1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/superword.hpp"
  39 
  40 //=============================================================================
  41 //------------------------------is_loop_iv-------------------------------------
  42 // Determine if a node is Counted loop induction variable.
  43 // The method is declared in node.hpp.
  44 const Node* Node::is_loop_iv() const {
  45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
  46       this->as_Phi()->region()->is_CountedLoop() &&
  47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
  48     return this;
  49   } else {
  50     return NULL;
  51   }
  52 }
  53 
  54 //=============================================================================
  55 //------------------------------dump_spec--------------------------------------
  56 // Dump special per-node info
  57 #ifndef PRODUCT
  58 void LoopNode::dump_spec(outputStream *st) const {
  59   if (is_inner_loop()) st->print( "inner " );
  60   if (is_partial_peel_loop()) st->print( "partial_peel " );
  61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  62 }
  63 #endif
  64 
  65 //------------------------------is_valid_counted_loop-------------------------
  66 bool LoopNode::is_valid_counted_loop() const {
  67   if (is_CountedLoop()) {
  68     CountedLoopNode*    l  = as_CountedLoop();
  69     CountedLoopEndNode* le = l->loopexit();
  70     if (le != NULL &&
  71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  72       Node* phi  = l->phi();
  73       Node* exit = le->proj_out(0 /* false */);
  74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
  75           phi != NULL && phi->is_Phi() &&
  76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  77           le->loopnode() == l && le->stride_is_con()) {
  78         return true;
  79       }
  80     }
  81   }
  82   return false;
  83 }
  84 
  85 //------------------------------get_early_ctrl---------------------------------
  86 // Compute earliest legal control
  87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  89   uint i;
  90   Node *early;
  91   if( n->in(0) ) {
  92     early = n->in(0);
  93     if( !early->is_CFG() ) // Might be a non-CFG multi-def
  94       early = get_ctrl(early);        // So treat input as a straight data input
  95     i = 1;
  96   } else {
  97     early = get_ctrl(n->in(1));
  98     i = 2;
  99   }
 100   uint e_d = dom_depth(early);
 101   assert( early, "" );
 102   for( ; i < n->req(); i++ ) {
 103     Node *cin = get_ctrl(n->in(i));
 104     assert( cin, "" );
 105     // Keep deepest dominator depth
 106     uint c_d = dom_depth(cin);
 107     if( c_d > e_d ) {           // Deeper guy?
 108       early = cin;              // Keep deepest found so far
 109       e_d = c_d;
 110     } else if( c_d == e_d &&    // Same depth?
 111                early != cin ) { // If not equal, must use slower algorithm
 112       // If same depth but not equal, one _must_ dominate the other
 113       // and we want the deeper (i.e., dominated) guy.
 114       Node *n1 = early;
 115       Node *n2 = cin;
 116       while( 1 ) {
 117         n1 = idom(n1);          // Walk up until break cycle
 118         n2 = idom(n2);
 119         if( n1 == cin ||        // Walked early up to cin
 120             dom_depth(n2) < c_d )
 121           break;                // early is deeper; keep him
 122         if( n2 == early ||      // Walked cin up to early
 123             dom_depth(n1) < c_d ) {
 124           early = cin;          // cin is deeper; keep him
 125           break;
 126         }
 127       }
 128       e_d = dom_depth(early);   // Reset depth register cache
 129     }
 130   }
 131 
 132   // Return earliest legal location
 133   assert(early == find_non_split_ctrl(early), "unexpected early control");
 134 
 135   return early;
 136 }
 137 
 138 //------------------------------set_early_ctrl---------------------------------
 139 // Set earliest legal control
 140 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
 141   Node *early = get_early_ctrl(n);
 142 
 143   // Record earliest legal location
 144   set_ctrl(n, early);
 145 }
 146 
 147 //------------------------------set_subtree_ctrl-------------------------------
 148 // set missing _ctrl entries on new nodes
 149 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
 150   // Already set?  Get out.
 151   if( _nodes[n->_idx] ) return;
 152   // Recursively set _nodes array to indicate where the Node goes
 153   uint i;
 154   for( i = 0; i < n->req(); ++i ) {
 155     Node *m = n->in(i);
 156     if( m && m != C->root() )
 157       set_subtree_ctrl( m );
 158   }
 159 
 160   // Fixup self
 161   set_early_ctrl( n );
 162 }
 163 
 164 //------------------------------is_counted_loop--------------------------------
 165 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
 166   PhaseGVN *gvn = &_igvn;
 167 
 168   // Counted loop head must be a good RegionNode with only 3 not NULL
 169   // control input edges: Self, Entry, LoopBack.
 170   if (x->in(LoopNode::Self) == NULL || x->req() != 3)
 171     return false;
 172 
 173   Node *init_control = x->in(LoopNode::EntryControl);
 174   Node *back_control = x->in(LoopNode::LoopBackControl);
 175   if (init_control == NULL || back_control == NULL)    // Partially dead
 176     return false;
 177   // Must also check for TOP when looking for a dead loop
 178   if (init_control->is_top() || back_control->is_top())
 179     return false;
 180 
 181   // Allow funny placement of Safepoint
 182   if (back_control->Opcode() == Op_SafePoint)
 183     back_control = back_control->in(TypeFunc::Control);
 184 
 185   // Controlling test for loop
 186   Node *iftrue = back_control;
 187   uint iftrue_op = iftrue->Opcode();
 188   if (iftrue_op != Op_IfTrue &&
 189       iftrue_op != Op_IfFalse)
 190     // I have a weird back-control.  Probably the loop-exit test is in
 191     // the middle of the loop and I am looking at some trailing control-flow
 192     // merge point.  To fix this I would have to partially peel the loop.
 193     return false; // Obscure back-control
 194 
 195   // Get boolean guarding loop-back test
 196   Node *iff = iftrue->in(0);
 197   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
 198     return false;
 199   BoolNode *test = iff->in(1)->as_Bool();
 200   BoolTest::mask bt = test->_test._test;
 201   float cl_prob = iff->as_If()->_prob;
 202   if (iftrue_op == Op_IfFalse) {
 203     bt = BoolTest(bt).negate();
 204     cl_prob = 1.0 - cl_prob;
 205   }
 206   // Get backedge compare
 207   Node *cmp = test->in(1);
 208   int cmp_op = cmp->Opcode();
 209   if (cmp_op != Op_CmpI)
 210     return false;                // Avoid pointer & float compares
 211 
 212   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 213   Node *incr  = cmp->in(1);
 214   Node *limit = cmp->in(2);
 215 
 216   // ---------
 217   // need 'loop()' test to tell if limit is loop invariant
 218   // ---------
 219 
 220   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 221     Node *tmp = incr;            // Then reverse order into the CmpI
 222     incr = limit;
 223     limit = tmp;
 224     bt = BoolTest(bt).commute(); // And commute the exit test
 225   }
 226   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
 227     return false;
 228   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 229     return false;
 230 
 231   Node* phi_incr = NULL;
 232   // Trip-counter increment must be commutative & associative.
 233   if (incr->is_Phi()) {
 234     if (incr->as_Phi()->region() != x || incr->req() != 3)
 235       return false; // Not simple trip counter expression
 236     phi_incr = incr;
 237     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 238     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 239       return false;
 240   }
 241 
 242   Node* trunc1 = NULL;
 243   Node* trunc2 = NULL;
 244   const TypeInt* iv_trunc_t = NULL;
 245   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
 246     return false; // Funny increment opcode
 247   }
 248   assert(incr->Opcode() == Op_AddI, "wrong increment code");
 249 
 250   // Get merge point
 251   Node *xphi = incr->in(1);
 252   Node *stride = incr->in(2);
 253   if (!stride->is_Con()) {     // Oops, swap these
 254     if (!xphi->is_Con())       // Is the other guy a constant?
 255       return false;             // Nope, unknown stride, bail out
 256     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
 257     xphi = stride;
 258     stride = tmp;
 259   }
 260   // Stride must be constant
 261   int stride_con = stride->get_int();
 262   if (stride_con == 0)
 263     return false; // missed some peephole opt
 264 
 265   if (!xphi->is_Phi())
 266     return false; // Too much math on the trip counter
 267   if (phi_incr != NULL && phi_incr != xphi)
 268     return false;
 269   PhiNode *phi = xphi->as_Phi();
 270 
 271   // Phi must be of loop header; backedge must wrap to increment
 272   if (phi->region() != x)
 273     return false;
 274   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
 275       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
 276     return false;
 277   }
 278   Node *init_trip = phi->in(LoopNode::EntryControl);
 279 
 280   // If iv trunc type is smaller than int, check for possible wrap.
 281   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
 282     assert(trunc1 != NULL, "must have found some truncation");
 283 
 284     // Get a better type for the phi (filtered thru if's)
 285     const TypeInt* phi_ft = filtered_type(phi);
 286 
 287     // Can iv take on a value that will wrap?
 288     //
 289     // Ensure iv's limit is not within "stride" of the wrap value.
 290     //
 291     // Example for "short" type
 292     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
 293     //    If the stride is +10, then the last value of the induction
 294     //    variable before the increment (phi_ft->_hi) must be
 295     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
 296     //    ensure no truncation occurs after the increment.
 297 
 298     if (stride_con > 0) {
 299       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
 300           iv_trunc_t->_lo > phi_ft->_lo) {
 301         return false;  // truncation may occur
 302       }
 303     } else if (stride_con < 0) {
 304       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
 305           iv_trunc_t->_hi < phi_ft->_hi) {
 306         return false;  // truncation may occur
 307       }
 308     }
 309     // No possibility of wrap so truncation can be discarded
 310     // Promote iv type to Int
 311   } else {
 312     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
 313   }
 314 
 315   // If the condition is inverted and we will be rolling
 316   // through MININT to MAXINT, then bail out.
 317   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 318       // Odd stride
 319       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
 320       // Count down loop rolls through MAXINT
 321       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
 322       // Count up loop rolls through MININT
 323       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
 324     return false; // Bail out
 325   }
 326 
 327   const TypeInt* init_t = gvn->type(init_trip)->is_int();
 328   const TypeInt* limit_t = gvn->type(limit)->is_int();
 329 
 330   if (stride_con > 0) {
 331     long init_p = (long)init_t->_lo + stride_con;
 332     if (init_p > (long)max_jint || init_p > (long)limit_t->_hi)
 333       return false; // cyclic loop or this loop trips only once
 334   } else {
 335     long init_p = (long)init_t->_hi + stride_con;
 336     if (init_p < (long)min_jint || init_p < (long)limit_t->_lo)
 337       return false; // cyclic loop or this loop trips only once
 338   }
 339 
 340   // =================================================
 341   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
 342   //
 343   assert(x->Opcode() == Op_Loop, "regular loops only");
 344   C->print_method("Before CountedLoop", 3);
 345 
 346   Node *hook = new (C, 6) Node(6);
 347 
 348   if (LoopLimitCheck) {
 349 
 350   // ===================================================
 351   // Generate loop limit check to avoid integer overflow
 352   // in cases like next (cyclic loops):
 353   //
 354   // for (i=0; i <= max_jint; i++) {}
 355   // for (i=0; i <  max_jint; i+=2) {}
 356   //
 357   //
 358   // Limit check predicate depends on the loop test:
 359   //
 360   // for(;i != limit; i++)       --> limit <= (max_jint)
 361   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
 362   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
 363   //
 364 
 365   // Check if limit is excluded to do more precise int overflow check.
 366   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
 367   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
 368 
 369   // If compare points directly to the phi we need to adjust
 370   // the compare so that it points to the incr. Limit have
 371   // to be adjusted to keep trip count the same and the
 372   // adjusted limit should be checked for int overflow.
 373   if (phi_incr != NULL) {
 374     stride_m  += stride_con;
 375   }
 376 
 377   if (limit->is_Con()) {
 378     int limit_con = limit->get_int();
 379     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
 380         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
 381       // Bailout: it could be integer overflow.
 382       return false;
 383     }
 384   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
 385              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
 386       // Limit's type may satisfy the condition, for example,
 387       // when it is an array length.
 388   } else {
 389     // Generate loop's limit check.
 390     // Loop limit check predicate should be near the loop.
 391     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
 392     if (!limit_check_proj) {
 393       // The limit check predicate is not generated if this method trapped here before.
 394 #ifdef ASSERT
 395       if (TraceLoopLimitCheck) {
 396         tty->print("missing loop limit check:");
 397         loop->dump_head();
 398         x->dump(1);
 399       }
 400 #endif
 401       return false;
 402     }
 403 
 404     IfNode* check_iff = limit_check_proj->in(0)->as_If();
 405     Node* cmp_limit;
 406     Node* bol;
 407 
 408     if (stride_con > 0) {
 409       cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
 410       bol = new (C, 2) BoolNode(cmp_limit, BoolTest::le);
 411     } else {
 412       cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
 413       bol = new (C, 2) BoolNode(cmp_limit, BoolTest::ge);
 414     }
 415     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 416     bol = _igvn.register_new_node_with_optimizer(bol);
 417     set_subtree_ctrl(bol);
 418 
 419     // Replace condition in original predicate but preserve Opaque node
 420     // so that previous predicates could be found.
 421     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
 422            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
 423     Node* opq = check_iff->in(1)->in(1);
 424     _igvn.hash_delete(opq);
 425     opq->set_req(1, bol);
 426     // Update ctrl.
 427     set_ctrl(opq, check_iff->in(0));
 428     set_ctrl(check_iff->in(1), check_iff->in(0));
 429 
 430 #ifndef PRODUCT
 431     // report that the loop predication has been actually performed
 432     // for this loop
 433     if (TraceLoopLimitCheck) {
 434       tty->print_cr("Counted Loop Limit Check generated:");
 435       debug_only( bol->dump(2); )
 436     }
 437 #endif
 438   }
 439 
 440   if (phi_incr != NULL) {
 441     // If compare points directly to the phi we need to adjust
 442     // the compare so that it points to the incr. Limit have
 443     // to be adjusted to keep trip count the same and we
 444     // should avoid int overflow.
 445     //
 446     //   i = init; do {} while(i++ < limit);
 447     // is converted to
 448     //   i = init; do {} while(++i < limit+1);
 449     //
 450     limit = gvn->transform(new (C, 3) AddINode(limit, stride));
 451   }
 452 
 453   // Now we need to canonicalize loop condition.
 454   if (bt == BoolTest::ne) {
 455     assert(stride_con == 1 || stride_con == -1, "simple increment only");
 456     // 'ne' can be replaced with 'lt' only when init < limit.
 457     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
 458       bt = BoolTest::lt;
 459     // 'ne' can be replaced with 'gt' only when init > limit.
 460     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
 461       bt = BoolTest::gt;
 462   }
 463 
 464   if (incl_limit) {
 465     // The limit check guaranties that 'limit <= (max_jint - stride)' so
 466     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
 467     //
 468     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
 469     limit = gvn->transform(new (C, 3) AddINode(limit, one));
 470     if (bt == BoolTest::le)
 471       bt = BoolTest::lt;
 472     else if (bt == BoolTest::ge)
 473       bt = BoolTest::gt;
 474     else
 475       ShouldNotReachHere();
 476   }
 477   set_subtree_ctrl( limit );
 478 
 479   } else { // LoopLimitCheck
 480 
 481   // If compare points to incr, we are ok.  Otherwise the compare
 482   // can directly point to the phi; in this case adjust the compare so that
 483   // it points to the incr by adjusting the limit.
 484   if (cmp->in(1) == phi || cmp->in(2) == phi)
 485     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
 486 
 487   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
 488   // Final value for iterator should be: trip_count * stride + init_trip.
 489   Node *one_p = gvn->intcon( 1);
 490   Node *one_m = gvn->intcon(-1);
 491 
 492   Node *trip_count = NULL;
 493   switch( bt ) {
 494   case BoolTest::eq:
 495     ShouldNotReachHere();
 496   case BoolTest::ne:            // Ahh, the case we desire
 497     if (stride_con == 1)
 498       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
 499     else if (stride_con == -1)
 500       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
 501     else
 502       ShouldNotReachHere();
 503     set_subtree_ctrl(trip_count);
 504     //_loop.map(trip_count->_idx,loop(limit));
 505     break;
 506   case BoolTest::le:            // Maybe convert to '<' case
 507     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
 508     set_subtree_ctrl( limit );
 509     hook->init_req(4, limit);
 510 
 511     bt = BoolTest::lt;
 512     // Make the new limit be in the same loop nest as the old limit
 513     //_loop.map(limit->_idx,limit_loop);
 514     // Fall into next case
 515   case BoolTest::lt: {          // Maybe convert to '!=' case
 516     if (stride_con < 0) // Count down loop rolls through MAXINT
 517       ShouldNotReachHere();
 518     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
 519     set_subtree_ctrl( range );
 520     hook->init_req(0, range);
 521 
 522     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
 523     set_subtree_ctrl( bias );
 524     hook->init_req(1, bias);
 525 
 526     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
 527     set_subtree_ctrl( bias1 );
 528     hook->init_req(2, bias1);
 529 
 530     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
 531     set_subtree_ctrl( trip_count );
 532     hook->init_req(3, trip_count);
 533     break;
 534   }
 535 
 536   case BoolTest::ge:            // Maybe convert to '>' case
 537     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
 538     set_subtree_ctrl( limit );
 539     hook->init_req(4 ,limit);
 540 
 541     bt = BoolTest::gt;
 542     // Make the new limit be in the same loop nest as the old limit
 543     //_loop.map(limit->_idx,limit_loop);
 544     // Fall into next case
 545   case BoolTest::gt: {          // Maybe convert to '!=' case
 546     if (stride_con > 0) // count up loop rolls through MININT
 547       ShouldNotReachHere();
 548     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
 549     set_subtree_ctrl( range );
 550     hook->init_req(0, range);
 551 
 552     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
 553     set_subtree_ctrl( bias );
 554     hook->init_req(1, bias);
 555 
 556     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
 557     set_subtree_ctrl( bias1 );
 558     hook->init_req(2, bias1);
 559 
 560     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
 561     set_subtree_ctrl( trip_count );
 562     hook->init_req(3, trip_count);
 563     break;
 564   }
 565   } // switch( bt )
 566 
 567   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
 568   set_subtree_ctrl( span );
 569   hook->init_req(5, span);
 570 
 571   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
 572   set_subtree_ctrl( limit );
 573 
 574   } // LoopLimitCheck
 575 
 576   // Check for SafePoint on backedge and remove
 577   Node *sfpt = x->in(LoopNode::LoopBackControl);
 578   if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
 579     lazy_replace( sfpt, iftrue );
 580     loop->_tail = iftrue;
 581   }
 582 
 583   // Build a canonical trip test.
 584   // Clone code, as old values may be in use.
 585   incr = incr->clone();
 586   incr->set_req(1,phi);
 587   incr->set_req(2,stride);
 588   incr = _igvn.register_new_node_with_optimizer(incr);
 589   set_early_ctrl( incr );
 590   _igvn.hash_delete(phi);
 591   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
 592 
 593   // If phi type is more restrictive than Int, raise to
 594   // Int to prevent (almost) infinite recursion in igvn
 595   // which can only handle integer types for constants or minint..maxint.
 596   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
 597     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
 598     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
 599     nphi = _igvn.register_new_node_with_optimizer(nphi);
 600     set_ctrl(nphi, get_ctrl(phi));
 601     _igvn.replace_node(phi, nphi);
 602     phi = nphi->as_Phi();
 603   }
 604   cmp = cmp->clone();
 605   cmp->set_req(1,incr);
 606   cmp->set_req(2,limit);
 607   cmp = _igvn.register_new_node_with_optimizer(cmp);
 608   set_ctrl(cmp, iff->in(0));
 609 
 610   test = test->clone()->as_Bool();
 611   (*(BoolTest*)&test->_test)._test = bt;
 612   test->set_req(1,cmp);
 613   _igvn.register_new_node_with_optimizer(test);
 614   set_ctrl(test, iff->in(0));
 615 
 616   // Replace the old IfNode with a new LoopEndNode
 617   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
 618   IfNode *le = lex->as_If();
 619   uint dd = dom_depth(iff);
 620   set_idom(le, le->in(0), dd); // Update dominance for loop exit
 621   set_loop(le, loop);
 622 
 623   // Get the loop-exit control
 624   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
 625 
 626   // Need to swap loop-exit and loop-back control?
 627   if (iftrue_op == Op_IfFalse) {
 628     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
 629     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
 630 
 631     loop->_tail = back_control = ift2;
 632     set_loop(ift2, loop);
 633     set_loop(iff2, get_loop(iffalse));
 634 
 635     // Lazy update of 'get_ctrl' mechanism.
 636     lazy_replace_proj( iffalse, iff2 );
 637     lazy_replace_proj( iftrue,  ift2 );
 638 
 639     // Swap names
 640     iffalse = iff2;
 641     iftrue  = ift2;
 642   } else {
 643     _igvn.hash_delete(iffalse);
 644     _igvn.hash_delete(iftrue);
 645     iffalse->set_req_X( 0, le, &_igvn );
 646     iftrue ->set_req_X( 0, le, &_igvn );
 647   }
 648 
 649   set_idom(iftrue,  le, dd+1);
 650   set_idom(iffalse, le, dd+1);
 651   assert(iff->outcnt() == 0, "should be dead now");
 652   lazy_replace( iff, le ); // fix 'get_ctrl'
 653 
 654   // Now setup a new CountedLoopNode to replace the existing LoopNode
 655   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
 656   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
 657   // The following assert is approximately true, and defines the intention
 658   // of can_be_counted_loop.  It fails, however, because phase->type
 659   // is not yet initialized for this loop and its parts.
 660   //assert(l->can_be_counted_loop(this), "sanity");
 661   _igvn.register_new_node_with_optimizer(l);
 662   set_loop(l, loop);
 663   loop->_head = l;
 664   // Fix all data nodes placed at the old loop head.
 665   // Uses the lazy-update mechanism of 'get_ctrl'.
 666   lazy_replace( x, l );
 667   set_idom(l, init_control, dom_depth(x));
 668 
 669   // Check for immediately preceding SafePoint and remove
 670   Node *sfpt2 = le->in(0);
 671   if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
 672     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
 673 
 674   // Free up intermediate goo
 675   _igvn.remove_dead_node(hook);
 676 
 677 #ifdef ASSERT
 678   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
 679   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
 680 #endif
 681 #ifndef PRODUCT
 682   if (TraceLoopOpts) {
 683     tty->print("Counted      ");
 684     loop->dump_head();
 685   }
 686 #endif
 687 
 688   C->print_method("After CountedLoop", 3);
 689 
 690   return true;
 691 }
 692 
 693 //----------------------exact_limit-------------------------------------------
 694 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
 695   assert(loop->_head->is_CountedLoop(), "");
 696   CountedLoopNode *cl = loop->_head->as_CountedLoop();
 697   assert(cl->is_valid_counted_loop(), "");
 698 
 699   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
 700       cl->limit()->Opcode() == Op_LoopLimit) {
 701     // Old code has exact limit (it could be incorrect in case of int overflow).
 702     // Loop limit is exact with stride == 1. And loop may already have exact limit.
 703     return cl->limit();
 704   }
 705   Node *limit = NULL;
 706 #ifdef ASSERT
 707   BoolTest::mask bt = cl->loopexit()->test_trip();
 708   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
 709 #endif
 710   if (cl->has_exact_trip_count()) {
 711     // Simple case: loop has constant boundaries.
 712     // Use longs to avoid integer overflow.
 713     int stride_con = cl->stride_con();
 714     long  init_con = cl->init_trip()->get_int();
 715     long limit_con = cl->limit()->get_int();
 716     julong trip_cnt = cl->trip_count();
 717     long final_con = init_con + trip_cnt*stride_con;
 718     int final_int = (int)final_con;
 719     // The final value should be in integer range since the loop
 720     // is counted and the limit was checked for overflow.
 721     assert(final_con == (long)final_int, "final value should be integer");
 722     limit = _igvn.intcon(final_int);
 723   } else {
 724     // Create new LoopLimit node to get exact limit (final iv value).
 725     limit = new (C, 4) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
 726     register_new_node(limit, cl->in(LoopNode::EntryControl));
 727   }
 728   assert(limit != NULL, "sanity");
 729   return limit;
 730 }
 731 
 732 //------------------------------Ideal------------------------------------------
 733 // Return a node which is more "ideal" than the current node.
 734 // Attempt to convert into a counted-loop.
 735 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 736   if (!can_be_counted_loop(phase)) {
 737     phase->C->set_major_progress();
 738   }
 739   return RegionNode::Ideal(phase, can_reshape);
 740 }
 741 
 742 
 743 //=============================================================================
 744 //------------------------------Ideal------------------------------------------
 745 // Return a node which is more "ideal" than the current node.
 746 // Attempt to convert into a counted-loop.
 747 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 748   return RegionNode::Ideal(phase, can_reshape);
 749 }
 750 
 751 //------------------------------dump_spec--------------------------------------
 752 // Dump special per-node info
 753 #ifndef PRODUCT
 754 void CountedLoopNode::dump_spec(outputStream *st) const {
 755   LoopNode::dump_spec(st);
 756   if (stride_is_con()) {
 757     st->print("stride: %d ",stride_con());
 758   }
 759   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
 760   if (is_main_loop()) st->print("main of N%d", _idx);
 761   if (is_post_loop()) st->print("post of N%d", _main_idx);
 762 }
 763 #endif
 764 
 765 //=============================================================================
 766 int CountedLoopEndNode::stride_con() const {
 767   return stride()->bottom_type()->is_int()->get_con();
 768 }
 769 
 770 //=============================================================================
 771 //------------------------------Value-----------------------------------------
 772 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
 773   const Type* init_t   = phase->type(in(Init));
 774   const Type* limit_t  = phase->type(in(Limit));
 775   const Type* stride_t = phase->type(in(Stride));
 776   // Either input is TOP ==> the result is TOP
 777   if (init_t   == Type::TOP) return Type::TOP;
 778   if (limit_t  == Type::TOP) return Type::TOP;
 779   if (stride_t == Type::TOP) return Type::TOP;
 780 
 781   int stride_con = stride_t->is_int()->get_con();
 782   if (stride_con == 1)
 783     return NULL;  // Identity
 784 
 785   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
 786     // Use longs to avoid integer overflow.
 787     long init_con   =  init_t->is_int()->get_con();
 788     long limit_con  = limit_t->is_int()->get_con();
 789     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
 790     long trip_count = (limit_con - init_con + stride_m)/stride_con;
 791     long final_con  = init_con + stride_con*trip_count;
 792     int final_int = (int)final_con;
 793     // The final value should be in integer range since the loop
 794     // is counted and the limit was checked for overflow.
 795     assert(final_con == (long)final_int, "final value should be integer");
 796     return TypeInt::make(final_int);
 797   }
 798 
 799   return bottom_type(); // TypeInt::INT
 800 }
 801 
 802 //------------------------------Ideal------------------------------------------
 803 // Return a node which is more "ideal" than the current node.
 804 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 805   if (phase->type(in(Init))   == Type::TOP ||
 806       phase->type(in(Limit))  == Type::TOP ||
 807       phase->type(in(Stride)) == Type::TOP)
 808     return NULL;  // Dead
 809 
 810   int stride_con = phase->type(in(Stride))->is_int()->get_con();
 811   if (stride_con == 1)
 812     return NULL;  // Identity
 813 
 814   if (in(Init)->is_Con() && in(Limit)->is_Con())
 815     return NULL;  // Value
 816 
 817   // Delay following optimizations until all loop optimizations
 818   // done to keep Ideal graph simple.
 819   if (!can_reshape || phase->C->major_progress())
 820     return NULL;
 821 
 822   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
 823   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
 824   int stride_p;
 825   long lim, ini;
 826   julong max;
 827   if (stride_con > 0) {
 828     stride_p = stride_con;
 829     lim = limit_t->_hi;
 830     ini = init_t->_lo;
 831     max = (julong)max_jint;
 832   } else {
 833     stride_p = -stride_con;
 834     lim = init_t->_hi;
 835     ini = limit_t->_lo;
 836     max = (julong)min_jint;
 837   }
 838   julong range = lim - ini + stride_p;
 839   if (range <= max) {
 840     // Convert to integer expression if it is not overflow.
 841     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
 842     Node *range = phase->transform(new (phase->C, 3) SubINode(in(Limit), in(Init)));
 843     Node *bias  = phase->transform(new (phase->C, 3) AddINode(range, stride_m));
 844     Node *trip  = phase->transform(new (phase->C, 3) DivINode(0, bias, in(Stride)));
 845     Node *span  = phase->transform(new (phase->C, 3) MulINode(trip, in(Stride)));
 846     return new (phase->C, 3) AddINode(span, in(Init)); // exact limit
 847   }
 848 
 849   if (is_power_of_2(stride_p) ||                // divisor is 2^n
 850       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
 851     // Convert to long expression to avoid integer overflow
 852     // and let igvn optimizer convert this division.
 853     //
 854     Node*   init   = phase->transform( new (phase->C, 2) ConvI2LNode(in(Init)));
 855     Node*  limit   = phase->transform( new (phase->C, 2) ConvI2LNode(in(Limit)));
 856     Node* stride   = phase->longcon(stride_con);
 857     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
 858 
 859     Node *range = phase->transform(new (phase->C, 3) SubLNode(limit, init));
 860     Node *bias  = phase->transform(new (phase->C, 3) AddLNode(range, stride_m));
 861     Node *span;
 862     if (stride_con > 0 && is_power_of_2(stride_p)) {
 863       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
 864       // and avoid generating rounding for division. Zero trip guard should
 865       // guarantee that init < limit but sometimes the guard is missing and
 866       // we can get situation when init > limit. Note, for the empty loop
 867       // optimization zero trip guard is generated explicitly which leaves
 868       // only RCE predicate where exact limit is used and the predicate
 869       // will simply fail forcing recompilation.
 870       Node* neg_stride   = phase->longcon(-stride_con);
 871       span = phase->transform(new (phase->C, 3) AndLNode(bias, neg_stride));
 872     } else {
 873       Node *trip  = phase->transform(new (phase->C, 3) DivLNode(0, bias, stride));
 874       span = phase->transform(new (phase->C, 3) MulLNode(trip, stride));
 875     }
 876     // Convert back to int
 877     Node *span_int = phase->transform(new (phase->C, 2) ConvL2INode(span));
 878     return new (phase->C, 3) AddINode(span_int, in(Init)); // exact limit
 879   }
 880 
 881   return NULL;    // No progress
 882 }
 883 
 884 //------------------------------Identity---------------------------------------
 885 // If stride == 1 return limit node.
 886 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
 887   int stride_con = phase->type(in(Stride))->is_int()->get_con();
 888   if (stride_con == 1 || stride_con == -1)
 889     return in(Limit);
 890   return this;
 891 }
 892 
 893 //=============================================================================
 894 //----------------------match_incr_with_optional_truncation--------------------
 895 // Match increment with optional truncation:
 896 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
 897 // Return NULL for failure. Success returns the increment node.
 898 Node* CountedLoopNode::match_incr_with_optional_truncation(
 899                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
 900   // Quick cutouts:
 901   if (expr == NULL || expr->req() != 3)  return NULL;
 902 
 903   Node *t1 = NULL;
 904   Node *t2 = NULL;
 905   const TypeInt* trunc_t = TypeInt::INT;
 906   Node* n1 = expr;
 907   int   n1op = n1->Opcode();
 908 
 909   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
 910   if (n1op == Op_AndI &&
 911       n1->in(2)->is_Con() &&
 912       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
 913     // %%% This check should match any mask of 2**K-1.
 914     t1 = n1;
 915     n1 = t1->in(1);
 916     n1op = n1->Opcode();
 917     trunc_t = TypeInt::CHAR;
 918   } else if (n1op == Op_RShiftI &&
 919              n1->in(1) != NULL &&
 920              n1->in(1)->Opcode() == Op_LShiftI &&
 921              n1->in(2) == n1->in(1)->in(2) &&
 922              n1->in(2)->is_Con()) {
 923     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
 924     // %%% This check should match any shift in [1..31].
 925     if (shift == 16 || shift == 8) {
 926       t1 = n1;
 927       t2 = t1->in(1);
 928       n1 = t2->in(1);
 929       n1op = n1->Opcode();
 930       if (shift == 16) {
 931         trunc_t = TypeInt::SHORT;
 932       } else if (shift == 8) {
 933         trunc_t = TypeInt::BYTE;
 934       }
 935     }
 936   }
 937 
 938   // If (maybe after stripping) it is an AddI, we won:
 939   if (n1op == Op_AddI) {
 940     *trunc1 = t1;
 941     *trunc2 = t2;
 942     *trunc_type = trunc_t;
 943     return n1;
 944   }
 945 
 946   // failed
 947   return NULL;
 948 }
 949 
 950 
 951 //------------------------------filtered_type--------------------------------
 952 // Return a type based on condition control flow
 953 // A successful return will be a type that is restricted due
 954 // to a series of dominating if-tests, such as:
 955 //    if (i < 10) {
 956 //       if (i > 0) {
 957 //          here: "i" type is [1..10)
 958 //       }
 959 //    }
 960 // or a control flow merge
 961 //    if (i < 10) {
 962 //       do {
 963 //          phi( , ) -- at top of loop type is [min_int..10)
 964 //         i = ?
 965 //       } while ( i < 10)
 966 //
 967 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
 968   assert(n && n->bottom_type()->is_int(), "must be int");
 969   const TypeInt* filtered_t = NULL;
 970   if (!n->is_Phi()) {
 971     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
 972     filtered_t = filtered_type_from_dominators(n, n_ctrl);
 973 
 974   } else {
 975     Node* phi    = n->as_Phi();
 976     Node* region = phi->in(0);
 977     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
 978     if (region && region != C->top()) {
 979       for (uint i = 1; i < phi->req(); i++) {
 980         Node* val   = phi->in(i);
 981         Node* use_c = region->in(i);
 982         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
 983         if (val_t != NULL) {
 984           if (filtered_t == NULL) {
 985             filtered_t = val_t;
 986           } else {
 987             filtered_t = filtered_t->meet(val_t)->is_int();
 988           }
 989         }
 990       }
 991     }
 992   }
 993   const TypeInt* n_t = _igvn.type(n)->is_int();
 994   if (filtered_t != NULL) {
 995     n_t = n_t->join(filtered_t)->is_int();
 996   }
 997   return n_t;
 998 }
 999 
1000 
1001 //------------------------------filtered_type_from_dominators--------------------------------
1002 // Return a possibly more restrictive type for val based on condition control flow of dominators
1003 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
1004   if (val->is_Con()) {
1005      return val->bottom_type()->is_int();
1006   }
1007   uint if_limit = 10; // Max number of dominating if's visited
1008   const TypeInt* rtn_t = NULL;
1009 
1010   if (use_ctrl && use_ctrl != C->top()) {
1011     Node* val_ctrl = get_ctrl(val);
1012     uint val_dom_depth = dom_depth(val_ctrl);
1013     Node* pred = use_ctrl;
1014     uint if_cnt = 0;
1015     while (if_cnt < if_limit) {
1016       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
1017         if_cnt++;
1018         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
1019         if (if_t != NULL) {
1020           if (rtn_t == NULL) {
1021             rtn_t = if_t;
1022           } else {
1023             rtn_t = rtn_t->join(if_t)->is_int();
1024           }
1025         }
1026       }
1027       pred = idom(pred);
1028       if (pred == NULL || pred == C->top()) {
1029         break;
1030       }
1031       // Stop if going beyond definition block of val
1032       if (dom_depth(pred) < val_dom_depth) {
1033         break;
1034       }
1035     }
1036   }
1037   return rtn_t;
1038 }
1039 
1040 
1041 //------------------------------dump_spec--------------------------------------
1042 // Dump special per-node info
1043 #ifndef PRODUCT
1044 void CountedLoopEndNode::dump_spec(outputStream *st) const {
1045   if( in(TestValue)->is_Bool() ) {
1046     BoolTest bt( test_trip()); // Added this for g++.
1047 
1048     st->print("[");
1049     bt.dump_on(st);
1050     st->print("]");
1051   }
1052   st->print(" ");
1053   IfNode::dump_spec(st);
1054 }
1055 #endif
1056 
1057 //=============================================================================
1058 //------------------------------is_member--------------------------------------
1059 // Is 'l' a member of 'this'?
1060 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
1061   while( l->_nest > _nest ) l = l->_parent;
1062   return l == this;
1063 }
1064 
1065 //------------------------------set_nest---------------------------------------
1066 // Set loop tree nesting depth.  Accumulate _has_call bits.
1067 int IdealLoopTree::set_nest( uint depth ) {
1068   _nest = depth;
1069   int bits = _has_call;
1070   if( _child ) bits |= _child->set_nest(depth+1);
1071   if( bits ) _has_call = 1;
1072   if( _next  ) bits |= _next ->set_nest(depth  );
1073   return bits;
1074 }
1075 
1076 //------------------------------split_fall_in----------------------------------
1077 // Split out multiple fall-in edges from the loop header.  Move them to a
1078 // private RegionNode before the loop.  This becomes the loop landing pad.
1079 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
1080   PhaseIterGVN &igvn = phase->_igvn;
1081   uint i;
1082 
1083   // Make a new RegionNode to be the landing pad.
1084   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
1085   phase->set_loop(landing_pad,_parent);
1086   // Gather all the fall-in control paths into the landing pad
1087   uint icnt = fall_in_cnt;
1088   uint oreq = _head->req();
1089   for( i = oreq-1; i>0; i-- )
1090     if( !phase->is_member( this, _head->in(i) ) )
1091       landing_pad->set_req(icnt--,_head->in(i));
1092 
1093   // Peel off PhiNode edges as well
1094   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1095     Node *oj = _head->fast_out(j);
1096     if( oj->is_Phi() ) {
1097       PhiNode* old_phi = oj->as_Phi();
1098       assert( old_phi->region() == _head, "" );
1099       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
1100       Node *p = PhiNode::make_blank(landing_pad, old_phi);
1101       uint icnt = fall_in_cnt;
1102       for( i = oreq-1; i>0; i-- ) {
1103         if( !phase->is_member( this, _head->in(i) ) ) {
1104           p->init_req(icnt--, old_phi->in(i));
1105           // Go ahead and clean out old edges from old phi
1106           old_phi->del_req(i);
1107         }
1108       }
1109       // Search for CSE's here, because ZKM.jar does a lot of
1110       // loop hackery and we need to be a little incremental
1111       // with the CSE to avoid O(N^2) node blow-up.
1112       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
1113       if( p2 ) {                // Found CSE
1114         p->destruct();          // Recover useless new node
1115         p = p2;                 // Use old node
1116       } else {
1117         igvn.register_new_node_with_optimizer(p, old_phi);
1118       }
1119       // Make old Phi refer to new Phi.
1120       old_phi->add_req(p);
1121       // Check for the special case of making the old phi useless and
1122       // disappear it.  In JavaGrande I have a case where this useless
1123       // Phi is the loop limit and prevents recognizing a CountedLoop
1124       // which in turn prevents removing an empty loop.
1125       Node *id_old_phi = old_phi->Identity( &igvn );
1126       if( id_old_phi != old_phi ) { // Found a simple identity?
1127         // Note that I cannot call 'replace_node' here, because
1128         // that will yank the edge from old_phi to the Region and
1129         // I'm mid-iteration over the Region's uses.
1130         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
1131           Node* use = old_phi->last_out(i);
1132           igvn.hash_delete(use);
1133           igvn._worklist.push(use);
1134           uint uses_found = 0;
1135           for (uint j = 0; j < use->len(); j++) {
1136             if (use->in(j) == old_phi) {
1137               if (j < use->req()) use->set_req (j, id_old_phi);
1138               else                use->set_prec(j, id_old_phi);
1139               uses_found++;
1140             }
1141           }
1142           i -= uses_found;    // we deleted 1 or more copies of this edge
1143         }
1144       }
1145       igvn._worklist.push(old_phi);
1146     }
1147   }
1148   // Finally clean out the fall-in edges from the RegionNode
1149   for( i = oreq-1; i>0; i-- ) {
1150     if( !phase->is_member( this, _head->in(i) ) ) {
1151       _head->del_req(i);
1152     }
1153   }
1154   // Transform landing pad
1155   igvn.register_new_node_with_optimizer(landing_pad, _head);
1156   // Insert landing pad into the header
1157   _head->add_req(landing_pad);
1158 }
1159 
1160 //------------------------------split_outer_loop-------------------------------
1161 // Split out the outermost loop from this shared header.
1162 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
1163   PhaseIterGVN &igvn = phase->_igvn;
1164 
1165   // Find index of outermost loop; it should also be my tail.
1166   uint outer_idx = 1;
1167   while( _head->in(outer_idx) != _tail ) outer_idx++;
1168 
1169   // Make a LoopNode for the outermost loop.
1170   Node *ctl = _head->in(LoopNode::EntryControl);
1171   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
1172   outer = igvn.register_new_node_with_optimizer(outer, _head);
1173   phase->set_created_loop_node();
1174 
1175   // Outermost loop falls into '_head' loop
1176   _head->set_req(LoopNode::EntryControl, outer);
1177   _head->del_req(outer_idx);
1178   // Split all the Phis up between '_head' loop and 'outer' loop.
1179   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1180     Node *out = _head->fast_out(j);
1181     if( out->is_Phi() ) {
1182       PhiNode *old_phi = out->as_Phi();
1183       assert( old_phi->region() == _head, "" );
1184       Node *phi = PhiNode::make_blank(outer, old_phi);
1185       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
1186       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
1187       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
1188       // Make old Phi point to new Phi on the fall-in path
1189       igvn.hash_delete(old_phi);
1190       old_phi->set_req(LoopNode::EntryControl, phi);
1191       old_phi->del_req(outer_idx);
1192       igvn._worklist.push(old_phi);
1193     }
1194   }
1195 
1196   // Use the new loop head instead of the old shared one
1197   _head = outer;
1198   phase->set_loop(_head, this);
1199 }
1200 
1201 //------------------------------fix_parent-------------------------------------
1202 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
1203   loop->_parent = parent;
1204   if( loop->_child ) fix_parent( loop->_child, loop   );
1205   if( loop->_next  ) fix_parent( loop->_next , parent );
1206 }
1207 
1208 //------------------------------estimate_path_freq-----------------------------
1209 static float estimate_path_freq( Node *n ) {
1210   // Try to extract some path frequency info
1211   IfNode *iff;
1212   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
1213     uint nop = n->Opcode();
1214     if( nop == Op_SafePoint ) {   // Skip any safepoint
1215       n = n->in(0);
1216       continue;
1217     }
1218     if( nop == Op_CatchProj ) {   // Get count from a prior call
1219       // Assume call does not always throw exceptions: means the call-site
1220       // count is also the frequency of the fall-through path.
1221       assert( n->is_CatchProj(), "" );
1222       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
1223         return 0.0f;            // Assume call exception path is rare
1224       Node *call = n->in(0)->in(0)->in(0);
1225       assert( call->is_Call(), "expect a call here" );
1226       const JVMState *jvms = ((CallNode*)call)->jvms();
1227       ciMethodData* methodData = jvms->method()->method_data();
1228       if (!methodData->is_mature())  return 0.0f; // No call-site data
1229       ciProfileData* data = methodData->bci_to_data(jvms->bci());
1230       if ((data == NULL) || !data->is_CounterData()) {
1231         // no call profile available, try call's control input
1232         n = n->in(0);
1233         continue;
1234       }
1235       return data->as_CounterData()->count()/FreqCountInvocations;
1236     }
1237     // See if there's a gating IF test
1238     Node *n_c = n->in(0);
1239     if( !n_c->is_If() ) break;       // No estimate available
1240     iff = n_c->as_If();
1241     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
1242       // Compute how much count comes on this path
1243       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
1244     // Have no count info.  Skip dull uncommon-trap like branches.
1245     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
1246         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
1247       break;
1248     // Skip through never-taken branch; look for a real loop exit.
1249     n = iff->in(0);
1250   }
1251   return 0.0f;                  // No estimate available
1252 }
1253 
1254 //------------------------------merge_many_backedges---------------------------
1255 // Merge all the backedges from the shared header into a private Region.
1256 // Feed that region as the one backedge to this loop.
1257 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
1258   uint i;
1259 
1260   // Scan for the top 2 hottest backedges
1261   float hotcnt = 0.0f;
1262   float warmcnt = 0.0f;
1263   uint hot_idx = 0;
1264   // Loop starts at 2 because slot 1 is the fall-in path
1265   for( i = 2; i < _head->req(); i++ ) {
1266     float cnt = estimate_path_freq(_head->in(i));
1267     if( cnt > hotcnt ) {       // Grab hottest path
1268       warmcnt = hotcnt;
1269       hotcnt = cnt;
1270       hot_idx = i;
1271     } else if( cnt > warmcnt ) { // And 2nd hottest path
1272       warmcnt = cnt;
1273     }
1274   }
1275 
1276   // See if the hottest backedge is worthy of being an inner loop
1277   // by being much hotter than the next hottest backedge.
1278   if( hotcnt <= 0.0001 ||
1279       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
1280 
1281   // Peel out the backedges into a private merge point; peel
1282   // them all except optionally hot_idx.
1283   PhaseIterGVN &igvn = phase->_igvn;
1284 
1285   Node *hot_tail = NULL;
1286   // Make a Region for the merge point
1287   Node *r = new (phase->C, 1) RegionNode(1);
1288   for( i = 2; i < _head->req(); i++ ) {
1289     if( i != hot_idx )
1290       r->add_req( _head->in(i) );
1291     else hot_tail = _head->in(i);
1292   }
1293   igvn.register_new_node_with_optimizer(r, _head);
1294   // Plug region into end of loop _head, followed by hot_tail
1295   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
1296   _head->set_req(2, r);
1297   if( hot_idx ) _head->add_req(hot_tail);
1298 
1299   // Split all the Phis up between '_head' loop and the Region 'r'
1300   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1301     Node *out = _head->fast_out(j);
1302     if( out->is_Phi() ) {
1303       PhiNode* n = out->as_Phi();
1304       igvn.hash_delete(n);      // Delete from hash before hacking edges
1305       Node *hot_phi = NULL;
1306       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
1307       // Check all inputs for the ones to peel out
1308       uint j = 1;
1309       for( uint i = 2; i < n->req(); i++ ) {
1310         if( i != hot_idx )
1311           phi->set_req( j++, n->in(i) );
1312         else hot_phi = n->in(i);
1313       }
1314       // Register the phi but do not transform until whole place transforms
1315       igvn.register_new_node_with_optimizer(phi, n);
1316       // Add the merge phi to the old Phi
1317       while( n->req() > 3 ) n->del_req( n->req()-1 );
1318       n->set_req(2, phi);
1319       if( hot_idx ) n->add_req(hot_phi);
1320     }
1321   }
1322 
1323 
1324   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
1325   // of self loop tree.  Turn self into a loop headed by _head and with
1326   // tail being the new merge point.
1327   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
1328   phase->set_loop(_tail,ilt);   // Adjust tail
1329   _tail = r;                    // Self's tail is new merge point
1330   phase->set_loop(r,this);
1331   ilt->_child = _child;         // New guy has my children
1332   _child = ilt;                 // Self has new guy as only child
1333   ilt->_parent = this;          // new guy has self for parent
1334   ilt->_nest = _nest;           // Same nesting depth (for now)
1335 
1336   // Starting with 'ilt', look for child loop trees using the same shared
1337   // header.  Flatten these out; they will no longer be loops in the end.
1338   IdealLoopTree **pilt = &_child;
1339   while( ilt ) {
1340     if( ilt->_head == _head ) {
1341       uint i;
1342       for( i = 2; i < _head->req(); i++ )
1343         if( _head->in(i) == ilt->_tail )
1344           break;                // Still a loop
1345       if( i == _head->req() ) { // No longer a loop
1346         // Flatten ilt.  Hang ilt's "_next" list from the end of
1347         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
1348         IdealLoopTree **cp = &ilt->_child;
1349         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
1350         *cp = ilt->_next;       // Hang next list at end of child list
1351         *pilt = ilt->_child;    // Move child up to replace ilt
1352         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
1353         ilt = ilt->_child;      // Repeat using new ilt
1354         continue;               // do not advance over ilt->_child
1355       }
1356       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
1357       phase->set_loop(_head,ilt);
1358     }
1359     pilt = &ilt->_child;        // Advance to next
1360     ilt = *pilt;
1361   }
1362 
1363   if( _child ) fix_parent( _child, this );
1364 }
1365 
1366 //------------------------------beautify_loops---------------------------------
1367 // Split shared headers and insert loop landing pads.
1368 // Insert a LoopNode to replace the RegionNode.
1369 // Return TRUE if loop tree is structurally changed.
1370 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
1371   bool result = false;
1372   // Cache parts in locals for easy
1373   PhaseIterGVN &igvn = phase->_igvn;
1374 
1375   igvn.hash_delete(_head);      // Yank from hash before hacking edges
1376 
1377   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
1378   int fall_in_cnt = 0;
1379   for( uint i = 1; i < _head->req(); i++ )
1380     if( !phase->is_member( this, _head->in(i) ) )
1381       fall_in_cnt++;
1382   assert( fall_in_cnt, "at least 1 fall-in path" );
1383   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
1384     split_fall_in( phase, fall_in_cnt );
1385 
1386   // Swap inputs to the _head and all Phis to move the fall-in edge to
1387   // the left.
1388   fall_in_cnt = 1;
1389   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
1390     fall_in_cnt++;
1391   if( fall_in_cnt > 1 ) {
1392     // Since I am just swapping inputs I do not need to update def-use info
1393     Node *tmp = _head->in(1);
1394     _head->set_req( 1, _head->in(fall_in_cnt) );
1395     _head->set_req( fall_in_cnt, tmp );
1396     // Swap also all Phis
1397     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
1398       Node* phi = _head->fast_out(i);
1399       if( phi->is_Phi() ) {
1400         igvn.hash_delete(phi); // Yank from hash before hacking edges
1401         tmp = phi->in(1);
1402         phi->set_req( 1, phi->in(fall_in_cnt) );
1403         phi->set_req( fall_in_cnt, tmp );
1404       }
1405     }
1406   }
1407   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
1408   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
1409 
1410   // If I am a shared header (multiple backedges), peel off the many
1411   // backedges into a private merge point and use the merge point as
1412   // the one true backedge.
1413   if( _head->req() > 3 ) {
1414     // Merge the many backedges into a single backedge but leave
1415     // the hottest backedge as separate edge for the following peel.
1416     merge_many_backedges( phase );
1417     result = true;
1418   }
1419 
1420   // If I have one hot backedge, peel off myself loop.
1421   // I better be the outermost loop.
1422   if( _head->req() > 3 ) {
1423     split_outer_loop( phase );
1424     result = true;
1425 
1426   } else if( !_head->is_Loop() && !_irreducible ) {
1427     // Make a new LoopNode to replace the old loop head
1428     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
1429     l = igvn.register_new_node_with_optimizer(l, _head);
1430     phase->set_created_loop_node();
1431     // Go ahead and replace _head
1432     phase->_igvn.replace_node( _head, l );
1433     _head = l;
1434     phase->set_loop(_head, this);
1435   }
1436 
1437   // Now recursively beautify nested loops
1438   if( _child ) result |= _child->beautify_loops( phase );
1439   if( _next  ) result |= _next ->beautify_loops( phase );
1440   return result;
1441 }
1442 
1443 //------------------------------allpaths_check_safepts----------------------------
1444 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
1445 // encountered.  Helper for check_safepts.
1446 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
1447   assert(stack.size() == 0, "empty stack");
1448   stack.push(_tail);
1449   visited.Clear();
1450   visited.set(_tail->_idx);
1451   while (stack.size() > 0) {
1452     Node* n = stack.pop();
1453     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1454       // Terminate this path
1455     } else if (n->Opcode() == Op_SafePoint) {
1456       if (_phase->get_loop(n) != this) {
1457         if (_required_safept == NULL) _required_safept = new Node_List();
1458         _required_safept->push(n);  // save the one closest to the tail
1459       }
1460       // Terminate this path
1461     } else {
1462       uint start = n->is_Region() ? 1 : 0;
1463       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
1464       for (uint i = start; i < end; i++) {
1465         Node* in = n->in(i);
1466         assert(in->is_CFG(), "must be");
1467         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
1468           stack.push(in);
1469         }
1470       }
1471     }
1472   }
1473 }
1474 
1475 //------------------------------check_safepts----------------------------
1476 // Given dominators, try to find loops with calls that must always be
1477 // executed (call dominates loop tail).  These loops do not need non-call
1478 // safepoints (ncsfpt).
1479 //
1480 // A complication is that a safepoint in a inner loop may be needed
1481 // by an outer loop. In the following, the inner loop sees it has a
1482 // call (block 3) on every path from the head (block 2) to the
1483 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
1484 // in block 2, _but_ this leaves the outer loop without a safepoint.
1485 //
1486 //          entry  0
1487 //                 |
1488 //                 v
1489 // outer 1,2    +->1
1490 //              |  |
1491 //              |  v
1492 //              |  2<---+  ncsfpt in 2
1493 //              |_/|\   |
1494 //                 | v  |
1495 // inner 2,3      /  3  |  call in 3
1496 //               /   |  |
1497 //              v    +--+
1498 //        exit  4
1499 //
1500 //
1501 // This method creates a list (_required_safept) of ncsfpt nodes that must
1502 // be protected is created for each loop. When a ncsfpt maybe deleted, it
1503 // is first looked for in the lists for the outer loops of the current loop.
1504 //
1505 // The insights into the problem:
1506 //  A) counted loops are okay
1507 //  B) innermost loops are okay (only an inner loop can delete
1508 //     a ncsfpt needed by an outer loop)
1509 //  C) a loop is immune from an inner loop deleting a safepoint
1510 //     if the loop has a call on the idom-path
1511 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
1512 //     idom-path that is not in a nested loop
1513 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
1514 //     loop needs to be prevented from deletion by an inner loop
1515 //
1516 // There are two analyses:
1517 //  1) The first, and cheaper one, scans the loop body from
1518 //     tail to head following the idom (immediate dominator)
1519 //     chain, looking for the cases (C,D,E) above.
1520 //     Since inner loops are scanned before outer loops, there is summary
1521 //     information about inner loops.  Inner loops can be skipped over
1522 //     when the tail of an inner loop is encountered.
1523 //
1524 //  2) The second, invoked if the first fails to find a call or ncsfpt on
1525 //     the idom path (which is rare), scans all predecessor control paths
1526 //     from the tail to the head, terminating a path when a call or sfpt
1527 //     is encountered, to find the ncsfpt's that are closest to the tail.
1528 //
1529 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
1530   // Bottom up traversal
1531   IdealLoopTree* ch = _child;
1532   while (ch != NULL) {
1533     ch->check_safepts(visited, stack);
1534     ch = ch->_next;
1535   }
1536 
1537   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
1538     bool  has_call         = false; // call on dom-path
1539     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
1540     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
1541     // Scan the dom-path nodes from tail to head
1542     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
1543       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1544         has_call = true;
1545         _has_sfpt = 1;          // Then no need for a safept!
1546         break;
1547       } else if (n->Opcode() == Op_SafePoint) {
1548         if (_phase->get_loop(n) == this) {
1549           has_local_ncsfpt = true;
1550           break;
1551         }
1552         if (nonlocal_ncsfpt == NULL) {
1553           nonlocal_ncsfpt = n; // save the one closest to the tail
1554         }
1555       } else {
1556         IdealLoopTree* nlpt = _phase->get_loop(n);
1557         if (this != nlpt) {
1558           // If at an inner loop tail, see if the inner loop has already
1559           // recorded seeing a call on the dom-path (and stop.)  If not,
1560           // jump to the head of the inner loop.
1561           assert(is_member(nlpt), "nested loop");
1562           Node* tail = nlpt->_tail;
1563           if (tail->in(0)->is_If()) tail = tail->in(0);
1564           if (n == tail) {
1565             // If inner loop has call on dom-path, so does outer loop
1566             if (nlpt->_has_sfpt) {
1567               has_call = true;
1568               _has_sfpt = 1;
1569               break;
1570             }
1571             // Skip to head of inner loop
1572             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
1573             n = nlpt->_head;
1574           }
1575         }
1576       }
1577     }
1578     // Record safept's that this loop needs preserved when an
1579     // inner loop attempts to delete it's safepoints.
1580     if (_child != NULL && !has_call && !has_local_ncsfpt) {
1581       if (nonlocal_ncsfpt != NULL) {
1582         if (_required_safept == NULL) _required_safept = new Node_List();
1583         _required_safept->push(nonlocal_ncsfpt);
1584       } else {
1585         // Failed to find a suitable safept on the dom-path.  Now use
1586         // an all paths walk from tail to head, looking for safepoints to preserve.
1587         allpaths_check_safepts(visited, stack);
1588       }
1589     }
1590   }
1591 }
1592 
1593 //---------------------------is_deleteable_safept----------------------------
1594 // Is safept not required by an outer loop?
1595 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
1596   assert(sfpt->Opcode() == Op_SafePoint, "");
1597   IdealLoopTree* lp = get_loop(sfpt)->_parent;
1598   while (lp != NULL) {
1599     Node_List* sfpts = lp->_required_safept;
1600     if (sfpts != NULL) {
1601       for (uint i = 0; i < sfpts->size(); i++) {
1602         if (sfpt == sfpts->at(i))
1603           return false;
1604       }
1605     }
1606     lp = lp->_parent;
1607   }
1608   return true;
1609 }
1610 
1611 //---------------------------replace_parallel_iv-------------------------------
1612 // Replace parallel induction variable (parallel to trip counter)
1613 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
1614   assert(loop->_head->is_CountedLoop(), "");
1615   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1616   if (!cl->is_valid_counted_loop())
1617     return;         // skip malformed counted loop
1618   Node *incr = cl->incr();
1619   if (incr == NULL)
1620     return;         // Dead loop?
1621   Node *init = cl->init_trip();
1622   Node *phi  = cl->phi();
1623   int stride_con = cl->stride_con();
1624 
1625   // Visit all children, looking for Phis
1626   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
1627     Node *out = cl->out(i);
1628     // Look for other phis (secondary IVs). Skip dead ones
1629     if (!out->is_Phi() || out == phi || !has_node(out))
1630       continue;
1631     PhiNode* phi2 = out->as_Phi();
1632     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
1633     // Look for induction variables of the form:  X += constant
1634     if (phi2->region() != loop->_head ||
1635         incr2->req() != 3 ||
1636         incr2->in(1) != phi2 ||
1637         incr2 == incr ||
1638         incr2->Opcode() != Op_AddI ||
1639         !incr2->in(2)->is_Con())
1640       continue;
1641 
1642     // Check for parallel induction variable (parallel to trip counter)
1643     // via an affine function.  In particular, count-down loops with
1644     // count-up array indices are common. We only RCE references off
1645     // the trip-counter, so we need to convert all these to trip-counter
1646     // expressions.
1647     Node *init2 = phi2->in( LoopNode::EntryControl );
1648     int stride_con2 = incr2->in(2)->get_int();
1649 
1650     // The general case here gets a little tricky.  We want to find the
1651     // GCD of all possible parallel IV's and make a new IV using this
1652     // GCD for the loop.  Then all possible IVs are simple multiples of
1653     // the GCD.  In practice, this will cover very few extra loops.
1654     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
1655     // where +/-1 is the common case, but other integer multiples are
1656     // also easy to handle.
1657     int ratio_con = stride_con2/stride_con;
1658 
1659     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
1660 #ifndef PRODUCT
1661       if (TraceLoopOpts) {
1662         tty->print("Parallel IV: %d ", phi2->_idx);
1663         loop->dump_head();
1664       }
1665 #endif
1666       // Convert to using the trip counter.  The parallel induction
1667       // variable differs from the trip counter by a loop-invariant
1668       // amount, the difference between their respective initial values.
1669       // It is scaled by the 'ratio_con'.
1670       Node* ratio = _igvn.intcon(ratio_con);
1671       set_ctrl(ratio, C->root());
1672       Node* ratio_init = new (C, 3) MulINode(init, ratio);
1673       _igvn.register_new_node_with_optimizer(ratio_init, init);
1674       set_early_ctrl(ratio_init);
1675       Node* diff = new (C, 3) SubINode(init2, ratio_init);
1676       _igvn.register_new_node_with_optimizer(diff, init2);
1677       set_early_ctrl(diff);
1678       Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
1679       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
1680       set_ctrl(ratio_idx, cl);
1681       Node* add = new (C, 3) AddINode(ratio_idx, diff);
1682       _igvn.register_new_node_with_optimizer(add);
1683       set_ctrl(add, cl);
1684       _igvn.replace_node( phi2, add );
1685       // Sometimes an induction variable is unused
1686       if (add->outcnt() == 0) {
1687         _igvn.remove_dead_node(add);
1688       }
1689       --i; // deleted this phi; rescan starting with next position
1690       continue;
1691     }
1692   }
1693 }
1694 
1695 //------------------------------counted_loop-----------------------------------
1696 // Convert to counted loops where possible
1697 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
1698 
1699   // For grins, set the inner-loop flag here
1700   if (!_child) {
1701     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
1702   }
1703 
1704   if (_head->is_CountedLoop() ||
1705       phase->is_counted_loop(_head, this)) {
1706     _has_sfpt = 1;              // Indicate we do not need a safepoint here
1707 
1708     // Look for a safepoint to remove
1709     for (Node* n = tail(); n != _head; n = phase->idom(n))
1710       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
1711           phase->is_deleteable_safept(n))
1712         phase->lazy_replace(n,n->in(TypeFunc::Control));
1713 
1714     // Look for induction variables
1715     phase->replace_parallel_iv(this);
1716 
1717   } else if (_parent != NULL && !_irreducible) {
1718     // Not a counted loop.
1719     // Look for a safepoint on the idom-path to remove, preserving the first one
1720     bool found = false;
1721     Node* n = tail();
1722     for (; n != _head && !found; n = phase->idom(n)) {
1723       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
1724         found = true; // Found one
1725     }
1726     // Skip past it and delete the others
1727     for (; n != _head; n = phase->idom(n)) {
1728       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
1729           phase->is_deleteable_safept(n))
1730         phase->lazy_replace(n,n->in(TypeFunc::Control));
1731     }
1732   }
1733 
1734   // Recursively
1735   if (_child) _child->counted_loop( phase );
1736   if (_next)  _next ->counted_loop( phase );
1737 }
1738 
1739 #ifndef PRODUCT
1740 //------------------------------dump_head--------------------------------------
1741 // Dump 1 liner for loop header info
1742 void IdealLoopTree::dump_head( ) const {
1743   for (uint i=0; i<_nest; i++)
1744     tty->print("  ");
1745   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
1746   if (_irreducible) tty->print(" IRREDUCIBLE");
1747   Node* entry = _head->in(LoopNode::EntryControl);
1748   if (LoopLimitCheck) {
1749     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
1750     if (predicate != NULL ) {
1751       tty->print(" limit_check");
1752       entry = entry->in(0)->in(0);
1753     }
1754   }
1755   if (UseLoopPredicate) {
1756     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
1757     if (entry != NULL) {
1758       tty->print(" predicated");
1759     }
1760   }
1761   if (_head->is_CountedLoop()) {
1762     CountedLoopNode *cl = _head->as_CountedLoop();
1763     tty->print(" counted");
1764 
1765     Node* init_n = cl->init_trip();
1766     if (init_n  != NULL &&  init_n->is_Con())
1767       tty->print(" [%d,", cl->init_trip()->get_int());
1768     else
1769       tty->print(" [int,");
1770     Node* limit_n = cl->limit();
1771     if (limit_n  != NULL &&  limit_n->is_Con())
1772       tty->print("%d),", cl->limit()->get_int());
1773     else
1774       tty->print("int),");
1775     int stride_con  = cl->stride_con();
1776     if (stride_con > 0) tty->print("+");
1777     tty->print("%d", stride_con);
1778 
1779     if (cl->is_pre_loop ()) tty->print(" pre" );
1780     if (cl->is_main_loop()) tty->print(" main");
1781     if (cl->is_post_loop()) tty->print(" post");
1782   }
1783   tty->cr();
1784 }
1785 
1786 //------------------------------dump-------------------------------------------
1787 // Dump loops by loop tree
1788 void IdealLoopTree::dump( ) const {
1789   dump_head();
1790   if (_child) _child->dump();
1791   if (_next)  _next ->dump();
1792 }
1793 
1794 #endif
1795 
1796 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
1797   if (loop == root) {
1798     if (loop->_child != NULL) {
1799       log->begin_head("loop_tree");
1800       log->end_head();
1801       if( loop->_child ) log_loop_tree(root, loop->_child, log);
1802       log->tail("loop_tree");
1803       assert(loop->_next == NULL, "what?");
1804     }
1805   } else {
1806     Node* head = loop->_head;
1807     log->begin_head("loop");
1808     log->print(" idx='%d' ", head->_idx);
1809     if (loop->_irreducible) log->print("irreducible='1' ");
1810     if (head->is_Loop()) {
1811       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
1812       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
1813     }
1814     if (head->is_CountedLoop()) {
1815       CountedLoopNode* cl = head->as_CountedLoop();
1816       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
1817       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
1818       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
1819     }
1820     log->end_head();
1821     if( loop->_child ) log_loop_tree(root, loop->_child, log);
1822     log->tail("loop");
1823     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
1824   }
1825 }
1826 
1827 //---------------------collect_potentially_useful_predicates-----------------------
1828 // Helper function to collect potentially useful predicates to prevent them from
1829 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
1830 void PhaseIdealLoop::collect_potentially_useful_predicates(
1831                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
1832   if (loop->_child) { // child
1833     collect_potentially_useful_predicates(loop->_child, useful_predicates);
1834   }
1835 
1836   // self (only loops that we can apply loop predication may use their predicates)
1837   if (loop->_head->is_Loop() &&
1838       !loop->_irreducible    &&
1839       !loop->tail()->is_top()) {
1840     LoopNode* lpn = loop->_head->as_Loop();
1841     Node* entry = lpn->in(LoopNode::EntryControl);
1842     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
1843     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
1844       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
1845       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
1846       entry = entry->in(0)->in(0);
1847     }
1848     predicate_proj = find_predicate(entry); // Predicate
1849     if (predicate_proj != NULL ) {
1850       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
1851     }
1852   }
1853 
1854   if (loop->_next) { // sibling
1855     collect_potentially_useful_predicates(loop->_next, useful_predicates);
1856   }
1857 }
1858 
1859 //------------------------eliminate_useless_predicates-----------------------------
1860 // Eliminate all inserted predicates if they could not be used by loop predication.
1861 // Note: it will also eliminates loop limits check predicate since it also uses
1862 // Opaque1 node (see Parse::add_predicate()).
1863 void PhaseIdealLoop::eliminate_useless_predicates() {
1864   if (C->predicate_count() == 0)
1865     return; // no predicate left
1866 
1867   Unique_Node_List useful_predicates; // to store useful predicates
1868   if (C->has_loops()) {
1869     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
1870   }
1871 
1872   for (int i = C->predicate_count(); i > 0; i--) {
1873      Node * n = C->predicate_opaque1_node(i-1);
1874      assert(n->Opcode() == Op_Opaque1, "must be");
1875      if (!useful_predicates.member(n)) { // not in the useful list
1876        _igvn.replace_node(n, n->in(1));
1877      }
1878   }
1879 }
1880 
1881 //=============================================================================
1882 //----------------------------build_and_optimize-------------------------------
1883 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
1884 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
1885 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
1886   ResourceMark rm;
1887 
1888   int old_progress = C->major_progress();
1889   uint orig_worklist_size = _igvn._worklist.size();
1890 
1891   // Reset major-progress flag for the driver's heuristics
1892   C->clear_major_progress();
1893 
1894 #ifndef PRODUCT
1895   // Capture for later assert
1896   uint unique = C->unique();
1897   _loop_invokes++;
1898   _loop_work += unique;
1899 #endif
1900 
1901   // True if the method has at least 1 irreducible loop
1902   _has_irreducible_loops = false;
1903 
1904   _created_loop_node = false;
1905 
1906   Arena *a = Thread::current()->resource_area();
1907   VectorSet visited(a);
1908   // Pre-grow the mapping from Nodes to IdealLoopTrees.
1909   _nodes.map(C->unique(), NULL);
1910   memset(_nodes.adr(), 0, wordSize * C->unique());
1911 
1912   // Pre-build the top-level outermost loop tree entry
1913   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
1914   // Do not need a safepoint at the top level
1915   _ltree_root->_has_sfpt = 1;
1916 
1917   // Initialize Dominators.
1918   // Checked in clone_loop_predicate() during beautify_loops().
1919   _idom_size = 0;
1920   _idom      = NULL;
1921   _dom_depth = NULL;
1922   _dom_stk   = NULL;
1923 
1924   // Empty pre-order array
1925   allocate_preorders();
1926 
1927   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
1928   // IdealLoopTree entries.  Data nodes are NOT walked.
1929   build_loop_tree();
1930   // Check for bailout, and return
1931   if (C->failing()) {
1932     return;
1933   }
1934 
1935   // No loops after all
1936   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
1937 
1938   // There should always be an outer loop containing the Root and Return nodes.
1939   // If not, we have a degenerate empty program.  Bail out in this case.
1940   if (!has_node(C->root())) {
1941     if (!_verify_only) {
1942       C->clear_major_progress();
1943       C->record_method_not_compilable("empty program detected during loop optimization");
1944     }
1945     return;
1946   }
1947 
1948   // Nothing to do, so get out
1949   if( !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only ) {
1950     _igvn.optimize();           // Cleanup NeverBranches
1951     return;
1952   }
1953 
1954   // Set loop nesting depth
1955   _ltree_root->set_nest( 0 );
1956 
1957   // Split shared headers and insert loop landing pads.
1958   // Do not bother doing this on the Root loop of course.
1959   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
1960     C->print_method("Before beautify loops", 3);
1961     if( _ltree_root->_child->beautify_loops( this ) ) {
1962       // Re-build loop tree!
1963       _ltree_root->_child = NULL;
1964       _nodes.clear();
1965       reallocate_preorders();
1966       build_loop_tree();
1967       // Check for bailout, and return
1968       if (C->failing()) {
1969         return;
1970       }
1971       // Reset loop nesting depth
1972       _ltree_root->set_nest( 0 );
1973 
1974       C->print_method("After beautify loops", 3);
1975     }
1976   }
1977 
1978   // Build Dominators for elision of NULL checks & loop finding.
1979   // Since nodes do not have a slot for immediate dominator, make
1980   // a persistent side array for that info indexed on node->_idx.
1981   _idom_size = C->unique();
1982   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
1983   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
1984   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
1985   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
1986 
1987   Dominators();
1988 
1989   if (!_verify_only) {
1990     // As a side effect, Dominators removed any unreachable CFG paths
1991     // into RegionNodes.  It doesn't do this test against Root, so
1992     // we do it here.
1993     for( uint i = 1; i < C->root()->req(); i++ ) {
1994       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
1995         _igvn.hash_delete(C->root());
1996         C->root()->del_req(i);
1997         _igvn._worklist.push(C->root());
1998         i--;                      // Rerun same iteration on compressed edges
1999       }
2000     }
2001 
2002     // Given dominators, try to find inner loops with calls that must
2003     // always be executed (call dominates loop tail).  These loops do
2004     // not need a separate safepoint.
2005     Node_List cisstack(a);
2006     _ltree_root->check_safepts(visited, cisstack);
2007   }
2008 
2009   // Walk the DATA nodes and place into loops.  Find earliest control
2010   // node.  For CFG nodes, the _nodes array starts out and remains
2011   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
2012   // _nodes array holds the earliest legal controlling CFG node.
2013 
2014   // Allocate stack with enough space to avoid frequent realloc
2015   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
2016   Node_Stack nstack( a, stack_size );
2017 
2018   visited.Clear();
2019   Node_List worklist(a);
2020   // Don't need C->root() on worklist since
2021   // it will be processed among C->top() inputs
2022   worklist.push( C->top() );
2023   visited.set( C->top()->_idx ); // Set C->top() as visited now
2024   build_loop_early( visited, worklist, nstack );
2025 
2026   // Given early legal placement, try finding counted loops.  This placement
2027   // is good enough to discover most loop invariants.
2028   if( !_verify_me && !_verify_only )
2029     _ltree_root->counted_loop( this );
2030 
2031   // Find latest loop placement.  Find ideal loop placement.
2032   visited.Clear();
2033   init_dom_lca_tags();
2034   // Need C->root() on worklist when processing outs
2035   worklist.push( C->root() );
2036   NOT_PRODUCT( C->verify_graph_edges(); )
2037   worklist.push( C->top() );
2038   build_loop_late( visited, worklist, nstack );
2039 
2040   if (_verify_only) {
2041     // restore major progress flag
2042     for (int i = 0; i < old_progress; i++)
2043       C->set_major_progress();
2044     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
2045     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
2046     return;
2047   }
2048 
2049   // Some parser-inserted loop predicates could never be used by loop
2050   // predication or they were moved away from loop during some optimizations.
2051   // For example, peeling. Eliminate them before next loop optimizations.
2052   if (UseLoopPredicate || LoopLimitCheck) {
2053     eliminate_useless_predicates();
2054   }
2055 
2056   // clear out the dead code
2057   while(_deadlist.size()) {
2058     _igvn.remove_globally_dead_node(_deadlist.pop());
2059   }
2060 
2061 #ifndef PRODUCT
2062   C->verify_graph_edges();
2063   if (_verify_me) {             // Nested verify pass?
2064     // Check to see if the verify mode is broken
2065     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
2066     return;
2067   }
2068   if(VerifyLoopOptimizations) verify();
2069   if(TraceLoopOpts && C->has_loops()) {
2070     _ltree_root->dump();
2071   }
2072 #endif
2073 
2074   if (skip_loop_opts) {
2075     // Cleanup any modified bits
2076     _igvn.optimize();
2077 
2078     if (C->log() != NULL) {
2079       log_loop_tree(_ltree_root, _ltree_root, C->log());
2080     }
2081     return;
2082   }
2083 
2084   if (ReassociateInvariants) {
2085     // Reassociate invariants and prep for split_thru_phi
2086     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2087       IdealLoopTree* lpt = iter.current();
2088       if (!lpt->is_counted() || !lpt->is_inner()) continue;
2089 
2090       lpt->reassociate_invariants(this);
2091 
2092       // Because RCE opportunities can be masked by split_thru_phi,
2093       // look for RCE candidates and inhibit split_thru_phi
2094       // on just their loop-phi's for this pass of loop opts
2095       if (SplitIfBlocks && do_split_ifs) {
2096         if (lpt->policy_range_check(this)) {
2097           lpt->_rce_candidate = 1; // = true
2098         }
2099       }
2100     }
2101   }
2102 
2103   // Check for aggressive application of split-if and other transforms
2104   // that require basic-block info (like cloning through Phi's)
2105   if( SplitIfBlocks && do_split_ifs ) {
2106     visited.Clear();
2107     split_if_with_blocks( visited, nstack );
2108     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
2109   }
2110 
2111   // Perform loop predication before iteration splitting
2112   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
2113     _ltree_root->_child->loop_predication(this);
2114   }
2115 
2116   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
2117     if (do_intrinsify_fill()) {
2118       C->set_major_progress();
2119     }
2120   }
2121 
2122   // Perform iteration-splitting on inner loops.  Split iterations to avoid
2123   // range checks or one-shot null checks.
2124 
2125   // If split-if's didn't hack the graph too bad (no CFG changes)
2126   // then do loop opts.
2127   if (C->has_loops() && !C->major_progress()) {
2128     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
2129     _ltree_root->_child->iteration_split( this, worklist );
2130     // No verify after peeling!  GCM has hoisted code out of the loop.
2131     // After peeling, the hoisted code could sink inside the peeled area.
2132     // The peeling code does not try to recompute the best location for
2133     // all the code before the peeled area, so the verify pass will always
2134     // complain about it.
2135   }
2136   // Do verify graph edges in any case
2137   NOT_PRODUCT( C->verify_graph_edges(); );
2138 
2139   if (!do_split_ifs) {
2140     // We saw major progress in Split-If to get here.  We forced a
2141     // pass with unrolling and not split-if, however more split-if's
2142     // might make progress.  If the unrolling didn't make progress
2143     // then the major-progress flag got cleared and we won't try
2144     // another round of Split-If.  In particular the ever-common
2145     // instance-of/check-cast pattern requires at least 2 rounds of
2146     // Split-If to clear out.
2147     C->set_major_progress();
2148   }
2149 
2150   // Repeat loop optimizations if new loops were seen
2151   if (created_loop_node()) {
2152     C->set_major_progress();
2153   }
2154 
2155   // Keep loop predicates and perform optimizations with them
2156   // until no more loop optimizations could be done.
2157   // After that switch predicates off and do more loop optimizations.
2158   if (!C->major_progress() && (C->predicate_count() > 0)) {
2159      C->cleanup_loop_predicates(_igvn);
2160 #ifndef PRODUCT
2161      if (TraceLoopOpts) {
2162        tty->print_cr("PredicatesOff");
2163      }
2164 #endif
2165      C->set_major_progress();
2166   }
2167 
2168   // Convert scalar to superword operations at the end of all loop opts.
2169   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
2170     // SuperWord transform
2171     SuperWord sw(this);
2172     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2173       IdealLoopTree* lpt = iter.current();
2174       if (lpt->is_counted()) {
2175         sw.transform_loop(lpt);
2176       }
2177     }
2178   }
2179 
2180   // Cleanup any modified bits
2181   _igvn.optimize();
2182 
2183   // disable assert until issue with split_flow_path is resolved (6742111)
2184   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
2185   //        "shouldn't introduce irreducible loops");
2186 
2187   if (C->log() != NULL) {
2188     log_loop_tree(_ltree_root, _ltree_root, C->log());
2189   }
2190 }
2191 
2192 #ifndef PRODUCT
2193 //------------------------------print_statistics-------------------------------
2194 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
2195 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
2196 void PhaseIdealLoop::print_statistics() {
2197   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
2198 }
2199 
2200 //------------------------------verify-----------------------------------------
2201 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
2202 static int fail;                // debug only, so its multi-thread dont care
2203 void PhaseIdealLoop::verify() const {
2204   int old_progress = C->major_progress();
2205   ResourceMark rm;
2206   PhaseIdealLoop loop_verify( _igvn, this );
2207   VectorSet visited(Thread::current()->resource_area());
2208 
2209   fail = 0;
2210   verify_compare( C->root(), &loop_verify, visited );
2211   assert( fail == 0, "verify loops failed" );
2212   // Verify loop structure is the same
2213   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
2214   // Reset major-progress.  It was cleared by creating a verify version of
2215   // PhaseIdealLoop.
2216   for( int i=0; i<old_progress; i++ )
2217     C->set_major_progress();
2218 }
2219 
2220 //------------------------------verify_compare---------------------------------
2221 // Make sure me and the given PhaseIdealLoop agree on key data structures
2222 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
2223   if( !n ) return;
2224   if( visited.test_set( n->_idx ) ) return;
2225   if( !_nodes[n->_idx] ) {      // Unreachable
2226     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
2227     return;
2228   }
2229 
2230   uint i;
2231   for( i = 0; i < n->req(); i++ )
2232     verify_compare( n->in(i), loop_verify, visited );
2233 
2234   // Check the '_nodes' block/loop structure
2235   i = n->_idx;
2236   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
2237     if( _nodes[i] != loop_verify->_nodes[i] &&
2238         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
2239       tty->print("Mismatched control setting for: ");
2240       n->dump();
2241       if( fail++ > 10 ) return;
2242       Node *c = get_ctrl_no_update(n);
2243       tty->print("We have it as: ");
2244       if( c->in(0) ) c->dump();
2245         else tty->print_cr("N%d",c->_idx);
2246       tty->print("Verify thinks: ");
2247       if( loop_verify->has_ctrl(n) )
2248         loop_verify->get_ctrl_no_update(n)->dump();
2249       else
2250         loop_verify->get_loop_idx(n)->dump();
2251       tty->cr();
2252     }
2253   } else {                    // We have a loop
2254     IdealLoopTree *us = get_loop_idx(n);
2255     if( loop_verify->has_ctrl(n) ) {
2256       tty->print("Mismatched loop setting for: ");
2257       n->dump();
2258       if( fail++ > 10 ) return;
2259       tty->print("We have it as: ");
2260       us->dump();
2261       tty->print("Verify thinks: ");
2262       loop_verify->get_ctrl_no_update(n)->dump();
2263       tty->cr();
2264     } else if (!C->major_progress()) {
2265       // Loop selection can be messed up if we did a major progress
2266       // operation, like split-if.  Do not verify in that case.
2267       IdealLoopTree *them = loop_verify->get_loop_idx(n);
2268       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
2269         tty->print("Unequals loops for: ");
2270         n->dump();
2271         if( fail++ > 10 ) return;
2272         tty->print("We have it as: ");
2273         us->dump();
2274         tty->print("Verify thinks: ");
2275         them->dump();
2276         tty->cr();
2277       }
2278     }
2279   }
2280 
2281   // Check for immediate dominators being equal
2282   if( i >= _idom_size ) {
2283     if( !n->is_CFG() ) return;
2284     tty->print("CFG Node with no idom: ");
2285     n->dump();
2286     return;
2287   }
2288   if( !n->is_CFG() ) return;
2289   if( n == C->root() ) return; // No IDOM here
2290 
2291   assert(n->_idx == i, "sanity");
2292   Node *id = idom_no_update(n);
2293   if( id != loop_verify->idom_no_update(n) ) {
2294     tty->print("Unequals idoms for: ");
2295     n->dump();
2296     if( fail++ > 10 ) return;
2297     tty->print("We have it as: ");
2298     id->dump();
2299     tty->print("Verify thinks: ");
2300     loop_verify->idom_no_update(n)->dump();
2301     tty->cr();
2302   }
2303 
2304 }
2305 
2306 //------------------------------verify_tree------------------------------------
2307 // Verify that tree structures match.  Because the CFG can change, siblings
2308 // within the loop tree can be reordered.  We attempt to deal with that by
2309 // reordering the verify's loop tree if possible.
2310 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
2311   assert( _parent == parent, "Badly formed loop tree" );
2312 
2313   // Siblings not in same order?  Attempt to re-order.
2314   if( _head != loop->_head ) {
2315     // Find _next pointer to update
2316     IdealLoopTree **pp = &loop->_parent->_child;
2317     while( *pp != loop )
2318       pp = &((*pp)->_next);
2319     // Find proper sibling to be next
2320     IdealLoopTree **nn = &loop->_next;
2321     while( (*nn) && (*nn)->_head != _head )
2322       nn = &((*nn)->_next);
2323 
2324     // Check for no match.
2325     if( !(*nn) ) {
2326       // Annoyingly, irreducible loops can pick different headers
2327       // after a major_progress operation, so the rest of the loop
2328       // tree cannot be matched.
2329       if (_irreducible && Compile::current()->major_progress())  return;
2330       assert( 0, "failed to match loop tree" );
2331     }
2332 
2333     // Move (*nn) to (*pp)
2334     IdealLoopTree *hit = *nn;
2335     *nn = hit->_next;
2336     hit->_next = loop;
2337     *pp = loop;
2338     loop = hit;
2339     // Now try again to verify
2340   }
2341 
2342   assert( _head  == loop->_head , "mismatched loop head" );
2343   Node *tail = _tail;           // Inline a non-updating version of
2344   while( !tail->in(0) )         // the 'tail()' call.
2345     tail = tail->in(1);
2346   assert( tail == loop->_tail, "mismatched loop tail" );
2347 
2348   // Counted loops that are guarded should be able to find their guards
2349   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
2350     CountedLoopNode *cl = _head->as_CountedLoop();
2351     Node *init = cl->init_trip();
2352     Node *ctrl = cl->in(LoopNode::EntryControl);
2353     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
2354     Node *iff  = ctrl->in(0);
2355     assert( iff->Opcode() == Op_If, "" );
2356     Node *bol  = iff->in(1);
2357     assert( bol->Opcode() == Op_Bool, "" );
2358     Node *cmp  = bol->in(1);
2359     assert( cmp->Opcode() == Op_CmpI, "" );
2360     Node *add  = cmp->in(1);
2361     Node *opaq;
2362     if( add->Opcode() == Op_Opaque1 ) {
2363       opaq = add;
2364     } else {
2365       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
2366       assert( add == init, "" );
2367       opaq = cmp->in(2);
2368     }
2369     assert( opaq->Opcode() == Op_Opaque1, "" );
2370 
2371   }
2372 
2373   if (_child != NULL)  _child->verify_tree(loop->_child, this);
2374   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
2375   // Innermost loops need to verify loop bodies,
2376   // but only if no 'major_progress'
2377   int fail = 0;
2378   if (!Compile::current()->major_progress() && _child == NULL) {
2379     for( uint i = 0; i < _body.size(); i++ ) {
2380       Node *n = _body.at(i);
2381       if (n->outcnt() == 0)  continue; // Ignore dead
2382       uint j;
2383       for( j = 0; j < loop->_body.size(); j++ )
2384         if( loop->_body.at(j) == n )
2385           break;
2386       if( j == loop->_body.size() ) { // Not found in loop body
2387         // Last ditch effort to avoid assertion: Its possible that we
2388         // have some users (so outcnt not zero) but are still dead.
2389         // Try to find from root.
2390         if (Compile::current()->root()->find(n->_idx)) {
2391           fail++;
2392           tty->print("We have that verify does not: ");
2393           n->dump();
2394         }
2395       }
2396     }
2397     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
2398       Node *n = loop->_body.at(i2);
2399       if (n->outcnt() == 0)  continue; // Ignore dead
2400       uint j;
2401       for( j = 0; j < _body.size(); j++ )
2402         if( _body.at(j) == n )
2403           break;
2404       if( j == _body.size() ) { // Not found in loop body
2405         // Last ditch effort to avoid assertion: Its possible that we
2406         // have some users (so outcnt not zero) but are still dead.
2407         // Try to find from root.
2408         if (Compile::current()->root()->find(n->_idx)) {
2409           fail++;
2410           tty->print("Verify has that we do not: ");
2411           n->dump();
2412         }
2413       }
2414     }
2415     assert( !fail, "loop body mismatch" );
2416   }
2417 }
2418 
2419 #endif
2420 
2421 //------------------------------set_idom---------------------------------------
2422 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
2423   uint idx = d->_idx;
2424   if (idx >= _idom_size) {
2425     uint newsize = _idom_size<<1;
2426     while( idx >= newsize ) {
2427       newsize <<= 1;
2428     }
2429     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
2430     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
2431     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
2432     _idom_size = newsize;
2433   }
2434   _idom[idx] = n;
2435   _dom_depth[idx] = dom_depth;
2436 }
2437 
2438 //------------------------------recompute_dom_depth---------------------------------------
2439 // The dominator tree is constructed with only parent pointers.
2440 // This recomputes the depth in the tree by first tagging all
2441 // nodes as "no depth yet" marker.  The next pass then runs up
2442 // the dom tree from each node marked "no depth yet", and computes
2443 // the depth on the way back down.
2444 void PhaseIdealLoop::recompute_dom_depth() {
2445   uint no_depth_marker = C->unique();
2446   uint i;
2447   // Initialize depth to "no depth yet"
2448   for (i = 0; i < _idom_size; i++) {
2449     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
2450      _dom_depth[i] = no_depth_marker;
2451     }
2452   }
2453   if (_dom_stk == NULL) {
2454     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
2455     if (init_size < 10) init_size = 10;
2456     _dom_stk = new GrowableArray<uint>(init_size);
2457   }
2458   // Compute new depth for each node.
2459   for (i = 0; i < _idom_size; i++) {
2460     uint j = i;
2461     // Run up the dom tree to find a node with a depth
2462     while (_dom_depth[j] == no_depth_marker) {
2463       _dom_stk->push(j);
2464       j = _idom[j]->_idx;
2465     }
2466     // Compute the depth on the way back down this tree branch
2467     uint dd = _dom_depth[j] + 1;
2468     while (_dom_stk->length() > 0) {
2469       uint j = _dom_stk->pop();
2470       _dom_depth[j] = dd;
2471       dd++;
2472     }
2473   }
2474 }
2475 
2476 //------------------------------sort-------------------------------------------
2477 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
2478 // loop tree, not the root.
2479 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
2480   if( !innermost ) return loop; // New innermost loop
2481 
2482   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
2483   assert( loop_preorder, "not yet post-walked loop" );
2484   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
2485   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
2486 
2487   // Insert at start of list
2488   while( l ) {                  // Insertion sort based on pre-order
2489     if( l == loop ) return innermost; // Already on list!
2490     int l_preorder = get_preorder(l->_head); // Cache pre-order number
2491     assert( l_preorder, "not yet post-walked l" );
2492     // Check header pre-order number to figure proper nesting
2493     if( loop_preorder > l_preorder )
2494       break;                    // End of insertion
2495     // If headers tie (e.g., shared headers) check tail pre-order numbers.
2496     // Since I split shared headers, you'd think this could not happen.
2497     // BUT: I must first do the preorder numbering before I can discover I
2498     // have shared headers, so the split headers all get the same preorder
2499     // number as the RegionNode they split from.
2500     if( loop_preorder == l_preorder &&
2501         get_preorder(loop->_tail) < get_preorder(l->_tail) )
2502       break;                    // Also check for shared headers (same pre#)
2503     pp = &l->_parent;           // Chain up list
2504     l = *pp;
2505   }
2506   // Link into list
2507   // Point predecessor to me
2508   *pp = loop;
2509   // Point me to successor
2510   IdealLoopTree *p = loop->_parent;
2511   loop->_parent = l;            // Point me to successor
2512   if( p ) sort( p, innermost ); // Insert my parents into list as well
2513   return innermost;
2514 }
2515 
2516 //------------------------------build_loop_tree--------------------------------
2517 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
2518 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
2519 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
2520 // tightest enclosing IdealLoopTree for post-walked.
2521 //
2522 // During my forward walk I do a short 1-layer lookahead to see if I can find
2523 // a loop backedge with that doesn't have any work on the backedge.  This
2524 // helps me construct nested loops with shared headers better.
2525 //
2526 // Once I've done the forward recursion, I do the post-work.  For each child
2527 // I check to see if there is a backedge.  Backedges define a loop!  I
2528 // insert an IdealLoopTree at the target of the backedge.
2529 //
2530 // During the post-work I also check to see if I have several children
2531 // belonging to different loops.  If so, then this Node is a decision point
2532 // where control flow can choose to change loop nests.  It is at this
2533 // decision point where I can figure out how loops are nested.  At this
2534 // time I can properly order the different loop nests from my children.
2535 // Note that there may not be any backedges at the decision point!
2536 //
2537 // Since the decision point can be far removed from the backedges, I can't
2538 // order my loops at the time I discover them.  Thus at the decision point
2539 // I need to inspect loop header pre-order numbers to properly nest my
2540 // loops.  This means I need to sort my childrens' loops by pre-order.
2541 // The sort is of size number-of-control-children, which generally limits
2542 // it to size 2 (i.e., I just choose between my 2 target loops).
2543 void PhaseIdealLoop::build_loop_tree() {
2544   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2545   GrowableArray <Node *> bltstack(C->unique() >> 1);
2546   Node *n = C->root();
2547   bltstack.push(n);
2548   int pre_order = 1;
2549   int stack_size;
2550 
2551   while ( ( stack_size = bltstack.length() ) != 0 ) {
2552     n = bltstack.top(); // Leave node on stack
2553     if ( !is_visited(n) ) {
2554       // ---- Pre-pass Work ----
2555       // Pre-walked but not post-walked nodes need a pre_order number.
2556 
2557       set_preorder_visited( n, pre_order ); // set as visited
2558 
2559       // ---- Scan over children ----
2560       // Scan first over control projections that lead to loop headers.
2561       // This helps us find inner-to-outer loops with shared headers better.
2562 
2563       // Scan children's children for loop headers.
2564       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
2565         Node* m = n->raw_out(i);       // Child
2566         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
2567           // Scan over children's children to find loop
2568           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2569             Node* l = m->fast_out(j);
2570             if( is_visited(l) &&       // Been visited?
2571                 !is_postvisited(l) &&  // But not post-visited
2572                 get_preorder(l) < pre_order ) { // And smaller pre-order
2573               // Found!  Scan the DFS down this path before doing other paths
2574               bltstack.push(m);
2575               break;
2576             }
2577           }
2578         }
2579       }
2580       pre_order++;
2581     }
2582     else if ( !is_postvisited(n) ) {
2583       // Note: build_loop_tree_impl() adds out edges on rare occasions,
2584       // such as com.sun.rsasign.am::a.
2585       // For non-recursive version, first, process current children.
2586       // On next iteration, check if additional children were added.
2587       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
2588         Node* u = n->raw_out(k);
2589         if ( u->is_CFG() && !is_visited(u) ) {
2590           bltstack.push(u);
2591         }
2592       }
2593       if ( bltstack.length() == stack_size ) {
2594         // There were no additional children, post visit node now
2595         (void)bltstack.pop(); // Remove node from stack
2596         pre_order = build_loop_tree_impl( n, pre_order );
2597         // Check for bailout
2598         if (C->failing()) {
2599           return;
2600         }
2601         // Check to grow _preorders[] array for the case when
2602         // build_loop_tree_impl() adds new nodes.
2603         check_grow_preorders();
2604       }
2605     }
2606     else {
2607       (void)bltstack.pop(); // Remove post-visited node from stack
2608     }
2609   }
2610 }
2611 
2612 //------------------------------build_loop_tree_impl---------------------------
2613 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
2614   // ---- Post-pass Work ----
2615   // Pre-walked but not post-walked nodes need a pre_order number.
2616 
2617   // Tightest enclosing loop for this Node
2618   IdealLoopTree *innermost = NULL;
2619 
2620   // For all children, see if any edge is a backedge.  If so, make a loop
2621   // for it.  Then find the tightest enclosing loop for the self Node.
2622   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2623     Node* m = n->fast_out(i);   // Child
2624     if( n == m ) continue;      // Ignore control self-cycles
2625     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
2626 
2627     IdealLoopTree *l;           // Child's loop
2628     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
2629       // Found a backedge
2630       assert( get_preorder(m) < pre_order, "should be backedge" );
2631       // Check for the RootNode, which is already a LoopNode and is allowed
2632       // to have multiple "backedges".
2633       if( m == C->root()) {     // Found the root?
2634         l = _ltree_root;        // Root is the outermost LoopNode
2635       } else {                  // Else found a nested loop
2636         // Insert a LoopNode to mark this loop.
2637         l = new IdealLoopTree(this, m, n);
2638       } // End of Else found a nested loop
2639       if( !has_loop(m) )        // If 'm' does not already have a loop set
2640         set_loop(m, l);         // Set loop header to loop now
2641 
2642     } else {                    // Else not a nested loop
2643       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
2644       l = get_loop(m);          // Get previously determined loop
2645       // If successor is header of a loop (nest), move up-loop till it
2646       // is a member of some outer enclosing loop.  Since there are no
2647       // shared headers (I've split them already) I only need to go up
2648       // at most 1 level.
2649       while( l && l->_head == m ) // Successor heads loop?
2650         l = l->_parent;         // Move up 1 for me
2651       // If this loop is not properly parented, then this loop
2652       // has no exit path out, i.e. its an infinite loop.
2653       if( !l ) {
2654         // Make loop "reachable" from root so the CFG is reachable.  Basically
2655         // insert a bogus loop exit that is never taken.  'm', the loop head,
2656         // points to 'n', one (of possibly many) fall-in paths.  There may be
2657         // many backedges as well.
2658 
2659         // Here I set the loop to be the root loop.  I could have, after
2660         // inserting a bogus loop exit, restarted the recursion and found my
2661         // new loop exit.  This would make the infinite loop a first-class
2662         // loop and it would then get properly optimized.  What's the use of
2663         // optimizing an infinite loop?
2664         l = _ltree_root;        // Oops, found infinite loop
2665 
2666         if (!_verify_only) {
2667           // Insert the NeverBranch between 'm' and it's control user.
2668           NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
2669           _igvn.register_new_node_with_optimizer(iff);
2670           set_loop(iff, l);
2671           Node *if_t = new (C, 1) CProjNode( iff, 0 );
2672           _igvn.register_new_node_with_optimizer(if_t);
2673           set_loop(if_t, l);
2674 
2675           Node* cfg = NULL;       // Find the One True Control User of m
2676           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2677             Node* x = m->fast_out(j);
2678             if (x->is_CFG() && x != m && x != iff)
2679               { cfg = x; break; }
2680           }
2681           assert(cfg != NULL, "must find the control user of m");
2682           uint k = 0;             // Probably cfg->in(0)
2683           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
2684           cfg->set_req( k, if_t ); // Now point to NeverBranch
2685 
2686           // Now create the never-taken loop exit
2687           Node *if_f = new (C, 1) CProjNode( iff, 1 );
2688           _igvn.register_new_node_with_optimizer(if_f);
2689           set_loop(if_f, l);
2690           // Find frame ptr for Halt.  Relies on the optimizer
2691           // V-N'ing.  Easier and quicker than searching through
2692           // the program structure.
2693           Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
2694           _igvn.register_new_node_with_optimizer(frame);
2695           // Halt & Catch Fire
2696           Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
2697           _igvn.register_new_node_with_optimizer(halt);
2698           set_loop(halt, l);
2699           C->root()->add_req(halt);
2700         }
2701         set_loop(C->root(), _ltree_root);
2702       }
2703     }
2704     // Weeny check for irreducible.  This child was already visited (this
2705     // IS the post-work phase).  Is this child's loop header post-visited
2706     // as well?  If so, then I found another entry into the loop.
2707     if (!_verify_only) {
2708       while( is_postvisited(l->_head) ) {
2709         // found irreducible
2710         l->_irreducible = 1; // = true
2711         l = l->_parent;
2712         _has_irreducible_loops = true;
2713         // Check for bad CFG here to prevent crash, and bailout of compile
2714         if (l == NULL) {
2715           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
2716           return pre_order;
2717         }
2718       }
2719     }
2720 
2721     // This Node might be a decision point for loops.  It is only if
2722     // it's children belong to several different loops.  The sort call
2723     // does a trivial amount of work if there is only 1 child or all
2724     // children belong to the same loop.  If however, the children
2725     // belong to different loops, the sort call will properly set the
2726     // _parent pointers to show how the loops nest.
2727     //
2728     // In any case, it returns the tightest enclosing loop.
2729     innermost = sort( l, innermost );
2730   }
2731 
2732   // Def-use info will have some dead stuff; dead stuff will have no
2733   // loop decided on.
2734 
2735   // Am I a loop header?  If so fix up my parent's child and next ptrs.
2736   if( innermost && innermost->_head == n ) {
2737     assert( get_loop(n) == innermost, "" );
2738     IdealLoopTree *p = innermost->_parent;
2739     IdealLoopTree *l = innermost;
2740     while( p && l->_head == n ) {
2741       l->_next = p->_child;     // Put self on parents 'next child'
2742       p->_child = l;            // Make self as first child of parent
2743       l = p;                    // Now walk up the parent chain
2744       p = l->_parent;
2745     }
2746   } else {
2747     // Note that it is possible for a LoopNode to reach here, if the
2748     // backedge has been made unreachable (hence the LoopNode no longer
2749     // denotes a Loop, and will eventually be removed).
2750 
2751     // Record tightest enclosing loop for self.  Mark as post-visited.
2752     set_loop(n, innermost);
2753     // Also record has_call flag early on
2754     if( innermost ) {
2755       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
2756         // Do not count uncommon calls
2757         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
2758           Node *iff = n->in(0)->in(0);
2759           // No any calls for vectorized loops.
2760           if( UseSuperWord || !iff->is_If() ||
2761               (n->in(0)->Opcode() == Op_IfFalse &&
2762                (1.0 - iff->as_If()->_prob) >= 0.01) ||
2763               (iff->as_If()->_prob >= 0.01) )
2764             innermost->_has_call = 1;
2765         }
2766       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
2767         // Disable loop optimizations if the loop has a scalar replaceable
2768         // allocation. This disabling may cause a potential performance lost
2769         // if the allocation is not eliminated for some reason.
2770         innermost->_allow_optimizations = false;
2771         innermost->_has_call = 1; // = true
2772       }
2773     }
2774   }
2775 
2776   // Flag as post-visited now
2777   set_postvisited(n);
2778   return pre_order;
2779 }
2780 
2781 
2782 //------------------------------build_loop_early-------------------------------
2783 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
2784 // First pass computes the earliest controlling node possible.  This is the
2785 // controlling input with the deepest dominating depth.
2786 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
2787   while (worklist.size() != 0) {
2788     // Use local variables nstack_top_n & nstack_top_i to cache values
2789     // on nstack's top.
2790     Node *nstack_top_n = worklist.pop();
2791     uint  nstack_top_i = 0;
2792 //while_nstack_nonempty:
2793     while (true) {
2794       // Get parent node and next input's index from stack's top.
2795       Node  *n = nstack_top_n;
2796       uint   i = nstack_top_i;
2797       uint cnt = n->req(); // Count of inputs
2798       if (i == 0) {        // Pre-process the node.
2799         if( has_node(n) &&            // Have either loop or control already?
2800             !has_ctrl(n) ) {          // Have loop picked out already?
2801           // During "merge_many_backedges" we fold up several nested loops
2802           // into a single loop.  This makes the members of the original
2803           // loop bodies pointing to dead loops; they need to move up
2804           // to the new UNION'd larger loop.  I set the _head field of these
2805           // dead loops to NULL and the _parent field points to the owning
2806           // loop.  Shades of UNION-FIND algorithm.
2807           IdealLoopTree *ilt;
2808           while( !(ilt = get_loop(n))->_head ) {
2809             // Normally I would use a set_loop here.  But in this one special
2810             // case, it is legal (and expected) to change what loop a Node
2811             // belongs to.
2812             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
2813           }
2814           // Remove safepoints ONLY if I've already seen I don't need one.
2815           // (the old code here would yank a 2nd safepoint after seeing a
2816           // first one, even though the 1st did not dominate in the loop body
2817           // and thus could be avoided indefinitely)
2818           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
2819               is_deleteable_safept(n)) {
2820             Node *in = n->in(TypeFunc::Control);
2821             lazy_replace(n,in);       // Pull safepoint now
2822             // Carry on with the recursion "as if" we are walking
2823             // only the control input
2824             if( !visited.test_set( in->_idx ) ) {
2825               worklist.push(in);      // Visit this guy later, using worklist
2826             }
2827             // Get next node from nstack:
2828             // - skip n's inputs processing by setting i > cnt;
2829             // - we also will not call set_early_ctrl(n) since
2830             //   has_node(n) == true (see the condition above).
2831             i = cnt + 1;
2832           }
2833         }
2834       } // if (i == 0)
2835 
2836       // Visit all inputs
2837       bool done = true;       // Assume all n's inputs will be processed
2838       while (i < cnt) {
2839         Node *in = n->in(i);
2840         ++i;
2841         if (in == NULL) continue;
2842         if (in->pinned() && !in->is_CFG())
2843           set_ctrl(in, in->in(0));
2844         int is_visited = visited.test_set( in->_idx );
2845         if (!has_node(in)) {  // No controlling input yet?
2846           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
2847           assert( !is_visited, "visit only once" );
2848           nstack.push(n, i);  // Save parent node and next input's index.
2849           nstack_top_n = in;  // Process current input now.
2850           nstack_top_i = 0;
2851           done = false;       // Not all n's inputs processed.
2852           break; // continue while_nstack_nonempty;
2853         } else if (!is_visited) {
2854           // This guy has a location picked out for him, but has not yet
2855           // been visited.  Happens to all CFG nodes, for instance.
2856           // Visit him using the worklist instead of recursion, to break
2857           // cycles.  Since he has a location already we do not need to
2858           // find his location before proceeding with the current Node.
2859           worklist.push(in);  // Visit this guy later, using worklist
2860         }
2861       }
2862       if (done) {
2863         // All of n's inputs have been processed, complete post-processing.
2864 
2865         // Compute earliest point this Node can go.
2866         // CFG, Phi, pinned nodes already know their controlling input.
2867         if (!has_node(n)) {
2868           // Record earliest legal location
2869           set_early_ctrl( n );
2870         }
2871         if (nstack.is_empty()) {
2872           // Finished all nodes on stack.
2873           // Process next node on the worklist.
2874           break;
2875         }
2876         // Get saved parent node and next input's index.
2877         nstack_top_n = nstack.node();
2878         nstack_top_i = nstack.index();
2879         nstack.pop();
2880       }
2881     } // while (true)
2882   }
2883 }
2884 
2885 //------------------------------dom_lca_internal--------------------------------
2886 // Pair-wise LCA
2887 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
2888   if( !n1 ) return n2;          // Handle NULL original LCA
2889   assert( n1->is_CFG(), "" );
2890   assert( n2->is_CFG(), "" );
2891   // find LCA of all uses
2892   uint d1 = dom_depth(n1);
2893   uint d2 = dom_depth(n2);
2894   while (n1 != n2) {
2895     if (d1 > d2) {
2896       n1 =      idom(n1);
2897       d1 = dom_depth(n1);
2898     } else if (d1 < d2) {
2899       n2 =      idom(n2);
2900       d2 = dom_depth(n2);
2901     } else {
2902       // Here d1 == d2.  Due to edits of the dominator-tree, sections
2903       // of the tree might have the same depth.  These sections have
2904       // to be searched more carefully.
2905 
2906       // Scan up all the n1's with equal depth, looking for n2.
2907       Node *t1 = idom(n1);
2908       while (dom_depth(t1) == d1) {
2909         if (t1 == n2)  return n2;
2910         t1 = idom(t1);
2911       }
2912       // Scan up all the n2's with equal depth, looking for n1.
2913       Node *t2 = idom(n2);
2914       while (dom_depth(t2) == d2) {
2915         if (t2 == n1)  return n1;
2916         t2 = idom(t2);
2917       }
2918       // Move up to a new dominator-depth value as well as up the dom-tree.
2919       n1 = t1;
2920       n2 = t2;
2921       d1 = dom_depth(n1);
2922       d2 = dom_depth(n2);
2923     }
2924   }
2925   return n1;
2926 }
2927 
2928 //------------------------------compute_idom-----------------------------------
2929 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
2930 // IDOMs are correct.
2931 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
2932   assert( region->is_Region(), "" );
2933   Node *LCA = NULL;
2934   for( uint i = 1; i < region->req(); i++ ) {
2935     if( region->in(i) != C->top() )
2936       LCA = dom_lca( LCA, region->in(i) );
2937   }
2938   return LCA;
2939 }
2940 
2941 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
2942   bool had_error = false;
2943 #ifdef ASSERT
2944   if (early != C->root()) {
2945     // Make sure that there's a dominance path from use to LCA
2946     Node* d = use;
2947     while (d != LCA) {
2948       d = idom(d);
2949       if (d == C->root()) {
2950         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
2951         n->dump();
2952         use->dump();
2953         had_error = true;
2954         break;
2955       }
2956     }
2957   }
2958 #endif
2959   return had_error;
2960 }
2961 
2962 
2963 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
2964   // Compute LCA over list of uses
2965   bool had_error = false;
2966   Node *LCA = NULL;
2967   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
2968     Node* c = n->fast_out(i);
2969     if (_nodes[c->_idx] == NULL)
2970       continue;                 // Skip the occasional dead node
2971     if( c->is_Phi() ) {         // For Phis, we must land above on the path
2972       for( uint j=1; j<c->req(); j++ ) {// For all inputs
2973         if( c->in(j) == n ) {   // Found matching input?
2974           Node *use = c->in(0)->in(j);
2975           if (_verify_only && use->is_top()) continue;
2976           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
2977           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
2978         }
2979       }
2980     } else {
2981       // For CFG data-users, use is in the block just prior
2982       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
2983       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
2984       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
2985     }
2986   }
2987   assert(!had_error, "bad dominance");
2988   return LCA;
2989 }
2990 
2991 //------------------------------get_late_ctrl----------------------------------
2992 // Compute latest legal control.
2993 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
2994   assert(early != NULL, "early control should not be NULL");
2995 
2996   Node* LCA = compute_lca_of_uses(n, early);
2997 #ifdef ASSERT
2998   if (LCA == C->root() && LCA != early) {
2999     // def doesn't dominate uses so print some useful debugging output
3000     compute_lca_of_uses(n, early, true);
3001   }
3002 #endif
3003 
3004   // if this is a load, check for anti-dependent stores
3005   // We use a conservative algorithm to identify potential interfering
3006   // instructions and for rescheduling the load.  The users of the memory
3007   // input of this load are examined.  Any use which is not a load and is
3008   // dominated by early is considered a potentially interfering store.
3009   // This can produce false positives.
3010   if (n->is_Load() && LCA != early) {
3011     Node_List worklist;
3012 
3013     Node *mem = n->in(MemNode::Memory);
3014     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3015       Node* s = mem->fast_out(i);
3016       worklist.push(s);
3017     }
3018     while(worklist.size() != 0 && LCA != early) {
3019       Node* s = worklist.pop();
3020       if (s->is_Load()) {
3021         continue;
3022       } else if (s->is_MergeMem()) {
3023         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
3024           Node* s1 = s->fast_out(i);
3025           worklist.push(s1);
3026         }
3027       } else {
3028         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
3029         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
3030         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
3031           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
3032         }
3033       }
3034     }
3035   }
3036 
3037   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
3038   return LCA;
3039 }
3040 
3041 // true if CFG node d dominates CFG node n
3042 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
3043   if (d == n)
3044     return true;
3045   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
3046   uint dd = dom_depth(d);
3047   while (dom_depth(n) >= dd) {
3048     if (n == d)
3049       return true;
3050     n = idom(n);
3051   }
3052   return false;
3053 }
3054 
3055 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
3056 // Pair-wise LCA with tags.
3057 // Tag each index with the node 'tag' currently being processed
3058 // before advancing up the dominator chain using idom().
3059 // Later calls that find a match to 'tag' know that this path has already
3060 // been considered in the current LCA (which is input 'n1' by convention).
3061 // Since get_late_ctrl() is only called once for each node, the tag array
3062 // does not need to be cleared between calls to get_late_ctrl().
3063 // Algorithm trades a larger constant factor for better asymptotic behavior
3064 //
3065 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
3066   uint d1 = dom_depth(n1);
3067   uint d2 = dom_depth(n2);
3068 
3069   do {
3070     if (d1 > d2) {
3071       // current lca is deeper than n2
3072       _dom_lca_tags.map(n1->_idx, tag);
3073       n1 =      idom(n1);
3074       d1 = dom_depth(n1);
3075     } else if (d1 < d2) {
3076       // n2 is deeper than current lca
3077       Node *memo = _dom_lca_tags[n2->_idx];
3078       if( memo == tag ) {
3079         return n1;    // Return the current LCA
3080       }
3081       _dom_lca_tags.map(n2->_idx, tag);
3082       n2 =      idom(n2);
3083       d2 = dom_depth(n2);
3084     } else {
3085       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3086       // of the tree might have the same depth.  These sections have
3087       // to be searched more carefully.
3088 
3089       // Scan up all the n1's with equal depth, looking for n2.
3090       _dom_lca_tags.map(n1->_idx, tag);
3091       Node *t1 = idom(n1);
3092       while (dom_depth(t1) == d1) {
3093         if (t1 == n2)  return n2;
3094         _dom_lca_tags.map(t1->_idx, tag);
3095         t1 = idom(t1);
3096       }
3097       // Scan up all the n2's with equal depth, looking for n1.
3098       _dom_lca_tags.map(n2->_idx, tag);
3099       Node *t2 = idom(n2);
3100       while (dom_depth(t2) == d2) {
3101         if (t2 == n1)  return n1;
3102         _dom_lca_tags.map(t2->_idx, tag);
3103         t2 = idom(t2);
3104       }
3105       // Move up to a new dominator-depth value as well as up the dom-tree.
3106       n1 = t1;
3107       n2 = t2;
3108       d1 = dom_depth(n1);
3109       d2 = dom_depth(n2);
3110     }
3111   } while (n1 != n2);
3112   return n1;
3113 }
3114 
3115 //------------------------------init_dom_lca_tags------------------------------
3116 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3117 // Intended use does not involve any growth for the array, so it could
3118 // be of fixed size.
3119 void PhaseIdealLoop::init_dom_lca_tags() {
3120   uint limit = C->unique() + 1;
3121   _dom_lca_tags.map( limit, NULL );
3122 #ifdef ASSERT
3123   for( uint i = 0; i < limit; ++i ) {
3124     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3125   }
3126 #endif // ASSERT
3127 }
3128 
3129 //------------------------------clear_dom_lca_tags------------------------------
3130 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3131 // Intended use does not involve any growth for the array, so it could
3132 // be of fixed size.
3133 void PhaseIdealLoop::clear_dom_lca_tags() {
3134   uint limit = C->unique() + 1;
3135   _dom_lca_tags.map( limit, NULL );
3136   _dom_lca_tags.clear();
3137 #ifdef ASSERT
3138   for( uint i = 0; i < limit; ++i ) {
3139     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3140   }
3141 #endif // ASSERT
3142 }
3143 
3144 //------------------------------build_loop_late--------------------------------
3145 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3146 // Second pass finds latest legal placement, and ideal loop placement.
3147 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3148   while (worklist.size() != 0) {
3149     Node *n = worklist.pop();
3150     // Only visit once
3151     if (visited.test_set(n->_idx)) continue;
3152     uint cnt = n->outcnt();
3153     uint   i = 0;
3154     while (true) {
3155       assert( _nodes[n->_idx], "no dead nodes" );
3156       // Visit all children
3157       if (i < cnt) {
3158         Node* use = n->raw_out(i);
3159         ++i;
3160         // Check for dead uses.  Aggressively prune such junk.  It might be
3161         // dead in the global sense, but still have local uses so I cannot
3162         // easily call 'remove_dead_node'.
3163         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
3164           // Due to cycles, we might not hit the same fixed point in the verify
3165           // pass as we do in the regular pass.  Instead, visit such phis as
3166           // simple uses of the loop head.
3167           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
3168             if( !visited.test(use->_idx) )
3169               worklist.push(use);
3170           } else if( !visited.test_set(use->_idx) ) {
3171             nstack.push(n, i); // Save parent and next use's index.
3172             n   = use;         // Process all children of current use.
3173             cnt = use->outcnt();
3174             i   = 0;
3175           }
3176         } else {
3177           // Do not visit around the backedge of loops via data edges.
3178           // push dead code onto a worklist
3179           _deadlist.push(use);
3180         }
3181       } else {
3182         // All of n's children have been processed, complete post-processing.
3183         build_loop_late_post(n);
3184         if (nstack.is_empty()) {
3185           // Finished all nodes on stack.
3186           // Process next node on the worklist.
3187           break;
3188         }
3189         // Get saved parent node and next use's index. Visit the rest of uses.
3190         n   = nstack.node();
3191         cnt = n->outcnt();
3192         i   = nstack.index();
3193         nstack.pop();
3194       }
3195     }
3196   }
3197 }
3198 
3199 //------------------------------build_loop_late_post---------------------------
3200 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3201 // Second pass finds latest legal placement, and ideal loop placement.
3202 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
3203 
3204   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
3205     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
3206   }
3207 
3208   // CFG and pinned nodes already handled
3209   if( n->in(0) ) {
3210     if( n->in(0)->is_top() ) return; // Dead?
3211 
3212     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
3213     // _must_ be pinned (they have to observe their control edge of course).
3214     // Unlike Stores (which modify an unallocable resource, the memory
3215     // state), Mods/Loads can float around.  So free them up.
3216     bool pinned = true;
3217     switch( n->Opcode() ) {
3218     case Op_DivI:
3219     case Op_DivF:
3220     case Op_DivD:
3221     case Op_ModI:
3222     case Op_ModF:
3223     case Op_ModD:
3224     case Op_LoadB:              // Same with Loads; they can sink
3225     case Op_LoadUS:             // during loop optimizations.
3226     case Op_LoadD:
3227     case Op_LoadF:
3228     case Op_LoadI:
3229     case Op_LoadKlass:
3230     case Op_LoadNKlass:
3231     case Op_LoadL:
3232     case Op_LoadS:
3233     case Op_LoadP:
3234     case Op_LoadN:
3235     case Op_LoadRange:
3236     case Op_LoadD_unaligned:
3237     case Op_LoadL_unaligned:
3238     case Op_StrComp:            // Does a bunch of load-like effects
3239     case Op_StrEquals:
3240     case Op_StrIndexOf:
3241     case Op_AryEq:
3242       pinned = false;
3243     }
3244     if( pinned ) {
3245       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
3246       if( !chosen_loop->_child )       // Inner loop?
3247         chosen_loop->_body.push(n); // Collect inner loops
3248       return;
3249     }
3250   } else {                      // No slot zero
3251     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
3252       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
3253       return;
3254     }
3255     assert(!n->is_CFG() || n->outcnt() == 0, "");
3256   }
3257 
3258   // Do I have a "safe range" I can select over?
3259   Node *early = get_ctrl(n);// Early location already computed
3260 
3261   // Compute latest point this Node can go
3262   Node *LCA = get_late_ctrl( n, early );
3263   // LCA is NULL due to uses being dead
3264   if( LCA == NULL ) {
3265 #ifdef ASSERT
3266     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
3267       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
3268     }
3269 #endif
3270     _nodes.map(n->_idx, 0);     // This node is useless
3271     _deadlist.push(n);
3272     return;
3273   }
3274   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
3275 
3276   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
3277   Node *least = legal;          // Best legal position so far
3278   while( early != legal ) {     // While not at earliest legal
3279 #ifdef ASSERT
3280     if (legal->is_Start() && !early->is_Root()) {
3281       // Bad graph. Print idom path and fail.
3282       dump_bad_graph(n, early, LCA);
3283       assert(false, "Bad graph detected in build_loop_late");
3284     }
3285 #endif
3286     // Find least loop nesting depth
3287     legal = idom(legal);        // Bump up the IDOM tree
3288     // Check for lower nesting depth
3289     if( get_loop(legal)->_nest < get_loop(least)->_nest )
3290       least = legal;
3291   }
3292   assert(early == legal || legal != C->root(), "bad dominance of inputs");
3293 
3294   // Try not to place code on a loop entry projection
3295   // which can inhibit range check elimination.
3296   if (least != early) {
3297     Node* ctrl_out = least->unique_ctrl_out();
3298     if (ctrl_out && ctrl_out->is_CountedLoop() &&
3299         least == ctrl_out->in(LoopNode::EntryControl)) {
3300       Node* least_dom = idom(least);
3301       if (get_loop(least_dom)->is_member(get_loop(least))) {
3302         least = least_dom;
3303       }
3304     }
3305   }
3306 
3307 #ifdef ASSERT
3308   // If verifying, verify that 'verify_me' has a legal location
3309   // and choose it as our location.
3310   if( _verify_me ) {
3311     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
3312     Node *legal = LCA;
3313     while( early != legal ) {   // While not at earliest legal
3314       if( legal == v_ctrl ) break;  // Check for prior good location
3315       legal = idom(legal)      ;// Bump up the IDOM tree
3316     }
3317     // Check for prior good location
3318     if( legal == v_ctrl ) least = legal; // Keep prior if found
3319   }
3320 #endif
3321 
3322   // Assign discovered "here or above" point
3323   least = find_non_split_ctrl(least);
3324   set_ctrl(n, least);
3325 
3326   // Collect inner loop bodies
3327   IdealLoopTree *chosen_loop = get_loop(least);
3328   if( !chosen_loop->_child )   // Inner loop?
3329     chosen_loop->_body.push(n);// Collect inner loops
3330 }
3331 
3332 #ifdef ASSERT
3333 void PhaseIdealLoop::dump_bad_graph(Node* n, Node* early, Node* LCA) {
3334   tty->print_cr( "Bad graph detected in build_loop_late");
3335   tty->print("n: "); n->dump();
3336   tty->print("early(n): "); early->dump();
3337   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
3338       n->in(0) != early && !n->in(0)->is_Root()) {
3339     tty->print("n->in(0): "); n->in(0)->dump();
3340   }
3341   for (uint i = 1; i < n->req(); i++) {
3342     Node* in1 = n->in(i);
3343     if (in1 != NULL && in1 != n && !in1->is_top()) {
3344       tty->print("n->in(%d): ", i); in1->dump();
3345       Node* in1_early = get_ctrl(in1);
3346       tty->print("early(n->in(%d)): ", i); in1_early->dump();
3347       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
3348           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
3349         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
3350       }
3351       for (uint j = 1; j < in1->req(); j++) {
3352         Node* in2 = in1->in(j);
3353         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
3354           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
3355           Node* in2_early = get_ctrl(in2);
3356           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
3357           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
3358               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
3359             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
3360           }
3361         }
3362       }
3363     }
3364   }
3365   tty->cr();
3366   tty->print("LCA(n): "); LCA->dump();
3367   for (uint i = 0; i < n->outcnt(); i++) {
3368     Node* u1 = n->raw_out(i);
3369     if (u1 == n)
3370       continue;
3371     tty->print("n->out(%d): ", i); u1->dump();
3372     if (u1->is_CFG()) {
3373       for (uint j = 0; j < u1->outcnt(); j++) {
3374         Node* u2 = u1->raw_out(j);
3375         if (u2 != u1 && u2 != n && u2->is_CFG()) {
3376           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
3377         }
3378       }
3379     } else {
3380       Node* u1_later = get_ctrl(u1);
3381       tty->print("later(n->out(%d)): ", i); u1_later->dump();
3382       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
3383           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
3384         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
3385       }
3386       for (uint j = 0; j < u1->outcnt(); j++) {
3387         Node* u2 = u1->raw_out(j);
3388         if (u2 == n || u2 == u1)
3389           continue;
3390         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
3391         if (!u2->is_CFG()) {
3392           Node* u2_later = get_ctrl(u2);
3393           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
3394           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
3395               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
3396             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
3397           }
3398         }
3399       }
3400     }
3401   }
3402   tty->cr();
3403   int ct = 0;
3404   Node *dbg_legal = LCA;
3405   while(!dbg_legal->is_Start() && ct < 100) {
3406     tty->print("idom[%d] ",ct); dbg_legal->dump();
3407     ct++;
3408     dbg_legal = idom(dbg_legal);
3409   }
3410   tty->cr();
3411 }
3412 #endif
3413 
3414 #ifndef PRODUCT
3415 //------------------------------dump-------------------------------------------
3416 void PhaseIdealLoop::dump( ) const {
3417   ResourceMark rm;
3418   Arena* arena = Thread::current()->resource_area();
3419   Node_Stack stack(arena, C->unique() >> 2);
3420   Node_List rpo_list;
3421   VectorSet visited(arena);
3422   visited.set(C->top()->_idx);
3423   rpo( C->root(), stack, visited, rpo_list );
3424   // Dump root loop indexed by last element in PO order
3425   dump( _ltree_root, rpo_list.size(), rpo_list );
3426 }
3427 
3428 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
3429   loop->dump_head();
3430 
3431   // Now scan for CFG nodes in the same loop
3432   for( uint j=idx; j > 0;  j-- ) {
3433     Node *n = rpo_list[j-1];
3434     if( !_nodes[n->_idx] )      // Skip dead nodes
3435       continue;
3436     if( get_loop(n) != loop ) { // Wrong loop nest
3437       if( get_loop(n)->_head == n &&    // Found nested loop?
3438           get_loop(n)->_parent == loop )
3439         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
3440       continue;
3441     }
3442 
3443     // Dump controlling node
3444     for( uint x = 0; x < loop->_nest; x++ )
3445       tty->print("  ");
3446     tty->print("C");
3447     if( n == C->root() ) {
3448       n->dump();
3449     } else {
3450       Node* cached_idom   = idom_no_update(n);
3451       Node *computed_idom = n->in(0);
3452       if( n->is_Region() ) {
3453         computed_idom = compute_idom(n);
3454         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
3455         // any MultiBranch ctrl node), so apply a similar transform to
3456         // the cached idom returned from idom_no_update.
3457         cached_idom = find_non_split_ctrl(cached_idom);
3458       }
3459       tty->print(" ID:%d",computed_idom->_idx);
3460       n->dump();
3461       if( cached_idom != computed_idom ) {
3462         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
3463                       computed_idom->_idx, cached_idom->_idx);
3464       }
3465     }
3466     // Dump nodes it controls
3467     for( uint k = 0; k < _nodes.Size(); k++ ) {
3468       // (k < C->unique() && get_ctrl(find(k)) == n)
3469       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
3470         Node *m = C->root()->find(k);
3471         if( m && m->outcnt() > 0 ) {
3472           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
3473             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
3474                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
3475           }
3476           for( uint j = 0; j < loop->_nest; j++ )
3477             tty->print("  ");
3478           tty->print(" ");
3479           m->dump();
3480         }
3481       }
3482     }
3483   }
3484 }
3485 
3486 // Collect a R-P-O for the whole CFG.
3487 // Result list is in post-order (scan backwards for RPO)
3488 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
3489   stk.push(start, 0);
3490   visited.set(start->_idx);
3491 
3492   while (stk.is_nonempty()) {
3493     Node* m   = stk.node();
3494     uint  idx = stk.index();
3495     if (idx < m->outcnt()) {
3496       stk.set_index(idx + 1);
3497       Node* n = m->raw_out(idx);
3498       if (n->is_CFG() && !visited.test_set(n->_idx)) {
3499         stk.push(n, 0);
3500       }
3501     } else {
3502       rpo_list.push(m);
3503       stk.pop();
3504     }
3505   }
3506 }
3507 #endif
3508 
3509 
3510 //=============================================================================
3511 //------------------------------LoopTreeIterator-----------------------------------
3512 
3513 // Advance to next loop tree using a preorder, left-to-right traversal.
3514 void LoopTreeIterator::next() {
3515   assert(!done(), "must not be done.");
3516   if (_curnt->_child != NULL) {
3517     _curnt = _curnt->_child;
3518   } else if (_curnt->_next != NULL) {
3519     _curnt = _curnt->_next;
3520   } else {
3521     while (_curnt != _root && _curnt->_next == NULL) {
3522       _curnt = _curnt->_parent;
3523     }
3524     if (_curnt == _root) {
3525       _curnt = NULL;
3526       assert(done(), "must be done.");
3527     } else {
3528       assert(_curnt->_next != NULL, "must be more to do");
3529       _curnt = _curnt->_next;
3530     }
3531   }
3532 }