1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
  26 #include "adlc.hpp"
  27 
  28 //==============================Instructions===================================
  29 //------------------------------InstructForm-----------------------------------
  30 InstructForm::InstructForm(const char *id, bool ideal_only)
  31   : _ident(id), _ideal_only(ideal_only),
  32     _localNames(cmpstr, hashstr, Form::arena),
  33     _effects(cmpstr, hashstr, Form::arena),
  34     _is_mach_constant(false),
  35     _has_call(false)
  36 {
  37       _ftype = Form::INS;
  38 
  39       _matrule   = NULL;
  40       _insencode = NULL;
  41       _constant  = NULL;
  42       _opcode    = NULL;
  43       _size      = NULL;
  44       _attribs   = NULL;
  45       _predicate = NULL;
  46       _exprule   = NULL;
  47       _rewrule   = NULL;
  48       _format    = NULL;
  49       _peephole  = NULL;
  50       _ins_pipe  = NULL;
  51       _uniq_idx  = NULL;
  52       _num_uniq  = 0;
  53       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
  54       _cisc_spill_alternate = NULL;            // possible cisc replacement
  55       _cisc_reg_mask_name = NULL;
  56       _is_cisc_alternate = false;
  57       _is_short_branch = false;
  58       _short_branch_form = NULL;
  59       _alignment = 1;
  60 }
  61 
  62 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
  63   : _ident(id), _ideal_only(false),
  64     _localNames(instr->_localNames),
  65     _effects(instr->_effects),
  66     _is_mach_constant(false),
  67     _has_call(false)
  68 {
  69       _ftype = Form::INS;
  70 
  71       _matrule   = rule;
  72       _insencode = instr->_insencode;
  73       _constant  = instr->_constant;
  74       _opcode    = instr->_opcode;
  75       _size      = instr->_size;
  76       _attribs   = instr->_attribs;
  77       _predicate = instr->_predicate;
  78       _exprule   = instr->_exprule;
  79       _rewrule   = instr->_rewrule;
  80       _format    = instr->_format;
  81       _peephole  = instr->_peephole;
  82       _ins_pipe  = instr->_ins_pipe;
  83       _uniq_idx  = instr->_uniq_idx;
  84       _num_uniq  = instr->_num_uniq;
  85       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
  86       _cisc_spill_alternate = NULL;            // possible cisc replacement
  87       _cisc_reg_mask_name = NULL;
  88       _is_cisc_alternate = false;
  89       _is_short_branch = false;
  90       _short_branch_form = NULL;
  91       _alignment = 1;
  92      // Copy parameters
  93      const char *name;
  94      instr->_parameters.reset();
  95      for (; (name = instr->_parameters.iter()) != NULL;)
  96        _parameters.addName(name);
  97 }
  98 
  99 InstructForm::~InstructForm() {
 100 }
 101 
 102 InstructForm *InstructForm::is_instruction() const {
 103   return (InstructForm*)this;
 104 }
 105 
 106 bool InstructForm::ideal_only() const {
 107   return _ideal_only;
 108 }
 109 
 110 bool InstructForm::sets_result() const {
 111   return (_matrule != NULL && _matrule->sets_result());
 112 }
 113 
 114 bool InstructForm::needs_projections() {
 115   _components.reset();
 116   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 117     if (comp->isa(Component::KILL)) {
 118       return true;
 119     }
 120   }
 121   return false;
 122 }
 123 
 124 
 125 bool InstructForm::has_temps() {
 126   if (_matrule) {
 127     // Examine each component to see if it is a TEMP
 128     _components.reset();
 129     // Skip the first component, if already handled as (SET dst (...))
 130     Component *comp = NULL;
 131     if (sets_result())  comp = _components.iter();
 132     while ((comp = _components.iter()) != NULL) {
 133       if (comp->isa(Component::TEMP)) {
 134         return true;
 135       }
 136     }
 137   }
 138 
 139   return false;
 140 }
 141 
 142 uint InstructForm::num_defs_or_kills() {
 143   uint   defs_or_kills = 0;
 144 
 145   _components.reset();
 146   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 147     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
 148       ++defs_or_kills;
 149     }
 150   }
 151 
 152   return  defs_or_kills;
 153 }
 154 
 155 // This instruction has an expand rule?
 156 bool InstructForm::expands() const {
 157   return ( _exprule != NULL );
 158 }
 159 
 160 // This instruction has a peephole rule?
 161 Peephole *InstructForm::peepholes() const {
 162   return _peephole;
 163 }
 164 
 165 // This instruction has a peephole rule?
 166 void InstructForm::append_peephole(Peephole *peephole) {
 167   if( _peephole == NULL ) {
 168     _peephole = peephole;
 169   } else {
 170     _peephole->append_peephole(peephole);
 171   }
 172 }
 173 
 174 
 175 // ideal opcode enumeration
 176 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
 177   if( !_matrule ) return "Node"; // Something weird
 178   // Chain rules do not really have ideal Opcodes; use their source
 179   // operand ideal Opcode instead.
 180   if( is_simple_chain_rule(globalNames) ) {
 181     const char *src = _matrule->_rChild->_opType;
 182     OperandForm *src_op = globalNames[src]->is_operand();
 183     assert( src_op, "Not operand class of chain rule" );
 184     if( !src_op->_matrule ) return "Node";
 185     return src_op->_matrule->_opType;
 186   }
 187   // Operand chain rules do not really have ideal Opcodes
 188   if( _matrule->is_chain_rule(globalNames) )
 189     return "Node";
 190   return strcmp(_matrule->_opType,"Set")
 191     ? _matrule->_opType
 192     : _matrule->_rChild->_opType;
 193 }
 194 
 195 // Recursive check on all operands' match rules in my match rule
 196 bool InstructForm::is_pinned(FormDict &globals) {
 197   if ( ! _matrule)  return false;
 198 
 199   int  index   = 0;
 200   if (_matrule->find_type("Goto",          index)) return true;
 201   if (_matrule->find_type("If",            index)) return true;
 202   if (_matrule->find_type("CountedLoopEnd",index)) return true;
 203   if (_matrule->find_type("Return",        index)) return true;
 204   if (_matrule->find_type("Rethrow",       index)) return true;
 205   if (_matrule->find_type("TailCall",      index)) return true;
 206   if (_matrule->find_type("TailJump",      index)) return true;
 207   if (_matrule->find_type("Halt",          index)) return true;
 208   if (_matrule->find_type("Jump",          index)) return true;
 209 
 210   return is_parm(globals);
 211 }
 212 
 213 // Recursive check on all operands' match rules in my match rule
 214 bool InstructForm::is_projection(FormDict &globals) {
 215   if ( ! _matrule)  return false;
 216 
 217   int  index   = 0;
 218   if (_matrule->find_type("Goto",    index)) return true;
 219   if (_matrule->find_type("Return",  index)) return true;
 220   if (_matrule->find_type("Rethrow", index)) return true;
 221   if (_matrule->find_type("TailCall",index)) return true;
 222   if (_matrule->find_type("TailJump",index)) return true;
 223   if (_matrule->find_type("Halt",    index)) return true;
 224 
 225   return false;
 226 }
 227 
 228 // Recursive check on all operands' match rules in my match rule
 229 bool InstructForm::is_parm(FormDict &globals) {
 230   if ( ! _matrule)  return false;
 231 
 232   int  index   = 0;
 233   if (_matrule->find_type("Parm",index)) return true;
 234 
 235   return false;
 236 }
 237 
 238 
 239 // Return 'true' if this instruction matches an ideal 'Copy*' node
 240 int InstructForm::is_ideal_copy() const {
 241   return _matrule ? _matrule->is_ideal_copy() : 0;
 242 }
 243 
 244 // Return 'true' if this instruction is too complex to rematerialize.
 245 int InstructForm::is_expensive() const {
 246   // We can prove it is cheap if it has an empty encoding.
 247   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
 248   if (is_empty_encoding())
 249     return 0;
 250 
 251   if (is_tls_instruction())
 252     return 1;
 253 
 254   if (_matrule == NULL)  return 0;
 255 
 256   return _matrule->is_expensive();
 257 }
 258 
 259 // Has an empty encoding if _size is a constant zero or there
 260 // are no ins_encode tokens.
 261 int InstructForm::is_empty_encoding() const {
 262   if (_insencode != NULL) {
 263     _insencode->reset();
 264     if (_insencode->encode_class_iter() == NULL) {
 265       return 1;
 266     }
 267   }
 268   if (_size != NULL && strcmp(_size, "0") == 0) {
 269     return 1;
 270   }
 271   return 0;
 272 }
 273 
 274 int InstructForm::is_tls_instruction() const {
 275   if (_ident != NULL &&
 276       ( ! strcmp( _ident,"tlsLoadP") ||
 277         ! strncmp(_ident,"tlsLoadP_",9)) ) {
 278     return 1;
 279   }
 280 
 281   if (_matrule != NULL && _insencode != NULL) {
 282     const char* opType = _matrule->_opType;
 283     if (strcmp(opType, "Set")==0)
 284       opType = _matrule->_rChild->_opType;
 285     if (strcmp(opType,"ThreadLocal")==0) {
 286       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
 287               (_ident == NULL ? "NULL" : _ident));
 288       return 1;
 289     }
 290   }
 291 
 292   return 0;
 293 }
 294 
 295 
 296 // Return 'true' if this instruction matches an ideal 'If' node
 297 bool InstructForm::is_ideal_if() const {
 298   if( _matrule == NULL ) return false;
 299 
 300   return _matrule->is_ideal_if();
 301 }
 302 
 303 // Return 'true' if this instruction matches an ideal 'FastLock' node
 304 bool InstructForm::is_ideal_fastlock() const {
 305   if( _matrule == NULL ) return false;
 306 
 307   return _matrule->is_ideal_fastlock();
 308 }
 309 
 310 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
 311 bool InstructForm::is_ideal_membar() const {
 312   if( _matrule == NULL ) return false;
 313 
 314   return _matrule->is_ideal_membar();
 315 }
 316 
 317 // Return 'true' if this instruction matches an ideal 'LoadPC' node
 318 bool InstructForm::is_ideal_loadPC() const {
 319   if( _matrule == NULL ) return false;
 320 
 321   return _matrule->is_ideal_loadPC();
 322 }
 323 
 324 // Return 'true' if this instruction matches an ideal 'Box' node
 325 bool InstructForm::is_ideal_box() const {
 326   if( _matrule == NULL ) return false;
 327 
 328   return _matrule->is_ideal_box();
 329 }
 330 
 331 // Return 'true' if this instruction matches an ideal 'Goto' node
 332 bool InstructForm::is_ideal_goto() const {
 333   if( _matrule == NULL ) return false;
 334 
 335   return _matrule->is_ideal_goto();
 336 }
 337 
 338 // Return 'true' if this instruction matches an ideal 'Jump' node
 339 bool InstructForm::is_ideal_jump() const {
 340   if( _matrule == NULL ) return false;
 341 
 342   return _matrule->is_ideal_jump();
 343 }
 344 
 345 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
 346 bool InstructForm::is_ideal_branch() const {
 347   if( _matrule == NULL ) return false;
 348 
 349   return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
 350 }
 351 
 352 
 353 // Return 'true' if this instruction matches an ideal 'Return' node
 354 bool InstructForm::is_ideal_return() const {
 355   if( _matrule == NULL ) return false;
 356 
 357   // Check MatchRule to see if the first entry is the ideal "Return" node
 358   int  index   = 0;
 359   if (_matrule->find_type("Return",index)) return true;
 360   if (_matrule->find_type("Rethrow",index)) return true;
 361   if (_matrule->find_type("TailCall",index)) return true;
 362   if (_matrule->find_type("TailJump",index)) return true;
 363 
 364   return false;
 365 }
 366 
 367 // Return 'true' if this instruction matches an ideal 'Halt' node
 368 bool InstructForm::is_ideal_halt() const {
 369   int  index   = 0;
 370   return _matrule && _matrule->find_type("Halt",index);
 371 }
 372 
 373 // Return 'true' if this instruction matches an ideal 'SafePoint' node
 374 bool InstructForm::is_ideal_safepoint() const {
 375   int  index   = 0;
 376   return _matrule && _matrule->find_type("SafePoint",index);
 377 }
 378 
 379 // Return 'true' if this instruction matches an ideal 'Nop' node
 380 bool InstructForm::is_ideal_nop() const {
 381   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
 382 }
 383 
 384 bool InstructForm::is_ideal_control() const {
 385   if ( ! _matrule)  return false;
 386 
 387   return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
 388 }
 389 
 390 // Return 'true' if this instruction matches an ideal 'Call' node
 391 Form::CallType InstructForm::is_ideal_call() const {
 392   if( _matrule == NULL ) return Form::invalid_type;
 393 
 394   // Check MatchRule to see if the first entry is the ideal "Call" node
 395   int  idx   = 0;
 396   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
 397   idx = 0;
 398   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
 399   idx = 0;
 400   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
 401   idx = 0;
 402   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
 403   idx = 0;
 404   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
 405   idx = 0;
 406   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
 407   idx = 0;
 408   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
 409   idx = 0;
 410 
 411   return Form::invalid_type;
 412 }
 413 
 414 // Return 'true' if this instruction matches an ideal 'Load?' node
 415 Form::DataType InstructForm::is_ideal_load() const {
 416   if( _matrule == NULL ) return Form::none;
 417 
 418   return  _matrule->is_ideal_load();
 419 }
 420 
 421 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
 422 bool InstructForm::skip_antidep_check() const {
 423   if( _matrule == NULL ) return false;
 424 
 425   return  _matrule->skip_antidep_check();
 426 }
 427 
 428 // Return 'true' if this instruction matches an ideal 'Load?' node
 429 Form::DataType InstructForm::is_ideal_store() const {
 430   if( _matrule == NULL ) return Form::none;
 431 
 432   return  _matrule->is_ideal_store();
 433 }
 434 
 435 // Return 'true' if this instruction matches an ideal vector node
 436 bool InstructForm::is_vector() const {
 437   if( _matrule == NULL ) return false;
 438 
 439   return _matrule->is_vector();
 440 }
 441 
 442 
 443 // Return the input register that must match the output register
 444 // If this is not required, return 0
 445 uint InstructForm::two_address(FormDict &globals) {
 446   uint  matching_input = 0;
 447   if(_components.count() == 0) return 0;
 448 
 449   _components.reset();
 450   Component *comp = _components.iter();
 451   // Check if there is a DEF
 452   if( comp->isa(Component::DEF) ) {
 453     // Check that this is a register
 454     const char  *def_type = comp->_type;
 455     const Form  *form     = globals[def_type];
 456     OperandForm *op       = form->is_operand();
 457     if( op ) {
 458       if( op->constrained_reg_class() != NULL &&
 459           op->interface_type(globals) == Form::register_interface ) {
 460         // Remember the local name for equality test later
 461         const char *def_name = comp->_name;
 462         // Check if a component has the same name and is a USE
 463         do {
 464           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
 465             return operand_position_format(def_name);
 466           }
 467         } while( (comp = _components.iter()) != NULL);
 468       }
 469     }
 470   }
 471 
 472   return 0;
 473 }
 474 
 475 
 476 // when chaining a constant to an instruction, returns 'true' and sets opType
 477 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
 478   const char *dummy  = NULL;
 479   const char *dummy2 = NULL;
 480   return is_chain_of_constant(globals, dummy, dummy2);
 481 }
 482 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 483                 const char * &opTypeParam) {
 484   const char *result = NULL;
 485 
 486   return is_chain_of_constant(globals, opTypeParam, result);
 487 }
 488 
 489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 490                 const char * &opTypeParam, const char * &resultParam) {
 491   Form::DataType  data_type = Form::none;
 492   if ( ! _matrule)  return data_type;
 493 
 494   // !!!!!
 495   // The source of the chain rule is 'position = 1'
 496   uint         position = 1;
 497   const char  *result   = NULL;
 498   const char  *name     = NULL;
 499   const char  *opType   = NULL;
 500   // Here base_operand is looking for an ideal type to be returned (opType).
 501   if ( _matrule->is_chain_rule(globals)
 502        && _matrule->base_operand(position, globals, result, name, opType) ) {
 503     data_type = ideal_to_const_type(opType);
 504 
 505     // if it isn't an ideal constant type, just return
 506     if ( data_type == Form::none ) return data_type;
 507 
 508     // Ideal constant types also adjust the opType parameter.
 509     resultParam = result;
 510     opTypeParam = opType;
 511     return data_type;
 512   }
 513 
 514   return data_type;
 515 }
 516 
 517 // Check if a simple chain rule
 518 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
 519   if( _matrule && _matrule->sets_result()
 520       && _matrule->_rChild->_lChild == NULL
 521       && globals[_matrule->_rChild->_opType]
 522       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
 523     return true;
 524   }
 525   return false;
 526 }
 527 
 528 // check for structural rematerialization
 529 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
 530   bool   rematerialize = false;
 531 
 532   Form::DataType data_type = is_chain_of_constant(globals);
 533   if( data_type != Form::none )
 534     rematerialize = true;
 535 
 536   // Constants
 537   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
 538     rematerialize = true;
 539 
 540   // Pseudo-constants (values easily available to the runtime)
 541   if (is_empty_encoding() && is_tls_instruction())
 542     rematerialize = true;
 543 
 544   // 1-input, 1-output, such as copies or increments.
 545   if( _components.count() == 2 &&
 546       _components[0]->is(Component::DEF) &&
 547       _components[1]->isa(Component::USE) )
 548     rematerialize = true;
 549 
 550   // Check for an ideal 'Load?' and eliminate rematerialize option
 551   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
 552        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
 553        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
 554     rematerialize = false;
 555   }
 556 
 557   // Always rematerialize the flags.  They are more expensive to save &
 558   // restore than to recompute (and possibly spill the compare's inputs).
 559   if( _components.count() >= 1 ) {
 560     Component *c = _components[0];
 561     const Form *form = globals[c->_type];
 562     OperandForm *opform = form->is_operand();
 563     if( opform ) {
 564       // Avoid the special stack_slots register classes
 565       const char *rc_name = opform->constrained_reg_class();
 566       if( rc_name ) {
 567         if( strcmp(rc_name,"stack_slots") ) {
 568           // Check for ideal_type of RegFlags
 569           const char *type = opform->ideal_type( globals, registers );
 570           if( !strcmp(type,"RegFlags") )
 571             rematerialize = true;
 572         } else
 573           rematerialize = false; // Do not rematerialize things target stk
 574       }
 575     }
 576   }
 577 
 578   return rematerialize;
 579 }
 580 
 581 // loads from memory, so must check for anti-dependence
 582 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
 583   if ( skip_antidep_check() ) return false;
 584 
 585   // Machine independent loads must be checked for anti-dependences
 586   if( is_ideal_load() != Form::none )  return true;
 587 
 588   // !!!!! !!!!! !!!!!
 589   // TEMPORARY
 590   // if( is_simple_chain_rule(globals) )  return false;
 591 
 592   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
 593   // but writes none
 594   if( _matrule && _matrule->_rChild &&
 595       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
 596         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
 597         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
 598         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
 599     return true;
 600 
 601   // Check if instruction has a USE of a memory operand class, but no defs
 602   bool USE_of_memory  = false;
 603   bool DEF_of_memory  = false;
 604   Component     *comp = NULL;
 605   ComponentList &components = (ComponentList &)_components;
 606 
 607   components.reset();
 608   while( (comp = components.iter()) != NULL ) {
 609     const Form  *form = globals[comp->_type];
 610     if( !form ) continue;
 611     OpClassForm *op   = form->is_opclass();
 612     if( !op ) continue;
 613     if( form->interface_type(globals) == Form::memory_interface ) {
 614       if( comp->isa(Component::USE) ) USE_of_memory = true;
 615       if( comp->isa(Component::DEF) ) {
 616         OperandForm *oper = form->is_operand();
 617         if( oper && oper->is_user_name_for_sReg() ) {
 618           // Stack slots are unaliased memory handled by allocator
 619           oper = oper;  // debug stopping point !!!!!
 620         } else {
 621           DEF_of_memory = true;
 622         }
 623       }
 624     }
 625   }
 626   return (USE_of_memory && !DEF_of_memory);
 627 }
 628 
 629 
 630 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
 631   if( _matrule == NULL ) return false;
 632   if( !_matrule->_opType ) return false;
 633 
 634   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
 635   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
 636   if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
 637   if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
 638   if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
 639 
 640   return false;
 641 }
 642 
 643 int InstructForm::memory_operand(FormDict &globals) const {
 644   // Machine independent loads must be checked for anti-dependences
 645   // Check if instruction has a USE of a memory operand class, or a def.
 646   int USE_of_memory  = 0;
 647   int DEF_of_memory  = 0;
 648   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
 649   Component     *unique          = NULL;
 650   Component     *comp            = NULL;
 651   ComponentList &components      = (ComponentList &)_components;
 652 
 653   components.reset();
 654   while( (comp = components.iter()) != NULL ) {
 655     const Form  *form = globals[comp->_type];
 656     if( !form ) continue;
 657     OpClassForm *op   = form->is_opclass();
 658     if( !op ) continue;
 659     if( op->stack_slots_only(globals) )  continue;
 660     if( form->interface_type(globals) == Form::memory_interface ) {
 661       if( comp->isa(Component::DEF) ) {
 662         last_memory_DEF = comp->_name;
 663         DEF_of_memory++;
 664         unique = comp;
 665       } else if( comp->isa(Component::USE) ) {
 666         if( last_memory_DEF != NULL ) {
 667           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
 668           last_memory_DEF = NULL;
 669         }
 670         USE_of_memory++;
 671         if (DEF_of_memory == 0)  // defs take precedence
 672           unique = comp;
 673       } else {
 674         assert(last_memory_DEF == NULL, "unpaired memory DEF");
 675       }
 676     }
 677   }
 678   assert(last_memory_DEF == NULL, "unpaired memory DEF");
 679   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
 680   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
 681   if( (USE_of_memory + DEF_of_memory) > 0 ) {
 682     if( is_simple_chain_rule(globals) ) {
 683       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
 684       //((InstructForm*)this)->dump();
 685       // Preceding code prints nothing on sparc and these insns on intel:
 686       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
 687       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
 688       return NO_MEMORY_OPERAND;
 689     }
 690 
 691     if( DEF_of_memory == 1 ) {
 692       assert(unique != NULL, "");
 693       if( USE_of_memory == 0 ) {
 694         // unique def, no uses
 695       } else {
 696         // // unique def, some uses
 697         // // must return bottom unless all uses match def
 698         // unique = NULL;
 699       }
 700     } else if( DEF_of_memory > 0 ) {
 701       // multiple defs, don't care about uses
 702       unique = NULL;
 703     } else if( USE_of_memory == 1) {
 704       // unique use, no defs
 705       assert(unique != NULL, "");
 706     } else if( USE_of_memory > 0 ) {
 707       // multiple uses, no defs
 708       unique = NULL;
 709     } else {
 710       assert(false, "bad case analysis");
 711     }
 712     // process the unique DEF or USE, if there is one
 713     if( unique == NULL ) {
 714       return MANY_MEMORY_OPERANDS;
 715     } else {
 716       int pos = components.operand_position(unique->_name);
 717       if( unique->isa(Component::DEF) ) {
 718         pos += 1;                // get corresponding USE from DEF
 719       }
 720       assert(pos >= 1, "I was just looking at it!");
 721       return pos;
 722     }
 723   }
 724 
 725   // missed the memory op??
 726   if( true ) {  // %%% should not be necessary
 727     if( is_ideal_store() != Form::none ) {
 728       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 729       ((InstructForm*)this)->dump();
 730       // pretend it has multiple defs and uses
 731       return MANY_MEMORY_OPERANDS;
 732     }
 733     if( is_ideal_load()  != Form::none ) {
 734       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 735       ((InstructForm*)this)->dump();
 736       // pretend it has multiple uses and no defs
 737       return MANY_MEMORY_OPERANDS;
 738     }
 739   }
 740 
 741   return NO_MEMORY_OPERAND;
 742 }
 743 
 744 
 745 // This instruction captures the machine-independent bottom_type
 746 // Expected use is for pointer vs oop determination for LoadP
 747 bool InstructForm::captures_bottom_type(FormDict &globals) const {
 748   if( _matrule && _matrule->_rChild &&
 749        (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
 750         !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
 751         !strcmp(_matrule->_rChild->_opType,"DecodeN")    ||
 752         !strcmp(_matrule->_rChild->_opType,"EncodeP")    ||
 753         !strcmp(_matrule->_rChild->_opType,"LoadN")      ||
 754         !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
 755         !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
 756         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
 757   else if ( is_ideal_load() == Form::idealP )                return true;
 758   else if ( is_ideal_store() != Form::none  )                return true;
 759 
 760   if (needs_base_oop_edge(globals)) return true;
 761 
 762   if (is_vector()) return true;
 763   if (is_mach_constant()) return true;
 764 
 765   return  false;
 766 }
 767 
 768 
 769 // Access instr_cost attribute or return NULL.
 770 const char* InstructForm::cost() {
 771   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
 772     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
 773       return cur->_val;
 774     }
 775   }
 776   return NULL;
 777 }
 778 
 779 // Return count of top-level operands.
 780 uint InstructForm::num_opnds() {
 781   int  num_opnds = _components.num_operands();
 782 
 783   // Need special handling for matching some ideal nodes
 784   // i.e. Matching a return node
 785   /*
 786   if( _matrule ) {
 787     if( strcmp(_matrule->_opType,"Return"   )==0 ||
 788         strcmp(_matrule->_opType,"Halt"     )==0 )
 789       return 3;
 790   }
 791     */
 792   return num_opnds;
 793 }
 794 
 795 // Return count of unmatched operands.
 796 uint InstructForm::num_post_match_opnds() {
 797   uint  num_post_match_opnds = _components.count();
 798   uint  num_match_opnds = _components.match_count();
 799   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
 800 
 801   return num_post_match_opnds;
 802 }
 803 
 804 // Return the number of leaves below this complex operand
 805 uint InstructForm::num_consts(FormDict &globals) const {
 806   if ( ! _matrule) return 0;
 807 
 808   // This is a recursive invocation on all operands in the matchrule
 809   return _matrule->num_consts(globals);
 810 }
 811 
 812 // Constants in match rule with specified type
 813 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
 814   if ( ! _matrule) return 0;
 815 
 816   // This is a recursive invocation on all operands in the matchrule
 817   return _matrule->num_consts(globals, type);
 818 }
 819 
 820 
 821 // Return the register class associated with 'leaf'.
 822 const char *InstructForm::out_reg_class(FormDict &globals) {
 823   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
 824 
 825   return NULL;
 826 }
 827 
 828 
 829 
 830 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
 831 uint InstructForm::oper_input_base(FormDict &globals) {
 832   if( !_matrule ) return 1;     // Skip control for most nodes
 833 
 834   // Need special handling for matching some ideal nodes
 835   // i.e. Matching a return node
 836   if( strcmp(_matrule->_opType,"Return"    )==0 ||
 837       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
 838       strcmp(_matrule->_opType,"TailCall"  )==0 ||
 839       strcmp(_matrule->_opType,"TailJump"  )==0 ||
 840       strcmp(_matrule->_opType,"SafePoint" )==0 ||
 841       strcmp(_matrule->_opType,"Halt"      )==0 )
 842     return AdlcVMDeps::Parms;   // Skip the machine-state edges
 843 
 844   if( _matrule->_rChild &&
 845       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
 846         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
 847         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
 848         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 )) {
 849         // String.(compareTo/equals/indexOf) and Arrays.equals
 850         // take 1 control and 1 memory edges.
 851     return 2;
 852   }
 853 
 854   // Check for handling of 'Memory' input/edge in the ideal world.
 855   // The AD file writer is shielded from knowledge of these edges.
 856   int base = 1;                 // Skip control
 857   base += _matrule->needs_ideal_memory_edge(globals);
 858 
 859   // Also skip the base-oop value for uses of derived oops.
 860   // The AD file writer is shielded from knowledge of these edges.
 861   base += needs_base_oop_edge(globals);
 862 
 863   return base;
 864 }
 865 
 866 // Implementation does not modify state of internal structures
 867 void InstructForm::build_components() {
 868   // Add top-level operands to the components
 869   if (_matrule)  _matrule->append_components(_localNames, _components);
 870 
 871   // Add parameters that "do not appear in match rule".
 872   bool has_temp = false;
 873   const char *name;
 874   const char *kill_name = NULL;
 875   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
 876     OperandForm *opForm = (OperandForm*)_localNames[name];
 877 
 878     Effect* e = NULL;
 879     {
 880       const Form* form = _effects[name];
 881       e = form ? form->is_effect() : NULL;
 882     }
 883 
 884     if (e != NULL) {
 885       has_temp |= e->is(Component::TEMP);
 886 
 887       // KILLs must be declared after any TEMPs because TEMPs are real
 888       // uses so their operand numbering must directly follow the real
 889       // inputs from the match rule.  Fixing the numbering seems
 890       // complex so simply enforce the restriction during parse.
 891       if (kill_name != NULL &&
 892           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
 893         OperandForm* kill = (OperandForm*)_localNames[kill_name];
 894         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
 895                              _ident, kill->_ident, kill_name);
 896       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
 897         kill_name = name;
 898       }
 899     }
 900 
 901     const Component *component  = _components.search(name);
 902     if ( component  == NULL ) {
 903       if (e) {
 904         _components.insert(name, opForm->_ident, e->_use_def, false);
 905         component = _components.search(name);
 906         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
 907           const Form *form = globalAD->globalNames()[component->_type];
 908           assert( form, "component type must be a defined form");
 909           OperandForm *op   = form->is_operand();
 910           if (op->_interface && op->_interface->is_RegInterface()) {
 911             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 912                                  _ident, opForm->_ident, name);
 913           }
 914         }
 915       } else {
 916         // This would be a nice warning but it triggers in a few places in a benign way
 917         // if (_matrule != NULL && !expands()) {
 918         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
 919         //                        _ident, opForm->_ident, name);
 920         // }
 921         _components.insert(name, opForm->_ident, Component::INVALID, false);
 922       }
 923     }
 924     else if (e) {
 925       // Component was found in the list
 926       // Check if there is a new effect that requires an extra component.
 927       // This happens when adding 'USE' to a component that is not yet one.
 928       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
 929         if (component->isa(Component::USE) && _matrule) {
 930           const Form *form = globalAD->globalNames()[component->_type];
 931           assert( form, "component type must be a defined form");
 932           OperandForm *op   = form->is_operand();
 933           if (op->_interface && op->_interface->is_RegInterface()) {
 934             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 935                                  _ident, opForm->_ident, name);
 936           }
 937         }
 938         _components.insert(name, opForm->_ident, e->_use_def, false);
 939       } else {
 940         Component  *comp = (Component*)component;
 941         comp->promote_use_def_info(e->_use_def);
 942       }
 943       // Component positions are zero based.
 944       int  pos  = _components.operand_position(name);
 945       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
 946               "Component::DEF can only occur in the first position");
 947     }
 948   }
 949 
 950   // Resolving the interactions between expand rules and TEMPs would
 951   // be complex so simply disallow it.
 952   if (_matrule == NULL && has_temp) {
 953     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
 954   }
 955 
 956   return;
 957 }
 958 
 959 // Return zero-based position in component list;  -1 if not in list.
 960 int   InstructForm::operand_position(const char *name, int usedef) {
 961   return unique_opnds_idx(_components.operand_position(name, usedef));
 962 }
 963 
 964 int   InstructForm::operand_position_format(const char *name) {
 965   return unique_opnds_idx(_components.operand_position_format(name));
 966 }
 967 
 968 // Return zero-based position in component list; -1 if not in list.
 969 int   InstructForm::label_position() {
 970   return unique_opnds_idx(_components.label_position());
 971 }
 972 
 973 int   InstructForm::method_position() {
 974   return unique_opnds_idx(_components.method_position());
 975 }
 976 
 977 // Return number of relocation entries needed for this instruction.
 978 uint  InstructForm::reloc(FormDict &globals) {
 979   uint reloc_entries  = 0;
 980   // Check for "Call" nodes
 981   if ( is_ideal_call() )      ++reloc_entries;
 982   if ( is_ideal_return() )    ++reloc_entries;
 983   if ( is_ideal_safepoint() ) ++reloc_entries;
 984 
 985 
 986   // Check if operands MAYBE oop pointers, by checking for ConP elements
 987   // Proceed through the leaves of the match-tree and check for ConPs
 988   if ( _matrule != NULL ) {
 989     uint         position = 0;
 990     const char  *result   = NULL;
 991     const char  *name     = NULL;
 992     const char  *opType   = NULL;
 993     while (_matrule->base_operand(position, globals, result, name, opType)) {
 994       if ( strcmp(opType,"ConP") == 0 ) {
 995 #ifdef SPARC
 996         reloc_entries += 2; // 1 for sethi + 1 for setlo
 997 #else
 998         ++reloc_entries;
 999 #endif
1000       }
1001       ++position;
1002     }
1003   }
1004 
1005   // Above is only a conservative estimate
1006   // because it did not check contents of operand classes.
1007   // !!!!! !!!!!
1008   // Add 1 to reloc info for each operand class in the component list.
1009   Component  *comp;
1010   _components.reset();
1011   while ( (comp = _components.iter()) != NULL ) {
1012     const Form        *form = globals[comp->_type];
1013     assert( form, "Did not find component's type in global names");
1014     const OpClassForm *opc  = form->is_opclass();
1015     const OperandForm *oper = form->is_operand();
1016     if ( opc && (oper == NULL) ) {
1017       ++reloc_entries;
1018     } else if ( oper ) {
1019       // floats and doubles loaded out of method's constant pool require reloc info
1020       Form::DataType type = oper->is_base_constant(globals);
1021       if ( (type == Form::idealF) || (type == Form::idealD) ) {
1022         ++reloc_entries;
1023       }
1024     }
1025   }
1026 
1027   // Float and Double constants may come from the CodeBuffer table
1028   // and require relocatable addresses for access
1029   // !!!!!
1030   // Check for any component being an immediate float or double.
1031   Form::DataType data_type = is_chain_of_constant(globals);
1032   if( data_type==idealD || data_type==idealF ) {
1033 #ifdef SPARC
1034     // sparc required more relocation entries for floating constants
1035     // (expires 9/98)
1036     reloc_entries += 6;
1037 #else
1038     reloc_entries++;
1039 #endif
1040   }
1041 
1042   return reloc_entries;
1043 }
1044 
1045 // Utility function defined in archDesc.cpp
1046 extern bool is_def(int usedef);
1047 
1048 // Return the result of reducing an instruction
1049 const char *InstructForm::reduce_result() {
1050   const char* result = "Universe";  // default
1051   _components.reset();
1052   Component *comp = _components.iter();
1053   if (comp != NULL && comp->isa(Component::DEF)) {
1054     result = comp->_type;
1055     // Override this if the rule is a store operation:
1056     if (_matrule && _matrule->_rChild &&
1057         is_store_to_memory(_matrule->_rChild->_opType))
1058       result = "Universe";
1059   }
1060   return result;
1061 }
1062 
1063 // Return the name of the operand on the right hand side of the binary match
1064 // Return NULL if there is no right hand side
1065 const char *InstructForm::reduce_right(FormDict &globals)  const {
1066   if( _matrule == NULL ) return NULL;
1067   return  _matrule->reduce_right(globals);
1068 }
1069 
1070 // Similar for left
1071 const char *InstructForm::reduce_left(FormDict &globals)   const {
1072   if( _matrule == NULL ) return NULL;
1073   return  _matrule->reduce_left(globals);
1074 }
1075 
1076 
1077 // Base class for this instruction, MachNode except for calls
1078 const char *InstructForm::mach_base_class(FormDict &globals)  const {
1079   if( is_ideal_call() == Form::JAVA_STATIC ) {
1080     return "MachCallStaticJavaNode";
1081   }
1082   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
1083     return "MachCallDynamicJavaNode";
1084   }
1085   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
1086     return "MachCallRuntimeNode";
1087   }
1088   else if( is_ideal_call() == Form::JAVA_LEAF ) {
1089     return "MachCallLeafNode";
1090   }
1091   else if (is_ideal_return()) {
1092     return "MachReturnNode";
1093   }
1094   else if (is_ideal_halt()) {
1095     return "MachHaltNode";
1096   }
1097   else if (is_ideal_safepoint()) {
1098     return "MachSafePointNode";
1099   }
1100   else if (is_ideal_if()) {
1101     return "MachIfNode";
1102   }
1103   else if (is_ideal_goto()) {
1104     return "MachGotoNode";
1105   }
1106   else if (is_ideal_fastlock()) {
1107     return "MachFastLockNode";
1108   }
1109   else if (is_ideal_nop()) {
1110     return "MachNopNode";
1111   }
1112   else if (is_mach_constant()) {
1113     return "MachConstantNode";
1114   }
1115   else if (captures_bottom_type(globals)) {
1116     return "MachTypeNode";
1117   } else {
1118     return "MachNode";
1119   }
1120   assert( false, "ShouldNotReachHere()");
1121   return NULL;
1122 }
1123 
1124 // Compare the instruction predicates for textual equality
1125 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
1126   const Predicate *pred1  = instr1->_predicate;
1127   const Predicate *pred2  = instr2->_predicate;
1128   if( pred1 == NULL && pred2 == NULL ) {
1129     // no predicates means they are identical
1130     return true;
1131   }
1132   if( pred1 != NULL && pred2 != NULL ) {
1133     // compare the predicates
1134     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
1135       return true;
1136     }
1137   }
1138 
1139   return false;
1140 }
1141 
1142 // Check if this instruction can cisc-spill to 'alternate'
1143 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
1144   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
1145   // Do not replace if a cisc-version has been found.
1146   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
1147 
1148   int         cisc_spill_operand = Maybe_cisc_spillable;
1149   char       *result             = NULL;
1150   char       *result2            = NULL;
1151   const char *op_name            = NULL;
1152   const char *reg_type           = NULL;
1153   FormDict   &globals            = AD.globalNames();
1154   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
1155   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
1156     cisc_spill_operand = operand_position(op_name, Component::USE);
1157     int def_oper  = operand_position(op_name, Component::DEF);
1158     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
1159       // Do not support cisc-spilling for destination operands and
1160       // make sure they have the same number of operands.
1161       _cisc_spill_alternate = instr;
1162       instr->set_cisc_alternate(true);
1163       if( AD._cisc_spill_debug ) {
1164         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
1165         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
1166       }
1167       // Record that a stack-version of the reg_mask is needed
1168       // !!!!!
1169       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
1170       assert( oper != NULL, "cisc-spilling non operand");
1171       const char *reg_class_name = oper->constrained_reg_class();
1172       AD.set_stack_or_reg(reg_class_name);
1173       const char *reg_mask_name  = AD.reg_mask(*oper);
1174       set_cisc_reg_mask_name(reg_mask_name);
1175       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
1176     } else {
1177       cisc_spill_operand = Not_cisc_spillable;
1178     }
1179   } else {
1180     cisc_spill_operand = Not_cisc_spillable;
1181   }
1182 
1183   set_cisc_spill_operand(cisc_spill_operand);
1184   return (cisc_spill_operand != Not_cisc_spillable);
1185 }
1186 
1187 // Check to see if this instruction can be replaced with the short branch
1188 // instruction `short-branch'
1189 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
1190   if (_matrule != NULL &&
1191       this != short_branch &&   // Don't match myself
1192       !is_short_branch() &&     // Don't match another short branch variant
1193       reduce_result() != NULL &&
1194       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
1195       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
1196     // The instructions are equivalent.
1197 
1198     // Now verify that both instructions have the same parameters and
1199     // the same effects. Both branch forms should have the same inputs
1200     // and resulting projections to correctly replace a long branch node
1201     // with corresponding short branch node during code generation.
1202 
1203     bool different = false;
1204     if (short_branch->_components.count() != _components.count()) {
1205        different = true;
1206     } else if (_components.count() > 0) {
1207       short_branch->_components.reset();
1208       _components.reset();
1209       Component *comp;
1210       while ((comp = _components.iter()) != NULL) {
1211         Component *short_comp = short_branch->_components.iter();
1212         if (short_comp == NULL ||
1213             short_comp->_type != comp->_type ||
1214             short_comp->_usedef != comp->_usedef) {
1215           different = true;
1216           break;
1217         }
1218       }
1219       if (short_branch->_components.iter() != NULL)
1220         different = true;
1221     }
1222     if (different) {
1223       globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
1224     }
1225     if (AD._short_branch_debug) {
1226       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
1227     }
1228     _short_branch_form = short_branch;
1229     return true;
1230   }
1231   return false;
1232 }
1233 
1234 
1235 // --------------------------- FILE *output_routines
1236 //
1237 // Generate the format call for the replacement variable
1238 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
1239   // Handle special constant table variables.
1240   if (strcmp(rep_var, "constanttablebase") == 0) {
1241     fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
1242     fprintf(fp, "    st->print(\"%%s\", reg);\n");
1243     return;
1244   }
1245   if (strcmp(rep_var, "constantoffset") == 0) {
1246     fprintf(fp, "st->print(\"#%%d\", constant_offset());\n");
1247     return;
1248   }
1249   if (strcmp(rep_var, "constantaddress") == 0) {
1250     fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset());\n");
1251     return;
1252   }
1253 
1254   // Find replacement variable's type
1255   const Form *form   = _localNames[rep_var];
1256   if (form == NULL) {
1257     fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
1258     assert(false, "ShouldNotReachHere()");
1259   }
1260   OpClassForm *opc   = form->is_opclass();
1261   assert( opc, "replacement variable was not found in local names");
1262   // Lookup the index position of the replacement variable
1263   int idx  = operand_position_format(rep_var);
1264   if ( idx == -1 ) {
1265     assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
1266     assert( false, "ShouldNotReachHere()");
1267   }
1268 
1269   if (is_noninput_operand(idx)) {
1270     // This component isn't in the input array.  Print out the static
1271     // name of the register.
1272     OperandForm* oper = form->is_operand();
1273     if (oper != NULL && oper->is_bound_register()) {
1274       const RegDef* first = oper->get_RegClass()->find_first_elem();
1275       fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
1276     } else {
1277       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
1278     }
1279   } else {
1280     // Output the format call for this operand
1281     fprintf(fp,"opnd_array(%d)->",idx);
1282     if (idx == 0)
1283       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
1284     else
1285       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
1286   }
1287 }
1288 
1289 // Seach through operands to determine parameters unique positions.
1290 void InstructForm::set_unique_opnds() {
1291   uint* uniq_idx = NULL;
1292   int  nopnds = num_opnds();
1293   uint  num_uniq = nopnds;
1294   int i;
1295   _uniq_idx_length = 0;
1296   if ( nopnds > 0 ) {
1297     // Allocate index array.  Worst case we're mapping from each
1298     // component back to an index and any DEF always goes at 0 so the
1299     // length of the array has to be the number of components + 1.
1300     _uniq_idx_length = _components.count() + 1;
1301     uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length));
1302     for( i = 0; i < _uniq_idx_length; i++ ) {
1303       uniq_idx[i] = i;
1304     }
1305   }
1306   // Do it only if there is a match rule and no expand rule.  With an
1307   // expand rule it is done by creating new mach node in Expand()
1308   // method.
1309   if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
1310     const char *name;
1311     uint count;
1312     bool has_dupl_use = false;
1313 
1314     _parameters.reset();
1315     while( (name = _parameters.iter()) != NULL ) {
1316       count = 0;
1317       int position = 0;
1318       int uniq_position = 0;
1319       _components.reset();
1320       Component *comp = NULL;
1321       if( sets_result() ) {
1322         comp = _components.iter();
1323         position++;
1324       }
1325       // The next code is copied from the method operand_position().
1326       for (; (comp = _components.iter()) != NULL; ++position) {
1327         // When the first component is not a DEF,
1328         // leave space for the result operand!
1329         if ( position==0 && (! comp->isa(Component::DEF)) ) {
1330           ++position;
1331         }
1332         if( strcmp(name, comp->_name)==0 ) {
1333           if( ++count > 1 ) {
1334             assert(position < _uniq_idx_length, "out of bounds");
1335             uniq_idx[position] = uniq_position;
1336             has_dupl_use = true;
1337           } else {
1338             uniq_position = position;
1339           }
1340         }
1341         if( comp->isa(Component::DEF)
1342             && comp->isa(Component::USE) ) {
1343           ++position;
1344           if( position != 1 )
1345             --position;   // only use two slots for the 1st USE_DEF
1346         }
1347       }
1348     }
1349     if( has_dupl_use ) {
1350       for( i = 1; i < nopnds; i++ )
1351         if( i != uniq_idx[i] )
1352           break;
1353       int  j = i;
1354       for( ; i < nopnds; i++ )
1355         if( i == uniq_idx[i] )
1356           uniq_idx[i] = j++;
1357       num_uniq = j;
1358     }
1359   }
1360   _uniq_idx = uniq_idx;
1361   _num_uniq = num_uniq;
1362 }
1363 
1364 // Generate index values needed for determining the operand position
1365 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
1366   uint  idx = 0;                  // position of operand in match rule
1367   int   cur_num_opnds = num_opnds();
1368 
1369   // Compute the index into vector of operand pointers:
1370   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
1371   // idx1 starts at oper_input_base()
1372   if ( cur_num_opnds >= 1 ) {
1373     fprintf(fp,"    // Start at oper_input_base() and count operands\n");
1374     fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
1375     fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
1376 
1377     // Generate starting points for other unique operands if they exist
1378     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
1379       if( *receiver == 0 ) {
1380         fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
1381                 prefix, idx, prefix, idx-1, idx-1 );
1382       } else {
1383         fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
1384                 prefix, idx, prefix, idx-1, receiver, idx-1 );
1385       }
1386     }
1387   }
1388   if( *receiver != 0 ) {
1389     // This value is used by generate_peepreplace when copying a node.
1390     // Don't emit it in other cases since it can hide bugs with the
1391     // use invalid idx's.
1392     fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
1393   }
1394 
1395 }
1396 
1397 // ---------------------------
1398 bool InstructForm::verify() {
1399   // !!!!! !!!!!
1400   // Check that a "label" operand occurs last in the operand list, if present
1401   return true;
1402 }
1403 
1404 void InstructForm::dump() {
1405   output(stderr);
1406 }
1407 
1408 void InstructForm::output(FILE *fp) {
1409   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
1410   if (_matrule)   _matrule->output(fp);
1411   if (_insencode) _insencode->output(fp);
1412   if (_constant)  _constant->output(fp);
1413   if (_opcode)    _opcode->output(fp);
1414   if (_attribs)   _attribs->output(fp);
1415   if (_predicate) _predicate->output(fp);
1416   if (_effects.Size()) {
1417     fprintf(fp,"Effects\n");
1418     _effects.dump();
1419   }
1420   if (_exprule)   _exprule->output(fp);
1421   if (_rewrule)   _rewrule->output(fp);
1422   if (_format)    _format->output(fp);
1423   if (_peephole)  _peephole->output(fp);
1424 }
1425 
1426 void MachNodeForm::dump() {
1427   output(stderr);
1428 }
1429 
1430 void MachNodeForm::output(FILE *fp) {
1431   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
1432 }
1433 
1434 //------------------------------build_predicate--------------------------------
1435 // Build instruction predicates.  If the user uses the same operand name
1436 // twice, we need to check that the operands are pointer-eequivalent in
1437 // the DFA during the labeling process.
1438 Predicate *InstructForm::build_predicate() {
1439   char buf[1024], *s=buf;
1440   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
1441 
1442   MatchNode *mnode =
1443     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
1444   mnode->count_instr_names(names);
1445 
1446   uint first = 1;
1447   // Start with the predicate supplied in the .ad file.
1448   if( _predicate ) {
1449     if( first ) first=0;
1450     strcpy(s,"("); s += strlen(s);
1451     strcpy(s,_predicate->_pred);
1452     s += strlen(s);
1453     strcpy(s,")"); s += strlen(s);
1454   }
1455   for( DictI i(&names); i.test(); ++i ) {
1456     uintptr_t cnt = (uintptr_t)i._value;
1457     if( cnt > 1 ) {             // Need a predicate at all?
1458       assert( cnt == 2, "Unimplemented" );
1459       // Handle many pairs
1460       if( first ) first=0;
1461       else {                    // All tests must pass, so use '&&'
1462         strcpy(s," && ");
1463         s += strlen(s);
1464       }
1465       // Add predicate to working buffer
1466       sprintf(s,"/*%s*/(",(char*)i._key);
1467       s += strlen(s);
1468       mnode->build_instr_pred(s,(char*)i._key,0);
1469       s += strlen(s);
1470       strcpy(s," == "); s += strlen(s);
1471       mnode->build_instr_pred(s,(char*)i._key,1);
1472       s += strlen(s);
1473       strcpy(s,")"); s += strlen(s);
1474     }
1475   }
1476   if( s == buf ) s = NULL;
1477   else {
1478     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
1479     s = strdup(buf);
1480   }
1481   return new Predicate(s);
1482 }
1483 
1484 //------------------------------EncodeForm-------------------------------------
1485 // Constructor
1486 EncodeForm::EncodeForm()
1487   : _encClass(cmpstr,hashstr, Form::arena) {
1488 }
1489 EncodeForm::~EncodeForm() {
1490 }
1491 
1492 // record a new register class
1493 EncClass *EncodeForm::add_EncClass(const char *className) {
1494   EncClass *encClass = new EncClass(className);
1495   _eclasses.addName(className);
1496   _encClass.Insert(className,encClass);
1497   return encClass;
1498 }
1499 
1500 // Lookup the function body for an encoding class
1501 EncClass  *EncodeForm::encClass(const char *className) {
1502   assert( className != NULL, "Must provide a defined encoding name");
1503 
1504   EncClass *encClass = (EncClass*)_encClass[className];
1505   return encClass;
1506 }
1507 
1508 // Lookup the function body for an encoding class
1509 const char *EncodeForm::encClassBody(const char *className) {
1510   if( className == NULL ) return NULL;
1511 
1512   EncClass *encClass = (EncClass*)_encClass[className];
1513   assert( encClass != NULL, "Encode Class is missing.");
1514   encClass->_code.reset();
1515   const char *code = (const char*)encClass->_code.iter();
1516   assert( code != NULL, "Found an empty encode class body.");
1517 
1518   return code;
1519 }
1520 
1521 // Lookup the function body for an encoding class
1522 const char *EncodeForm::encClassPrototype(const char *className) {
1523   assert( className != NULL, "Encode class name must be non NULL.");
1524 
1525   return className;
1526 }
1527 
1528 void EncodeForm::dump() {                  // Debug printer
1529   output(stderr);
1530 }
1531 
1532 void EncodeForm::output(FILE *fp) {          // Write info to output files
1533   const char *name;
1534   fprintf(fp,"\n");
1535   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
1536   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
1537     ((EncClass*)_encClass[name])->output(fp);
1538   }
1539   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
1540 }
1541 //------------------------------EncClass---------------------------------------
1542 EncClass::EncClass(const char *name)
1543   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
1544 }
1545 EncClass::~EncClass() {
1546 }
1547 
1548 // Add a parameter <type,name> pair
1549 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
1550   _parameter_type.addName( parameter_type );
1551   _parameter_name.addName( parameter_name );
1552 }
1553 
1554 // Verify operand types in parameter list
1555 bool EncClass::check_parameter_types(FormDict &globals) {
1556   // !!!!!
1557   return false;
1558 }
1559 
1560 // Add the decomposed "code" sections of an encoding's code-block
1561 void EncClass::add_code(const char *code) {
1562   _code.addName(code);
1563 }
1564 
1565 // Add the decomposed "replacement variables" of an encoding's code-block
1566 void EncClass::add_rep_var(char *replacement_var) {
1567   _code.addName(NameList::_signal);
1568   _rep_vars.addName(replacement_var);
1569 }
1570 
1571 // Lookup the function body for an encoding class
1572 int EncClass::rep_var_index(const char *rep_var) {
1573   uint        position = 0;
1574   const char *name     = NULL;
1575 
1576   _parameter_name.reset();
1577   while ( (name = _parameter_name.iter()) != NULL ) {
1578     if ( strcmp(rep_var,name) == 0 ) return position;
1579     ++position;
1580   }
1581 
1582   return -1;
1583 }
1584 
1585 // Check after parsing
1586 bool EncClass::verify() {
1587   // 1!!!!
1588   // Check that each replacement variable, '$name' in architecture description
1589   // is actually a local variable for this encode class, or a reserved name
1590   // "primary, secondary, tertiary"
1591   return true;
1592 }
1593 
1594 void EncClass::dump() {
1595   output(stderr);
1596 }
1597 
1598 // Write info to output files
1599 void EncClass::output(FILE *fp) {
1600   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
1601 
1602   // Output the parameter list
1603   _parameter_type.reset();
1604   _parameter_name.reset();
1605   const char *type = _parameter_type.iter();
1606   const char *name = _parameter_name.iter();
1607   fprintf(fp, " ( ");
1608   for ( ; (type != NULL) && (name != NULL);
1609         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
1610     fprintf(fp, " %s %s,", type, name);
1611   }
1612   fprintf(fp, " ) ");
1613 
1614   // Output the code block
1615   _code.reset();
1616   _rep_vars.reset();
1617   const char *code;
1618   while ( (code = _code.iter()) != NULL ) {
1619     if ( _code.is_signal(code) ) {
1620       // A replacement variable
1621       const char *rep_var = _rep_vars.iter();
1622       fprintf(fp,"($%s)", rep_var);
1623     } else {
1624       // A section of code
1625       fprintf(fp,"%s", code);
1626     }
1627   }
1628 
1629 }
1630 
1631 //------------------------------Opcode-----------------------------------------
1632 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
1633   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
1634 }
1635 
1636 Opcode::~Opcode() {
1637 }
1638 
1639 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
1640   if( strcmp(param,"primary") == 0 ) {
1641     return Opcode::PRIMARY;
1642   }
1643   else if( strcmp(param,"secondary") == 0 ) {
1644     return Opcode::SECONDARY;
1645   }
1646   else if( strcmp(param,"tertiary") == 0 ) {
1647     return Opcode::TERTIARY;
1648   }
1649   return Opcode::NOT_AN_OPCODE;
1650 }
1651 
1652 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
1653   // Default values previously provided by MachNode::primary()...
1654   const char *description = NULL;
1655   const char *value       = NULL;
1656   // Check if user provided any opcode definitions
1657   if( this != NULL ) {
1658     // Update 'value' if user provided a definition in the instruction
1659     switch (desired_opcode) {
1660     case PRIMARY:
1661       description = "primary()";
1662       if( _primary   != NULL)  { value = _primary;     }
1663       break;
1664     case SECONDARY:
1665       description = "secondary()";
1666       if( _secondary != NULL ) { value = _secondary;   }
1667       break;
1668     case TERTIARY:
1669       description = "tertiary()";
1670       if( _tertiary  != NULL ) { value = _tertiary;    }
1671       break;
1672     default:
1673       assert( false, "ShouldNotReachHere();");
1674       break;
1675     }
1676   }
1677   if (value != NULL) {
1678     fprintf(fp, "(%s /*%s*/)", value, description);
1679   }
1680   return value != NULL;
1681 }
1682 
1683 void Opcode::dump() {
1684   output(stderr);
1685 }
1686 
1687 // Write info to output files
1688 void Opcode::output(FILE *fp) {
1689   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
1690   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
1691   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
1692 }
1693 
1694 //------------------------------InsEncode--------------------------------------
1695 InsEncode::InsEncode() {
1696 }
1697 InsEncode::~InsEncode() {
1698 }
1699 
1700 // Add "encode class name" and its parameters
1701 NameAndList *InsEncode::add_encode(char *encoding) {
1702   assert( encoding != NULL, "Must provide name for encoding");
1703 
1704   // add_parameter(NameList::_signal);
1705   NameAndList *encode = new NameAndList(encoding);
1706   _encoding.addName((char*)encode);
1707 
1708   return encode;
1709 }
1710 
1711 // Access the list of encodings
1712 void InsEncode::reset() {
1713   _encoding.reset();
1714   // _parameter.reset();
1715 }
1716 const char* InsEncode::encode_class_iter() {
1717   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
1718   return  ( encode_class != NULL ? encode_class->name() : NULL );
1719 }
1720 // Obtain parameter name from zero based index
1721 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
1722   NameAndList *params = (NameAndList*)_encoding.current();
1723   assert( params != NULL, "Internal Error");
1724   const char *param = (*params)[param_no];
1725 
1726   // Remove '$' if parser placed it there.
1727   return ( param != NULL && *param == '$') ? (param+1) : param;
1728 }
1729 
1730 void InsEncode::dump() {
1731   output(stderr);
1732 }
1733 
1734 // Write info to output files
1735 void InsEncode::output(FILE *fp) {
1736   NameAndList *encoding  = NULL;
1737   const char  *parameter = NULL;
1738 
1739   fprintf(fp,"InsEncode: ");
1740   _encoding.reset();
1741 
1742   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
1743     // Output the encoding being used
1744     fprintf(fp,"%s(", encoding->name() );
1745 
1746     // Output its parameter list, if any
1747     bool first_param = true;
1748     encoding->reset();
1749     while (  (parameter = encoding->iter()) != 0 ) {
1750       // Output the ',' between parameters
1751       if ( ! first_param )  fprintf(fp,", ");
1752       first_param = false;
1753       // Output the parameter
1754       fprintf(fp,"%s", parameter);
1755     } // done with parameters
1756     fprintf(fp,")  ");
1757   } // done with encodings
1758 
1759   fprintf(fp,"\n");
1760 }
1761 
1762 //------------------------------Effect-----------------------------------------
1763 static int effect_lookup(const char *name) {
1764   if(!strcmp(name, "USE")) return Component::USE;
1765   if(!strcmp(name, "DEF")) return Component::DEF;
1766   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
1767   if(!strcmp(name, "KILL")) return Component::KILL;
1768   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
1769   if(!strcmp(name, "TEMP")) return Component::TEMP;
1770   if(!strcmp(name, "INVALID")) return Component::INVALID;
1771   if(!strcmp(name, "CALL")) return Component::CALL;
1772   assert( false,"Invalid effect name specified\n");
1773   return Component::INVALID;
1774 }
1775 
1776 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
1777   _ftype = Form::EFF;
1778 }
1779 Effect::~Effect() {
1780 }
1781 
1782 // Dynamic type check
1783 Effect *Effect::is_effect() const {
1784   return (Effect*)this;
1785 }
1786 
1787 
1788 // True if this component is equal to the parameter.
1789 bool Effect::is(int use_def_kill_enum) const {
1790   return (_use_def == use_def_kill_enum ? true : false);
1791 }
1792 // True if this component is used/def'd/kill'd as the parameter suggests.
1793 bool Effect::isa(int use_def_kill_enum) const {
1794   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
1795 }
1796 
1797 void Effect::dump() {
1798   output(stderr);
1799 }
1800 
1801 void Effect::output(FILE *fp) {          // Write info to output files
1802   fprintf(fp,"Effect: %s\n", (_name?_name:""));
1803 }
1804 
1805 //------------------------------ExpandRule-------------------------------------
1806 ExpandRule::ExpandRule() : _expand_instrs(),
1807                            _newopconst(cmpstr, hashstr, Form::arena) {
1808   _ftype = Form::EXP;
1809 }
1810 
1811 ExpandRule::~ExpandRule() {                  // Destructor
1812 }
1813 
1814 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
1815   _expand_instrs.addName((char*)instruction_name_and_operand_list);
1816 }
1817 
1818 void ExpandRule::reset_instructions() {
1819   _expand_instrs.reset();
1820 }
1821 
1822 NameAndList* ExpandRule::iter_instructions() {
1823   return (NameAndList*)_expand_instrs.iter();
1824 }
1825 
1826 
1827 void ExpandRule::dump() {
1828   output(stderr);
1829 }
1830 
1831 void ExpandRule::output(FILE *fp) {         // Write info to output files
1832   NameAndList *expand_instr = NULL;
1833   const char *opid = NULL;
1834 
1835   fprintf(fp,"\nExpand Rule:\n");
1836 
1837   // Iterate over the instructions 'node' expands into
1838   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
1839     fprintf(fp,"%s(", expand_instr->name());
1840 
1841     // iterate over the operand list
1842     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1843       fprintf(fp,"%s ", opid);
1844     }
1845     fprintf(fp,");\n");
1846   }
1847 }
1848 
1849 //------------------------------RewriteRule------------------------------------
1850 RewriteRule::RewriteRule(char* params, char* block)
1851   : _tempParams(params), _tempBlock(block) { };  // Constructor
1852 RewriteRule::~RewriteRule() {                 // Destructor
1853 }
1854 
1855 void RewriteRule::dump() {
1856   output(stderr);
1857 }
1858 
1859 void RewriteRule::output(FILE *fp) {         // Write info to output files
1860   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
1861           (_tempParams?_tempParams:""),
1862           (_tempBlock?_tempBlock:""));
1863 }
1864 
1865 
1866 //==============================MachNodes======================================
1867 //------------------------------MachNodeForm-----------------------------------
1868 MachNodeForm::MachNodeForm(char *id)
1869   : _ident(id) {
1870 }
1871 
1872 MachNodeForm::~MachNodeForm() {
1873 }
1874 
1875 MachNodeForm *MachNodeForm::is_machnode() const {
1876   return (MachNodeForm*)this;
1877 }
1878 
1879 //==============================Operand Classes================================
1880 //------------------------------OpClassForm------------------------------------
1881 OpClassForm::OpClassForm(const char* id) : _ident(id) {
1882   _ftype = Form::OPCLASS;
1883 }
1884 
1885 OpClassForm::~OpClassForm() {
1886 }
1887 
1888 bool OpClassForm::ideal_only() const { return 0; }
1889 
1890 OpClassForm *OpClassForm::is_opclass() const {
1891   return (OpClassForm*)this;
1892 }
1893 
1894 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
1895   if( _oplst.count() == 0 ) return Form::no_interface;
1896 
1897   // Check that my operands have the same interface type
1898   Form::InterfaceType  interface;
1899   bool  first = true;
1900   NameList &op_list = (NameList &)_oplst;
1901   op_list.reset();
1902   const char *op_name;
1903   while( (op_name = op_list.iter()) != NULL ) {
1904     const Form  *form    = globals[op_name];
1905     OperandForm *operand = form->is_operand();
1906     assert( operand, "Entry in operand class that is not an operand");
1907     if( first ) {
1908       first     = false;
1909       interface = operand->interface_type(globals);
1910     } else {
1911       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
1912     }
1913   }
1914   return interface;
1915 }
1916 
1917 bool OpClassForm::stack_slots_only(FormDict &globals) const {
1918   if( _oplst.count() == 0 ) return false;  // how?
1919 
1920   NameList &op_list = (NameList &)_oplst;
1921   op_list.reset();
1922   const char *op_name;
1923   while( (op_name = op_list.iter()) != NULL ) {
1924     const Form  *form    = globals[op_name];
1925     OperandForm *operand = form->is_operand();
1926     assert( operand, "Entry in operand class that is not an operand");
1927     if( !operand->stack_slots_only(globals) )  return false;
1928   }
1929   return true;
1930 }
1931 
1932 
1933 void OpClassForm::dump() {
1934   output(stderr);
1935 }
1936 
1937 void OpClassForm::output(FILE *fp) {
1938   const char *name;
1939   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
1940   fprintf(fp,"\nCount = %d\n", _oplst.count());
1941   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
1942     fprintf(fp,"%s, ",name);
1943   }
1944   fprintf(fp,"\n");
1945 }
1946 
1947 
1948 //==============================Operands=======================================
1949 //------------------------------OperandForm------------------------------------
1950 OperandForm::OperandForm(const char* id)
1951   : OpClassForm(id), _ideal_only(false),
1952     _localNames(cmpstr, hashstr, Form::arena) {
1953       _ftype = Form::OPER;
1954 
1955       _matrule   = NULL;
1956       _interface = NULL;
1957       _attribs   = NULL;
1958       _predicate = NULL;
1959       _constraint= NULL;
1960       _construct = NULL;
1961       _format    = NULL;
1962 }
1963 OperandForm::OperandForm(const char* id, bool ideal_only)
1964   : OpClassForm(id), _ideal_only(ideal_only),
1965     _localNames(cmpstr, hashstr, Form::arena) {
1966       _ftype = Form::OPER;
1967 
1968       _matrule   = NULL;
1969       _interface = NULL;
1970       _attribs   = NULL;
1971       _predicate = NULL;
1972       _constraint= NULL;
1973       _construct = NULL;
1974       _format    = NULL;
1975 }
1976 OperandForm::~OperandForm() {
1977 }
1978 
1979 
1980 OperandForm *OperandForm::is_operand() const {
1981   return (OperandForm*)this;
1982 }
1983 
1984 bool OperandForm::ideal_only() const {
1985   return _ideal_only;
1986 }
1987 
1988 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
1989   if( _interface == NULL )  return Form::no_interface;
1990 
1991   return _interface->interface_type(globals);
1992 }
1993 
1994 
1995 bool OperandForm::stack_slots_only(FormDict &globals) const {
1996   if( _constraint == NULL )  return false;
1997   return _constraint->stack_slots_only();
1998 }
1999 
2000 
2001 // Access op_cost attribute or return NULL.
2002 const char* OperandForm::cost() {
2003   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
2004     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
2005       return cur->_val;
2006     }
2007   }
2008   return NULL;
2009 }
2010 
2011 // Return the number of leaves below this complex operand
2012 uint OperandForm::num_leaves() const {
2013   if ( ! _matrule) return 0;
2014 
2015   int num_leaves = _matrule->_numleaves;
2016   return num_leaves;
2017 }
2018 
2019 // Return the number of constants contained within this complex operand
2020 uint OperandForm::num_consts(FormDict &globals) const {
2021   if ( ! _matrule) return 0;
2022 
2023   // This is a recursive invocation on all operands in the matchrule
2024   return _matrule->num_consts(globals);
2025 }
2026 
2027 // Return the number of constants in match rule with specified type
2028 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
2029   if ( ! _matrule) return 0;
2030 
2031   // This is a recursive invocation on all operands in the matchrule
2032   return _matrule->num_consts(globals, type);
2033 }
2034 
2035 // Return the number of pointer constants contained within this complex operand
2036 uint OperandForm::num_const_ptrs(FormDict &globals) const {
2037   if ( ! _matrule) return 0;
2038 
2039   // This is a recursive invocation on all operands in the matchrule
2040   return _matrule->num_const_ptrs(globals);
2041 }
2042 
2043 uint OperandForm::num_edges(FormDict &globals) const {
2044   uint edges  = 0;
2045   uint leaves = num_leaves();
2046   uint consts = num_consts(globals);
2047 
2048   // If we are matching a constant directly, there are no leaves.
2049   edges = ( leaves > consts ) ? leaves - consts : 0;
2050 
2051   // !!!!!
2052   // Special case operands that do not have a corresponding ideal node.
2053   if( (edges == 0) && (consts == 0) ) {
2054     if( constrained_reg_class() != NULL ) {
2055       edges = 1;
2056     } else {
2057       if( _matrule
2058           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
2059         const Form *form = globals[_matrule->_opType];
2060         OperandForm *oper = form ? form->is_operand() : NULL;
2061         if( oper ) {
2062           return oper->num_edges(globals);
2063         }
2064       }
2065     }
2066   }
2067 
2068   return edges;
2069 }
2070 
2071 
2072 // Check if this operand is usable for cisc-spilling
2073 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
2074   const char *ideal = ideal_type(globals);
2075   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
2076   return is_cisc_reg;
2077 }
2078 
2079 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
2080   Form::InterfaceType my_interface = interface_type(globals);
2081   return (my_interface == memory_interface);
2082 }
2083 
2084 
2085 // node matches ideal 'Bool'
2086 bool OperandForm::is_ideal_bool() const {
2087   if( _matrule == NULL ) return false;
2088 
2089   return _matrule->is_ideal_bool();
2090 }
2091 
2092 // Require user's name for an sRegX to be stackSlotX
2093 Form::DataType OperandForm::is_user_name_for_sReg() const {
2094   DataType data_type = none;
2095   if( _ident != NULL ) {
2096     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
2097     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
2098     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
2099     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
2100     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
2101   }
2102   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
2103 
2104   return data_type;
2105 }
2106 
2107 
2108 // Return ideal type, if there is a single ideal type for this operand
2109 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
2110   const char *type = NULL;
2111   if (ideal_only()) type = _ident;
2112   else if( _matrule == NULL ) {
2113     // Check for condition code register
2114     const char *rc_name = constrained_reg_class();
2115     // !!!!!
2116     if (rc_name == NULL) return NULL;
2117     // !!!!! !!!!!
2118     // Check constraints on result's register class
2119     if( registers ) {
2120       RegClass *reg_class  = registers->getRegClass(rc_name);
2121       assert( reg_class != NULL, "Register class is not defined");
2122 
2123       // Check for ideal type of entries in register class, all are the same type
2124       reg_class->reset();
2125       RegDef *reg_def = reg_class->RegDef_iter();
2126       assert( reg_def != NULL, "No entries in register class");
2127       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
2128       // Return substring that names the register's ideal type
2129       type = reg_def->_idealtype + 3;
2130       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
2131       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
2132       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
2133     }
2134   }
2135   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
2136     // This operand matches a single type, at the top level.
2137     // Check for ideal type
2138     type = _matrule->_opType;
2139     if( strcmp(type,"Bool") == 0 )
2140       return "Bool";
2141     // transitive lookup
2142     const Form *frm = globals[type];
2143     OperandForm *op = frm->is_operand();
2144     type = op->ideal_type(globals, registers);
2145   }
2146   return type;
2147 }
2148 
2149 
2150 // If there is a single ideal type for this interface field, return it.
2151 const char *OperandForm::interface_ideal_type(FormDict &globals,
2152                                               const char *field) const {
2153   const char  *ideal_type = NULL;
2154   const char  *value      = NULL;
2155 
2156   // Check if "field" is valid for this operand's interface
2157   if ( ! is_interface_field(field, value) )   return ideal_type;
2158 
2159   // !!!!! !!!!! !!!!!
2160   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
2161 
2162   // Else, lookup type of field's replacement variable
2163 
2164   return ideal_type;
2165 }
2166 
2167 
2168 RegClass* OperandForm::get_RegClass() const {
2169   if (_interface && !_interface->is_RegInterface()) return NULL;
2170   return globalAD->get_registers()->getRegClass(constrained_reg_class());
2171 }
2172 
2173 
2174 bool OperandForm::is_bound_register() const {
2175   RegClass *reg_class  = get_RegClass();
2176   if (reg_class == NULL) return false;
2177 
2178   const char * name = ideal_type(globalAD->globalNames());
2179   if (name == NULL) return false;
2180 
2181   int size = 0;
2182   if (strcmp(name,"RegFlags")==0) size =  1;
2183   if (strcmp(name,"RegI")==0) size =  1;
2184   if (strcmp(name,"RegF")==0) size =  1;
2185   if (strcmp(name,"RegD")==0) size =  2;
2186   if (strcmp(name,"RegL")==0) size =  2;
2187   if (strcmp(name,"RegN")==0) size =  1;
2188   if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
2189   if (size == 0) return false;
2190   return size == reg_class->size();
2191 }
2192 
2193 
2194 // Check if this is a valid field for this operand,
2195 // Return 'true' if valid, and set the value to the string the user provided.
2196 bool  OperandForm::is_interface_field(const char *field,
2197                                       const char * &value) const {
2198   return false;
2199 }
2200 
2201 
2202 // Return register class name if a constraint specifies the register class.
2203 const char *OperandForm::constrained_reg_class() const {
2204   const char *reg_class  = NULL;
2205   if ( _constraint ) {
2206     // !!!!!
2207     Constraint *constraint = _constraint;
2208     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
2209       reg_class = _constraint->_arg;
2210     }
2211   }
2212 
2213   return reg_class;
2214 }
2215 
2216 
2217 // Return the register class associated with 'leaf'.
2218 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
2219   const char *reg_class = NULL; // "RegMask::Empty";
2220 
2221   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
2222     reg_class = constrained_reg_class();
2223     return reg_class;
2224   }
2225   const char *result   = NULL;
2226   const char *name     = NULL;
2227   const char *type     = NULL;
2228   // iterate through all base operands
2229   // until we reach the register that corresponds to "leaf"
2230   // This function is not looking for an ideal type.  It needs the first
2231   // level user type associated with the leaf.
2232   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
2233     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
2234     OperandForm *oper = form ? form->is_operand() : NULL;
2235     if( oper ) {
2236       reg_class = oper->constrained_reg_class();
2237       if( reg_class ) {
2238         reg_class = reg_class;
2239       } else {
2240         // ShouldNotReachHere();
2241       }
2242     } else {
2243       // ShouldNotReachHere();
2244     }
2245 
2246     // Increment our target leaf position if current leaf is not a candidate.
2247     if( reg_class == NULL)    ++leaf;
2248     // Exit the loop with the value of reg_class when at the correct index
2249     if( idx == leaf )         break;
2250     // May iterate through all base operands if reg_class for 'leaf' is NULL
2251   }
2252   return reg_class;
2253 }
2254 
2255 
2256 // Recursive call to construct list of top-level operands.
2257 // Implementation does not modify state of internal structures
2258 void OperandForm::build_components() {
2259   if (_matrule)  _matrule->append_components(_localNames, _components);
2260 
2261   // Add parameters that "do not appear in match rule".
2262   const char *name;
2263   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
2264     OperandForm *opForm = (OperandForm*)_localNames[name];
2265 
2266     if ( _components.operand_position(name) == -1 ) {
2267       _components.insert(name, opForm->_ident, Component::INVALID, false);
2268     }
2269   }
2270 
2271   return;
2272 }
2273 
2274 int OperandForm::operand_position(const char *name, int usedef) {
2275   return _components.operand_position(name, usedef);
2276 }
2277 
2278 
2279 // Return zero-based position in component list, only counting constants;
2280 // Return -1 if not in list.
2281 int OperandForm::constant_position(FormDict &globals, const Component *last) {
2282   // Iterate through components and count constants preceding 'constant'
2283   int position = 0;
2284   Component *comp;
2285   _components.reset();
2286   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
2287     // Special case for operands that take a single user-defined operand
2288     // Skip the initial definition in the component list.
2289     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2290 
2291     const char *type = comp->_type;
2292     // Lookup operand form for replacement variable's type
2293     const Form *form = globals[type];
2294     assert( form != NULL, "Component's type not found");
2295     OperandForm *oper = form ? form->is_operand() : NULL;
2296     if( oper ) {
2297       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
2298         ++position;
2299       }
2300     }
2301   }
2302 
2303   // Check for being passed a component that was not in the list
2304   if( comp != last )  position = -1;
2305 
2306   return position;
2307 }
2308 // Provide position of constant by "name"
2309 int OperandForm::constant_position(FormDict &globals, const char *name) {
2310   const Component *comp = _components.search(name);
2311   int idx = constant_position( globals, comp );
2312 
2313   return idx;
2314 }
2315 
2316 
2317 // Return zero-based position in component list, only counting constants;
2318 // Return -1 if not in list.
2319 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
2320   // Iterate through components and count registers preceding 'last'
2321   uint  position = 0;
2322   Component *comp;
2323   _components.reset();
2324   while( (comp = _components.iter()) != NULL
2325          && (strcmp(comp->_name,reg_name) != 0) ) {
2326     // Special case for operands that take a single user-defined operand
2327     // Skip the initial definition in the component list.
2328     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2329 
2330     const char *type = comp->_type;
2331     // Lookup operand form for component's type
2332     const Form *form = globals[type];
2333     assert( form != NULL, "Component's type not found");
2334     OperandForm *oper = form ? form->is_operand() : NULL;
2335     if( oper ) {
2336       if( oper->_matrule->is_base_register(globals) ) {
2337         ++position;
2338       }
2339     }
2340   }
2341 
2342   return position;
2343 }
2344 
2345 
2346 const char *OperandForm::reduce_result()  const {
2347   return _ident;
2348 }
2349 // Return the name of the operand on the right hand side of the binary match
2350 // Return NULL if there is no right hand side
2351 const char *OperandForm::reduce_right(FormDict &globals)  const {
2352   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
2353 }
2354 
2355 // Similar for left
2356 const char *OperandForm::reduce_left(FormDict &globals)   const {
2357   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
2358 }
2359 
2360 
2361 // --------------------------- FILE *output_routines
2362 //
2363 // Output code for disp_is_oop, if true.
2364 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
2365   //  Check it is a memory interface with a non-user-constant disp field
2366   if ( this->_interface == NULL ) return;
2367   MemInterface *mem_interface = this->_interface->is_MemInterface();
2368   if ( mem_interface == NULL )    return;
2369   const char   *disp  = mem_interface->_disp;
2370   if ( *disp != '$' )             return;
2371 
2372   // Lookup replacement variable in operand's component list
2373   const char   *rep_var = disp + 1;
2374   const Component *comp = this->_components.search(rep_var);
2375   assert( comp != NULL, "Replacement variable not found in components");
2376   // Lookup operand form for replacement variable's type
2377   const char      *type = comp->_type;
2378   Form            *form = (Form*)globals[type];
2379   assert( form != NULL, "Replacement variable's type not found");
2380   OperandForm     *op   = form->is_operand();
2381   assert( op, "Memory Interface 'disp' can only emit an operand form");
2382   // Check if this is a ConP, which may require relocation
2383   if ( op->is_base_constant(globals) == Form::idealP ) {
2384     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
2385     uint idx  = op->constant_position( globals, rep_var);
2386     fprintf(fp,"  virtual bool disp_is_oop() const {");
2387     fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
2388     fprintf(fp, " }\n");
2389   }
2390 }
2391 
2392 // Generate code for internal and external format methods
2393 //
2394 // internal access to reg# node->_idx
2395 // access to subsumed constant _c0, _c1,
2396 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
2397   Form::DataType dtype;
2398   if (_matrule && (_matrule->is_base_register(globals) ||
2399                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2400     // !!!!! !!!!!
2401     fprintf(fp,    "{ char reg_str[128];\n");
2402     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
2403     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2404     fprintf(fp,"    }\n");
2405   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2406     format_constant( fp, index, dtype );
2407   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2408     // Special format for Stack Slot Register
2409     fprintf(fp,    "{ char reg_str[128];\n");
2410     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
2411     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2412     fprintf(fp,"    }\n");
2413   } else {
2414     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
2415     fflush(fp);
2416     fprintf(stderr,"No format defined for %s\n", _ident);
2417     dump();
2418     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
2419   }
2420 }
2421 
2422 // Similar to "int_format" but for cases where data is external to operand
2423 // external access to reg# node->in(idx)->_idx,
2424 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
2425   Form::DataType dtype;
2426   if (_matrule && (_matrule->is_base_register(globals) ||
2427                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2428     fprintf(fp,    "{ char reg_str[128];\n");
2429     fprintf(fp,"      ra->dump_register(node->in(idx");
2430     if ( index != 0 ) fprintf(fp,                  "+%d",index);
2431     fprintf(fp,                                       "),reg_str);\n");
2432     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2433     fprintf(fp,"    }\n");
2434   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2435     format_constant( fp, index, dtype );
2436   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2437     // Special format for Stack Slot Register
2438     fprintf(fp,    "{ char reg_str[128];\n");
2439     fprintf(fp,"      ra->dump_register(node->in(idx");
2440     if ( index != 0 ) fprintf(fp,                  "+%d",index);
2441     fprintf(fp,                                       "),reg_str);\n");
2442     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2443     fprintf(fp,"    }\n");
2444   } else {
2445     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
2446     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
2447   }
2448 }
2449 
2450 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
2451   switch(const_type) {
2452   case Form::idealI:  fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
2453   case Form::idealP:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
2454   case Form::idealN:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
2455   case Form::idealL:  fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
2456   case Form::idealF:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2457   case Form::idealD:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2458   default:
2459     assert( false, "ShouldNotReachHere()");
2460   }
2461 }
2462 
2463 // Return the operand form corresponding to the given index, else NULL.
2464 OperandForm *OperandForm::constant_operand(FormDict &globals,
2465                                            uint      index) {
2466   // !!!!!
2467   // Check behavior on complex operands
2468   uint n_consts = num_consts(globals);
2469   if( n_consts > 0 ) {
2470     uint i = 0;
2471     const char *type;
2472     Component  *comp;
2473     _components.reset();
2474     if ((comp = _components.iter()) == NULL) {
2475       assert(n_consts == 1, "Bad component list detected.\n");
2476       // Current operand is THE operand
2477       if ( index == 0 ) {
2478         return this;
2479       }
2480     } // end if NULL
2481     else {
2482       // Skip the first component, it can not be a DEF of a constant
2483       do {
2484         type = comp->base_type(globals);
2485         // Check that "type" is a 'ConI', 'ConP', ...
2486         if ( ideal_to_const_type(type) != Form::none ) {
2487           // When at correct component, get corresponding Operand
2488           if ( index == 0 ) {
2489             return globals[comp->_type]->is_operand();
2490           }
2491           // Decrement number of constants to go
2492           --index;
2493         }
2494       } while((comp = _components.iter()) != NULL);
2495     }
2496   }
2497 
2498   // Did not find a constant for this index.
2499   return NULL;
2500 }
2501 
2502 // If this operand has a single ideal type, return its type
2503 Form::DataType OperandForm::simple_type(FormDict &globals) const {
2504   const char *type_name = ideal_type(globals);
2505   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
2506                                     : Form::none;
2507   return type;
2508 }
2509 
2510 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
2511   if ( _matrule == NULL )    return Form::none;
2512 
2513   return _matrule->is_base_constant(globals);
2514 }
2515 
2516 // "true" if this operand is a simple type that is swallowed
2517 bool  OperandForm::swallowed(FormDict &globals) const {
2518   Form::DataType type   = simple_type(globals);
2519   if( type != Form::none ) {
2520     return true;
2521   }
2522 
2523   return false;
2524 }
2525 
2526 // Output code to access the value of the index'th constant
2527 void OperandForm::access_constant(FILE *fp, FormDict &globals,
2528                                   uint const_index) {
2529   OperandForm *oper = constant_operand(globals, const_index);
2530   assert( oper, "Index exceeds number of constants in operand");
2531   Form::DataType dtype = oper->is_base_constant(globals);
2532 
2533   switch(dtype) {
2534   case idealI: fprintf(fp,"_c%d",           const_index); break;
2535   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
2536   case idealL: fprintf(fp,"_c%d",           const_index); break;
2537   case idealF: fprintf(fp,"_c%d",           const_index); break;
2538   case idealD: fprintf(fp,"_c%d",           const_index); break;
2539   default:
2540     assert( false, "ShouldNotReachHere()");
2541   }
2542 }
2543 
2544 
2545 void OperandForm::dump() {
2546   output(stderr);
2547 }
2548 
2549 void OperandForm::output(FILE *fp) {
2550   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
2551   if (_matrule)    _matrule->dump();
2552   if (_interface)  _interface->dump();
2553   if (_attribs)    _attribs->dump();
2554   if (_predicate)  _predicate->dump();
2555   if (_constraint) _constraint->dump();
2556   if (_construct)  _construct->dump();
2557   if (_format)     _format->dump();
2558 }
2559 
2560 //------------------------------Constraint-------------------------------------
2561 Constraint::Constraint(const char *func, const char *arg)
2562   : _func(func), _arg(arg) {
2563 }
2564 Constraint::~Constraint() { /* not owner of char* */
2565 }
2566 
2567 bool Constraint::stack_slots_only() const {
2568   return strcmp(_func, "ALLOC_IN_RC") == 0
2569       && strcmp(_arg,  "stack_slots") == 0;
2570 }
2571 
2572 void Constraint::dump() {
2573   output(stderr);
2574 }
2575 
2576 void Constraint::output(FILE *fp) {           // Write info to output files
2577   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
2578   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
2579 }
2580 
2581 //------------------------------Predicate--------------------------------------
2582 Predicate::Predicate(char *pr)
2583   : _pred(pr) {
2584 }
2585 Predicate::~Predicate() {
2586 }
2587 
2588 void Predicate::dump() {
2589   output(stderr);
2590 }
2591 
2592 void Predicate::output(FILE *fp) {
2593   fprintf(fp,"Predicate");  // Write to output files
2594 }
2595 //------------------------------Interface--------------------------------------
2596 Interface::Interface(const char *name) : _name(name) {
2597 }
2598 Interface::~Interface() {
2599 }
2600 
2601 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
2602   Interface *thsi = (Interface*)this;
2603   if ( thsi->is_RegInterface()   ) return Form::register_interface;
2604   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
2605   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
2606   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
2607 
2608   return Form::no_interface;
2609 }
2610 
2611 RegInterface   *Interface::is_RegInterface() {
2612   if ( strcmp(_name,"REG_INTER") != 0 )
2613     return NULL;
2614   return (RegInterface*)this;
2615 }
2616 MemInterface   *Interface::is_MemInterface() {
2617   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
2618   return (MemInterface*)this;
2619 }
2620 ConstInterface *Interface::is_ConstInterface() {
2621   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
2622   return (ConstInterface*)this;
2623 }
2624 CondInterface  *Interface::is_CondInterface() {
2625   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
2626   return (CondInterface*)this;
2627 }
2628 
2629 
2630 void Interface::dump() {
2631   output(stderr);
2632 }
2633 
2634 // Write info to output files
2635 void Interface::output(FILE *fp) {
2636   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
2637 }
2638 
2639 //------------------------------RegInterface-----------------------------------
2640 RegInterface::RegInterface() : Interface("REG_INTER") {
2641 }
2642 RegInterface::~RegInterface() {
2643 }
2644 
2645 void RegInterface::dump() {
2646   output(stderr);
2647 }
2648 
2649 // Write info to output files
2650 void RegInterface::output(FILE *fp) {
2651   Interface::output(fp);
2652 }
2653 
2654 //------------------------------ConstInterface---------------------------------
2655 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
2656 }
2657 ConstInterface::~ConstInterface() {
2658 }
2659 
2660 void ConstInterface::dump() {
2661   output(stderr);
2662 }
2663 
2664 // Write info to output files
2665 void ConstInterface::output(FILE *fp) {
2666   Interface::output(fp);
2667 }
2668 
2669 //------------------------------MemInterface-----------------------------------
2670 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
2671   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
2672 }
2673 MemInterface::~MemInterface() {
2674   // not owner of any character arrays
2675 }
2676 
2677 void MemInterface::dump() {
2678   output(stderr);
2679 }
2680 
2681 // Write info to output files
2682 void MemInterface::output(FILE *fp) {
2683   Interface::output(fp);
2684   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
2685   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
2686   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
2687   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
2688   // fprintf(fp,"\n");
2689 }
2690 
2691 //------------------------------CondInterface----------------------------------
2692 CondInterface::CondInterface(const char* equal,         const char* equal_format,
2693                              const char* not_equal,     const char* not_equal_format,
2694                              const char* less,          const char* less_format,
2695                              const char* greater_equal, const char* greater_equal_format,
2696                              const char* less_equal,    const char* less_equal_format,
2697                              const char* greater,       const char* greater_format)
2698   : Interface("COND_INTER"),
2699     _equal(equal),                 _equal_format(equal_format),
2700     _not_equal(not_equal),         _not_equal_format(not_equal_format),
2701     _less(less),                   _less_format(less_format),
2702     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
2703     _less_equal(less_equal),       _less_equal_format(less_equal_format),
2704     _greater(greater),             _greater_format(greater_format) {
2705 }
2706 CondInterface::~CondInterface() {
2707   // not owner of any character arrays
2708 }
2709 
2710 void CondInterface::dump() {
2711   output(stderr);
2712 }
2713 
2714 // Write info to output files
2715 void CondInterface::output(FILE *fp) {
2716   Interface::output(fp);
2717   if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
2718   if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
2719   if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
2720   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
2721   if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
2722   if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
2723   // fprintf(fp,"\n");
2724 }
2725 
2726 //------------------------------ConstructRule----------------------------------
2727 ConstructRule::ConstructRule(char *cnstr)
2728   : _construct(cnstr) {
2729 }
2730 ConstructRule::~ConstructRule() {
2731 }
2732 
2733 void ConstructRule::dump() {
2734   output(stderr);
2735 }
2736 
2737 void ConstructRule::output(FILE *fp) {
2738   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
2739 }
2740 
2741 
2742 //==============================Shared Forms===================================
2743 //------------------------------AttributeForm----------------------------------
2744 int         AttributeForm::_insId   = 0;           // start counter at 0
2745 int         AttributeForm::_opId    = 0;           // start counter at 0
2746 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
2747 const char* AttributeForm::_op_cost  = "op_cost";  // required name
2748 
2749 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
2750   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
2751     if (type==OP_ATTR) {
2752       id = ++_opId;
2753     }
2754     else if (type==INS_ATTR) {
2755       id = ++_insId;
2756     }
2757     else assert( false,"");
2758 }
2759 AttributeForm::~AttributeForm() {
2760 }
2761 
2762 // Dynamic type check
2763 AttributeForm *AttributeForm::is_attribute() const {
2764   return (AttributeForm*)this;
2765 }
2766 
2767 
2768 // inlined  // int  AttributeForm::type() { return id;}
2769 
2770 void AttributeForm::dump() {
2771   output(stderr);
2772 }
2773 
2774 void AttributeForm::output(FILE *fp) {
2775   if( _attrname && _attrdef ) {
2776     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
2777             _attrname, _attrdef);
2778   }
2779   else {
2780     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
2781             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
2782   }
2783 }
2784 
2785 //------------------------------Component--------------------------------------
2786 Component::Component(const char *name, const char *type, int usedef)
2787   : _name(name), _type(type), _usedef(usedef) {
2788     _ftype = Form::COMP;
2789 }
2790 Component::~Component() {
2791 }
2792 
2793 // True if this component is equal to the parameter.
2794 bool Component::is(int use_def_kill_enum) const {
2795   return (_usedef == use_def_kill_enum ? true : false);
2796 }
2797 // True if this component is used/def'd/kill'd as the parameter suggests.
2798 bool Component::isa(int use_def_kill_enum) const {
2799   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
2800 }
2801 
2802 // Extend this component with additional use/def/kill behavior
2803 int Component::promote_use_def_info(int new_use_def) {
2804   _usedef |= new_use_def;
2805 
2806   return _usedef;
2807 }
2808 
2809 // Check the base type of this component, if it has one
2810 const char *Component::base_type(FormDict &globals) {
2811   const Form *frm = globals[_type];
2812   if (frm == NULL) return NULL;
2813   OperandForm *op = frm->is_operand();
2814   if (op == NULL) return NULL;
2815   if (op->ideal_only()) return op->_ident;
2816   return (char *)op->ideal_type(globals);
2817 }
2818 
2819 void Component::dump() {
2820   output(stderr);
2821 }
2822 
2823 void Component::output(FILE *fp) {
2824   fprintf(fp,"Component:");  // Write to output files
2825   fprintf(fp, "  name = %s", _name);
2826   fprintf(fp, ", type = %s", _type);
2827   const char * usedef = "Undefined Use/Def info";
2828   switch (_usedef) {
2829     case USE:      usedef = "USE";      break;
2830     case USE_DEF:  usedef = "USE_DEF";  break;
2831     case USE_KILL: usedef = "USE_KILL"; break;
2832     case KILL:     usedef = "KILL";     break;
2833     case TEMP:     usedef = "TEMP";     break;
2834     case DEF:      usedef = "DEF";      break;
2835     default: assert(false, "unknown effect");
2836   }
2837   fprintf(fp, ", use/def = %s\n", usedef);
2838 }
2839 
2840 
2841 //------------------------------ComponentList---------------------------------
2842 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
2843 }
2844 ComponentList::~ComponentList() {
2845   // // This list may not own its elements if copied via assignment
2846   // Component *component;
2847   // for (reset(); (component = iter()) != NULL;) {
2848   //   delete component;
2849   // }
2850 }
2851 
2852 void   ComponentList::insert(Component *component, bool mflag) {
2853   NameList::addName((char *)component);
2854   if(mflag) _matchcnt++;
2855 }
2856 void   ComponentList::insert(const char *name, const char *opType, int usedef,
2857                              bool mflag) {
2858   Component * component = new Component(name, opType, usedef);
2859   insert(component, mflag);
2860 }
2861 Component *ComponentList::current() { return (Component*)NameList::current(); }
2862 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
2863 Component *ComponentList::match_iter() {
2864   if(_iter < _matchcnt) return (Component*)NameList::iter();
2865   return NULL;
2866 }
2867 Component *ComponentList::post_match_iter() {
2868   Component *comp = iter();
2869   // At end of list?
2870   if ( comp == NULL ) {
2871     return comp;
2872   }
2873   // In post-match components?
2874   if (_iter > match_count()-1) {
2875     return comp;
2876   }
2877 
2878   return post_match_iter();
2879 }
2880 
2881 void       ComponentList::reset()   { NameList::reset(); }
2882 int        ComponentList::count()   { return NameList::count(); }
2883 
2884 Component *ComponentList::operator[](int position) {
2885   // Shortcut complete iteration if there are not enough entries
2886   if (position >= count()) return NULL;
2887 
2888   int        index     = 0;
2889   Component *component = NULL;
2890   for (reset(); (component = iter()) != NULL;) {
2891     if (index == position) {
2892       return component;
2893     }
2894     ++index;
2895   }
2896 
2897   return NULL;
2898 }
2899 
2900 const Component *ComponentList::search(const char *name) {
2901   PreserveIter pi(this);
2902   reset();
2903   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
2904     if( strcmp(comp->_name,name) == 0 ) return comp;
2905   }
2906 
2907   return NULL;
2908 }
2909 
2910 // Return number of USEs + number of DEFs
2911 // When there are no components, or the first component is a USE,
2912 // then we add '1' to hold a space for the 'result' operand.
2913 int ComponentList::num_operands() {
2914   PreserveIter pi(this);
2915   uint       count = 1;           // result operand
2916   uint       position = 0;
2917 
2918   Component *component  = NULL;
2919   for( reset(); (component = iter()) != NULL; ++position ) {
2920     if( component->isa(Component::USE) ||
2921         ( position == 0 && (! component->isa(Component::DEF))) ) {
2922       ++count;
2923     }
2924   }
2925 
2926   return count;
2927 }
2928 
2929 // Return zero-based position in list;  -1 if not in list.
2930 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
2931 int ComponentList::operand_position(const char *name, int usedef) {
2932   PreserveIter pi(this);
2933   int position = 0;
2934   int num_opnds = num_operands();
2935   Component *component;
2936   Component* preceding_non_use = NULL;
2937   Component* first_def = NULL;
2938   for (reset(); (component = iter()) != NULL; ++position) {
2939     // When the first component is not a DEF,
2940     // leave space for the result operand!
2941     if ( position==0 && (! component->isa(Component::DEF)) ) {
2942       ++position;
2943       ++num_opnds;
2944     }
2945     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
2946       // When the first entry in the component list is a DEF and a USE
2947       // Treat them as being separate, a DEF first, then a USE
2948       if( position==0
2949           && usedef==Component::USE && component->isa(Component::DEF) ) {
2950         assert(position+1 < num_opnds, "advertised index in bounds");
2951         return position+1;
2952       } else {
2953         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
2954           fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
2955         }
2956         if( position >= num_opnds ) {
2957           fprintf(stderr, "the name '%s' is too late in its name list\n", name);
2958         }
2959         assert(position < num_opnds, "advertised index in bounds");
2960         return position;
2961       }
2962     }
2963     if( component->isa(Component::DEF)
2964         && component->isa(Component::USE) ) {
2965       ++position;
2966       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2967     }
2968     if( component->isa(Component::DEF) && !first_def ) {
2969       first_def = component;
2970     }
2971     if( !component->isa(Component::USE) && component != first_def ) {
2972       preceding_non_use = component;
2973     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
2974       preceding_non_use = NULL;
2975     }
2976   }
2977   return Not_in_list;
2978 }
2979 
2980 // Find position for this name, regardless of use/def information
2981 int ComponentList::operand_position(const char *name) {
2982   PreserveIter pi(this);
2983   int position = 0;
2984   Component *component;
2985   for (reset(); (component = iter()) != NULL; ++position) {
2986     // When the first component is not a DEF,
2987     // leave space for the result operand!
2988     if ( position==0 && (! component->isa(Component::DEF)) ) {
2989       ++position;
2990     }
2991     if (strcmp(name, component->_name)==0) {
2992       return position;
2993     }
2994     if( component->isa(Component::DEF)
2995         && component->isa(Component::USE) ) {
2996       ++position;
2997       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2998     }
2999   }
3000   return Not_in_list;
3001 }
3002 
3003 int ComponentList::operand_position_format(const char *name) {
3004   PreserveIter pi(this);
3005   int  first_position = operand_position(name);
3006   int  use_position   = operand_position(name, Component::USE);
3007 
3008   return ((first_position < use_position) ? use_position : first_position);
3009 }
3010 
3011 int ComponentList::label_position() {
3012   PreserveIter pi(this);
3013   int position = 0;
3014   reset();
3015   for( Component *comp; (comp = iter()) != NULL; ++position) {
3016     // When the first component is not a DEF,
3017     // leave space for the result operand!
3018     if ( position==0 && (! comp->isa(Component::DEF)) ) {
3019       ++position;
3020     }
3021     if (strcmp(comp->_type, "label")==0) {
3022       return position;
3023     }
3024     if( comp->isa(Component::DEF)
3025         && comp->isa(Component::USE) ) {
3026       ++position;
3027       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3028     }
3029   }
3030 
3031   return -1;
3032 }
3033 
3034 int ComponentList::method_position() {
3035   PreserveIter pi(this);
3036   int position = 0;
3037   reset();
3038   for( Component *comp; (comp = iter()) != NULL; ++position) {
3039     // When the first component is not a DEF,
3040     // leave space for the result operand!
3041     if ( position==0 && (! comp->isa(Component::DEF)) ) {
3042       ++position;
3043     }
3044     if (strcmp(comp->_type, "method")==0) {
3045       return position;
3046     }
3047     if( comp->isa(Component::DEF)
3048         && comp->isa(Component::USE) ) {
3049       ++position;
3050       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3051     }
3052   }
3053 
3054   return -1;
3055 }
3056 
3057 void ComponentList::dump() { output(stderr); }
3058 
3059 void ComponentList::output(FILE *fp) {
3060   PreserveIter pi(this);
3061   fprintf(fp, "\n");
3062   Component *component;
3063   for (reset(); (component = iter()) != NULL;) {
3064     component->output(fp);
3065   }
3066   fprintf(fp, "\n");
3067 }
3068 
3069 //------------------------------MatchNode--------------------------------------
3070 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
3071                      const char *opType, MatchNode *lChild, MatchNode *rChild)
3072   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
3073     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
3074     _commutative_id(0) {
3075   _numleaves = (lChild ? lChild->_numleaves : 0)
3076                + (rChild ? rChild->_numleaves : 0);
3077 }
3078 
3079 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
3080   : _AD(ad), _result(mnode._result), _name(mnode._name),
3081     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
3082     _internalop(0), _numleaves(mnode._numleaves),
3083     _commutative_id(mnode._commutative_id) {
3084 }
3085 
3086 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
3087   : _AD(ad), _result(mnode._result), _name(mnode._name),
3088     _opType(mnode._opType),
3089     _internalop(0), _numleaves(mnode._numleaves),
3090     _commutative_id(mnode._commutative_id) {
3091   if (mnode._lChild) {
3092     _lChild = new MatchNode(ad, *mnode._lChild, clone);
3093   } else {
3094     _lChild = NULL;
3095   }
3096   if (mnode._rChild) {
3097     _rChild = new MatchNode(ad, *mnode._rChild, clone);
3098   } else {
3099     _rChild = NULL;
3100   }
3101 }
3102 
3103 MatchNode::~MatchNode() {
3104   // // This node may not own its children if copied via assignment
3105   // if( _lChild ) delete _lChild;
3106   // if( _rChild ) delete _rChild;
3107 }
3108 
3109 bool  MatchNode::find_type(const char *type, int &position) const {
3110   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
3111   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
3112 
3113   if (strcmp(type,_opType)==0)  {
3114     return true;
3115   } else {
3116     ++position;
3117   }
3118   return false;
3119 }
3120 
3121 // Recursive call collecting info on top-level operands, not transitive.
3122 // Implementation does not modify state of internal structures.
3123 void MatchNode::append_components(FormDict& locals, ComponentList& components,
3124                                   bool def_flag) const {
3125   int usedef = def_flag ? Component::DEF : Component::USE;
3126   FormDict &globals = _AD.globalNames();
3127 
3128   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3129   // Base case
3130   if (_lChild==NULL && _rChild==NULL) {
3131     // If _opType is not an operation, do not build a component for it #####
3132     const Form *f = globals[_opType];
3133     if( f != NULL ) {
3134       // Add non-ideals that are operands, operand-classes,
3135       if( ! f->ideal_only()
3136           && (f->is_opclass() || f->is_operand()) ) {
3137         components.insert(_name, _opType, usedef, true);
3138       }
3139     }
3140     return;
3141   }
3142   // Promote results of "Set" to DEF
3143   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
3144   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
3145   tmpdef_flag = false;   // only applies to component immediately following 'Set'
3146   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
3147 }
3148 
3149 // Find the n'th base-operand in the match node,
3150 // recursively investigates match rules of user-defined operands.
3151 //
3152 // Implementation does not modify state of internal structures since they
3153 // can be shared.
3154 bool MatchNode::base_operand(uint &position, FormDict &globals,
3155                              const char * &result, const char * &name,
3156                              const char * &opType) const {
3157   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
3158   // Base case
3159   if (_lChild==NULL && _rChild==NULL) {
3160     // Check for special case: "Universe", "label"
3161     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
3162       if (position == 0) {
3163         result = _result;
3164         name   = _name;
3165         opType = _opType;
3166         return 1;
3167       } else {
3168         -- position;
3169         return 0;
3170       }
3171     }
3172 
3173     const Form *form = globals[_opType];
3174     MatchNode *matchNode = NULL;
3175     // Check for user-defined type
3176     if (form) {
3177       // User operand or instruction?
3178       OperandForm  *opForm = form->is_operand();
3179       InstructForm *inForm = form->is_instruction();
3180       if ( opForm ) {
3181         matchNode = (MatchNode*)opForm->_matrule;
3182       } else if ( inForm ) {
3183         matchNode = (MatchNode*)inForm->_matrule;
3184       }
3185     }
3186     // if this is user-defined, recurse on match rule
3187     // User-defined operand and instruction forms have a match-rule.
3188     if (matchNode) {
3189       return (matchNode->base_operand(position,globals,result,name,opType));
3190     } else {
3191       // Either not a form, or a system-defined form (no match rule).
3192       if (position==0) {
3193         result = _result;
3194         name   = _name;
3195         opType = _opType;
3196         return 1;
3197       } else {
3198         --position;
3199         return 0;
3200       }
3201     }
3202 
3203   } else {
3204     // Examine the left child and right child as well
3205     if (_lChild) {
3206       if (_lChild->base_operand(position, globals, result, name, opType))
3207         return 1;
3208     }
3209 
3210     if (_rChild) {
3211       if (_rChild->base_operand(position, globals, result, name, opType))
3212         return 1;
3213     }
3214   }
3215 
3216   return 0;
3217 }
3218 
3219 // Recursive call on all operands' match rules in my match rule.
3220 uint  MatchNode::num_consts(FormDict &globals) const {
3221   uint        index      = 0;
3222   uint        num_consts = 0;
3223   const char *result;
3224   const char *name;
3225   const char *opType;
3226 
3227   for (uint position = index;
3228        base_operand(position,globals,result,name,opType); position = index) {
3229     ++index;
3230     if( ideal_to_const_type(opType) )        num_consts++;
3231   }
3232 
3233   return num_consts;
3234 }
3235 
3236 // Recursive call on all operands' match rules in my match rule.
3237 // Constants in match rule subtree with specified type
3238 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
3239   uint        index      = 0;
3240   uint        num_consts = 0;
3241   const char *result;
3242   const char *name;
3243   const char *opType;
3244 
3245   for (uint position = index;
3246        base_operand(position,globals,result,name,opType); position = index) {
3247     ++index;
3248     if( ideal_to_const_type(opType) == type ) num_consts++;
3249   }
3250 
3251   return num_consts;
3252 }
3253 
3254 // Recursive call on all operands' match rules in my match rule.
3255 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
3256   return  num_consts( globals, Form::idealP );
3257 }
3258 
3259 bool  MatchNode::sets_result() const {
3260   return   ( (strcmp(_name,"Set") == 0) ? true : false );
3261 }
3262 
3263 const char *MatchNode::reduce_right(FormDict &globals) const {
3264   // If there is no right reduction, return NULL.
3265   const char      *rightStr    = NULL;
3266 
3267   // If we are a "Set", start from the right child.
3268   const MatchNode *const mnode = sets_result() ?
3269     (const MatchNode *const)this->_rChild :
3270     (const MatchNode *const)this;
3271 
3272   // If our right child exists, it is the right reduction
3273   if ( mnode->_rChild ) {
3274     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
3275       : mnode->_rChild->_opType;
3276   }
3277   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
3278   return rightStr;
3279 }
3280 
3281 const char *MatchNode::reduce_left(FormDict &globals) const {
3282   // If there is no left reduction, return NULL.
3283   const char  *leftStr  = NULL;
3284 
3285   // If we are a "Set", start from the right child.
3286   const MatchNode *const mnode = sets_result() ?
3287     (const MatchNode *const)this->_rChild :
3288     (const MatchNode *const)this;
3289 
3290   // If our left child exists, it is the left reduction
3291   if ( mnode->_lChild ) {
3292     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
3293       : mnode->_lChild->_opType;
3294   } else {
3295     // May be simple chain rule: (Set dst operand_form_source)
3296     if ( sets_result() ) {
3297       OperandForm *oper = globals[mnode->_opType]->is_operand();
3298       if( oper ) {
3299         leftStr = mnode->_opType;
3300       }
3301     }
3302   }
3303   return leftStr;
3304 }
3305 
3306 //------------------------------count_instr_names------------------------------
3307 // Count occurrences of operands names in the leaves of the instruction
3308 // match rule.
3309 void MatchNode::count_instr_names( Dict &names ) {
3310   if( !this ) return;
3311   if( _lChild ) _lChild->count_instr_names(names);
3312   if( _rChild ) _rChild->count_instr_names(names);
3313   if( !_lChild && !_rChild ) {
3314     uintptr_t cnt = (uintptr_t)names[_name];
3315     cnt++;                      // One more name found
3316     names.Insert(_name,(void*)cnt);
3317   }
3318 }
3319 
3320 //------------------------------build_instr_pred-------------------------------
3321 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
3322 // can skip some leading instances of 'name'.
3323 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
3324   if( _lChild ) {
3325     if( !cnt ) strcpy( buf, "_kids[0]->" );
3326     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
3327     if( cnt < 0 ) return cnt;   // Found it, all done
3328   }
3329   if( _rChild ) {
3330     if( !cnt ) strcpy( buf, "_kids[1]->" );
3331     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
3332     if( cnt < 0 ) return cnt;   // Found it, all done
3333   }
3334   if( !_lChild && !_rChild ) {  // Found a leaf
3335     // Wrong name?  Give up...
3336     if( strcmp(name,_name) ) return cnt;
3337     if( !cnt ) strcpy(buf,"_leaf");
3338     return cnt-1;
3339   }
3340   return cnt;
3341 }
3342 
3343 
3344 //------------------------------build_internalop-------------------------------
3345 // Build string representation of subtree
3346 void MatchNode::build_internalop( ) {
3347   char *iop, *subtree;
3348   const char *lstr, *rstr;
3349   // Build string representation of subtree
3350   // Operation lchildType rchildType
3351   int len = (int)strlen(_opType) + 4;
3352   lstr = (_lChild) ? ((_lChild->_internalop) ?
3353                        _lChild->_internalop : _lChild->_opType) : "";
3354   rstr = (_rChild) ? ((_rChild->_internalop) ?
3355                        _rChild->_internalop : _rChild->_opType) : "";
3356   len += (int)strlen(lstr) + (int)strlen(rstr);
3357   subtree = (char *)malloc(len);
3358   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
3359   // Hash the subtree string in _internalOps; if a name exists, use it
3360   iop = (char *)_AD._internalOps[subtree];
3361   // Else create a unique name, and add it to the hash table
3362   if (iop == NULL) {
3363     iop = subtree;
3364     _AD._internalOps.Insert(subtree, iop);
3365     _AD._internalOpNames.addName(iop);
3366     _AD._internalMatch.Insert(iop, this);
3367   }
3368   // Add the internal operand name to the MatchNode
3369   _internalop = iop;
3370   _result = iop;
3371 }
3372 
3373 
3374 void MatchNode::dump() {
3375   output(stderr);
3376 }
3377 
3378 void MatchNode::output(FILE *fp) {
3379   if (_lChild==0 && _rChild==0) {
3380     fprintf(fp," %s",_name);    // operand
3381   }
3382   else {
3383     fprintf(fp," (%s ",_name);  // " (opcodeName "
3384     if(_lChild) _lChild->output(fp); //               left operand
3385     if(_rChild) _rChild->output(fp); //                    right operand
3386     fprintf(fp,")");                 //                                 ")"
3387   }
3388 }
3389 
3390 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
3391   static const char *needs_ideal_memory_list[] = {
3392     "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
3393     "StoreB","StoreC","Store" ,"StoreFP",
3394     "LoadI", "LoadUI2L", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
3395     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
3396     "StoreVector", "LoadVector",
3397     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
3398     "LoadPLocked", "LoadLLocked",
3399     "StorePConditional", "StoreIConditional", "StoreLConditional",
3400     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
3401     "StoreCM",
3402     "ClearArray"
3403   };
3404   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
3405   if( strcmp(_opType,"PrefetchRead")==0 ||
3406       strcmp(_opType,"PrefetchWrite")==0 ||
3407       strcmp(_opType,"PrefetchAllocation")==0 )
3408     return 1;
3409   if( _lChild ) {
3410     const char *opType = _lChild->_opType;
3411     for( int i=0; i<cnt; i++ )
3412       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3413         return 1;
3414     if( _lChild->needs_ideal_memory_edge(globals) )
3415       return 1;
3416   }
3417   if( _rChild ) {
3418     const char *opType = _rChild->_opType;
3419     for( int i=0; i<cnt; i++ )
3420       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3421         return 1;
3422     if( _rChild->needs_ideal_memory_edge(globals) )
3423       return 1;
3424   }
3425 
3426   return 0;
3427 }
3428 
3429 // TRUE if defines a derived oop, and so needs a base oop edge present
3430 // post-matching.
3431 int MatchNode::needs_base_oop_edge() const {
3432   if( !strcmp(_opType,"AddP") ) return 1;
3433   if( strcmp(_opType,"Set") ) return 0;
3434   return !strcmp(_rChild->_opType,"AddP");
3435 }
3436 
3437 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
3438   if( is_simple_chain_rule(globals) ) {
3439     const char *src = _matrule->_rChild->_opType;
3440     OperandForm *src_op = globals[src]->is_operand();
3441     assert( src_op, "Not operand class of chain rule" );
3442     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
3443   }                             // Else check instruction
3444 
3445   return _matrule ? _matrule->needs_base_oop_edge() : 0;
3446 }
3447 
3448 
3449 //-------------------------cisc spilling methods-------------------------------
3450 // helper routines and methods for detecting cisc-spilling instructions
3451 //-------------------------cisc_spill_merge------------------------------------
3452 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
3453   int cisc_spillable  = Maybe_cisc_spillable;
3454 
3455   // Combine results of left and right checks
3456   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
3457     // neither side is spillable, nor prevents cisc spilling
3458     cisc_spillable = Maybe_cisc_spillable;
3459   }
3460   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
3461     // right side is spillable
3462     cisc_spillable = right_spillable;
3463   }
3464   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
3465     // left side is spillable
3466     cisc_spillable = left_spillable;
3467   }
3468   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
3469     // left or right prevents cisc spilling this instruction
3470     cisc_spillable = Not_cisc_spillable;
3471   }
3472   else {
3473     // Only allow one to spill
3474     cisc_spillable = Not_cisc_spillable;
3475   }
3476 
3477   return cisc_spillable;
3478 }
3479 
3480 //-------------------------root_ops_match--------------------------------------
3481 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
3482   // Base Case: check that the current operands/operations match
3483   assert( op1, "Must have op's name");
3484   assert( op2, "Must have op's name");
3485   const Form *form1 = globals[op1];
3486   const Form *form2 = globals[op2];
3487 
3488   return (form1 == form2);
3489 }
3490 
3491 //-------------------------cisc_spill_match_node-------------------------------
3492 // Recursively check two MatchRules for legal conversion via cisc-spilling
3493 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
3494   int cisc_spillable  = Maybe_cisc_spillable;
3495   int left_spillable  = Maybe_cisc_spillable;
3496   int right_spillable = Maybe_cisc_spillable;
3497 
3498   // Check that each has same number of operands at this level
3499   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
3500     return Not_cisc_spillable;
3501 
3502   // Base Case: check that the current operands/operations match
3503   // or are CISC spillable
3504   assert( _opType, "Must have _opType");
3505   assert( mRule2->_opType, "Must have _opType");
3506   const Form *form  = globals[_opType];
3507   const Form *form2 = globals[mRule2->_opType];
3508   if( form == form2 ) {
3509     cisc_spillable = Maybe_cisc_spillable;
3510   } else {
3511     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
3512     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
3513     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
3514     DataType data_type = Form::none;
3515     if (form->is_operand()) {
3516       // Make sure the loadX matches the type of the reg
3517       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
3518     }
3519     // Detect reg vs (loadX memory)
3520     if( form->is_cisc_reg(globals)
3521         && form2_inst
3522         && data_type != Form::none
3523         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
3524         && (name_left != NULL)       // NOT (load)
3525         && (name_right == NULL) ) {  // NOT (load memory foo)
3526       const Form *form2_left = name_left ? globals[name_left] : NULL;
3527       if( form2_left && form2_left->is_cisc_mem(globals) ) {
3528         cisc_spillable = Is_cisc_spillable;
3529         operand        = _name;
3530         reg_type       = _result;
3531         return Is_cisc_spillable;
3532       } else {
3533         cisc_spillable = Not_cisc_spillable;
3534       }
3535     }
3536     // Detect reg vs memory
3537     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
3538       cisc_spillable = Is_cisc_spillable;
3539       operand        = _name;
3540       reg_type       = _result;
3541       return Is_cisc_spillable;
3542     } else {
3543       cisc_spillable = Not_cisc_spillable;
3544     }
3545   }
3546 
3547   // If cisc is still possible, check rest of tree
3548   if( cisc_spillable == Maybe_cisc_spillable ) {
3549     // Check that each has same number of operands at this level
3550     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3551 
3552     // Check left operands
3553     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
3554       left_spillable = Maybe_cisc_spillable;
3555     } else {
3556       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
3557     }
3558 
3559     // Check right operands
3560     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3561       right_spillable =  Maybe_cisc_spillable;
3562     } else {
3563       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3564     }
3565 
3566     // Combine results of left and right checks
3567     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3568   }
3569 
3570   return cisc_spillable;
3571 }
3572 
3573 //---------------------------cisc_spill_match_rule------------------------------
3574 // Recursively check two MatchRules for legal conversion via cisc-spilling
3575 // This method handles the root of Match tree,
3576 // general recursive checks done in MatchNode
3577 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
3578                                            MatchRule* mRule2, const char* &operand,
3579                                            const char* &reg_type) {
3580   int cisc_spillable  = Maybe_cisc_spillable;
3581   int left_spillable  = Maybe_cisc_spillable;
3582   int right_spillable = Maybe_cisc_spillable;
3583 
3584   // Check that each sets a result
3585   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
3586   // Check that each has same number of operands at this level
3587   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3588 
3589   // Check left operands: at root, must be target of 'Set'
3590   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
3591     left_spillable = Not_cisc_spillable;
3592   } else {
3593     // Do not support cisc-spilling instruction's target location
3594     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
3595       left_spillable = Maybe_cisc_spillable;
3596     } else {
3597       left_spillable = Not_cisc_spillable;
3598     }
3599   }
3600 
3601   // Check right operands: recursive walk to identify reg->mem operand
3602   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3603     right_spillable =  Maybe_cisc_spillable;
3604   } else {
3605     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3606   }
3607 
3608   // Combine results of left and right checks
3609   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3610 
3611   return cisc_spillable;
3612 }
3613 
3614 //----------------------------- equivalent ------------------------------------
3615 // Recursively check to see if two match rules are equivalent.
3616 // This rule handles the root.
3617 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
3618   // Check that each sets a result
3619   if (sets_result() != mRule2->sets_result()) {
3620     return false;
3621   }
3622 
3623   // Check that the current operands/operations match
3624   assert( _opType, "Must have _opType");
3625   assert( mRule2->_opType, "Must have _opType");
3626   const Form *form  = globals[_opType];
3627   const Form *form2 = globals[mRule2->_opType];
3628   if( form != form2 ) {
3629     return false;
3630   }
3631 
3632   if (_lChild ) {
3633     if( !_lChild->equivalent(globals, mRule2->_lChild) )
3634       return false;
3635   } else if (mRule2->_lChild) {
3636     return false; // I have NULL left child, mRule2 has non-NULL left child.
3637   }
3638 
3639   if (_rChild ) {
3640     if( !_rChild->equivalent(globals, mRule2->_rChild) )
3641       return false;
3642   } else if (mRule2->_rChild) {
3643     return false; // I have NULL right child, mRule2 has non-NULL right child.
3644   }
3645 
3646   // We've made it through the gauntlet.
3647   return true;
3648 }
3649 
3650 //----------------------------- equivalent ------------------------------------
3651 // Recursively check to see if two match rules are equivalent.
3652 // This rule handles the operands.
3653 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
3654   if( !mNode2 )
3655     return false;
3656 
3657   // Check that the current operands/operations match
3658   assert( _opType, "Must have _opType");
3659   assert( mNode2->_opType, "Must have _opType");
3660   const Form *form  = globals[_opType];
3661   const Form *form2 = globals[mNode2->_opType];
3662   if( form != form2 ) {
3663     return false;
3664   }
3665 
3666   // Check that their children also match
3667   if (_lChild ) {
3668     if( !_lChild->equivalent(globals, mNode2->_lChild) )
3669       return false;
3670   } else if (mNode2->_lChild) {
3671     return false; // I have NULL left child, mNode2 has non-NULL left child.
3672   }
3673 
3674   if (_rChild ) {
3675     if( !_rChild->equivalent(globals, mNode2->_rChild) )
3676       return false;
3677   } else if (mNode2->_rChild) {
3678     return false; // I have NULL right child, mNode2 has non-NULL right child.
3679   }
3680 
3681   // We've made it through the gauntlet.
3682   return true;
3683 }
3684 
3685 //-------------------------- has_commutative_op -------------------------------
3686 // Recursively check for commutative operations with subtree operands
3687 // which could be swapped.
3688 void MatchNode::count_commutative_op(int& count) {
3689   static const char *commut_op_list[] = {
3690     "AddI","AddL","AddF","AddD",
3691     "AndI","AndL",
3692     "MaxI","MinI",
3693     "MulI","MulL","MulF","MulD",
3694     "OrI" ,"OrL" ,
3695     "XorI","XorL"
3696   };
3697   int cnt = sizeof(commut_op_list)/sizeof(char*);
3698 
3699   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
3700     // Don't swap if right operand is an immediate constant.
3701     bool is_const = false;
3702     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
3703       FormDict &globals = _AD.globalNames();
3704       const Form *form = globals[_rChild->_opType];
3705       if ( form ) {
3706         OperandForm  *oper = form->is_operand();
3707         if( oper && oper->interface_type(globals) == Form::constant_interface )
3708           is_const = true;
3709       }
3710     }
3711     if( !is_const ) {
3712       for( int i=0; i<cnt; i++ ) {
3713         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
3714           count++;
3715           _commutative_id = count; // id should be > 0
3716           break;
3717         }
3718       }
3719     }
3720   }
3721   if( _lChild )
3722     _lChild->count_commutative_op(count);
3723   if( _rChild )
3724     _rChild->count_commutative_op(count);
3725 }
3726 
3727 //-------------------------- swap_commutative_op ------------------------------
3728 // Recursively swap specified commutative operation with subtree operands.
3729 void MatchNode::swap_commutative_op(bool atroot, int id) {
3730   if( _commutative_id == id ) { // id should be > 0
3731     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
3732             "not swappable operation");
3733     MatchNode* tmp = _lChild;
3734     _lChild = _rChild;
3735     _rChild = tmp;
3736     // Don't exit here since we need to build internalop.
3737   }
3738 
3739   bool is_set = ( strcmp(_opType, "Set") == 0 );
3740   if( _lChild )
3741     _lChild->swap_commutative_op(is_set, id);
3742   if( _rChild )
3743     _rChild->swap_commutative_op(is_set, id);
3744 
3745   // If not the root, reduce this subtree to an internal operand
3746   if( !atroot && (_lChild || _rChild) ) {
3747     build_internalop();
3748   }
3749 }
3750 
3751 //-------------------------- swap_commutative_op ------------------------------
3752 // Recursively swap specified commutative operation with subtree operands.
3753 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
3754   assert(match_rules_cnt < 100," too many match rule clones");
3755   // Clone
3756   MatchRule* clone = new MatchRule(_AD, this);
3757   // Swap operands of commutative operation
3758   ((MatchNode*)clone)->swap_commutative_op(true, count);
3759   char* buf = (char*) malloc(strlen(instr_ident) + 4);
3760   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
3761   clone->_result = buf;
3762 
3763   clone->_next = this->_next;
3764   this-> _next = clone;
3765   if( (--count) > 0 ) {
3766     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3767     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3768   }
3769 }
3770 
3771 //------------------------------MatchRule--------------------------------------
3772 MatchRule::MatchRule(ArchDesc &ad)
3773   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
3774     _next = NULL;
3775 }
3776 
3777 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
3778   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
3779     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
3780     _next = NULL;
3781 }
3782 
3783 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
3784                      int numleaves)
3785   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
3786     _numchilds(0) {
3787       _next = NULL;
3788       mroot->_lChild = NULL;
3789       mroot->_rChild = NULL;
3790       delete mroot;
3791       _numleaves = numleaves;
3792       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
3793 }
3794 MatchRule::~MatchRule() {
3795 }
3796 
3797 // Recursive call collecting info on top-level operands, not transitive.
3798 // Implementation does not modify state of internal structures.
3799 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
3800   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3801 
3802   MatchNode::append_components(locals, components,
3803                                false /* not necessarily a def */);
3804 }
3805 
3806 // Recursive call on all operands' match rules in my match rule.
3807 // Implementation does not modify state of internal structures  since they
3808 // can be shared.
3809 // The MatchNode that is called first treats its
3810 bool MatchRule::base_operand(uint &position0, FormDict &globals,
3811                              const char *&result, const char * &name,
3812                              const char * &opType)const{
3813   uint position = position0;
3814 
3815   return (MatchNode::base_operand( position, globals, result, name, opType));
3816 }
3817 
3818 
3819 bool MatchRule::is_base_register(FormDict &globals) const {
3820   uint   position = 1;
3821   const char  *result   = NULL;
3822   const char  *name     = NULL;
3823   const char  *opType   = NULL;
3824   if (!base_operand(position, globals, result, name, opType)) {
3825     position = 0;
3826     if( base_operand(position, globals, result, name, opType) &&
3827         (strcmp(opType,"RegI")==0 ||
3828          strcmp(opType,"RegP")==0 ||
3829          strcmp(opType,"RegN")==0 ||
3830          strcmp(opType,"RegL")==0 ||
3831          strcmp(opType,"RegF")==0 ||
3832          strcmp(opType,"RegD")==0 ||
3833          strcmp(opType,"VecS")==0 ||
3834          strcmp(opType,"VecD")==0 ||
3835          strcmp(opType,"VecX")==0 ||
3836          strcmp(opType,"VecY")==0 ||
3837          strcmp(opType,"Reg" )==0) ) {
3838       return 1;
3839     }
3840   }
3841   return 0;
3842 }
3843 
3844 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
3845   uint         position = 1;
3846   const char  *result   = NULL;
3847   const char  *name     = NULL;
3848   const char  *opType   = NULL;
3849   if (!base_operand(position, globals, result, name, opType)) {
3850     position = 0;
3851     if (base_operand(position, globals, result, name, opType)) {
3852       return ideal_to_const_type(opType);
3853     }
3854   }
3855   return Form::none;
3856 }
3857 
3858 bool MatchRule::is_chain_rule(FormDict &globals) const {
3859 
3860   // Check for chain rule, and do not generate a match list for it
3861   if ((_lChild == NULL) && (_rChild == NULL) ) {
3862     const Form *form = globals[_opType];
3863     // If this is ideal, then it is a base match, not a chain rule.
3864     if ( form && form->is_operand() && (!form->ideal_only())) {
3865       return true;
3866     }
3867   }
3868   // Check for "Set" form of chain rule, and do not generate a match list
3869   if (_rChild) {
3870     const char *rch = _rChild->_opType;
3871     const Form *form = globals[rch];
3872     if ((!strcmp(_opType,"Set") &&
3873          ((form) && form->is_operand()))) {
3874       return true;
3875     }
3876   }
3877   return false;
3878 }
3879 
3880 int MatchRule::is_ideal_copy() const {
3881   if( _rChild ) {
3882     const char  *opType = _rChild->_opType;
3883 #if 1
3884     if( strcmp(opType,"CastIP")==0 )
3885       return 1;
3886 #else
3887     if( strcmp(opType,"CastII")==0 )
3888       return 1;
3889     // Do not treat *CastPP this way, because it
3890     // may transfer a raw pointer to an oop.
3891     // If the register allocator were to coalesce this
3892     // into a single LRG, the GC maps would be incorrect.
3893     //if( strcmp(opType,"CastPP")==0 )
3894     //  return 1;
3895     //if( strcmp(opType,"CheckCastPP")==0 )
3896     //  return 1;
3897     //
3898     // Do not treat CastX2P or CastP2X this way, because
3899     // raw pointers and int types are treated differently
3900     // when saving local & stack info for safepoints in
3901     // Output().
3902     //if( strcmp(opType,"CastX2P")==0 )
3903     //  return 1;
3904     //if( strcmp(opType,"CastP2X")==0 )
3905     //  return 1;
3906 #endif
3907   }
3908   if( is_chain_rule(_AD.globalNames()) &&
3909       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
3910     return 1;
3911   return 0;
3912 }
3913 
3914 
3915 int MatchRule::is_expensive() const {
3916   if( _rChild ) {
3917     const char  *opType = _rChild->_opType;
3918     if( strcmp(opType,"AtanD")==0 ||
3919         strcmp(opType,"CosD")==0 ||
3920         strcmp(opType,"DivD")==0 ||
3921         strcmp(opType,"DivF")==0 ||
3922         strcmp(opType,"DivI")==0 ||
3923         strcmp(opType,"ExpD")==0 ||
3924         strcmp(opType,"LogD")==0 ||
3925         strcmp(opType,"Log10D")==0 ||
3926         strcmp(opType,"ModD")==0 ||
3927         strcmp(opType,"ModF")==0 ||
3928         strcmp(opType,"ModI")==0 ||
3929         strcmp(opType,"PowD")==0 ||
3930         strcmp(opType,"SinD")==0 ||
3931         strcmp(opType,"SqrtD")==0 ||
3932         strcmp(opType,"TanD")==0 ||
3933         strcmp(opType,"ConvD2F")==0 ||
3934         strcmp(opType,"ConvD2I")==0 ||
3935         strcmp(opType,"ConvD2L")==0 ||
3936         strcmp(opType,"ConvF2D")==0 ||
3937         strcmp(opType,"ConvF2I")==0 ||
3938         strcmp(opType,"ConvF2L")==0 ||
3939         strcmp(opType,"ConvI2D")==0 ||
3940         strcmp(opType,"ConvI2F")==0 ||
3941         strcmp(opType,"ConvI2L")==0 ||
3942         strcmp(opType,"ConvL2D")==0 ||
3943         strcmp(opType,"ConvL2F")==0 ||
3944         strcmp(opType,"ConvL2I")==0 ||
3945         strcmp(opType,"DecodeN")==0 ||
3946         strcmp(opType,"EncodeP")==0 ||
3947         strcmp(opType,"RoundDouble")==0 ||
3948         strcmp(opType,"RoundFloat")==0 ||
3949         strcmp(opType,"ReverseBytesI")==0 ||
3950         strcmp(opType,"ReverseBytesL")==0 ||
3951         strcmp(opType,"ReverseBytesUS")==0 ||
3952         strcmp(opType,"ReverseBytesS")==0 ||
3953         strcmp(opType,"ReplicateB")==0 ||
3954         strcmp(opType,"ReplicateC")==0 ||
3955         strcmp(opType,"ReplicateS")==0 ||
3956         strcmp(opType,"ReplicateI")==0 ||
3957         strcmp(opType,"ReplicateL")==0 ||
3958         strcmp(opType,"ReplicateF")==0 ||
3959         strcmp(opType,"ReplicateD")==0 ||
3960         0 /* 0 to line up columns nicely */ )
3961       return 1;
3962   }
3963   return 0;
3964 }
3965 
3966 bool MatchRule::is_ideal_if() const {
3967   if( !_opType ) return false;
3968   return
3969     !strcmp(_opType,"If"            ) ||
3970     !strcmp(_opType,"CountedLoopEnd");
3971 }
3972 
3973 bool MatchRule::is_ideal_fastlock() const {
3974   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3975     return (strcmp(_rChild->_opType,"FastLock") == 0);
3976   }
3977   return false;
3978 }
3979 
3980 bool MatchRule::is_ideal_membar() const {
3981   if( !_opType ) return false;
3982   return
3983     !strcmp(_opType,"MemBarAcquire"  ) ||
3984     !strcmp(_opType,"MemBarRelease"  ) ||
3985     !strcmp(_opType,"MemBarAcquireLock") ||
3986     !strcmp(_opType,"MemBarReleaseLock") ||
3987     !strcmp(_opType,"MemBarVolatile" ) ||
3988     !strcmp(_opType,"MemBarCPUOrder" ) ||
3989     !strcmp(_opType,"MemBarStoreStore" );
3990 }
3991 
3992 bool MatchRule::is_ideal_loadPC() const {
3993   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3994     return (strcmp(_rChild->_opType,"LoadPC") == 0);
3995   }
3996   return false;
3997 }
3998 
3999 bool MatchRule::is_ideal_box() const {
4000   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4001     return (strcmp(_rChild->_opType,"Box") == 0);
4002   }
4003   return false;
4004 }
4005 
4006 bool MatchRule::is_ideal_goto() const {
4007   bool   ideal_goto = false;
4008 
4009   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
4010     ideal_goto = true;
4011   }
4012   return ideal_goto;
4013 }
4014 
4015 bool MatchRule::is_ideal_jump() const {
4016   if( _opType ) {
4017     if( !strcmp(_opType,"Jump") )
4018       return true;
4019   }
4020   return false;
4021 }
4022 
4023 bool MatchRule::is_ideal_bool() const {
4024   if( _opType ) {
4025     if( !strcmp(_opType,"Bool") )
4026       return true;
4027   }
4028   return false;
4029 }
4030 
4031 
4032 Form::DataType MatchRule::is_ideal_load() const {
4033   Form::DataType ideal_load = Form::none;
4034 
4035   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4036     const char *opType = _rChild->_opType;
4037     ideal_load = is_load_from_memory(opType);
4038   }
4039 
4040   return ideal_load;
4041 }
4042 
4043 bool MatchRule::is_vector() const {
4044   if( _rChild ) {
4045     const char  *opType = _rChild->_opType;
4046     if( strcmp(opType,"ReplicateB")==0 ||
4047         strcmp(opType,"ReplicateC")==0 ||
4048         strcmp(opType,"ReplicateS")==0 ||
4049         strcmp(opType,"ReplicateI")==0 ||
4050         strcmp(opType,"ReplicateL")==0 ||
4051         strcmp(opType,"ReplicateF")==0 ||
4052         strcmp(opType,"LoadVector")==0 ||
4053         strcmp(opType,"StoreVector")==0 ||
4054         0 /* 0 to line up columns nicely */ )
4055       return true;
4056   }
4057   return false;
4058 }
4059 
4060 
4061 bool MatchRule::skip_antidep_check() const {
4062   // Some loads operate on what is effectively immutable memory so we
4063   // should skip the anti dep computations.  For some of these nodes
4064   // the rewritable field keeps the anti dep logic from triggering but
4065   // for certain kinds of LoadKlass it does not since they are
4066   // actually reading memory which could be rewritten by the runtime,
4067   // though never by generated code.  This disables it uniformly for
4068   // the nodes that behave like this: LoadKlass, LoadNKlass and
4069   // LoadRange.
4070   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4071     const char *opType = _rChild->_opType;
4072     if (strcmp("LoadKlass", opType) == 0 ||
4073         strcmp("LoadNKlass", opType) == 0 ||
4074         strcmp("LoadRange", opType) == 0) {
4075       return true;
4076     }
4077   }
4078 
4079   return false;
4080 }
4081 
4082 
4083 Form::DataType MatchRule::is_ideal_store() const {
4084   Form::DataType ideal_store = Form::none;
4085 
4086   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4087     const char *opType = _rChild->_opType;
4088     ideal_store = is_store_to_memory(opType);
4089   }
4090 
4091   return ideal_store;
4092 }
4093 
4094 
4095 void MatchRule::dump() {
4096   output(stderr);
4097 }
4098 
4099 void MatchRule::output(FILE *fp) {
4100   fprintf(fp,"MatchRule: ( %s",_name);
4101   if (_lChild) _lChild->output(fp);
4102   if (_rChild) _rChild->output(fp);
4103   fprintf(fp," )\n");
4104   fprintf(fp,"   nesting depth = %d\n", _depth);
4105   if (_result) fprintf(fp,"   Result Type = %s", _result);
4106   fprintf(fp,"\n");
4107 }
4108 
4109 //------------------------------Attribute--------------------------------------
4110 Attribute::Attribute(char *id, char* val, int type)
4111   : _ident(id), _val(val), _atype(type) {
4112 }
4113 Attribute::~Attribute() {
4114 }
4115 
4116 int Attribute::int_val(ArchDesc &ad) {
4117   // Make sure it is an integer constant:
4118   int result = 0;
4119   if (!_val || !ADLParser::is_int_token(_val, result)) {
4120     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
4121                   _ident, _val ? _val : "");
4122   }
4123   return result;
4124 }
4125 
4126 void Attribute::dump() {
4127   output(stderr);
4128 } // Debug printer
4129 
4130 // Write to output files
4131 void Attribute::output(FILE *fp) {
4132   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
4133 }
4134 
4135 //------------------------------FormatRule----------------------------------
4136 FormatRule::FormatRule(char *temp)
4137   : _temp(temp) {
4138 }
4139 FormatRule::~FormatRule() {
4140 }
4141 
4142 void FormatRule::dump() {
4143   output(stderr);
4144 }
4145 
4146 // Write to output files
4147 void FormatRule::output(FILE *fp) {
4148   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
4149   fprintf(fp,"\n");
4150 }