1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
  26 #include "adlc.hpp"
  27 
  28 //==============================Register Allocation============================
  29 int RegisterForm::_reg_ctr = 0;
  30 
  31 //------------------------------RegisterForm-----------------------------------
  32 // Constructor
  33 RegisterForm::RegisterForm()
  34   : _regDef(cmpstr,hashstr, Form::arena),
  35     _regClass(cmpstr,hashstr, Form::arena),
  36     _allocClass(cmpstr,hashstr, Form::arena) {
  37 }
  38 RegisterForm::~RegisterForm() {
  39 }
  40 
  41 // record a new register definition
  42 void RegisterForm::addRegDef(char *name, char *callingConv, char *c_conv,
  43                              char *idealtype, char *encoding, char* concrete) {
  44   RegDef *regDef = new RegDef(name, callingConv, c_conv, idealtype, encoding, concrete);
  45   _rdefs.addName(name);
  46   _regDef.Insert(name,regDef);
  47 }
  48 
  49 // record a new register class
  50 RegClass *RegisterForm::addRegClass(const char *className) {
  51   RegClass *regClass = new RegClass(className);
  52   _rclasses.addName(className);
  53   _regClass.Insert(className,regClass);
  54   return regClass;
  55 }
  56 
  57 // record a new register class
  58 AllocClass *RegisterForm::addAllocClass(char *className) {
  59   AllocClass *allocClass = new AllocClass(className);
  60   _aclasses.addName(className);
  61   _allocClass.Insert(className,allocClass);
  62   return allocClass;
  63 }
  64 
  65 // Called after parsing the Register block.  Record the register class
  66 // for spill-slots/regs.
  67 void RegisterForm::addSpillRegClass() {
  68   // Stack slots start at the next available even register number.
  69   _reg_ctr = (_reg_ctr+7) & ~7;
  70   const char *rc_name   = "stack_slots";
  71   RegClass   *reg_class = new RegClass(rc_name);
  72   reg_class->_stack_or_reg = true;
  73   _rclasses.addName(rc_name);
  74   _regClass.Insert(rc_name,reg_class);
  75 }
  76 
  77 
  78 // Provide iteration over all register definitions
  79 // in the order used by the register allocator
  80 void        RegisterForm::reset_RegDefs() {
  81   _current_ac = NULL;
  82   _aclasses.reset();
  83 }
  84 
  85 RegDef     *RegisterForm::iter_RegDefs() {
  86   // Check if we need to get the next AllocClass
  87   if ( _current_ac == NULL ) {
  88     const char *ac_name = _aclasses.iter();
  89     if( ac_name == NULL )   return NULL;   // No more allocation classes
  90     _current_ac = (AllocClass*)_allocClass[ac_name];
  91     _current_ac->_regDefs.reset();
  92     assert( _current_ac != NULL, "Name must match an allocation class");
  93   }
  94 
  95   const char *rd_name = _current_ac->_regDefs.iter();
  96   if( rd_name == NULL ) {
  97     // At end of this allocation class, check the next
  98     _current_ac = NULL;
  99     return iter_RegDefs();
 100   }
 101   RegDef *reg_def = (RegDef*)_current_ac->_regDef[rd_name];
 102   assert( reg_def != NULL, "Name must match a register definition");
 103   return reg_def;
 104 }
 105 
 106 // return the register definition with name 'regName'
 107 RegDef *RegisterForm::getRegDef(const char *regName) {
 108   RegDef *regDef = (RegDef*)_regDef[regName];
 109   return  regDef;
 110 }
 111 
 112 // return the register class with name 'className'
 113 RegClass *RegisterForm::getRegClass(const char *className) {
 114   RegClass *regClass = (RegClass*)_regClass[className];
 115   return    regClass;
 116 }
 117 
 118 
 119 // Check that register classes are compatible with chunks
 120 bool   RegisterForm::verify() {
 121   bool valid = true;
 122 
 123   // Verify Register Classes
 124   // check that each register class contains registers from one chunk
 125   const char *rc_name = NULL;
 126   _rclasses.reset();
 127   while ( (rc_name = _rclasses.iter()) != NULL ) {
 128     // Check the chunk value for all registers in this class
 129     RegClass *reg_class = getRegClass(rc_name);
 130     assert( reg_class != NULL, "InternalError() no matching register class");
 131   } // end of RegClasses
 132 
 133   // Verify that every register has been placed into an allocation class
 134   RegDef *reg_def = NULL;
 135   reset_RegDefs();
 136   uint  num_register_zero = 0;
 137   while ( (reg_def = iter_RegDefs()) != NULL ) {
 138     if( reg_def->register_num() == 0 )  ++num_register_zero;
 139   }
 140   if( num_register_zero > 1 ) {
 141     fprintf(stderr,
 142             "ERROR: More than one register has been assigned register-number 0.\n"
 143             "Probably because a register has not been entered into an allocation class.\n");
 144   }
 145 
 146   return  valid;
 147 }
 148 
 149 // Compute RegMask size
 150 int RegisterForm::RegMask_Size() {
 151   // Need at least this many words
 152   int words_for_regs = (_reg_ctr + 31)>>5;
 153   // The array of Register Mask bits should be large enough to cover
 154   // all the machine registers and all parameters that need to be passed
 155   // on the stack (stack registers) up to some interesting limit.  Methods
 156   // that need more parameters will NOT be compiled.  On Intel, the limit
 157   // is something like 90+ parameters.
 158   // Add a few (3 words == 96 bits) for incoming & outgoing arguments to calls.
 159   // Round up to the next doubleword size.
 160   return (words_for_regs + 3 + 1) & ~1;
 161 }
 162 
 163 void RegisterForm::dump() {                  // Debug printer
 164   output(stderr);
 165 }
 166 
 167 void RegisterForm::output(FILE *fp) {          // Write info to output files
 168   const char *name;
 169   fprintf(fp,"\n");
 170   fprintf(fp,"-------------------- Dump RegisterForm --------------------\n");
 171   for(_rdefs.reset(); (name = _rdefs.iter()) != NULL;) {
 172     ((RegDef*)_regDef[name])->output(fp);
 173   }
 174   fprintf(fp,"\n");
 175   for (_rclasses.reset(); (name = _rclasses.iter()) != NULL;) {
 176     ((RegClass*)_regClass[name])->output(fp);
 177   }
 178   fprintf(fp,"\n");
 179   for (_aclasses.reset(); (name = _aclasses.iter()) != NULL;) {
 180     ((AllocClass*)_allocClass[name])->output(fp);
 181   }
 182   fprintf(fp,"-------------------- end  RegisterForm --------------------\n");
 183 }
 184 
 185 //------------------------------RegDef-----------------------------------------
 186 // Constructor
 187 RegDef::RegDef(char *regname, char *callconv, char *c_conv, char * idealtype, char * encode, char * concrete)
 188   : _regname(regname), _callconv(callconv), _c_conv(c_conv),
 189     _idealtype(idealtype),
 190     _register_encode(encode),
 191     _concrete(concrete),
 192     _register_num(0) {
 193 
 194   // Chunk and register mask are determined by the register number
 195   // _register_num is set when registers are added to an allocation class
 196 }
 197 RegDef::~RegDef() {                      // Destructor
 198 }
 199 
 200 void RegDef::set_register_num(uint32 register_num) {
 201   _register_num      = register_num;
 202 }
 203 
 204 // Bit pattern used for generating machine code
 205 const char* RegDef::register_encode() const {
 206   return _register_encode;
 207 }
 208 
 209 // Register number used in machine-independent code
 210 uint32 RegDef::register_num()    const {
 211   return _register_num;
 212 }
 213 
 214 void RegDef::dump() {
 215   output(stderr);
 216 }
 217 
 218 void RegDef::output(FILE *fp) {         // Write info to output files
 219   fprintf(fp,"RegDef: %s (%s) encode as %s  using number %d\n",
 220           _regname, (_callconv?_callconv:""), _register_encode, _register_num);
 221   fprintf(fp,"\n");
 222 }
 223 
 224 
 225 //------------------------------RegClass---------------------------------------
 226 // Construct a register class into which registers will be inserted
 227 RegClass::RegClass(const char *classid) : _stack_or_reg(false), _classid(classid), _regDef(cmpstr,hashstr, Form::arena),
 228                                           _user_defined(NULL)
 229 {
 230 }
 231 
 232 // record a register in this class
 233 void RegClass::addReg(RegDef *regDef) {
 234   _regDefs.addName(regDef->_regname);
 235   _regDef.Insert((void*)regDef->_regname, regDef);
 236 }
 237 
 238 // Number of registers in class
 239 uint RegClass::size() const {
 240   return _regDef.Size();
 241 }
 242 
 243 const RegDef *RegClass::get_RegDef(const char *rd_name) const {
 244   return  (const RegDef*)_regDef[rd_name];
 245 }
 246 
 247 void RegClass::reset() {
 248   _regDefs.reset();
 249 }
 250 
 251 const char *RegClass::rd_name_iter() {
 252   return _regDefs.iter();
 253 }
 254 
 255 RegDef *RegClass::RegDef_iter() {
 256   const char *rd_name  = rd_name_iter();
 257   RegDef     *reg_def  = rd_name ? (RegDef*)_regDef[rd_name] : NULL;
 258   return      reg_def;
 259 }
 260 
 261 const RegDef* RegClass::find_first_elem() {
 262   const RegDef* first = NULL;
 263   const RegDef* def = NULL;
 264 
 265   reset();
 266   while ((def = RegDef_iter()) != NULL) {
 267     if (first == NULL || def->register_num() < first->register_num()) {
 268       first = def;
 269     }
 270   }
 271 
 272   assert(first != NULL, "empty mask?");
 273   return first;;
 274 }
 275 
 276 // Collect all the registers in this register-word.  One bit per register.
 277 int RegClass::regs_in_word( int wordnum, bool stack_also ) {
 278   int         word = 0;
 279   const char *name;
 280   for(_regDefs.reset(); (name = _regDefs.iter()) != NULL;) {
 281     int rnum = ((RegDef*)_regDef[name])->register_num();
 282     if( (rnum >> 5) == wordnum )
 283       word |= (1 << (rnum & 31));
 284   }
 285   if( stack_also ) {
 286     // Now also collect stack bits
 287     for( int i = 0; i < 32; i++ )
 288       if( wordnum*32+i >= RegisterForm::_reg_ctr )
 289         word |= (1 << i);
 290   }
 291 
 292   return word;
 293 }
 294 
 295 void RegClass::dump() {
 296   output(stderr);
 297 }
 298 
 299 void RegClass::output(FILE *fp) {           // Write info to output files
 300   fprintf(fp,"RegClass: %s\n",_classid);
 301   const char *name;
 302   for(_regDefs.reset(); (name = _regDefs.iter()) != NULL;) {
 303     ((RegDef*)_regDef[name])->output(fp);
 304   }
 305   fprintf(fp,"--- done with entries for reg_class %s\n\n",_classid);
 306 }
 307 
 308 
 309 //------------------------------AllocClass-------------------------------------
 310 AllocClass::AllocClass(char *classid) : _classid(classid), _regDef(cmpstr,hashstr, Form::arena) {
 311 }
 312 
 313 // record a register in this class
 314 void AllocClass::addReg(RegDef *regDef) {
 315   assert( regDef != NULL, "Can not add a NULL to an allocation class");
 316   regDef->set_register_num( RegisterForm::_reg_ctr++ );
 317   // Add regDef to this allocation class
 318   _regDefs.addName(regDef->_regname);
 319   _regDef.Insert((void*)regDef->_regname, regDef);
 320 }
 321 
 322 void AllocClass::dump() {
 323   output(stderr);
 324 }
 325 
 326 void AllocClass::output(FILE *fp) {       // Write info to output files
 327   fprintf(fp,"AllocClass: %s \n",_classid);
 328   const char *name;
 329   for(_regDefs.reset(); (name = _regDefs.iter()) != NULL;) {
 330     ((RegDef*)_regDef[name])->output(fp);
 331   }
 332   fprintf(fp,"--- done with entries for alloc_class %s\n\n",_classid);
 333 }
 334 
 335 //==============================Frame Handling=================================
 336 //------------------------------FrameForm--------------------------------------
 337 FrameForm::FrameForm() {
 338   _frame_pointer = NULL;
 339   _c_frame_pointer = NULL;
 340   _alignment = NULL;
 341   _return_addr = NULL;
 342   _c_return_addr = NULL;
 343   _in_preserve_slots = NULL;
 344   _varargs_C_out_slots_killed = NULL;
 345   _calling_convention = NULL;
 346   _c_calling_convention = NULL;
 347   _return_value = NULL;
 348   _c_return_value = NULL;
 349   _interpreter_frame_pointer_reg = NULL;
 350 }
 351 
 352 FrameForm::~FrameForm() {
 353 }
 354 
 355 void FrameForm::dump() {
 356   output(stderr);
 357 }
 358 
 359 void FrameForm::output(FILE *fp) {           // Write info to output files
 360   fprintf(fp,"\nFrame:\n");
 361 }
 362 
 363 //==============================Scheduling=====================================
 364 //------------------------------PipelineForm-----------------------------------
 365 PipelineForm::PipelineForm()
 366   :  _reslist               ()
 367   ,  _resdict               (cmpstr, hashstr, Form::arena)
 368   ,  _classdict             (cmpstr, hashstr, Form::arena)
 369   ,  _rescount              (0)
 370   ,  _maxcycleused          (0)
 371   ,  _stages                ()
 372   ,  _stagecnt              (0)
 373   ,  _classlist             ()
 374   ,  _classcnt              (0)
 375   ,  _noplist               ()
 376   ,  _nopcnt                (0)
 377   ,  _variableSizeInstrs    (false)
 378   ,  _branchHasDelaySlot    (false)
 379   ,  _maxInstrsPerBundle    (0)
 380   ,  _maxBundlesPerCycle    (1)
 381   ,  _instrUnitSize         (0)
 382   ,  _bundleUnitSize        (0)
 383   ,  _instrFetchUnitSize    (0)
 384   ,  _instrFetchUnits       (0) {
 385 }
 386 PipelineForm::~PipelineForm() {
 387 }
 388 
 389 void PipelineForm::dump() {
 390   output(stderr);
 391 }
 392 
 393 void PipelineForm::output(FILE *fp) {           // Write info to output files
 394   const char *res;
 395   const char *stage;
 396   const char *cls;
 397   const char *nop;
 398   int count = 0;
 399 
 400   fprintf(fp,"\nPipeline:");
 401   if (_variableSizeInstrs)
 402     if (_instrUnitSize > 0)
 403       fprintf(fp," variable-sized instructions in %d byte units", _instrUnitSize);
 404     else
 405       fprintf(fp," variable-sized instructions");
 406   else
 407     if (_instrUnitSize > 0)
 408       fprintf(fp," fixed-sized instructions of %d bytes", _instrUnitSize);
 409     else if (_bundleUnitSize > 0)
 410       fprintf(fp," fixed-sized bundles of %d bytes", _bundleUnitSize);
 411     else
 412       fprintf(fp," fixed-sized instructions");
 413   if (_branchHasDelaySlot)
 414     fprintf(fp,", branch has delay slot");
 415   if (_maxInstrsPerBundle > 0)
 416     fprintf(fp,", max of %d instruction%s in parallel",
 417       _maxInstrsPerBundle, _maxInstrsPerBundle > 1 ? "s" : "");
 418   if (_maxBundlesPerCycle > 0)
 419     fprintf(fp,", max of %d bundle%s in parallel",
 420       _maxBundlesPerCycle, _maxBundlesPerCycle > 1 ? "s" : "");
 421   if (_instrFetchUnitSize > 0 && _instrFetchUnits)
 422     fprintf(fp, ", fetch %d x % d bytes per cycle", _instrFetchUnits, _instrFetchUnitSize);
 423 
 424   fprintf(fp,"\nResource:");
 425   for ( _reslist.reset(); (res = _reslist.iter()) != NULL; )
 426     fprintf(fp," %s(0x%08x)", res, _resdict[res]->is_resource()->mask());
 427   fprintf(fp,"\n");
 428 
 429   fprintf(fp,"\nDescription:\n");
 430   for ( _stages.reset(); (stage = _stages.iter()) != NULL; )
 431     fprintf(fp," %s(%d)", stage, count++);
 432   fprintf(fp,"\n");
 433 
 434   fprintf(fp,"\nClasses:\n");
 435   for ( _classlist.reset(); (cls = _classlist.iter()) != NULL; )
 436     _classdict[cls]->is_pipeclass()->output(fp);
 437 
 438   fprintf(fp,"\nNop Instructions:");
 439   for ( _noplist.reset(); (nop = _noplist.iter()) != NULL; )
 440     fprintf(fp, " \"%s\"", nop);
 441   fprintf(fp,"\n");
 442 }
 443 
 444 
 445 //------------------------------ResourceForm-----------------------------------
 446 ResourceForm::ResourceForm(unsigned resmask)
 447 : _resmask(resmask) {
 448 }
 449 ResourceForm::~ResourceForm() {
 450 }
 451 
 452 ResourceForm  *ResourceForm::is_resource() const {
 453   return (ResourceForm *)(this);
 454 }
 455 
 456 void ResourceForm::dump() {
 457   output(stderr);
 458 }
 459 
 460 void ResourceForm::output(FILE *fp) {          // Write info to output files
 461   fprintf(fp, "resource: 0x%08x;\n", mask());
 462 }
 463 
 464 
 465 //------------------------------PipeClassOperandForm----------------------------------
 466 
 467 void PipeClassOperandForm::dump() {
 468   output(stderr);
 469 }
 470 
 471 void PipeClassOperandForm::output(FILE *fp) {         // Write info to output files
 472   fprintf(stderr,"PipeClassOperandForm: %s", _stage);
 473   fflush(stderr);
 474   if (_more_instrs > 0)
 475     fprintf(stderr,"+%d", _more_instrs);
 476   fprintf(stderr," (%s)\n", _iswrite ? "write" : "read");
 477   fflush(stderr);
 478   fprintf(fp,"PipeClassOperandForm: %s", _stage);
 479   if (_more_instrs > 0)
 480     fprintf(fp,"+%d", _more_instrs);
 481   fprintf(fp," (%s)\n", _iswrite ? "write" : "read");
 482 }
 483 
 484 
 485 //------------------------------PipeClassResourceForm----------------------------------
 486 
 487 void PipeClassResourceForm::dump() {
 488   output(stderr);
 489 }
 490 
 491 void PipeClassResourceForm::output(FILE *fp) {         // Write info to output files
 492   fprintf(fp,"PipeClassResourceForm: %s at stage %s for %d cycles\n",
 493      _resource, _stage, _cycles);
 494 }
 495 
 496 
 497 //------------------------------PipeClassForm----------------------------------
 498 PipeClassForm::PipeClassForm(const char *id, int num)
 499   : _ident(id)
 500   , _num(num)
 501   , _localNames(cmpstr, hashstr, Form::arena)
 502   , _localUsage(cmpstr, hashstr, Form::arena)
 503   , _has_fixed_latency(0)
 504   , _fixed_latency(0)
 505   , _instruction_count(0)
 506   , _has_multiple_bundles(false)
 507   , _has_branch_delay_slot(false)
 508   , _force_serialization(false)
 509   , _may_have_no_code(false) {
 510 }
 511 
 512 PipeClassForm::~PipeClassForm() {
 513 }
 514 
 515 PipeClassForm  *PipeClassForm::is_pipeclass() const {
 516   return (PipeClassForm *)(this);
 517 }
 518 
 519 void PipeClassForm::dump() {
 520   output(stderr);
 521 }
 522 
 523 void PipeClassForm::output(FILE *fp) {         // Write info to output files
 524   fprintf(fp,"PipeClassForm: #%03d", _num);
 525   if (_ident)
 526      fprintf(fp," \"%s\":", _ident);
 527   if (_has_fixed_latency)
 528      fprintf(fp," latency %d", _fixed_latency);
 529   if (_force_serialization)
 530      fprintf(fp, ", force serialization");
 531   if (_may_have_no_code)
 532      fprintf(fp, ", may have no code");
 533   fprintf(fp, ", %d instruction%s\n", InstructionCount(), InstructionCount() != 1 ? "s" : "");
 534 }
 535 
 536 
 537 //==============================Peephole Optimization==========================
 538 int Peephole::_peephole_counter = 0;
 539 //------------------------------Peephole---------------------------------------
 540 Peephole::Peephole() : _match(NULL), _constraint(NULL), _replace(NULL), _next(NULL) {
 541   _peephole_number = _peephole_counter++;
 542 }
 543 Peephole::~Peephole() {
 544 }
 545 
 546 // Append a peephole rule with the same root instruction
 547 void Peephole::append_peephole(Peephole *next_peephole) {
 548   if( _next == NULL ) {
 549     _next = next_peephole;
 550   } else {
 551     _next->append_peephole( next_peephole );
 552   }
 553 }
 554 
 555 // Store the components of this peephole rule
 556 void Peephole::add_match(PeepMatch *match) {
 557   assert( _match == NULL, "fatal()" );
 558   _match = match;
 559 }
 560 
 561 void Peephole::append_constraint(PeepConstraint *next_constraint) {
 562   if( _constraint == NULL ) {
 563     _constraint = next_constraint;
 564   } else {
 565     _constraint->append( next_constraint );
 566   }
 567 }
 568 
 569 void Peephole::add_replace(PeepReplace *replace) {
 570   assert( _replace == NULL, "fatal()" );
 571   _replace = replace;
 572 }
 573 
 574 // class Peephole accessor methods are in the declaration.
 575 
 576 
 577 void Peephole::dump() {
 578   output(stderr);
 579 }
 580 
 581 void Peephole::output(FILE *fp) {         // Write info to output files
 582   fprintf(fp,"Peephole:\n");
 583   if( _match != NULL )       _match->output(fp);
 584   if( _constraint != NULL )  _constraint->output(fp);
 585   if( _replace != NULL )     _replace->output(fp);
 586   // Output the next entry
 587   if( _next ) _next->output(fp);
 588 }
 589 
 590 //------------------------------PeepMatch--------------------------------------
 591 PeepMatch::PeepMatch(char *rule) : _max_position(0), _rule(rule) {
 592 }
 593 PeepMatch::~PeepMatch() {
 594 }
 595 
 596 
 597 // Insert info into the match-rule
 598 void  PeepMatch::add_instruction(int parent, int position, const char *name,
 599                                  int input) {
 600   if( position > _max_position ) _max_position = position;
 601 
 602   _parent.addName((char*) (intptr_t) parent);
 603   _position.addName((char*) (intptr_t) position);
 604   _instrs.addName(name);
 605   _input.addName((char*) (intptr_t) input);
 606 }
 607 
 608 // Access info about instructions in the peep-match rule
 609 int   PeepMatch::max_position() {
 610   return _max_position;
 611 }
 612 
 613 const char *PeepMatch::instruction_name(int position) {
 614   return _instrs.name(position);
 615 }
 616 
 617 // Iterate through all info on matched instructions
 618 void  PeepMatch::reset() {
 619   _parent.reset();
 620   _position.reset();
 621   _instrs.reset();
 622   _input.reset();
 623 }
 624 
 625 void  PeepMatch::next_instruction(int &parent, int &position, const char* &name, int &input) {
 626   parent   = (int) (intptr_t) _parent.iter();
 627   position = (int) (intptr_t) _position.iter();
 628   name     = _instrs.iter();
 629   input    = (int) (intptr_t) _input.iter();
 630 }
 631 
 632 // 'true' if current position in iteration is a placeholder, not matched.
 633 bool  PeepMatch::is_placeholder() {
 634   return _instrs.current_is_signal();
 635 }
 636 
 637 
 638 void PeepMatch::dump() {
 639   output(stderr);
 640 }
 641 
 642 void PeepMatch::output(FILE *fp) {        // Write info to output files
 643   fprintf(fp,"PeepMatch:\n");
 644 }
 645 
 646 //------------------------------PeepConstraint---------------------------------
 647 PeepConstraint::PeepConstraint(int left_inst,  char* left_op, char* relation,
 648                                int right_inst, char* right_op)
 649   : _left_inst(left_inst), _left_op(left_op), _relation(relation),
 650     _right_inst(right_inst), _right_op(right_op), _next(NULL) {}
 651 PeepConstraint::~PeepConstraint() {
 652 }
 653 
 654 // Check if constraints use instruction at position
 655 bool PeepConstraint::constrains_instruction(int position) {
 656   // Check local instruction constraints
 657   if( _left_inst  == position ) return true;
 658   if( _right_inst == position ) return true;
 659 
 660   // Check remaining constraints in list
 661   if( _next == NULL )  return false;
 662   else                 return _next->constrains_instruction(position);
 663 }
 664 
 665 // Add another constraint
 666 void PeepConstraint::append(PeepConstraint *next_constraint) {
 667   if( _next == NULL ) {
 668     _next = next_constraint;
 669   } else {
 670     _next->append( next_constraint );
 671   }
 672 }
 673 
 674 // Access the next constraint in the list
 675 PeepConstraint *PeepConstraint::next() {
 676   return _next;
 677 }
 678 
 679 
 680 void PeepConstraint::dump() {
 681   output(stderr);
 682 }
 683 
 684 void PeepConstraint::output(FILE *fp) {   // Write info to output files
 685   fprintf(fp,"PeepConstraint:\n");
 686 }
 687 
 688 //------------------------------PeepReplace------------------------------------
 689 PeepReplace::PeepReplace(char *rule) : _rule(rule) {
 690 }
 691 PeepReplace::~PeepReplace() {
 692 }
 693 
 694 // Add contents of peepreplace
 695 void  PeepReplace::add_instruction(char *root) {
 696   _instruction.addName(root);
 697   _operand_inst_num.add_signal();
 698   _operand_op_name.add_signal();
 699 }
 700 void  PeepReplace::add_operand( int inst_num, char *inst_operand ) {
 701   _instruction.add_signal();
 702   _operand_inst_num.addName((char*) (intptr_t) inst_num);
 703   _operand_op_name.addName(inst_operand);
 704 }
 705 
 706 // Access contents of peepreplace
 707 void  PeepReplace::reset() {
 708   _instruction.reset();
 709   _operand_inst_num.reset();
 710   _operand_op_name.reset();
 711 }
 712 void  PeepReplace::next_instruction(const char* &inst){
 713   inst                     = _instruction.iter();
 714   int         inst_num     = (int) (intptr_t) _operand_inst_num.iter();
 715   const char* inst_operand = _operand_op_name.iter();
 716 }
 717 void  PeepReplace::next_operand(int &inst_num, const char* &inst_operand) {
 718   const char* inst = _instruction.iter();
 719   inst_num         = (int) (intptr_t) _operand_inst_num.iter();
 720   inst_operand     = _operand_op_name.iter();
 721 }
 722 
 723 
 724 
 725 void PeepReplace::dump() {
 726   output(stderr);
 727 }
 728 
 729 void PeepReplace::output(FILE *fp) {      // Write info to output files
 730   fprintf(fp,"PeepReplace:\n");
 731 }