1 /*
   2  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "compiler/compileLog.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/divnode.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/mulnode.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/superword.hpp"
  36 #include "opto/vectornode.hpp"
  37 
  38 //
  39 //                  S U P E R W O R D   T R A N S F O R M
  40 //=============================================================================
  41 
  42 //------------------------------SuperWord---------------------------
  43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
  44   _phase(phase),
  45   _igvn(phase->_igvn),
  46   _arena(phase->C->comp_arena()),
  47   _packset(arena(), 8,  0, NULL),         // packs for the current block
  48   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
  49   _block(arena(), 8,  0, NULL),           // nodes in current block
  50   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
  51   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
  52   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
  53   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
  54   _align_to_ref(NULL),                    // memory reference to align vectors to
  55   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
  56   _dg(_arena),                            // dependence graph
  57   _visited(arena()),                      // visited node set
  58   _post_visited(arena()),                 // post visited node set
  59   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
  60   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
  61   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
  62   _lpt(NULL),                             // loop tree node
  63   _lp(NULL),                              // LoopNode
  64   _bb(NULL),                              // basic block
  65   _iv(NULL)                               // induction var
  66 {}
  67 
  68 //------------------------------transform_loop---------------------------
  69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
  70   assert(lpt->_head->is_CountedLoop(), "must be");
  71   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
  72 
  73   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
  74 
  75   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
  76 
  77   // Check for no control flow in body (other than exit)
  78   Node *cl_exit = cl->loopexit();
  79   if (cl_exit->in(0) != lpt->_head) return;
  80 
  81   // Make sure the are no extra control users of the loop backedge
  82   if (cl->back_control()->outcnt() != 1) {
  83     return;
  84   }
  85 
  86   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
  87   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
  88   if (pre_end == NULL) return;
  89   Node *pre_opaq1 = pre_end->limit();
  90   if (pre_opaq1->Opcode() != Op_Opaque1) return;
  91 
  92   // Do vectors exist on this architecture?
  93   if (vector_width_in_bytes() == 0) return;
  94 
  95   init(); // initialize data structures
  96 
  97   set_lpt(lpt);
  98   set_lp(cl);
  99 
 100  // For now, define one block which is the entire loop body
 101   set_bb(cl);
 102 
 103   assert(_packset.length() == 0, "packset must be empty");
 104   SLP_extract();
 105 }
 106 
 107 //------------------------------SLP_extract---------------------------
 108 // Extract the superword level parallelism
 109 //
 110 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
 111 //    this list from first to last, all definitions are visited before their uses.
 112 //
 113 // 2) A point-to-point dependence graph is constructed between memory references.
 114 //    This simplies the upcoming "independence" checker.
 115 //
 116 // 3) The maximum depth in the node graph from the beginning of the block
 117 //    to each node is computed.  This is used to prune the graph search
 118 //    in the independence checker.
 119 //
 120 // 4) For integer types, the necessary bit width is propagated backwards
 121 //    from stores to allow packed operations on byte, char, and short
 122 //    integers.  This reverses the promotion to type "int" that javac
 123 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
 124 //
 125 // 5) One of the memory references is picked to be an aligned vector reference.
 126 //    The pre-loop trip count is adjusted to align this reference in the
 127 //    unrolled body.
 128 //
 129 // 6) The initial set of pack pairs is seeded with memory references.
 130 //
 131 // 7) The set of pack pairs is extended by following use->def and def->use links.
 132 //
 133 // 8) The pairs are combined into vector sized packs.
 134 //
 135 // 9) Reorder the memory slices to co-locate members of the memory packs.
 136 //
 137 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
 138 //    inserting scalar promotion, vector creation from multiple scalars, and
 139 //    extraction of scalar values from vectors.
 140 //
 141 void SuperWord::SLP_extract() {
 142 
 143   // Ready the block
 144 
 145   construct_bb();
 146 
 147   dependence_graph();
 148 
 149   compute_max_depth();
 150 
 151   compute_vector_element_type();
 152 
 153   // Attempt vectorization
 154 
 155   find_adjacent_refs();
 156 
 157   extend_packlist();
 158 
 159   combine_packs();
 160 
 161   construct_my_pack_map();
 162 
 163   filter_packs();
 164 
 165   schedule();
 166 
 167   output();
 168 }
 169 
 170 //------------------------------find_adjacent_refs---------------------------
 171 // Find the adjacent memory references and create pack pairs for them.
 172 // This is the initial set of packs that will then be extended by
 173 // following use->def and def->use links.  The align positions are
 174 // assigned relative to the reference "align_to_ref"
 175 void SuperWord::find_adjacent_refs() {
 176   // Get list of memory operations
 177   Node_List memops;
 178   for (int i = 0; i < _block.length(); i++) {
 179     Node* n = _block.at(i);
 180     if (n->is_Mem() && in_bb(n) &&
 181         is_java_primitive(n->as_Mem()->memory_type())) {
 182       int align = memory_alignment(n->as_Mem(), 0);
 183       if (align != bottom_align) {
 184         memops.push(n);
 185       }
 186     }
 187   }
 188   if (memops.size() == 0) return;
 189 
 190   // Find a memory reference to align to.  The pre-loop trip count
 191   // is modified to align this reference to a vector-aligned address
 192   find_align_to_ref(memops);
 193   if (align_to_ref() == NULL) return;
 194 
 195   SWPointer align_to_ref_p(align_to_ref(), this);
 196   int offset = align_to_ref_p.offset_in_bytes();
 197   int scale  = align_to_ref_p.scale_in_bytes();
 198   int vw              = vector_width_in_bytes();
 199   int stride_sign     = (scale * iv_stride()) > 0 ? 1 : -1;
 200   int iv_adjustment   = (stride_sign * vw - (offset % vw)) % vw;
 201 
 202 #ifndef PRODUCT
 203   if (TraceSuperWord)
 204     tty->print_cr("\noffset = %d iv_adjustment = %d  elt_align = %d scale = %d iv_stride = %d",
 205                   offset, iv_adjustment, align_to_ref_p.memory_size(), align_to_ref_p.scale_in_bytes(), iv_stride());
 206 #endif
 207 
 208   // Set alignment relative to "align_to_ref"
 209   for (int i = memops.size() - 1; i >= 0; i--) {
 210     MemNode* s = memops.at(i)->as_Mem();
 211     SWPointer p2(s, this);
 212     if (p2.comparable(align_to_ref_p)) {
 213       int align = memory_alignment(s, iv_adjustment);
 214       set_alignment(s, align);
 215     } else {
 216       memops.remove(i);
 217     }
 218   }
 219 
 220   // Create initial pack pairs of memory operations
 221   for (uint i = 0; i < memops.size(); i++) {
 222     Node* s1 = memops.at(i);
 223     for (uint j = 0; j < memops.size(); j++) {
 224       Node* s2 = memops.at(j);
 225       if (s1 != s2 && are_adjacent_refs(s1, s2)) {
 226         int align = alignment(s1);
 227         if (stmts_can_pack(s1, s2, align)) {
 228           Node_List* pair = new Node_List();
 229           pair->push(s1);
 230           pair->push(s2);
 231           _packset.append(pair);
 232         }
 233       }
 234     }
 235   }
 236 
 237 #ifndef PRODUCT
 238   if (TraceSuperWord) {
 239     tty->print_cr("\nAfter find_adjacent_refs");
 240     print_packset();
 241   }
 242 #endif
 243 }
 244 
 245 //------------------------------find_align_to_ref---------------------------
 246 // Find a memory reference to align the loop induction variable to.
 247 // Looks first at stores then at loads, looking for a memory reference
 248 // with the largest number of references similar to it.
 249 void SuperWord::find_align_to_ref(Node_List &memops) {
 250   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
 251 
 252   // Count number of comparable memory ops
 253   for (uint i = 0; i < memops.size(); i++) {
 254     MemNode* s1 = memops.at(i)->as_Mem();
 255     SWPointer p1(s1, this);
 256     // Discard if pre loop can't align this reference
 257     if (!ref_is_alignable(p1)) {
 258       *cmp_ct.adr_at(i) = 0;
 259       continue;
 260     }
 261     for (uint j = i+1; j < memops.size(); j++) {
 262       MemNode* s2 = memops.at(j)->as_Mem();
 263       if (isomorphic(s1, s2)) {
 264         SWPointer p2(s2, this);
 265         if (p1.comparable(p2)) {
 266           (*cmp_ct.adr_at(i))++;
 267           (*cmp_ct.adr_at(j))++;
 268         }
 269       }
 270     }
 271   }
 272 
 273   // Find Store (or Load) with the greatest number of "comparable" references
 274   int max_ct        = 0;
 275   int max_idx       = -1;
 276   int min_size      = max_jint;
 277   int min_iv_offset = max_jint;
 278   for (uint j = 0; j < memops.size(); j++) {
 279     MemNode* s = memops.at(j)->as_Mem();
 280     if (s->is_Store()) {
 281       SWPointer p(s, this);
 282       if (cmp_ct.at(j) > max_ct ||
 283           cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
 284                                      data_size(s) == min_size &&
 285                                         p.offset_in_bytes() < min_iv_offset)) {
 286         max_ct = cmp_ct.at(j);
 287         max_idx = j;
 288         min_size = data_size(s);
 289         min_iv_offset = p.offset_in_bytes();
 290       }
 291     }
 292   }
 293   // If no stores, look at loads
 294   if (max_ct == 0) {
 295     for (uint j = 0; j < memops.size(); j++) {
 296       MemNode* s = memops.at(j)->as_Mem();
 297       if (s->is_Load()) {
 298         SWPointer p(s, this);
 299         if (cmp_ct.at(j) > max_ct ||
 300             cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
 301                                        data_size(s) == min_size &&
 302                                           p.offset_in_bytes() < min_iv_offset)) {
 303           max_ct = cmp_ct.at(j);
 304           max_idx = j;
 305           min_size = data_size(s);
 306           min_iv_offset = p.offset_in_bytes();
 307         }
 308       }
 309     }
 310   }
 311 
 312   if (max_ct > 0)
 313     set_align_to_ref(memops.at(max_idx)->as_Mem());
 314 
 315 #ifndef PRODUCT
 316   if (TraceSuperWord && Verbose) {
 317     tty->print_cr("\nVector memops after find_align_to_refs");
 318     for (uint i = 0; i < memops.size(); i++) {
 319       MemNode* s = memops.at(i)->as_Mem();
 320       s->dump();
 321     }
 322   }
 323 #endif
 324 }
 325 
 326 //------------------------------ref_is_alignable---------------------------
 327 // Can the preloop align the reference to position zero in the vector?
 328 bool SuperWord::ref_is_alignable(SWPointer& p) {
 329   if (!p.has_iv()) {
 330     return true;   // no induction variable
 331   }
 332   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
 333   assert(pre_end->stride_is_con(), "pre loop stride is constant");
 334   int preloop_stride = pre_end->stride_con();
 335 
 336   int span = preloop_stride * p.scale_in_bytes();
 337 
 338   // Stride one accesses are alignable.
 339   if (ABS(span) == p.memory_size())
 340     return true;
 341 
 342   // If initial offset from start of object is computable,
 343   // compute alignment within the vector.
 344   int vw = vector_width_in_bytes();
 345   if (vw % span == 0) {
 346     Node* init_nd = pre_end->init_trip();
 347     if (init_nd->is_Con() && p.invar() == NULL) {
 348       int init = init_nd->bottom_type()->is_int()->get_con();
 349 
 350       int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
 351       assert(init_offset >= 0, "positive offset from object start");
 352 
 353       if (span > 0) {
 354         return (vw - (init_offset % vw)) % span == 0;
 355       } else {
 356         assert(span < 0, "nonzero stride * scale");
 357         return (init_offset % vw) % -span == 0;
 358       }
 359     }
 360   }
 361   return false;
 362 }
 363 
 364 //---------------------------dependence_graph---------------------------
 365 // Construct dependency graph.
 366 // Add dependence edges to load/store nodes for memory dependence
 367 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
 368 void SuperWord::dependence_graph() {
 369   // First, assign a dependence node to each memory node
 370   for (int i = 0; i < _block.length(); i++ ) {
 371     Node *n = _block.at(i);
 372     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
 373       _dg.make_node(n);
 374     }
 375   }
 376 
 377   // For each memory slice, create the dependences
 378   for (int i = 0; i < _mem_slice_head.length(); i++) {
 379     Node* n      = _mem_slice_head.at(i);
 380     Node* n_tail = _mem_slice_tail.at(i);
 381 
 382     // Get slice in predecessor order (last is first)
 383     mem_slice_preds(n_tail, n, _nlist);
 384 
 385     // Make the slice dependent on the root
 386     DepMem* slice = _dg.dep(n);
 387     _dg.make_edge(_dg.root(), slice);
 388 
 389     // Create a sink for the slice
 390     DepMem* slice_sink = _dg.make_node(NULL);
 391     _dg.make_edge(slice_sink, _dg.tail());
 392 
 393     // Now visit each pair of memory ops, creating the edges
 394     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
 395       Node* s1 = _nlist.at(j);
 396 
 397       // If no dependency yet, use slice
 398       if (_dg.dep(s1)->in_cnt() == 0) {
 399         _dg.make_edge(slice, s1);
 400       }
 401       SWPointer p1(s1->as_Mem(), this);
 402       bool sink_dependent = true;
 403       for (int k = j - 1; k >= 0; k--) {
 404         Node* s2 = _nlist.at(k);
 405         if (s1->is_Load() && s2->is_Load())
 406           continue;
 407         SWPointer p2(s2->as_Mem(), this);
 408 
 409         int cmp = p1.cmp(p2);
 410         if (SuperWordRTDepCheck &&
 411             p1.base() != p2.base() && p1.valid() && p2.valid()) {
 412           // Create a runtime check to disambiguate
 413           OrderedPair pp(p1.base(), p2.base());
 414           _disjoint_ptrs.append_if_missing(pp);
 415         } else if (!SWPointer::not_equal(cmp)) {
 416           // Possibly same address
 417           _dg.make_edge(s1, s2);
 418           sink_dependent = false;
 419         }
 420       }
 421       if (sink_dependent) {
 422         _dg.make_edge(s1, slice_sink);
 423       }
 424     }
 425 #ifndef PRODUCT
 426     if (TraceSuperWord) {
 427       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
 428       for (int q = 0; q < _nlist.length(); q++) {
 429         _dg.print(_nlist.at(q));
 430       }
 431       tty->cr();
 432     }
 433 #endif
 434     _nlist.clear();
 435   }
 436 
 437 #ifndef PRODUCT
 438   if (TraceSuperWord) {
 439     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
 440     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
 441       _disjoint_ptrs.at(r).print();
 442       tty->cr();
 443     }
 444     tty->cr();
 445   }
 446 #endif
 447 }
 448 
 449 //---------------------------mem_slice_preds---------------------------
 450 // Return a memory slice (node list) in predecessor order starting at "start"
 451 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
 452   assert(preds.length() == 0, "start empty");
 453   Node* n = start;
 454   Node* prev = NULL;
 455   while (true) {
 456     assert(in_bb(n), "must be in block");
 457     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 458       Node* out = n->fast_out(i);
 459       if (out->is_Load()) {
 460         if (in_bb(out)) {
 461           preds.push(out);
 462         }
 463       } else {
 464         // FIXME
 465         if (out->is_MergeMem() && !in_bb(out)) {
 466           // Either unrolling is causing a memory edge not to disappear,
 467           // or need to run igvn.optimize() again before SLP
 468         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
 469           // Ditto.  Not sure what else to check further.
 470         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
 471           // StoreCM has an input edge used as a precedence edge.
 472           // Maybe an issue when oop stores are vectorized.
 473         } else {
 474           assert(out == prev || prev == NULL, "no branches off of store slice");
 475         }
 476       }
 477     }
 478     if (n == stop) break;
 479     preds.push(n);
 480     prev = n;
 481     n = n->in(MemNode::Memory);
 482   }
 483 }
 484 
 485 //------------------------------stmts_can_pack---------------------------
 486 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
 487 // s1 aligned at "align"
 488 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
 489 
 490   // Do not use superword for non-primitives
 491   if((s1->is_Mem() && !is_java_primitive(s1->as_Mem()->memory_type())) ||
 492      (s2->is_Mem() && !is_java_primitive(s2->as_Mem()->memory_type())))
 493     return false;
 494 
 495   if (isomorphic(s1, s2)) {
 496     if (independent(s1, s2)) {
 497       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
 498         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
 499           int s1_align = alignment(s1);
 500           int s2_align = alignment(s2);
 501           if (s1_align == top_align || s1_align == align) {
 502             if (s2_align == top_align || s2_align == align + data_size(s1)) {
 503               return true;
 504             }
 505           }
 506         }
 507       }
 508     }
 509   }
 510   return false;
 511 }
 512 
 513 //------------------------------exists_at---------------------------
 514 // Does s exist in a pack at position pos?
 515 bool SuperWord::exists_at(Node* s, uint pos) {
 516   for (int i = 0; i < _packset.length(); i++) {
 517     Node_List* p = _packset.at(i);
 518     if (p->at(pos) == s) {
 519       return true;
 520     }
 521   }
 522   return false;
 523 }
 524 
 525 //------------------------------are_adjacent_refs---------------------------
 526 // Is s1 immediately before s2 in memory?
 527 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
 528   if (!s1->is_Mem() || !s2->is_Mem()) return false;
 529   if (!in_bb(s1)    || !in_bb(s2))    return false;
 530 
 531   // Do not use superword for non-primitives
 532   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
 533       !is_java_primitive(s2->as_Mem()->memory_type())) {
 534     return false;
 535   }
 536 
 537   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
 538   // only pack memops that are in the same alias set until that's fixed.
 539   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
 540       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
 541     return false;
 542   SWPointer p1(s1->as_Mem(), this);
 543   SWPointer p2(s2->as_Mem(), this);
 544   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
 545   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
 546   return diff == data_size(s1);
 547 }
 548 
 549 //------------------------------isomorphic---------------------------
 550 // Are s1 and s2 similar?
 551 bool SuperWord::isomorphic(Node* s1, Node* s2) {
 552   if (s1->Opcode() != s2->Opcode()) return false;
 553   if (s1->req() != s2->req()) return false;
 554   if (s1->in(0) != s2->in(0)) return false;
 555   if (velt_type(s1) != velt_type(s2)) return false;
 556   return true;
 557 }
 558 
 559 //------------------------------independent---------------------------
 560 // Is there no data path from s1 to s2 or s2 to s1?
 561 bool SuperWord::independent(Node* s1, Node* s2) {
 562   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
 563   int d1 = depth(s1);
 564   int d2 = depth(s2);
 565   if (d1 == d2) return s1 != s2;
 566   Node* deep    = d1 > d2 ? s1 : s2;
 567   Node* shallow = d1 > d2 ? s2 : s1;
 568 
 569   visited_clear();
 570 
 571   return independent_path(shallow, deep);
 572 }
 573 
 574 //------------------------------independent_path------------------------------
 575 // Helper for independent
 576 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
 577   if (dp >= 1000) return false; // stop deep recursion
 578   visited_set(deep);
 579   int shal_depth = depth(shallow);
 580   assert(shal_depth <= depth(deep), "must be");
 581   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
 582     Node* pred = preds.current();
 583     if (in_bb(pred) && !visited_test(pred)) {
 584       if (shallow == pred) {
 585         return false;
 586       }
 587       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
 588         return false;
 589       }
 590     }
 591   }
 592   return true;
 593 }
 594 
 595 //------------------------------set_alignment---------------------------
 596 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
 597   set_alignment(s1, align);
 598   set_alignment(s2, align + data_size(s1));
 599 }
 600 
 601 //------------------------------data_size---------------------------
 602 int SuperWord::data_size(Node* s) {
 603   const Type* t = velt_type(s);
 604   BasicType  bt = t->array_element_basic_type();
 605   int bsize = type2aelembytes(bt);
 606   assert(bsize != 0, "valid size");
 607   return bsize;
 608 }
 609 
 610 //------------------------------extend_packlist---------------------------
 611 // Extend packset by following use->def and def->use links from pack members.
 612 void SuperWord::extend_packlist() {
 613   bool changed;
 614   do {
 615     changed = false;
 616     for (int i = 0; i < _packset.length(); i++) {
 617       Node_List* p = _packset.at(i);
 618       changed |= follow_use_defs(p);
 619       changed |= follow_def_uses(p);
 620     }
 621   } while (changed);
 622 
 623 #ifndef PRODUCT
 624   if (TraceSuperWord) {
 625     tty->print_cr("\nAfter extend_packlist");
 626     print_packset();
 627   }
 628 #endif
 629 }
 630 
 631 //------------------------------follow_use_defs---------------------------
 632 // Extend the packset by visiting operand definitions of nodes in pack p
 633 bool SuperWord::follow_use_defs(Node_List* p) {
 634   Node* s1 = p->at(0);
 635   Node* s2 = p->at(1);
 636   assert(p->size() == 2, "just checking");
 637   assert(s1->req() == s2->req(), "just checking");
 638   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
 639 
 640   if (s1->is_Load()) return false;
 641 
 642   int align = alignment(s1);
 643   bool changed = false;
 644   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
 645   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
 646   for (int j = start; j < end; j++) {
 647     Node* t1 = s1->in(j);
 648     Node* t2 = s2->in(j);
 649     if (!in_bb(t1) || !in_bb(t2))
 650       continue;
 651     if (stmts_can_pack(t1, t2, align)) {
 652       if (est_savings(t1, t2) >= 0) {
 653         Node_List* pair = new Node_List();
 654         pair->push(t1);
 655         pair->push(t2);
 656         _packset.append(pair);
 657         set_alignment(t1, t2, align);
 658         changed = true;
 659       }
 660     }
 661   }
 662   return changed;
 663 }
 664 
 665 //------------------------------follow_def_uses---------------------------
 666 // Extend the packset by visiting uses of nodes in pack p
 667 bool SuperWord::follow_def_uses(Node_List* p) {
 668   bool changed = false;
 669   Node* s1 = p->at(0);
 670   Node* s2 = p->at(1);
 671   assert(p->size() == 2, "just checking");
 672   assert(s1->req() == s2->req(), "just checking");
 673   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
 674 
 675   if (s1->is_Store()) return false;
 676 
 677   int align = alignment(s1);
 678   int savings = -1;
 679   Node* u1 = NULL;
 680   Node* u2 = NULL;
 681   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
 682     Node* t1 = s1->fast_out(i);
 683     if (!in_bb(t1)) continue;
 684     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
 685       Node* t2 = s2->fast_out(j);
 686       if (!in_bb(t2)) continue;
 687       if (!opnd_positions_match(s1, t1, s2, t2))
 688         continue;
 689       if (stmts_can_pack(t1, t2, align)) {
 690         int my_savings = est_savings(t1, t2);
 691         if (my_savings > savings) {
 692           savings = my_savings;
 693           u1 = t1;
 694           u2 = t2;
 695         }
 696       }
 697     }
 698   }
 699   if (savings >= 0) {
 700     Node_List* pair = new Node_List();
 701     pair->push(u1);
 702     pair->push(u2);
 703     _packset.append(pair);
 704     set_alignment(u1, u2, align);
 705     changed = true;
 706   }
 707   return changed;
 708 }
 709 
 710 //---------------------------opnd_positions_match-------------------------
 711 // Is the use of d1 in u1 at the same operand position as d2 in u2?
 712 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
 713   uint ct = u1->req();
 714   if (ct != u2->req()) return false;
 715   uint i1 = 0;
 716   uint i2 = 0;
 717   do {
 718     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
 719     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
 720     if (i1 != i2) {
 721       return false;
 722     }
 723   } while (i1 < ct);
 724   return true;
 725 }
 726 
 727 //------------------------------est_savings---------------------------
 728 // Estimate the savings from executing s1 and s2 as a pack
 729 int SuperWord::est_savings(Node* s1, Node* s2) {
 730   int save = 2 - 1; // 2 operations per instruction in packed form
 731 
 732   // inputs
 733   for (uint i = 1; i < s1->req(); i++) {
 734     Node* x1 = s1->in(i);
 735     Node* x2 = s2->in(i);
 736     if (x1 != x2) {
 737       if (are_adjacent_refs(x1, x2)) {
 738         save += adjacent_profit(x1, x2);
 739       } else if (!in_packset(x1, x2)) {
 740         save -= pack_cost(2);
 741       } else {
 742         save += unpack_cost(2);
 743       }
 744     }
 745   }
 746 
 747   // uses of result
 748   uint ct = 0;
 749   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
 750     Node* s1_use = s1->fast_out(i);
 751     for (int j = 0; j < _packset.length(); j++) {
 752       Node_List* p = _packset.at(j);
 753       if (p->at(0) == s1_use) {
 754         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
 755           Node* s2_use = s2->fast_out(k);
 756           if (p->at(p->size()-1) == s2_use) {
 757             ct++;
 758             if (are_adjacent_refs(s1_use, s2_use)) {
 759               save += adjacent_profit(s1_use, s2_use);
 760             }
 761           }
 762         }
 763       }
 764     }
 765   }
 766 
 767   if (ct < s1->outcnt()) save += unpack_cost(1);
 768   if (ct < s2->outcnt()) save += unpack_cost(1);
 769 
 770   return save;
 771 }
 772 
 773 //------------------------------costs---------------------------
 774 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
 775 int SuperWord::pack_cost(int ct)   { return ct; }
 776 int SuperWord::unpack_cost(int ct) { return ct; }
 777 
 778 //------------------------------combine_packs---------------------------
 779 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
 780 void SuperWord::combine_packs() {
 781   bool changed;
 782   do {
 783     changed = false;
 784     for (int i = 0; i < _packset.length(); i++) {
 785       Node_List* p1 = _packset.at(i);
 786       if (p1 == NULL) continue;
 787       for (int j = 0; j < _packset.length(); j++) {
 788         Node_List* p2 = _packset.at(j);
 789         if (p2 == NULL) continue;
 790         if (p1->at(p1->size()-1) == p2->at(0)) {
 791           for (uint k = 1; k < p2->size(); k++) {
 792             p1->push(p2->at(k));
 793           }
 794           _packset.at_put(j, NULL);
 795           changed = true;
 796         }
 797       }
 798     }
 799   } while (changed);
 800 
 801   for (int i = _packset.length() - 1; i >= 0; i--) {
 802     Node_List* p1 = _packset.at(i);
 803     if (p1 == NULL) {
 804       _packset.remove_at(i);
 805     }
 806   }
 807 
 808 #ifndef PRODUCT
 809   if (TraceSuperWord) {
 810     tty->print_cr("\nAfter combine_packs");
 811     print_packset();
 812   }
 813 #endif
 814 }
 815 
 816 //-----------------------------construct_my_pack_map--------------------------
 817 // Construct the map from nodes to packs.  Only valid after the
 818 // point where a node is only in one pack (after combine_packs).
 819 void SuperWord::construct_my_pack_map() {
 820   Node_List* rslt = NULL;
 821   for (int i = 0; i < _packset.length(); i++) {
 822     Node_List* p = _packset.at(i);
 823     for (uint j = 0; j < p->size(); j++) {
 824       Node* s = p->at(j);
 825       assert(my_pack(s) == NULL, "only in one pack");
 826       set_my_pack(s, p);
 827     }
 828   }
 829 }
 830 
 831 //------------------------------filter_packs---------------------------
 832 // Remove packs that are not implemented or not profitable.
 833 void SuperWord::filter_packs() {
 834 
 835   // Remove packs that are not implemented
 836   for (int i = _packset.length() - 1; i >= 0; i--) {
 837     Node_List* pk = _packset.at(i);
 838     bool impl = implemented(pk);
 839     if (!impl) {
 840 #ifndef PRODUCT
 841       if (TraceSuperWord && Verbose) {
 842         tty->print_cr("Unimplemented");
 843         pk->at(0)->dump();
 844       }
 845 #endif
 846       remove_pack_at(i);
 847     }
 848   }
 849 
 850   // Remove packs that are not profitable
 851   bool changed;
 852   do {
 853     changed = false;
 854     for (int i = _packset.length() - 1; i >= 0; i--) {
 855       Node_List* pk = _packset.at(i);
 856       bool prof = profitable(pk);
 857       if (!prof) {
 858 #ifndef PRODUCT
 859         if (TraceSuperWord && Verbose) {
 860           tty->print_cr("Unprofitable");
 861           pk->at(0)->dump();
 862         }
 863 #endif
 864         remove_pack_at(i);
 865         changed = true;
 866       }
 867     }
 868   } while (changed);
 869 
 870 #ifndef PRODUCT
 871   if (TraceSuperWord) {
 872     tty->print_cr("\nAfter filter_packs");
 873     print_packset();
 874     tty->cr();
 875   }
 876 #endif
 877 }
 878 
 879 //------------------------------implemented---------------------------
 880 // Can code be generated for pack p?
 881 bool SuperWord::implemented(Node_List* p) {
 882   Node* p0 = p->at(0);
 883   int vopc = VectorNode::opcode(p0->Opcode(), p->size(), velt_type(p0));
 884   return vopc > 0 && Matcher::has_match_rule(vopc);
 885 }
 886 
 887 //------------------------------profitable---------------------------
 888 // For pack p, are all operands and all uses (with in the block) vector?
 889 bool SuperWord::profitable(Node_List* p) {
 890   Node* p0 = p->at(0);
 891   uint start, end;
 892   vector_opd_range(p0, &start, &end);
 893 
 894   // Return false if some input is not vector and inside block
 895   for (uint i = start; i < end; i++) {
 896     if (!is_vector_use(p0, i)) {
 897       // For now, return false if not scalar promotion case (inputs are the same.)
 898       // Later, implement PackNode and allow differing, non-vector inputs
 899       // (maybe just the ones from outside the block.)
 900       Node* p0_def = p0->in(i);
 901       for (uint j = 1; j < p->size(); j++) {
 902         Node* use = p->at(j);
 903         Node* def = use->in(i);
 904         if (p0_def != def)
 905           return false;
 906       }
 907     }
 908   }
 909   if (!p0->is_Store()) {
 910     // For now, return false if not all uses are vector.
 911     // Later, implement ExtractNode and allow non-vector uses (maybe
 912     // just the ones outside the block.)
 913     for (uint i = 0; i < p->size(); i++) {
 914       Node* def = p->at(i);
 915       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
 916         Node* use = def->fast_out(j);
 917         for (uint k = 0; k < use->req(); k++) {
 918           Node* n = use->in(k);
 919           if (def == n) {
 920             if (!is_vector_use(use, k)) {
 921               return false;
 922             }
 923           }
 924         }
 925       }
 926     }
 927   }
 928   return true;
 929 }
 930 
 931 //------------------------------schedule---------------------------
 932 // Adjust the memory graph for the packed operations
 933 void SuperWord::schedule() {
 934 
 935   // Co-locate in the memory graph the members of each memory pack
 936   for (int i = 0; i < _packset.length(); i++) {
 937     co_locate_pack(_packset.at(i));
 938   }
 939 }
 940 
 941 //-------------------------------remove_and_insert-------------------
 942 //remove "current" from its current position in the memory graph and insert
 943 //it after the appropriate insertion point (lip or uip)
 944 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
 945                                   Node *uip, Unique_Node_List &sched_before) {
 946   Node* my_mem = current->in(MemNode::Memory);
 947   _igvn.hash_delete(current);
 948   _igvn.hash_delete(my_mem);
 949 
 950   //remove current_store from its current position in the memmory graph
 951   for (DUIterator i = current->outs(); current->has_out(i); i++) {
 952     Node* use = current->out(i);
 953     if (use->is_Mem()) {
 954       assert(use->in(MemNode::Memory) == current, "must be");
 955       _igvn.hash_delete(use);
 956       if (use == prev) { // connect prev to my_mem
 957         use->set_req(MemNode::Memory, my_mem);
 958       } else if (sched_before.member(use)) {
 959         _igvn.hash_delete(uip);
 960         use->set_req(MemNode::Memory, uip);
 961       } else {
 962         _igvn.hash_delete(lip);
 963         use->set_req(MemNode::Memory, lip);
 964       }
 965       _igvn._worklist.push(use);
 966       --i; //deleted this edge; rescan position
 967     }
 968   }
 969 
 970   bool sched_up = sched_before.member(current);
 971   Node *insert_pt =  sched_up ?  uip : lip;
 972   _igvn.hash_delete(insert_pt);
 973 
 974   // all uses of insert_pt's memory state should use current's instead
 975   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
 976     Node* use = insert_pt->out(i);
 977     if (use->is_Mem()) {
 978       assert(use->in(MemNode::Memory) == insert_pt, "must be");
 979       _igvn.hash_delete(use);
 980       use->set_req(MemNode::Memory, current);
 981       _igvn._worklist.push(use);
 982       --i; //deleted this edge; rescan position
 983     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
 984       uint pos; //lip (lower insert point) must be the last one in the memory slice
 985       _igvn.hash_delete(use);
 986       for (pos=1; pos < use->req(); pos++) {
 987         if (use->in(pos) == insert_pt) break;
 988       }
 989       use->set_req(pos, current);
 990       _igvn._worklist.push(use);
 991       --i;
 992     }
 993   }
 994 
 995   //connect current to insert_pt
 996   current->set_req(MemNode::Memory, insert_pt);
 997   _igvn._worklist.push(current);
 998 }
 999 
1000 //------------------------------co_locate_pack----------------------------------
1001 // To schedule a store pack, we need to move any sandwiched memory ops either before
1002 // or after the pack, based upon dependence information:
1003 // (1) If any store in the pack depends on the sandwiched memory op, the
1004 //     sandwiched memory op must be scheduled BEFORE the pack;
1005 // (2) If a sandwiched memory op depends on any store in the pack, the
1006 //     sandwiched memory op must be scheduled AFTER the pack;
1007 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
1008 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
1009 //     scheduled before the pack, memB must also be scheduled before the pack;
1010 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
1011 //     schedule this store AFTER the pack
1012 // (5) We know there is no dependence cycle, so there in no other case;
1013 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
1014 //
1015 // To schedule a load pack, we use the memory state of either the first or the last load in
1016 // the pack, based on the dependence constraint.
1017 void SuperWord::co_locate_pack(Node_List* pk) {
1018   if (pk->at(0)->is_Store()) {
1019     MemNode* first     = executed_first(pk)->as_Mem();
1020     MemNode* last      = executed_last(pk)->as_Mem();
1021     Unique_Node_List schedule_before_pack;
1022     Unique_Node_List memops;
1023 
1024     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
1025     MemNode* previous  = last;
1026     while (true) {
1027       assert(in_bb(current), "stay in block");
1028       memops.push(previous);
1029       for (DUIterator i = current->outs(); current->has_out(i); i++) {
1030         Node* use = current->out(i);
1031         if (use->is_Mem() && use != previous)
1032           memops.push(use);
1033       }
1034       if(current == first) break;
1035       previous = current;
1036       current  = current->in(MemNode::Memory)->as_Mem();
1037     }
1038 
1039     // determine which memory operations should be scheduled before the pack
1040     for (uint i = 1; i < memops.size(); i++) {
1041       Node *s1 = memops.at(i);
1042       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
1043         for (uint j = 0; j< i; j++) {
1044           Node *s2 = memops.at(j);
1045           if (!independent(s1, s2)) {
1046             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
1047               schedule_before_pack.push(s1); //s1 must be scheduled before
1048               Node_List* mem_pk = my_pack(s1);
1049               if (mem_pk != NULL) {
1050                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
1051                   Node* s = mem_pk->at(ii); // follow partner
1052                   if (memops.member(s) && !schedule_before_pack.member(s))
1053                     schedule_before_pack.push(s);
1054                 }
1055               }
1056             }
1057           }
1058         }
1059       }
1060     }
1061 
1062     MemNode* lower_insert_pt = last;
1063     Node*    upper_insert_pt = first->in(MemNode::Memory);
1064     previous                 = last; //previous store in pk
1065     current                  = last->in(MemNode::Memory)->as_Mem();
1066 
1067     //start scheduling from "last" to "first"
1068     while (true) {
1069       assert(in_bb(current), "stay in block");
1070       assert(in_pack(previous, pk), "previous stays in pack");
1071       Node* my_mem = current->in(MemNode::Memory);
1072 
1073       if (in_pack(current, pk)) {
1074         // Forward users of my memory state (except "previous) to my input memory state
1075         _igvn.hash_delete(current);
1076         for (DUIterator i = current->outs(); current->has_out(i); i++) {
1077           Node* use = current->out(i);
1078           if (use->is_Mem() && use != previous) {
1079             assert(use->in(MemNode::Memory) == current, "must be");
1080             _igvn.hash_delete(use);
1081             if (schedule_before_pack.member(use)) {
1082               _igvn.hash_delete(upper_insert_pt);
1083               use->set_req(MemNode::Memory, upper_insert_pt);
1084             } else {
1085               _igvn.hash_delete(lower_insert_pt);
1086               use->set_req(MemNode::Memory, lower_insert_pt);
1087             }
1088             _igvn._worklist.push(use);
1089             --i; // deleted this edge; rescan position
1090           }
1091         }
1092         previous = current;
1093       } else { // !in_pack(current, pk) ==> a sandwiched store
1094         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
1095       }
1096 
1097       if (current == first) break;
1098       current = my_mem->as_Mem();
1099     } // end while
1100   } else if (pk->at(0)->is_Load()) { //load
1101     // all loads in the pack should have the same memory state. By default,
1102     // we use the memory state of the last load. However, if any load could
1103     // not be moved down due to the dependence constraint, we use the memory
1104     // state of the first load.
1105     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
1106     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
1107     bool schedule_last = true;
1108     for (uint i = 0; i < pk->size(); i++) {
1109       Node* ld = pk->at(i);
1110       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
1111            current=current->in(MemNode::Memory)) {
1112         assert(current != first_mem, "corrupted memory graph");
1113         if(current->is_Mem() && !independent(current, ld)){
1114           schedule_last = false; // a later store depends on this load
1115           break;
1116         }
1117       }
1118     }
1119 
1120     Node* mem_input = schedule_last ? last_mem : first_mem;
1121     _igvn.hash_delete(mem_input);
1122     // Give each load the same memory state
1123     for (uint i = 0; i < pk->size(); i++) {
1124       LoadNode* ld = pk->at(i)->as_Load();
1125       _igvn.hash_delete(ld);
1126       ld->set_req(MemNode::Memory, mem_input);
1127       _igvn._worklist.push(ld);
1128     }
1129   }
1130 }
1131 
1132 //------------------------------output---------------------------
1133 // Convert packs into vector node operations
1134 void SuperWord::output() {
1135   if (_packset.length() == 0) return;
1136 
1137 #ifndef PRODUCT
1138   if (TraceLoopOpts) {
1139     tty->print("SuperWord    ");
1140     lpt()->dump_head();
1141   }
1142 #endif
1143 
1144   // MUST ENSURE main loop's initial value is properly aligned:
1145   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
1146 
1147   align_initial_loop_index(align_to_ref());
1148 
1149   // Insert extract (unpack) operations for scalar uses
1150   for (int i = 0; i < _packset.length(); i++) {
1151     insert_extracts(_packset.at(i));
1152   }
1153 
1154   for (int i = 0; i < _block.length(); i++) {
1155     Node* n = _block.at(i);
1156     Node_List* p = my_pack(n);
1157     if (p && n == executed_last(p)) {
1158       uint vlen = p->size();
1159       Node* vn = NULL;
1160       Node* low_adr = p->at(0);
1161       Node* first   = executed_first(p);
1162       if (n->is_Load()) {
1163         int   opc = n->Opcode();
1164         Node* ctl = n->in(MemNode::Control);
1165         Node* mem = first->in(MemNode::Memory);
1166         Node* adr = low_adr->in(MemNode::Address);
1167         const TypePtr* atyp = n->adr_type();
1168         vn = VectorLoadNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen);
1169 
1170       } else if (n->is_Store()) {
1171         // Promote value to be stored to vector
1172         Node* val = vector_opd(p, MemNode::ValueIn);
1173 
1174         int   opc = n->Opcode();
1175         Node* ctl = n->in(MemNode::Control);
1176         Node* mem = first->in(MemNode::Memory);
1177         Node* adr = low_adr->in(MemNode::Address);
1178         const TypePtr* atyp = n->adr_type();
1179         vn = VectorStoreNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
1180 
1181       } else if (n->req() == 3) {
1182         // Promote operands to vector
1183         Node* in1 = vector_opd(p, 1);
1184         Node* in2 = vector_opd(p, 2);
1185         vn = VectorNode::make(_phase->C, n->Opcode(), in1, in2, vlen, velt_type(n));
1186 
1187       } else {
1188         ShouldNotReachHere();
1189       }
1190 
1191       _phase->_igvn.register_new_node_with_optimizer(vn);
1192       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
1193       for (uint j = 0; j < p->size(); j++) {
1194         Node* pm = p->at(j);
1195         _igvn.replace_node(pm, vn);
1196       }
1197       _igvn._worklist.push(vn);
1198     }
1199   }
1200 }
1201 
1202 //------------------------------vector_opd---------------------------
1203 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
1204 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
1205   Node* p0 = p->at(0);
1206   uint vlen = p->size();
1207   Node* opd = p0->in(opd_idx);
1208 
1209   bool same_opd = true;
1210   for (uint i = 1; i < vlen; i++) {
1211     Node* pi = p->at(i);
1212     Node* in = pi->in(opd_idx);
1213     if (opd != in) {
1214       same_opd = false;
1215       break;
1216     }
1217   }
1218 
1219   if (same_opd) {
1220     if (opd->is_Vector() || opd->is_VectorLoad()) {
1221       return opd; // input is matching vector
1222     }
1223     assert(!opd->is_VectorStore(), "such vector is not expected here");
1224     // Convert scalar input to vector with the same number of elements as
1225     // p0's vector. Use p0's type because size of operand's container in
1226     // vector should match p0's size regardless operand's size.
1227     const Type* p0_t = velt_type(p0);
1228     VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, p0_t);
1229 
1230     _phase->_igvn.register_new_node_with_optimizer(vn);
1231     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
1232     return vn;
1233   }
1234 
1235   // Insert pack operation
1236   const Type* p0_t = velt_type(p0);
1237   PackNode* pk = PackNode::make(_phase->C, opd, p0_t);
1238   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
1239 
1240   for (uint i = 1; i < vlen; i++) {
1241     Node* pi = p->at(i);
1242     Node* in = pi->in(opd_idx);
1243     assert(my_pack(in) == NULL, "Should already have been unpacked");
1244     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
1245     pk->add_opd(in);
1246   }
1247   _phase->_igvn.register_new_node_with_optimizer(pk);
1248   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
1249   return pk;
1250 }
1251 
1252 //------------------------------insert_extracts---------------------------
1253 // If a use of pack p is not a vector use, then replace the
1254 // use with an extract operation.
1255 void SuperWord::insert_extracts(Node_List* p) {
1256   if (p->at(0)->is_Store()) return;
1257   assert(_n_idx_list.is_empty(), "empty (node,index) list");
1258 
1259   // Inspect each use of each pack member.  For each use that is
1260   // not a vector use, replace the use with an extract operation.
1261 
1262   for (uint i = 0; i < p->size(); i++) {
1263     Node* def = p->at(i);
1264     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1265       Node* use = def->fast_out(j);
1266       for (uint k = 0; k < use->req(); k++) {
1267         Node* n = use->in(k);
1268         if (def == n) {
1269           if (!is_vector_use(use, k)) {
1270             _n_idx_list.push(use, k);
1271           }
1272         }
1273       }
1274     }
1275   }
1276 
1277   while (_n_idx_list.is_nonempty()) {
1278     Node* use = _n_idx_list.node();
1279     int   idx = _n_idx_list.index();
1280     _n_idx_list.pop();
1281     Node* def = use->in(idx);
1282 
1283     // Insert extract operation
1284     _igvn.hash_delete(def);
1285     _igvn.hash_delete(use);
1286     int def_pos = alignment(def) / data_size(def);
1287     const Type* def_t = velt_type(def);
1288 
1289     Node* ex = ExtractNode::make(_phase->C, def, def_pos, def_t);
1290     _phase->_igvn.register_new_node_with_optimizer(ex);
1291     _phase->set_ctrl(ex, _phase->get_ctrl(def));
1292     use->set_req(idx, ex);
1293     _igvn._worklist.push(def);
1294     _igvn._worklist.push(use);
1295 
1296     bb_insert_after(ex, bb_idx(def));
1297     set_velt_type(ex, def_t);
1298   }
1299 }
1300 
1301 //------------------------------is_vector_use---------------------------
1302 // Is use->in(u_idx) a vector use?
1303 bool SuperWord::is_vector_use(Node* use, int u_idx) {
1304   Node_List* u_pk = my_pack(use);
1305   if (u_pk == NULL) return false;
1306   Node* def = use->in(u_idx);
1307   Node_List* d_pk = my_pack(def);
1308   if (d_pk == NULL) {
1309     // check for scalar promotion
1310     Node* n = u_pk->at(0)->in(u_idx);
1311     for (uint i = 1; i < u_pk->size(); i++) {
1312       if (u_pk->at(i)->in(u_idx) != n) return false;
1313     }
1314     return true;
1315   }
1316   if (u_pk->size() != d_pk->size())
1317     return false;
1318   for (uint i = 0; i < u_pk->size(); i++) {
1319     Node* ui = u_pk->at(i);
1320     Node* di = d_pk->at(i);
1321     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
1322       return false;
1323   }
1324   return true;
1325 }
1326 
1327 //------------------------------construct_bb---------------------------
1328 // Construct reverse postorder list of block members
1329 void SuperWord::construct_bb() {
1330   Node* entry = bb();
1331 
1332   assert(_stk.length() == 0,            "stk is empty");
1333   assert(_block.length() == 0,          "block is empty");
1334   assert(_data_entry.length() == 0,     "data_entry is empty");
1335   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
1336   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
1337 
1338   // Find non-control nodes with no inputs from within block,
1339   // create a temporary map from node _idx to bb_idx for use
1340   // by the visited and post_visited sets,
1341   // and count number of nodes in block.
1342   int bb_ct = 0;
1343   for (uint i = 0; i < lpt()->_body.size(); i++ ) {
1344     Node *n = lpt()->_body.at(i);
1345     set_bb_idx(n, i); // Create a temporary map
1346     if (in_bb(n)) {
1347       bb_ct++;
1348       if (!n->is_CFG()) {
1349         bool found = false;
1350         for (uint j = 0; j < n->req(); j++) {
1351           Node* def = n->in(j);
1352           if (def && in_bb(def)) {
1353             found = true;
1354             break;
1355           }
1356         }
1357         if (!found) {
1358           assert(n != entry, "can't be entry");
1359           _data_entry.push(n);
1360         }
1361       }
1362     }
1363   }
1364 
1365   // Find memory slices (head and tail)
1366   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
1367     Node *n = lp()->fast_out(i);
1368     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
1369       Node* n_tail  = n->in(LoopNode::LoopBackControl);
1370       if (n_tail != n->in(LoopNode::EntryControl)) {
1371         _mem_slice_head.push(n);
1372         _mem_slice_tail.push(n_tail);
1373       }
1374     }
1375   }
1376 
1377   // Create an RPO list of nodes in block
1378 
1379   visited_clear();
1380   post_visited_clear();
1381 
1382   // Push all non-control nodes with no inputs from within block, then control entry
1383   for (int j = 0; j < _data_entry.length(); j++) {
1384     Node* n = _data_entry.at(j);
1385     visited_set(n);
1386     _stk.push(n);
1387   }
1388   visited_set(entry);
1389   _stk.push(entry);
1390 
1391   // Do a depth first walk over out edges
1392   int rpo_idx = bb_ct - 1;
1393   int size;
1394   while ((size = _stk.length()) > 0) {
1395     Node* n = _stk.top(); // Leave node on stack
1396     if (!visited_test_set(n)) {
1397       // forward arc in graph
1398     } else if (!post_visited_test(n)) {
1399       // cross or back arc
1400       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1401         Node *use = n->fast_out(i);
1402         if (in_bb(use) && !visited_test(use) &&
1403             // Don't go around backedge
1404             (!use->is_Phi() || n == entry)) {
1405           _stk.push(use);
1406         }
1407       }
1408       if (_stk.length() == size) {
1409         // There were no additional uses, post visit node now
1410         _stk.pop(); // Remove node from stack
1411         assert(rpo_idx >= 0, "");
1412         _block.at_put_grow(rpo_idx, n);
1413         rpo_idx--;
1414         post_visited_set(n);
1415         assert(rpo_idx >= 0 || _stk.is_empty(), "");
1416       }
1417     } else {
1418       _stk.pop(); // Remove post-visited node from stack
1419     }
1420   }
1421 
1422   // Create real map of block indices for nodes
1423   for (int j = 0; j < _block.length(); j++) {
1424     Node* n = _block.at(j);
1425     set_bb_idx(n, j);
1426   }
1427 
1428   initialize_bb(); // Ensure extra info is allocated.
1429 
1430 #ifndef PRODUCT
1431   if (TraceSuperWord) {
1432     print_bb();
1433     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
1434     for (int m = 0; m < _data_entry.length(); m++) {
1435       tty->print("%3d ", m);
1436       _data_entry.at(m)->dump();
1437     }
1438     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
1439     for (int m = 0; m < _mem_slice_head.length(); m++) {
1440       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
1441       tty->print("    ");    _mem_slice_tail.at(m)->dump();
1442     }
1443   }
1444 #endif
1445   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
1446 }
1447 
1448 //------------------------------initialize_bb---------------------------
1449 // Initialize per node info
1450 void SuperWord::initialize_bb() {
1451   Node* last = _block.at(_block.length() - 1);
1452   grow_node_info(bb_idx(last));
1453 }
1454 
1455 //------------------------------bb_insert_after---------------------------
1456 // Insert n into block after pos
1457 void SuperWord::bb_insert_after(Node* n, int pos) {
1458   int n_pos = pos + 1;
1459   // Make room
1460   for (int i = _block.length() - 1; i >= n_pos; i--) {
1461     _block.at_put_grow(i+1, _block.at(i));
1462   }
1463   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
1464     _node_info.at_put_grow(j+1, _node_info.at(j));
1465   }
1466   // Set value
1467   _block.at_put_grow(n_pos, n);
1468   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
1469   // Adjust map from node->_idx to _block index
1470   for (int i = n_pos; i < _block.length(); i++) {
1471     set_bb_idx(_block.at(i), i);
1472   }
1473 }
1474 
1475 //------------------------------compute_max_depth---------------------------
1476 // Compute max depth for expressions from beginning of block
1477 // Use to prune search paths during test for independence.
1478 void SuperWord::compute_max_depth() {
1479   int ct = 0;
1480   bool again;
1481   do {
1482     again = false;
1483     for (int i = 0; i < _block.length(); i++) {
1484       Node* n = _block.at(i);
1485       if (!n->is_Phi()) {
1486         int d_orig = depth(n);
1487         int d_in   = 0;
1488         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
1489           Node* pred = preds.current();
1490           if (in_bb(pred)) {
1491             d_in = MAX2(d_in, depth(pred));
1492           }
1493         }
1494         if (d_in + 1 != d_orig) {
1495           set_depth(n, d_in + 1);
1496           again = true;
1497         }
1498       }
1499     }
1500     ct++;
1501   } while (again);
1502 #ifndef PRODUCT
1503   if (TraceSuperWord && Verbose)
1504     tty->print_cr("compute_max_depth iterated: %d times", ct);
1505 #endif
1506 }
1507 
1508 //-------------------------compute_vector_element_type-----------------------
1509 // Compute necessary vector element type for expressions
1510 // This propagates backwards a narrower integer type when the
1511 // upper bits of the value are not needed.
1512 // Example:  char a,b,c;  a = b + c;
1513 // Normally the type of the add is integer, but for packed character
1514 // operations the type of the add needs to be char.
1515 void SuperWord::compute_vector_element_type() {
1516 #ifndef PRODUCT
1517   if (TraceSuperWord && Verbose)
1518     tty->print_cr("\ncompute_velt_type:");
1519 #endif
1520 
1521   // Initial type
1522   for (int i = 0; i < _block.length(); i++) {
1523     Node* n = _block.at(i);
1524     const Type* t  = n->is_Mem() ? Type::get_const_basic_type(n->as_Mem()->memory_type())
1525                                  : _igvn.type(n);
1526     const Type* vt = container_type(t);
1527     set_velt_type(n, vt);
1528   }
1529 
1530   // Propagate narrowed type backwards through operations
1531   // that don't depend on higher order bits
1532   for (int i = _block.length() - 1; i >= 0; i--) {
1533     Node* n = _block.at(i);
1534     // Only integer types need be examined
1535     if (n->bottom_type()->isa_int()) {
1536       uint start, end;
1537       vector_opd_range(n, &start, &end);
1538       const Type* vt = velt_type(n);
1539 
1540       for (uint j = start; j < end; j++) {
1541         Node* in  = n->in(j);
1542         // Don't propagate through a type conversion
1543         if (n->bottom_type() != in->bottom_type())
1544           continue;
1545         switch(in->Opcode()) {
1546         case Op_AddI:    case Op_AddL:
1547         case Op_SubI:    case Op_SubL:
1548         case Op_MulI:    case Op_MulL:
1549         case Op_AndI:    case Op_AndL:
1550         case Op_OrI:     case Op_OrL:
1551         case Op_XorI:    case Op_XorL:
1552         case Op_LShiftI: case Op_LShiftL:
1553         case Op_CMoveI:  case Op_CMoveL:
1554           if (in_bb(in)) {
1555             bool same_type = true;
1556             for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
1557               Node *use = in->fast_out(k);
1558               if (!in_bb(use) || velt_type(use) != vt) {
1559                 same_type = false;
1560                 break;
1561               }
1562             }
1563             if (same_type) {
1564               set_velt_type(in, vt);
1565             }
1566           }
1567         }
1568       }
1569     }
1570   }
1571 #ifndef PRODUCT
1572   if (TraceSuperWord && Verbose) {
1573     for (int i = 0; i < _block.length(); i++) {
1574       Node* n = _block.at(i);
1575       velt_type(n)->dump();
1576       tty->print("\t");
1577       n->dump();
1578     }
1579   }
1580 #endif
1581 }
1582 
1583 //------------------------------memory_alignment---------------------------
1584 // Alignment within a vector memory reference
1585 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
1586   SWPointer p(s, this);
1587   if (!p.valid()) {
1588     return bottom_align;
1589   }
1590   int offset  = p.offset_in_bytes();
1591   offset     += iv_adjust_in_bytes;
1592   int off_rem = offset % vector_width_in_bytes();
1593   int off_mod = off_rem >= 0 ? off_rem : off_rem + vector_width_in_bytes();
1594   return off_mod;
1595 }
1596 
1597 //---------------------------container_type---------------------------
1598 // Smallest type containing range of values
1599 const Type* SuperWord::container_type(const Type* t) {
1600   const Type* tp = t->make_ptr();
1601   if (tp && tp->isa_aryptr()) {
1602     t = tp->is_aryptr()->elem();
1603   }
1604   if (t->basic_type() == T_INT) {
1605     if (t->higher_equal(TypeInt::BOOL))  return TypeInt::BOOL;
1606     if (t->higher_equal(TypeInt::BYTE))  return TypeInt::BYTE;
1607     if (t->higher_equal(TypeInt::CHAR))  return TypeInt::CHAR;
1608     if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
1609     return TypeInt::INT;
1610   }
1611   return t;
1612 }
1613 
1614 //-------------------------vector_opd_range-----------------------
1615 // (Start, end] half-open range defining which operands are vector
1616 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
1617   switch (n->Opcode()) {
1618   case Op_LoadB:   case Op_LoadUS:
1619   case Op_LoadI:   case Op_LoadL:
1620   case Op_LoadF:   case Op_LoadD:
1621   case Op_LoadP:
1622     *start = 0;
1623     *end   = 0;
1624     return;
1625   case Op_StoreB:  case Op_StoreC:
1626   case Op_StoreI:  case Op_StoreL:
1627   case Op_StoreF:  case Op_StoreD:
1628   case Op_StoreP:
1629     *start = MemNode::ValueIn;
1630     *end   = *start + 1;
1631     return;
1632   case Op_LShiftI: case Op_LShiftL:
1633     *start = 1;
1634     *end   = 2;
1635     return;
1636   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
1637     *start = 2;
1638     *end   = n->req();
1639     return;
1640   }
1641   *start = 1;
1642   *end   = n->req(); // default is all operands
1643 }
1644 
1645 //------------------------------in_packset---------------------------
1646 // Are s1 and s2 in a pack pair and ordered as s1,s2?
1647 bool SuperWord::in_packset(Node* s1, Node* s2) {
1648   for (int i = 0; i < _packset.length(); i++) {
1649     Node_List* p = _packset.at(i);
1650     assert(p->size() == 2, "must be");
1651     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
1652       return true;
1653     }
1654   }
1655   return false;
1656 }
1657 
1658 //------------------------------in_pack---------------------------
1659 // Is s in pack p?
1660 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
1661   for (uint i = 0; i < p->size(); i++) {
1662     if (p->at(i) == s) {
1663       return p;
1664     }
1665   }
1666   return NULL;
1667 }
1668 
1669 //------------------------------remove_pack_at---------------------------
1670 // Remove the pack at position pos in the packset
1671 void SuperWord::remove_pack_at(int pos) {
1672   Node_List* p = _packset.at(pos);
1673   for (uint i = 0; i < p->size(); i++) {
1674     Node* s = p->at(i);
1675     set_my_pack(s, NULL);
1676   }
1677   _packset.remove_at(pos);
1678 }
1679 
1680 //------------------------------executed_first---------------------------
1681 // Return the node executed first in pack p.  Uses the RPO block list
1682 // to determine order.
1683 Node* SuperWord::executed_first(Node_List* p) {
1684   Node* n = p->at(0);
1685   int n_rpo = bb_idx(n);
1686   for (uint i = 1; i < p->size(); i++) {
1687     Node* s = p->at(i);
1688     int s_rpo = bb_idx(s);
1689     if (s_rpo < n_rpo) {
1690       n = s;
1691       n_rpo = s_rpo;
1692     }
1693   }
1694   return n;
1695 }
1696 
1697 //------------------------------executed_last---------------------------
1698 // Return the node executed last in pack p.
1699 Node* SuperWord::executed_last(Node_List* p) {
1700   Node* n = p->at(0);
1701   int n_rpo = bb_idx(n);
1702   for (uint i = 1; i < p->size(); i++) {
1703     Node* s = p->at(i);
1704     int s_rpo = bb_idx(s);
1705     if (s_rpo > n_rpo) {
1706       n = s;
1707       n_rpo = s_rpo;
1708     }
1709   }
1710   return n;
1711 }
1712 
1713 //----------------------------align_initial_loop_index---------------------------
1714 // Adjust pre-loop limit so that in main loop, a load/store reference
1715 // to align_to_ref will be a position zero in the vector.
1716 //   (iv + k) mod vector_align == 0
1717 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
1718   CountedLoopNode *main_head = lp()->as_CountedLoop();
1719   assert(main_head->is_main_loop(), "");
1720   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
1721   assert(pre_end != NULL, "");
1722   Node *pre_opaq1 = pre_end->limit();
1723   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
1724   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
1725   Node *lim0 = pre_opaq->in(1);
1726 
1727   // Where we put new limit calculations
1728   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
1729 
1730   // Ensure the original loop limit is available from the
1731   // pre-loop Opaque1 node.
1732   Node *orig_limit = pre_opaq->original_loop_limit();
1733   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
1734 
1735   SWPointer align_to_ref_p(align_to_ref, this);
1736 
1737   // Given:
1738   //     lim0 == original pre loop limit
1739   //     V == v_align (power of 2)
1740   //     invar == extra invariant piece of the address expression
1741   //     e == k [ +/- invar ]
1742   //
1743   // When reassociating expressions involving '%' the basic rules are:
1744   //     (a - b) % k == 0   =>  a % k == b % k
1745   // and:
1746   //     (a + b) % k == 0   =>  a % k == (k - b) % k
1747   //
1748   // For stride > 0 && scale > 0,
1749   //   Derive the new pre-loop limit "lim" such that the two constraints:
1750   //     (1) lim = lim0 + N           (where N is some positive integer < V)
1751   //     (2) (e + lim) % V == 0
1752   //   are true.
1753   //
1754   //   Substituting (1) into (2),
1755   //     (e + lim0 + N) % V == 0
1756   //   solve for N:
1757   //     N = (V - (e + lim0)) % V
1758   //   substitute back into (1), so that new limit
1759   //     lim = lim0 + (V - (e + lim0)) % V
1760   //
1761   // For stride > 0 && scale < 0
1762   //   Constraints:
1763   //     lim = lim0 + N
1764   //     (e - lim) % V == 0
1765   //   Solving for lim:
1766   //     (e - lim0 - N) % V == 0
1767   //     N = (e - lim0) % V
1768   //     lim = lim0 + (e - lim0) % V
1769   //
1770   // For stride < 0 && scale > 0
1771   //   Constraints:
1772   //     lim = lim0 - N
1773   //     (e + lim) % V == 0
1774   //   Solving for lim:
1775   //     (e + lim0 - N) % V == 0
1776   //     N = (e + lim0) % V
1777   //     lim = lim0 - (e + lim0) % V
1778   //
1779   // For stride < 0 && scale < 0
1780   //   Constraints:
1781   //     lim = lim0 - N
1782   //     (e - lim) % V == 0
1783   //   Solving for lim:
1784   //     (e - lim0 + N) % V == 0
1785   //     N = (V - (e - lim0)) % V
1786   //     lim = lim0 - (V - (e - lim0)) % V
1787 
1788   int stride   = iv_stride();
1789   int scale    = align_to_ref_p.scale_in_bytes();
1790   int elt_size = align_to_ref_p.memory_size();
1791   int v_align  = vector_width_in_bytes() / elt_size;
1792   int k        = align_to_ref_p.offset_in_bytes() / elt_size;
1793 
1794   Node *kn   = _igvn.intcon(k);
1795 
1796   Node *e = kn;
1797   if (align_to_ref_p.invar() != NULL) {
1798     // incorporate any extra invariant piece producing k +/- invar >>> log2(elt)
1799     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
1800     Node* aref     = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
1801     _phase->_igvn.register_new_node_with_optimizer(aref);
1802     _phase->set_ctrl(aref, pre_ctrl);
1803     if (align_to_ref_p.negate_invar()) {
1804       e = new (_phase->C, 3) SubINode(e, aref);
1805     } else {
1806       e = new (_phase->C, 3) AddINode(e, aref);
1807     }
1808     _phase->_igvn.register_new_node_with_optimizer(e);
1809     _phase->set_ctrl(e, pre_ctrl);
1810   }
1811 
1812   // compute e +/- lim0
1813   if (scale < 0) {
1814     e = new (_phase->C, 3) SubINode(e, lim0);
1815   } else {
1816     e = new (_phase->C, 3) AddINode(e, lim0);
1817   }
1818   _phase->_igvn.register_new_node_with_optimizer(e);
1819   _phase->set_ctrl(e, pre_ctrl);
1820 
1821   if (stride * scale > 0) {
1822     // compute V - (e +/- lim0)
1823     Node* va  = _igvn.intcon(v_align);
1824     e = new (_phase->C, 3) SubINode(va, e);
1825     _phase->_igvn.register_new_node_with_optimizer(e);
1826     _phase->set_ctrl(e, pre_ctrl);
1827   }
1828   // compute N = (exp) % V
1829   Node* va_msk = _igvn.intcon(v_align - 1);
1830   Node* N = new (_phase->C, 3) AndINode(e, va_msk);
1831   _phase->_igvn.register_new_node_with_optimizer(N);
1832   _phase->set_ctrl(N, pre_ctrl);
1833 
1834   //   substitute back into (1), so that new limit
1835   //     lim = lim0 + N
1836   Node* lim;
1837   if (stride < 0) {
1838     lim = new (_phase->C, 3) SubINode(lim0, N);
1839   } else {
1840     lim = new (_phase->C, 3) AddINode(lim0, N);
1841   }
1842   _phase->_igvn.register_new_node_with_optimizer(lim);
1843   _phase->set_ctrl(lim, pre_ctrl);
1844   Node* constrained =
1845     (stride > 0) ? (Node*) new (_phase->C,3) MinINode(lim, orig_limit)
1846                  : (Node*) new (_phase->C,3) MaxINode(lim, orig_limit);
1847   _phase->_igvn.register_new_node_with_optimizer(constrained);
1848   _phase->set_ctrl(constrained, pre_ctrl);
1849   _igvn.hash_delete(pre_opaq);
1850   pre_opaq->set_req(1, constrained);
1851 }
1852 
1853 //----------------------------get_pre_loop_end---------------------------
1854 // Find pre loop end from main loop.  Returns null if none.
1855 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
1856   Node *ctrl = cl->in(LoopNode::EntryControl);
1857   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
1858   Node *iffm = ctrl->in(0);
1859   if (!iffm->is_If()) return NULL;
1860   Node *p_f = iffm->in(0);
1861   if (!p_f->is_IfFalse()) return NULL;
1862   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
1863   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
1864   if (!pre_end->loopnode()->is_pre_loop()) return NULL;
1865   return pre_end;
1866 }
1867 
1868 
1869 //------------------------------init---------------------------
1870 void SuperWord::init() {
1871   _dg.init();
1872   _packset.clear();
1873   _disjoint_ptrs.clear();
1874   _block.clear();
1875   _data_entry.clear();
1876   _mem_slice_head.clear();
1877   _mem_slice_tail.clear();
1878   _node_info.clear();
1879   _align_to_ref = NULL;
1880   _lpt = NULL;
1881   _lp = NULL;
1882   _bb = NULL;
1883   _iv = NULL;
1884 }
1885 
1886 //------------------------------print_packset---------------------------
1887 void SuperWord::print_packset() {
1888 #ifndef PRODUCT
1889   tty->print_cr("packset");
1890   for (int i = 0; i < _packset.length(); i++) {
1891     tty->print_cr("Pack: %d", i);
1892     Node_List* p = _packset.at(i);
1893     print_pack(p);
1894   }
1895 #endif
1896 }
1897 
1898 //------------------------------print_pack---------------------------
1899 void SuperWord::print_pack(Node_List* p) {
1900   for (uint i = 0; i < p->size(); i++) {
1901     print_stmt(p->at(i));
1902   }
1903 }
1904 
1905 //------------------------------print_bb---------------------------
1906 void SuperWord::print_bb() {
1907 #ifndef PRODUCT
1908   tty->print_cr("\nBlock");
1909   for (int i = 0; i < _block.length(); i++) {
1910     Node* n = _block.at(i);
1911     tty->print("%d ", i);
1912     if (n) {
1913       n->dump();
1914     }
1915   }
1916 #endif
1917 }
1918 
1919 //------------------------------print_stmt---------------------------
1920 void SuperWord::print_stmt(Node* s) {
1921 #ifndef PRODUCT
1922   tty->print(" align: %d \t", alignment(s));
1923   s->dump();
1924 #endif
1925 }
1926 
1927 //------------------------------blank---------------------------
1928 char* SuperWord::blank(uint depth) {
1929   static char blanks[101];
1930   assert(depth < 101, "too deep");
1931   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
1932   blanks[depth] = '\0';
1933   return blanks;
1934 }
1935 
1936 
1937 //==============================SWPointer===========================
1938 
1939 //----------------------------SWPointer------------------------
1940 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
1941   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
1942   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
1943 
1944   Node* adr = mem->in(MemNode::Address);
1945   if (!adr->is_AddP()) {
1946     assert(!valid(), "too complex");
1947     return;
1948   }
1949   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
1950   Node* base = adr->in(AddPNode::Base);
1951   //unsafe reference could not be aligned appropriately without runtime checking
1952   if (base == NULL || base->bottom_type() == Type::TOP) {
1953     assert(!valid(), "unsafe access");
1954     return;
1955   }
1956   for (int i = 0; i < 3; i++) {
1957     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
1958       assert(!valid(), "too complex");
1959       return;
1960     }
1961     adr = adr->in(AddPNode::Address);
1962     if (base == adr || !adr->is_AddP()) {
1963       break; // stop looking at addp's
1964     }
1965   }
1966   _base = base;
1967   _adr  = adr;
1968   assert(valid(), "Usable");
1969 }
1970 
1971 // Following is used to create a temporary object during
1972 // the pattern match of an address expression.
1973 SWPointer::SWPointer(SWPointer* p) :
1974   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
1975   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
1976 
1977 //------------------------scaled_iv_plus_offset--------------------
1978 // Match: k*iv + offset
1979 // where: k is a constant that maybe zero, and
1980 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
1981 bool SWPointer::scaled_iv_plus_offset(Node* n) {
1982   if (scaled_iv(n)) {
1983     return true;
1984   }
1985   if (offset_plus_k(n)) {
1986     return true;
1987   }
1988   int opc = n->Opcode();
1989   if (opc == Op_AddI) {
1990     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
1991       return true;
1992     }
1993     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
1994       return true;
1995     }
1996   } else if (opc == Op_SubI) {
1997     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
1998       return true;
1999     }
2000     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
2001       _scale *= -1;
2002       return true;
2003     }
2004   }
2005   return false;
2006 }
2007 
2008 //----------------------------scaled_iv------------------------
2009 // Match: k*iv where k is a constant that's not zero
2010 bool SWPointer::scaled_iv(Node* n) {
2011   if (_scale != 0) {
2012     return false;  // already found a scale
2013   }
2014   if (n == iv()) {
2015     _scale = 1;
2016     return true;
2017   }
2018   int opc = n->Opcode();
2019   if (opc == Op_MulI) {
2020     if (n->in(1) == iv() && n->in(2)->is_Con()) {
2021       _scale = n->in(2)->get_int();
2022       return true;
2023     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
2024       _scale = n->in(1)->get_int();
2025       return true;
2026     }
2027   } else if (opc == Op_LShiftI) {
2028     if (n->in(1) == iv() && n->in(2)->is_Con()) {
2029       _scale = 1 << n->in(2)->get_int();
2030       return true;
2031     }
2032   } else if (opc == Op_ConvI2L) {
2033     if (scaled_iv_plus_offset(n->in(1))) {
2034       return true;
2035     }
2036   } else if (opc == Op_LShiftL) {
2037     if (!has_iv() && _invar == NULL) {
2038       // Need to preserve the current _offset value, so
2039       // create a temporary object for this expression subtree.
2040       // Hacky, so should re-engineer the address pattern match.
2041       SWPointer tmp(this);
2042       if (tmp.scaled_iv_plus_offset(n->in(1))) {
2043         if (tmp._invar == NULL) {
2044           int mult = 1 << n->in(2)->get_int();
2045           _scale   = tmp._scale  * mult;
2046           _offset += tmp._offset * mult;
2047           return true;
2048         }
2049       }
2050     }
2051   }
2052   return false;
2053 }
2054 
2055 //----------------------------offset_plus_k------------------------
2056 // Match: offset is (k [+/- invariant])
2057 // where k maybe zero and invariant is optional, but not both.
2058 bool SWPointer::offset_plus_k(Node* n, bool negate) {
2059   int opc = n->Opcode();
2060   if (opc == Op_ConI) {
2061     _offset += negate ? -(n->get_int()) : n->get_int();
2062     return true;
2063   } else if (opc == Op_ConL) {
2064     // Okay if value fits into an int
2065     const TypeLong* t = n->find_long_type();
2066     if (t->higher_equal(TypeLong::INT)) {
2067       jlong loff = n->get_long();
2068       jint  off  = (jint)loff;
2069       _offset += negate ? -off : loff;
2070       return true;
2071     }
2072     return false;
2073   }
2074   if (_invar != NULL) return false; // already have an invariant
2075   if (opc == Op_AddI) {
2076     if (n->in(2)->is_Con() && invariant(n->in(1))) {
2077       _negate_invar = negate;
2078       _invar = n->in(1);
2079       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
2080       return true;
2081     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
2082       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
2083       _negate_invar = negate;
2084       _invar = n->in(2);
2085       return true;
2086     }
2087   }
2088   if (opc == Op_SubI) {
2089     if (n->in(2)->is_Con() && invariant(n->in(1))) {
2090       _negate_invar = negate;
2091       _invar = n->in(1);
2092       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
2093       return true;
2094     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
2095       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
2096       _negate_invar = !negate;
2097       _invar = n->in(2);
2098       return true;
2099     }
2100   }
2101   if (invariant(n)) {
2102     _negate_invar = negate;
2103     _invar = n;
2104     return true;
2105   }
2106   return false;
2107 }
2108 
2109 //----------------------------print------------------------
2110 void SWPointer::print() {
2111 #ifndef PRODUCT
2112   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
2113              _base != NULL ? _base->_idx : 0,
2114              _adr  != NULL ? _adr->_idx  : 0,
2115              _scale, _offset,
2116              _negate_invar?'-':'+',
2117              _invar != NULL ? _invar->_idx : 0);
2118 #endif
2119 }
2120 
2121 // ========================= OrderedPair =====================
2122 
2123 const OrderedPair OrderedPair::initial;
2124 
2125 // ========================= SWNodeInfo =====================
2126 
2127 const SWNodeInfo SWNodeInfo::initial;
2128 
2129 
2130 // ============================ DepGraph ===========================
2131 
2132 //------------------------------make_node---------------------------
2133 // Make a new dependence graph node for an ideal node.
2134 DepMem* DepGraph::make_node(Node* node) {
2135   DepMem* m = new (_arena) DepMem(node);
2136   if (node != NULL) {
2137     assert(_map.at_grow(node->_idx) == NULL, "one init only");
2138     _map.at_put_grow(node->_idx, m);
2139   }
2140   return m;
2141 }
2142 
2143 //------------------------------make_edge---------------------------
2144 // Make a new dependence graph edge from dpred -> dsucc
2145 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
2146   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
2147   dpred->set_out_head(e);
2148   dsucc->set_in_head(e);
2149   return e;
2150 }
2151 
2152 // ========================== DepMem ========================
2153 
2154 //------------------------------in_cnt---------------------------
2155 int DepMem::in_cnt() {
2156   int ct = 0;
2157   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
2158   return ct;
2159 }
2160 
2161 //------------------------------out_cnt---------------------------
2162 int DepMem::out_cnt() {
2163   int ct = 0;
2164   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
2165   return ct;
2166 }
2167 
2168 //------------------------------print-----------------------------
2169 void DepMem::print() {
2170 #ifndef PRODUCT
2171   tty->print("  DepNode %d (", _node->_idx);
2172   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
2173     Node* pred = p->pred()->node();
2174     tty->print(" %d", pred != NULL ? pred->_idx : 0);
2175   }
2176   tty->print(") [");
2177   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
2178     Node* succ = s->succ()->node();
2179     tty->print(" %d", succ != NULL ? succ->_idx : 0);
2180   }
2181   tty->print_cr(" ]");
2182 #endif
2183 }
2184 
2185 // =========================== DepEdge =========================
2186 
2187 //------------------------------DepPreds---------------------------
2188 void DepEdge::print() {
2189 #ifndef PRODUCT
2190   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
2191 #endif
2192 }
2193 
2194 // =========================== DepPreds =========================
2195 // Iterator over predecessor edges in the dependence graph.
2196 
2197 //------------------------------DepPreds---------------------------
2198 DepPreds::DepPreds(Node* n, DepGraph& dg) {
2199   _n = n;
2200   _done = false;
2201   if (_n->is_Store() || _n->is_Load()) {
2202     _next_idx = MemNode::Address;
2203     _end_idx  = n->req();
2204     _dep_next = dg.dep(_n)->in_head();
2205   } else if (_n->is_Mem()) {
2206     _next_idx = 0;
2207     _end_idx  = 0;
2208     _dep_next = dg.dep(_n)->in_head();
2209   } else {
2210     _next_idx = 1;
2211     _end_idx  = _n->req();
2212     _dep_next = NULL;
2213   }
2214   next();
2215 }
2216 
2217 //------------------------------next---------------------------
2218 void DepPreds::next() {
2219   if (_dep_next != NULL) {
2220     _current  = _dep_next->pred()->node();
2221     _dep_next = _dep_next->next_in();
2222   } else if (_next_idx < _end_idx) {
2223     _current  = _n->in(_next_idx++);
2224   } else {
2225     _done = true;
2226   }
2227 }
2228 
2229 // =========================== DepSuccs =========================
2230 // Iterator over successor edges in the dependence graph.
2231 
2232 //------------------------------DepSuccs---------------------------
2233 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
2234   _n = n;
2235   _done = false;
2236   if (_n->is_Load()) {
2237     _next_idx = 0;
2238     _end_idx  = _n->outcnt();
2239     _dep_next = dg.dep(_n)->out_head();
2240   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
2241     _next_idx = 0;
2242     _end_idx  = 0;
2243     _dep_next = dg.dep(_n)->out_head();
2244   } else {
2245     _next_idx = 0;
2246     _end_idx  = _n->outcnt();
2247     _dep_next = NULL;
2248   }
2249   next();
2250 }
2251 
2252 //-------------------------------next---------------------------
2253 void DepSuccs::next() {
2254   if (_dep_next != NULL) {
2255     _current  = _dep_next->succ()->node();
2256     _dep_next = _dep_next->next_out();
2257   } else if (_next_idx < _end_idx) {
2258     _current  = _n->raw_out(_next_idx++);
2259   } else {
2260     _done = true;
2261   }
2262 }