1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/chaitin.hpp"
  28 #include "opto/machnode.hpp"
  29 
  30 // see if this register kind does not requires two registers
  31 static bool is_single_register(uint x) {
  32 #ifdef _LP64
  33   return (x != Op_RegD && x != Op_RegL && x != Op_RegP);
  34 #else
  35   return (x != Op_RegD && x != Op_RegL);
  36 #endif
  37 }
  38 
  39 //---------------------------may_be_copy_of_callee-----------------------------
  40 // Check to see if we can possibly be a copy of a callee-save value.
  41 bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
  42   // Short circuit if there are no callee save registers
  43   if (_matcher.number_of_saved_registers() == 0) return false;
  44 
  45   // Expect only a spill-down and reload on exit for callee-save spills.
  46   // Chains of copies cannot be deep.
  47   // 5008997 - This is wishful thinking. Register allocator seems to
  48   // be splitting live ranges for callee save registers to such
  49   // an extent that in large methods the chains can be very long
  50   // (50+). The conservative answer is to return true if we don't
  51   // know as this prevents optimizations from occurring.
  52 
  53   const int limit = 60;
  54   int i;
  55   for( i=0; i < limit; i++ ) {
  56     if( def->is_Proj() && def->in(0)->is_Start() &&
  57         _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
  58       return true;              // Direct use of callee-save proj
  59     if( def->is_Copy() )        // Copies carry value through
  60       def = def->in(def->is_Copy());
  61     else if( def->is_Phi() )    // Phis can merge it from any direction
  62       def = def->in(1);
  63     else
  64       break;
  65     guarantee(def != NULL, "must not resurrect dead copy");
  66   }
  67   // If we reached the end and didn't find a callee save proj
  68   // then this may be a callee save proj so we return true
  69   // as the conservative answer. If we didn't reach then end
  70   // we must have discovered that it was not a callee save
  71   // else we would have returned.
  72   return i == limit;
  73 }
  74 
  75 //------------------------------yank-----------------------------------
  76 // Helper function for yank_if_dead
  77 int PhaseChaitin::yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
  78   int blk_adjust=0;
  79   Block *oldb = _cfg._bbs[old->_idx];
  80   oldb->find_remove(old);
  81   // Count 1 if deleting an instruction from the current block
  82   if( oldb == current_block ) blk_adjust++;
  83   _cfg._bbs.map(old->_idx,NULL);
  84   OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
  85   if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
  86     value->map(old_reg,NULL);  // Yank from value/regnd maps
  87     regnd->map(old_reg,NULL);  // This register's value is now unknown
  88   }
  89   return blk_adjust;
  90 }
  91 
  92 #ifdef ASSERT
  93 static bool expected_yanked_node(Node *old, Node *orig_old) {
  94   // This code is expected only next original nodes:
  95   // - load from constant table node which may have next data input nodes:
  96   //     MachConstantBase, Phi, MachTemp, MachSpillCopy
  97   // - load constant node which may have next data input nodes:
  98   //     MachTemp, MachSpillCopy
  99   // - MachSpillCopy
 100   // - MachProj and Copy dead nodes
 101   if (old->is_MachSpillCopy()) {
 102     return true;
 103   } else if (old->is_Con()) {
 104     return true;
 105   } else if (old->is_MachProj()) { // Dead kills projection of Con node
 106     return (old == orig_old);
 107   } else if (old->is_Copy()) {     // Dead copy of a callee-save value
 108     return (old == orig_old);
 109   } else if (old->is_MachTemp()) {
 110     return orig_old->is_Con();
 111   } else if (old->is_Phi() || old->is_MachConstantBase()) {
 112     return (orig_old->is_Con() && orig_old->is_MachConstant());
 113   }
 114   return false;
 115 }
 116 #endif
 117 
 118 //------------------------------yank_if_dead-----------------------------------
 119 // Removed edges from 'old'.  Yank if dead.  Return adjustment counts to
 120 // iterators in the current block.
 121 int PhaseChaitin::yank_if_dead_recurse(Node *old, Node *orig_old, Block *current_block,
 122                                        Node_List *value, Node_List *regnd) {
 123   int blk_adjust=0;
 124   if (old->outcnt() == 0 && old != C->top()) {
 125 #ifdef ASSERT
 126     if (!expected_yanked_node(old, orig_old)) {
 127       tty->print_cr("==============================================");
 128       tty->print_cr("orig_old:");
 129       orig_old->dump();
 130       tty->print_cr("old:");
 131       old->dump();
 132       assert(false, "unexpected yanked node");
 133     }
 134     if (old->is_Con())
 135       orig_old = old; // Reset to satisfy expected nodes checks.
 136 #endif
 137     blk_adjust += yank(old, current_block, value, regnd);
 138 
 139     for (uint i = 1; i < old->req(); i++) {
 140       Node* n = old->in(i);
 141       if (n != NULL) {
 142         old->set_req(i, NULL);
 143         blk_adjust += yank_if_dead_recurse(n, orig_old, current_block, value, regnd);
 144       }
 145     }
 146     // Disconnect control and remove precedence edges if any exist
 147     old->disconnect_inputs(NULL);
 148   }
 149   return blk_adjust;
 150 }
 151 
 152 //------------------------------use_prior_register-----------------------------
 153 // Use the prior value instead of the current value, in an effort to make
 154 // the current value go dead.  Return block iterator adjustment, in case
 155 // we yank some instructions from this block.
 156 int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
 157   // No effect?
 158   if( def == n->in(idx) ) return 0;
 159   // Def is currently dead and can be removed?  Do not resurrect
 160   if( def->outcnt() == 0 ) return 0;
 161 
 162   // Not every pair of physical registers are assignment compatible,
 163   // e.g. on sparc floating point registers are not assignable to integer
 164   // registers.
 165   const LRG &def_lrg = lrgs(n2lidx(def));
 166   OptoReg::Name def_reg = def_lrg.reg();
 167   const RegMask &use_mask = n->in_RegMask(idx);
 168   bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
 169                                                    : (use_mask.is_AllStack() != 0));
 170   // Check for a copy to or from a misaligned pair.
 171   can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair();
 172 
 173   if (!can_use)
 174     return 0;
 175 
 176   // Capture the old def in case it goes dead...
 177   Node *old = n->in(idx);
 178 
 179   // Save-on-call copies can only be elided if the entire copy chain can go
 180   // away, lest we get the same callee-save value alive in 2 locations at
 181   // once.  We check for the obvious trivial case here.  Although it can
 182   // sometimes be elided with cooperation outside our scope, here we will just
 183   // miss the opportunity.  :-(
 184   if( may_be_copy_of_callee(def) ) {
 185     if( old->outcnt() > 1 ) return 0; // We're the not last user
 186     int idx = old->is_Copy();
 187     assert( idx, "chain of copies being removed" );
 188     Node *old2 = old->in(idx);  // Chain of copies
 189     if( old2->outcnt() > 1 ) return 0; // old is not the last user
 190     int idx2 = old2->is_Copy();
 191     if( !idx2 ) return 0;       // Not a chain of 2 copies
 192     if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
 193   }
 194 
 195   // Use the new def
 196   n->set_req(idx,def);
 197   _post_alloc++;
 198 
 199   // Is old def now dead?  We successfully yanked a copy?
 200   return yank_if_dead(old,current_block,&value,&regnd);
 201 }
 202 
 203 
 204 //------------------------------skip_copies------------------------------------
 205 // Skip through any number of copies (that don't mod oop-i-ness)
 206 Node *PhaseChaitin::skip_copies( Node *c ) {
 207   int idx = c->is_Copy();
 208   uint is_oop = lrgs(n2lidx(c))._is_oop;
 209   while (idx != 0) {
 210     guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
 211     if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
 212       break;  // casting copy, not the same value
 213     c = c->in(idx);
 214     idx = c->is_Copy();
 215   }
 216   return c;
 217 }
 218 
 219 //------------------------------elide_copy-------------------------------------
 220 // Remove (bypass) copies along Node n, edge k.
 221 int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
 222   int blk_adjust = 0;
 223 
 224   uint nk_idx = n2lidx(n->in(k));
 225   OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
 226 
 227   // Remove obvious same-register copies
 228   Node *x = n->in(k);
 229   int idx;
 230   while( (idx=x->is_Copy()) != 0 ) {
 231     Node *copy = x->in(idx);
 232     guarantee(copy != NULL, "must not resurrect dead copy");
 233     if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
 234     blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
 235     if( n->in(k) != copy ) break; // Failed for some cutout?
 236     x = copy;                   // Progress, try again
 237   }
 238 
 239   // Phis and 2-address instructions cannot change registers so easily - their
 240   // outputs must match their input.
 241   if( !can_change_regs )
 242     return blk_adjust;          // Only check stupid copies!
 243 
 244   // Loop backedges won't have a value-mapping yet
 245   if( &value == NULL ) return blk_adjust;
 246 
 247   // Skip through all copies to the _value_ being used.  Do not change from
 248   // int to pointer.  This attempts to jump through a chain of copies, where
 249   // intermediate copies might be illegal, i.e., value is stored down to stack
 250   // then reloaded BUT survives in a register the whole way.
 251   Node *val = skip_copies(n->in(k));
 252 
 253   if (val == x && nk_idx != 0 &&
 254       regnd[nk_reg] != NULL && regnd[nk_reg] != x &&
 255       n2lidx(x) == n2lidx(regnd[nk_reg])) {
 256     // When rematerialzing nodes and stretching lifetimes, the
 257     // allocator will reuse the original def for multidef LRG instead
 258     // of the current reaching def because it can't know it's safe to
 259     // do so.  After allocation completes if they are in the same LRG
 260     // then it should use the current reaching def instead.
 261     n->set_req(k, regnd[nk_reg]);
 262     blk_adjust += yank_if_dead(val, current_block, &value, &regnd);
 263     val = skip_copies(n->in(k));
 264   }
 265 
 266   if( val == x ) return blk_adjust; // No progress?
 267 
 268   bool single = is_single_register(val->ideal_reg());
 269   uint val_idx = n2lidx(val);
 270   OptoReg::Name val_reg = lrgs(val_idx).reg();
 271 
 272   // See if it happens to already be in the correct register!
 273   // (either Phi's direct register, or the common case of the name
 274   // never-clobbered original-def register)
 275   if( value[val_reg] == val &&
 276       // Doubles check both halves
 277       ( single || value[val_reg-1] == val ) ) {
 278     blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
 279     if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
 280       return blk_adjust;
 281   }
 282 
 283   // See if we can skip the copy by changing registers.  Don't change from
 284   // using a register to using the stack unless we know we can remove a
 285   // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
 286   // ops reading from memory instead of just loading once and using the
 287   // register.
 288 
 289   // Also handle duplicate copies here.
 290   const Type *t = val->is_Con() ? val->bottom_type() : NULL;
 291 
 292   // Scan all registers to see if this value is around already
 293   for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
 294     if (reg == (uint)nk_reg) {
 295       // Found ourselves so check if there is only one user of this
 296       // copy and keep on searching for a better copy if so.
 297       bool ignore_self = true;
 298       x = n->in(k);
 299       DUIterator_Fast imax, i = x->fast_outs(imax);
 300       Node* first = x->fast_out(i); i++;
 301       while (i < imax && ignore_self) {
 302         Node* use = x->fast_out(i); i++;
 303         if (use != first) ignore_self = false;
 304       }
 305       if (ignore_self) continue;
 306     }
 307 
 308     Node *vv = value[reg];
 309     if( !single ) {             // Doubles check for aligned-adjacent pair
 310       if( (reg&1)==0 ) continue;  // Wrong half of a pair
 311       if( vv != value[reg-1] ) continue; // Not a complete pair
 312     }
 313     if( vv == val ||            // Got a direct hit?
 314         (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
 315          vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
 316       assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
 317       if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
 318           OptoReg::is_reg(reg) || // turning into a register use OR
 319           regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
 320         blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
 321         if( n->in(k) == regnd[reg] ) // Success!  Quit trying
 322           return blk_adjust;
 323       } // End of if not degrading to a stack
 324     } // End of if found value in another register
 325   } // End of scan all machine registers
 326   return blk_adjust;
 327 }
 328 
 329 
 330 //
 331 // Check if nreg already contains the constant value val.  Normal copy
 332 // elimination doesn't doesn't work on constants because multiple
 333 // nodes can represent the same constant so the type and rule of the
 334 // MachNode must be checked to ensure equivalence.
 335 //
 336 bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
 337                                               Block *current_block,
 338                                               Node_List& value, Node_List& regnd,
 339                                               OptoReg::Name nreg, OptoReg::Name nreg2) {
 340   if (value[nreg] != val && val->is_Con() &&
 341       value[nreg] != NULL && value[nreg]->is_Con() &&
 342       (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
 343       value[nreg]->bottom_type() == val->bottom_type() &&
 344       value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
 345     // This code assumes that two MachNodes representing constants
 346     // which have the same rule and the same bottom type will produce
 347     // identical effects into a register.  This seems like it must be
 348     // objectively true unless there are hidden inputs to the nodes
 349     // but if that were to change this code would need to updated.
 350     // Since they are equivalent the second one if redundant and can
 351     // be removed.
 352     //
 353     // n will be replaced with the old value but n might have
 354     // kills projections associated with it so remove them now so that
 355     // yank_if_dead will be able to eliminate the copy once the uses
 356     // have been transferred to the old[value].
 357     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 358       Node* use = n->fast_out(i);
 359       if (use->is_Proj() && use->outcnt() == 0) {
 360         // Kill projections have no users and one input
 361         use->set_req(0, C->top());
 362         yank_if_dead(use, current_block, &value, &regnd);
 363         --i; --imax;
 364       }
 365     }
 366     _post_alloc++;
 367     return true;
 368   }
 369   return false;
 370 }
 371 
 372 
 373 //------------------------------post_allocate_copy_removal---------------------
 374 // Post-Allocation peephole copy removal.  We do this in 1 pass over the
 375 // basic blocks.  We maintain a mapping of registers to Nodes (an  array of
 376 // Nodes indexed by machine register or stack slot number).  NULL means that a
 377 // register is not mapped to any Node.  We can (want to have!) have several
 378 // registers map to the same Node.  We walk forward over the instructions
 379 // updating the mapping as we go.  At merge points we force a NULL if we have
 380 // to merge 2 different Nodes into the same register.  Phi functions will give
 381 // us a new Node if there is a proper value merging.  Since the blocks are
 382 // arranged in some RPO, we will visit all parent blocks before visiting any
 383 // successor blocks (except at loops).
 384 //
 385 // If we find a Copy we look to see if the Copy's source register is a stack
 386 // slot and that value has already been loaded into some machine register; if
 387 // so we use machine register directly.  This turns a Load into a reg-reg
 388 // Move.  We also look for reloads of identical constants.
 389 //
 390 // When we see a use from a reg-reg Copy, we will attempt to use the copy's
 391 // source directly and make the copy go dead.
 392 void PhaseChaitin::post_allocate_copy_removal() {
 393   NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
 394   ResourceMark rm;
 395 
 396   // Need a mapping from basic block Node_Lists.  We need a Node_List to
 397   // map from register number to value-producing Node.
 398   Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
 399   memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
 400   // Need a mapping from basic block Node_Lists.  We need a Node_List to
 401   // map from register number to register-defining Node.
 402   Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
 403   memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
 404 
 405   // We keep unused Node_Lists on a free_list to avoid wasting
 406   // memory.
 407   GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
 408 
 409   // For all blocks
 410   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 411     uint j;
 412     Block *b = _cfg._blocks[i];
 413 
 414     // Count of Phis in block
 415     uint phi_dex;
 416     for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
 417       Node *phi = b->_nodes[phi_dex];
 418       if( !phi->is_Phi() )
 419         break;
 420     }
 421 
 422     // If any predecessor has not been visited, we do not know the state
 423     // of registers at the start.  Check for this, while updating copies
 424     // along Phi input edges
 425     bool missing_some_inputs = false;
 426     Block *freed = NULL;
 427     for( j = 1; j < b->num_preds(); j++ ) {
 428       Block *pb = _cfg._bbs[b->pred(j)->_idx];
 429       // Remove copies along phi edges
 430       for( uint k=1; k<phi_dex; k++ )
 431         elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
 432       if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
 433         // See if this predecessor's mappings have been used by everybody
 434         // who wants them.  If so, free 'em.
 435         uint k;
 436         for( k=0; k<pb->_num_succs; k++ ) {
 437           Block *pbsucc = pb->_succs[k];
 438           if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
 439             break;              // Found a future user
 440         }
 441         if( k >= pb->_num_succs ) { // No more uses, free!
 442           freed = pb;           // Record last block freed
 443           free_list.push(blk2value[pb->_pre_order]);
 444           free_list.push(blk2regnd[pb->_pre_order]);
 445         }
 446       } else {                  // This block has unvisited (loopback) inputs
 447         missing_some_inputs = true;
 448       }
 449     }
 450 
 451 
 452     // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
 453     // 'freed's blocks off the list
 454     Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
 455     Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
 456     assert( !freed || blk2value[freed->_pre_order] == &value, "" );
 457     value.map(_max_reg,NULL);
 458     regnd.map(_max_reg,NULL);
 459     // Set mappings as OUR mappings
 460     blk2value[b->_pre_order] = &value;
 461     blk2regnd[b->_pre_order] = &regnd;
 462 
 463     // Initialize value & regnd for this block
 464     if( missing_some_inputs ) {
 465       // Some predecessor has not yet been visited; zap map to empty
 466       for( uint k = 0; k < (uint)_max_reg; k++ ) {
 467         value.map(k,NULL);
 468         regnd.map(k,NULL);
 469       }
 470     } else {
 471       if( !freed ) {            // Didn't get a freebie prior block
 472         // Must clone some data
 473         freed = _cfg._bbs[b->pred(1)->_idx];
 474         Node_List &f_value = *blk2value[freed->_pre_order];
 475         Node_List &f_regnd = *blk2regnd[freed->_pre_order];
 476         for( uint k = 0; k < (uint)_max_reg; k++ ) {
 477           value.map(k,f_value[k]);
 478           regnd.map(k,f_regnd[k]);
 479         }
 480       }
 481       // Merge all inputs together, setting to NULL any conflicts.
 482       for( j = 1; j < b->num_preds(); j++ ) {
 483         Block *pb = _cfg._bbs[b->pred(j)->_idx];
 484         if( pb == freed ) continue; // Did self already via freelist
 485         Node_List &p_regnd = *blk2regnd[pb->_pre_order];
 486         for( uint k = 0; k < (uint)_max_reg; k++ ) {
 487           if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
 488             value.map(k,NULL); // Then no value handy
 489             regnd.map(k,NULL);
 490           }
 491         }
 492       }
 493     }
 494 
 495     // For all Phi's
 496     for( j = 1; j < phi_dex; j++ ) {
 497       uint k;
 498       Node *phi = b->_nodes[j];
 499       uint pidx = n2lidx(phi);
 500       OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
 501 
 502       // Remove copies remaining on edges.  Check for junk phi.
 503       Node *u = NULL;
 504       for( k=1; k<phi->req(); k++ ) {
 505         Node *x = phi->in(k);
 506         if( phi != x && u != x ) // Found a different input
 507           u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
 508       }
 509       if( u != NodeSentinel ) {    // Junk Phi.  Remove
 510         b->_nodes.remove(j--); phi_dex--;
 511         _cfg._bbs.map(phi->_idx,NULL);
 512         phi->replace_by(u);
 513         phi->disconnect_inputs(NULL);
 514         continue;
 515       }
 516       // Note that if value[pidx] exists, then we merged no new values here
 517       // and the phi is useless.  This can happen even with the above phi
 518       // removal for complex flows.  I cannot keep the better known value here
 519       // because locally the phi appears to define a new merged value.  If I
 520       // keep the better value then a copy of the phi, being unable to use the
 521       // global flow analysis, can't "peek through" the phi to the original
 522       // reaching value and so will act like it's defining a new value.  This
 523       // can lead to situations where some uses are from the old and some from
 524       // the new values.  Not illegal by itself but throws the over-strong
 525       // assert in scheduling.
 526       if( pidx ) {
 527         value.map(preg,phi);
 528         regnd.map(preg,phi);
 529         OptoReg::Name preg_lo = OptoReg::add(preg,-1);
 530         if( !is_single_register(phi->ideal_reg()) ) {
 531           value.map(preg_lo,phi);
 532           regnd.map(preg_lo,phi);
 533         }
 534       }
 535     }
 536 
 537     // For all remaining instructions
 538     for( j = phi_dex; j < b->_nodes.size(); j++ ) {
 539       Node *n = b->_nodes[j];
 540 
 541       if( n->outcnt() == 0 &&   // Dead?
 542           n != C->top() &&      // (ignore TOP, it has no du info)
 543           !n->is_Proj() ) {     // fat-proj kills
 544         j -= yank_if_dead(n,b,&value,&regnd);
 545         continue;
 546       }
 547 
 548       // Improve reaching-def info.  Occasionally post-alloc's liveness gives
 549       // up (at loop backedges, because we aren't doing a full flow pass).
 550       // The presence of a live use essentially asserts that the use's def is
 551       // alive and well at the use (or else the allocator fubar'd).  Take
 552       // advantage of this info to set a reaching def for the use-reg.
 553       uint k;
 554       for( k = 1; k < n->req(); k++ ) {
 555         Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
 556         guarantee(def != NULL, "no disconnected nodes at this point");
 557         uint useidx = n2lidx(def); // useidx is the live range index for this USE
 558 
 559         if( useidx ) {
 560           OptoReg::Name ureg = lrgs(useidx).reg();
 561           if( !value[ureg] ) {
 562             int idx;            // Skip occasional useless copy
 563             while( (idx=def->is_Copy()) != 0 &&
 564                    def->in(idx) != NULL &&  // NULL should not happen
 565                    ureg == lrgs(n2lidx(def->in(idx))).reg() )
 566               def = def->in(idx);
 567             Node *valdef = skip_copies(def); // tighten up val through non-useless copies
 568             value.map(ureg,valdef); // record improved reaching-def info
 569             regnd.map(ureg,   def);
 570             // Record other half of doubles
 571             OptoReg::Name ureg_lo = OptoReg::add(ureg,-1);
 572             if( !is_single_register(def->ideal_reg()) &&
 573                 ( !RegMask::can_represent(ureg_lo) ||
 574                   lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent
 575                 !value[ureg_lo] ) {
 576               value.map(ureg_lo,valdef); // record improved reaching-def info
 577               regnd.map(ureg_lo,   def);
 578             }
 579           }
 580         }
 581       }
 582 
 583       const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
 584 
 585       // Remove copies along input edges
 586       for( k = 1; k < n->req(); k++ )
 587         j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
 588 
 589       // Unallocated Nodes define no registers
 590       uint lidx = n2lidx(n);
 591       if( !lidx ) continue;
 592 
 593       // Update the register defined by this instruction
 594       OptoReg::Name nreg = lrgs(lidx).reg();
 595       // Skip through all copies to the _value_ being defined.
 596       // Do not change from int to pointer
 597       Node *val = skip_copies(n);
 598 
 599       // Clear out a dead definition before starting so that the
 600       // elimination code doesn't have to guard against it.  The
 601       // definition could in fact be a kill projection with a count of
 602       // 0 which is safe but since those are uninteresting for copy
 603       // elimination just delete them as well.
 604       if (regnd[nreg] != NULL && regnd[nreg]->outcnt() == 0) {
 605         regnd.map(nreg, NULL);
 606         value.map(nreg, NULL);
 607       }
 608 
 609       uint n_ideal_reg = n->ideal_reg();
 610       if( is_single_register(n_ideal_reg) ) {
 611         // If Node 'n' does not change the value mapped by the register,
 612         // then 'n' is a useless copy.  Do not update the register->node
 613         // mapping so 'n' will go dead.
 614         if( value[nreg] != val ) {
 615           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) {
 616             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 617           } else {
 618             // Update the mapping: record new Node defined by the register
 619             regnd.map(nreg,n);
 620             // Update mapping for defined *value*, which is the defined
 621             // Node after skipping all copies.
 622             value.map(nreg,val);
 623           }
 624         } else if( !may_be_copy_of_callee(n) ) {
 625           assert( n->is_Copy(), "" );
 626           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 627         }
 628       } else {
 629         // If the value occupies a register pair, record same info
 630         // in both registers.
 631         OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
 632         if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
 633             !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
 634           // Sparc occasionally has non-adjacent pairs.
 635           // Find the actual other value
 636           RegMask tmp = lrgs(lidx).mask();
 637           tmp.Remove(nreg);
 638           nreg_lo = tmp.find_first_elem();
 639         }
 640         if( value[nreg] != val || value[nreg_lo] != val ) {
 641           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) {
 642             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 643           } else {
 644             regnd.map(nreg   , n );
 645             regnd.map(nreg_lo, n );
 646             value.map(nreg   ,val);
 647             value.map(nreg_lo,val);
 648           }
 649         } else if( !may_be_copy_of_callee(n) ) {
 650           assert( n->is_Copy(), "" );
 651           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 652         }
 653       }
 654 
 655       // Fat projections kill many registers
 656       if( n_ideal_reg == MachProjNode::fat_proj ) {
 657         RegMask rm = n->out_RegMask();
 658         // wow, what an expensive iterator...
 659         nreg = rm.find_first_elem();
 660         while( OptoReg::is_valid(nreg)) {
 661           rm.Remove(nreg);
 662           value.map(nreg,n);
 663           regnd.map(nreg,n);
 664           nreg = rm.find_first_elem();
 665         }
 666       }
 667 
 668     } // End of for all instructions in the block
 669 
 670   } // End for all blocks
 671 }