1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/machnode.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/node.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/type.hpp"
  36 #include "utilities/copy.hpp"
  37 
  38 class RegMask;
  39 // #include "phase.hpp"
  40 class PhaseTransform;
  41 class PhaseGVN;
  42 
  43 // Arena we are currently building Nodes in
  44 const uint Node::NotAMachineReg = 0xffff0000;
  45 
  46 #ifndef PRODUCT
  47 extern int nodes_created;
  48 #endif
  49 
  50 #ifdef ASSERT
  51 
  52 //-------------------------- construct_node------------------------------------
  53 // Set a breakpoint here to identify where a particular node index is built.
  54 void Node::verify_construction() {
  55   _debug_orig = NULL;
  56   int old_debug_idx = Compile::debug_idx();
  57   int new_debug_idx = old_debug_idx+1;
  58   if (new_debug_idx > 0) {
  59     // Arrange that the lowest five decimal digits of _debug_idx
  60     // will repeat thos of _idx.  In case this is somehow pathological,
  61     // we continue to assign negative numbers (!) consecutively.
  62     const int mod = 100000;
  63     int bump = (int)(_idx - new_debug_idx) % mod;
  64     if (bump < 0)  bump += mod;
  65     assert(bump >= 0 && bump < mod, "");
  66     new_debug_idx += bump;
  67   }
  68   Compile::set_debug_idx(new_debug_idx);
  69   set_debug_idx( new_debug_idx );
  70   assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
  71   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  72     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  73     BREAKPOINT;
  74   }
  75 #if OPTO_DU_ITERATOR_ASSERT
  76   _last_del = NULL;
  77   _del_tick = 0;
  78 #endif
  79   _hash_lock = 0;
  80 }
  81 
  82 
  83 // #ifdef ASSERT ...
  84 
  85 #if OPTO_DU_ITERATOR_ASSERT
  86 void DUIterator_Common::sample(const Node* node) {
  87   _vdui     = VerifyDUIterators;
  88   _node     = node;
  89   _outcnt   = node->_outcnt;
  90   _del_tick = node->_del_tick;
  91   _last     = NULL;
  92 }
  93 
  94 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
  95   assert(_node     == node, "consistent iterator source");
  96   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
  97 }
  98 
  99 void DUIterator_Common::verify_resync() {
 100   // Ensure that the loop body has just deleted the last guy produced.
 101   const Node* node = _node;
 102   // Ensure that at least one copy of the last-seen edge was deleted.
 103   // Note:  It is OK to delete multiple copies of the last-seen edge.
 104   // Unfortunately, we have no way to verify that all the deletions delete
 105   // that same edge.  On this point we must use the Honor System.
 106   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 107   assert(node->_last_del == _last, "must have deleted the edge just produced");
 108   // We liked this deletion, so accept the resulting outcnt and tick.
 109   _outcnt   = node->_outcnt;
 110   _del_tick = node->_del_tick;
 111 }
 112 
 113 void DUIterator_Common::reset(const DUIterator_Common& that) {
 114   if (this == &that)  return;  // ignore assignment to self
 115   if (!_vdui) {
 116     // We need to initialize everything, overwriting garbage values.
 117     _last = that._last;
 118     _vdui = that._vdui;
 119   }
 120   // Note:  It is legal (though odd) for an iterator over some node x
 121   // to be reassigned to iterate over another node y.  Some doubly-nested
 122   // progress loops depend on being able to do this.
 123   const Node* node = that._node;
 124   // Re-initialize everything, except _last.
 125   _node     = node;
 126   _outcnt   = node->_outcnt;
 127   _del_tick = node->_del_tick;
 128 }
 129 
 130 void DUIterator::sample(const Node* node) {
 131   DUIterator_Common::sample(node);      // Initialize the assertion data.
 132   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 133 }
 134 
 135 void DUIterator::verify(const Node* node, bool at_end_ok) {
 136   DUIterator_Common::verify(node, at_end_ok);
 137   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 138 }
 139 
 140 void DUIterator::verify_increment() {
 141   if (_refresh_tick & 1) {
 142     // We have refreshed the index during this loop.
 143     // Fix up _idx to meet asserts.
 144     if (_idx > _outcnt)  _idx = _outcnt;
 145   }
 146   verify(_node, true);
 147 }
 148 
 149 void DUIterator::verify_resync() {
 150   // Note:  We do not assert on _outcnt, because insertions are OK here.
 151   DUIterator_Common::verify_resync();
 152   // Make sure we are still in sync, possibly with no more out-edges:
 153   verify(_node, true);
 154 }
 155 
 156 void DUIterator::reset(const DUIterator& that) {
 157   if (this == &that)  return;  // self assignment is always a no-op
 158   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 159   assert(that._idx          == 0, "assign only the result of Node::outs()");
 160   assert(_idx               == that._idx, "already assigned _idx");
 161   if (!_vdui) {
 162     // We need to initialize everything, overwriting garbage values.
 163     sample(that._node);
 164   } else {
 165     DUIterator_Common::reset(that);
 166     if (_refresh_tick & 1) {
 167       _refresh_tick++;                  // Clear the "was refreshed" flag.
 168     }
 169     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 170   }
 171 }
 172 
 173 void DUIterator::refresh() {
 174   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 175   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 176 }
 177 
 178 void DUIterator::verify_finish() {
 179   // If the loop has killed the node, do not require it to re-run.
 180   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 181   // If this assert triggers, it means that a loop used refresh_out_pos
 182   // to re-synch an iteration index, but the loop did not correctly
 183   // re-run itself, using a "while (progress)" construct.
 184   // This iterator enforces the rule that you must keep trying the loop
 185   // until it "runs clean" without any need for refreshing.
 186   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 187 }
 188 
 189 
 190 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 191   DUIterator_Common::verify(node, at_end_ok);
 192   Node** out    = node->_out;
 193   uint   cnt    = node->_outcnt;
 194   assert(cnt == _outcnt, "no insertions allowed");
 195   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 196   // This last check is carefully designed to work for NO_OUT_ARRAY.
 197 }
 198 
 199 void DUIterator_Fast::verify_limit() {
 200   const Node* node = _node;
 201   verify(node, true);
 202   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 203 }
 204 
 205 void DUIterator_Fast::verify_resync() {
 206   const Node* node = _node;
 207   if (_outp == node->_out + _outcnt) {
 208     // Note that the limit imax, not the pointer i, gets updated with the
 209     // exact count of deletions.  (For the pointer it's always "--i".)
 210     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 211     // This is a limit pointer, with a name like "imax".
 212     // Fudge the _last field so that the common assert will be happy.
 213     _last = (Node*) node->_last_del;
 214     DUIterator_Common::verify_resync();
 215   } else {
 216     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 217     // A normal internal pointer.
 218     DUIterator_Common::verify_resync();
 219     // Make sure we are still in sync, possibly with no more out-edges:
 220     verify(node, true);
 221   }
 222 }
 223 
 224 void DUIterator_Fast::verify_relimit(uint n) {
 225   const Node* node = _node;
 226   assert((int)n > 0, "use imax -= n only with a positive count");
 227   // This must be a limit pointer, with a name like "imax".
 228   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 229   // The reported number of deletions must match what the node saw.
 230   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 231   // Fudge the _last field so that the common assert will be happy.
 232   _last = (Node*) node->_last_del;
 233   DUIterator_Common::verify_resync();
 234 }
 235 
 236 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 237   assert(_outp              == that._outp, "already assigned _outp");
 238   DUIterator_Common::reset(that);
 239 }
 240 
 241 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 242   // at_end_ok means the _outp is allowed to underflow by 1
 243   _outp += at_end_ok;
 244   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 245   _outp -= at_end_ok;
 246   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 247 }
 248 
 249 void DUIterator_Last::verify_limit() {
 250   // Do not require the limit address to be resynched.
 251   //verify(node, true);
 252   assert(_outp == _node->_out, "limit still correct");
 253 }
 254 
 255 void DUIterator_Last::verify_step(uint num_edges) {
 256   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 257   _outcnt   -= num_edges;
 258   _del_tick += num_edges;
 259   // Make sure we are still in sync, possibly with no more out-edges:
 260   const Node* node = _node;
 261   verify(node, true);
 262   assert(node->_last_del == _last, "must have deleted the edge just produced");
 263 }
 264 
 265 #endif //OPTO_DU_ITERATOR_ASSERT
 266 
 267 
 268 #endif //ASSERT
 269 
 270 
 271 // This constant used to initialize _out may be any non-null value.
 272 // The value NULL is reserved for the top node only.
 273 #define NO_OUT_ARRAY ((Node**)-1)
 274 
 275 // This funny expression handshakes with Node::operator new
 276 // to pull Compile::current out of the new node's _out field,
 277 // and then calls a subroutine which manages most field
 278 // initializations.  The only one which is tricky is the
 279 // _idx field, which is const, and so must be initialized
 280 // by a return value, not an assignment.
 281 //
 282 // (Aren't you thankful that Java finals don't require so many tricks?)
 283 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
 284 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
 285 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 286 #endif
 287 
 288 // Out-of-line code from node constructors.
 289 // Executed only when extra debug info. is being passed around.
 290 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 291   C->set_node_notes_at(idx, nn);
 292 }
 293 
 294 // Shared initialization code.
 295 inline int Node::Init(int req, Compile* C) {
 296   assert(Compile::current() == C, "must use operator new(Compile*)");
 297   int idx = C->next_unique();
 298 
 299   // If there are default notes floating around, capture them:
 300   Node_Notes* nn = C->default_node_notes();
 301   if (nn != NULL)  init_node_notes(C, idx, nn);
 302 
 303   // Note:  At this point, C is dead,
 304   // and we begin to initialize the new Node.
 305 
 306   _cnt = _max = req;
 307   _outcnt = _outmax = 0;
 308   _class_id = Class_Node;
 309   _flags = 0;
 310   _out = NO_OUT_ARRAY;
 311   return idx;
 312 }
 313 
 314 //------------------------------Node-------------------------------------------
 315 // Create a Node, with a given number of required edges.
 316 Node::Node(uint req)
 317   : _idx(IDX_INIT(req))
 318 {
 319   assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
 320   debug_only( verify_construction() );
 321   NOT_PRODUCT(nodes_created++);
 322   if (req == 0) {
 323     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 324     _in = NULL;
 325   } else {
 326     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 327     Node** to = _in;
 328     for(uint i = 0; i < req; i++) {
 329       to[i] = NULL;
 330     }
 331   }
 332 }
 333 
 334 //------------------------------Node-------------------------------------------
 335 Node::Node(Node *n0)
 336   : _idx(IDX_INIT(1))
 337 {
 338   debug_only( verify_construction() );
 339   NOT_PRODUCT(nodes_created++);
 340   // Assert we allocated space for input array already
 341   assert( _in[0] == this, "Must pass arg count to 'new'" );
 342   assert( is_not_dead(n0), "can not use dead node");
 343   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 344 }
 345 
 346 //------------------------------Node-------------------------------------------
 347 Node::Node(Node *n0, Node *n1)
 348   : _idx(IDX_INIT(2))
 349 {
 350   debug_only( verify_construction() );
 351   NOT_PRODUCT(nodes_created++);
 352   // Assert we allocated space for input array already
 353   assert( _in[1] == this, "Must pass arg count to 'new'" );
 354   assert( is_not_dead(n0), "can not use dead node");
 355   assert( is_not_dead(n1), "can not use dead node");
 356   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 357   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 358 }
 359 
 360 //------------------------------Node-------------------------------------------
 361 Node::Node(Node *n0, Node *n1, Node *n2)
 362   : _idx(IDX_INIT(3))
 363 {
 364   debug_only( verify_construction() );
 365   NOT_PRODUCT(nodes_created++);
 366   // Assert we allocated space for input array already
 367   assert( _in[2] == this, "Must pass arg count to 'new'" );
 368   assert( is_not_dead(n0), "can not use dead node");
 369   assert( is_not_dead(n1), "can not use dead node");
 370   assert( is_not_dead(n2), "can not use dead node");
 371   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 372   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 373   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 374 }
 375 
 376 //------------------------------Node-------------------------------------------
 377 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 378   : _idx(IDX_INIT(4))
 379 {
 380   debug_only( verify_construction() );
 381   NOT_PRODUCT(nodes_created++);
 382   // Assert we allocated space for input array already
 383   assert( _in[3] == this, "Must pass arg count to 'new'" );
 384   assert( is_not_dead(n0), "can not use dead node");
 385   assert( is_not_dead(n1), "can not use dead node");
 386   assert( is_not_dead(n2), "can not use dead node");
 387   assert( is_not_dead(n3), "can not use dead node");
 388   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 389   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 390   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 391   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 392 }
 393 
 394 //------------------------------Node-------------------------------------------
 395 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 396   : _idx(IDX_INIT(5))
 397 {
 398   debug_only( verify_construction() );
 399   NOT_PRODUCT(nodes_created++);
 400   // Assert we allocated space for input array already
 401   assert( _in[4] == this, "Must pass arg count to 'new'" );
 402   assert( is_not_dead(n0), "can not use dead node");
 403   assert( is_not_dead(n1), "can not use dead node");
 404   assert( is_not_dead(n2), "can not use dead node");
 405   assert( is_not_dead(n3), "can not use dead node");
 406   assert( is_not_dead(n4), "can not use dead node");
 407   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 408   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 409   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 410   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 411   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 412 }
 413 
 414 //------------------------------Node-------------------------------------------
 415 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 416                      Node *n4, Node *n5)
 417   : _idx(IDX_INIT(6))
 418 {
 419   debug_only( verify_construction() );
 420   NOT_PRODUCT(nodes_created++);
 421   // Assert we allocated space for input array already
 422   assert( _in[5] == this, "Must pass arg count to 'new'" );
 423   assert( is_not_dead(n0), "can not use dead node");
 424   assert( is_not_dead(n1), "can not use dead node");
 425   assert( is_not_dead(n2), "can not use dead node");
 426   assert( is_not_dead(n3), "can not use dead node");
 427   assert( is_not_dead(n4), "can not use dead node");
 428   assert( is_not_dead(n5), "can not use dead node");
 429   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 430   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 431   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 432   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 433   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 434   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 435 }
 436 
 437 //------------------------------Node-------------------------------------------
 438 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 439                      Node *n4, Node *n5, Node *n6)
 440   : _idx(IDX_INIT(7))
 441 {
 442   debug_only( verify_construction() );
 443   NOT_PRODUCT(nodes_created++);
 444   // Assert we allocated space for input array already
 445   assert( _in[6] == this, "Must pass arg count to 'new'" );
 446   assert( is_not_dead(n0), "can not use dead node");
 447   assert( is_not_dead(n1), "can not use dead node");
 448   assert( is_not_dead(n2), "can not use dead node");
 449   assert( is_not_dead(n3), "can not use dead node");
 450   assert( is_not_dead(n4), "can not use dead node");
 451   assert( is_not_dead(n5), "can not use dead node");
 452   assert( is_not_dead(n6), "can not use dead node");
 453   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 454   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 455   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 456   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 457   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 458   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 459   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 460 }
 461 
 462 
 463 //------------------------------clone------------------------------------------
 464 // Clone a Node.
 465 Node *Node::clone() const {
 466   Compile *compile = Compile::current();
 467   uint s = size_of();           // Size of inherited Node
 468   Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 469   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 470   // Set the new input pointer array
 471   n->_in = (Node**)(((char*)n)+s);
 472   // Cannot share the old output pointer array, so kill it
 473   n->_out = NO_OUT_ARRAY;
 474   // And reset the counters to 0
 475   n->_outcnt = 0;
 476   n->_outmax = 0;
 477   // Unlock this guy, since he is not in any hash table.
 478   debug_only(n->_hash_lock = 0);
 479   // Walk the old node's input list to duplicate its edges
 480   uint i;
 481   for( i = 0; i < len(); i++ ) {
 482     Node *x = in(i);
 483     n->_in[i] = x;
 484     if (x != NULL) x->add_out(n);
 485   }
 486   if (is_macro())
 487     compile->add_macro_node(n);
 488 
 489   n->set_idx(compile->next_unique()); // Get new unique index as well
 490   debug_only( n->verify_construction() );
 491   NOT_PRODUCT(nodes_created++);
 492   // Do not patch over the debug_idx of a clone, because it makes it
 493   // impossible to break on the clone's moment of creation.
 494   //debug_only( n->set_debug_idx( debug_idx() ) );
 495 
 496   compile->copy_node_notes_to(n, (Node*) this);
 497 
 498   // MachNode clone
 499   uint nopnds;
 500   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 501     MachNode *mach  = n->as_Mach();
 502     MachNode *mthis = this->as_Mach();
 503     // Get address of _opnd_array.
 504     // It should be the same offset since it is the clone of this node.
 505     MachOper **from = mthis->_opnds;
 506     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 507                     pointer_delta((const void*)from,
 508                                   (const void*)(&mthis->_opnds), 1));
 509     mach->_opnds = to;
 510     for ( uint i = 0; i < nopnds; ++i ) {
 511       to[i] = from[i]->clone(compile);
 512     }
 513   }
 514   // cloning CallNode may need to clone JVMState
 515   if (n->is_Call()) {
 516     CallNode *call = n->as_Call();
 517     call->clone_jvms();
 518   }
 519   return n;                     // Return the clone
 520 }
 521 
 522 //---------------------------setup_is_top--------------------------------------
 523 // Call this when changing the top node, to reassert the invariants
 524 // required by Node::is_top.  See Compile::set_cached_top_node.
 525 void Node::setup_is_top() {
 526   if (this == (Node*)Compile::current()->top()) {
 527     // This node has just become top.  Kill its out array.
 528     _outcnt = _outmax = 0;
 529     _out = NULL;                           // marker value for top
 530     assert(is_top(), "must be top");
 531   } else {
 532     if (_out == NULL)  _out = NO_OUT_ARRAY;
 533     assert(!is_top(), "must not be top");
 534   }
 535 }
 536 
 537 
 538 //------------------------------~Node------------------------------------------
 539 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 540 extern int reclaim_idx ;
 541 extern int reclaim_in  ;
 542 extern int reclaim_node;
 543 void Node::destruct() {
 544   // Eagerly reclaim unique Node numberings
 545   Compile* compile = Compile::current();
 546   if ((uint)_idx+1 == compile->unique()) {
 547     compile->set_unique(compile->unique()-1);
 548 #ifdef ASSERT
 549     reclaim_idx++;
 550 #endif
 551   }
 552   // Clear debug info:
 553   Node_Notes* nn = compile->node_notes_at(_idx);
 554   if (nn != NULL)  nn->clear();
 555   // Walk the input array, freeing the corresponding output edges
 556   _cnt = _max;  // forget req/prec distinction
 557   uint i;
 558   for( i = 0; i < _max; i++ ) {
 559     set_req(i, NULL);
 560     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 561   }
 562   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 563   // See if the input array was allocated just prior to the object
 564   int edge_size = _max*sizeof(void*);
 565   int out_edge_size = _outmax*sizeof(void*);
 566   char *edge_end = ((char*)_in) + edge_size;
 567   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 568   char *out_edge_end = out_array + out_edge_size;
 569   int node_size = size_of();
 570 
 571   // Free the output edge array
 572   if (out_edge_size > 0) {
 573 #ifdef ASSERT
 574     if( out_edge_end == compile->node_arena()->hwm() )
 575       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 576 #endif
 577     compile->node_arena()->Afree(out_array, out_edge_size);
 578   }
 579 
 580   // Free the input edge array and the node itself
 581   if( edge_end == (char*)this ) {
 582 #ifdef ASSERT
 583     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 584       reclaim_in  += edge_size;
 585       reclaim_node+= node_size;
 586     }
 587 #else
 588     // It was; free the input array and object all in one hit
 589     compile->node_arena()->Afree(_in,edge_size+node_size);
 590 #endif
 591   } else {
 592 
 593     // Free just the input array
 594 #ifdef ASSERT
 595     if( edge_end == compile->node_arena()->hwm() )
 596       reclaim_in  += edge_size;
 597 #endif
 598     compile->node_arena()->Afree(_in,edge_size);
 599 
 600     // Free just the object
 601 #ifdef ASSERT
 602     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 603       reclaim_node+= node_size;
 604 #else
 605     compile->node_arena()->Afree(this,node_size);
 606 #endif
 607   }
 608   if (is_macro()) {
 609     compile->remove_macro_node(this);
 610   }
 611 #ifdef ASSERT
 612   // We will not actually delete the storage, but we'll make the node unusable.
 613   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 614   _in = _out = (Node**) badAddress;
 615   _max = _cnt = _outmax = _outcnt = 0;
 616 #endif
 617 }
 618 
 619 //------------------------------grow-------------------------------------------
 620 // Grow the input array, making space for more edges
 621 void Node::grow( uint len ) {
 622   Arena* arena = Compile::current()->node_arena();
 623   uint new_max = _max;
 624   if( new_max == 0 ) {
 625     _max = 4;
 626     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 627     Node** to = _in;
 628     to[0] = NULL;
 629     to[1] = NULL;
 630     to[2] = NULL;
 631     to[3] = NULL;
 632     return;
 633   }
 634   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 635   // Trimming to limit allows a uint8 to handle up to 255 edges.
 636   // Previously I was using only powers-of-2 which peaked at 128 edges.
 637   //if( new_max >= limit ) new_max = limit-1;
 638   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 639   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 640   _max = new_max;               // Record new max length
 641   // This assertion makes sure that Node::_max is wide enough to
 642   // represent the numerical value of new_max.
 643   assert(_max == new_max && _max > len, "int width of _max is too small");
 644 }
 645 
 646 //-----------------------------out_grow----------------------------------------
 647 // Grow the input array, making space for more edges
 648 void Node::out_grow( uint len ) {
 649   assert(!is_top(), "cannot grow a top node's out array");
 650   Arena* arena = Compile::current()->node_arena();
 651   uint new_max = _outmax;
 652   if( new_max == 0 ) {
 653     _outmax = 4;
 654     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 655     return;
 656   }
 657   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 658   // Trimming to limit allows a uint8 to handle up to 255 edges.
 659   // Previously I was using only powers-of-2 which peaked at 128 edges.
 660   //if( new_max >= limit ) new_max = limit-1;
 661   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 662   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 663   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 664   _outmax = new_max;               // Record new max length
 665   // This assertion makes sure that Node::_max is wide enough to
 666   // represent the numerical value of new_max.
 667   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 668 }
 669 
 670 #ifdef ASSERT
 671 //------------------------------is_dead----------------------------------------
 672 bool Node::is_dead() const {
 673   // Mach and pinch point nodes may look like dead.
 674   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 675     return false;
 676   for( uint i = 0; i < _max; i++ )
 677     if( _in[i] != NULL )
 678       return false;
 679   dump();
 680   return true;
 681 }
 682 #endif
 683 
 684 //------------------------------add_req----------------------------------------
 685 // Add a new required input at the end
 686 void Node::add_req( Node *n ) {
 687   assert( is_not_dead(n), "can not use dead node");
 688 
 689   // Look to see if I can move precedence down one without reallocating
 690   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 691     grow( _max+1 );
 692 
 693   // Find a precedence edge to move
 694   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 695     uint i;
 696     for( i=_cnt; i<_max; i++ )
 697       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 698         break;                  // There must be one, since we grew the array
 699     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 700   }
 701   _in[_cnt++] = n;            // Stuff over old prec edge
 702   if (n != NULL) n->add_out((Node *)this);
 703 }
 704 
 705 //---------------------------add_req_batch-------------------------------------
 706 // Add a new required input at the end
 707 void Node::add_req_batch( Node *n, uint m ) {
 708   assert( is_not_dead(n), "can not use dead node");
 709   // check various edge cases
 710   if ((int)m <= 1) {
 711     assert((int)m >= 0, "oob");
 712     if (m != 0)  add_req(n);
 713     return;
 714   }
 715 
 716   // Look to see if I can move precedence down one without reallocating
 717   if( (_cnt+m) > _max || _in[_max-m] )
 718     grow( _max+m );
 719 
 720   // Find a precedence edge to move
 721   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 722     uint i;
 723     for( i=_cnt; i<_max; i++ )
 724       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 725         break;                  // There must be one, since we grew the array
 726     // Slide all the precs over by m positions (assume #prec << m).
 727     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 728   }
 729 
 730   // Stuff over the old prec edges
 731   for(uint i=0; i<m; i++ ) {
 732     _in[_cnt++] = n;
 733   }
 734 
 735   // Insert multiple out edges on the node.
 736   if (n != NULL && !n->is_top()) {
 737     for(uint i=0; i<m; i++ ) {
 738       n->add_out((Node *)this);
 739     }
 740   }
 741 }
 742 
 743 //------------------------------del_req----------------------------------------
 744 // Delete the required edge and compact the edge array
 745 void Node::del_req( uint idx ) {
 746   assert( idx < _cnt, "oob");
 747   assert( !VerifyHashTableKeys || _hash_lock == 0,
 748           "remove node from hash table before modifying it");
 749   // First remove corresponding def-use edge
 750   Node *n = in(idx);
 751   if (n != NULL) n->del_out((Node *)this);
 752   _in[idx] = in(--_cnt);  // Compact the array
 753   _in[_cnt] = NULL;       // NULL out emptied slot
 754 }
 755 
 756 //------------------------------ins_req----------------------------------------
 757 // Insert a new required input at the end
 758 void Node::ins_req( uint idx, Node *n ) {
 759   assert( is_not_dead(n), "can not use dead node");
 760   add_req(NULL);                // Make space
 761   assert( idx < _max, "Must have allocated enough space");
 762   // Slide over
 763   if(_cnt-idx-1 > 0) {
 764     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 765   }
 766   _in[idx] = n;                            // Stuff over old required edge
 767   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 768 }
 769 
 770 //-----------------------------find_edge---------------------------------------
 771 int Node::find_edge(Node* n) {
 772   for (uint i = 0; i < len(); i++) {
 773     if (_in[i] == n)  return i;
 774   }
 775   return -1;
 776 }
 777 
 778 //----------------------------replace_edge-------------------------------------
 779 int Node::replace_edge(Node* old, Node* neww) {
 780   if (old == neww)  return 0;  // nothing to do
 781   uint nrep = 0;
 782   for (uint i = 0; i < len(); i++) {
 783     if (in(i) == old) {
 784       if (i < req())
 785         set_req(i, neww);
 786       else
 787         set_prec(i, neww);
 788       nrep++;
 789     }
 790   }
 791   return nrep;
 792 }
 793 
 794 //-------------------------disconnect_inputs-----------------------------------
 795 // NULL out all inputs to eliminate incoming Def-Use edges.
 796 // Return the number of edges between 'n' and 'this'
 797 int Node::disconnect_inputs(Node *n) {
 798   int edges_to_n = 0;
 799 
 800   uint cnt = req();
 801   for( uint i = 0; i < cnt; ++i ) {
 802     if( in(i) == 0 ) continue;
 803     if( in(i) == n ) ++edges_to_n;
 804     set_req(i, NULL);
 805   }
 806   // Remove precedence edges if any exist
 807   // Note: Safepoints may have precedence edges, even during parsing
 808   if( (req() != len()) && (in(req()) != NULL) ) {
 809     uint max = len();
 810     for( uint i = 0; i < max; ++i ) {
 811       if( in(i) == 0 ) continue;
 812       if( in(i) == n ) ++edges_to_n;
 813       set_prec(i, NULL);
 814     }
 815   }
 816 
 817   // Node::destruct requires all out edges be deleted first
 818   // debug_only(destruct();)   // no reuse benefit expected
 819   return edges_to_n;
 820 }
 821 
 822 //-----------------------------uncast---------------------------------------
 823 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 824 // Strip away casting.  (It is depth-limited.)
 825 Node* Node::uncast() const {
 826   // Should be inline:
 827   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 828   if (is_ConstraintCast() || is_CheckCastPP())
 829     return uncast_helper(this);
 830   else
 831     return (Node*) this;
 832 }
 833 
 834 //---------------------------uncast_helper-------------------------------------
 835 Node* Node::uncast_helper(const Node* p) {
 836 #ifdef ASSERT
 837   uint depth_count = 0;
 838   const Node* orig_p = p;
 839 #endif
 840 
 841   while (true) {
 842 #ifdef ASSERT
 843     if (depth_count >= K) {
 844       orig_p->dump(4);
 845       if (p != orig_p)
 846         p->dump(1);
 847     }
 848     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 849 #endif
 850     if (p == NULL || p->req() != 2) {
 851       break;
 852     } else if (p->is_ConstraintCast()) {
 853       p = p->in(1);
 854     } else if (p->is_CheckCastPP()) {
 855       p = p->in(1);
 856     } else {
 857       break;
 858     }
 859   }
 860   return (Node*) p;
 861 }
 862 
 863 //------------------------------add_prec---------------------------------------
 864 // Add a new precedence input.  Precedence inputs are unordered, with
 865 // duplicates removed and NULLs packed down at the end.
 866 void Node::add_prec( Node *n ) {
 867   assert( is_not_dead(n), "can not use dead node");
 868 
 869   // Check for NULL at end
 870   if( _cnt >= _max || in(_max-1) )
 871     grow( _max+1 );
 872 
 873   // Find a precedence edge to move
 874   uint i = _cnt;
 875   while( in(i) != NULL ) i++;
 876   _in[i] = n;                                // Stuff prec edge over NULL
 877   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 878 }
 879 
 880 //------------------------------rm_prec----------------------------------------
 881 // Remove a precedence input.  Precedence inputs are unordered, with
 882 // duplicates removed and NULLs packed down at the end.
 883 void Node::rm_prec( uint j ) {
 884 
 885   // Find end of precedence list to pack NULLs
 886   uint i;
 887   for( i=j; i<_max; i++ )
 888     if( !_in[i] )               // Find the NULL at end of prec edge list
 889       break;
 890   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
 891   _in[j] = _in[--i];            // Move last element over removed guy
 892   _in[i] = NULL;                // NULL out last element
 893 }
 894 
 895 //------------------------------size_of----------------------------------------
 896 uint Node::size_of() const { return sizeof(*this); }
 897 
 898 //------------------------------ideal_reg--------------------------------------
 899 uint Node::ideal_reg() const { return 0; }
 900 
 901 //------------------------------jvms-------------------------------------------
 902 JVMState* Node::jvms() const { return NULL; }
 903 
 904 #ifdef ASSERT
 905 //------------------------------jvms-------------------------------------------
 906 bool Node::verify_jvms(const JVMState* using_jvms) const {
 907   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 908     if (jvms == using_jvms)  return true;
 909   }
 910   return false;
 911 }
 912 
 913 //------------------------------init_NodeProperty------------------------------
 914 void Node::init_NodeProperty() {
 915   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
 916   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
 917 }
 918 #endif
 919 
 920 //------------------------------format-----------------------------------------
 921 // Print as assembly
 922 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
 923 //------------------------------emit-------------------------------------------
 924 // Emit bytes starting at parameter 'ptr'.
 925 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
 926 //------------------------------size-------------------------------------------
 927 // Size of instruction in bytes
 928 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
 929 
 930 //------------------------------CFG Construction-------------------------------
 931 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
 932 // Goto and Return.
 933 const Node *Node::is_block_proj() const { return 0; }
 934 
 935 // Minimum guaranteed type
 936 const Type *Node::bottom_type() const { return Type::BOTTOM; }
 937 
 938 
 939 //------------------------------raise_bottom_type------------------------------
 940 // Get the worst-case Type output for this Node.
 941 void Node::raise_bottom_type(const Type* new_type) {
 942   if (is_Type()) {
 943     TypeNode *n = this->as_Type();
 944     if (VerifyAliases) {
 945       assert(new_type->higher_equal(n->type()), "new type must refine old type");
 946     }
 947     n->set_type(new_type);
 948   } else if (is_Load()) {
 949     LoadNode *n = this->as_Load();
 950     if (VerifyAliases) {
 951       assert(new_type->higher_equal(n->type()), "new type must refine old type");
 952     }
 953     n->set_type(new_type);
 954   }
 955 }
 956 
 957 //------------------------------Identity---------------------------------------
 958 // Return a node that the given node is equivalent to.
 959 Node *Node::Identity( PhaseTransform * ) {
 960   return this;                  // Default to no identities
 961 }
 962 
 963 //------------------------------Value------------------------------------------
 964 // Compute a new Type for a node using the Type of the inputs.
 965 const Type *Node::Value( PhaseTransform * ) const {
 966   return bottom_type();         // Default to worst-case Type
 967 }
 968 
 969 //------------------------------Ideal------------------------------------------
 970 //
 971 // 'Idealize' the graph rooted at this Node.
 972 //
 973 // In order to be efficient and flexible there are some subtle invariants
 974 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
 975 // these invariants, although its too slow to have on by default.  If you are
 976 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
 977 //
 978 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
 979 // pointer.  If ANY change is made, it must return the root of the reshaped
 980 // graph - even if the root is the same Node.  Example: swapping the inputs
 981 // to an AddINode gives the same answer and same root, but you still have to
 982 // return the 'this' pointer instead of NULL.
 983 //
 984 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
 985 // Identity call to return an old Node; basically if Identity can find
 986 // another Node have the Ideal call make no change and return NULL.
 987 // Example: AddINode::Ideal must check for add of zero; in this case it
 988 // returns NULL instead of doing any graph reshaping.
 989 //
 990 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
 991 // sharing there may be other users of the old Nodes relying on their current
 992 // semantics.  Modifying them will break the other users.
 993 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
 994 // "X+3" unchanged in case it is shared.
 995 //
 996 // If you modify the 'this' pointer's inputs, you should use
 997 // 'set_req'.  If you are making a new Node (either as the new root or
 998 // some new internal piece) you may use 'init_req' to set the initial
 999 // value.  You can make a new Node with either 'new' or 'clone'.  In
1000 // either case, def-use info is correctly maintained.
1001 //
1002 // Example: reshape "(X+3)+4" into "X+7":
1003 //    set_req(1, in(1)->in(1));
1004 //    set_req(2, phase->intcon(7));
1005 //    return this;
1006 // Example: reshape "X*4" into "X<<2"
1007 //    return new (C,3) LShiftINode(in(1), phase->intcon(2));
1008 //
1009 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1010 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1011 //    Node *shift=phase->transform(new(C,3)LShiftINode(in(1),phase->intcon(5)));
1012 //    return new (C,3) AddINode(shift, in(1));
1013 //
1014 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1015 // These forms are faster than 'phase->transform(new (C,1) ConNode())' and Do
1016 // The Right Thing with def-use info.
1017 //
1018 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1019 // graph uses the 'this' Node it must be the root.  If you want a Node with
1020 // the same Opcode as the 'this' pointer use 'clone'.
1021 //
1022 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1023   return NULL;                  // Default to being Ideal already
1024 }
1025 
1026 // Some nodes have specific Ideal subgraph transformations only if they are
1027 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1028 // for the transformations to happen.
1029 bool Node::has_special_unique_user() const {
1030   assert(outcnt() == 1, "match only for unique out");
1031   Node* n = unique_out();
1032   int op  = Opcode();
1033   if( this->is_Store() ) {
1034     // Condition for back-to-back stores folding.
1035     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1036   } else if( op == Op_AddL ) {
1037     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1038     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1039   } else if( op == Op_SubI || op == Op_SubL ) {
1040     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1041     return n->Opcode() == op && n->in(2) == this;
1042   }
1043   return false;
1044 };
1045 
1046 //--------------------------find_exact_control---------------------------------
1047 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1048 Node* Node::find_exact_control(Node* ctrl) {
1049   if (ctrl == NULL && this->is_Region())
1050     ctrl = this->as_Region()->is_copy();
1051 
1052   if (ctrl != NULL && ctrl->is_CatchProj()) {
1053     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1054       ctrl = ctrl->in(0);
1055     if (ctrl != NULL && !ctrl->is_top())
1056       ctrl = ctrl->in(0);
1057   }
1058 
1059   if (ctrl != NULL && ctrl->is_Proj())
1060     ctrl = ctrl->in(0);
1061 
1062   return ctrl;
1063 }
1064 
1065 //--------------------------dominates------------------------------------------
1066 // Helper function for MemNode::all_controls_dominate().
1067 // Check if 'this' control node dominates or equal to 'sub' control node.
1068 // We already know that if any path back to Root or Start reaches 'this',
1069 // then all paths so, so this is a simple search for one example,
1070 // not an exhaustive search for a counterexample.
1071 bool Node::dominates(Node* sub, Node_List &nlist) {
1072   assert(this->is_CFG(), "expecting control");
1073   assert(sub != NULL && sub->is_CFG(), "expecting control");
1074 
1075   // detect dead cycle without regions
1076   int iterations_without_region_limit = DominatorSearchLimit;
1077 
1078   Node* orig_sub = sub;
1079   Node* dom      = this;
1080   bool  met_dom  = false;
1081   nlist.clear();
1082 
1083   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1084   // After seeing 'dom', continue up to Root or Start.
1085   // If we hit a region (backward split point), it may be a loop head.
1086   // Keep going through one of the region's inputs.  If we reach the
1087   // same region again, go through a different input.  Eventually we
1088   // will either exit through the loop head, or give up.
1089   // (If we get confused, break out and return a conservative 'false'.)
1090   while (sub != NULL) {
1091     if (sub->is_top())  break; // Conservative answer for dead code.
1092     if (sub == dom) {
1093       if (nlist.size() == 0) {
1094         // No Region nodes except loops were visited before and the EntryControl
1095         // path was taken for loops: it did not walk in a cycle.
1096         return true;
1097       } else if (met_dom) {
1098         break;          // already met before: walk in a cycle
1099       } else {
1100         // Region nodes were visited. Continue walk up to Start or Root
1101         // to make sure that it did not walk in a cycle.
1102         met_dom = true; // first time meet
1103         iterations_without_region_limit = DominatorSearchLimit; // Reset
1104      }
1105     }
1106     if (sub->is_Start() || sub->is_Root()) {
1107       // Success if we met 'dom' along a path to Start or Root.
1108       // We assume there are no alternative paths that avoid 'dom'.
1109       // (This assumption is up to the caller to ensure!)
1110       return met_dom;
1111     }
1112     Node* up = sub->in(0);
1113     // Normalize simple pass-through regions and projections:
1114     up = sub->find_exact_control(up);
1115     // If sub == up, we found a self-loop.  Try to push past it.
1116     if (sub == up && sub->is_Loop()) {
1117       // Take loop entry path on the way up to 'dom'.
1118       up = sub->in(1); // in(LoopNode::EntryControl);
1119     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1120       // Always take in(1) path on the way up to 'dom' for clone regions
1121       // (with only one input) or regions which merge > 2 paths
1122       // (usually used to merge fast/slow paths).
1123       up = sub->in(1);
1124     } else if (sub == up && sub->is_Region()) {
1125       // Try both paths for Regions with 2 input paths (it may be a loop head).
1126       // It could give conservative 'false' answer without information
1127       // which region's input is the entry path.
1128       iterations_without_region_limit = DominatorSearchLimit; // Reset
1129 
1130       bool region_was_visited_before = false;
1131       // Was this Region node visited before?
1132       // If so, we have reached it because we accidentally took a
1133       // loop-back edge from 'sub' back into the body of the loop,
1134       // and worked our way up again to the loop header 'sub'.
1135       // So, take the first unexplored path on the way up to 'dom'.
1136       for (int j = nlist.size() - 1; j >= 0; j--) {
1137         intptr_t ni = (intptr_t)nlist.at(j);
1138         Node* visited = (Node*)(ni & ~1);
1139         bool  visited_twice_already = ((ni & 1) != 0);
1140         if (visited == sub) {
1141           if (visited_twice_already) {
1142             // Visited 2 paths, but still stuck in loop body.  Give up.
1143             return false;
1144           }
1145           // The Region node was visited before only once.
1146           // (We will repush with the low bit set, below.)
1147           nlist.remove(j);
1148           // We will find a new edge and re-insert.
1149           region_was_visited_before = true;
1150           break;
1151         }
1152       }
1153 
1154       // Find an incoming edge which has not been seen yet; walk through it.
1155       assert(up == sub, "");
1156       uint skip = region_was_visited_before ? 1 : 0;
1157       for (uint i = 1; i < sub->req(); i++) {
1158         Node* in = sub->in(i);
1159         if (in != NULL && !in->is_top() && in != sub) {
1160           if (skip == 0) {
1161             up = in;
1162             break;
1163           }
1164           --skip;               // skip this nontrivial input
1165         }
1166       }
1167 
1168       // Set 0 bit to indicate that both paths were taken.
1169       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1170     }
1171 
1172     if (up == sub) {
1173       break;    // some kind of tight cycle
1174     }
1175     if (up == orig_sub && met_dom) {
1176       // returned back after visiting 'dom'
1177       break;    // some kind of cycle
1178     }
1179     if (--iterations_without_region_limit < 0) {
1180       break;    // dead cycle
1181     }
1182     sub = up;
1183   }
1184 
1185   // Did not meet Root or Start node in pred. chain.
1186   // Conservative answer for dead code.
1187   return false;
1188 }
1189 
1190 //------------------------------remove_dead_region-----------------------------
1191 // This control node is dead.  Follow the subgraph below it making everything
1192 // using it dead as well.  This will happen normally via the usual IterGVN
1193 // worklist but this call is more efficient.  Do not update use-def info
1194 // inside the dead region, just at the borders.
1195 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1196   // Con's are a popular node to re-hit in the hash table again.
1197   if( dead->is_Con() ) return;
1198 
1199   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1200   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1201   Node_List  nstack(Thread::current()->resource_area());
1202 
1203   Node *top = igvn->C->top();
1204   nstack.push(dead);
1205 
1206   while (nstack.size() > 0) {
1207     dead = nstack.pop();
1208     if (dead->outcnt() > 0) {
1209       // Keep dead node on stack until all uses are processed.
1210       nstack.push(dead);
1211       // For all Users of the Dead...    ;-)
1212       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1213         Node* use = dead->last_out(k);
1214         igvn->hash_delete(use);       // Yank from hash table prior to mod
1215         if (use->in(0) == dead) {     // Found another dead node
1216           assert (!use->is_Con(), "Control for Con node should be Root node.");
1217           use->set_req(0, top);       // Cut dead edge to prevent processing
1218           nstack.push(use);           // the dead node again.
1219         } else {                      // Else found a not-dead user
1220           for (uint j = 1; j < use->req(); j++) {
1221             if (use->in(j) == dead) { // Turn all dead inputs into TOP
1222               use->set_req(j, top);
1223             }
1224           }
1225           igvn->_worklist.push(use);
1226         }
1227         // Refresh the iterator, since any number of kills might have happened.
1228         k = dead->last_outs(kmin);
1229       }
1230     } else { // (dead->outcnt() == 0)
1231       // Done with outputs.
1232       igvn->hash_delete(dead);
1233       igvn->_worklist.remove(dead);
1234       igvn->set_type(dead, Type::TOP);
1235       if (dead->is_macro()) {
1236         igvn->C->remove_macro_node(dead);
1237       }
1238       // Kill all inputs to the dead guy
1239       for (uint i=0; i < dead->req(); i++) {
1240         Node *n = dead->in(i);      // Get input to dead guy
1241         if (n != NULL && !n->is_top()) { // Input is valid?
1242           dead->set_req(i, top);    // Smash input away
1243           if (n->outcnt() == 0) {   // Input also goes dead?
1244             if (!n->is_Con())
1245               nstack.push(n);       // Clear it out as well
1246           } else if (n->outcnt() == 1 &&
1247                      n->has_special_unique_user()) {
1248             igvn->add_users_to_worklist( n );
1249           } else if (n->outcnt() <= 2 && n->is_Store()) {
1250             // Push store's uses on worklist to enable folding optimization for
1251             // store/store and store/load to the same address.
1252             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1253             // and remove_globally_dead_node().
1254             igvn->add_users_to_worklist( n );
1255           }
1256         }
1257       }
1258     } // (dead->outcnt() == 0)
1259   }   // while (nstack.size() > 0) for outputs
1260   return;
1261 }
1262 
1263 //------------------------------remove_dead_region-----------------------------
1264 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1265   Node *n = in(0);
1266   if( !n ) return false;
1267   // Lost control into this guy?  I.e., it became unreachable?
1268   // Aggressively kill all unreachable code.
1269   if (can_reshape && n->is_top()) {
1270     kill_dead_code(this, phase->is_IterGVN());
1271     return false; // Node is dead.
1272   }
1273 
1274   if( n->is_Region() && n->as_Region()->is_copy() ) {
1275     Node *m = n->nonnull_req();
1276     set_req(0, m);
1277     return true;
1278   }
1279   return false;
1280 }
1281 
1282 //------------------------------Ideal_DU_postCCP-------------------------------
1283 // Idealize graph, using DU info.  Must clone result into new-space
1284 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1285   return NULL;                 // Default to no change
1286 }
1287 
1288 //------------------------------hash-------------------------------------------
1289 // Hash function over Nodes.
1290 uint Node::hash() const {
1291   uint sum = 0;
1292   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1293     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1294   return (sum>>2) + _cnt + Opcode();
1295 }
1296 
1297 //------------------------------cmp--------------------------------------------
1298 // Compare special parts of simple Nodes
1299 uint Node::cmp( const Node &n ) const {
1300   return 1;                     // Must be same
1301 }
1302 
1303 //------------------------------rematerialize-----------------------------------
1304 // Should we clone rather than spill this instruction?
1305 bool Node::rematerialize() const {
1306   if ( is_Mach() )
1307     return this->as_Mach()->rematerialize();
1308   else
1309     return (_flags & Flag_rematerialize) != 0;
1310 }
1311 
1312 //------------------------------needs_anti_dependence_check---------------------
1313 // Nodes which use memory without consuming it, hence need antidependences.
1314 bool Node::needs_anti_dependence_check() const {
1315   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1316     return false;
1317   else
1318     return in(1)->bottom_type()->has_memory();
1319 }
1320 
1321 
1322 // Get an integer constant from a ConNode (or CastIINode).
1323 // Return a default value if there is no apparent constant here.
1324 const TypeInt* Node::find_int_type() const {
1325   if (this->is_Type()) {
1326     return this->as_Type()->type()->isa_int();
1327   } else if (this->is_Con()) {
1328     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1329     return this->bottom_type()->isa_int();
1330   }
1331   return NULL;
1332 }
1333 
1334 // Get a pointer constant from a ConstNode.
1335 // Returns the constant if it is a pointer ConstNode
1336 intptr_t Node::get_ptr() const {
1337   assert( Opcode() == Op_ConP, "" );
1338   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1339 }
1340 
1341 // Get a narrow oop constant from a ConNNode.
1342 intptr_t Node::get_narrowcon() const {
1343   assert( Opcode() == Op_ConN, "" );
1344   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1345 }
1346 
1347 // Get a long constant from a ConNode.
1348 // Return a default value if there is no apparent constant here.
1349 const TypeLong* Node::find_long_type() const {
1350   if (this->is_Type()) {
1351     return this->as_Type()->type()->isa_long();
1352   } else if (this->is_Con()) {
1353     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1354     return this->bottom_type()->isa_long();
1355   }
1356   return NULL;
1357 }
1358 
1359 // Get a double constant from a ConstNode.
1360 // Returns the constant if it is a double ConstNode
1361 jdouble Node::getd() const {
1362   assert( Opcode() == Op_ConD, "" );
1363   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1364 }
1365 
1366 // Get a float constant from a ConstNode.
1367 // Returns the constant if it is a float ConstNode
1368 jfloat Node::getf() const {
1369   assert( Opcode() == Op_ConF, "" );
1370   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1371 }
1372 
1373 #ifndef PRODUCT
1374 
1375 //----------------------------NotANode----------------------------------------
1376 // Used in debugging code to avoid walking across dead or uninitialized edges.
1377 static inline bool NotANode(const Node* n) {
1378   if (n == NULL)                   return true;
1379   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1380   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1381   return false;
1382 }
1383 
1384 
1385 //------------------------------find------------------------------------------
1386 // Find a neighbor of this Node with the given _idx
1387 // If idx is negative, find its absolute value, following both _in and _out.
1388 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1389                         VectorSet* old_space, VectorSet* new_space ) {
1390   int node_idx = (idx >= 0) ? idx : -idx;
1391   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1392   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1393   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1394   if( v->test(n->_idx) ) return;
1395   if( (int)n->_idx == node_idx
1396       debug_only(|| n->debug_idx() == node_idx) ) {
1397     if (result != NULL)
1398       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1399                  (uintptr_t)result, (uintptr_t)n, node_idx);
1400     result = n;
1401   }
1402   v->set(n->_idx);
1403   for( uint i=0; i<n->len(); i++ ) {
1404     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1405     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1406   }
1407   // Search along forward edges also:
1408   if (idx < 0 && !only_ctrl) {
1409     for( uint j=0; j<n->outcnt(); j++ ) {
1410       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1411     }
1412   }
1413 #ifdef ASSERT
1414   // Search along debug_orig edges last, checking for cycles
1415   Node* orig = n->debug_orig();
1416   if (orig != NULL) {
1417     do {
1418       if (NotANode(orig))  break;
1419       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1420       orig = orig->debug_orig();
1421     } while (orig != NULL && orig != n->debug_orig());
1422   }
1423 #endif //ASSERT
1424 }
1425 
1426 // call this from debugger:
1427 Node* find_node(Node* n, int idx) {
1428   return n->find(idx);
1429 }
1430 
1431 //------------------------------find-------------------------------------------
1432 Node* Node::find(int idx) const {
1433   ResourceArea *area = Thread::current()->resource_area();
1434   VectorSet old_space(area), new_space(area);
1435   Node* result = NULL;
1436   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1437   return result;
1438 }
1439 
1440 //------------------------------find_ctrl--------------------------------------
1441 // Find an ancestor to this node in the control history with given _idx
1442 Node* Node::find_ctrl(int idx) const {
1443   ResourceArea *area = Thread::current()->resource_area();
1444   VectorSet old_space(area), new_space(area);
1445   Node* result = NULL;
1446   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1447   return result;
1448 }
1449 #endif
1450 
1451 
1452 
1453 #ifndef PRODUCT
1454 int Node::_in_dump_cnt = 0;
1455 
1456 // -----------------------------Name-------------------------------------------
1457 extern const char *NodeClassNames[];
1458 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1459 
1460 static bool is_disconnected(const Node* n) {
1461   for (uint i = 0; i < n->req(); i++) {
1462     if (n->in(i) != NULL)  return false;
1463   }
1464   return true;
1465 }
1466 
1467 #ifdef ASSERT
1468 static void dump_orig(Node* orig) {
1469   Compile* C = Compile::current();
1470   if (NotANode(orig))  orig = NULL;
1471   if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1472   if (orig == NULL)  return;
1473   tty->print(" !orig=");
1474   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1475   if (NotANode(fast))  fast = NULL;
1476   while (orig != NULL) {
1477     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1478     if (discon)  tty->print("[");
1479     if (!Compile::current()->node_arena()->contains(orig))
1480       tty->print("o");
1481     tty->print("%d", orig->_idx);
1482     if (discon)  tty->print("]");
1483     orig = orig->debug_orig();
1484     if (NotANode(orig))  orig = NULL;
1485     if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1486     if (orig != NULL)  tty->print(",");
1487     if (fast != NULL) {
1488       // Step fast twice for each single step of orig:
1489       fast = fast->debug_orig();
1490       if (NotANode(fast))  fast = NULL;
1491       if (fast != NULL && fast != orig) {
1492         fast = fast->debug_orig();
1493         if (NotANode(fast))  fast = NULL;
1494       }
1495       if (fast == orig) {
1496         tty->print("...");
1497         break;
1498       }
1499     }
1500   }
1501 }
1502 
1503 void Node::set_debug_orig(Node* orig) {
1504   _debug_orig = orig;
1505   if (BreakAtNode == 0)  return;
1506   if (NotANode(orig))  orig = NULL;
1507   int trip = 10;
1508   while (orig != NULL) {
1509     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1510       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1511                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1512       BREAKPOINT;
1513     }
1514     orig = orig->debug_orig();
1515     if (NotANode(orig))  orig = NULL;
1516     if (trip-- <= 0)  break;
1517   }
1518 }
1519 #endif //ASSERT
1520 
1521 //------------------------------dump------------------------------------------
1522 // Dump a Node
1523 void Node::dump() const {
1524   Compile* C = Compile::current();
1525   bool is_new = C->node_arena()->contains(this);
1526   _in_dump_cnt++;
1527   tty->print("%c%d\t%s\t=== ",
1528              is_new ? ' ' : 'o', _idx, Name());
1529 
1530   // Dump the required and precedence inputs
1531   dump_req();
1532   dump_prec();
1533   // Dump the outputs
1534   dump_out();
1535 
1536   if (is_disconnected(this)) {
1537 #ifdef ASSERT
1538     tty->print("  [%d]",debug_idx());
1539     dump_orig(debug_orig());
1540 #endif
1541     tty->cr();
1542     _in_dump_cnt--;
1543     return;                     // don't process dead nodes
1544   }
1545 
1546   // Dump node-specific info
1547   dump_spec(tty);
1548 #ifdef ASSERT
1549   // Dump the non-reset _debug_idx
1550   if( Verbose && WizardMode ) {
1551     tty->print("  [%d]",debug_idx());
1552   }
1553 #endif
1554 
1555   const Type *t = bottom_type();
1556 
1557   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1558     const TypeInstPtr  *toop = t->isa_instptr();
1559     const TypeKlassPtr *tkls = t->isa_klassptr();
1560     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1561     if( klass && klass->is_loaded() && klass->is_interface() ) {
1562       tty->print("  Interface:");
1563     } else if( toop ) {
1564       tty->print("  Oop:");
1565     } else if( tkls ) {
1566       tty->print("  Klass:");
1567     }
1568     t->dump();
1569   } else if( t == Type::MEMORY ) {
1570     tty->print("  Memory:");
1571     MemNode::dump_adr_type(this, adr_type(), tty);
1572   } else if( Verbose || WizardMode ) {
1573     tty->print("  Type:");
1574     if( t ) {
1575       t->dump();
1576     } else {
1577       tty->print("no type");
1578     }
1579   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1580     // Dump MachSpillcopy vector type.
1581     t->dump();
1582   }
1583   if (is_new) {
1584     debug_only(dump_orig(debug_orig()));
1585     Node_Notes* nn = C->node_notes_at(_idx);
1586     if (nn != NULL && !nn->is_clear()) {
1587       if (nn->jvms() != NULL) {
1588         tty->print(" !jvms:");
1589         nn->jvms()->dump_spec(tty);
1590       }
1591     }
1592   }
1593   tty->cr();
1594   _in_dump_cnt--;
1595 }
1596 
1597 //------------------------------dump_req--------------------------------------
1598 void Node::dump_req() const {
1599   // Dump the required input edges
1600   for (uint i = 0; i < req(); i++) {    // For all required inputs
1601     Node* d = in(i);
1602     if (d == NULL) {
1603       tty->print("_ ");
1604     } else if (NotANode(d)) {
1605       tty->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1606     } else {
1607       tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1608     }
1609   }
1610 }
1611 
1612 
1613 //------------------------------dump_prec-------------------------------------
1614 void Node::dump_prec() const {
1615   // Dump the precedence edges
1616   int any_prec = 0;
1617   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1618     Node* p = in(i);
1619     if (p != NULL) {
1620       if( !any_prec++ ) tty->print(" |");
1621       if (NotANode(p)) { tty->print("NotANode "); continue; }
1622       tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1623     }
1624   }
1625 }
1626 
1627 //------------------------------dump_out--------------------------------------
1628 void Node::dump_out() const {
1629   // Delimit the output edges
1630   tty->print(" [[");
1631   // Dump the output edges
1632   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1633     Node* u = _out[i];
1634     if (u == NULL) {
1635       tty->print("_ ");
1636     } else if (NotANode(u)) {
1637       tty->print("NotANode ");
1638     } else {
1639       tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1640     }
1641   }
1642   tty->print("]] ");
1643 }
1644 
1645 //------------------------------dump_nodes-------------------------------------
1646 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1647   Node* s = (Node*)start; // remove const
1648   if (NotANode(s)) return;
1649 
1650   uint depth = (uint)ABS(d);
1651   int direction = d;
1652   Compile* C = Compile::current();
1653   GrowableArray <Node *> nstack(C->unique());
1654 
1655   nstack.append(s);
1656   int begin = 0;
1657   int end = 0;
1658   for(uint i = 0; i < depth; i++) {
1659     end = nstack.length();
1660     for(int j = begin; j < end; j++) {
1661       Node* tp  = nstack.at(j);
1662       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1663       for(uint k = 0; k < limit; k++) {
1664         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1665 
1666         if (NotANode(n))  continue;
1667         // do not recurse through top or the root (would reach unrelated stuff)
1668         if (n->is_Root() || n->is_top())  continue;
1669         if (only_ctrl && !n->is_CFG()) continue;
1670 
1671         bool on_stack = nstack.contains(n);
1672         if (!on_stack) {
1673           nstack.append(n);
1674         }
1675       }
1676     }
1677     begin = end;
1678   }
1679   end = nstack.length();
1680   if (direction > 0) {
1681     for(int j = end-1; j >= 0; j--) {
1682       nstack.at(j)->dump();
1683     }
1684   } else {
1685     for(int j = 0; j < end; j++) {
1686       nstack.at(j)->dump();
1687     }
1688   }
1689 }
1690 
1691 //------------------------------dump-------------------------------------------
1692 void Node::dump(int d) const {
1693   dump_nodes(this, d, false);
1694 }
1695 
1696 //------------------------------dump_ctrl--------------------------------------
1697 // Dump a Node's control history to depth
1698 void Node::dump_ctrl(int d) const {
1699   dump_nodes(this, d, true);
1700 }
1701 
1702 // VERIFICATION CODE
1703 // For each input edge to a node (ie - for each Use-Def edge), verify that
1704 // there is a corresponding Def-Use edge.
1705 //------------------------------verify_edges-----------------------------------
1706 void Node::verify_edges(Unique_Node_List &visited) {
1707   uint i, j, idx;
1708   int  cnt;
1709   Node *n;
1710 
1711   // Recursive termination test
1712   if (visited.member(this))  return;
1713   visited.push(this);
1714 
1715   // Walk over all input edges, checking for correspondence
1716   for( i = 0; i < len(); i++ ) {
1717     n = in(i);
1718     if (n != NULL && !n->is_top()) {
1719       // Count instances of (Node *)this
1720       cnt = 0;
1721       for (idx = 0; idx < n->_outcnt; idx++ ) {
1722         if (n->_out[idx] == (Node *)this)  cnt++;
1723       }
1724       assert( cnt > 0,"Failed to find Def-Use edge." );
1725       // Check for duplicate edges
1726       // walk the input array downcounting the input edges to n
1727       for( j = 0; j < len(); j++ ) {
1728         if( in(j) == n ) cnt--;
1729       }
1730       assert( cnt == 0,"Mismatched edge count.");
1731     } else if (n == NULL) {
1732       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1733     } else {
1734       assert(n->is_top(), "sanity");
1735       // Nothing to check.
1736     }
1737   }
1738   // Recursive walk over all input edges
1739   for( i = 0; i < len(); i++ ) {
1740     n = in(i);
1741     if( n != NULL )
1742       in(i)->verify_edges(visited);
1743   }
1744 }
1745 
1746 //------------------------------verify_recur-----------------------------------
1747 static const Node *unique_top = NULL;
1748 
1749 void Node::verify_recur(const Node *n, int verify_depth,
1750                         VectorSet &old_space, VectorSet &new_space) {
1751   if ( verify_depth == 0 )  return;
1752   if (verify_depth > 0)  --verify_depth;
1753 
1754   Compile* C = Compile::current();
1755 
1756   // Contained in new_space or old_space?
1757   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1758   // Check for visited in the proper space.  Numberings are not unique
1759   // across spaces so we need a separate VectorSet for each space.
1760   if( v->test_set(n->_idx) ) return;
1761 
1762   if (n->is_Con() && n->bottom_type() == Type::TOP) {
1763     if (C->cached_top_node() == NULL)
1764       C->set_cached_top_node((Node*)n);
1765     assert(C->cached_top_node() == n, "TOP node must be unique");
1766   }
1767 
1768   for( uint i = 0; i < n->len(); i++ ) {
1769     Node *x = n->in(i);
1770     if (!x || x->is_top()) continue;
1771 
1772     // Verify my input has a def-use edge to me
1773     if (true /*VerifyDefUse*/) {
1774       // Count use-def edges from n to x
1775       int cnt = 0;
1776       for( uint j = 0; j < n->len(); j++ )
1777         if( n->in(j) == x )
1778           cnt++;
1779       // Count def-use edges from x to n
1780       uint max = x->_outcnt;
1781       for( uint k = 0; k < max; k++ )
1782         if (x->_out[k] == n)
1783           cnt--;
1784       assert( cnt == 0, "mismatched def-use edge counts" );
1785     }
1786 
1787     verify_recur(x, verify_depth, old_space, new_space);
1788   }
1789 
1790 }
1791 
1792 //------------------------------verify-----------------------------------------
1793 // Check Def-Use info for my subgraph
1794 void Node::verify() const {
1795   Compile* C = Compile::current();
1796   Node* old_top = C->cached_top_node();
1797   ResourceMark rm;
1798   ResourceArea *area = Thread::current()->resource_area();
1799   VectorSet old_space(area), new_space(area);
1800   verify_recur(this, -1, old_space, new_space);
1801   C->set_cached_top_node(old_top);
1802 }
1803 #endif
1804 
1805 
1806 //------------------------------walk-------------------------------------------
1807 // Graph walk, with both pre-order and post-order functions
1808 void Node::walk(NFunc pre, NFunc post, void *env) {
1809   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1810   walk_(pre, post, env, visited);
1811 }
1812 
1813 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1814   if( visited.test_set(_idx) ) return;
1815   pre(*this,env);               // Call the pre-order walk function
1816   for( uint i=0; i<_max; i++ )
1817     if( in(i) )                 // Input exists and is not walked?
1818       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1819   post(*this,env);              // Call the post-order walk function
1820 }
1821 
1822 void Node::nop(Node &, void*) {}
1823 
1824 //------------------------------Registers--------------------------------------
1825 // Do we Match on this edge index or not?  Generally false for Control
1826 // and true for everything else.  Weird for calls & returns.
1827 uint Node::match_edge(uint idx) const {
1828   return idx;                   // True for other than index 0 (control)
1829 }
1830 
1831 // Register classes are defined for specific machines
1832 const RegMask &Node::out_RegMask() const {
1833   ShouldNotCallThis();
1834   return *(new RegMask());
1835 }
1836 
1837 const RegMask &Node::in_RegMask(uint) const {
1838   ShouldNotCallThis();
1839   return *(new RegMask());
1840 }
1841 
1842 //=============================================================================
1843 //-----------------------------------------------------------------------------
1844 void Node_Array::reset( Arena *new_arena ) {
1845   _a->Afree(_nodes,_max*sizeof(Node*));
1846   _max   = 0;
1847   _nodes = NULL;
1848   _a     = new_arena;
1849 }
1850 
1851 //------------------------------clear------------------------------------------
1852 // Clear all entries in _nodes to NULL but keep storage
1853 void Node_Array::clear() {
1854   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1855 }
1856 
1857 //-----------------------------------------------------------------------------
1858 void Node_Array::grow( uint i ) {
1859   if( !_max ) {
1860     _max = 1;
1861     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1862     _nodes[0] = NULL;
1863   }
1864   uint old = _max;
1865   while( i >= _max ) _max <<= 1;        // Double to fit
1866   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1867   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1868 }
1869 
1870 //-----------------------------------------------------------------------------
1871 void Node_Array::insert( uint i, Node *n ) {
1872   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1873   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1874   _nodes[i] = n;
1875 }
1876 
1877 //-----------------------------------------------------------------------------
1878 void Node_Array::remove( uint i ) {
1879   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
1880   _nodes[_max-1] = NULL;
1881 }
1882 
1883 //-----------------------------------------------------------------------------
1884 void Node_Array::sort( C_sort_func_t func) {
1885   qsort( _nodes, _max, sizeof( Node* ), func );
1886 }
1887 
1888 //-----------------------------------------------------------------------------
1889 void Node_Array::dump() const {
1890 #ifndef PRODUCT
1891   for( uint i = 0; i < _max; i++ ) {
1892     Node *nn = _nodes[i];
1893     if( nn != NULL ) {
1894       tty->print("%5d--> ",i); nn->dump();
1895     }
1896   }
1897 #endif
1898 }
1899 
1900 //--------------------------is_iteratively_computed------------------------------
1901 // Operation appears to be iteratively computed (such as an induction variable)
1902 // It is possible for this operation to return false for a loop-varying
1903 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1904 bool Node::is_iteratively_computed() {
1905   if (ideal_reg()) { // does operation have a result register?
1906     for (uint i = 1; i < req(); i++) {
1907       Node* n = in(i);
1908       if (n != NULL && n->is_Phi()) {
1909         for (uint j = 1; j < n->req(); j++) {
1910           if (n->in(j) == this) {
1911             return true;
1912           }
1913         }
1914       }
1915     }
1916   }
1917   return false;
1918 }
1919 
1920 //--------------------------find_similar------------------------------
1921 // Return a node with opcode "opc" and same inputs as "this" if one can
1922 // be found; Otherwise return NULL;
1923 Node* Node::find_similar(int opc) {
1924   if (req() >= 2) {
1925     Node* def = in(1);
1926     if (def && def->outcnt() >= 2) {
1927       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
1928         Node* use = def->fast_out(i);
1929         if (use->Opcode() == opc &&
1930             use->req() == req()) {
1931           uint j;
1932           for (j = 0; j < use->req(); j++) {
1933             if (use->in(j) != in(j)) {
1934               break;
1935             }
1936           }
1937           if (j == use->req()) {
1938             return use;
1939           }
1940         }
1941       }
1942     }
1943   }
1944   return NULL;
1945 }
1946 
1947 
1948 //--------------------------unique_ctrl_out------------------------------
1949 // Return the unique control out if only one. Null if none or more than one.
1950 Node* Node::unique_ctrl_out() {
1951   Node* found = NULL;
1952   for (uint i = 0; i < outcnt(); i++) {
1953     Node* use = raw_out(i);
1954     if (use->is_CFG() && use != this) {
1955       if (found != NULL) return NULL;
1956       found = use;
1957     }
1958   }
1959   return found;
1960 }
1961 
1962 //=============================================================================
1963 //------------------------------yank-------------------------------------------
1964 // Find and remove
1965 void Node_List::yank( Node *n ) {
1966   uint i;
1967   for( i = 0; i < _cnt; i++ )
1968     if( _nodes[i] == n )
1969       break;
1970 
1971   if( i < _cnt )
1972     _nodes[i] = _nodes[--_cnt];
1973 }
1974 
1975 //------------------------------dump-------------------------------------------
1976 void Node_List::dump() const {
1977 #ifndef PRODUCT
1978   for( uint i = 0; i < _cnt; i++ )
1979     if( _nodes[i] ) {
1980       tty->print("%5d--> ",i);
1981       _nodes[i]->dump();
1982     }
1983 #endif
1984 }
1985 
1986 //=============================================================================
1987 //------------------------------remove-----------------------------------------
1988 void Unique_Node_List::remove( Node *n ) {
1989   if( _in_worklist[n->_idx] ) {
1990     for( uint i = 0; i < size(); i++ )
1991       if( _nodes[i] == n ) {
1992         map(i,Node_List::pop());
1993         _in_worklist >>= n->_idx;
1994         return;
1995       }
1996     ShouldNotReachHere();
1997   }
1998 }
1999 
2000 //-----------------------remove_useless_nodes----------------------------------
2001 // Remove useless nodes from worklist
2002 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2003 
2004   for( uint i = 0; i < size(); ++i ) {
2005     Node *n = at(i);
2006     assert( n != NULL, "Did not expect null entries in worklist");
2007     if( ! useful.test(n->_idx) ) {
2008       _in_worklist >>= n->_idx;
2009       map(i,Node_List::pop());
2010       // Node *replacement = Node_List::pop();
2011       // if( i != size() ) { // Check if removing last entry
2012       //   _nodes[i] = replacement;
2013       // }
2014       --i;  // Visit popped node
2015       // If it was last entry, loop terminates since size() was also reduced
2016     }
2017   }
2018 }
2019 
2020 //=============================================================================
2021 void Node_Stack::grow() {
2022   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2023   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2024   size_t max = old_max << 1;             // max * 2
2025   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2026   _inode_max = _inodes + max;
2027   _inode_top = _inodes + old_top;        // restore _top
2028 }
2029 
2030 // Node_Stack is used to map nodes.
2031 Node* Node_Stack::find(uint idx) const {
2032   uint sz = size();
2033   for (uint i=0; i < sz; i++) {
2034     if (idx == index_at(i) )
2035       return node_at(i);
2036   }
2037   return NULL;
2038 }
2039 
2040 //=============================================================================
2041 uint TypeNode::size_of() const { return sizeof(*this); }
2042 #ifndef PRODUCT
2043 void TypeNode::dump_spec(outputStream *st) const {
2044   if( !Verbose && !WizardMode ) {
2045     // standard dump does this in Verbose and WizardMode
2046     st->print(" #"); _type->dump_on(st);
2047   }
2048 }
2049 #endif
2050 uint TypeNode::hash() const {
2051   return Node::hash() + _type->hash();
2052 }
2053 uint TypeNode::cmp( const Node &n ) const
2054 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2055 const Type *TypeNode::bottom_type() const { return _type; }
2056 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2057 
2058 //------------------------------ideal_reg--------------------------------------
2059 uint TypeNode::ideal_reg() const {
2060   return Matcher::base2reg[_type->base()];
2061 }