Immediate
8746 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
8747 %{
8748   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8749   effect(KILL cr);
8750 
8751   ins_cost(125);
8752   format %{ "orl     $dst, $src\t# int" %}
8753   opcode(0x81, 0x1); /* Opcode 81 /1 id */
8754   ins_encode(REX_mem(dst), OpcSE(src),
8755              RM_opc_mem(secondary, dst), Con8or32(src));
8756   ins_pipe(ialu_mem_imm);
8757 %}
8758 
8759 // Xor Instructions
8760 // Xor Register with Register
8761 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8762 %{
8763   match(Set dst (XorI dst src));
8764   effect(KILL cr);
8765 
8766   format %{ "xorl    $dst, $src\t# int" %}
8767   opcode(0x33);
8768   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8769   ins_pipe(ialu_reg_reg);
8770 %}
8771 
8772 // Xor Register with Immediate -1
8773 instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
8774   match(Set dst (XorI dst imm));
8775 
8776   format %{ "not    $dst" %}
8777   ins_encode %{
8778      __ notl($dst$$Register);
8779   %}
8780   ins_pipe(ialu_reg);
8781 %}
8782 
8783 // Xor Register with Immediate
8784 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8785 %{
8786   match(Set dst (XorI dst src));
8787   effect(KILL cr);
8788 
8789   format %{ "xorl    $dst, $src\t# int" %}
8790   opcode(0x81, 0x06); /* Opcode 81 /6 id */
8791   ins_encode(OpcSErm(dst, src), Con8or32(src));
8792   ins_pipe(ialu_reg);
8793 %}
8794 
8795 // Xor Register with Memory
8796 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8797 %{
8798   match(Set dst (XorI dst (LoadI src)));
8799   effect(KILL cr);
8800 
8801   ins_cost(125);
8802   format %{ "xorl    $dst, $src\t# int" %}
8803   opcode(0x33);
8804   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8805   ins_pipe(ialu_reg_mem);
8806 %}
8807 
8808 // Xor Memory with Register
8809 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8810 %{
8811   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8812   effect(KILL cr);
8813 
8814   ins_cost(150);
8815   format %{ "xorl    $dst, $src\t# int" %}
8816   opcode(0x31); /* Opcode 31 /r */
8817   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8818   ins_pipe(ialu_mem_reg);
8819 %}
8820 
8821 // Xor Memory with Immediate
8822 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
8823 %{
8824   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8825   effect(KILL cr);
8826 
8827   ins_cost(125);
8828   format %{ "xorl    $dst, $src\t# int" %}
8829   opcode(0x81, 0x6); /* Opcode 81 /6 id */
8830   ins_encode(REX_mem(dst), OpcSE(src),
8831              RM_opc_mem(secondary, dst), Con8or32(src));
8832   ins_pipe(ialu_mem_imm);
8833 %}
8834 
8835 
8836 // Long Logical Instructions
8837 
8838 // And Instructions
8839 // And Register with Register
8840 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8841 %{
8842   match(Set dst (AndL dst src));
8843   effect(KILL cr);
8844 
8845   format %{ "andq    $dst, $src\t# long" %}
8846   opcode(0x23);
8847   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8848   ins_pipe(ialu_reg_reg);
8849 %}
8850 
8851 // And Register with Immediate 255
8852 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
8853 %{
8854   match(Set dst (AndL dst src));
8855 
8856   format %{ "movzbq  $dst, $dst\t# long & 0xFF" %}
8857   opcode(0x0F, 0xB6);
8858   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
8859   ins_pipe(ialu_reg);
8860 %}
8861 
8862 // And Register with Immediate 65535
8863 instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
8864 %{
8865   match(Set dst (AndL dst src));
8866 
8867   format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
8868   opcode(0x0F, 0xB7);
8869   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
8870   ins_pipe(ialu_reg);
8871 %}
8872 
8873 // And Register with Immediate
8874 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
8875 %{
8876   match(Set dst (AndL dst src));
8877   effect(KILL cr);
8878 
8879   format %{ "andq    $dst, $src\t# long" %}
8880   opcode(0x81, 0x04); /* Opcode 81 /4 */
8881   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
8882   ins_pipe(ialu_reg);
8883 %}
8884 
8885 // And Register with Memory
8886 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
8887 %{
8888   match(Set dst (AndL dst (LoadL src)));
8889   effect(KILL cr);
8890 
8891   ins_cost(125);
8892   format %{ "andq    $dst, $src\t# long" %}
8893   opcode(0x23);
8894   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
8895   ins_pipe(ialu_reg_mem);
8896 %}
8897 
8898 // And Memory with Register
8899 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
8900 %{
8901   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
8902   effect(KILL cr);
8903 
8904   ins_cost(150);
8905   format %{ "andq    $dst, $src\t# long" %}
8906   opcode(0x21); /* Opcode 21 /r */
8907   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
8908   ins_pipe(ialu_mem_reg);
8909 %}
8910 
8911 // And Memory with Immediate
8912 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
8913 %{
8914   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
8915   effect(KILL cr);
8916 
8917   ins_cost(125);
8918   format %{ "andq    $dst, $src\t# long" %}
8919   opcode(0x81, 0x4); /* Opcode 81 /4 id */
8920   ins_encode(REX_mem_wide(dst), OpcSE(src),
8921              RM_opc_mem(secondary, dst), Con8or32(src));
8922   ins_pipe(ialu_mem_imm);
8923 %}
8924 
8925 // Or Instructions
8926 // Or Register with Register
8927 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8928 %{
8929   match(Set dst (OrL dst src));
8930   effect(KILL cr);
8931 
8932   format %{ "orq     $dst, $src\t# long" %}
8933   opcode(0x0B);
8934   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8935   ins_pipe(ialu_reg_reg);
8936 %}
8937 
8938 // Use any_RegP to match R15 (TLS register) without spilling.
8939 instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
8940   match(Set dst (OrL dst (CastP2X src)));
8941   effect(KILL cr);
8942 
8943   format %{ "orq     $dst, $src\t# long" %}
8944   opcode(0x0B);
8945   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8946   ins_pipe(ialu_reg_reg);
8947 %}
8948 
8949 
8950 // Or Register with Immediate
8951 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
8952 %{
8953   match(Set dst (OrL dst src));
8954   effect(KILL cr);
8955 
8956   format %{ "orq     $dst, $src\t# long" %}
8957   opcode(0x81, 0x01); /* Opcode 81 /1 id */
8958   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
8959   ins_pipe(ialu_reg);
8960 %}
8961 
8962 // Or Register with Memory
8963 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
8964 %{
8965   match(Set dst (OrL dst (LoadL src)));
8966   effect(KILL cr);
8967 
8968   ins_cost(125);
8969   format %{ "orq     $dst, $src\t# long" %}
8970   opcode(0x0B);
8971   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
8972   ins_pipe(ialu_reg_mem);
8973 %}
8974 
8975 // Or Memory with Register
8976 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
8977 %{
8978   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
8979   effect(KILL cr);
8980 
8981   ins_cost(150);
8982   format %{ "orq     $dst, $src\t# long" %}
8983   opcode(0x09); /* Opcode 09 /r */
8984   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
8985   ins_pipe(ialu_mem_reg);
8986 %}
8987 
8988 // Or Memory with Immediate
8989 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
8990 %{
8991   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
8992   effect(KILL cr);
8993 
8994   ins_cost(125);
8995   format %{ "orq     $dst, $src\t# long" %}
8996   opcode(0x81, 0x1); /* Opcode 81 /1 id */
8997   ins_encode(REX_mem_wide(dst), OpcSE(src),
8998              RM_opc_mem(secondary, dst), Con8or32(src));
8999   ins_pipe(ialu_mem_imm);
9000 %}
9001 
9002 // Xor Instructions
9003 // Xor Register with Register
9004 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9005 %{
9006   match(Set dst (XorL dst src));
9007   effect(KILL cr);
9008 
9009   format %{ "xorq    $dst, $src\t# long" %}
9010   opcode(0x33);
9011   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9012   ins_pipe(ialu_reg_reg);
9013 %}
9014 
9015 // Xor Register with Immediate -1
9016 instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
9017   match(Set dst (XorL dst imm));
9018 
9019   format %{ "notq   $dst" %}
9020   ins_encode %{
9021      __ notq($dst$$Register);
9022   %}
9023   ins_pipe(ialu_reg);
9024 %}
9025 
9026 // Xor Register with Immediate
9027 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9028 %{
9029   match(Set dst (XorL dst src));
9030   effect(KILL cr);
9031 
9032   format %{ "xorq    $dst, $src\t# long" %}
9033   opcode(0x81, 0x06); /* Opcode 81 /6 id */
9034   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9035   ins_pipe(ialu_reg);
9036 %}
9037 
9038 // Xor Register with Memory
9039 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9040 %{
9041   match(Set dst (XorL dst (LoadL src)));
9042   effect(KILL cr);
9043 
9044   ins_cost(125);
9045   format %{ "xorq    $dst, $src\t# long" %}
9046   opcode(0x33);
9047   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9048   ins_pipe(ialu_reg_mem);
9049 %}
9050 
9051 // Xor Memory with Register
9052 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9053 %{
9054   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9055   effect(KILL cr);
9056 
9057   ins_cost(150);
9058   format %{ "xorq    $dst, $src\t# long" %}
9059   opcode(0x31); /* Opcode 31 /r */
9060   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9061   ins_pipe(ialu_mem_reg);
9062 %}
9063 
9064 // Xor Memory with Immediate
9065 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9066 %{
9067   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9068   effect(KILL cr);
9069 
9070   ins_cost(125);
9071   format %{ "xorq    $dst, $src\t# long" %}
9072   opcode(0x81, 0x6); /* Opcode 81 /6 id */
9073   ins_encode(REX_mem_wide(dst), OpcSE(src),
9074              RM_opc_mem(secondary, dst), Con8or32(src));
9075   ins_pipe(ialu_mem_imm);
9076 %}
9077 
9078 // Convert Int to Boolean
9079 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
9080 %{
9081   match(Set dst (Conv2B src));
9082   effect(KILL cr);
9083 
9084   format %{ "testl   $src, $src\t# ci2b\n\t"
9085             "setnz   $dst\n\t"
9086             "movzbl  $dst, $dst" %}
9087   ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
9088              setNZ_reg(dst),
9089              REX_reg_breg(dst, dst), // movzbl
9090              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
9091   ins_pipe(pipe_slow); // XXX
9092 %}
9093 
9094 // Convert Pointer to Boolean
9095 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
9096 %{
9097   match(Set dst (Conv2B src));
9098   effect(KILL cr);
9099 
9100   format %{ "testq   $src, $src\t# cp2b\n\t"
9101             "setnz   $dst\n\t"
9102             "movzbl  $dst, $dst" %}
9103   ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
9104              setNZ_reg(dst),
9105              REX_reg_breg(dst, dst), // movzbl
9106              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
9107   ins_pipe(pipe_slow); // XXX
9108 %}
9109 
9110 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
9111 %{
9112   match(Set dst (CmpLTMask p q));
9113   effect(KILL cr);
9114 
9115   ins_cost(400); // XXX
9116   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
9117             "setlt   $dst\n\t"
9118             "movzbl  $dst, $dst\n\t"
9119             "negl    $dst" %}
9120   ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
9121              setLT_reg(dst),
9122              REX_reg_breg(dst, dst), // movzbl
9123              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
9124              neg_reg(dst));
9125   ins_pipe(pipe_slow);
9126 %}
9127 
9128 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
9129 %{
9130   match(Set dst (CmpLTMask dst zero));
9131   effect(KILL cr);
9132 
9133   ins_cost(100); // XXX
9134   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
9135   opcode(0xC1, 0x7);  /* C1 /7 ib */
9136   ins_encode(reg_opc_imm(dst, 0x1F));
9137   ins_pipe(ialu_reg);
9138 %}
9139 
9140 
9141 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, rRegI tmp, rFlagsReg cr)
9142 %{
9143   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9144   effect(TEMP tmp, KILL cr);
9145 
9146   ins_cost(400); // XXX
9147   format %{ "subl    $p, $q\t# cadd_cmpLTMask1\n\t"
9148             "sbbl    $tmp, $tmp\n\t"
9149             "andl    $tmp, $y\n\t"
9150             "addl    $p, $tmp" %}
9151   ins_encode %{
9152     Register Rp = $p$$Register;
9153     Register Rq = $q$$Register;
9154     Register Ry = $y$$Register;
9155     Register Rt = $tmp$$Register;
9156     __ subl(Rp, Rq);
9157     __ sbbl(Rt, Rt);
9158     __ andl(Rt, Ry);
9159     __ addl(Rp, Rt);
9160   %}
9161   ins_pipe(pipe_cmplt);
9162 %}
9163 
9164 //---------- FP Instructions------------------------------------------------
9165 
9166 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
9167 %{
9168   match(Set cr (CmpF src1 src2));
9169 
9170   ins_cost(145);
9171   format %{ "ucomiss $src1, $src2\n\t"
9172             "jnp,s   exit\n\t"
9173             "pushfq\t# saw NaN, set CF\n\t"
9174             "andq    [rsp], #0xffffff2b\n\t"
9175             "popfq\n"
9176     "exit:" %}
9177   ins_encode %{
9178     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
9179     emit_cmpfp_fixup(_masm);
9180   %}
9181   ins_pipe(pipe_slow);
9182 %}
9183 
9184 instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
9185   match(Set cr (CmpF src1 src2));
9186 
9187   ins_cost(100);
9188   format %{ "ucomiss $src1, $src2" %}
9189   ins_encode %{
9190     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
9191   %}
9192   ins_pipe(pipe_slow);
9193 %}
9194 
9195 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
9196 %{
9197   match(Set cr (CmpF src1 (LoadF src2)));
9198 
9199   ins_cost(145);
9200   format %{ "ucomiss $src1, $src2\n\t"
9201             "jnp,s   exit\n\t"
9202             "pushfq\t# saw NaN, set CF\n\t"
9203             "andq    [rsp], #0xffffff2b\n\t"
9204             "popfq\n"
9205     "exit:" %}
9206   ins_encode %{
9207     __ ucomiss($src1$$XMMRegister, $src2$$Address);
9208     emit_cmpfp_fixup(_masm);
9209   %}
9210   ins_pipe(pipe_slow);
9211 %}
9212 
9213 instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
9214   match(Set cr (CmpF src1 (LoadF src2)));
9215 
9216   ins_cost(100);
9217   format %{ "ucomiss $src1, $src2" %}
9218   ins_encode %{
9219     __ ucomiss($src1$$XMMRegister, $src2$$Address);
9220   %}
9221   ins_pipe(pipe_slow);
9222 %}
9223 
9224 instruct cmpF_cc_imm(rFlagsRegU cr, regF src, immF con) %{
9225   match(Set cr (CmpF src con));
9226 
9227   ins_cost(145);
9228   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
9229             "jnp,s   exit\n\t"
9230             "pushfq\t# saw NaN, set CF\n\t"
9231             "andq    [rsp], #0xffffff2b\n\t"
9232             "popfq\n"
9233     "exit:" %}
9234   ins_encode %{
9235     __ ucomiss($src$$XMMRegister, $constantaddress($con));
9236     emit_cmpfp_fixup(_masm);
9237   %}
9238   ins_pipe(pipe_slow);
9239 %}
9240 
9241 instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src, immF con) %{
9242   match(Set cr (CmpF src con));
9243   ins_cost(100);
9244   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con" %}
9245   ins_encode %{
9246     __ ucomiss($src$$XMMRegister, $constantaddress($con));
9247   %}
9248   ins_pipe(pipe_slow);
9249 %}
9250 
9251 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
9252 %{
9253   match(Set cr (CmpD src1 src2));
9254 
9255   ins_cost(145);
9256   format %{ "ucomisd $src1, $src2\n\t"
9257             "jnp,s   exit\n\t"
9258             "pushfq\t# saw NaN, set CF\n\t"
9259             "andq    [rsp], #0xffffff2b\n\t"
9260             "popfq\n"
9261     "exit:" %}
9262   ins_encode %{
9263     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9264     emit_cmpfp_fixup(_masm);
9265   %}
9266   ins_pipe(pipe_slow);
9267 %}
9268 
9269 instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
9270   match(Set cr (CmpD src1 src2));
9271 
9272   ins_cost(100);
9273   format %{ "ucomisd $src1, $src2 test" %}
9274   ins_encode %{
9275     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9276   %}
9277   ins_pipe(pipe_slow);
9278 %}
9279 
9280 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
9281 %{
9282   match(Set cr (CmpD src1 (LoadD src2)));
9283 
9284   ins_cost(145);
9285   format %{ "ucomisd $src1, $src2\n\t"
9286             "jnp,s   exit\n\t"
9287             "pushfq\t# saw NaN, set CF\n\t"
9288             "andq    [rsp], #0xffffff2b\n\t"
9289             "popfq\n"
9290     "exit:" %}
9291   ins_encode %{
9292     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9293     emit_cmpfp_fixup(_masm);
9294   %}
9295   ins_pipe(pipe_slow);
9296 %}
9297 
9298 instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
9299   match(Set cr (CmpD src1 (LoadD src2)));
9300 
9301   ins_cost(100);
9302   format %{ "ucomisd $src1, $src2" %}
9303   ins_encode %{
9304     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9305   %}
9306   ins_pipe(pipe_slow);
9307 %}
9308 
9309 instruct cmpD_cc_imm(rFlagsRegU cr, regD src, immD con) %{
9310   match(Set cr (CmpD src con));
9311 
9312   ins_cost(145);
9313   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
9314             "jnp,s   exit\n\t"
9315             "pushfq\t# saw NaN, set CF\n\t"
9316             "andq    [rsp], #0xffffff2b\n\t"
9317             "popfq\n"
9318     "exit:" %}
9319   ins_encode %{
9320     __ ucomisd($src$$XMMRegister, $constantaddress($con));
9321     emit_cmpfp_fixup(_masm);
9322   %}
9323   ins_pipe(pipe_slow);
9324 %}
9325 
9326 instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src, immD con) %{
9327   match(Set cr (CmpD src con));
9328   ins_cost(100);
9329   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con" %}
9330   ins_encode %{
9331     __ ucomisd($src$$XMMRegister, $constantaddress($con));
9332   %}
9333   ins_pipe(pipe_slow);
9334 %}
9335 
9336 // Compare into -1,0,1
9337 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
9338 %{
9339   match(Set dst (CmpF3 src1 src2));
9340   effect(KILL cr);
9341 
9342   ins_cost(275);
9343   format %{ "ucomiss $src1, $src2\n\t"
9344             "movl    $dst, #-1\n\t"
9345             "jp,s    done\n\t"
9346             "jb,s    done\n\t"
9347             "setne   $dst\n\t"
9348             "movzbl  $dst, $dst\n"
9349     "done:" %}
9350   ins_encode %{
9351     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
9352     emit_cmpfp3(_masm, $dst$$Register);
9353   %}
9354   ins_pipe(pipe_slow);
9355 %}
9356 
9357 // Compare into -1,0,1
9358 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
9359 %{
9360   match(Set dst (CmpF3 src1 (LoadF src2)));
9361   effect(KILL cr);
9362 
9363   ins_cost(275);
9364   format %{ "ucomiss $src1, $src2\n\t"
9365             "movl    $dst, #-1\n\t"
9366             "jp,s    done\n\t"
9367             "jb,s    done\n\t"
9368             "setne   $dst\n\t"
9369             "movzbl  $dst, $dst\n"
9370     "done:" %}
9371   ins_encode %{
9372     __ ucomiss($src1$$XMMRegister, $src2$$Address);
9373     emit_cmpfp3(_masm, $dst$$Register);
9374   %}
9375   ins_pipe(pipe_slow);
9376 %}
9377 
9378 // Compare into -1,0,1
9379 instruct cmpF_imm(rRegI dst, regF src, immF con, rFlagsReg cr) %{
9380   match(Set dst (CmpF3 src con));
9381   effect(KILL cr);
9382 
9383   ins_cost(275);
9384   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
9385             "movl    $dst, #-1\n\t"
9386             "jp,s    done\n\t"
9387             "jb,s    done\n\t"
9388             "setne   $dst\n\t"
9389             "movzbl  $dst, $dst\n"
9390     "done:" %}
9391   ins_encode %{
9392     __ ucomiss($src$$XMMRegister, $constantaddress($con));
9393     emit_cmpfp3(_masm, $dst$$Register);
9394   %}
9395   ins_pipe(pipe_slow);
9396 %}
9397 
9398 // Compare into -1,0,1
9399 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
9400 %{
9401   match(Set dst (CmpD3 src1 src2));
9402   effect(KILL cr);
9403 
9404   ins_cost(275);
9405   format %{ "ucomisd $src1, $src2\n\t"
9406             "movl    $dst, #-1\n\t"
9407             "jp,s    done\n\t"
9408             "jb,s    done\n\t"
9409             "setne   $dst\n\t"
9410             "movzbl  $dst, $dst\n"
9411     "done:" %}
9412   ins_encode %{
9413     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9414     emit_cmpfp3(_masm, $dst$$Register);
9415   %}
9416   ins_pipe(pipe_slow);
9417 %}
9418 
9419 // Compare into -1,0,1
9420 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
9421 %{
9422   match(Set dst (CmpD3 src1 (LoadD src2)));
9423   effect(KILL cr);
9424 
9425   ins_cost(275);
9426   format %{ "ucomisd $src1, $src2\n\t"
9427             "movl    $dst, #-1\n\t"
9428             "jp,s    done\n\t"
9429             "jb,s    done\n\t"
9430             "setne   $dst\n\t"
9431             "movzbl  $dst, $dst\n"
9432     "done:" %}
9433   ins_encode %{
9434     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9435     emit_cmpfp3(_masm, $dst$$Register);
9436   %}
9437   ins_pipe(pipe_slow);
9438 %}
9439 
9440 // Compare into -1,0,1
9441 instruct cmpD_imm(rRegI dst, regD src, immD con, rFlagsReg cr) %{
9442   match(Set dst (CmpD3 src con));
9443   effect(KILL cr);
9444 
9445   ins_cost(275);
9446   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
9447             "movl    $dst, #-1\n\t"
9448             "jp,s    done\n\t"
9449             "jb,s    done\n\t"
9450             "setne   $dst\n\t"
9451             "movzbl  $dst, $dst\n"
9452     "done:" %}
9453   ins_encode %{
9454     __ ucomisd($src$$XMMRegister, $constantaddress($con));
9455     emit_cmpfp3(_masm, $dst$$Register);
9456   %}
9457   ins_pipe(pipe_slow);
9458 %}
9459 
9460 // -----------Trig and Trancendental Instructions------------------------------
9461 instruct cosD_reg(regD dst) %{
9462   match(Set dst (CosD dst));
9463 
9464   format %{ "dcos   $dst\n\t" %}
9465   opcode(0xD9, 0xFF);
9466   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9467   ins_pipe( pipe_slow );
9468 %}
9469 
9470 instruct sinD_reg(regD dst) %{
9471   match(Set dst (SinD dst));
9472 
9473   format %{ "dsin   $dst\n\t" %}
9474   opcode(0xD9, 0xFE);
9475   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9476   ins_pipe( pipe_slow );
9477 %}
9478 
9479 instruct tanD_reg(regD dst) %{
9480   match(Set dst (TanD dst));
9481 
9482   format %{ "dtan   $dst\n\t" %}
9483   ins_encode( Push_SrcXD(dst),
9484               Opcode(0xD9), Opcode(0xF2),   //fptan
9485               Opcode(0xDD), Opcode(0xD8),   //fstp st
9486               Push_ResultXD(dst) );
9487   ins_pipe( pipe_slow );
9488 %}
9489 
9490 instruct log10D_reg(regD dst) %{
9491   // The source and result Double operands in XMM registers
9492   match(Set dst (Log10D dst));
9493   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
9494   // fyl2x        ; compute log_10(2) * log_2(x)
9495   format %{ "fldlg2\t\t\t#Log10\n\t"
9496             "fyl2x\t\t\t# Q=Log10*Log_2(x)\n\t"
9497          %}
9498    ins_encode(Opcode(0xD9), Opcode(0xEC),   // fldlg2
9499               Push_SrcXD(dst),
9500               Opcode(0xD9), Opcode(0xF1),   // fyl2x
9501               Push_ResultXD(dst));
9502 
9503   ins_pipe( pipe_slow );
9504 %}
9505 
9506 instruct logD_reg(regD dst) %{
9507   // The source and result Double operands in XMM registers
9508   match(Set dst (LogD dst));
9509   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
9510   // fyl2x        ; compute log_e(2) * log_2(x)
9511   format %{ "fldln2\t\t\t#Log_e\n\t"
9512             "fyl2x\t\t\t# Q=Log_e*Log_2(x)\n\t"
9513          %}
9514   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
9515               Push_SrcXD(dst),
9516               Opcode(0xD9), Opcode(0xF1),   // fyl2x
9517               Push_ResultXD(dst));
9518   ins_pipe( pipe_slow );
9519 %}
9520 
9521 instruct powD_reg(regD dst, regD src0, regD src1, rax_RegI rax, rdx_RegI rdx, rcx_RegI rcx, rFlagsReg cr) %{
9522   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
9523   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9524   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
9525   ins_encode %{
9526     __ subptr(rsp, 8);
9527     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
9528     __ fld_d(Address(rsp, 0));
9529     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
9530     __ fld_d(Address(rsp, 0));
9531     __ fast_pow();
9532     __ fstp_d(Address(rsp, 0));
9533     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
9534     __ addptr(rsp, 8);
9535   %}
9536   ins_pipe( pipe_slow );
9537 %}
9538 
9539 instruct expD_reg(regD dst, regD src, rax_RegI rax, rdx_RegI rdx, rcx_RegI rcx, rFlagsReg cr) %{
9540   match(Set dst (ExpD src));
9541   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
9542   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
9543   ins_encode %{
9544     __ subptr(rsp, 8);
9545     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
9546     __ fld_d(Address(rsp, 0));
9547     __ fast_exp();
9548     __ fstp_d(Address(rsp, 0));
9549     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
9550     __ addptr(rsp, 8);
9551   %}
9552   ins_pipe( pipe_slow );
9553 %}
9554 
9555 //----------Arithmetic Conversion Instructions---------------------------------
9556 
9557 instruct roundFloat_nop(regF dst)
9558 %{
9559   match(Set dst (RoundFloat dst));
9560 
9561   ins_cost(0);
9562   ins_encode();
9563   ins_pipe(empty);
9564 %}
9565 
9566 instruct roundDouble_nop(regD dst)
9567 %{
9568   match(Set dst (RoundDouble dst));
9569 
9570   ins_cost(0);
9571   ins_encode();
9572   ins_pipe(empty);
9573 %}
9574 
9575 instruct convF2D_reg_reg(regD dst, regF src)
9576 %{
9577   match(Set dst (ConvF2D src));
9578 
9579   format %{ "cvtss2sd $dst, $src" %}
9580   ins_encode %{
9581     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
9582   %}
9583   ins_pipe(pipe_slow); // XXX
9584 %}
9585 
9586 instruct convF2D_reg_mem(regD dst, memory src)
9587 %{
9588   match(Set dst (ConvF2D (LoadF src)));
9589 
9590   format %{ "cvtss2sd $dst, $src" %}
9591   ins_encode %{
9592     __ cvtss2sd ($dst$$XMMRegister, $src$$Address);
9593   %}
9594   ins_pipe(pipe_slow); // XXX
9595 %}
9596 
9597 instruct convD2F_reg_reg(regF dst, regD src)
9598 %{
9599   match(Set dst (ConvD2F src));
9600 
9601   format %{ "cvtsd2ss $dst, $src" %}
9602   ins_encode %{
9603     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
9604   %}
9605   ins_pipe(pipe_slow); // XXX
9606 %}
9607 
9608 instruct convD2F_reg_mem(regF dst, memory src)
9609 %{
9610   match(Set dst (ConvD2F (LoadD src)));
9611 
9612   format %{ "cvtsd2ss $dst, $src" %}
9613   ins_encode %{
9614     __ cvtsd2ss ($dst$$XMMRegister, $src$$Address);
9615   %}
9616   ins_pipe(pipe_slow); // XXX
9617 %}
9618 
9619 // XXX do mem variants
9620 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
9621 %{
9622   match(Set dst (ConvF2I src));
9623   effect(KILL cr);
9624 
9625   format %{ "cvttss2sil $dst, $src\t# f2i\n\t"
9626             "cmpl    $dst, #0x80000000\n\t"
9627             "jne,s   done\n\t"
9628             "subq    rsp, #8\n\t"
9629             "movss   [rsp], $src\n\t"
9630             "call    f2i_fixup\n\t"
9631             "popq    $dst\n"
9632     "done:   "%}
9633   ins_encode %{
9634     Label done;
9635     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
9636     __ cmpl($dst$$Register, 0x80000000);
9637     __ jccb(Assembler::notEqual, done);
9638     __ subptr(rsp, 8);
9639     __ movflt(Address(rsp, 0), $src$$XMMRegister);
9640     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
9641     __ pop($dst$$Register);
9642     __ bind(done);
9643   %}
9644   ins_pipe(pipe_slow);
9645 %}
9646 
9647 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
9648 %{
9649   match(Set dst (ConvF2L src));
9650   effect(KILL cr);
9651 
9652   format %{ "cvttss2siq $dst, $src\t# f2l\n\t"
9653             "cmpq    $dst, [0x8000000000000000]\n\t"
9654             "jne,s   done\n\t"
9655             "subq    rsp, #8\n\t"
9656             "movss   [rsp], $src\n\t"
9657             "call    f2l_fixup\n\t"
9658             "popq    $dst\n"
9659     "done:   "%}
9660   ins_encode %{
9661     Label done;
9662     __ cvttss2siq($dst$$Register, $src$$XMMRegister);
9663     __ cmp64($dst$$Register,
9664              ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
9665     __ jccb(Assembler::notEqual, done);
9666     __ subptr(rsp, 8);
9667     __ movflt(Address(rsp, 0), $src$$XMMRegister);
9668     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
9669     __ pop($dst$$Register);
9670     __ bind(done);
9671   %}
9672   ins_pipe(pipe_slow);
9673 %}
9674 
9675 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
9676 %{
9677   match(Set dst (ConvD2I src));
9678   effect(KILL cr);
9679 
9680   format %{ "cvttsd2sil $dst, $src\t# d2i\n\t"
9681             "cmpl    $dst, #0x80000000\n\t"
9682             "jne,s   done\n\t"
9683             "subq    rsp, #8\n\t"
9684             "movsd   [rsp], $src\n\t"
9685             "call    d2i_fixup\n\t"
9686             "popq    $dst\n"
9687     "done:   "%}
9688   ins_encode %{
9689     Label done;
9690     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
9691     __ cmpl($dst$$Register, 0x80000000);
9692     __ jccb(Assembler::notEqual, done);
9693     __ subptr(rsp, 8);
9694     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
9695     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
9696     __ pop($dst$$Register);
9697     __ bind(done);
9698   %}
9699   ins_pipe(pipe_slow);
9700 %}
9701 
9702 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
9703 %{
9704   match(Set dst (ConvD2L src));
9705   effect(KILL cr);
9706 
9707   format %{ "cvttsd2siq $dst, $src\t# d2l\n\t"
9708             "cmpq    $dst, [0x8000000000000000]\n\t"
9709             "jne,s   done\n\t"
9710             "subq    rsp, #8\n\t"
9711             "movsd   [rsp], $src\n\t"
9712             "call    d2l_fixup\n\t"
9713             "popq    $dst\n"
9714     "done:   "%}
9715   ins_encode %{
9716     Label done;
9717     __ cvttsd2siq($dst$$Register, $src$$XMMRegister);
9718     __ cmp64($dst$$Register,
9719              ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
9720     __ jccb(Assembler::notEqual, done);
9721     __ subptr(rsp, 8);
9722     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
9723     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
9724     __ pop($dst$$Register);
9725     __ bind(done);
9726   %}
9727   ins_pipe(pipe_slow);
9728 %}
9729 
9730 instruct convI2F_reg_reg(regF dst, rRegI src)
9731 %{
9732   predicate(!UseXmmI2F);
9733   match(Set dst (ConvI2F src));
9734 
9735   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
9736   ins_encode %{
9737     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
9738   %}
9739   ins_pipe(pipe_slow); // XXX
9740 %}
9741 
9742 instruct convI2F_reg_mem(regF dst, memory src)
9743 %{
9744   match(Set dst (ConvI2F (LoadI src)));
9745 
9746   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
9747   ins_encode %{
9748     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Address);
9749   %}
9750   ins_pipe(pipe_slow); // XXX
9751 %}
9752 
9753 instruct convI2D_reg_reg(regD dst, rRegI src)
9754 %{
9755   predicate(!UseXmmI2D);
9756   match(Set dst (ConvI2D src));
9757 
9758   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
9759   ins_encode %{
9760     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
9761   %}
9762   ins_pipe(pipe_slow); // XXX
9763 %}
9764 
9765 instruct convI2D_reg_mem(regD dst, memory src)
9766 %{
9767   match(Set dst (ConvI2D (LoadI src)));
9768 
9769   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
9770   ins_encode %{
9771     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Address);
9772   %}
9773   ins_pipe(pipe_slow); // XXX
9774 %}
9775 
9776 instruct convXI2F_reg(regF dst, rRegI src)
9777 %{
9778   predicate(UseXmmI2F);
9779   match(Set dst (ConvI2F src));
9780 
9781   format %{ "movdl $dst, $src\n\t"
9782             "cvtdq2psl $dst, $dst\t# i2f" %}
9783   ins_encode %{
9784     __ movdl($dst$$XMMRegister, $src$$Register);
9785     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
9786   %}
9787   ins_pipe(pipe_slow); // XXX
9788 %}
9789 
9790 instruct convXI2D_reg(regD dst, rRegI src)
9791 %{
9792   predicate(UseXmmI2D);
9793   match(Set dst (ConvI2D src));
9794 
9795   format %{ "movdl $dst, $src\n\t"
9796             "cvtdq2pdl $dst, $dst\t# i2d" %}
9797   ins_encode %{
9798     __ movdl($dst$$XMMRegister, $src$$Register);
9799     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
9800   %}
9801   ins_pipe(pipe_slow); // XXX
9802 %}
9803 
9804 instruct convL2F_reg_reg(regF dst, rRegL src)
9805 %{
9806   match(Set dst (ConvL2F src));
9807 
9808   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
9809   ins_encode %{
9810     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Register);
9811   %}
9812   ins_pipe(pipe_slow); // XXX
9813 %}
9814 
9815 instruct convL2F_reg_mem(regF dst, memory src)
9816 %{
9817   match(Set dst (ConvL2F (LoadL src)));
9818 
9819   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
9820   ins_encode %{
9821     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Address);
9822   %}
9823   ins_pipe(pipe_slow); // XXX
9824 %}
9825 
9826 instruct convL2D_reg_reg(regD dst, rRegL src)
9827 %{
9828   match(Set dst (ConvL2D src));
9829 
9830   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
9831   ins_encode %{
9832     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Register);
9833   %}
9834   ins_pipe(pipe_slow); // XXX
9835 %}
9836 
9837 instruct convL2D_reg_mem(regD dst, memory src)
9838 %{
9839   match(Set dst (ConvL2D (LoadL src)));
9840 
9841   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
9842   ins_encode %{
9843     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Address);
9844   %}
9845   ins_pipe(pipe_slow); // XXX
9846 %}
9847 
9848 instruct convI2L_reg_reg(rRegL dst, rRegI src)
9849 %{
9850   match(Set dst (ConvI2L src));
9851 
9852   ins_cost(125);
9853   format %{ "movslq  $dst, $src\t# i2l" %}
9854   ins_encode %{
9855     __ movslq($dst$$Register, $src$$Register);
9856   %}
9857   ins_pipe(ialu_reg_reg);
9858 %}
9859 
9860 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
9861 // %{
9862 //   match(Set dst (ConvI2L src));
9863 // //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
9864 // //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
9865 //   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
9866 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
9867 //             ((const TypeNode*) n)->type()->is_long()->_lo ==
9868 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
9869 
9870 //   format %{ "movl    $dst, $src\t# unsigned i2l" %}
9871 //   ins_encode(enc_copy(dst, src));
9872 // //   opcode(0x63); // needs REX.W
9873 // //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
9874 //   ins_pipe(ialu_reg_reg);
9875 // %}
9876 
9877 // Zero-extend convert int to long
9878 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
9879 %{
9880   match(Set dst (AndL (ConvI2L src) mask));
9881 
9882   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
9883   ins_encode %{
9884     if ($dst$$reg != $src$$reg) {
9885       __ movl($dst$$Register, $src$$Register);
9886     }
9887   %}
9888   ins_pipe(ialu_reg_reg);
9889 %}
9890 
9891 // Zero-extend convert int to long
9892 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
9893 %{
9894   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
9895 
9896   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
9897   ins_encode %{
9898     __ movl($dst$$Register, $src$$Address);
9899   %}
9900   ins_pipe(ialu_reg_mem);
9901 %}
9902 
9903 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
9904 %{
9905   match(Set dst (AndL src mask));
9906 
9907   format %{ "movl    $dst, $src\t# zero-extend long" %}
9908   ins_encode %{
9909     __ movl($dst$$Register, $src$$Register);
9910   %}
9911   ins_pipe(ialu_reg_reg);
9912 %}
9913 
9914 instruct convL2I_reg_reg(rRegI dst, rRegL src)
9915 %{
9916   match(Set dst (ConvL2I src));
9917 
9918   format %{ "movl    $dst, $src\t# l2i" %}
9919   ins_encode %{
9920     __ movl($dst$$Register, $src$$Register);
9921   %}
9922   ins_pipe(ialu_reg_reg);
9923 %}
9924 
9925 
9926 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
9927   match(Set dst (MoveF2I src));
9928   effect(DEF dst, USE src);
9929 
9930   ins_cost(125);
9931   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
9932   ins_encode %{
9933     __ movl($dst$$Register, Address(rsp, $src$$disp));
9934   %}
9935   ins_pipe(ialu_reg_mem);
9936 %}
9937 
9938 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
9939   match(Set dst (MoveI2F src));
9940   effect(DEF dst, USE src);
9941 
9942   ins_cost(125);
9943   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
9944   ins_encode %{
9945     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
9946   %}
9947   ins_pipe(pipe_slow);
9948 %}
9949 
9950 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
9951   match(Set dst (MoveD2L src));
9952   effect(DEF dst, USE src);
9953 
9954   ins_cost(125);
9955   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
9956   ins_encode %{
9957     __ movq($dst$$Register, Address(rsp, $src$$disp));
9958   %}
9959   ins_pipe(ialu_reg_mem);
9960 %}
9961 
9962 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
9963   predicate(!UseXmmLoadAndClearUpper);
9964   match(Set dst (MoveL2D src));
9965   effect(DEF dst, USE src);
9966 
9967   ins_cost(125);
9968   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
9969   ins_encode %{
9970     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
9971   %}
9972   ins_pipe(pipe_slow);
9973 %}
9974 
9975 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
9976   predicate(UseXmmLoadAndClearUpper);
9977   match(Set dst (MoveL2D src));
9978   effect(DEF dst, USE src);
9979 
9980   ins_cost(125);
9981   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
9982   ins_encode %{
9983     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
9984   %}
9985   ins_pipe(pipe_slow);
9986 %}
9987 
9988 
9989 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
9990   match(Set dst (MoveF2I src));
9991   effect(DEF dst, USE src);
9992 
9993   ins_cost(95); // XXX
9994   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
9995   ins_encode %{
9996     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
9997   %}
9998   ins_pipe(pipe_slow);
9999 %}
10000 
10001 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
10002   match(Set dst (MoveI2F src));
10003   effect(DEF dst, USE src);
10004 
10005   ins_cost(100);
10006   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
10007   ins_encode %{
10008     __ movl(Address(rsp, $dst$$disp), $src$$Register);
10009   %}
10010   ins_pipe( ialu_mem_reg );
10011 %}
10012 
10013 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
10014   match(Set dst (MoveD2L src));
10015   effect(DEF dst, USE src);
10016 
10017   ins_cost(95); // XXX
10018   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
10019   ins_encode %{
10020     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
10021   %}
10022   ins_pipe(pipe_slow);
10023 %}
10024 
10025 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
10026   match(Set dst (MoveL2D src));
10027   effect(DEF dst, USE src);
10028 
10029   ins_cost(100);
10030   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
10031   ins_encode %{
10032     __ movq(Address(rsp, $dst$$disp), $src$$Register);
10033   %}
10034   ins_pipe(ialu_mem_reg);
10035 %}
10036 
10037 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
10038   match(Set dst (MoveF2I src));
10039   effect(DEF dst, USE src);
10040   ins_cost(85);
10041   format %{ "movd    $dst,$src\t# MoveF2I" %}
10042   ins_encode %{
10043     __ movdl($dst$$Register, $src$$XMMRegister);
10044   %}
10045   ins_pipe( pipe_slow );
10046 %}
10047 
10048 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
10049   match(Set dst (MoveD2L src));
10050   effect(DEF dst, USE src);
10051   ins_cost(85);
10052   format %{ "movd    $dst,$src\t# MoveD2L" %}
10053   ins_encode %{
10054     __ movdq($dst$$Register, $src$$XMMRegister);
10055   %}
10056   ins_pipe( pipe_slow );
10057 %}
10058 
10059 // The next instructions have long latency and use Int unit. Set high cost.
10060 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
10061   match(Set dst (MoveI2F src));
10062   effect(DEF dst, USE src);
10063   ins_cost(300);
10064   format %{ "movd    $dst,$src\t# MoveI2F" %}
10065   ins_encode %{
10066     __ movdl($dst$$XMMRegister, $src$$Register);
10067   %}
10068   ins_pipe( pipe_slow );
10069 %}
10070 
10071 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
10072   match(Set dst (MoveL2D src));
10073   effect(DEF dst, USE src);
10074   ins_cost(300);
10075   format %{ "movd    $dst,$src\t# MoveL2D" %}
10076   ins_encode %{
10077      __ movdq($dst$$XMMRegister, $src$$Register);
10078   %}
10079   ins_pipe( pipe_slow );
10080 %}
10081 
10082 
10083 // =======================================================================
10084 // fast clearing of an array
10085 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, rax_RegI zero, Universe dummy,
10086                   rFlagsReg cr)
10087 %{
10088   match(Set dummy (ClearArray cnt base));
10089   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
10090 
10091   format %{ "xorl    rax, rax\t# ClearArray:\n\t"
10092             "rep stosq\t# Store rax to *rdi++ while rcx--" %}
10093   ins_encode(opc_reg_reg(0x33, RAX, RAX), // xorl %eax, %eax
10094              Opcode(0xF3), Opcode(0x48), Opcode(0xAB)); // rep REX_W stos
10095   ins_pipe(pipe_slow);
10096 %}
10097 
10098 instruct string_compare(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10099                         rax_RegI result, regD tmp1, rFlagsReg cr)
10100 %{
10101   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10102   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10103 
10104   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10105   ins_encode %{
10106     __ string_compare($str1$$Register, $str2$$Register,
10107                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10108                       $tmp1$$XMMRegister);
10109   %}
10110   ins_pipe( pipe_slow );
10111 %}
10112 
10113 // fast search of substring with known size.
10114 instruct string_indexof_con(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
10115                             rbx_RegI result, regD vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
10116 %{
10117   predicate(UseSSE42Intrinsics);
10118   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10119   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
10120 
10121   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
10122   ins_encode %{
10123     int icnt2 = (int)$int_cnt2$$constant;
10124     if (icnt2 >= 8) {
10125       // IndexOf for constant substrings with size >= 8 elements
10126       // which don't need to be loaded through stack.
10127       __ string_indexofC8($str1$$Register, $str2$$Register,
10128                           $cnt1$$Register, $cnt2$$Register,
10129                           icnt2, $result$$Register,
10130                           $vec$$XMMRegister, $tmp$$Register);
10131     } else {
10132       // Small strings are loaded through stack if they cross page boundary.
10133       __ string_indexof($str1$$Register, $str2$$Register,
10134                         $cnt1$$Register, $cnt2$$Register,
10135                         icnt2, $result$$Register,
10136                         $vec$$XMMRegister, $tmp$$Register);
10137     }
10138   %}
10139   ins_pipe( pipe_slow );
10140 %}
10141 
10142 instruct string_indexof(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
10143                         rbx_RegI result, regD vec, rcx_RegI tmp, rFlagsReg cr)
10144 %{
10145   predicate(UseSSE42Intrinsics);
10146   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10147   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
10148 
10149   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
10150   ins_encode %{
10151     __ string_indexof($str1$$Register, $str2$$Register,
10152                       $cnt1$$Register, $cnt2$$Register,
10153                       (-1), $result$$Register,
10154                       $vec$$XMMRegister, $tmp$$Register);
10155   %}
10156   ins_pipe( pipe_slow );
10157 %}
10158 
10159 // fast string equals
10160 instruct string_equals(rdi_RegP str1, rsi_RegP str2, rcx_RegI cnt, rax_RegI result,
10161                        regD tmp1, regD tmp2, rbx_RegI tmp3, rFlagsReg cr)
10162 %{
10163   match(Set result (StrEquals (Binary str1 str2) cnt));
10164   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
10165 
10166   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
10167   ins_encode %{
10168     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
10169                           $cnt$$Register, $result$$Register, $tmp3$$Register,
10170                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
10171   %}
10172   ins_pipe( pipe_slow );
10173 %}
10174 
10175 // fast array equals
10176 instruct array_equals(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
10177                       regD tmp1, regD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
10178 %{
10179   match(Set result (AryEq ary1 ary2));
10180   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
10181   //ins_cost(300);
10182 
10183   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
10184   ins_encode %{
10185     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
10186                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
10187                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
10188   %}
10189   ins_pipe( pipe_slow );
10190 %}
10191 
10192 //----------Control Flow Instructions------------------------------------------
10193 // Signed compare Instructions
10194 
10195 // XXX more variants!!
10196 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
10197 %{
10198   match(Set cr (CmpI op1 op2));
10199   effect(DEF cr, USE op1, USE op2);
10200 
10201   format %{ "cmpl    $op1, $op2" %}
10202   opcode(0x3B);  /* Opcode 3B /r */
10203   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
10204   ins_pipe(ialu_cr_reg_reg);
10205 %}
10206 
10207 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
10208 %{
10209   match(Set cr (CmpI op1 op2));
10210 
10211   format %{ "cmpl    $op1, $op2" %}
10212   opcode(0x81, 0x07); /* Opcode 81 /7 */
10213   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
10214   ins_pipe(ialu_cr_reg_imm);
10215 %}
10216 
10217 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
10218 %{
10219   match(Set cr (CmpI op1 (LoadI op2)));
10220 
10221   ins_cost(500); // XXX
10222   format %{ "cmpl    $op1, $op2" %}
10223   opcode(0x3B); /* Opcode 3B /r */
10224   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
10225   ins_pipe(ialu_cr_reg_mem);
10226 %}
10227 
10228 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
10229 %{
10230   match(Set cr (CmpI src zero));
10231 
10232   format %{ "testl   $src, $src" %}
10233   opcode(0x85);
10234   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
10235   ins_pipe(ialu_cr_reg_imm);
10236 %}
10237 
10238 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
10239 %{
10240   match(Set cr (CmpI (AndI src con) zero));
10241 
10242   format %{ "testl   $src, $con" %}
10243   opcode(0xF7, 0x00);
10244   ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
10245   ins_pipe(ialu_cr_reg_imm);
10246 %}
10247 
10248 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
10249 %{
10250   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
10251 
10252   format %{ "testl   $src, $mem" %}
10253   opcode(0x85);
10254   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
10255   ins_pipe(ialu_cr_reg_mem);
10256 %}
10257 
10258 // Unsigned compare Instructions; really, same as signed except they
10259 // produce an rFlagsRegU instead of rFlagsReg.
10260 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
10261 %{
10262   match(Set cr (CmpU op1 op2));
10263 
10264   format %{ "cmpl    $op1, $op2\t# unsigned" %}
10265   opcode(0x3B); /* Opcode 3B /r */
10266   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
10267   ins_pipe(ialu_cr_reg_reg);
10268 %}
10269 
10270 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
10271 %{
10272   match(Set cr (CmpU op1 op2));
10273 
10274   format %{ "cmpl    $op1, $op2\t# unsigned" %}
10275   opcode(0x81,0x07); /* Opcode 81 /7 */
10276   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
10277   ins_pipe(ialu_cr_reg_imm);
10278 %}
10279 
10280 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
10281 %{
10282   match(Set cr (CmpU op1 (LoadI op2)));
10283 
10284   ins_cost(500); // XXX
10285   format %{ "cmpl    $op1, $op2\t# unsigned" %}
10286   opcode(0x3B); /* Opcode 3B /r */
10287   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
10288   ins_pipe(ialu_cr_reg_mem);
10289 %}
10290 
10291 // // // Cisc-spilled version of cmpU_rReg
10292 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
10293 // //%{
10294 // //  match(Set cr (CmpU (LoadI op1) op2));
10295 // //
10296 // //  format %{ "CMPu   $op1,$op2" %}
10297 // //  ins_cost(500);
10298 // //  opcode(0x39);  /* Opcode 39 /r */
10299 // //  ins_encode( OpcP, reg_mem( op1, op2) );
10300 // //%}
10301 
10302 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
10303 %{
10304   match(Set cr (CmpU src zero));
10305 
10306   format %{ "testl  $src, $src\t# unsigned" %}
10307   opcode(0x85);
10308   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
10309   ins_pipe(ialu_cr_reg_imm);
10310 %}
10311 
10312 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
10313 %{
10314   match(Set cr (CmpP op1 op2));
10315 
10316   format %{ "cmpq    $op1, $op2\t# ptr" %}
10317   opcode(0x3B); /* Opcode 3B /r */
10318   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
10319   ins_pipe(ialu_cr_reg_reg);
10320 %}
10321 
10322 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
10323 %{
10324   match(Set cr (CmpP op1 (LoadP op2)));
10325 
10326   ins_cost(500); // XXX
10327   format %{ "cmpq    $op1, $op2\t# ptr" %}
10328   opcode(0x3B); /* Opcode 3B /r */
10329   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
10330   ins_pipe(ialu_cr_reg_mem);
10331 %}
10332 
10333 // // // Cisc-spilled version of cmpP_rReg
10334 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
10335 // //%{
10336 // //  match(Set cr (CmpP (LoadP op1) op2));
10337 // //
10338 // //  format %{ "CMPu   $op1,$op2" %}
10339 // //  ins_cost(500);
10340 // //  opcode(0x39);  /* Opcode 39 /r */
10341 // //  ins_encode( OpcP, reg_mem( op1, op2) );
10342 // //%}
10343 
10344 // XXX this is generalized by compP_rReg_mem???
10345 // Compare raw pointer (used in out-of-heap check).
10346 // Only works because non-oop pointers must be raw pointers
10347 // and raw pointers have no anti-dependencies.
10348 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
10349 %{
10350   predicate(!n->in(2)->in(2)->bottom_type()->isa_oop_ptr());
10351   match(Set cr (CmpP op1 (LoadP op2)));
10352 
10353   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
10354   opcode(0x3B); /* Opcode 3B /r */
10355   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
10356   ins_pipe(ialu_cr_reg_mem);
10357 %}
10358 
10359 // This will generate a signed flags result. This should be OK since
10360 // any compare to a zero should be eq/neq.
10361 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
10362 %{
10363   match(Set cr (CmpP src zero));
10364 
10365   format %{ "testq   $src, $src\t# ptr" %}
10366   opcode(0x85);
10367   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
10368   ins_pipe(ialu_cr_reg_imm);
10369 %}
10370 
10371 // This will generate a signed flags result. This should be OK since
10372 // any compare to a zero should be eq/neq.
10373 instruct testP_mem(rFlagsReg cr, memory op, immP0 zero)
10374 %{
10375   predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
10376   match(Set cr (CmpP (LoadP op) zero));
10377 
10378   ins_cost(500); // XXX
10379   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
10380   opcode(0xF7); /* Opcode F7 /0 */
10381   ins_encode(REX_mem_wide(op),
10382              OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
10383   ins_pipe(ialu_cr_reg_imm);
10384 %}
10385 
10386 instruct testP_mem_reg0(rFlagsReg cr, memory mem, immP0 zero)
10387 %{
10388   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
10389   match(Set cr (CmpP (LoadP mem) zero));
10390 
10391   format %{ "cmpq    R12, $mem\t# ptr (R12_heapbase==0)" %}
10392   ins_encode %{
10393     __ cmpq(r12, $mem$$Address);
10394   %}
10395   ins_pipe(ialu_cr_reg_mem);
10396 %}
10397 
10398 instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
10399 %{
10400   match(Set cr (CmpN op1 op2));
10401 
10402   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
10403   ins_encode %{ __ cmpl($op1$$Register, $op2$$Register); %}
10404   ins_pipe(ialu_cr_reg_reg);
10405 %}
10406 
10407 instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
10408 %{
10409   match(Set cr (CmpN src (LoadN mem)));
10410 
10411   format %{ "cmpl    $src, $mem\t# compressed ptr" %}
10412   ins_encode %{
10413     __ cmpl($src$$Register, $mem$$Address);
10414   %}
10415   ins_pipe(ialu_cr_reg_mem);
10416 %}
10417 
10418 instruct compN_rReg_imm(rFlagsRegU cr, rRegN op1, immN op2) %{
10419   match(Set cr (CmpN op1 op2));
10420 
10421   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
10422   ins_encode %{
10423     __ cmp_narrow_oop($op1$$Register, (jobject)$op2$$constant);
10424   %}
10425   ins_pipe(ialu_cr_reg_imm);
10426 %}
10427 
10428 instruct compN_mem_imm(rFlagsRegU cr, memory mem, immN src)
10429 %{
10430   match(Set cr (CmpN src (LoadN mem)));
10431 
10432   format %{ "cmpl    $mem, $src\t# compressed ptr" %}
10433   ins_encode %{
10434     __ cmp_narrow_oop($mem$$Address, (jobject)$src$$constant);
10435   %}
10436   ins_pipe(ialu_cr_reg_mem);
10437 %}
10438 
10439 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
10440   match(Set cr (CmpN src zero));
10441 
10442   format %{ "testl   $src, $src\t# compressed ptr" %}
10443   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
10444   ins_pipe(ialu_cr_reg_imm);
10445 %}
10446 
10447 instruct testN_mem(rFlagsReg cr, memory mem, immN0 zero)
10448 %{
10449   predicate(Universe::narrow_oop_base() != NULL);
10450   match(Set cr (CmpN (LoadN mem) zero));
10451 
10452   ins_cost(500); // XXX
10453   format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
10454   ins_encode %{
10455     __ cmpl($mem$$Address, (int)0xFFFFFFFF);
10456   %}
10457   ins_pipe(ialu_cr_reg_mem);
10458 %}
10459 
10460 instruct testN_mem_reg0(rFlagsReg cr, memory mem, immN0 zero)
10461 %{
10462   predicate(Universe::narrow_oop_base() == NULL);
10463   match(Set cr (CmpN (LoadN mem) zero));
10464 
10465   format %{ "cmpl    R12, $mem\t# compressed ptr (R12_heapbase==0)" %}
10466   ins_encode %{
10467     __ cmpl(r12, $mem$$Address);
10468   %}
10469   ins_pipe(ialu_cr_reg_mem);
10470 %}
10471 
10472 // Yanked all unsigned pointer compare operations.
10473 // Pointer compares are done with CmpP which is already unsigned.
10474 
10475 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
10476 %{
10477   match(Set cr (CmpL op1 op2));
10478 
10479   format %{ "cmpq    $op1, $op2" %}
10480   opcode(0x3B);  /* Opcode 3B /r */
10481   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
10482   ins_pipe(ialu_cr_reg_reg);
10483 %}
10484 
10485 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
10486 %{
10487   match(Set cr (CmpL op1 op2));
10488 
10489   format %{ "cmpq    $op1, $op2" %}
10490   opcode(0x81, 0x07); /* Opcode 81 /7 */
10491   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
10492   ins_pipe(ialu_cr_reg_imm);
10493 %}
10494 
10495 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
10496 %{
10497   match(Set cr (CmpL op1 (LoadL op2)));
10498 
10499   format %{ "cmpq    $op1, $op2" %}
10500   opcode(0x3B); /* Opcode 3B /r */
10501   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
10502   ins_pipe(ialu_cr_reg_mem);
10503 %}
10504 
10505 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
10506 %{
10507   match(Set cr (CmpL src zero));
10508 
10509   format %{ "testq   $src, $src" %}
10510   opcode(0x85);
10511   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
10512   ins_pipe(ialu_cr_reg_imm);
10513 %}
10514 
10515 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
10516 %{
10517   match(Set cr (CmpL (AndL src con) zero));
10518 
10519   format %{ "testq   $src, $con\t# long" %}
10520   opcode(0xF7, 0x00);
10521   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
10522   ins_pipe(ialu_cr_reg_imm);
10523 %}
10524 
10525 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
10526 %{
10527   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
10528 
10529   format %{ "testq   $src, $mem" %}
10530   opcode(0x85);
10531   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
10532   ins_pipe(ialu_cr_reg_mem);
10533 %}
10534 
10535 // Manifest a CmpL result in an integer register.  Very painful.
10536 // This is the test to avoid.
10537 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
10538 %{
10539   match(Set dst (CmpL3 src1 src2));
10540   effect(KILL flags);
10541 
10542   ins_cost(275); // XXX
10543   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
10544             "movl    $dst, -1\n\t"
10545             "jl,s    done\n\t"
10546             "setne   $dst\n\t"
10547             "movzbl  $dst, $dst\n\t"
10548     "done:" %}
10549   ins_encode(cmpl3_flag(src1, src2, dst));
10550   ins_pipe(pipe_slow);
10551 %}
10552 
10553 //----------Max and Min--------------------------------------------------------
10554 // Min Instructions
10555 
10556 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
10557 %{
10558   effect(USE_DEF dst, USE src, USE cr);
10559 
10560   format %{ "cmovlgt $dst, $src\t# min" %}
10561   opcode(0x0F, 0x4F);
10562   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
10563   ins_pipe(pipe_cmov_reg);
10564 %}
10565 
10566 
10567 instruct minI_rReg(rRegI dst, rRegI src)
10568 %{
10569   match(Set dst (MinI dst src));
10570 
10571   ins_cost(200);
10572   expand %{
10573     rFlagsReg cr;
10574     compI_rReg(cr, dst, src);
10575     cmovI_reg_g(dst, src, cr);
10576   %}
10577 %}
10578 
10579 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
10580 %{
10581   effect(USE_DEF dst, USE src, USE cr);
10582 
10583   format %{ "cmovllt $dst, $src\t# max" %}
10584   opcode(0x0F, 0x4C);
10585   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
10586   ins_pipe(pipe_cmov_reg);
10587 %}
10588 
10589 
10590 instruct maxI_rReg(rRegI dst, rRegI src)
10591 %{
10592   match(Set dst (MaxI dst src));
10593 
10594   ins_cost(200);
10595   expand %{
10596     rFlagsReg cr;
10597     compI_rReg(cr, dst, src);
10598     cmovI_reg_l(dst, src, cr);
10599   %}
10600 %}
10601 
10602 // ============================================================================
10603 // Branch Instructions
10604 
10605 // Jump Direct - Label defines a relative address from JMP+1
10606 instruct jmpDir(label labl)
10607 %{
10608   match(Goto);
10609   effect(USE labl);
10610 
10611   ins_cost(300);
10612   format %{ "jmp     $labl" %}
10613   size(5);
10614   ins_encode %{
10615     Label* L = $labl$$label;
10616     __ jmp(*L, false); // Always long jump
10617   %}
10618   ins_pipe(pipe_jmp);
10619 %}
10620 
10621 // Jump Direct Conditional - Label defines a relative address from Jcc+1
10622 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
10623 %{
10624   match(If cop cr);
10625   effect(USE labl);
10626 
10627   ins_cost(300);
10628   format %{ "j$cop     $labl" %}
10629   size(6);
10630   ins_encode %{
10631     Label* L = $labl$$label;
10632     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
10633   %}
10634   ins_pipe(pipe_jcc);
10635 %}
10636 
10637 // Jump Direct Conditional - Label defines a relative address from Jcc+1
10638 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
10639 %{
10640   match(CountedLoopEnd cop cr);
10641   effect(USE labl);
10642 
10643   ins_cost(300);
10644   format %{ "j$cop     $labl\t# loop end" %}
10645   size(6);
10646   ins_encode %{
10647     Label* L = $labl$$label;
10648     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
10649   %}
10650   ins_pipe(pipe_jcc);
10651 %}
10652 
10653 // Jump Direct Conditional - Label defines a relative address from Jcc+1
10654 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
10655   match(CountedLoopEnd cop cmp);
10656   effect(USE labl);
10657 
10658   ins_cost(300);
10659   format %{ "j$cop,u   $labl\t# loop end" %}
10660   size(6);
10661   ins_encode %{
10662     Label* L = $labl$$label;
10663     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
10664   %}
10665   ins_pipe(pipe_jcc);
10666 %}
10667 
10668 instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
10669   match(CountedLoopEnd cop cmp);
10670   effect(USE labl);
10671 
10672   ins_cost(200);
10673   format %{ "j$cop,u   $labl\t# loop end" %}
10674   size(6);
10675   ins_encode %{
10676     Label* L = $labl$$label;
10677     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
10678   %}
10679   ins_pipe(pipe_jcc);
10680 %}
10681 
10682 // Jump Direct Conditional - using unsigned comparison
10683 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
10684   match(If cop cmp);
10685   effect(USE labl);
10686 
10687   ins_cost(300);
10688   format %{ "j$cop,u  $labl" %}
10689   size(6);
10690   ins_encode %{
10691     Label* L = $labl$$label;
10692     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
10693   %}
10694   ins_pipe(pipe_jcc);
10695 %}
10696 
10697 instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
10698   match(If cop cmp);
10699   effect(USE labl);
10700 
10701   ins_cost(200);
10702   format %{ "j$cop,u  $labl" %}
10703   size(6);
10704   ins_encode %{
10705     Label* L = $labl$$label;
10706     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
10707   %}
10708   ins_pipe(pipe_jcc);
10709 %}
10710 
10711 instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
10712   match(If cop cmp);
10713   effect(USE labl);
10714 
10715   ins_cost(200);
10716   format %{ $$template
10717     if ($cop$$cmpcode == Assembler::notEqual) {
10718       $$emit$$"jp,u   $labl\n\t"
10719       $$emit$$"j$cop,u   $labl"
10720     } else {
10721       $$emit$$"jp,u   done\n\t"
10722       $$emit$$"j$cop,u   $labl\n\t"
10723       $$emit$$"done:"
10724     }
10725   %}
10726   ins_encode %{
10727     Label* l = $labl$$label;
10728     if ($cop$$cmpcode == Assembler::notEqual) {
10729       __ jcc(Assembler::parity, *l, false);
10730       __ jcc(Assembler::notEqual, *l, false);
10731     } else if ($cop$$cmpcode == Assembler::equal) {
10732       Label done;
10733       __ jccb(Assembler::parity, done);
10734       __ jcc(Assembler::equal, *l, false);
10735       __ bind(done);
10736     } else {
10737        ShouldNotReachHere();
10738     }
10739   %}
10740   ins_pipe(pipe_jcc);
10741 %}
10742 
10743 // ============================================================================
10744 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
10745 // superklass array for an instance of the superklass.  Set a hidden
10746 // internal cache on a hit (cache is checked with exposed code in
10747 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
10748 // encoding ALSO sets flags.
10749 
10750 instruct partialSubtypeCheck(rdi_RegP result,
10751                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
10752                              rFlagsReg cr)
10753 %{
10754   match(Set result (PartialSubtypeCheck sub super));
10755   effect(KILL rcx, KILL cr);
10756 
10757   ins_cost(1100);  // slightly larger than the next version
10758   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
10759             "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
10760             "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
10761             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
10762             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
10763             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
10764             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
10765     "miss:\t" %}
10766 
10767   opcode(0x1); // Force a XOR of RDI
10768   ins_encode(enc_PartialSubtypeCheck());
10769   ins_pipe(pipe_slow);
10770 %}
10771 
10772 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
10773                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
10774                                      immP0 zero,
10775                                      rdi_RegP result)
10776 %{
10777   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
10778   effect(KILL rcx, KILL result);
10779 
10780   ins_cost(1000);
10781   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
10782             "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
10783             "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
10784             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
10785             "jne,s   miss\t\t# Missed: flags nz\n\t"
10786             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
10787     "miss:\t" %}
10788 
10789   opcode(0x0); // No need to XOR RDI
10790   ins_encode(enc_PartialSubtypeCheck());
10791   ins_pipe(pipe_slow);
10792 %}
10793 
10794 // ============================================================================
10795 // Branch Instructions -- short offset versions
10796 //
10797 // These instructions are used to replace jumps of a long offset (the default
10798 // match) with jumps of a shorter offset.  These instructions are all tagged
10799 // with the ins_short_branch attribute, which causes the ADLC to suppress the
10800 // match rules in general matching.  Instead, the ADLC generates a conversion
10801 // method in the MachNode which can be used to do in-place replacement of the
10802 // long variant with the shorter variant.  The compiler will determine if a
10803 // branch can be taken by the is_short_branch_offset() predicate in the machine
10804 // specific code section of the file.
10805 
10806 // Jump Direct - Label defines a relative address from JMP+1
10807 instruct jmpDir_short(label labl) %{
10808   match(Goto);
10809   effect(USE labl);
10810 
10811   ins_cost(300);
10812   format %{ "jmp,s   $labl" %}
10813   size(2);
10814   ins_encode %{
10815     Label* L = $labl$$label;
10816     __ jmpb(*L);
10817   %}
10818   ins_pipe(pipe_jmp);
10819   ins_short_branch(1);
10820 %}
10821 
10822 // Jump Direct Conditional - Label defines a relative address from Jcc+1
10823 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
10824   match(If cop cr);
10825   effect(USE labl);
10826 
10827   ins_cost(300);
10828   format %{ "j$cop,s   $labl" %}
10829   size(2);
10830   ins_encode %{
10831     Label* L = $labl$$label;
10832     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
10833   %}
10834   ins_pipe(pipe_jcc);
10835   ins_short_branch(1);
10836 %}
10837 
10838 // Jump Direct Conditional - Label defines a relative address from Jcc+1
10839 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
10840   match(CountedLoopEnd cop cr);
10841   effect(USE labl);
10842 
10843   ins_cost(300);
10844   format %{ "j$cop,s   $labl\t# loop end" %}
10845   size(2);
10846   ins_encode %{
10847     Label* L = $labl$$label;
10848     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
10849   %}
10850   ins_pipe(pipe_jcc);
10851   ins_short_branch(1);
10852 %}
10853 
10854 // Jump Direct Conditional - Label defines a relative address from Jcc+1
10855 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
10856   match(CountedLoopEnd cop cmp);
10857   effect(USE labl);
10858 
10859   ins_cost(300);
10860   format %{ "j$cop,us  $labl\t# loop end" %}
10861   size(2);
10862   ins_encode %{
10863     Label* L = $labl$$label;
10864     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
10865   %}
10866   ins_pipe(pipe_jcc);
10867   ins_short_branch(1);
10868 %}
10869 
10870 instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
10871   match(CountedLoopEnd cop cmp);
10872   effect(USE labl);
10873 
10874   ins_cost(300);
10875   format %{ "j$cop,us  $labl\t# loop end" %}
10876   size(2);
10877   ins_encode %{
10878     Label* L = $labl$$label;
10879     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
10880   %}
10881   ins_pipe(pipe_jcc);
10882   ins_short_branch(1);
10883 %}
10884 
10885 // Jump Direct Conditional - using unsigned comparison
10886 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
10887   match(If cop cmp);
10888   effect(USE labl);
10889 
10890   ins_cost(300);
10891   format %{ "j$cop,us  $labl" %}
10892   size(2);
10893   ins_encode %{
10894     Label* L = $labl$$label;
10895     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
10896   %}
10897   ins_pipe(pipe_jcc);
10898   ins_short_branch(1);
10899 %}
10900 
10901 instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
10902   match(If cop cmp);
10903   effect(USE labl);
10904 
10905   ins_cost(300);
10906   format %{ "j$cop,us  $labl" %}
10907   size(2);
10908   ins_encode %{
10909     Label* L = $labl$$label;
10910     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
10911   %}
10912   ins_pipe(pipe_jcc);
10913   ins_short_branch(1);
10914 %}
10915 
10916 instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
10917   match(If cop cmp);
10918   effect(USE labl);
10919 
10920   ins_cost(300);
10921   format %{ $$template
10922     if ($cop$$cmpcode == Assembler::notEqual) {
10923       $$emit$$"jp,u,s   $labl\n\t"
10924       $$emit$$"j$cop,u,s   $labl"
10925     } else {
10926       $$emit$$"jp,u,s   done\n\t"
10927       $$emit$$"j$cop,u,s  $labl\n\t"
10928       $$emit$$"done:"
10929     }
10930   %}
10931   size(4);
10932   ins_encode %{
10933     Label* l = $labl$$label;
10934     if ($cop$$cmpcode == Assembler::notEqual) {
10935       __ jccb(Assembler::parity, *l);
10936       __ jccb(Assembler::notEqual, *l);
10937     } else if ($cop$$cmpcode == Assembler::equal) {
10938       Label done;
10939       __ jccb(Assembler::parity, done);
10940       __ jccb(Assembler::equal, *l);
10941       __ bind(done);
10942     } else {
10943        ShouldNotReachHere();
10944     }
10945   %}
10946   ins_pipe(pipe_jcc);
10947   ins_short_branch(1);
10948 %}
10949 
10950 // ============================================================================
10951 // inlined locking and unlocking
10952 
10953 instruct cmpFastLock(rFlagsReg cr,
10954                      rRegP object, rbx_RegP box, rax_RegI tmp, rRegP scr)
10955 %{
10956   match(Set cr (FastLock object box));
10957   effect(TEMP tmp, TEMP scr, USE_KILL box);
10958 
10959   ins_cost(300);
10960   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr" %}
10961   ins_encode(Fast_Lock(object, box, tmp, scr));
10962   ins_pipe(pipe_slow);
10963 %}
10964 
10965 instruct cmpFastUnlock(rFlagsReg cr,
10966                        rRegP object, rax_RegP box, rRegP tmp)
10967 %{
10968   match(Set cr (FastUnlock object box));
10969   effect(TEMP tmp, USE_KILL box);
10970 
10971   ins_cost(300);
10972   format %{ "fastunlock $object,$box\t! kills $box,$tmp" %}
10973   ins_encode(Fast_Unlock(object, box, tmp));
10974   ins_pipe(pipe_slow);
10975 %}
10976 
10977 
10978 // ============================================================================
10979 // Safepoint Instructions
10980 instruct safePoint_poll(rFlagsReg cr)
10981 %{
10982   predicate(!Assembler::is_polling_page_far());
10983   match(SafePoint);
10984   effect(KILL cr);
10985 
10986   format %{ "testl  rax, [rip + #offset_to_poll_page]\t"
10987             "# Safepoint: poll for GC" %}
10988   ins_cost(125);
10989   ins_encode %{
10990     AddressLiteral addr(os::get_polling_page(), relocInfo::poll_type);
10991     __ testl(rax, addr);
10992   %}
10993   ins_pipe(ialu_reg_mem);
10994 %}
10995 
10996 instruct safePoint_poll_far(rFlagsReg cr, rRegP poll)
10997 %{
10998   predicate(Assembler::is_polling_page_far());
10999   match(SafePoint poll);
11000   effect(KILL cr, USE poll);
11001 
11002   format %{ "testl  rax, [$poll]\t"
11003             "# Safepoint: poll for GC" %}
11004   ins_cost(125);
11005   ins_encode %{
11006     __ relocate(relocInfo::poll_type);
11007     __ testl(rax, Address($poll$$Register, 0));
11008   %}
11009   ins_pipe(ialu_reg_mem);
11010 %}
11011 
11012 // ============================================================================
11013 // Procedure Call/Return Instructions
11014 // Call Java Static Instruction
11015 // Note: If this code changes, the corresponding ret_addr_offset() and
11016 //       compute_padding() functions will have to be adjusted.
11017 instruct CallStaticJavaDirect(method meth) %{
11018   match(CallStaticJava);
11019   predicate(!((CallStaticJavaNode*) n)->is_method_handle_invoke());
11020   effect(USE meth);
11021 
11022   ins_cost(300);
11023   format %{ "call,static " %}
11024   opcode(0xE8); /* E8 cd */
11025   ins_encode(Java_Static_Call(meth), call_epilog);
11026   ins_pipe(pipe_slow);
11027   ins_alignment(4);
11028 %}
11029 
11030 // Call Java Static Instruction (method handle version)
11031 // Note: If this code changes, the corresponding ret_addr_offset() and
11032 //       compute_padding() functions will have to be adjusted.
11033 instruct CallStaticJavaHandle(method meth, rbp_RegP rbp_mh_SP_save) %{
11034   match(CallStaticJava);
11035   predicate(((CallStaticJavaNode*) n)->is_method_handle_invoke());
11036   effect(USE meth);
11037   // RBP is saved by all callees (for interpreter stack correction).
11038   // We use it here for a similar purpose, in {preserve,restore}_SP.
11039 
11040   ins_cost(300);
11041   format %{ "call,static/MethodHandle " %}
11042   opcode(0xE8); /* E8 cd */
11043   ins_encode(preserve_SP,
11044              Java_Static_Call(meth),
11045              restore_SP,
11046              call_epilog);
11047   ins_pipe(pipe_slow);
11048   ins_alignment(4);
11049 %}
11050 
11051 // Call Java Dynamic Instruction
11052 // Note: If this code changes, the corresponding ret_addr_offset() and
11053 //       compute_padding() functions will have to be adjusted.
11054 instruct CallDynamicJavaDirect(method meth)
11055 %{
11056   match(CallDynamicJava);
11057   effect(USE meth);
11058 
11059   ins_cost(300);
11060   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
11061             "call,dynamic " %}
11062   opcode(0xE8); /* E8 cd */
11063   ins_encode(Java_Dynamic_Call(meth), call_epilog);
11064   ins_pipe(pipe_slow);
11065   ins_alignment(4);
11066 %}
11067 
11068 // Call Runtime Instruction
11069 instruct CallRuntimeDirect(method meth)
11070 %{
11071   match(CallRuntime);
11072   effect(USE meth);
11073 
11074   ins_cost(300);
11075   format %{ "call,runtime " %}
11076   opcode(0xE8); /* E8 cd */
11077   ins_encode(Java_To_Runtime(meth));
11078   ins_pipe(pipe_slow);
11079 %}
11080 
11081 // Call runtime without safepoint
11082 instruct CallLeafDirect(method meth)
11083 %{
11084   match(CallLeaf);
11085   effect(USE meth);
11086 
11087   ins_cost(300);
11088   format %{ "call_leaf,runtime " %}
11089   opcode(0xE8); /* E8 cd */
11090   ins_encode(Java_To_Runtime(meth));
11091   ins_pipe(pipe_slow);
11092 %}
11093 
11094 // Call runtime without safepoint
11095 instruct CallLeafNoFPDirect(method meth)
11096 %{
11097   match(CallLeafNoFP);
11098   effect(USE meth);
11099 
11100   ins_cost(300);
11101   format %{ "call_leaf_nofp,runtime " %}
11102   opcode(0xE8); /* E8 cd */
11103   ins_encode(Java_To_Runtime(meth));
11104   ins_pipe(pipe_slow);
11105 %}
11106 
11107 // Return Instruction
11108 // Remove the return address & jump to it.
11109 // Notice: We always emit a nop after a ret to make sure there is room
11110 // for safepoint patching
11111 instruct Ret()
11112 %{
11113   match(Return);
11114 
11115   format %{ "ret" %}
11116   opcode(0xC3);
11117   ins_encode(OpcP);
11118   ins_pipe(pipe_jmp);
11119 %}
11120 
11121 // Tail Call; Jump from runtime stub to Java code.
11122 // Also known as an 'interprocedural jump'.
11123 // Target of jump will eventually return to caller.
11124 // TailJump below removes the return address.
11125 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
11126 %{
11127   match(TailCall jump_target method_oop);
11128 
11129   ins_cost(300);
11130   format %{ "jmp     $jump_target\t# rbx holds method oop" %}
11131   opcode(0xFF, 0x4); /* Opcode FF /4 */
11132   ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
11133   ins_pipe(pipe_jmp);
11134 %}
11135 
11136 // Tail Jump; remove the return address; jump to target.
11137 // TailCall above leaves the return address around.
11138 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
11139 %{
11140   match(TailJump jump_target ex_oop);
11141 
11142   ins_cost(300);
11143   format %{ "popq    rdx\t# pop return address\n\t"
11144             "jmp     $jump_target" %}
11145   opcode(0xFF, 0x4); /* Opcode FF /4 */
11146   ins_encode(Opcode(0x5a), // popq rdx
11147              REX_reg(jump_target), OpcP, reg_opc(jump_target));
11148   ins_pipe(pipe_jmp);
11149 %}
11150 
11151 // Create exception oop: created by stack-crawling runtime code.
11152 // Created exception is now available to this handler, and is setup
11153 // just prior to jumping to this handler.  No code emitted.
11154 instruct CreateException(rax_RegP ex_oop)
11155 %{
11156   match(Set ex_oop (CreateEx));
11157 
11158   size(0);
11159   // use the following format syntax
11160   format %{ "# exception oop is in rax; no code emitted" %}
11161   ins_encode();
11162   ins_pipe(empty);
11163 %}
11164 
11165 // Rethrow exception:
11166 // The exception oop will come in the first argument position.
11167 // Then JUMP (not call) to the rethrow stub code.
11168 instruct RethrowException()
11169 %{
11170   match(Rethrow);
11171 
11172   // use the following format syntax
11173   format %{ "jmp     rethrow_stub" %}
11174   ins_encode(enc_rethrow);
11175   ins_pipe(pipe_jmp);
11176 %}
11177 
11178 
11179 // ============================================================================
11180 // This name is KNOWN by the ADLC and cannot be changed.
11181 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
11182 // for this guy.
11183 instruct tlsLoadP(r15_RegP dst) %{
11184   match(Set dst (ThreadLocal));
11185   effect(DEF dst);
11186 
11187   size(0);
11188   format %{ "# TLS is in R15" %}
11189   ins_encode( /*empty encoding*/ );
11190   ins_pipe(ialu_reg_reg);
11191 %}
11192 
11193 
11194 //----------PEEPHOLE RULES-----------------------------------------------------
11195 // These must follow all instruction definitions as they use the names
11196 // defined in the instructions definitions.
11197 //
11198 // peepmatch ( root_instr_name [preceding_instruction]* );
11199 //
11200 // peepconstraint %{
11201 // (instruction_number.operand_name relational_op instruction_number.operand_name
11202 //  [, ...] );
11203 // // instruction numbers are zero-based using left to right order in peepmatch
11204 //
11205 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
11206 // // provide an instruction_number.operand_name for each operand that appears
11207 // // in the replacement instruction's match rule
11208 //
11209 // ---------VM FLAGS---------------------------------------------------------
11210 //
11211 // All peephole optimizations can be turned off using -XX:-OptoPeephole
11212 //
11213 // Each peephole rule is given an identifying number starting with zero and
11214 // increasing by one in the order seen by the parser.  An individual peephole
11215 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
11216 // on the command-line.
11217 //
11218 // ---------CURRENT LIMITATIONS----------------------------------------------
11219 //
11220 // Only match adjacent instructions in same basic block
11221 // Only equality constraints
11222 // Only constraints between operands, not (0.dest_reg == RAX_enc)
11223 // Only one replacement instruction
11224 //
11225 // ---------EXAMPLE----------------------------------------------------------
11226 //
11227 // // pertinent parts of existing instructions in architecture description
11228 // instruct movI(rRegI dst, rRegI src)
11229 // %{
11230 //   match(Set dst (CopyI src));
11231 // %}
11232 //
11233 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
11234 // %{
11235 //   match(Set dst (AddI dst src));
11236 //   effect(KILL cr);
11237 // %}
11238 //
11239 // // Change (inc mov) to lea
11240 // peephole %{
11241 //   // increment preceeded by register-register move
11242 //   peepmatch ( incI_rReg movI );
11243 //   // require that the destination register of the increment
11244 //   // match the destination register of the move
11245 //   peepconstraint ( 0.dst == 1.dst );
11246 //   // construct a replacement instruction that sets
11247 //   // the destination to ( move's source register + one )
11248 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
11249 // %}
11250 //
11251 
11252 // Implementation no longer uses movX instructions since
11253 // machine-independent system no longer uses CopyX nodes.
11254 //
11255 // peephole
11256 // %{
11257 //   peepmatch (incI_rReg movI);
11258 //   peepconstraint (0.dst == 1.dst);
11259 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
11260 // %}
11261 
11262 // peephole
11263 // %{
11264 //   peepmatch (decI_rReg movI);
11265 //   peepconstraint (0.dst == 1.dst);
11266 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
11267 // %}
11268 
11269 // peephole
11270 // %{
11271 //   peepmatch (addI_rReg_imm movI);
11272 //   peepconstraint (0.dst == 1.dst);
11273 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
11274 // %}
11275 
11276 // peephole
11277 // %{
11278 //   peepmatch (incL_rReg movL);
11279 //   peepconstraint (0.dst == 1.dst);
11280 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
11281 // %}
11282 
11283 // peephole
11284 // %{
11285 //   peepmatch (decL_rReg movL);
11286 //   peepconstraint (0.dst == 1.dst);
11287 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
11288 // %}
11289 
11290 // peephole
11291 // %{
11292 //   peepmatch (addL_rReg_imm movL);
11293 //   peepconstraint (0.dst == 1.dst);
11294 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
11295 // %}
11296 
11297 // peephole
11298 // %{
11299 //   peepmatch (addP_rReg_imm movP);
11300 //   peepconstraint (0.dst == 1.dst);
11301 //   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
11302 // %}
11303 
11304 // // Change load of spilled value to only a spill
11305 // instruct storeI(memory mem, rRegI src)
11306 // %{
11307 //   match(Set mem (StoreI mem src));
11308 // %}
11309 //
11310 // instruct loadI(rRegI dst, memory mem)
11311 // %{
11312 //   match(Set dst (LoadI mem));
11313 // %}
11314 //
11315 
11316 peephole
11317 %{
11318   peepmatch (loadI storeI);
11319   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
11320   peepreplace (storeI(1.mem 1.mem 1.src));
11321 %}
11322 
11323 peephole
11324 %{
11325   peepmatch (loadL storeL);
11326   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
11327   peepreplace (storeL(1.mem 1.mem 1.src));
11328 %}
11329 
11330 //----------SMARTSPILL RULES---------------------------------------------------
11331 // These must follow all instruction definitions as they use the names
11332 // defined in the instructions definitions.