1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciTypeFlow.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "libadt/dict.hpp"
  31 #include "memory/gcLocker.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/klassKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 const BasicType Type::_basic_type[Type::lastype] = {
  53   T_ILLEGAL,    // Bad
  54   T_ILLEGAL,    // Control
  55   T_VOID,       // Top
  56   T_INT,        // Int
  57   T_LONG,       // Long
  58   T_VOID,       // Half
  59   T_NARROWOOP,  // NarrowOop
  60 
  61   T_ILLEGAL,    // Tuple
  62   T_ARRAY,      // Array
  63 
  64   T_ADDRESS,    // AnyPtr   // shows up in factory methods for NULL_PTR
  65   T_ADDRESS,    // RawPtr
  66   T_OBJECT,     // OopPtr
  67   T_OBJECT,     // InstPtr
  68   T_OBJECT,     // AryPtr
  69   T_OBJECT,     // KlassPtr
  70 
  71   T_OBJECT,     // Function
  72   T_ILLEGAL,    // Abio
  73   T_ADDRESS,    // Return_Address
  74   T_ILLEGAL,    // Memory
  75   T_FLOAT,      // FloatTop
  76   T_FLOAT,      // FloatCon
  77   T_FLOAT,      // FloatBot
  78   T_DOUBLE,     // DoubleTop
  79   T_DOUBLE,     // DoubleCon
  80   T_DOUBLE,     // DoubleBot
  81   T_ILLEGAL,    // Bottom
  82 };
  83 
  84 // Map ideal registers (machine types) to ideal types
  85 const Type *Type::mreg2type[_last_machine_leaf];
  86 
  87 // Map basic types to canonical Type* pointers.
  88 const Type* Type::     _const_basic_type[T_CONFLICT+1];
  89 
  90 // Map basic types to constant-zero Types.
  91 const Type* Type::            _zero_type[T_CONFLICT+1];
  92 
  93 // Map basic types to array-body alias types.
  94 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
  95 
  96 //=============================================================================
  97 // Convenience common pre-built types.
  98 const Type *Type::ABIO;         // State-of-machine only
  99 const Type *Type::BOTTOM;       // All values
 100 const Type *Type::CONTROL;      // Control only
 101 const Type *Type::DOUBLE;       // All doubles
 102 const Type *Type::FLOAT;        // All floats
 103 const Type *Type::HALF;         // Placeholder half of doublewide type
 104 const Type *Type::MEMORY;       // Abstract store only
 105 const Type *Type::RETURN_ADDRESS;
 106 const Type *Type::TOP;          // No values in set
 107 
 108 //------------------------------get_const_type---------------------------
 109 const Type* Type::get_const_type(ciType* type) {
 110   if (type == NULL) {
 111     return NULL;
 112   } else if (type->is_primitive_type()) {
 113     return get_const_basic_type(type->basic_type());
 114   } else {
 115     return TypeOopPtr::make_from_klass(type->as_klass());
 116   }
 117 }
 118 
 119 //---------------------------array_element_basic_type---------------------------------
 120 // Mapping to the array element's basic type.
 121 BasicType Type::array_element_basic_type() const {
 122   BasicType bt = basic_type();
 123   if (bt == T_INT) {
 124     if (this == TypeInt::INT)   return T_INT;
 125     if (this == TypeInt::CHAR)  return T_CHAR;
 126     if (this == TypeInt::BYTE)  return T_BYTE;
 127     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 128     if (this == TypeInt::SHORT) return T_SHORT;
 129     return T_VOID;
 130   }
 131   return bt;
 132 }
 133 
 134 //---------------------------get_typeflow_type---------------------------------
 135 // Import a type produced by ciTypeFlow.
 136 const Type* Type::get_typeflow_type(ciType* type) {
 137   switch (type->basic_type()) {
 138 
 139   case ciTypeFlow::StateVector::T_BOTTOM:
 140     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 141     return Type::BOTTOM;
 142 
 143   case ciTypeFlow::StateVector::T_TOP:
 144     assert(type == ciTypeFlow::StateVector::top_type(), "");
 145     return Type::TOP;
 146 
 147   case ciTypeFlow::StateVector::T_NULL:
 148     assert(type == ciTypeFlow::StateVector::null_type(), "");
 149     return TypePtr::NULL_PTR;
 150 
 151   case ciTypeFlow::StateVector::T_LONG2:
 152     // The ciTypeFlow pass pushes a long, then the half.
 153     // We do the same.
 154     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 155     return TypeInt::TOP;
 156 
 157   case ciTypeFlow::StateVector::T_DOUBLE2:
 158     // The ciTypeFlow pass pushes double, then the half.
 159     // Our convention is the same.
 160     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 161     return Type::TOP;
 162 
 163   case T_ADDRESS:
 164     assert(type->is_return_address(), "");
 165     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 166 
 167   default:
 168     // make sure we did not mix up the cases:
 169     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 170     assert(type != ciTypeFlow::StateVector::top_type(), "");
 171     assert(type != ciTypeFlow::StateVector::null_type(), "");
 172     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 173     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 174     assert(!type->is_return_address(), "");
 175 
 176     return Type::get_const_type(type);
 177   }
 178 }
 179 
 180 
 181 //------------------------------make-------------------------------------------
 182 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 183 // and look for an existing copy in the type dictionary.
 184 const Type *Type::make( enum TYPES t ) {
 185   return (new Type(t))->hashcons();
 186 }
 187 
 188 //------------------------------cmp--------------------------------------------
 189 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 190   if( t1->_base != t2->_base )
 191     return 1;                   // Missed badly
 192   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 193   return !t1->eq(t2);           // Return ZERO if equal
 194 }
 195 
 196 //------------------------------hash-------------------------------------------
 197 int Type::uhash( const Type *const t ) {
 198   return t->hash();
 199 }
 200 
 201 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 202 
 203 //--------------------------Initialize_shared----------------------------------
 204 void Type::Initialize_shared(Compile* current) {
 205   // This method does not need to be locked because the first system
 206   // compilations (stub compilations) occur serially.  If they are
 207   // changed to proceed in parallel, then this section will need
 208   // locking.
 209 
 210   Arena* save = current->type_arena();
 211   Arena* shared_type_arena = new Arena();
 212 
 213   current->set_type_arena(shared_type_arena);
 214   _shared_type_dict =
 215     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 216                                   shared_type_arena, 128 );
 217   current->set_type_dict(_shared_type_dict);
 218 
 219   // Make shared pre-built types.
 220   CONTROL = make(Control);      // Control only
 221   TOP     = make(Top);          // No values in set
 222   MEMORY  = make(Memory);       // Abstract store only
 223   ABIO    = make(Abio);         // State-of-machine only
 224   RETURN_ADDRESS=make(Return_Address);
 225   FLOAT   = make(FloatBot);     // All floats
 226   DOUBLE  = make(DoubleBot);    // All doubles
 227   BOTTOM  = make(Bottom);       // Everything
 228   HALF    = make(Half);         // Placeholder half of doublewide type
 229 
 230   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 231   TypeF::ONE  = TypeF::make(1.0); // Float 1
 232 
 233   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 234   TypeD::ONE  = TypeD::make(1.0); // Double 1
 235 
 236   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 237   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 238   TypeInt::ONE     = TypeInt::make( 1);  //  1
 239   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 240   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 241   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 242   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 243   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 244   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 245   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 246   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 247   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 248   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 249   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 250   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 251   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 252   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 253   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 254   // CmpL is overloaded both as the bytecode computation returning
 255   // a trinary (-1,0,+1) integer result AND as an efficient long
 256   // compare returning optimizer ideal-type flags.
 257   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 258   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 259   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 260   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 261   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 262 
 263   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 264   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 265   TypeLong::ONE     = TypeLong::make( 1);        //  1
 266   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 267   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 268   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 269   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 270 
 271   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 272   fboth[0] = Type::CONTROL;
 273   fboth[1] = Type::CONTROL;
 274   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 275 
 276   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 277   ffalse[0] = Type::CONTROL;
 278   ffalse[1] = Type::TOP;
 279   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 280 
 281   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 282   fneither[0] = Type::TOP;
 283   fneither[1] = Type::TOP;
 284   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 285 
 286   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 287   ftrue[0] = Type::TOP;
 288   ftrue[1] = Type::CONTROL;
 289   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 290 
 291   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 292   floop[0] = Type::CONTROL;
 293   floop[1] = TypeInt::INT;
 294   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 295 
 296   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 297   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 298   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 299 
 300   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 301   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 302 
 303   const Type **fmembar = TypeTuple::fields(0);
 304   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 305 
 306   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 307   fsc[0] = TypeInt::CC;
 308   fsc[1] = Type::MEMORY;
 309   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 310 
 311   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 312   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 313   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 314   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 315                                            false, 0, oopDesc::mark_offset_in_bytes());
 316   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 317                                            false, 0, oopDesc::klass_offset_in_bytes());
 318   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 319 
 320   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 321   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 322 
 323   mreg2type[Op_Node] = Type::BOTTOM;
 324   mreg2type[Op_Set ] = 0;
 325   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 326   mreg2type[Op_RegI] = TypeInt::INT;
 327   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 328   mreg2type[Op_RegF] = Type::FLOAT;
 329   mreg2type[Op_RegD] = Type::DOUBLE;
 330   mreg2type[Op_RegL] = TypeLong::LONG;
 331   mreg2type[Op_RegFlags] = TypeInt::CC;
 332 
 333   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 334 
 335   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 336 
 337 #ifdef _LP64
 338   if (UseCompressedOops) {
 339     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 340   } else
 341 #endif
 342   {
 343     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 344     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 345   }
 346   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 347   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 348   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 349   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 350   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 351   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 352   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 353 
 354   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 355   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 356   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 357   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 358   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 359   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 360   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 361   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 362   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 363   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 364   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 365   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 366 
 367   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 368   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 369 
 370   const Type **fi2c = TypeTuple::fields(2);
 371   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
 372   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 373   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 374 
 375   const Type **intpair = TypeTuple::fields(2);
 376   intpair[0] = TypeInt::INT;
 377   intpair[1] = TypeInt::INT;
 378   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 379 
 380   const Type **longpair = TypeTuple::fields(2);
 381   longpair[0] = TypeLong::LONG;
 382   longpair[1] = TypeLong::LONG;
 383   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 384 
 385   _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
 386   _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
 387   _const_basic_type[T_CHAR]    = TypeInt::CHAR;
 388   _const_basic_type[T_BYTE]    = TypeInt::BYTE;
 389   _const_basic_type[T_SHORT]   = TypeInt::SHORT;
 390   _const_basic_type[T_INT]     = TypeInt::INT;
 391   _const_basic_type[T_LONG]    = TypeLong::LONG;
 392   _const_basic_type[T_FLOAT]   = Type::FLOAT;
 393   _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
 394   _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
 395   _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 396   _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
 397   _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 398   _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
 399 
 400   _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
 401   _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
 402   _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
 403   _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
 404   _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
 405   _zero_type[T_INT]     = TypeInt::ZERO;
 406   _zero_type[T_LONG]    = TypeLong::ZERO;
 407   _zero_type[T_FLOAT]   = TypeF::ZERO;
 408   _zero_type[T_DOUBLE]  = TypeD::ZERO;
 409   _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
 410   _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
 411   _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
 412   _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
 413 
 414   // get_zero_type() should not happen for T_CONFLICT
 415   _zero_type[T_CONFLICT]= NULL;
 416 
 417   // Restore working type arena.
 418   current->set_type_arena(save);
 419   current->set_type_dict(NULL);
 420 }
 421 
 422 //------------------------------Initialize-------------------------------------
 423 void Type::Initialize(Compile* current) {
 424   assert(current->type_arena() != NULL, "must have created type arena");
 425 
 426   if (_shared_type_dict == NULL) {
 427     Initialize_shared(current);
 428   }
 429 
 430   Arena* type_arena = current->type_arena();
 431 
 432   // Create the hash-cons'ing dictionary with top-level storage allocation
 433   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 434   current->set_type_dict(tdic);
 435 
 436   // Transfer the shared types.
 437   DictI i(_shared_type_dict);
 438   for( ; i.test(); ++i ) {
 439     Type* t = (Type*)i._value;
 440     tdic->Insert(t,t);  // New Type, insert into Type table
 441   }
 442 
 443 #ifdef ASSERT
 444   verify_lastype();
 445 #endif
 446 }
 447 
 448 //------------------------------hashcons---------------------------------------
 449 // Do the hash-cons trick.  If the Type already exists in the type table,
 450 // delete the current Type and return the existing Type.  Otherwise stick the
 451 // current Type in the Type table.
 452 const Type *Type::hashcons(void) {
 453   debug_only(base());           // Check the assertion in Type::base().
 454   // Look up the Type in the Type dictionary
 455   Dict *tdic = type_dict();
 456   Type* old = (Type*)(tdic->Insert(this, this, false));
 457   if( old ) {                   // Pre-existing Type?
 458     if( old != this )           // Yes, this guy is not the pre-existing?
 459       delete this;              // Yes, Nuke this guy
 460     assert( old->_dual, "" );
 461     return old;                 // Return pre-existing
 462   }
 463 
 464   // Every type has a dual (to make my lattice symmetric).
 465   // Since we just discovered a new Type, compute its dual right now.
 466   assert( !_dual, "" );         // No dual yet
 467   _dual = xdual();              // Compute the dual
 468   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 469     _dual = this;
 470     return this;
 471   }
 472   assert( !_dual->_dual, "" );  // No reverse dual yet
 473   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 474   // New Type, insert into Type table
 475   tdic->Insert((void*)_dual,(void*)_dual);
 476   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 477 #ifdef ASSERT
 478   Type *dual_dual = (Type*)_dual->xdual();
 479   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 480   delete dual_dual;
 481 #endif
 482   return this;                  // Return new Type
 483 }
 484 
 485 //------------------------------eq---------------------------------------------
 486 // Structural equality check for Type representations
 487 bool Type::eq( const Type * ) const {
 488   return true;                  // Nothing else can go wrong
 489 }
 490 
 491 //------------------------------hash-------------------------------------------
 492 // Type-specific hashing function.
 493 int Type::hash(void) const {
 494   return _base;
 495 }
 496 
 497 //------------------------------is_finite--------------------------------------
 498 // Has a finite value
 499 bool Type::is_finite() const {
 500   return false;
 501 }
 502 
 503 //------------------------------is_nan-----------------------------------------
 504 // Is not a number (NaN)
 505 bool Type::is_nan()    const {
 506   return false;
 507 }
 508 
 509 //----------------------interface_vs_oop---------------------------------------
 510 #ifdef ASSERT
 511 bool Type::interface_vs_oop(const Type *t) const {
 512   bool result = false;
 513 
 514   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 515   const TypePtr*    t_ptr =    t->make_ptr();
 516   if( this_ptr == NULL || t_ptr == NULL )
 517     return result;
 518 
 519   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 520   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 521   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 522     bool this_interface = this_inst->klass()->is_interface();
 523     bool    t_interface =    t_inst->klass()->is_interface();
 524     result = this_interface ^ t_interface;
 525   }
 526 
 527   return result;
 528 }
 529 #endif
 530 
 531 //------------------------------meet-------------------------------------------
 532 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 533 // commutative and the lattice is symmetric.
 534 const Type *Type::meet( const Type *t ) const {
 535   if (isa_narrowoop() && t->isa_narrowoop()) {
 536     const Type* result = make_ptr()->meet(t->make_ptr());
 537     return result->make_narrowoop();
 538   }
 539 
 540   const Type *mt = xmeet(t);
 541   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 542 #ifdef ASSERT
 543   assert( mt == t->xmeet(this), "meet not commutative" );
 544   const Type* dual_join = mt->_dual;
 545   const Type *t2t    = dual_join->xmeet(t->_dual);
 546   const Type *t2this = dual_join->xmeet(   _dual);
 547 
 548   // Interface meet Oop is Not Symmetric:
 549   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 550   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 551 
 552   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
 553     tty->print_cr("=== Meet Not Symmetric ===");
 554     tty->print("t   =                   ");         t->dump(); tty->cr();
 555     tty->print("this=                   ");            dump(); tty->cr();
 556     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
 557 
 558     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
 559     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
 560     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
 561 
 562     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
 563     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
 564 
 565     fatal("meet not symmetric" );
 566   }
 567 #endif
 568   return mt;
 569 }
 570 
 571 //------------------------------xmeet------------------------------------------
 572 // Compute the MEET of two types.  It returns a new Type object.
 573 const Type *Type::xmeet( const Type *t ) const {
 574   // Perform a fast test for common case; meeting the same types together.
 575   if( this == t ) return this;  // Meeting same type-rep?
 576 
 577   // Meeting TOP with anything?
 578   if( _base == Top ) return t;
 579 
 580   // Meeting BOTTOM with anything?
 581   if( _base == Bottom ) return BOTTOM;
 582 
 583   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 584   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 585   switch (t->base()) {  // Switch on original type
 586 
 587   // Cut in half the number of cases I must handle.  Only need cases for when
 588   // the given enum "t->type" is less than or equal to the local enum "type".
 589   case FloatCon:
 590   case DoubleCon:
 591   case Int:
 592   case Long:
 593     return t->xmeet(this);
 594 
 595   case OopPtr:
 596     return t->xmeet(this);
 597 
 598   case InstPtr:
 599     return t->xmeet(this);
 600 
 601   case KlassPtr:
 602     return t->xmeet(this);
 603 
 604   case AryPtr:
 605     return t->xmeet(this);
 606 
 607   case NarrowOop:
 608     return t->xmeet(this);
 609 
 610   case Bad:                     // Type check
 611   default:                      // Bogus type not in lattice
 612     typerr(t);
 613     return Type::BOTTOM;
 614 
 615   case Bottom:                  // Ye Olde Default
 616     return t;
 617 
 618   case FloatTop:
 619     if( _base == FloatTop ) return this;
 620   case FloatBot:                // Float
 621     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 622     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 623     typerr(t);
 624     return Type::BOTTOM;
 625 
 626   case DoubleTop:
 627     if( _base == DoubleTop ) return this;
 628   case DoubleBot:               // Double
 629     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 630     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 631     typerr(t);
 632     return Type::BOTTOM;
 633 
 634   // These next few cases must match exactly or it is a compile-time error.
 635   case Control:                 // Control of code
 636   case Abio:                    // State of world outside of program
 637   case Memory:
 638     if( _base == t->_base )  return this;
 639     typerr(t);
 640     return Type::BOTTOM;
 641 
 642   case Top:                     // Top of the lattice
 643     return this;
 644   }
 645 
 646   // The type is unchanged
 647   return this;
 648 }
 649 
 650 //-----------------------------filter------------------------------------------
 651 const Type *Type::filter( const Type *kills ) const {
 652   const Type* ft = join(kills);
 653   if (ft->empty())
 654     return Type::TOP;           // Canonical empty value
 655   return ft;
 656 }
 657 
 658 //------------------------------xdual------------------------------------------
 659 // Compute dual right now.
 660 const Type::TYPES Type::dual_type[Type::lastype] = {
 661   Bad,          // Bad
 662   Control,      // Control
 663   Bottom,       // Top
 664   Bad,          // Int - handled in v-call
 665   Bad,          // Long - handled in v-call
 666   Half,         // Half
 667   Bad,          // NarrowOop - handled in v-call
 668 
 669   Bad,          // Tuple - handled in v-call
 670   Bad,          // Array - handled in v-call
 671 
 672   Bad,          // AnyPtr - handled in v-call
 673   Bad,          // RawPtr - handled in v-call
 674   Bad,          // OopPtr - handled in v-call
 675   Bad,          // InstPtr - handled in v-call
 676   Bad,          // AryPtr - handled in v-call
 677   Bad,          // KlassPtr - handled in v-call
 678 
 679   Bad,          // Function - handled in v-call
 680   Abio,         // Abio
 681   Return_Address,// Return_Address
 682   Memory,       // Memory
 683   FloatBot,     // FloatTop
 684   FloatCon,     // FloatCon
 685   FloatTop,     // FloatBot
 686   DoubleBot,    // DoubleTop
 687   DoubleCon,    // DoubleCon
 688   DoubleTop,    // DoubleBot
 689   Top           // Bottom
 690 };
 691 
 692 const Type *Type::xdual() const {
 693   // Note: the base() accessor asserts the sanity of _base.
 694   assert(dual_type[base()] != Bad, "implement with v-call");
 695   return new Type(dual_type[_base]);
 696 }
 697 
 698 //------------------------------has_memory-------------------------------------
 699 bool Type::has_memory() const {
 700   Type::TYPES tx = base();
 701   if (tx == Memory) return true;
 702   if (tx == Tuple) {
 703     const TypeTuple *t = is_tuple();
 704     for (uint i=0; i < t->cnt(); i++) {
 705       tx = t->field_at(i)->base();
 706       if (tx == Memory)  return true;
 707     }
 708   }
 709   return false;
 710 }
 711 
 712 #ifndef PRODUCT
 713 //------------------------------dump2------------------------------------------
 714 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 715   st->print(msg[_base]);
 716 }
 717 
 718 //------------------------------dump-------------------------------------------
 719 void Type::dump_on(outputStream *st) const {
 720   ResourceMark rm;
 721   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 722   dump2(d,1, st);
 723   if (is_ptr_to_narrowoop()) {
 724     st->print(" [narrow]");
 725   }
 726 }
 727 
 728 //------------------------------data-------------------------------------------
 729 const char * const Type::msg[Type::lastype] = {
 730   "bad","control","top","int:","long:","half", "narrowoop:",
 731   "tuple:", "aryptr",
 732   "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
 733   "func", "abIO", "return_address", "memory",
 734   "float_top", "ftcon:", "float",
 735   "double_top", "dblcon:", "double",
 736   "bottom"
 737 };
 738 #endif
 739 
 740 //------------------------------singleton--------------------------------------
 741 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 742 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 743 bool Type::singleton(void) const {
 744   return _base == Top || _base == Half;
 745 }
 746 
 747 //------------------------------empty------------------------------------------
 748 // TRUE if Type is a type with no values, FALSE otherwise.
 749 bool Type::empty(void) const {
 750   switch (_base) {
 751   case DoubleTop:
 752   case FloatTop:
 753   case Top:
 754     return true;
 755 
 756   case Half:
 757   case Abio:
 758   case Return_Address:
 759   case Memory:
 760   case Bottom:
 761   case FloatBot:
 762   case DoubleBot:
 763     return false;  // never a singleton, therefore never empty
 764   }
 765 
 766   ShouldNotReachHere();
 767   return false;
 768 }
 769 
 770 //------------------------------dump_stats-------------------------------------
 771 // Dump collected statistics to stderr
 772 #ifndef PRODUCT
 773 void Type::dump_stats() {
 774   tty->print("Types made: %d\n", type_dict()->Size());
 775 }
 776 #endif
 777 
 778 //------------------------------typerr-----------------------------------------
 779 void Type::typerr( const Type *t ) const {
 780 #ifndef PRODUCT
 781   tty->print("\nError mixing types: ");
 782   dump();
 783   tty->print(" and ");
 784   t->dump();
 785   tty->print("\n");
 786 #endif
 787   ShouldNotReachHere();
 788 }
 789 
 790 //------------------------------isa_oop_ptr------------------------------------
 791 // Return true if type is an oop pointer type.  False for raw pointers.
 792 static char isa_oop_ptr_tbl[Type::lastype] = {
 793   0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
 794   0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
 795   0/*func*/,0,0/*return_address*/,0,
 796   /*floats*/0,0,0, /*doubles*/0,0,0,
 797   0
 798 };
 799 bool Type::isa_oop_ptr() const {
 800   return isa_oop_ptr_tbl[_base] != 0;
 801 }
 802 
 803 //------------------------------dump_stats-------------------------------------
 804 // // Check that arrays match type enum
 805 #ifndef PRODUCT
 806 void Type::verify_lastype() {
 807   // Check that arrays match enumeration
 808   assert( Type::dual_type  [Type::lastype - 1] == Type::Top, "did not update array");
 809   assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
 810   // assert( PhiNode::tbl     [Type::lastype - 1] == NULL,    "did not update array");
 811   assert( Matcher::base2reg[Type::lastype - 1] == 0,      "did not update array");
 812   assert( isa_oop_ptr_tbl  [Type::lastype - 1] == (char)0,  "did not update array");
 813 }
 814 #endif
 815 
 816 //=============================================================================
 817 // Convenience common pre-built types.
 818 const TypeF *TypeF::ZERO;       // Floating point zero
 819 const TypeF *TypeF::ONE;        // Floating point one
 820 
 821 //------------------------------make-------------------------------------------
 822 // Create a float constant
 823 const TypeF *TypeF::make(float f) {
 824   return (TypeF*)(new TypeF(f))->hashcons();
 825 }
 826 
 827 //------------------------------meet-------------------------------------------
 828 // Compute the MEET of two types.  It returns a new Type object.
 829 const Type *TypeF::xmeet( const Type *t ) const {
 830   // Perform a fast test for common case; meeting the same types together.
 831   if( this == t ) return this;  // Meeting same type-rep?
 832 
 833   // Current "this->_base" is FloatCon
 834   switch (t->base()) {          // Switch on original type
 835   case AnyPtr:                  // Mixing with oops happens when javac
 836   case RawPtr:                  // reuses local variables
 837   case OopPtr:
 838   case InstPtr:
 839   case KlassPtr:
 840   case AryPtr:
 841   case NarrowOop:
 842   case Int:
 843   case Long:
 844   case DoubleTop:
 845   case DoubleCon:
 846   case DoubleBot:
 847   case Bottom:                  // Ye Olde Default
 848     return Type::BOTTOM;
 849 
 850   case FloatBot:
 851     return t;
 852 
 853   default:                      // All else is a mistake
 854     typerr(t);
 855 
 856   case FloatCon:                // Float-constant vs Float-constant?
 857     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 858                                 // must compare bitwise as positive zero, negative zero and NaN have
 859                                 // all the same representation in C++
 860       return FLOAT;             // Return generic float
 861                                 // Equal constants
 862   case Top:
 863   case FloatTop:
 864     break;                      // Return the float constant
 865   }
 866   return this;                  // Return the float constant
 867 }
 868 
 869 //------------------------------xdual------------------------------------------
 870 // Dual: symmetric
 871 const Type *TypeF::xdual() const {
 872   return this;
 873 }
 874 
 875 //------------------------------eq---------------------------------------------
 876 // Structural equality check for Type representations
 877 bool TypeF::eq( const Type *t ) const {
 878   if( g_isnan(_f) ||
 879       g_isnan(t->getf()) ) {
 880     // One or both are NANs.  If both are NANs return true, else false.
 881     return (g_isnan(_f) && g_isnan(t->getf()));
 882   }
 883   if (_f == t->getf()) {
 884     // (NaN is impossible at this point, since it is not equal even to itself)
 885     if (_f == 0.0) {
 886       // difference between positive and negative zero
 887       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 888     }
 889     return true;
 890   }
 891   return false;
 892 }
 893 
 894 //------------------------------hash-------------------------------------------
 895 // Type-specific hashing function.
 896 int TypeF::hash(void) const {
 897   return *(int*)(&_f);
 898 }
 899 
 900 //------------------------------is_finite--------------------------------------
 901 // Has a finite value
 902 bool TypeF::is_finite() const {
 903   return g_isfinite(getf()) != 0;
 904 }
 905 
 906 //------------------------------is_nan-----------------------------------------
 907 // Is not a number (NaN)
 908 bool TypeF::is_nan()    const {
 909   return g_isnan(getf()) != 0;
 910 }
 911 
 912 //------------------------------dump2------------------------------------------
 913 // Dump float constant Type
 914 #ifndef PRODUCT
 915 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
 916   Type::dump2(d,depth, st);
 917   st->print("%f", _f);
 918 }
 919 #endif
 920 
 921 //------------------------------singleton--------------------------------------
 922 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 923 // constants (Ldi nodes).  Singletons are integer, float or double constants
 924 // or a single symbol.
 925 bool TypeF::singleton(void) const {
 926   return true;                  // Always a singleton
 927 }
 928 
 929 bool TypeF::empty(void) const {
 930   return false;                 // always exactly a singleton
 931 }
 932 
 933 //=============================================================================
 934 // Convenience common pre-built types.
 935 const TypeD *TypeD::ZERO;       // Floating point zero
 936 const TypeD *TypeD::ONE;        // Floating point one
 937 
 938 //------------------------------make-------------------------------------------
 939 const TypeD *TypeD::make(double d) {
 940   return (TypeD*)(new TypeD(d))->hashcons();
 941 }
 942 
 943 //------------------------------meet-------------------------------------------
 944 // Compute the MEET of two types.  It returns a new Type object.
 945 const Type *TypeD::xmeet( const Type *t ) const {
 946   // Perform a fast test for common case; meeting the same types together.
 947   if( this == t ) return this;  // Meeting same type-rep?
 948 
 949   // Current "this->_base" is DoubleCon
 950   switch (t->base()) {          // Switch on original type
 951   case AnyPtr:                  // Mixing with oops happens when javac
 952   case RawPtr:                  // reuses local variables
 953   case OopPtr:
 954   case InstPtr:
 955   case KlassPtr:
 956   case AryPtr:
 957   case NarrowOop:
 958   case Int:
 959   case Long:
 960   case FloatTop:
 961   case FloatCon:
 962   case FloatBot:
 963   case Bottom:                  // Ye Olde Default
 964     return Type::BOTTOM;
 965 
 966   case DoubleBot:
 967     return t;
 968 
 969   default:                      // All else is a mistake
 970     typerr(t);
 971 
 972   case DoubleCon:               // Double-constant vs Double-constant?
 973     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
 974       return DOUBLE;            // Return generic double
 975   case Top:
 976   case DoubleTop:
 977     break;
 978   }
 979   return this;                  // Return the double constant
 980 }
 981 
 982 //------------------------------xdual------------------------------------------
 983 // Dual: symmetric
 984 const Type *TypeD::xdual() const {
 985   return this;
 986 }
 987 
 988 //------------------------------eq---------------------------------------------
 989 // Structural equality check for Type representations
 990 bool TypeD::eq( const Type *t ) const {
 991   if( g_isnan(_d) ||
 992       g_isnan(t->getd()) ) {
 993     // One or both are NANs.  If both are NANs return true, else false.
 994     return (g_isnan(_d) && g_isnan(t->getd()));
 995   }
 996   if (_d == t->getd()) {
 997     // (NaN is impossible at this point, since it is not equal even to itself)
 998     if (_d == 0.0) {
 999       // difference between positive and negative zero
1000       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1001     }
1002     return true;
1003   }
1004   return false;
1005 }
1006 
1007 //------------------------------hash-------------------------------------------
1008 // Type-specific hashing function.
1009 int TypeD::hash(void) const {
1010   return *(int*)(&_d);
1011 }
1012 
1013 //------------------------------is_finite--------------------------------------
1014 // Has a finite value
1015 bool TypeD::is_finite() const {
1016   return g_isfinite(getd()) != 0;
1017 }
1018 
1019 //------------------------------is_nan-----------------------------------------
1020 // Is not a number (NaN)
1021 bool TypeD::is_nan()    const {
1022   return g_isnan(getd()) != 0;
1023 }
1024 
1025 //------------------------------dump2------------------------------------------
1026 // Dump double constant Type
1027 #ifndef PRODUCT
1028 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1029   Type::dump2(d,depth,st);
1030   st->print("%f", _d);
1031 }
1032 #endif
1033 
1034 //------------------------------singleton--------------------------------------
1035 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1036 // constants (Ldi nodes).  Singletons are integer, float or double constants
1037 // or a single symbol.
1038 bool TypeD::singleton(void) const {
1039   return true;                  // Always a singleton
1040 }
1041 
1042 bool TypeD::empty(void) const {
1043   return false;                 // always exactly a singleton
1044 }
1045 
1046 //=============================================================================
1047 // Convience common pre-built types.
1048 const TypeInt *TypeInt::MINUS_1;// -1
1049 const TypeInt *TypeInt::ZERO;   // 0
1050 const TypeInt *TypeInt::ONE;    // 1
1051 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1052 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1053 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1054 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1055 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1056 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1057 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1058 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1059 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1060 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1061 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1062 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1063 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1064 const TypeInt *TypeInt::INT;    // 32-bit integers
1065 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1066 
1067 //------------------------------TypeInt----------------------------------------
1068 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1069 }
1070 
1071 //------------------------------make-------------------------------------------
1072 const TypeInt *TypeInt::make( jint lo ) {
1073   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1074 }
1075 
1076 static int normalize_int_widen( jint lo, jint hi, int w ) {
1077   // Certain normalizations keep us sane when comparing types.
1078   // The 'SMALLINT' covers constants and also CC and its relatives.
1079   if (lo <= hi) {
1080     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1081     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1082   } else {
1083     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1084     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1085   }
1086   return w;
1087 }
1088 
1089 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1090   w = normalize_int_widen(lo, hi, w);
1091   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1092 }
1093 
1094 //------------------------------meet-------------------------------------------
1095 // Compute the MEET of two types.  It returns a new Type representation object
1096 // with reference count equal to the number of Types pointing at it.
1097 // Caller should wrap a Types around it.
1098 const Type *TypeInt::xmeet( const Type *t ) const {
1099   // Perform a fast test for common case; meeting the same types together.
1100   if( this == t ) return this;  // Meeting same type?
1101 
1102   // Currently "this->_base" is a TypeInt
1103   switch (t->base()) {          // Switch on original type
1104   case AnyPtr:                  // Mixing with oops happens when javac
1105   case RawPtr:                  // reuses local variables
1106   case OopPtr:
1107   case InstPtr:
1108   case KlassPtr:
1109   case AryPtr:
1110   case NarrowOop:
1111   case Long:
1112   case FloatTop:
1113   case FloatCon:
1114   case FloatBot:
1115   case DoubleTop:
1116   case DoubleCon:
1117   case DoubleBot:
1118   case Bottom:                  // Ye Olde Default
1119     return Type::BOTTOM;
1120   default:                      // All else is a mistake
1121     typerr(t);
1122   case Top:                     // No change
1123     return this;
1124   case Int:                     // Int vs Int?
1125     break;
1126   }
1127 
1128   // Expand covered set
1129   const TypeInt *r = t->is_int();
1130   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1131 }
1132 
1133 //------------------------------xdual------------------------------------------
1134 // Dual: reverse hi & lo; flip widen
1135 const Type *TypeInt::xdual() const {
1136   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1137   return new TypeInt(_hi,_lo,w);
1138 }
1139 
1140 //------------------------------widen------------------------------------------
1141 // Only happens for optimistic top-down optimizations.
1142 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1143   // Coming from TOP or such; no widening
1144   if( old->base() != Int ) return this;
1145   const TypeInt *ot = old->is_int();
1146 
1147   // If new guy is equal to old guy, no widening
1148   if( _lo == ot->_lo && _hi == ot->_hi )
1149     return old;
1150 
1151   // If new guy contains old, then we widened
1152   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1153     // New contains old
1154     // If new guy is already wider than old, no widening
1155     if( _widen > ot->_widen ) return this;
1156     // If old guy was a constant, do not bother
1157     if (ot->_lo == ot->_hi)  return this;
1158     // Now widen new guy.
1159     // Check for widening too far
1160     if (_widen == WidenMax) {
1161       int max = max_jint;
1162       int min = min_jint;
1163       if (limit->isa_int()) {
1164         max = limit->is_int()->_hi;
1165         min = limit->is_int()->_lo;
1166       }
1167       if (min < _lo && _hi < max) {
1168         // If neither endpoint is extremal yet, push out the endpoint
1169         // which is closer to its respective limit.
1170         if (_lo >= 0 ||                 // easy common case
1171             (juint)(_lo - min) >= (juint)(max - _hi)) {
1172           // Try to widen to an unsigned range type of 31 bits:
1173           return make(_lo, max, WidenMax);
1174         } else {
1175           return make(min, _hi, WidenMax);
1176         }
1177       }
1178       return TypeInt::INT;
1179     }
1180     // Returned widened new guy
1181     return make(_lo,_hi,_widen+1);
1182   }
1183 
1184   // If old guy contains new, then we probably widened too far & dropped to
1185   // bottom.  Return the wider fellow.
1186   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1187     return old;
1188 
1189   //fatal("Integer value range is not subset");
1190   //return this;
1191   return TypeInt::INT;
1192 }
1193 
1194 //------------------------------narrow---------------------------------------
1195 // Only happens for pessimistic optimizations.
1196 const Type *TypeInt::narrow( const Type *old ) const {
1197   if (_lo >= _hi)  return this;   // already narrow enough
1198   if (old == NULL)  return this;
1199   const TypeInt* ot = old->isa_int();
1200   if (ot == NULL)  return this;
1201   jint olo = ot->_lo;
1202   jint ohi = ot->_hi;
1203 
1204   // If new guy is equal to old guy, no narrowing
1205   if (_lo == olo && _hi == ohi)  return old;
1206 
1207   // If old guy was maximum range, allow the narrowing
1208   if (olo == min_jint && ohi == max_jint)  return this;
1209 
1210   if (_lo < olo || _hi > ohi)
1211     return this;                // doesn't narrow; pretty wierd
1212 
1213   // The new type narrows the old type, so look for a "death march".
1214   // See comments on PhaseTransform::saturate.
1215   juint nrange = _hi - _lo;
1216   juint orange = ohi - olo;
1217   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1218     // Use the new type only if the range shrinks a lot.
1219     // We do not want the optimizer computing 2^31 point by point.
1220     return old;
1221   }
1222 
1223   return this;
1224 }
1225 
1226 //-----------------------------filter------------------------------------------
1227 const Type *TypeInt::filter( const Type *kills ) const {
1228   const TypeInt* ft = join(kills)->isa_int();
1229   if (ft == NULL || ft->empty())
1230     return Type::TOP;           // Canonical empty value
1231   if (ft->_widen < this->_widen) {
1232     // Do not allow the value of kill->_widen to affect the outcome.
1233     // The widen bits must be allowed to run freely through the graph.
1234     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1235   }
1236   return ft;
1237 }
1238 
1239 //------------------------------eq---------------------------------------------
1240 // Structural equality check for Type representations
1241 bool TypeInt::eq( const Type *t ) const {
1242   const TypeInt *r = t->is_int(); // Handy access
1243   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1244 }
1245 
1246 //------------------------------hash-------------------------------------------
1247 // Type-specific hashing function.
1248 int TypeInt::hash(void) const {
1249   return _lo+_hi+_widen+(int)Type::Int;
1250 }
1251 
1252 //------------------------------is_finite--------------------------------------
1253 // Has a finite value
1254 bool TypeInt::is_finite() const {
1255   return true;
1256 }
1257 
1258 //------------------------------dump2------------------------------------------
1259 // Dump TypeInt
1260 #ifndef PRODUCT
1261 static const char* intname(char* buf, jint n) {
1262   if (n == min_jint)
1263     return "min";
1264   else if (n < min_jint + 10000)
1265     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1266   else if (n == max_jint)
1267     return "max";
1268   else if (n > max_jint - 10000)
1269     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1270   else
1271     sprintf(buf, INT32_FORMAT, n);
1272   return buf;
1273 }
1274 
1275 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1276   char buf[40], buf2[40];
1277   if (_lo == min_jint && _hi == max_jint)
1278     st->print("int");
1279   else if (is_con())
1280     st->print("int:%s", intname(buf, get_con()));
1281   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1282     st->print("bool");
1283   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1284     st->print("byte");
1285   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1286     st->print("char");
1287   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1288     st->print("short");
1289   else if (_hi == max_jint)
1290     st->print("int:>=%s", intname(buf, _lo));
1291   else if (_lo == min_jint)
1292     st->print("int:<=%s", intname(buf, _hi));
1293   else
1294     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1295 
1296   if (_widen != 0 && this != TypeInt::INT)
1297     st->print(":%.*s", _widen, "wwww");
1298 }
1299 #endif
1300 
1301 //------------------------------singleton--------------------------------------
1302 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1303 // constants.
1304 bool TypeInt::singleton(void) const {
1305   return _lo >= _hi;
1306 }
1307 
1308 bool TypeInt::empty(void) const {
1309   return _lo > _hi;
1310 }
1311 
1312 //=============================================================================
1313 // Convenience common pre-built types.
1314 const TypeLong *TypeLong::MINUS_1;// -1
1315 const TypeLong *TypeLong::ZERO; // 0
1316 const TypeLong *TypeLong::ONE;  // 1
1317 const TypeLong *TypeLong::POS;  // >=0
1318 const TypeLong *TypeLong::LONG; // 64-bit integers
1319 const TypeLong *TypeLong::INT;  // 32-bit subrange
1320 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1321 
1322 //------------------------------TypeLong---------------------------------------
1323 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1324 }
1325 
1326 //------------------------------make-------------------------------------------
1327 const TypeLong *TypeLong::make( jlong lo ) {
1328   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1329 }
1330 
1331 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1332   // Certain normalizations keep us sane when comparing types.
1333   // The 'SMALLINT' covers constants.
1334   if (lo <= hi) {
1335     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1336     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1337   } else {
1338     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1339     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1340   }
1341   return w;
1342 }
1343 
1344 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1345   w = normalize_long_widen(lo, hi, w);
1346   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1347 }
1348 
1349 
1350 //------------------------------meet-------------------------------------------
1351 // Compute the MEET of two types.  It returns a new Type representation object
1352 // with reference count equal to the number of Types pointing at it.
1353 // Caller should wrap a Types around it.
1354 const Type *TypeLong::xmeet( const Type *t ) const {
1355   // Perform a fast test for common case; meeting the same types together.
1356   if( this == t ) return this;  // Meeting same type?
1357 
1358   // Currently "this->_base" is a TypeLong
1359   switch (t->base()) {          // Switch on original type
1360   case AnyPtr:                  // Mixing with oops happens when javac
1361   case RawPtr:                  // reuses local variables
1362   case OopPtr:
1363   case InstPtr:
1364   case KlassPtr:
1365   case AryPtr:
1366   case NarrowOop:
1367   case Int:
1368   case FloatTop:
1369   case FloatCon:
1370   case FloatBot:
1371   case DoubleTop:
1372   case DoubleCon:
1373   case DoubleBot:
1374   case Bottom:                  // Ye Olde Default
1375     return Type::BOTTOM;
1376   default:                      // All else is a mistake
1377     typerr(t);
1378   case Top:                     // No change
1379     return this;
1380   case Long:                    // Long vs Long?
1381     break;
1382   }
1383 
1384   // Expand covered set
1385   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1386   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1387 }
1388 
1389 //------------------------------xdual------------------------------------------
1390 // Dual: reverse hi & lo; flip widen
1391 const Type *TypeLong::xdual() const {
1392   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1393   return new TypeLong(_hi,_lo,w);
1394 }
1395 
1396 //------------------------------widen------------------------------------------
1397 // Only happens for optimistic top-down optimizations.
1398 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1399   // Coming from TOP or such; no widening
1400   if( old->base() != Long ) return this;
1401   const TypeLong *ot = old->is_long();
1402 
1403   // If new guy is equal to old guy, no widening
1404   if( _lo == ot->_lo && _hi == ot->_hi )
1405     return old;
1406 
1407   // If new guy contains old, then we widened
1408   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1409     // New contains old
1410     // If new guy is already wider than old, no widening
1411     if( _widen > ot->_widen ) return this;
1412     // If old guy was a constant, do not bother
1413     if (ot->_lo == ot->_hi)  return this;
1414     // Now widen new guy.
1415     // Check for widening too far
1416     if (_widen == WidenMax) {
1417       jlong max = max_jlong;
1418       jlong min = min_jlong;
1419       if (limit->isa_long()) {
1420         max = limit->is_long()->_hi;
1421         min = limit->is_long()->_lo;
1422       }
1423       if (min < _lo && _hi < max) {
1424         // If neither endpoint is extremal yet, push out the endpoint
1425         // which is closer to its respective limit.
1426         if (_lo >= 0 ||                 // easy common case
1427             (julong)(_lo - min) >= (julong)(max - _hi)) {
1428           // Try to widen to an unsigned range type of 32/63 bits:
1429           if (max >= max_juint && _hi < max_juint)
1430             return make(_lo, max_juint, WidenMax);
1431           else
1432             return make(_lo, max, WidenMax);
1433         } else {
1434           return make(min, _hi, WidenMax);
1435         }
1436       }
1437       return TypeLong::LONG;
1438     }
1439     // Returned widened new guy
1440     return make(_lo,_hi,_widen+1);
1441   }
1442 
1443   // If old guy contains new, then we probably widened too far & dropped to
1444   // bottom.  Return the wider fellow.
1445   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1446     return old;
1447 
1448   //  fatal("Long value range is not subset");
1449   // return this;
1450   return TypeLong::LONG;
1451 }
1452 
1453 //------------------------------narrow----------------------------------------
1454 // Only happens for pessimistic optimizations.
1455 const Type *TypeLong::narrow( const Type *old ) const {
1456   if (_lo >= _hi)  return this;   // already narrow enough
1457   if (old == NULL)  return this;
1458   const TypeLong* ot = old->isa_long();
1459   if (ot == NULL)  return this;
1460   jlong olo = ot->_lo;
1461   jlong ohi = ot->_hi;
1462 
1463   // If new guy is equal to old guy, no narrowing
1464   if (_lo == olo && _hi == ohi)  return old;
1465 
1466   // If old guy was maximum range, allow the narrowing
1467   if (olo == min_jlong && ohi == max_jlong)  return this;
1468 
1469   if (_lo < olo || _hi > ohi)
1470     return this;                // doesn't narrow; pretty wierd
1471 
1472   // The new type narrows the old type, so look for a "death march".
1473   // See comments on PhaseTransform::saturate.
1474   julong nrange = _hi - _lo;
1475   julong orange = ohi - olo;
1476   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1477     // Use the new type only if the range shrinks a lot.
1478     // We do not want the optimizer computing 2^31 point by point.
1479     return old;
1480   }
1481 
1482   return this;
1483 }
1484 
1485 //-----------------------------filter------------------------------------------
1486 const Type *TypeLong::filter( const Type *kills ) const {
1487   const TypeLong* ft = join(kills)->isa_long();
1488   if (ft == NULL || ft->empty())
1489     return Type::TOP;           // Canonical empty value
1490   if (ft->_widen < this->_widen) {
1491     // Do not allow the value of kill->_widen to affect the outcome.
1492     // The widen bits must be allowed to run freely through the graph.
1493     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1494   }
1495   return ft;
1496 }
1497 
1498 //------------------------------eq---------------------------------------------
1499 // Structural equality check for Type representations
1500 bool TypeLong::eq( const Type *t ) const {
1501   const TypeLong *r = t->is_long(); // Handy access
1502   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1503 }
1504 
1505 //------------------------------hash-------------------------------------------
1506 // Type-specific hashing function.
1507 int TypeLong::hash(void) const {
1508   return (int)(_lo+_hi+_widen+(int)Type::Long);
1509 }
1510 
1511 //------------------------------is_finite--------------------------------------
1512 // Has a finite value
1513 bool TypeLong::is_finite() const {
1514   return true;
1515 }
1516 
1517 //------------------------------dump2------------------------------------------
1518 // Dump TypeLong
1519 #ifndef PRODUCT
1520 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1521   if (n > x) {
1522     if (n >= x + 10000)  return NULL;
1523     sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
1524   } else if (n < x) {
1525     if (n <= x - 10000)  return NULL;
1526     sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
1527   } else {
1528     return xname;
1529   }
1530   return buf;
1531 }
1532 
1533 static const char* longname(char* buf, jlong n) {
1534   const char* str;
1535   if (n == min_jlong)
1536     return "min";
1537   else if (n < min_jlong + 10000)
1538     sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
1539   else if (n == max_jlong)
1540     return "max";
1541   else if (n > max_jlong - 10000)
1542     sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
1543   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1544     return str;
1545   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1546     return str;
1547   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1548     return str;
1549   else
1550     sprintf(buf, INT64_FORMAT, n);
1551   return buf;
1552 }
1553 
1554 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1555   char buf[80], buf2[80];
1556   if (_lo == min_jlong && _hi == max_jlong)
1557     st->print("long");
1558   else if (is_con())
1559     st->print("long:%s", longname(buf, get_con()));
1560   else if (_hi == max_jlong)
1561     st->print("long:>=%s", longname(buf, _lo));
1562   else if (_lo == min_jlong)
1563     st->print("long:<=%s", longname(buf, _hi));
1564   else
1565     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1566 
1567   if (_widen != 0 && this != TypeLong::LONG)
1568     st->print(":%.*s", _widen, "wwww");
1569 }
1570 #endif
1571 
1572 //------------------------------singleton--------------------------------------
1573 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1574 // constants
1575 bool TypeLong::singleton(void) const {
1576   return _lo >= _hi;
1577 }
1578 
1579 bool TypeLong::empty(void) const {
1580   return _lo > _hi;
1581 }
1582 
1583 //=============================================================================
1584 // Convenience common pre-built types.
1585 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1586 const TypeTuple *TypeTuple::IFFALSE;
1587 const TypeTuple *TypeTuple::IFTRUE;
1588 const TypeTuple *TypeTuple::IFNEITHER;
1589 const TypeTuple *TypeTuple::LOOPBODY;
1590 const TypeTuple *TypeTuple::MEMBAR;
1591 const TypeTuple *TypeTuple::STORECONDITIONAL;
1592 const TypeTuple *TypeTuple::START_I2C;
1593 const TypeTuple *TypeTuple::INT_PAIR;
1594 const TypeTuple *TypeTuple::LONG_PAIR;
1595 
1596 
1597 //------------------------------make-------------------------------------------
1598 // Make a TypeTuple from the range of a method signature
1599 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1600   ciType* return_type = sig->return_type();
1601   uint total_fields = TypeFunc::Parms + return_type->size();
1602   const Type **field_array = fields(total_fields);
1603   switch (return_type->basic_type()) {
1604   case T_LONG:
1605     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1606     field_array[TypeFunc::Parms+1] = Type::HALF;
1607     break;
1608   case T_DOUBLE:
1609     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1610     field_array[TypeFunc::Parms+1] = Type::HALF;
1611     break;
1612   case T_OBJECT:
1613   case T_ARRAY:
1614   case T_BOOLEAN:
1615   case T_CHAR:
1616   case T_FLOAT:
1617   case T_BYTE:
1618   case T_SHORT:
1619   case T_INT:
1620     field_array[TypeFunc::Parms] = get_const_type(return_type);
1621     break;
1622   case T_VOID:
1623     break;
1624   default:
1625     ShouldNotReachHere();
1626   }
1627   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1628 }
1629 
1630 // Make a TypeTuple from the domain of a method signature
1631 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1632   uint total_fields = TypeFunc::Parms + sig->size();
1633 
1634   uint pos = TypeFunc::Parms;
1635   const Type **field_array;
1636   if (recv != NULL) {
1637     total_fields++;
1638     field_array = fields(total_fields);
1639     // Use get_const_type here because it respects UseUniqueSubclasses:
1640     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
1641   } else {
1642     field_array = fields(total_fields);
1643   }
1644 
1645   int i = 0;
1646   while (pos < total_fields) {
1647     ciType* type = sig->type_at(i);
1648 
1649     switch (type->basic_type()) {
1650     case T_LONG:
1651       field_array[pos++] = TypeLong::LONG;
1652       field_array[pos++] = Type::HALF;
1653       break;
1654     case T_DOUBLE:
1655       field_array[pos++] = Type::DOUBLE;
1656       field_array[pos++] = Type::HALF;
1657       break;
1658     case T_OBJECT:
1659     case T_ARRAY:
1660     case T_BOOLEAN:
1661     case T_CHAR:
1662     case T_FLOAT:
1663     case T_BYTE:
1664     case T_SHORT:
1665     case T_INT:
1666       field_array[pos++] = get_const_type(type);
1667       break;
1668     default:
1669       ShouldNotReachHere();
1670     }
1671     i++;
1672   }
1673   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1674 }
1675 
1676 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1677   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1678 }
1679 
1680 //------------------------------fields-----------------------------------------
1681 // Subroutine call type with space allocated for argument types
1682 const Type **TypeTuple::fields( uint arg_cnt ) {
1683   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1684   flds[TypeFunc::Control  ] = Type::CONTROL;
1685   flds[TypeFunc::I_O      ] = Type::ABIO;
1686   flds[TypeFunc::Memory   ] = Type::MEMORY;
1687   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1688   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1689 
1690   return flds;
1691 }
1692 
1693 //------------------------------meet-------------------------------------------
1694 // Compute the MEET of two types.  It returns a new Type object.
1695 const Type *TypeTuple::xmeet( const Type *t ) const {
1696   // Perform a fast test for common case; meeting the same types together.
1697   if( this == t ) return this;  // Meeting same type-rep?
1698 
1699   // Current "this->_base" is Tuple
1700   switch (t->base()) {          // switch on original type
1701 
1702   case Bottom:                  // Ye Olde Default
1703     return t;
1704 
1705   default:                      // All else is a mistake
1706     typerr(t);
1707 
1708   case Tuple: {                 // Meeting 2 signatures?
1709     const TypeTuple *x = t->is_tuple();
1710     assert( _cnt == x->_cnt, "" );
1711     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1712     for( uint i=0; i<_cnt; i++ )
1713       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1714     return TypeTuple::make(_cnt,fields);
1715   }
1716   case Top:
1717     break;
1718   }
1719   return this;                  // Return the double constant
1720 }
1721 
1722 //------------------------------xdual------------------------------------------
1723 // Dual: compute field-by-field dual
1724 const Type *TypeTuple::xdual() const {
1725   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1726   for( uint i=0; i<_cnt; i++ )
1727     fields[i] = _fields[i]->dual();
1728   return new TypeTuple(_cnt,fields);
1729 }
1730 
1731 //------------------------------eq---------------------------------------------
1732 // Structural equality check for Type representations
1733 bool TypeTuple::eq( const Type *t ) const {
1734   const TypeTuple *s = (const TypeTuple *)t;
1735   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1736   for (uint i = 0; i < _cnt; i++)
1737     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1738       return false;             // Missed
1739   return true;
1740 }
1741 
1742 //------------------------------hash-------------------------------------------
1743 // Type-specific hashing function.
1744 int TypeTuple::hash(void) const {
1745   intptr_t sum = _cnt;
1746   for( uint i=0; i<_cnt; i++ )
1747     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1748   return sum;
1749 }
1750 
1751 //------------------------------dump2------------------------------------------
1752 // Dump signature Type
1753 #ifndef PRODUCT
1754 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1755   st->print("{");
1756   if( !depth || d[this] ) {     // Check for recursive print
1757     st->print("...}");
1758     return;
1759   }
1760   d.Insert((void*)this, (void*)this);   // Stop recursion
1761   if( _cnt ) {
1762     uint i;
1763     for( i=0; i<_cnt-1; i++ ) {
1764       st->print("%d:", i);
1765       _fields[i]->dump2(d, depth-1, st);
1766       st->print(", ");
1767     }
1768     st->print("%d:", i);
1769     _fields[i]->dump2(d, depth-1, st);
1770   }
1771   st->print("}");
1772 }
1773 #endif
1774 
1775 //------------------------------singleton--------------------------------------
1776 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1777 // constants (Ldi nodes).  Singletons are integer, float or double constants
1778 // or a single symbol.
1779 bool TypeTuple::singleton(void) const {
1780   return false;                 // Never a singleton
1781 }
1782 
1783 bool TypeTuple::empty(void) const {
1784   for( uint i=0; i<_cnt; i++ ) {
1785     if (_fields[i]->empty())  return true;
1786   }
1787   return false;
1788 }
1789 
1790 //=============================================================================
1791 // Convenience common pre-built types.
1792 
1793 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1794   // Certain normalizations keep us sane when comparing types.
1795   // We do not want arrayOop variables to differ only by the wideness
1796   // of their index types.  Pick minimum wideness, since that is the
1797   // forced wideness of small ranges anyway.
1798   if (size->_widen != Type::WidenMin)
1799     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1800   else
1801     return size;
1802 }
1803 
1804 //------------------------------make-------------------------------------------
1805 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
1806   if (UseCompressedOops && elem->isa_oopptr()) {
1807     elem = elem->make_narrowoop();
1808   }
1809   size = normalize_array_size(size);
1810   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
1811 }
1812 
1813 //------------------------------meet-------------------------------------------
1814 // Compute the MEET of two types.  It returns a new Type object.
1815 const Type *TypeAry::xmeet( const Type *t ) const {
1816   // Perform a fast test for common case; meeting the same types together.
1817   if( this == t ) return this;  // Meeting same type-rep?
1818 
1819   // Current "this->_base" is Ary
1820   switch (t->base()) {          // switch on original type
1821 
1822   case Bottom:                  // Ye Olde Default
1823     return t;
1824 
1825   default:                      // All else is a mistake
1826     typerr(t);
1827 
1828   case Array: {                 // Meeting 2 arrays?
1829     const TypeAry *a = t->is_ary();
1830     return TypeAry::make(_elem->meet(a->_elem),
1831                          _size->xmeet(a->_size)->is_int());
1832   }
1833   case Top:
1834     break;
1835   }
1836   return this;                  // Return the double constant
1837 }
1838 
1839 //------------------------------xdual------------------------------------------
1840 // Dual: compute field-by-field dual
1841 const Type *TypeAry::xdual() const {
1842   const TypeInt* size_dual = _size->dual()->is_int();
1843   size_dual = normalize_array_size(size_dual);
1844   return new TypeAry( _elem->dual(), size_dual);
1845 }
1846 
1847 //------------------------------eq---------------------------------------------
1848 // Structural equality check for Type representations
1849 bool TypeAry::eq( const Type *t ) const {
1850   const TypeAry *a = (const TypeAry*)t;
1851   return _elem == a->_elem &&
1852     _size == a->_size;
1853 }
1854 
1855 //------------------------------hash-------------------------------------------
1856 // Type-specific hashing function.
1857 int TypeAry::hash(void) const {
1858   return (intptr_t)_elem + (intptr_t)_size;
1859 }
1860 
1861 //----------------------interface_vs_oop---------------------------------------
1862 #ifdef ASSERT
1863 bool TypeAry::interface_vs_oop(const Type *t) const {
1864   const TypeAry* t_ary = t->is_ary();
1865   if (t_ary) {
1866     return _elem->interface_vs_oop(t_ary->_elem);
1867   }
1868   return false;
1869 }
1870 #endif
1871 
1872 //------------------------------dump2------------------------------------------
1873 #ifndef PRODUCT
1874 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1875   _elem->dump2(d, depth, st);
1876   st->print("[");
1877   _size->dump2(d, depth, st);
1878   st->print("]");
1879 }
1880 #endif
1881 
1882 //------------------------------singleton--------------------------------------
1883 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1884 // constants (Ldi nodes).  Singletons are integer, float or double constants
1885 // or a single symbol.
1886 bool TypeAry::singleton(void) const {
1887   return false;                 // Never a singleton
1888 }
1889 
1890 bool TypeAry::empty(void) const {
1891   return _elem->empty() || _size->empty();
1892 }
1893 
1894 //--------------------------ary_must_be_exact----------------------------------
1895 bool TypeAry::ary_must_be_exact() const {
1896   if (!UseExactTypes)       return false;
1897   // This logic looks at the element type of an array, and returns true
1898   // if the element type is either a primitive or a final instance class.
1899   // In such cases, an array built on this ary must have no subclasses.
1900   if (_elem == BOTTOM)      return false;  // general array not exact
1901   if (_elem == TOP   )      return false;  // inverted general array not exact
1902   const TypeOopPtr*  toop = NULL;
1903   if (UseCompressedOops && _elem->isa_narrowoop()) {
1904     toop = _elem->make_ptr()->isa_oopptr();
1905   } else {
1906     toop = _elem->isa_oopptr();
1907   }
1908   if (!toop)                return true;   // a primitive type, like int
1909   ciKlass* tklass = toop->klass();
1910   if (tklass == NULL)       return false;  // unloaded class
1911   if (!tklass->is_loaded()) return false;  // unloaded class
1912   const TypeInstPtr* tinst;
1913   if (_elem->isa_narrowoop())
1914     tinst = _elem->make_ptr()->isa_instptr();
1915   else
1916     tinst = _elem->isa_instptr();
1917   if (tinst)
1918     return tklass->as_instance_klass()->is_final();
1919   const TypeAryPtr*  tap;
1920   if (_elem->isa_narrowoop())
1921     tap = _elem->make_ptr()->isa_aryptr();
1922   else
1923     tap = _elem->isa_aryptr();
1924   if (tap)
1925     return tap->ary()->ary_must_be_exact();
1926   return false;
1927 }
1928 
1929 //=============================================================================
1930 // Convenience common pre-built types.
1931 const TypePtr *TypePtr::NULL_PTR;
1932 const TypePtr *TypePtr::NOTNULL;
1933 const TypePtr *TypePtr::BOTTOM;
1934 
1935 //------------------------------meet-------------------------------------------
1936 // Meet over the PTR enum
1937 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
1938   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
1939   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
1940   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
1941   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
1942   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
1943   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
1944   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
1945 };
1946 
1947 //------------------------------make-------------------------------------------
1948 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
1949   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
1950 }
1951 
1952 //------------------------------cast_to_ptr_type-------------------------------
1953 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
1954   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
1955   if( ptr == _ptr ) return this;
1956   return make(_base, ptr, _offset);
1957 }
1958 
1959 //------------------------------get_con----------------------------------------
1960 intptr_t TypePtr::get_con() const {
1961   assert( _ptr == Null, "" );
1962   return _offset;
1963 }
1964 
1965 //------------------------------meet-------------------------------------------
1966 // Compute the MEET of two types.  It returns a new Type object.
1967 const Type *TypePtr::xmeet( const Type *t ) const {
1968   // Perform a fast test for common case; meeting the same types together.
1969   if( this == t ) return this;  // Meeting same type-rep?
1970 
1971   // Current "this->_base" is AnyPtr
1972   switch (t->base()) {          // switch on original type
1973   case Int:                     // Mixing ints & oops happens when javac
1974   case Long:                    // reuses local variables
1975   case FloatTop:
1976   case FloatCon:
1977   case FloatBot:
1978   case DoubleTop:
1979   case DoubleCon:
1980   case DoubleBot:
1981   case NarrowOop:
1982   case Bottom:                  // Ye Olde Default
1983     return Type::BOTTOM;
1984   case Top:
1985     return this;
1986 
1987   case AnyPtr: {                // Meeting to AnyPtrs
1988     const TypePtr *tp = t->is_ptr();
1989     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
1990   }
1991   case RawPtr:                  // For these, flip the call around to cut down
1992   case OopPtr:
1993   case InstPtr:                 // on the cases I have to handle.
1994   case KlassPtr:
1995   case AryPtr:
1996     return t->xmeet(this);      // Call in reverse direction
1997   default:                      // All else is a mistake
1998     typerr(t);
1999 
2000   }
2001   return this;
2002 }
2003 
2004 //------------------------------meet_offset------------------------------------
2005 int TypePtr::meet_offset( int offset ) const {
2006   // Either is 'TOP' offset?  Return the other offset!
2007   if( _offset == OffsetTop ) return offset;
2008   if( offset == OffsetTop ) return _offset;
2009   // If either is different, return 'BOTTOM' offset
2010   if( _offset != offset ) return OffsetBot;
2011   return _offset;
2012 }
2013 
2014 //------------------------------dual_offset------------------------------------
2015 int TypePtr::dual_offset( ) const {
2016   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2017   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2018   return _offset;               // Map everything else into self
2019 }
2020 
2021 //------------------------------xdual------------------------------------------
2022 // Dual: compute field-by-field dual
2023 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2024   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2025 };
2026 const Type *TypePtr::xdual() const {
2027   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2028 }
2029 
2030 //------------------------------xadd_offset------------------------------------
2031 int TypePtr::xadd_offset( intptr_t offset ) const {
2032   // Adding to 'TOP' offset?  Return 'TOP'!
2033   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2034   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2035   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2036   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2037   offset += (intptr_t)_offset;
2038   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2039 
2040   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2041   // It is possible to construct a negative offset during PhaseCCP
2042 
2043   return (int)offset;        // Sum valid offsets
2044 }
2045 
2046 //------------------------------add_offset-------------------------------------
2047 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2048   return make( AnyPtr, _ptr, xadd_offset(offset) );
2049 }
2050 
2051 //------------------------------eq---------------------------------------------
2052 // Structural equality check for Type representations
2053 bool TypePtr::eq( const Type *t ) const {
2054   const TypePtr *a = (const TypePtr*)t;
2055   return _ptr == a->ptr() && _offset == a->offset();
2056 }
2057 
2058 //------------------------------hash-------------------------------------------
2059 // Type-specific hashing function.
2060 int TypePtr::hash(void) const {
2061   return _ptr + _offset;
2062 }
2063 
2064 //------------------------------dump2------------------------------------------
2065 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2066   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2067 };
2068 
2069 #ifndef PRODUCT
2070 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2071   if( _ptr == Null ) st->print("NULL");
2072   else st->print("%s *", ptr_msg[_ptr]);
2073   if( _offset == OffsetTop ) st->print("+top");
2074   else if( _offset == OffsetBot ) st->print("+bot");
2075   else if( _offset ) st->print("+%d", _offset);
2076 }
2077 #endif
2078 
2079 //------------------------------singleton--------------------------------------
2080 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2081 // constants
2082 bool TypePtr::singleton(void) const {
2083   // TopPTR, Null, AnyNull, Constant are all singletons
2084   return (_offset != OffsetBot) && !below_centerline(_ptr);
2085 }
2086 
2087 bool TypePtr::empty(void) const {
2088   return (_offset == OffsetTop) || above_centerline(_ptr);
2089 }
2090 
2091 //=============================================================================
2092 // Convenience common pre-built types.
2093 const TypeRawPtr *TypeRawPtr::BOTTOM;
2094 const TypeRawPtr *TypeRawPtr::NOTNULL;
2095 
2096 //------------------------------make-------------------------------------------
2097 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2098   assert( ptr != Constant, "what is the constant?" );
2099   assert( ptr != Null, "Use TypePtr for NULL" );
2100   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2101 }
2102 
2103 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2104   assert( bits, "Use TypePtr for NULL" );
2105   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2106 }
2107 
2108 //------------------------------cast_to_ptr_type-------------------------------
2109 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2110   assert( ptr != Constant, "what is the constant?" );
2111   assert( ptr != Null, "Use TypePtr for NULL" );
2112   assert( _bits==0, "Why cast a constant address?");
2113   if( ptr == _ptr ) return this;
2114   return make(ptr);
2115 }
2116 
2117 //------------------------------get_con----------------------------------------
2118 intptr_t TypeRawPtr::get_con() const {
2119   assert( _ptr == Null || _ptr == Constant, "" );
2120   return (intptr_t)_bits;
2121 }
2122 
2123 //------------------------------meet-------------------------------------------
2124 // Compute the MEET of two types.  It returns a new Type object.
2125 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2126   // Perform a fast test for common case; meeting the same types together.
2127   if( this == t ) return this;  // Meeting same type-rep?
2128 
2129   // Current "this->_base" is RawPtr
2130   switch( t->base() ) {         // switch on original type
2131   case Bottom:                  // Ye Olde Default
2132     return t;
2133   case Top:
2134     return this;
2135   case AnyPtr:                  // Meeting to AnyPtrs
2136     break;
2137   case RawPtr: {                // might be top, bot, any/not or constant
2138     enum PTR tptr = t->is_ptr()->ptr();
2139     enum PTR ptr = meet_ptr( tptr );
2140     if( ptr == Constant ) {     // Cannot be equal constants, so...
2141       if( tptr == Constant && _ptr != Constant)  return t;
2142       if( _ptr == Constant && tptr != Constant)  return this;
2143       ptr = NotNull;            // Fall down in lattice
2144     }
2145     return make( ptr );
2146   }
2147 
2148   case OopPtr:
2149   case InstPtr:
2150   case KlassPtr:
2151   case AryPtr:
2152     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2153   default:                      // All else is a mistake
2154     typerr(t);
2155   }
2156 
2157   // Found an AnyPtr type vs self-RawPtr type
2158   const TypePtr *tp = t->is_ptr();
2159   switch (tp->ptr()) {
2160   case TypePtr::TopPTR:  return this;
2161   case TypePtr::BotPTR:  return t;
2162   case TypePtr::Null:
2163     if( _ptr == TypePtr::TopPTR ) return t;
2164     return TypeRawPtr::BOTTOM;
2165   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2166   case TypePtr::AnyNull:
2167     if( _ptr == TypePtr::Constant) return this;
2168     return make( meet_ptr(TypePtr::AnyNull) );
2169   default: ShouldNotReachHere();
2170   }
2171   return this;
2172 }
2173 
2174 //------------------------------xdual------------------------------------------
2175 // Dual: compute field-by-field dual
2176 const Type *TypeRawPtr::xdual() const {
2177   return new TypeRawPtr( dual_ptr(), _bits );
2178 }
2179 
2180 //------------------------------add_offset-------------------------------------
2181 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2182   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2183   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2184   if( offset == 0 ) return this; // No change
2185   switch (_ptr) {
2186   case TypePtr::TopPTR:
2187   case TypePtr::BotPTR:
2188   case TypePtr::NotNull:
2189     return this;
2190   case TypePtr::Null:
2191   case TypePtr::Constant: {
2192     address bits = _bits+offset;
2193     if ( bits == 0 ) return TypePtr::NULL_PTR;
2194     return make( bits );
2195   }
2196   default:  ShouldNotReachHere();
2197   }
2198   return NULL;                  // Lint noise
2199 }
2200 
2201 //------------------------------eq---------------------------------------------
2202 // Structural equality check for Type representations
2203 bool TypeRawPtr::eq( const Type *t ) const {
2204   const TypeRawPtr *a = (const TypeRawPtr*)t;
2205   return _bits == a->_bits && TypePtr::eq(t);
2206 }
2207 
2208 //------------------------------hash-------------------------------------------
2209 // Type-specific hashing function.
2210 int TypeRawPtr::hash(void) const {
2211   return (intptr_t)_bits + TypePtr::hash();
2212 }
2213 
2214 //------------------------------dump2------------------------------------------
2215 #ifndef PRODUCT
2216 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2217   if( _ptr == Constant )
2218     st->print(INTPTR_FORMAT, _bits);
2219   else
2220     st->print("rawptr:%s", ptr_msg[_ptr]);
2221 }
2222 #endif
2223 
2224 //=============================================================================
2225 // Convenience common pre-built type.
2226 const TypeOopPtr *TypeOopPtr::BOTTOM;
2227 
2228 //------------------------------TypeOopPtr-------------------------------------
2229 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
2230   : TypePtr(t, ptr, offset),
2231     _const_oop(o), _klass(k),
2232     _klass_is_exact(xk),
2233     _is_ptr_to_narrowoop(false),
2234     _instance_id(instance_id) {
2235 #ifdef _LP64
2236   if (UseCompressedOops && _offset != 0) {
2237     if (klass() == NULL) {
2238       assert(this->isa_aryptr(), "only arrays without klass");
2239       _is_ptr_to_narrowoop = true;
2240     } else if (_offset == oopDesc::klass_offset_in_bytes()) {
2241       _is_ptr_to_narrowoop = true;
2242     } else if (this->isa_aryptr()) {
2243       _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
2244                              _offset != arrayOopDesc::length_offset_in_bytes());
2245     } else if (klass()->is_instance_klass()) {
2246       ciInstanceKlass* ik = klass()->as_instance_klass();
2247       ciField* field = NULL;
2248       if (this->isa_klassptr()) {
2249         // Perm objects don't use compressed references
2250       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2251         // unsafe access
2252         _is_ptr_to_narrowoop = true;
2253       } else { // exclude unsafe ops
2254         assert(this->isa_instptr(), "must be an instance ptr.");
2255 
2256         if (klass() == ciEnv::current()->Class_klass() &&
2257             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2258              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2259           // Special hidden fields from the Class.
2260           assert(this->isa_instptr(), "must be an instance ptr.");
2261           _is_ptr_to_narrowoop = true;
2262         } else if (klass() == ciEnv::current()->Class_klass() &&
2263                    _offset >= instanceMirrorKlass::offset_of_static_fields()) {
2264           // Static fields
2265           assert(o != NULL, "must be constant");
2266           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2267           ciField* field = k->get_field_by_offset(_offset, true);
2268           assert(field != NULL, "missing field");
2269           BasicType basic_elem_type = field->layout_type();
2270           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
2271                                   basic_elem_type == T_ARRAY);
2272         } else {
2273           // Instance fields which contains a compressed oop references.
2274           field = ik->get_field_by_offset(_offset, false);
2275           if (field != NULL) {
2276             BasicType basic_elem_type = field->layout_type();
2277             _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
2278                                     basic_elem_type == T_ARRAY);
2279           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2280             // Compile::find_alias_type() cast exactness on all types to verify
2281             // that it does not affect alias type.
2282             _is_ptr_to_narrowoop = true;
2283           } else {
2284             // Type for the copy start in LibraryCallKit::inline_native_clone().
2285             assert(!klass_is_exact(), "only non-exact klass");
2286             _is_ptr_to_narrowoop = true;
2287           }
2288         }
2289       }
2290     }
2291   }
2292 #endif
2293 }
2294 
2295 //------------------------------make-------------------------------------------
2296 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2297                                    int offset, int instance_id) {
2298   assert(ptr != Constant, "no constant generic pointers");
2299   ciKlass*  k = ciKlassKlass::make();
2300   bool      xk = false;
2301   ciObject* o = NULL;
2302   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
2303 }
2304 
2305 
2306 //------------------------------cast_to_ptr_type-------------------------------
2307 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2308   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2309   if( ptr == _ptr ) return this;
2310   return make(ptr, _offset, _instance_id);
2311 }
2312 
2313 //-----------------------------cast_to_instance_id----------------------------
2314 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2315   // There are no instances of a general oop.
2316   // Return self unchanged.
2317   return this;
2318 }
2319 
2320 //-----------------------------cast_to_exactness-------------------------------
2321 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2322   // There is no such thing as an exact general oop.
2323   // Return self unchanged.
2324   return this;
2325 }
2326 
2327 
2328 //------------------------------as_klass_type----------------------------------
2329 // Return the klass type corresponding to this instance or array type.
2330 // It is the type that is loaded from an object of this type.
2331 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2332   ciKlass* k = klass();
2333   bool    xk = klass_is_exact();
2334   if (k == NULL || !k->is_java_klass())
2335     return TypeKlassPtr::OBJECT;
2336   else
2337     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2338 }
2339 
2340 
2341 //------------------------------meet-------------------------------------------
2342 // Compute the MEET of two types.  It returns a new Type object.
2343 const Type *TypeOopPtr::xmeet( const Type *t ) const {
2344   // Perform a fast test for common case; meeting the same types together.
2345   if( this == t ) return this;  // Meeting same type-rep?
2346 
2347   // Current "this->_base" is OopPtr
2348   switch (t->base()) {          // switch on original type
2349 
2350   case Int:                     // Mixing ints & oops happens when javac
2351   case Long:                    // reuses local variables
2352   case FloatTop:
2353   case FloatCon:
2354   case FloatBot:
2355   case DoubleTop:
2356   case DoubleCon:
2357   case DoubleBot:
2358   case NarrowOop:
2359   case Bottom:                  // Ye Olde Default
2360     return Type::BOTTOM;
2361   case Top:
2362     return this;
2363 
2364   default:                      // All else is a mistake
2365     typerr(t);
2366 
2367   case RawPtr:
2368     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2369 
2370   case AnyPtr: {
2371     // Found an AnyPtr type vs self-OopPtr type
2372     const TypePtr *tp = t->is_ptr();
2373     int offset = meet_offset(tp->offset());
2374     PTR ptr = meet_ptr(tp->ptr());
2375     switch (tp->ptr()) {
2376     case Null:
2377       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2378       // else fall through:
2379     case TopPTR:
2380     case AnyNull: {
2381       int instance_id = meet_instance_id(InstanceTop);
2382       return make(ptr, offset, instance_id);
2383     }
2384     case BotPTR:
2385     case NotNull:
2386       return TypePtr::make(AnyPtr, ptr, offset);
2387     default: typerr(t);
2388     }
2389   }
2390 
2391   case OopPtr: {                 // Meeting to other OopPtrs
2392     const TypeOopPtr *tp = t->is_oopptr();
2393     int instance_id = meet_instance_id(tp->instance_id());
2394     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
2395   }
2396 
2397   case InstPtr:                  // For these, flip the call around to cut down
2398   case KlassPtr:                 // on the cases I have to handle.
2399   case AryPtr:
2400     return t->xmeet(this);      // Call in reverse direction
2401 
2402   } // End of switch
2403   return this;                  // Return the double constant
2404 }
2405 
2406 
2407 //------------------------------xdual------------------------------------------
2408 // Dual of a pure heap pointer.  No relevant klass or oop information.
2409 const Type *TypeOopPtr::xdual() const {
2410   assert(klass() == ciKlassKlass::make(), "no klasses here");
2411   assert(const_oop() == NULL,             "no constants here");
2412   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
2413 }
2414 
2415 //--------------------------make_from_klass_common-----------------------------
2416 // Computes the element-type given a klass.
2417 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2418   assert(klass->is_java_klass(), "must be java language klass");
2419   if (klass->is_instance_klass()) {
2420     Compile* C = Compile::current();
2421     Dependencies* deps = C->dependencies();
2422     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2423     // Element is an instance
2424     bool klass_is_exact = false;
2425     if (klass->is_loaded()) {
2426       // Try to set klass_is_exact.
2427       ciInstanceKlass* ik = klass->as_instance_klass();
2428       klass_is_exact = ik->is_final();
2429       if (!klass_is_exact && klass_change
2430           && deps != NULL && UseUniqueSubclasses) {
2431         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2432         if (sub != NULL) {
2433           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2434           klass = ik = sub;
2435           klass_is_exact = sub->is_final();
2436         }
2437       }
2438       if (!klass_is_exact && try_for_exact
2439           && deps != NULL && UseExactTypes) {
2440         if (!ik->is_interface() && !ik->has_subklass()) {
2441           // Add a dependence; if concrete subclass added we need to recompile
2442           deps->assert_leaf_type(ik);
2443           klass_is_exact = true;
2444         }
2445       }
2446     }
2447     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2448   } else if (klass->is_obj_array_klass()) {
2449     // Element is an object array. Recursively call ourself.
2450     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2451     bool xk = etype->klass_is_exact();
2452     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2453     // We used to pass NotNull in here, asserting that the sub-arrays
2454     // are all not-null.  This is not true in generally, as code can
2455     // slam NULLs down in the subarrays.
2456     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2457     return arr;
2458   } else if (klass->is_type_array_klass()) {
2459     // Element is an typeArray
2460     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2461     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2462     // We used to pass NotNull in here, asserting that the array pointer
2463     // is not-null. That was not true in general.
2464     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2465     return arr;
2466   } else {
2467     ShouldNotReachHere();
2468     return NULL;
2469   }
2470 }
2471 
2472 //------------------------------make_from_constant-----------------------------
2473 // Make a java pointer from an oop constant
2474 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
2475   if (o->is_method_data() || o->is_method() || o->is_cpcache()) {
2476     // Treat much like a typeArray of bytes, like below, but fake the type...
2477     const Type* etype = (Type*)get_const_basic_type(T_BYTE);
2478     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2479     ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
2480     assert(o->can_be_constant(), "method data oops should be tenured");
2481     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2482     return arr;
2483   } else {
2484     assert(o->is_java_object(), "must be java language object");
2485     assert(!o->is_null_object(), "null object not yet handled here.");
2486     ciKlass *klass = o->klass();
2487     if (klass->is_instance_klass()) {
2488       // Element is an instance
2489       if (require_constant) {
2490         if (!o->can_be_constant())  return NULL;
2491       } else if (!o->should_be_constant()) {
2492         return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2493       }
2494       return TypeInstPtr::make(o);
2495     } else if (klass->is_obj_array_klass()) {
2496       // Element is an object array. Recursively call ourself.
2497       const Type *etype =
2498         TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2499       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2500       // We used to pass NotNull in here, asserting that the sub-arrays
2501       // are all not-null.  This is not true in generally, as code can
2502       // slam NULLs down in the subarrays.
2503       if (require_constant) {
2504         if (!o->can_be_constant())  return NULL;
2505       } else if (!o->should_be_constant()) {
2506         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2507       }
2508       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2509       return arr;
2510     } else if (klass->is_type_array_klass()) {
2511       // Element is an typeArray
2512       const Type* etype =
2513         (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2514       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2515       // We used to pass NotNull in here, asserting that the array pointer
2516       // is not-null. That was not true in general.
2517       if (require_constant) {
2518         if (!o->can_be_constant())  return NULL;
2519       } else if (!o->should_be_constant()) {
2520         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2521       }
2522       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2523       return arr;
2524     }
2525   }
2526 
2527   ShouldNotReachHere();
2528   return NULL;
2529 }
2530 
2531 //------------------------------get_con----------------------------------------
2532 intptr_t TypeOopPtr::get_con() const {
2533   assert( _ptr == Null || _ptr == Constant, "" );
2534   assert( _offset >= 0, "" );
2535 
2536   if (_offset != 0) {
2537     // After being ported to the compiler interface, the compiler no longer
2538     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2539     // to a handle at compile time.  This handle is embedded in the generated
2540     // code and dereferenced at the time the nmethod is made.  Until that time,
2541     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2542     // have access to the addresses!).  This does not seem to currently happen,
2543     // but this assertion here is to help prevent its occurence.
2544     tty->print_cr("Found oop constant with non-zero offset");
2545     ShouldNotReachHere();
2546   }
2547 
2548   return (intptr_t)const_oop()->constant_encoding();
2549 }
2550 
2551 
2552 //-----------------------------filter------------------------------------------
2553 // Do not allow interface-vs.-noninterface joins to collapse to top.
2554 const Type *TypeOopPtr::filter( const Type *kills ) const {
2555 
2556   const Type* ft = join(kills);
2557   const TypeInstPtr* ftip = ft->isa_instptr();
2558   const TypeInstPtr* ktip = kills->isa_instptr();
2559   const TypeKlassPtr* ftkp = ft->isa_klassptr();
2560   const TypeKlassPtr* ktkp = kills->isa_klassptr();
2561 
2562   if (ft->empty()) {
2563     // Check for evil case of 'this' being a class and 'kills' expecting an
2564     // interface.  This can happen because the bytecodes do not contain
2565     // enough type info to distinguish a Java-level interface variable
2566     // from a Java-level object variable.  If we meet 2 classes which
2567     // both implement interface I, but their meet is at 'j/l/O' which
2568     // doesn't implement I, we have no way to tell if the result should
2569     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2570     // into a Phi which "knows" it's an Interface type we'll have to
2571     // uplift the type.
2572     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2573       return kills;             // Uplift to interface
2574     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
2575       return kills;             // Uplift to interface
2576 
2577     return Type::TOP;           // Canonical empty value
2578   }
2579 
2580   // If we have an interface-typed Phi or cast and we narrow to a class type,
2581   // the join should report back the class.  However, if we have a J/L/Object
2582   // class-typed Phi and an interface flows in, it's possible that the meet &
2583   // join report an interface back out.  This isn't possible but happens
2584   // because the type system doesn't interact well with interfaces.
2585   if (ftip != NULL && ktip != NULL &&
2586       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2587       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2588     // Happens in a CTW of rt.jar, 320-341, no extra flags
2589     assert(!ftip->klass_is_exact(), "interface could not be exact");
2590     return ktip->cast_to_ptr_type(ftip->ptr());
2591   }
2592   // Interface klass type could be exact in opposite to interface type,
2593   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
2594   if (ftkp != NULL && ktkp != NULL &&
2595       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
2596       !ftkp->klass_is_exact() && // Keep exact interface klass
2597       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
2598     return ktkp->cast_to_ptr_type(ftkp->ptr());
2599   }
2600 
2601   return ft;
2602 }
2603 
2604 //------------------------------eq---------------------------------------------
2605 // Structural equality check for Type representations
2606 bool TypeOopPtr::eq( const Type *t ) const {
2607   const TypeOopPtr *a = (const TypeOopPtr*)t;
2608   if (_klass_is_exact != a->_klass_is_exact ||
2609       _instance_id != a->_instance_id)  return false;
2610   ciObject* one = const_oop();
2611   ciObject* two = a->const_oop();
2612   if (one == NULL || two == NULL) {
2613     return (one == two) && TypePtr::eq(t);
2614   } else {
2615     return one->equals(two) && TypePtr::eq(t);
2616   }
2617 }
2618 
2619 //------------------------------hash-------------------------------------------
2620 // Type-specific hashing function.
2621 int TypeOopPtr::hash(void) const {
2622   return
2623     (const_oop() ? const_oop()->hash() : 0) +
2624     _klass_is_exact +
2625     _instance_id +
2626     TypePtr::hash();
2627 }
2628 
2629 //------------------------------dump2------------------------------------------
2630 #ifndef PRODUCT
2631 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2632   st->print("oopptr:%s", ptr_msg[_ptr]);
2633   if( _klass_is_exact ) st->print(":exact");
2634   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2635   switch( _offset ) {
2636   case OffsetTop: st->print("+top"); break;
2637   case OffsetBot: st->print("+any"); break;
2638   case         0: break;
2639   default:        st->print("+%d",_offset); break;
2640   }
2641   if (_instance_id == InstanceTop)
2642     st->print(",iid=top");
2643   else if (_instance_id != InstanceBot)
2644     st->print(",iid=%d",_instance_id);
2645 }
2646 #endif
2647 
2648 //------------------------------singleton--------------------------------------
2649 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2650 // constants
2651 bool TypeOopPtr::singleton(void) const {
2652   // detune optimizer to not generate constant oop + constant offset as a constant!
2653   // TopPTR, Null, AnyNull, Constant are all singletons
2654   return (_offset == 0) && !below_centerline(_ptr);
2655 }
2656 
2657 //------------------------------add_offset-------------------------------------
2658 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
2659   return make( _ptr, xadd_offset(offset), _instance_id);
2660 }
2661 
2662 //------------------------------meet_instance_id--------------------------------
2663 int TypeOopPtr::meet_instance_id( int instance_id ) const {
2664   // Either is 'TOP' instance?  Return the other instance!
2665   if( _instance_id == InstanceTop ) return  instance_id;
2666   if(  instance_id == InstanceTop ) return _instance_id;
2667   // If either is different, return 'BOTTOM' instance
2668   if( _instance_id != instance_id ) return InstanceBot;
2669   return _instance_id;
2670 }
2671 
2672 //------------------------------dual_instance_id--------------------------------
2673 int TypeOopPtr::dual_instance_id( ) const {
2674   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2675   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2676   return _instance_id;              // Map everything else into self
2677 }
2678 
2679 
2680 //=============================================================================
2681 // Convenience common pre-built types.
2682 const TypeInstPtr *TypeInstPtr::NOTNULL;
2683 const TypeInstPtr *TypeInstPtr::BOTTOM;
2684 const TypeInstPtr *TypeInstPtr::MIRROR;
2685 const TypeInstPtr *TypeInstPtr::MARK;
2686 const TypeInstPtr *TypeInstPtr::KLASS;
2687 
2688 //------------------------------TypeInstPtr-------------------------------------
2689 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
2690  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
2691    assert(k != NULL &&
2692           (k->is_loaded() || o == NULL),
2693           "cannot have constants with non-loaded klass");
2694 };
2695 
2696 //------------------------------make-------------------------------------------
2697 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
2698                                      ciKlass* k,
2699                                      bool xk,
2700                                      ciObject* o,
2701                                      int offset,
2702                                      int instance_id) {
2703   assert( !k->is_loaded() || k->is_instance_klass() ||
2704           k->is_method_klass(), "Must be for instance or method");
2705   // Either const_oop() is NULL or else ptr is Constant
2706   assert( (!o && ptr != Constant) || (o && ptr == Constant),
2707           "constant pointers must have a value supplied" );
2708   // Ptr is never Null
2709   assert( ptr != Null, "NULL pointers are not typed" );
2710 
2711   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
2712   if (!UseExactTypes)  xk = false;
2713   if (ptr == Constant) {
2714     // Note:  This case includes meta-object constants, such as methods.
2715     xk = true;
2716   } else if (k->is_loaded()) {
2717     ciInstanceKlass* ik = k->as_instance_klass();
2718     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
2719     if (xk && ik->is_interface())  xk = false;  // no exact interface
2720   }
2721 
2722   // Now hash this baby
2723   TypeInstPtr *result =
2724     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
2725 
2726   return result;
2727 }
2728 
2729 
2730 //------------------------------cast_to_ptr_type-------------------------------
2731 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
2732   if( ptr == _ptr ) return this;
2733   // Reconstruct _sig info here since not a problem with later lazy
2734   // construction, _sig will show up on demand.
2735   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
2736 }
2737 
2738 
2739 //-----------------------------cast_to_exactness-------------------------------
2740 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
2741   if( klass_is_exact == _klass_is_exact ) return this;
2742   if (!UseExactTypes)  return this;
2743   if (!_klass->is_loaded())  return this;
2744   ciInstanceKlass* ik = _klass->as_instance_klass();
2745   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
2746   if( ik->is_interface() )              return this;  // cannot set xk
2747   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
2748 }
2749 
2750 //-----------------------------cast_to_instance_id----------------------------
2751 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
2752   if( instance_id == _instance_id ) return this;
2753   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
2754 }
2755 
2756 //------------------------------xmeet_unloaded---------------------------------
2757 // Compute the MEET of two InstPtrs when at least one is unloaded.
2758 // Assume classes are different since called after check for same name/class-loader
2759 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
2760     int off = meet_offset(tinst->offset());
2761     PTR ptr = meet_ptr(tinst->ptr());
2762     int instance_id = meet_instance_id(tinst->instance_id());
2763 
2764     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
2765     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
2766     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
2767       //
2768       // Meet unloaded class with java/lang/Object
2769       //
2770       // Meet
2771       //          |                     Unloaded Class
2772       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
2773       //  ===================================================================
2774       //   TOP    | ..........................Unloaded......................|
2775       //  AnyNull |  U-AN    |................Unloaded......................|
2776       // Constant | ... O-NN .................................. |   O-BOT   |
2777       //  NotNull | ... O-NN .................................. |   O-BOT   |
2778       //  BOTTOM  | ........................Object-BOTTOM ..................|
2779       //
2780       assert(loaded->ptr() != TypePtr::Null, "insanity check");
2781       //
2782       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
2783       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
2784       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
2785       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
2786         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
2787         else                                      { return TypeInstPtr::NOTNULL; }
2788       }
2789       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
2790 
2791       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
2792     }
2793 
2794     // Both are unloaded, not the same class, not Object
2795     // Or meet unloaded with a different loaded class, not java/lang/Object
2796     if( ptr != TypePtr::BotPTR ) {
2797       return TypeInstPtr::NOTNULL;
2798     }
2799     return TypeInstPtr::BOTTOM;
2800 }
2801 
2802 
2803 //------------------------------meet-------------------------------------------
2804 // Compute the MEET of two types.  It returns a new Type object.
2805 const Type *TypeInstPtr::xmeet( const Type *t ) const {
2806   // Perform a fast test for common case; meeting the same types together.
2807   if( this == t ) return this;  // Meeting same type-rep?
2808 
2809   // Current "this->_base" is Pointer
2810   switch (t->base()) {          // switch on original type
2811 
2812   case Int:                     // Mixing ints & oops happens when javac
2813   case Long:                    // reuses local variables
2814   case FloatTop:
2815   case FloatCon:
2816   case FloatBot:
2817   case DoubleTop:
2818   case DoubleCon:
2819   case DoubleBot:
2820   case NarrowOop:
2821   case Bottom:                  // Ye Olde Default
2822     return Type::BOTTOM;
2823   case Top:
2824     return this;
2825 
2826   default:                      // All else is a mistake
2827     typerr(t);
2828 
2829   case RawPtr: return TypePtr::BOTTOM;
2830 
2831   case AryPtr: {                // All arrays inherit from Object class
2832     const TypeAryPtr *tp = t->is_aryptr();
2833     int offset = meet_offset(tp->offset());
2834     PTR ptr = meet_ptr(tp->ptr());
2835     int instance_id = meet_instance_id(tp->instance_id());
2836     switch (ptr) {
2837     case TopPTR:
2838     case AnyNull:                // Fall 'down' to dual of object klass
2839       if (klass()->equals(ciEnv::current()->Object_klass())) {
2840         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
2841       } else {
2842         // cannot subclass, so the meet has to fall badly below the centerline
2843         ptr = NotNull;
2844         instance_id = InstanceBot;
2845         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
2846       }
2847     case Constant:
2848     case NotNull:
2849     case BotPTR:                // Fall down to object klass
2850       // LCA is object_klass, but if we subclass from the top we can do better
2851       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
2852         // If 'this' (InstPtr) is above the centerline and it is Object class
2853         // then we can subclass in the Java class hierarchy.
2854         if (klass()->equals(ciEnv::current()->Object_klass())) {
2855           // that is, tp's array type is a subtype of my klass
2856           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
2857                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
2858         }
2859       }
2860       // The other case cannot happen, since I cannot be a subtype of an array.
2861       // The meet falls down to Object class below centerline.
2862       if( ptr == Constant )
2863          ptr = NotNull;
2864       instance_id = InstanceBot;
2865       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
2866     default: typerr(t);
2867     }
2868   }
2869 
2870   case OopPtr: {                // Meeting to OopPtrs
2871     // Found a OopPtr type vs self-InstPtr type
2872     const TypeOopPtr *tp = t->is_oopptr();
2873     int offset = meet_offset(tp->offset());
2874     PTR ptr = meet_ptr(tp->ptr());
2875     switch (tp->ptr()) {
2876     case TopPTR:
2877     case AnyNull: {
2878       int instance_id = meet_instance_id(InstanceTop);
2879       return make(ptr, klass(), klass_is_exact(),
2880                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
2881     }
2882     case NotNull:
2883     case BotPTR: {
2884       int instance_id = meet_instance_id(tp->instance_id());
2885       return TypeOopPtr::make(ptr, offset, instance_id);
2886     }
2887     default: typerr(t);
2888     }
2889   }
2890 
2891   case AnyPtr: {                // Meeting to AnyPtrs
2892     // Found an AnyPtr type vs self-InstPtr type
2893     const TypePtr *tp = t->is_ptr();
2894     int offset = meet_offset(tp->offset());
2895     PTR ptr = meet_ptr(tp->ptr());
2896     switch (tp->ptr()) {
2897     case Null:
2898       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
2899       // else fall through to AnyNull
2900     case TopPTR:
2901     case AnyNull: {
2902       int instance_id = meet_instance_id(InstanceTop);
2903       return make( ptr, klass(), klass_is_exact(),
2904                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
2905     }
2906     case NotNull:
2907     case BotPTR:
2908       return TypePtr::make( AnyPtr, ptr, offset );
2909     default: typerr(t);
2910     }
2911   }
2912 
2913   /*
2914                  A-top         }
2915                /   |   \       }  Tops
2916            B-top A-any C-top   }
2917               | /  |  \ |      }  Any-nulls
2918            B-any   |   C-any   }
2919               |    |    |
2920            B-con A-con C-con   } constants; not comparable across classes
2921               |    |    |
2922            B-not   |   C-not   }
2923               | \  |  / |      }  not-nulls
2924            B-bot A-not C-bot   }
2925                \   |   /       }  Bottoms
2926                  A-bot         }
2927   */
2928 
2929   case InstPtr: {                // Meeting 2 Oops?
2930     // Found an InstPtr sub-type vs self-InstPtr type
2931     const TypeInstPtr *tinst = t->is_instptr();
2932     int off = meet_offset( tinst->offset() );
2933     PTR ptr = meet_ptr( tinst->ptr() );
2934     int instance_id = meet_instance_id(tinst->instance_id());
2935 
2936     // Check for easy case; klasses are equal (and perhaps not loaded!)
2937     // If we have constants, then we created oops so classes are loaded
2938     // and we can handle the constants further down.  This case handles
2939     // both-not-loaded or both-loaded classes
2940     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
2941       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
2942     }
2943 
2944     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
2945     ciKlass* tinst_klass = tinst->klass();
2946     ciKlass* this_klass  = this->klass();
2947     bool tinst_xk = tinst->klass_is_exact();
2948     bool this_xk  = this->klass_is_exact();
2949     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
2950       // One of these classes has not been loaded
2951       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
2952 #ifndef PRODUCT
2953       if( PrintOpto && Verbose ) {
2954         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
2955         tty->print("  this == "); this->dump(); tty->cr();
2956         tty->print(" tinst == "); tinst->dump(); tty->cr();
2957       }
2958 #endif
2959       return unloaded_meet;
2960     }
2961 
2962     // Handle mixing oops and interfaces first.
2963     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
2964       ciKlass *tmp = tinst_klass; // Swap interface around
2965       tinst_klass = this_klass;
2966       this_klass = tmp;
2967       bool tmp2 = tinst_xk;
2968       tinst_xk = this_xk;
2969       this_xk = tmp2;
2970     }
2971     if (tinst_klass->is_interface() &&
2972         !(this_klass->is_interface() ||
2973           // Treat java/lang/Object as an honorary interface,
2974           // because we need a bottom for the interface hierarchy.
2975           this_klass == ciEnv::current()->Object_klass())) {
2976       // Oop meets interface!
2977 
2978       // See if the oop subtypes (implements) interface.
2979       ciKlass *k;
2980       bool xk;
2981       if( this_klass->is_subtype_of( tinst_klass ) ) {
2982         // Oop indeed subtypes.  Now keep oop or interface depending
2983         // on whether we are both above the centerline or either is
2984         // below the centerline.  If we are on the centerline
2985         // (e.g., Constant vs. AnyNull interface), use the constant.
2986         k  = below_centerline(ptr) ? tinst_klass : this_klass;
2987         // If we are keeping this_klass, keep its exactness too.
2988         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
2989       } else {                  // Does not implement, fall to Object
2990         // Oop does not implement interface, so mixing falls to Object
2991         // just like the verifier does (if both are above the
2992         // centerline fall to interface)
2993         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
2994         xk = above_centerline(ptr) ? tinst_xk : false;
2995         // Watch out for Constant vs. AnyNull interface.
2996         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
2997         instance_id = InstanceBot;
2998       }
2999       ciObject* o = NULL;  // the Constant value, if any
3000       if (ptr == Constant) {
3001         // Find out which constant.
3002         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3003       }
3004       return make( ptr, k, xk, o, off, instance_id );
3005     }
3006 
3007     // Either oop vs oop or interface vs interface or interface vs Object
3008 
3009     // !!! Here's how the symmetry requirement breaks down into invariants:
3010     // If we split one up & one down AND they subtype, take the down man.
3011     // If we split one up & one down AND they do NOT subtype, "fall hard".
3012     // If both are up and they subtype, take the subtype class.
3013     // If both are up and they do NOT subtype, "fall hard".
3014     // If both are down and they subtype, take the supertype class.
3015     // If both are down and they do NOT subtype, "fall hard".
3016     // Constants treated as down.
3017 
3018     // Now, reorder the above list; observe that both-down+subtype is also
3019     // "fall hard"; "fall hard" becomes the default case:
3020     // If we split one up & one down AND they subtype, take the down man.
3021     // If both are up and they subtype, take the subtype class.
3022 
3023     // If both are down and they subtype, "fall hard".
3024     // If both are down and they do NOT subtype, "fall hard".
3025     // If both are up and they do NOT subtype, "fall hard".
3026     // If we split one up & one down AND they do NOT subtype, "fall hard".
3027 
3028     // If a proper subtype is exact, and we return it, we return it exactly.
3029     // If a proper supertype is exact, there can be no subtyping relationship!
3030     // If both types are equal to the subtype, exactness is and-ed below the
3031     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3032 
3033     // Check for subtyping:
3034     ciKlass *subtype = NULL;
3035     bool subtype_exact = false;
3036     if( tinst_klass->equals(this_klass) ) {
3037       subtype = this_klass;
3038       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3039     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3040       subtype = this_klass;     // Pick subtyping class
3041       subtype_exact = this_xk;
3042     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3043       subtype = tinst_klass;    // Pick subtyping class
3044       subtype_exact = tinst_xk;
3045     }
3046 
3047     if( subtype ) {
3048       if( above_centerline(ptr) ) { // both are up?
3049         this_klass = tinst_klass = subtype;
3050         this_xk = tinst_xk = subtype_exact;
3051       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3052         this_klass = tinst_klass; // tinst is down; keep down man
3053         this_xk = tinst_xk;
3054       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3055         tinst_klass = this_klass; // this is down; keep down man
3056         tinst_xk = this_xk;
3057       } else {
3058         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3059       }
3060     }
3061 
3062     // Check for classes now being equal
3063     if (tinst_klass->equals(this_klass)) {
3064       // If the klasses are equal, the constants may still differ.  Fall to
3065       // NotNull if they do (neither constant is NULL; that is a special case
3066       // handled elsewhere).
3067       ciObject* o = NULL;             // Assume not constant when done
3068       ciObject* this_oop  = const_oop();
3069       ciObject* tinst_oop = tinst->const_oop();
3070       if( ptr == Constant ) {
3071         if (this_oop != NULL && tinst_oop != NULL &&
3072             this_oop->equals(tinst_oop) )
3073           o = this_oop;
3074         else if (above_centerline(this ->_ptr))
3075           o = tinst_oop;
3076         else if (above_centerline(tinst ->_ptr))
3077           o = this_oop;
3078         else
3079           ptr = NotNull;
3080       }
3081       return make( ptr, this_klass, this_xk, o, off, instance_id );
3082     } // Else classes are not equal
3083 
3084     // Since klasses are different, we require a LCA in the Java
3085     // class hierarchy - which means we have to fall to at least NotNull.
3086     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3087       ptr = NotNull;
3088     instance_id = InstanceBot;
3089 
3090     // Now we find the LCA of Java classes
3091     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3092     return make( ptr, k, false, NULL, off, instance_id );
3093   } // End of case InstPtr
3094 
3095   case KlassPtr:
3096     return TypeInstPtr::BOTTOM;
3097 
3098   } // End of switch
3099   return this;                  // Return the double constant
3100 }
3101 
3102 
3103 //------------------------java_mirror_type--------------------------------------
3104 ciType* TypeInstPtr::java_mirror_type() const {
3105   // must be a singleton type
3106   if( const_oop() == NULL )  return NULL;
3107 
3108   // must be of type java.lang.Class
3109   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3110 
3111   return const_oop()->as_instance()->java_mirror_type();
3112 }
3113 
3114 
3115 //------------------------------xdual------------------------------------------
3116 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3117 // inheritance mechanism.
3118 const Type *TypeInstPtr::xdual() const {
3119   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
3120 }
3121 
3122 //------------------------------eq---------------------------------------------
3123 // Structural equality check for Type representations
3124 bool TypeInstPtr::eq( const Type *t ) const {
3125   const TypeInstPtr *p = t->is_instptr();
3126   return
3127     klass()->equals(p->klass()) &&
3128     TypeOopPtr::eq(p);          // Check sub-type stuff
3129 }
3130 
3131 //------------------------------hash-------------------------------------------
3132 // Type-specific hashing function.
3133 int TypeInstPtr::hash(void) const {
3134   int hash = klass()->hash() + TypeOopPtr::hash();
3135   return hash;
3136 }
3137 
3138 //------------------------------dump2------------------------------------------
3139 // Dump oop Type
3140 #ifndef PRODUCT
3141 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3142   // Print the name of the klass.
3143   klass()->print_name_on(st);
3144 
3145   switch( _ptr ) {
3146   case Constant:
3147     // TO DO: Make CI print the hex address of the underlying oop.
3148     if (WizardMode || Verbose) {
3149       const_oop()->print_oop(st);
3150     }
3151   case BotPTR:
3152     if (!WizardMode && !Verbose) {
3153       if( _klass_is_exact ) st->print(":exact");
3154       break;
3155     }
3156   case TopPTR:
3157   case AnyNull:
3158   case NotNull:
3159     st->print(":%s", ptr_msg[_ptr]);
3160     if( _klass_is_exact ) st->print(":exact");
3161     break;
3162   }
3163 
3164   if( _offset ) {               // Dump offset, if any
3165     if( _offset == OffsetBot )      st->print("+any");
3166     else if( _offset == OffsetTop ) st->print("+unknown");
3167     else st->print("+%d", _offset);
3168   }
3169 
3170   st->print(" *");
3171   if (_instance_id == InstanceTop)
3172     st->print(",iid=top");
3173   else if (_instance_id != InstanceBot)
3174     st->print(",iid=%d",_instance_id);
3175 }
3176 #endif
3177 
3178 //------------------------------add_offset-------------------------------------
3179 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
3180   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
3181 }
3182 
3183 //=============================================================================
3184 // Convenience common pre-built types.
3185 const TypeAryPtr *TypeAryPtr::RANGE;
3186 const TypeAryPtr *TypeAryPtr::OOPS;
3187 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3188 const TypeAryPtr *TypeAryPtr::BYTES;
3189 const TypeAryPtr *TypeAryPtr::SHORTS;
3190 const TypeAryPtr *TypeAryPtr::CHARS;
3191 const TypeAryPtr *TypeAryPtr::INTS;
3192 const TypeAryPtr *TypeAryPtr::LONGS;
3193 const TypeAryPtr *TypeAryPtr::FLOATS;
3194 const TypeAryPtr *TypeAryPtr::DOUBLES;
3195 
3196 //------------------------------make-------------------------------------------
3197 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3198   assert(!(k == NULL && ary->_elem->isa_int()),
3199          "integral arrays must be pre-equipped with a class");
3200   if (!xk)  xk = ary->ary_must_be_exact();
3201   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3202   if (!UseExactTypes)  xk = (ptr == Constant);
3203   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
3204 }
3205 
3206 //------------------------------make-------------------------------------------
3207 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3208   assert(!(k == NULL && ary->_elem->isa_int()),
3209          "integral arrays must be pre-equipped with a class");
3210   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3211   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3212   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3213   if (!UseExactTypes)  xk = (ptr == Constant);
3214   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
3215 }
3216 
3217 //------------------------------cast_to_ptr_type-------------------------------
3218 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3219   if( ptr == _ptr ) return this;
3220   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
3221 }
3222 
3223 
3224 //-----------------------------cast_to_exactness-------------------------------
3225 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3226   if( klass_is_exact == _klass_is_exact ) return this;
3227   if (!UseExactTypes)  return this;
3228   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3229   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
3230 }
3231 
3232 //-----------------------------cast_to_instance_id----------------------------
3233 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3234   if( instance_id == _instance_id ) return this;
3235   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
3236 }
3237 
3238 //-----------------------------narrow_size_type-------------------------------
3239 // Local cache for arrayOopDesc::max_array_length(etype),
3240 // which is kind of slow (and cached elsewhere by other users).
3241 static jint max_array_length_cache[T_CONFLICT+1];
3242 static jint max_array_length(BasicType etype) {
3243   jint& cache = max_array_length_cache[etype];
3244   jint res = cache;
3245   if (res == 0) {
3246     switch (etype) {
3247     case T_NARROWOOP:
3248       etype = T_OBJECT;
3249       break;
3250     case T_CONFLICT:
3251     case T_ILLEGAL:
3252     case T_VOID:
3253       etype = T_BYTE;           // will produce conservatively high value
3254     }
3255     cache = res = arrayOopDesc::max_array_length(etype);
3256   }
3257   return res;
3258 }
3259 
3260 // Narrow the given size type to the index range for the given array base type.
3261 // Return NULL if the resulting int type becomes empty.
3262 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3263   jint hi = size->_hi;
3264   jint lo = size->_lo;
3265   jint min_lo = 0;
3266   jint max_hi = max_array_length(elem()->basic_type());
3267   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3268   bool chg = false;
3269   if (lo < min_lo) { lo = min_lo; chg = true; }
3270   if (hi > max_hi) { hi = max_hi; chg = true; }
3271   // Negative length arrays will produce weird intermediate dead fast-path code
3272   if (lo > hi)
3273     return TypeInt::ZERO;
3274   if (!chg)
3275     return size;
3276   return TypeInt::make(lo, hi, Type::WidenMin);
3277 }
3278 
3279 //-------------------------------cast_to_size----------------------------------
3280 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3281   assert(new_size != NULL, "");
3282   new_size = narrow_size_type(new_size);
3283   if (new_size == size())  return this;
3284   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
3285   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3286 }
3287 
3288 
3289 //------------------------------eq---------------------------------------------
3290 // Structural equality check for Type representations
3291 bool TypeAryPtr::eq( const Type *t ) const {
3292   const TypeAryPtr *p = t->is_aryptr();
3293   return
3294     _ary == p->_ary &&  // Check array
3295     TypeOopPtr::eq(p);  // Check sub-parts
3296 }
3297 
3298 //------------------------------hash-------------------------------------------
3299 // Type-specific hashing function.
3300 int TypeAryPtr::hash(void) const {
3301   return (intptr_t)_ary + TypeOopPtr::hash();
3302 }
3303 
3304 //------------------------------meet-------------------------------------------
3305 // Compute the MEET of two types.  It returns a new Type object.
3306 const Type *TypeAryPtr::xmeet( const Type *t ) const {
3307   // Perform a fast test for common case; meeting the same types together.
3308   if( this == t ) return this;  // Meeting same type-rep?
3309   // Current "this->_base" is Pointer
3310   switch (t->base()) {          // switch on original type
3311 
3312   // Mixing ints & oops happens when javac reuses local variables
3313   case Int:
3314   case Long:
3315   case FloatTop:
3316   case FloatCon:
3317   case FloatBot:
3318   case DoubleTop:
3319   case DoubleCon:
3320   case DoubleBot:
3321   case NarrowOop:
3322   case Bottom:                  // Ye Olde Default
3323     return Type::BOTTOM;
3324   case Top:
3325     return this;
3326 
3327   default:                      // All else is a mistake
3328     typerr(t);
3329 
3330   case OopPtr: {                // Meeting to OopPtrs
3331     // Found a OopPtr type vs self-AryPtr type
3332     const TypeOopPtr *tp = t->is_oopptr();
3333     int offset = meet_offset(tp->offset());
3334     PTR ptr = meet_ptr(tp->ptr());
3335     switch (tp->ptr()) {
3336     case TopPTR:
3337     case AnyNull: {
3338       int instance_id = meet_instance_id(InstanceTop);
3339       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3340                   _ary, _klass, _klass_is_exact, offset, instance_id);
3341     }
3342     case BotPTR:
3343     case NotNull: {
3344       int instance_id = meet_instance_id(tp->instance_id());
3345       return TypeOopPtr::make(ptr, offset, instance_id);
3346     }
3347     default: ShouldNotReachHere();
3348     }
3349   }
3350 
3351   case AnyPtr: {                // Meeting two AnyPtrs
3352     // Found an AnyPtr type vs self-AryPtr type
3353     const TypePtr *tp = t->is_ptr();
3354     int offset = meet_offset(tp->offset());
3355     PTR ptr = meet_ptr(tp->ptr());
3356     switch (tp->ptr()) {
3357     case TopPTR:
3358       return this;
3359     case BotPTR:
3360     case NotNull:
3361       return TypePtr::make(AnyPtr, ptr, offset);
3362     case Null:
3363       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3364       // else fall through to AnyNull
3365     case AnyNull: {
3366       int instance_id = meet_instance_id(InstanceTop);
3367       return make( ptr, (ptr == Constant ? const_oop() : NULL),
3368                   _ary, _klass, _klass_is_exact, offset, instance_id);
3369     }
3370     default: ShouldNotReachHere();
3371     }
3372   }
3373 
3374   case RawPtr: return TypePtr::BOTTOM;
3375 
3376   case AryPtr: {                // Meeting 2 references?
3377     const TypeAryPtr *tap = t->is_aryptr();
3378     int off = meet_offset(tap->offset());
3379     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
3380     PTR ptr = meet_ptr(tap->ptr());
3381     int instance_id = meet_instance_id(tap->instance_id());
3382     ciKlass* lazy_klass = NULL;
3383     if (tary->_elem->isa_int()) {
3384       // Integral array element types have irrelevant lattice relations.
3385       // It is the klass that determines array layout, not the element type.
3386       if (_klass == NULL)
3387         lazy_klass = tap->_klass;
3388       else if (tap->_klass == NULL || tap->_klass == _klass) {
3389         lazy_klass = _klass;
3390       } else {
3391         // Something like byte[int+] meets char[int+].
3392         // This must fall to bottom, not (int[-128..65535])[int+].
3393         instance_id = InstanceBot;
3394         tary = TypeAry::make(Type::BOTTOM, tary->_size);
3395       }
3396     } else // Non integral arrays.
3397     // Must fall to bottom if exact klasses in upper lattice
3398     // are not equal or super klass is exact.
3399     if ( above_centerline(ptr) && klass() != tap->klass() &&
3400          // meet with top[] and bottom[] are processed further down:
3401          tap ->_klass != NULL  && this->_klass != NULL   &&
3402          // both are exact and not equal:
3403         ((tap ->_klass_is_exact && this->_klass_is_exact) ||
3404          // 'tap'  is exact and super or unrelated:
3405          (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3406          // 'this' is exact and super or unrelated:
3407          (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3408       tary = TypeAry::make(Type::BOTTOM, tary->_size);
3409       return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
3410     }
3411 
3412     bool xk = false;
3413     switch (tap->ptr()) {
3414     case AnyNull:
3415     case TopPTR:
3416       // Compute new klass on demand, do not use tap->_klass
3417       xk = (tap->_klass_is_exact | this->_klass_is_exact);
3418       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
3419     case Constant: {
3420       ciObject* o = const_oop();
3421       if( _ptr == Constant ) {
3422         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3423           xk = (klass() == tap->klass());
3424           ptr = NotNull;
3425           o = NULL;
3426           instance_id = InstanceBot;
3427         } else {
3428           xk = true;
3429         }
3430       } else if( above_centerline(_ptr) ) {
3431         o = tap->const_oop();
3432         xk = true;
3433       } else {
3434         // Only precise for identical arrays
3435         xk = this->_klass_is_exact && (klass() == tap->klass());
3436       }
3437       return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
3438     }
3439     case NotNull:
3440     case BotPTR:
3441       // Compute new klass on demand, do not use tap->_klass
3442       if (above_centerline(this->_ptr))
3443             xk = tap->_klass_is_exact;
3444       else if (above_centerline(tap->_ptr))
3445             xk = this->_klass_is_exact;
3446       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3447               (klass() == tap->klass()); // Only precise for identical arrays
3448       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
3449     default: ShouldNotReachHere();
3450     }
3451   }
3452 
3453   // All arrays inherit from Object class
3454   case InstPtr: {
3455     const TypeInstPtr *tp = t->is_instptr();
3456     int offset = meet_offset(tp->offset());
3457     PTR ptr = meet_ptr(tp->ptr());
3458     int instance_id = meet_instance_id(tp->instance_id());
3459     switch (ptr) {
3460     case TopPTR:
3461     case AnyNull:                // Fall 'down' to dual of object klass
3462       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3463         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
3464       } else {
3465         // cannot subclass, so the meet has to fall badly below the centerline
3466         ptr = NotNull;
3467         instance_id = InstanceBot;
3468         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3469       }
3470     case Constant:
3471     case NotNull:
3472     case BotPTR:                // Fall down to object klass
3473       // LCA is object_klass, but if we subclass from the top we can do better
3474       if (above_centerline(tp->ptr())) {
3475         // If 'tp'  is above the centerline and it is Object class
3476         // then we can subclass in the Java class hierarchy.
3477         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3478           // that is, my array type is a subtype of 'tp' klass
3479           return make( ptr, (ptr == Constant ? const_oop() : NULL),
3480                        _ary, _klass, _klass_is_exact, offset, instance_id );
3481         }
3482       }
3483       // The other case cannot happen, since t cannot be a subtype of an array.
3484       // The meet falls down to Object class below centerline.
3485       if( ptr == Constant )
3486          ptr = NotNull;
3487       instance_id = InstanceBot;
3488       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3489     default: typerr(t);
3490     }
3491   }
3492 
3493   case KlassPtr:
3494     return TypeInstPtr::BOTTOM;
3495 
3496   }
3497   return this;                  // Lint noise
3498 }
3499 
3500 //------------------------------xdual------------------------------------------
3501 // Dual: compute field-by-field dual
3502 const Type *TypeAryPtr::xdual() const {
3503   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
3504 }
3505 
3506 //----------------------interface_vs_oop---------------------------------------
3507 #ifdef ASSERT
3508 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3509   const TypeAryPtr* t_aryptr = t->isa_aryptr();
3510   if (t_aryptr) {
3511     return _ary->interface_vs_oop(t_aryptr->_ary);
3512   }
3513   return false;
3514 }
3515 #endif
3516 
3517 //------------------------------dump2------------------------------------------
3518 #ifndef PRODUCT
3519 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3520   _ary->dump2(d,depth,st);
3521   switch( _ptr ) {
3522   case Constant:
3523     const_oop()->print(st);
3524     break;
3525   case BotPTR:
3526     if (!WizardMode && !Verbose) {
3527       if( _klass_is_exact ) st->print(":exact");
3528       break;
3529     }
3530   case TopPTR:
3531   case AnyNull:
3532   case NotNull:
3533     st->print(":%s", ptr_msg[_ptr]);
3534     if( _klass_is_exact ) st->print(":exact");
3535     break;
3536   }
3537 
3538   if( _offset != 0 ) {
3539     int header_size = objArrayOopDesc::header_size() * wordSize;
3540     if( _offset == OffsetTop )       st->print("+undefined");
3541     else if( _offset == OffsetBot )  st->print("+any");
3542     else if( _offset < header_size ) st->print("+%d", _offset);
3543     else {
3544       BasicType basic_elem_type = elem()->basic_type();
3545       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
3546       int elem_size = type2aelembytes(basic_elem_type);
3547       st->print("[%d]", (_offset - array_base)/elem_size);
3548     }
3549   }
3550   st->print(" *");
3551   if (_instance_id == InstanceTop)
3552     st->print(",iid=top");
3553   else if (_instance_id != InstanceBot)
3554     st->print(",iid=%d",_instance_id);
3555 }
3556 #endif
3557 
3558 bool TypeAryPtr::empty(void) const {
3559   if (_ary->empty())       return true;
3560   return TypeOopPtr::empty();
3561 }
3562 
3563 //------------------------------add_offset-------------------------------------
3564 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
3565   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
3566 }
3567 
3568 
3569 //=============================================================================
3570 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
3571 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
3572 
3573 
3574 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
3575   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
3576 }
3577 
3578 //------------------------------hash-------------------------------------------
3579 // Type-specific hashing function.
3580 int TypeNarrowOop::hash(void) const {
3581   return _ptrtype->hash() + 7;
3582 }
3583 
3584 
3585 bool TypeNarrowOop::eq( const Type *t ) const {
3586   const TypeNarrowOop* tc = t->isa_narrowoop();
3587   if (tc != NULL) {
3588     if (_ptrtype->base() != tc->_ptrtype->base()) {
3589       return false;
3590     }
3591     return tc->_ptrtype->eq(_ptrtype);
3592   }
3593   return false;
3594 }
3595 
3596 bool TypeNarrowOop::singleton(void) const {    // TRUE if type is a singleton
3597   return _ptrtype->singleton();
3598 }
3599 
3600 bool TypeNarrowOop::empty(void) const {
3601   return _ptrtype->empty();
3602 }
3603 
3604 //------------------------------xmeet------------------------------------------
3605 // Compute the MEET of two types.  It returns a new Type object.
3606 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
3607   // Perform a fast test for common case; meeting the same types together.
3608   if( this == t ) return this;  // Meeting same type-rep?
3609 
3610 
3611   // Current "this->_base" is OopPtr
3612   switch (t->base()) {          // switch on original type
3613 
3614   case Int:                     // Mixing ints & oops happens when javac
3615   case Long:                    // reuses local variables
3616   case FloatTop:
3617   case FloatCon:
3618   case FloatBot:
3619   case DoubleTop:
3620   case DoubleCon:
3621   case DoubleBot:
3622   case AnyPtr:
3623   case RawPtr:
3624   case OopPtr:
3625   case InstPtr:
3626   case KlassPtr:
3627   case AryPtr:
3628 
3629   case Bottom:                  // Ye Olde Default
3630     return Type::BOTTOM;
3631   case Top:
3632     return this;
3633 
3634   case NarrowOop: {
3635     const Type* result = _ptrtype->xmeet(t->make_ptr());
3636     if (result->isa_ptr()) {
3637       return TypeNarrowOop::make(result->is_ptr());
3638     }
3639     return result;
3640   }
3641 
3642   default:                      // All else is a mistake
3643     typerr(t);
3644 
3645   } // End of switch
3646 
3647   return this;
3648 }
3649 
3650 const Type *TypeNarrowOop::xdual() const {    // Compute dual right now.
3651   const TypePtr* odual = _ptrtype->dual()->is_ptr();
3652   return new TypeNarrowOop(odual);
3653 }
3654 
3655 const Type *TypeNarrowOop::filter( const Type *kills ) const {
3656   if (kills->isa_narrowoop()) {
3657     const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
3658     if (ft->empty())
3659       return Type::TOP;           // Canonical empty value
3660     if (ft->isa_ptr()) {
3661       return make(ft->isa_ptr());
3662     }
3663     return ft;
3664   } else if (kills->isa_ptr()) {
3665     const Type* ft = _ptrtype->join(kills);
3666     if (ft->empty())
3667       return Type::TOP;           // Canonical empty value
3668     return ft;
3669   } else {
3670     return Type::TOP;
3671   }
3672 }
3673 
3674 
3675 intptr_t TypeNarrowOop::get_con() const {
3676   return _ptrtype->get_con();
3677 }
3678 
3679 #ifndef PRODUCT
3680 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
3681   st->print("narrowoop: ");
3682   _ptrtype->dump2(d, depth, st);
3683 }
3684 #endif
3685 
3686 
3687 //=============================================================================
3688 // Convenience common pre-built types.
3689 
3690 // Not-null object klass or below
3691 const TypeKlassPtr *TypeKlassPtr::OBJECT;
3692 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
3693 
3694 //------------------------------TypeKlasPtr------------------------------------
3695 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
3696   : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
3697 }
3698 
3699 //------------------------------make-------------------------------------------
3700 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
3701 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
3702   assert( k != NULL, "Expect a non-NULL klass");
3703   assert(k->is_instance_klass() || k->is_array_klass() ||
3704          k->is_method_klass(), "Incorrect type of klass oop");
3705   TypeKlassPtr *r =
3706     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
3707 
3708   return r;
3709 }
3710 
3711 //------------------------------eq---------------------------------------------
3712 // Structural equality check for Type representations
3713 bool TypeKlassPtr::eq( const Type *t ) const {
3714   const TypeKlassPtr *p = t->is_klassptr();
3715   return
3716     klass()->equals(p->klass()) &&
3717     TypeOopPtr::eq(p);
3718 }
3719 
3720 //------------------------------hash-------------------------------------------
3721 // Type-specific hashing function.
3722 int TypeKlassPtr::hash(void) const {
3723   return klass()->hash() + TypeOopPtr::hash();
3724 }
3725 
3726 
3727 //----------------------compute_klass------------------------------------------
3728 // Compute the defining klass for this class
3729 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
3730   // Compute _klass based on element type.
3731   ciKlass* k_ary = NULL;
3732   const TypeInstPtr *tinst;
3733   const TypeAryPtr *tary;
3734   const Type* el = elem();
3735   if (el->isa_narrowoop()) {
3736     el = el->make_ptr();
3737   }
3738 
3739   // Get element klass
3740   if ((tinst = el->isa_instptr()) != NULL) {
3741     // Compute array klass from element klass
3742     k_ary = ciObjArrayKlass::make(tinst->klass());
3743   } else if ((tary = el->isa_aryptr()) != NULL) {
3744     // Compute array klass from element klass
3745     ciKlass* k_elem = tary->klass();
3746     // If element type is something like bottom[], k_elem will be null.
3747     if (k_elem != NULL)
3748       k_ary = ciObjArrayKlass::make(k_elem);
3749   } else if ((el->base() == Type::Top) ||
3750              (el->base() == Type::Bottom)) {
3751     // element type of Bottom occurs from meet of basic type
3752     // and object; Top occurs when doing join on Bottom.
3753     // Leave k_ary at NULL.
3754   } else {
3755     // Cannot compute array klass directly from basic type,
3756     // since subtypes of TypeInt all have basic type T_INT.
3757 #ifdef ASSERT
3758     if (verify && el->isa_int()) {
3759       // Check simple cases when verifying klass.
3760       BasicType bt = T_ILLEGAL;
3761       if (el == TypeInt::BYTE) {
3762         bt = T_BYTE;
3763       } else if (el == TypeInt::SHORT) {
3764         bt = T_SHORT;
3765       } else if (el == TypeInt::CHAR) {
3766         bt = T_CHAR;
3767       } else if (el == TypeInt::INT) {
3768         bt = T_INT;
3769       } else {
3770         return _klass; // just return specified klass
3771       }
3772       return ciTypeArrayKlass::make(bt);
3773     }
3774 #endif
3775     assert(!el->isa_int(),
3776            "integral arrays must be pre-equipped with a class");
3777     // Compute array klass directly from basic type
3778     k_ary = ciTypeArrayKlass::make(el->basic_type());
3779   }
3780   return k_ary;
3781 }
3782 
3783 //------------------------------klass------------------------------------------
3784 // Return the defining klass for this class
3785 ciKlass* TypeAryPtr::klass() const {
3786   if( _klass ) return _klass;   // Return cached value, if possible
3787 
3788   // Oops, need to compute _klass and cache it
3789   ciKlass* k_ary = compute_klass();
3790 
3791   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
3792     // The _klass field acts as a cache of the underlying
3793     // ciKlass for this array type.  In order to set the field,
3794     // we need to cast away const-ness.
3795     //
3796     // IMPORTANT NOTE: we *never* set the _klass field for the
3797     // type TypeAryPtr::OOPS.  This Type is shared between all
3798     // active compilations.  However, the ciKlass which represents
3799     // this Type is *not* shared between compilations, so caching
3800     // this value would result in fetching a dangling pointer.
3801     //
3802     // Recomputing the underlying ciKlass for each request is
3803     // a bit less efficient than caching, but calls to
3804     // TypeAryPtr::OOPS->klass() are not common enough to matter.
3805     ((TypeAryPtr*)this)->_klass = k_ary;
3806     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
3807         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
3808       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
3809     }
3810   }
3811   return k_ary;
3812 }
3813 
3814 
3815 //------------------------------add_offset-------------------------------------
3816 // Access internals of klass object
3817 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
3818   return make( _ptr, klass(), xadd_offset(offset) );
3819 }
3820 
3821 //------------------------------cast_to_ptr_type-------------------------------
3822 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
3823   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
3824   if( ptr == _ptr ) return this;
3825   return make(ptr, _klass, _offset);
3826 }
3827 
3828 
3829 //-----------------------------cast_to_exactness-------------------------------
3830 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
3831   if( klass_is_exact == _klass_is_exact ) return this;
3832   if (!UseExactTypes)  return this;
3833   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
3834 }
3835 
3836 
3837 //-----------------------------as_instance_type--------------------------------
3838 // Corresponding type for an instance of the given class.
3839 // It will be NotNull, and exact if and only if the klass type is exact.
3840 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
3841   ciKlass* k = klass();
3842   bool    xk = klass_is_exact();
3843   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
3844   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
3845   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
3846   return toop->cast_to_exactness(xk)->is_oopptr();
3847 }
3848 
3849 
3850 //------------------------------xmeet------------------------------------------
3851 // Compute the MEET of two types, return a new Type object.
3852 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
3853   // Perform a fast test for common case; meeting the same types together.
3854   if( this == t ) return this;  // Meeting same type-rep?
3855 
3856   // Current "this->_base" is Pointer
3857   switch (t->base()) {          // switch on original type
3858 
3859   case Int:                     // Mixing ints & oops happens when javac
3860   case Long:                    // reuses local variables
3861   case FloatTop:
3862   case FloatCon:
3863   case FloatBot:
3864   case DoubleTop:
3865   case DoubleCon:
3866   case DoubleBot:
3867   case NarrowOop:
3868   case Bottom:                  // Ye Olde Default
3869     return Type::BOTTOM;
3870   case Top:
3871     return this;
3872 
3873   default:                      // All else is a mistake
3874     typerr(t);
3875 
3876   case RawPtr: return TypePtr::BOTTOM;
3877 
3878   case OopPtr: {                // Meeting to OopPtrs
3879     // Found a OopPtr type vs self-KlassPtr type
3880     const TypePtr *tp = t->is_oopptr();
3881     int offset = meet_offset(tp->offset());
3882     PTR ptr = meet_ptr(tp->ptr());
3883     switch (tp->ptr()) {
3884     case TopPTR:
3885     case AnyNull:
3886       return make(ptr, klass(), offset);
3887     case BotPTR:
3888     case NotNull:
3889       return TypePtr::make(AnyPtr, ptr, offset);
3890     default: typerr(t);
3891     }
3892   }
3893 
3894   case AnyPtr: {                // Meeting to AnyPtrs
3895     // Found an AnyPtr type vs self-KlassPtr type
3896     const TypePtr *tp = t->is_ptr();
3897     int offset = meet_offset(tp->offset());
3898     PTR ptr = meet_ptr(tp->ptr());
3899     switch (tp->ptr()) {
3900     case TopPTR:
3901       return this;
3902     case Null:
3903       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
3904     case AnyNull:
3905       return make( ptr, klass(), offset );
3906     case BotPTR:
3907     case NotNull:
3908       return TypePtr::make(AnyPtr, ptr, offset);
3909     default: typerr(t);
3910     }
3911   }
3912 
3913   case AryPtr:                  // Meet with AryPtr
3914   case InstPtr:                 // Meet with InstPtr
3915     return TypeInstPtr::BOTTOM;
3916 
3917   //
3918   //             A-top         }
3919   //           /   |   \       }  Tops
3920   //       B-top A-any C-top   }
3921   //          | /  |  \ |      }  Any-nulls
3922   //       B-any   |   C-any   }
3923   //          |    |    |
3924   //       B-con A-con C-con   } constants; not comparable across classes
3925   //          |    |    |
3926   //       B-not   |   C-not   }
3927   //          | \  |  / |      }  not-nulls
3928   //       B-bot A-not C-bot   }
3929   //           \   |   /       }  Bottoms
3930   //             A-bot         }
3931   //
3932 
3933   case KlassPtr: {  // Meet two KlassPtr types
3934     const TypeKlassPtr *tkls = t->is_klassptr();
3935     int  off     = meet_offset(tkls->offset());
3936     PTR  ptr     = meet_ptr(tkls->ptr());
3937 
3938     // Check for easy case; klasses are equal (and perhaps not loaded!)
3939     // If we have constants, then we created oops so classes are loaded
3940     // and we can handle the constants further down.  This case handles
3941     // not-loaded classes
3942     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
3943       return make( ptr, klass(), off );
3944     }
3945 
3946     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3947     ciKlass* tkls_klass = tkls->klass();
3948     ciKlass* this_klass = this->klass();
3949     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
3950     assert( this_klass->is_loaded(), "This class should have been loaded.");
3951 
3952     // If 'this' type is above the centerline and is a superclass of the
3953     // other, we can treat 'this' as having the same type as the other.
3954     if ((above_centerline(this->ptr())) &&
3955         tkls_klass->is_subtype_of(this_klass)) {
3956       this_klass = tkls_klass;
3957     }
3958     // If 'tinst' type is above the centerline and is a superclass of the
3959     // other, we can treat 'tinst' as having the same type as the other.
3960     if ((above_centerline(tkls->ptr())) &&
3961         this_klass->is_subtype_of(tkls_klass)) {
3962       tkls_klass = this_klass;
3963     }
3964 
3965     // Check for classes now being equal
3966     if (tkls_klass->equals(this_klass)) {
3967       // If the klasses are equal, the constants may still differ.  Fall to
3968       // NotNull if they do (neither constant is NULL; that is a special case
3969       // handled elsewhere).
3970       ciObject* o = NULL;             // Assume not constant when done
3971       ciObject* this_oop = const_oop();
3972       ciObject* tkls_oop = tkls->const_oop();
3973       if( ptr == Constant ) {
3974         if (this_oop != NULL && tkls_oop != NULL &&
3975             this_oop->equals(tkls_oop) )
3976           o = this_oop;
3977         else if (above_centerline(this->ptr()))
3978           o = tkls_oop;
3979         else if (above_centerline(tkls->ptr()))
3980           o = this_oop;
3981         else
3982           ptr = NotNull;
3983       }
3984       return make( ptr, this_klass, off );
3985     } // Else classes are not equal
3986 
3987     // Since klasses are different, we require the LCA in the Java
3988     // class hierarchy - which means we have to fall to at least NotNull.
3989     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3990       ptr = NotNull;
3991     // Now we find the LCA of Java classes
3992     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
3993     return   make( ptr, k, off );
3994   } // End of case KlassPtr
3995 
3996   } // End of switch
3997   return this;                  // Return the double constant
3998 }
3999 
4000 //------------------------------xdual------------------------------------------
4001 // Dual: compute field-by-field dual
4002 const Type    *TypeKlassPtr::xdual() const {
4003   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4004 }
4005 
4006 //------------------------------dump2------------------------------------------
4007 // Dump Klass Type
4008 #ifndef PRODUCT
4009 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4010   switch( _ptr ) {
4011   case Constant:
4012     st->print("precise ");
4013   case NotNull:
4014     {
4015       const char *name = klass()->name()->as_utf8();
4016       if( name ) {
4017         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4018       } else {
4019         ShouldNotReachHere();
4020       }
4021     }
4022   case BotPTR:
4023     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4024   case TopPTR:
4025   case AnyNull:
4026     st->print(":%s", ptr_msg[_ptr]);
4027     if( _klass_is_exact ) st->print(":exact");
4028     break;
4029   }
4030 
4031   if( _offset ) {               // Dump offset, if any
4032     if( _offset == OffsetBot )      { st->print("+any"); }
4033     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4034     else                            { st->print("+%d", _offset); }
4035   }
4036 
4037   st->print(" *");
4038 }
4039 #endif
4040 
4041 
4042 
4043 //=============================================================================
4044 // Convenience common pre-built types.
4045 
4046 //------------------------------make-------------------------------------------
4047 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4048   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4049 }
4050 
4051 //------------------------------make-------------------------------------------
4052 const TypeFunc *TypeFunc::make(ciMethod* method) {
4053   Compile* C = Compile::current();
4054   const TypeFunc* tf = C->last_tf(method); // check cache
4055   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4056   const TypeTuple *domain;
4057   if (method->is_static()) {
4058     domain = TypeTuple::make_domain(NULL, method->signature());
4059   } else {
4060     domain = TypeTuple::make_domain(method->holder(), method->signature());
4061   }
4062   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4063   tf = TypeFunc::make(domain, range);
4064   C->set_last_tf(method, tf);  // fill cache
4065   return tf;
4066 }
4067 
4068 //------------------------------meet-------------------------------------------
4069 // Compute the MEET of two types.  It returns a new Type object.
4070 const Type *TypeFunc::xmeet( const Type *t ) const {
4071   // Perform a fast test for common case; meeting the same types together.
4072   if( this == t ) return this;  // Meeting same type-rep?
4073 
4074   // Current "this->_base" is Func
4075   switch (t->base()) {          // switch on original type
4076 
4077   case Bottom:                  // Ye Olde Default
4078     return t;
4079 
4080   default:                      // All else is a mistake
4081     typerr(t);
4082 
4083   case Top:
4084     break;
4085   }
4086   return this;                  // Return the double constant
4087 }
4088 
4089 //------------------------------xdual------------------------------------------
4090 // Dual: compute field-by-field dual
4091 const Type *TypeFunc::xdual() const {
4092   return this;
4093 }
4094 
4095 //------------------------------eq---------------------------------------------
4096 // Structural equality check for Type representations
4097 bool TypeFunc::eq( const Type *t ) const {
4098   const TypeFunc *a = (const TypeFunc*)t;
4099   return _domain == a->_domain &&
4100     _range == a->_range;
4101 }
4102 
4103 //------------------------------hash-------------------------------------------
4104 // Type-specific hashing function.
4105 int TypeFunc::hash(void) const {
4106   return (intptr_t)_domain + (intptr_t)_range;
4107 }
4108 
4109 //------------------------------dump2------------------------------------------
4110 // Dump Function Type
4111 #ifndef PRODUCT
4112 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4113   if( _range->_cnt <= Parms )
4114     st->print("void");
4115   else {
4116     uint i;
4117     for (i = Parms; i < _range->_cnt-1; i++) {
4118       _range->field_at(i)->dump2(d,depth,st);
4119       st->print("/");
4120     }
4121     _range->field_at(i)->dump2(d,depth,st);
4122   }
4123   st->print(" ");
4124   st->print("( ");
4125   if( !depth || d[this] ) {     // Check for recursive dump
4126     st->print("...)");
4127     return;
4128   }
4129   d.Insert((void*)this,(void*)this);    // Stop recursion
4130   if (Parms < _domain->_cnt)
4131     _domain->field_at(Parms)->dump2(d,depth-1,st);
4132   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4133     st->print(", ");
4134     _domain->field_at(i)->dump2(d,depth-1,st);
4135   }
4136   st->print(" )");
4137 }
4138 
4139 //------------------------------print_flattened--------------------------------
4140 // Print a 'flattened' signature
4141 static const char * const flat_type_msg[Type::lastype] = {
4142   "bad","control","top","int","long","_", "narrowoop",
4143   "tuple:", "array:",
4144   "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
4145   "func", "abIO", "return_address", "mem",
4146   "float_top", "ftcon:", "flt",
4147   "double_top", "dblcon:", "dbl",
4148   "bottom"
4149 };
4150 
4151 void TypeFunc::print_flattened() const {
4152   if( _range->_cnt <= Parms )
4153     tty->print("void");
4154   else {
4155     uint i;
4156     for (i = Parms; i < _range->_cnt-1; i++)
4157       tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
4158     tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
4159   }
4160   tty->print(" ( ");
4161   if (Parms < _domain->_cnt)
4162     tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
4163   for (uint i = Parms+1; i < _domain->_cnt; i++)
4164     tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
4165   tty->print(" )");
4166 }
4167 #endif
4168 
4169 //------------------------------singleton--------------------------------------
4170 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4171 // constants (Ldi nodes).  Singletons are integer, float or double constants
4172 // or a single symbol.
4173 bool TypeFunc::singleton(void) const {
4174   return false;                 // Never a singleton
4175 }
4176 
4177 bool TypeFunc::empty(void) const {
4178   return false;                 // Never empty
4179 }
4180 
4181 
4182 BasicType TypeFunc::return_type() const{
4183   if (range()->cnt() == TypeFunc::Parms) {
4184     return T_VOID;
4185   }
4186   return range()->field_at(TypeFunc::Parms)->basic_type();
4187 }