1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/oopMap.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/block.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/chaitin.hpp"
  33 #include "opto/coalesce.hpp"
  34 #include "opto/connode.hpp"
  35 #include "opto/indexSet.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/opcodes.hpp"
  39 
  40 #define EXACT_PRESSURE 1
  41 
  42 //=============================================================================
  43 //------------------------------IFG--------------------------------------------
  44 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
  45 }
  46 
  47 //------------------------------init-------------------------------------------
  48 void PhaseIFG::init( uint maxlrg ) {
  49   _maxlrg = maxlrg;
  50   _yanked = new (_arena) VectorSet(_arena);
  51   _is_square = false;
  52   // Make uninitialized adjacency lists
  53   _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
  54   // Also make empty live range structures
  55   _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
  56   memset(_lrgs,0,sizeof(LRG)*maxlrg);
  57   // Init all to empty
  58   for( uint i = 0; i < maxlrg; i++ ) {
  59     _adjs[i].initialize(maxlrg);
  60     _lrgs[i].Set_All();
  61   }
  62 }
  63 
  64 //------------------------------add--------------------------------------------
  65 // Add edge between vertices a & b.  These are sorted (triangular matrix),
  66 // then the smaller number is inserted in the larger numbered array.
  67 int PhaseIFG::add_edge( uint a, uint b ) {
  68   lrgs(a).invalid_degree();
  69   lrgs(b).invalid_degree();
  70   // Sort a and b, so that a is bigger
  71   assert( !_is_square, "only on triangular" );
  72   if( a < b ) { uint tmp = a; a = b; b = tmp; }
  73   return _adjs[a].insert( b );
  74 }
  75 
  76 //------------------------------add_vector-------------------------------------
  77 // Add an edge between 'a' and everything in the vector.
  78 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
  79   // IFG is triangular, so do the inserts where 'a' < 'b'.
  80   assert( !_is_square, "only on triangular" );
  81   IndexSet *adjs_a = &_adjs[a];
  82   if( !vec->count() ) return;
  83 
  84   IndexSetIterator elements(vec);
  85   uint neighbor;
  86   while ((neighbor = elements.next()) != 0) {
  87     add_edge( a, neighbor );
  88   }
  89 }
  90 
  91 //------------------------------test-------------------------------------------
  92 // Is there an edge between a and b?
  93 int PhaseIFG::test_edge( uint a, uint b ) const {
  94   // Sort a and b, so that a is larger
  95   assert( !_is_square, "only on triangular" );
  96   if( a < b ) { uint tmp = a; a = b; b = tmp; }
  97   return _adjs[a].member(b);
  98 }
  99 
 100 //------------------------------SquareUp---------------------------------------
 101 // Convert triangular matrix to square matrix
 102 void PhaseIFG::SquareUp() {
 103   assert( !_is_square, "only on triangular" );
 104 
 105   // Simple transpose
 106   for( uint i = 0; i < _maxlrg; i++ ) {
 107     IndexSetIterator elements(&_adjs[i]);
 108     uint datum;
 109     while ((datum = elements.next()) != 0) {
 110       _adjs[datum].insert( i );
 111     }
 112   }
 113   _is_square = true;
 114 }
 115 
 116 //------------------------------Compute_Effective_Degree-----------------------
 117 // Compute effective degree in bulk
 118 void PhaseIFG::Compute_Effective_Degree() {
 119   assert( _is_square, "only on square" );
 120 
 121   for( uint i = 0; i < _maxlrg; i++ )
 122     lrgs(i).set_degree(effective_degree(i));
 123 }
 124 
 125 //------------------------------test_edge_sq-----------------------------------
 126 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
 127   assert( _is_square, "only on square" );
 128   // Swap, so that 'a' has the lesser count.  Then binary search is on
 129   // the smaller of a's list and b's list.
 130   if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
 131   //return _adjs[a].unordered_member(b);
 132   return _adjs[a].member(b);
 133 }
 134 
 135 //------------------------------Union------------------------------------------
 136 // Union edges of B into A
 137 void PhaseIFG::Union( uint a, uint b ) {
 138   assert( _is_square, "only on square" );
 139   IndexSet *A = &_adjs[a];
 140   IndexSetIterator b_elements(&_adjs[b]);
 141   uint datum;
 142   while ((datum = b_elements.next()) != 0) {
 143     if(A->insert(datum)) {
 144       _adjs[datum].insert(a);
 145       lrgs(a).invalid_degree();
 146       lrgs(datum).invalid_degree();
 147     }
 148   }
 149 }
 150 
 151 //------------------------------remove_node------------------------------------
 152 // Yank a Node and all connected edges from the IFG.  Return a
 153 // list of neighbors (edges) yanked.
 154 IndexSet *PhaseIFG::remove_node( uint a ) {
 155   assert( _is_square, "only on square" );
 156   assert( !_yanked->test(a), "" );
 157   _yanked->set(a);
 158 
 159   // I remove the LRG from all neighbors.
 160   IndexSetIterator elements(&_adjs[a]);
 161   LRG &lrg_a = lrgs(a);
 162   uint datum;
 163   while ((datum = elements.next()) != 0) {
 164     _adjs[datum].remove(a);
 165     lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
 166   }
 167   return neighbors(a);
 168 }
 169 
 170 //------------------------------re_insert--------------------------------------
 171 // Re-insert a yanked Node.
 172 void PhaseIFG::re_insert( uint a ) {
 173   assert( _is_square, "only on square" );
 174   assert( _yanked->test(a), "" );
 175   (*_yanked) >>= a;
 176 
 177   IndexSetIterator elements(&_adjs[a]);
 178   uint datum;
 179   while ((datum = elements.next()) != 0) {
 180     _adjs[datum].insert(a);
 181     lrgs(datum).invalid_degree();
 182   }
 183 }
 184 
 185 //------------------------------compute_degree---------------------------------
 186 // Compute the degree between 2 live ranges.  If both live ranges are
 187 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
 188 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
 189 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
 190 // this is so.
 191 int LRG::compute_degree( LRG &l ) const {
 192   int tmp;
 193   int num_regs = _num_regs;
 194   int nregs = l.num_regs();
 195   tmp =  (_fat_proj || l._fat_proj)     // either is a fat-proj?
 196     ? (num_regs * nregs)                // then use product
 197     : MAX2(num_regs,nregs);             // else use max
 198   return tmp;
 199 }
 200 
 201 //------------------------------effective_degree-------------------------------
 202 // Compute effective degree for this live range.  If both live ranges are
 203 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
 204 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
 205 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
 206 // this is so.
 207 int PhaseIFG::effective_degree( uint lidx ) const {
 208   int eff = 0;
 209   int num_regs = lrgs(lidx).num_regs();
 210   int fat_proj = lrgs(lidx)._fat_proj;
 211   IndexSet *s = neighbors(lidx);
 212   IndexSetIterator elements(s);
 213   uint nidx;
 214   while((nidx = elements.next()) != 0) {
 215     LRG &lrgn = lrgs(nidx);
 216     int nregs = lrgn.num_regs();
 217     eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
 218       ? (num_regs * nregs)              // then use product
 219       : MAX2(num_regs,nregs);           // else use max
 220   }
 221   return eff;
 222 }
 223 
 224 
 225 #ifndef PRODUCT
 226 //------------------------------dump-------------------------------------------
 227 void PhaseIFG::dump() const {
 228   tty->print_cr("-- Interference Graph --%s--",
 229                 _is_square ? "square" : "triangular" );
 230   if( _is_square ) {
 231     for( uint i = 0; i < _maxlrg; i++ ) {
 232       tty->print( (*_yanked)[i] ? "XX " : "  ");
 233       tty->print("L%d: { ",i);
 234       IndexSetIterator elements(&_adjs[i]);
 235       uint datum;
 236       while ((datum = elements.next()) != 0) {
 237         tty->print("L%d ", datum);
 238       }
 239       tty->print_cr("}");
 240 
 241     }
 242     return;
 243   }
 244 
 245   // Triangular
 246   for( uint i = 0; i < _maxlrg; i++ ) {
 247     uint j;
 248     tty->print( (*_yanked)[i] ? "XX " : "  ");
 249     tty->print("L%d: { ",i);
 250     for( j = _maxlrg; j > i; j-- )
 251       if( test_edge(j - 1,i) ) {
 252         tty->print("L%d ",j - 1);
 253       }
 254     tty->print("| ");
 255     IndexSetIterator elements(&_adjs[i]);
 256     uint datum;
 257     while ((datum = elements.next()) != 0) {
 258       tty->print("L%d ", datum);
 259     }
 260     tty->print("}\n");
 261   }
 262   tty->print("\n");
 263 }
 264 
 265 //------------------------------stats------------------------------------------
 266 void PhaseIFG::stats() const {
 267   ResourceMark rm;
 268   int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
 269   memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
 270   uint i;
 271   for( i = 0; i < _maxlrg; i++ ) {
 272     h_cnt[neighbor_cnt(i)]++;
 273   }
 274   tty->print_cr("--Histogram of counts--");
 275   for( i = 0; i < _maxlrg*2; i++ )
 276     if( h_cnt[i] )
 277       tty->print("%d/%d ",i,h_cnt[i]);
 278   tty->print_cr("");
 279 }
 280 
 281 //------------------------------verify-----------------------------------------
 282 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
 283   // IFG is square, sorted and no need for Find
 284   for( uint i = 0; i < _maxlrg; i++ ) {
 285     assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
 286     IndexSet *set = &_adjs[i];
 287     IndexSetIterator elements(set);
 288     uint idx;
 289     uint last = 0;
 290     while ((idx = elements.next()) != 0) {
 291       assert( idx != i, "Must have empty diagonal");
 292       assert( pc->Find_const(idx) == idx, "Must not need Find" );
 293       assert( _adjs[idx].member(i), "IFG not square" );
 294       assert( !(*_yanked)[idx], "No yanked neighbors" );
 295       assert( last < idx, "not sorted increasing");
 296       last = idx;
 297     }
 298     assert( !lrgs(i)._degree_valid ||
 299             effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong" );
 300   }
 301 }
 302 #endif
 303 
 304 //------------------------------interfere_with_live----------------------------
 305 // Interfere this register with everything currently live.  Use the RegMasks
 306 // to trim the set of possible interferences. Return a count of register-only
 307 // interferences as an estimate of register pressure.
 308 void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
 309   uint retval = 0;
 310   // Interfere with everything live.
 311   const RegMask &rm = lrgs(r).mask();
 312   // Check for interference by checking overlap of regmasks.
 313   // Only interfere if acceptable register masks overlap.
 314   IndexSetIterator elements(liveout);
 315   uint l;
 316   while( (l = elements.next()) != 0 )
 317     if( rm.overlap( lrgs(l).mask() ) )
 318       _ifg->add_edge( r, l );
 319 }
 320 
 321 //------------------------------build_ifg_virtual------------------------------
 322 // Actually build the interference graph.  Uses virtual registers only, no
 323 // physical register masks.  This allows me to be very aggressive when
 324 // coalescing copies.  Some of this aggressiveness will have to be undone
 325 // later, but I'd rather get all the copies I can now (since unremoved copies
 326 // at this point can end up in bad places).  Copies I re-insert later I have
 327 // more opportunity to insert them in low-frequency locations.
 328 void PhaseChaitin::build_ifg_virtual( ) {
 329 
 330   // For all blocks (in any order) do...
 331   for( uint i=0; i<_cfg._num_blocks; i++ ) {
 332     Block *b = _cfg._blocks[i];
 333     IndexSet *liveout = _live->live(b);
 334 
 335     // The IFG is built by a single reverse pass over each basic block.
 336     // Starting with the known live-out set, we remove things that get
 337     // defined and add things that become live (essentially executing one
 338     // pass of a standard LIVE analysis). Just before a Node defines a value
 339     // (and removes it from the live-ness set) that value is certainly live.
 340     // The defined value interferes with everything currently live.  The
 341     // value is then removed from the live-ness set and it's inputs are
 342     // added to the live-ness set.
 343     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
 344       Node *n = b->_nodes[j-1];
 345 
 346       // Get value being defined
 347       uint r = n2lidx(n);
 348 
 349       // Some special values do not allocate
 350       if( r ) {
 351 
 352         // Remove from live-out set
 353         liveout->remove(r);
 354 
 355         // Copies do not define a new value and so do not interfere.
 356         // Remove the copies source from the liveout set before interfering.
 357         uint idx = n->is_Copy();
 358         if( idx ) liveout->remove( n2lidx(n->in(idx)) );
 359 
 360         // Interfere with everything live
 361         interfere_with_live( r, liveout );
 362       }
 363 
 364       // Make all inputs live
 365       if( !n->is_Phi() ) {      // Phi function uses come from prior block
 366         for( uint k = 1; k < n->req(); k++ )
 367           liveout->insert( n2lidx(n->in(k)) );
 368       }
 369 
 370       // 2-address instructions always have the defined value live
 371       // on entry to the instruction, even though it is being defined
 372       // by the instruction.  We pretend a virtual copy sits just prior
 373       // to the instruction and kills the src-def'd register.
 374       // In other words, for 2-address instructions the defined value
 375       // interferes with all inputs.
 376       uint idx;
 377       if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
 378         const MachNode *mach = n->as_Mach();
 379         // Sometimes my 2-address ADDs are commuted in a bad way.
 380         // We generally want the USE-DEF register to refer to the
 381         // loop-varying quantity, to avoid a copy.
 382         uint op = mach->ideal_Opcode();
 383         // Check that mach->num_opnds() == 3 to ensure instruction is
 384         // not subsuming constants, effectively excludes addI_cin_imm
 385         // Can NOT swap for instructions like addI_cin_imm since it
 386         // is adding zero to yhi + carry and the second ideal-input
 387         // points to the result of adding low-halves.
 388         // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
 389         if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
 390             n->in(1)->bottom_type()->base() == Type::Int &&
 391             // See if the ADD is involved in a tight data loop the wrong way
 392             n->in(2)->is_Phi() &&
 393             n->in(2)->in(2) == n ) {
 394           Node *tmp = n->in(1);
 395           n->set_req( 1, n->in(2) );
 396           n->set_req( 2, tmp );
 397         }
 398         // Defined value interferes with all inputs
 399         uint lidx = n2lidx(n->in(idx));
 400         for( uint k = 1; k < n->req(); k++ ) {
 401           uint kidx = n2lidx(n->in(k));
 402           if( kidx != lidx )
 403             _ifg->add_edge( r, kidx );
 404         }
 405       }
 406     } // End of forall instructions in block
 407   } // End of forall blocks
 408 }
 409 
 410 //------------------------------count_int_pressure-----------------------------
 411 uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
 412   IndexSetIterator elements(liveout);
 413   uint lidx;
 414   uint cnt = 0;
 415   while ((lidx = elements.next()) != 0) {
 416     if( lrgs(lidx).mask().is_UP() &&
 417         lrgs(lidx).mask_size() &&
 418         !lrgs(lidx)._is_float &&
 419         !lrgs(lidx)._is_vector &&
 420         lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
 421       cnt += lrgs(lidx).reg_pressure();
 422   }
 423   return cnt;
 424 }
 425 
 426 //------------------------------count_float_pressure---------------------------
 427 uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
 428   IndexSetIterator elements(liveout);
 429   uint lidx;
 430   uint cnt = 0;
 431   while ((lidx = elements.next()) != 0) {
 432     if( lrgs(lidx).mask().is_UP() &&
 433         lrgs(lidx).mask_size() &&
 434         (lrgs(lidx)._is_float || lrgs(lidx)._is_vector))
 435       cnt += lrgs(lidx).reg_pressure();
 436   }
 437   return cnt;
 438 }
 439 
 440 //------------------------------lower_pressure---------------------------------
 441 // Adjust register pressure down by 1.  Capture last hi-to-low transition,
 442 static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
 443   if (lrg->mask().is_UP() && lrg->mask_size()) {
 444     if (lrg->_is_float || lrg->_is_vector) {
 445       pressure[1] -= lrg->reg_pressure();
 446       if( pressure[1] == (uint)FLOATPRESSURE ) {
 447         hrp_index[1] = where;
 448 #ifdef EXACT_PRESSURE
 449       if( pressure[1] > b->_freg_pressure )
 450         b->_freg_pressure = pressure[1]+1;
 451 #else
 452         b->_freg_pressure = (uint)FLOATPRESSURE+1;
 453 #endif
 454       }
 455     } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
 456       pressure[0] -= lrg->reg_pressure();
 457       if( pressure[0] == (uint)INTPRESSURE   ) {
 458         hrp_index[0] = where;
 459 #ifdef EXACT_PRESSURE
 460       if( pressure[0] > b->_reg_pressure )
 461         b->_reg_pressure = pressure[0]+1;
 462 #else
 463         b->_reg_pressure = (uint)INTPRESSURE+1;
 464 #endif
 465       }
 466     }
 467   }
 468 }
 469 
 470 //------------------------------build_ifg_physical-----------------------------
 471 // Build the interference graph using physical registers when available.
 472 // That is, if 2 live ranges are simultaneously alive but in their acceptable
 473 // register sets do not overlap, then they do not interfere.
 474 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
 475   NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
 476 
 477   uint spill_reg = LRG::SPILL_REG;
 478   uint must_spill = 0;
 479 
 480   // For all blocks (in any order) do...
 481   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 482     Block *b = _cfg._blocks[i];
 483     // Clone (rather than smash in place) the liveout info, so it is alive
 484     // for the "collect_gc_info" phase later.
 485     IndexSet liveout(_live->live(b));
 486     uint last_inst = b->end_idx();
 487     // Compute first nonphi node index
 488     uint first_inst;
 489     for( first_inst = 1; first_inst < last_inst; first_inst++ )
 490       if( !b->_nodes[first_inst]->is_Phi() )
 491         break;
 492 
 493     // Spills could be inserted before CreateEx node which should be
 494     // first instruction in block after Phis. Move CreateEx up.
 495     for( uint insidx = first_inst; insidx < last_inst; insidx++ ) {
 496       Node *ex = b->_nodes[insidx];
 497       if( ex->is_SpillCopy() ) continue;
 498       if( insidx > first_inst && ex->is_Mach() &&
 499           ex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
 500         // If the CreateEx isn't above all the MachSpillCopies
 501         // then move it to the top.
 502         b->_nodes.remove(insidx);
 503         b->_nodes.insert(first_inst, ex);
 504       }
 505       // Stop once a CreateEx or any other node is found
 506       break;
 507     }
 508 
 509     // Reset block's register pressure values for each ifg construction
 510     uint pressure[2], hrp_index[2];
 511     pressure[0] = pressure[1] = 0;
 512     hrp_index[0] = hrp_index[1] = last_inst+1;
 513     b->_reg_pressure = b->_freg_pressure = 0;
 514     // Liveout things are presumed live for the whole block.  We accumulate
 515     // 'area' accordingly.  If they get killed in the block, we'll subtract
 516     // the unused part of the block from the area.
 517     int inst_count = last_inst - first_inst;
 518     double cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
 519     assert(!(cost < 0.0), "negative spill cost" );
 520     IndexSetIterator elements(&liveout);
 521     uint lidx;
 522     while ((lidx = elements.next()) != 0) {
 523       LRG &lrg = lrgs(lidx);
 524       lrg._area += cost;
 525       // Compute initial register pressure
 526       if (lrg.mask().is_UP() && lrg.mask_size()) {
 527         if (lrg._is_float || lrg._is_vector) {   // Count float pressure
 528           pressure[1] += lrg.reg_pressure();
 529 #ifdef EXACT_PRESSURE
 530           if( pressure[1] > b->_freg_pressure )
 531             b->_freg_pressure = pressure[1];
 532 #endif
 533           // Count int pressure, but do not count the SP, flags
 534         } else if( lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
 535           pressure[0] += lrg.reg_pressure();
 536 #ifdef EXACT_PRESSURE
 537           if( pressure[0] > b->_reg_pressure )
 538             b->_reg_pressure = pressure[0];
 539 #endif
 540         }
 541       }
 542     }
 543     assert( pressure[0] == count_int_pressure  (&liveout), "" );
 544     assert( pressure[1] == count_float_pressure(&liveout), "" );
 545 
 546     // The IFG is built by a single reverse pass over each basic block.
 547     // Starting with the known live-out set, we remove things that get
 548     // defined and add things that become live (essentially executing one
 549     // pass of a standard LIVE analysis).  Just before a Node defines a value
 550     // (and removes it from the live-ness set) that value is certainly live.
 551     // The defined value interferes with everything currently live.  The
 552     // value is then removed from the live-ness set and it's inputs are added
 553     // to the live-ness set.
 554     uint j;
 555     for( j = last_inst + 1; j > 1; j-- ) {
 556       Node *n = b->_nodes[j - 1];
 557 
 558       // Get value being defined
 559       uint r = n2lidx(n);
 560 
 561       // Some special values do not allocate
 562       if( r ) {
 563         // A DEF normally costs block frequency; rematerialized values are
 564         // removed from the DEF sight, so LOWER costs here.
 565         lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq;
 566 
 567         // If it is not live, then this instruction is dead.  Probably caused
 568         // by spilling and rematerialization.  Who cares why, yank this baby.
 569         if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
 570           Node *def = n->in(0);
 571           if( !n->is_Proj() ||
 572               // Could also be a flags-projection of a dead ADD or such.
 573               (n2lidx(def) && !liveout.member(n2lidx(def)) ) ) {
 574             b->_nodes.remove(j - 1);
 575             if( lrgs(r)._def == n ) lrgs(r)._def = 0;
 576             n->disconnect_inputs(NULL);
 577             _cfg._bbs.map(n->_idx,NULL);
 578             n->replace_by(C->top());
 579             // Since yanking a Node from block, high pressure moves up one
 580             hrp_index[0]--;
 581             hrp_index[1]--;
 582             continue;
 583           }
 584 
 585           // Fat-projections kill many registers which cannot be used to
 586           // hold live ranges.
 587           if( lrgs(r)._fat_proj ) {
 588             // Count the int-only registers
 589             RegMask itmp = lrgs(r).mask();
 590             itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
 591             int iregs = itmp.Size();
 592 #ifdef EXACT_PRESSURE
 593             if( pressure[0]+iregs > b->_reg_pressure )
 594               b->_reg_pressure = pressure[0]+iregs;
 595 #endif
 596             if( pressure[0]       <= (uint)INTPRESSURE &&
 597                 pressure[0]+iregs >  (uint)INTPRESSURE ) {
 598 #ifndef EXACT_PRESSURE
 599               b->_reg_pressure = (uint)INTPRESSURE+1;
 600 #endif
 601               hrp_index[0] = j-1;
 602             }
 603             // Count the float-only registers
 604             RegMask ftmp = lrgs(r).mask();
 605             ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
 606             int fregs = ftmp.Size();
 607 #ifdef EXACT_PRESSURE
 608             if( pressure[1]+fregs > b->_freg_pressure )
 609               b->_freg_pressure = pressure[1]+fregs;
 610 #endif
 611             if( pressure[1]       <= (uint)FLOATPRESSURE &&
 612                 pressure[1]+fregs >  (uint)FLOATPRESSURE ) {
 613 #ifndef EXACT_PRESSURE
 614               b->_freg_pressure = (uint)FLOATPRESSURE+1;
 615 #endif
 616               hrp_index[1] = j-1;
 617             }
 618           }
 619 
 620         } else {                // Else it is live
 621           // A DEF also ends 'area' partway through the block.
 622           lrgs(r)._area -= cost;
 623           assert(!(lrgs(r)._area < 0.0), "negative spill area" );
 624 
 625           // Insure high score for immediate-use spill copies so they get a color
 626           if( n->is_SpillCopy()
 627               && lrgs(r).is_singledef()        // MultiDef live range can still split
 628               && n->outcnt() == 1              // and use must be in this block
 629               && _cfg._bbs[n->unique_out()->_idx] == b ) {
 630             // All single-use MachSpillCopy(s) that immediately precede their
 631             // use must color early.  If a longer live range steals their
 632             // color, the spill copy will split and may push another spill copy
 633             // further away resulting in an infinite spill-split-retry cycle.
 634             // Assigning a zero area results in a high score() and a good
 635             // location in the simplify list.
 636             //
 637 
 638             Node *single_use = n->unique_out();
 639             assert( b->find_node(single_use) >= j, "Use must be later in block");
 640             // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
 641 
 642             // Find first non SpillCopy 'm' that follows the current instruction
 643             // (j - 1) is index for current instruction 'n'
 644             Node *m = n;
 645             for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; }
 646             if( m == single_use ) {
 647               lrgs(r)._area = 0.0;
 648             }
 649           }
 650 
 651           // Remove from live-out set
 652           if( liveout.remove(r) ) {
 653             // Adjust register pressure.
 654             // Capture last hi-to-lo pressure transition
 655             lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index );
 656             assert( pressure[0] == count_int_pressure  (&liveout), "" );
 657             assert( pressure[1] == count_float_pressure(&liveout), "" );
 658           }
 659 
 660           // Copies do not define a new value and so do not interfere.
 661           // Remove the copies source from the liveout set before interfering.
 662           uint idx = n->is_Copy();
 663           if( idx ) {
 664             uint x = n2lidx(n->in(idx));
 665             if( liveout.remove( x ) ) {
 666               lrgs(x)._area -= cost;
 667               // Adjust register pressure.
 668               lower_pressure( &lrgs(x), j-1, b, pressure, hrp_index );
 669               assert( pressure[0] == count_int_pressure  (&liveout), "" );
 670               assert( pressure[1] == count_float_pressure(&liveout), "" );
 671             }
 672           }
 673         } // End of if live or not
 674 
 675         // Interfere with everything live.  If the defined value must
 676         // go in a particular register, just remove that register from
 677         // all conflicting parties and avoid the interference.
 678 
 679         // Make exclusions for rematerializable defs.  Since rematerializable
 680         // DEFs are not bound but the live range is, some uses must be bound.
 681         // If we spill live range 'r', it can rematerialize at each use site
 682         // according to its bindings.
 683         const RegMask &rmask = lrgs(r).mask();
 684         if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
 685           // Check for common case
 686           int r_size = lrgs(r).num_regs();
 687           OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
 688           // Smear odd bits
 689           IndexSetIterator elements(&liveout);
 690           uint l;
 691           while ((l = elements.next()) != 0) {
 692             LRG &lrg = lrgs(l);
 693             // If 'l' must spill already, do not further hack his bits.
 694             // He'll get some interferences and be forced to spill later.
 695             if( lrg._must_spill ) continue;
 696             // Remove bound register(s) from 'l's choices
 697             RegMask old = lrg.mask();
 698             uint old_size = lrg.mask_size();
 699             // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
 700             // longer interferes with 'r'.  If 'l' requires aligned
 701             // adjacent pairs, subtract out bit pairs.
 702             assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
 703             if (lrg.num_regs() > 1 && !lrg._fat_proj) {
 704               RegMask r2mask = rmask;
 705               // Leave only aligned set of bits.
 706               r2mask.smear_to_sets(lrg.num_regs());
 707               // It includes vector case.
 708               lrg.SUBTRACT( r2mask );
 709               lrg.compute_set_mask_size();
 710             } else if( r_size != 1 ) { // fat proj
 711               lrg.SUBTRACT( rmask );
 712               lrg.compute_set_mask_size();
 713             } else {            // Common case: size 1 bound removal
 714               if( lrg.mask().Member(r_reg) ) {
 715                 lrg.Remove(r_reg);
 716                 lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1);
 717               }
 718             }
 719             // If 'l' goes completely dry, it must spill.
 720             if( lrg.not_free() ) {
 721               // Give 'l' some kind of reasonable mask, so he picks up
 722               // interferences (and will spill later).
 723               lrg.set_mask( old );
 724               lrg.set_mask_size(old_size);
 725               must_spill++;
 726               lrg._must_spill = 1;
 727               lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
 728             }
 729           }
 730         } // End of if bound
 731 
 732         // Now interference with everything that is live and has
 733         // compatible register sets.
 734         interfere_with_live(r,&liveout);
 735 
 736       } // End of if normal register-allocated value
 737 
 738       // Area remaining in the block
 739       inst_count--;
 740       cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
 741 
 742       // Make all inputs live
 743       if( !n->is_Phi() ) {      // Phi function uses come from prior block
 744         JVMState* jvms = n->jvms();
 745         uint debug_start = jvms ? jvms->debug_start() : 999999;
 746         // Start loop at 1 (skip control edge) for most Nodes.
 747         // SCMemProj's might be the sole use of a StoreLConditional.
 748         // While StoreLConditionals set memory (the SCMemProj use)
 749         // they also def flags; if that flag def is unused the
 750         // allocator sees a flag-setting instruction with no use of
 751         // the flags and assumes it's dead.  This keeps the (useless)
 752         // flag-setting behavior alive while also keeping the (useful)
 753         // memory update effect.
 754         for( uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++ ) {
 755           Node *def = n->in(k);
 756           uint x = n2lidx(def);
 757           if( !x ) continue;
 758           LRG &lrg = lrgs(x);
 759           // No use-side cost for spilling debug info
 760           if( k < debug_start )
 761             // A USE costs twice block frequency (once for the Load, once
 762             // for a Load-delay).  Rematerialized uses only cost once.
 763             lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq));
 764           // It is live now
 765           if( liveout.insert( x ) ) {
 766             // Newly live things assumed live from here to top of block
 767             lrg._area += cost;
 768             // Adjust register pressure
 769             if (lrg.mask().is_UP() && lrg.mask_size()) {
 770               if (lrg._is_float || lrg._is_vector) {
 771                 pressure[1] += lrg.reg_pressure();
 772 #ifdef EXACT_PRESSURE
 773                 if( pressure[1] > b->_freg_pressure )
 774                   b->_freg_pressure = pressure[1];
 775 #endif
 776               } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
 777                 pressure[0] += lrg.reg_pressure();
 778 #ifdef EXACT_PRESSURE
 779                 if( pressure[0] > b->_reg_pressure )
 780                   b->_reg_pressure = pressure[0];
 781 #endif
 782               }
 783             }
 784             assert( pressure[0] == count_int_pressure  (&liveout), "" );
 785             assert( pressure[1] == count_float_pressure(&liveout), "" );
 786           }
 787           assert(!(lrg._area < 0.0), "negative spill area" );
 788         }
 789       }
 790     } // End of reverse pass over all instructions in block
 791 
 792     // If we run off the top of the block with high pressure and
 793     // never see a hi-to-low pressure transition, just record that
 794     // the whole block is high pressure.
 795     if( pressure[0] > (uint)INTPRESSURE   ) {
 796       hrp_index[0] = 0;
 797 #ifdef EXACT_PRESSURE
 798       if( pressure[0] > b->_reg_pressure )
 799         b->_reg_pressure = pressure[0];
 800 #else
 801       b->_reg_pressure = (uint)INTPRESSURE+1;
 802 #endif
 803     }
 804     if( pressure[1] > (uint)FLOATPRESSURE ) {
 805       hrp_index[1] = 0;
 806 #ifdef EXACT_PRESSURE
 807       if( pressure[1] > b->_freg_pressure )
 808         b->_freg_pressure = pressure[1];
 809 #else
 810       b->_freg_pressure = (uint)FLOATPRESSURE+1;
 811 #endif
 812     }
 813 
 814     // Compute high pressure indice; avoid landing in the middle of projnodes
 815     j = hrp_index[0];
 816     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
 817       Node *cur = b->_nodes[j];
 818       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
 819         j--;
 820         cur = b->_nodes[j];
 821       }
 822     }
 823     b->_ihrp_index = j;
 824     j = hrp_index[1];
 825     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
 826       Node *cur = b->_nodes[j];
 827       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
 828         j--;
 829         cur = b->_nodes[j];
 830       }
 831     }
 832     b->_fhrp_index = j;
 833 
 834 #ifndef PRODUCT
 835     // Gather Register Pressure Statistics
 836     if( PrintOptoStatistics ) {
 837       if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE )
 838         _high_pressure++;
 839       else
 840         _low_pressure++;
 841     }
 842 #endif
 843   } // End of for all blocks
 844 
 845   return must_spill;
 846 }