src/share/vm/opto/vectornode.cpp
Index Unified diffs Context diffs Sdiffs Wdiffs Patch New Old Previous File Next File 7119644 Cdiff src/share/vm/opto/vectornode.cpp

src/share/vm/opto/vectornode.cpp

Print this page

        

*** 1,7 **** /* ! * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. --- 1,7 ---- /* ! * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation.
*** 26,170 **** #include "opto/connode.hpp" #include "opto/vectornode.hpp" //------------------------------VectorNode-------------------------------------- - // Return vector type for an element type and vector length. - const Type* VectorNode::vect_type(BasicType elt_bt, uint len) { - assert(len <= VectorNode::max_vlen(elt_bt), "len in range"); - switch(elt_bt) { - case T_BOOLEAN: - case T_BYTE: - switch(len) { - case 2: return TypeInt::CHAR; - case 4: return TypeInt::INT; - case 8: return TypeLong::LONG; - } - break; - case T_CHAR: - case T_SHORT: - switch(len) { - case 2: return TypeInt::INT; - case 4: return TypeLong::LONG; - } - break; - case T_INT: - switch(len) { - case 2: return TypeLong::LONG; - } - break; - case T_LONG: - break; - case T_FLOAT: - switch(len) { - case 2: return Type::DOUBLE; - } - break; - case T_DOUBLE: - break; - } - ShouldNotReachHere(); - return NULL; - } - - // Scalar promotion - VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) { - BasicType bt = opd_t->array_element_basic_type(); - assert(vlen <= VectorNode::max_vlen(bt), "vlen in range"); - switch (bt) { - case T_BOOLEAN: - case T_BYTE: - if (vlen == 16) return new (C, 2) Replicate16BNode(s); - if (vlen == 8) return new (C, 2) Replicate8BNode(s); - if (vlen == 4) return new (C, 2) Replicate4BNode(s); - break; - case T_CHAR: - if (vlen == 8) return new (C, 2) Replicate8CNode(s); - if (vlen == 4) return new (C, 2) Replicate4CNode(s); - if (vlen == 2) return new (C, 2) Replicate2CNode(s); - break; - case T_SHORT: - if (vlen == 8) return new (C, 2) Replicate8SNode(s); - if (vlen == 4) return new (C, 2) Replicate4SNode(s); - if (vlen == 2) return new (C, 2) Replicate2SNode(s); - break; - case T_INT: - if (vlen == 4) return new (C, 2) Replicate4INode(s); - if (vlen == 2) return new (C, 2) Replicate2INode(s); - break; - case T_LONG: - if (vlen == 2) return new (C, 2) Replicate2LNode(s); - break; - case T_FLOAT: - if (vlen == 4) return new (C, 2) Replicate4FNode(s); - if (vlen == 2) return new (C, 2) Replicate2FNode(s); - break; - case T_DOUBLE: - if (vlen == 2) return new (C, 2) Replicate2DNode(s); - break; - } - ShouldNotReachHere(); - return NULL; - } - - // Return initial Pack node. Additional operands added with add_opd() calls. - PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) { - BasicType bt = opd_t->array_element_basic_type(); - switch (bt) { - case T_BOOLEAN: - case T_BYTE: - return new (C, 2) PackBNode(s); - case T_CHAR: - return new (C, 2) PackCNode(s); - case T_SHORT: - return new (C, 2) PackSNode(s); - case T_INT: - return new (C, 2) PackINode(s); - case T_LONG: - return new (C, 2) PackLNode(s); - case T_FLOAT: - return new (C, 2) PackFNode(s); - case T_DOUBLE: - return new (C, 2) PackDNode(s); - } - ShouldNotReachHere(); - return NULL; - } - - // Create a binary tree form for Packs. [lo, hi) (half-open) range - Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) { - int ct = hi - lo; - assert(is_power_of_2(ct), "power of 2"); - int mid = lo + ct/2; - Node* n1 = ct == 2 ? in(lo) : binaryTreePack(C, lo, mid); - Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi ); - int rslt_bsize = ct * type2aelembytes(elt_basic_type()); - if (bottom_type()->is_floatingpoint()) { - switch (rslt_bsize) { - case 8: return new (C, 3) PackFNode(n1, n2); - case 16: return new (C, 3) PackDNode(n1, n2); - } - } else { - assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long"); - switch (rslt_bsize) { - case 2: return new (C, 3) Pack2x1BNode(n1, n2); - case 4: return new (C, 3) Pack2x2BNode(n1, n2); - case 8: return new (C, 3) PackINode(n1, n2); - case 16: return new (C, 3) PackLNode(n1, n2); - } - } - ShouldNotReachHere(); - return NULL; - } - // Return the vector operator for the specified scalar operation ! // and vector length. One use is to check if the code generator // supports the vector operation. ! int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) { ! BasicType bt = opd_t->array_element_basic_type(); ! if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt))) ! return 0; // unimplemented switch (sopc) { case Op_AddI: switch (bt) { case T_BOOLEAN: case T_BYTE: return Op_AddVB; --- 26,39 ---- #include "opto/connode.hpp" #include "opto/vectornode.hpp" //------------------------------VectorNode-------------------------------------- // Return the vector operator for the specified scalar operation ! // and vector length. Also used to check if the code generator // supports the vector operation. ! int VectorNode::opcode(int sopc, uint vlen, BasicType bt) { switch (sopc) { case Op_AddI: switch (bt) { case T_BOOLEAN: case T_BYTE: return Op_AddVB;
*** 219,235 **** case T_CHAR: return Op_LShiftVC; case T_SHORT: return Op_LShiftVS; case T_INT: return Op_LShiftVI; } ShouldNotReachHere(); ! case Op_URShiftI: switch (bt) { case T_BOOLEAN: ! case T_BYTE: return Op_URShiftVB; ! case T_CHAR: return Op_URShiftVC; ! case T_SHORT: return Op_URShiftVS; ! case T_INT: return Op_URShiftVI; } ShouldNotReachHere(); case Op_AndI: case Op_AndL: return Op_AndV; --- 88,104 ---- case T_CHAR: return Op_LShiftVC; case T_SHORT: return Op_LShiftVS; case T_INT: return Op_LShiftVI; } ShouldNotReachHere(); ! case Op_RShiftI: switch (bt) { case T_BOOLEAN: ! case T_BYTE: return Op_RShiftVB; ! case T_CHAR: return Op_RShiftVC; ! case T_SHORT: return Op_RShiftVS; ! case T_INT: return Op_RShiftVI; } ShouldNotReachHere(); case Op_AndI: case Op_AndL: return Op_AndV;
*** 245,464 **** case Op_LoadS: case Op_LoadI: case Op_LoadL: case Op_LoadF: case Op_LoadD: ! return VectorLoadNode::opcode(sopc, vlen); case Op_StoreB: case Op_StoreC: case Op_StoreI: case Op_StoreL: case Op_StoreF: case Op_StoreD: ! return VectorStoreNode::opcode(sopc, vlen); } return 0; // Unimplemented } ! // Helper for above. ! int VectorLoadNode::opcode(int sopc, uint vlen) { ! switch (sopc) { ! case Op_LoadB: ! switch (vlen) { ! case 2: return 0; // Unimplemented ! case 4: return Op_Load4B; ! case 8: return Op_Load8B; ! case 16: return Op_Load16B; } ! break; ! case Op_LoadUS: ! switch (vlen) { ! case 2: return Op_Load2C; ! case 4: return Op_Load4C; ! case 8: return Op_Load8C; ! } ! break; ! case Op_LoadS: ! switch (vlen) { ! case 2: return Op_Load2S; ! case 4: return Op_Load4S; ! case 8: return Op_Load8S; ! } ! break; ! case Op_LoadI: ! switch (vlen) { ! case 2: return Op_Load2I; ! case 4: return Op_Load4I; ! } ! break; ! case Op_LoadL: ! if (vlen == 2) return Op_Load2L; ! break; ! case Op_LoadF: ! switch (vlen) { ! case 2: return Op_Load2F; ! case 4: return Op_Load4F; ! } ! break; ! case Op_LoadD: ! if (vlen == 2) return Op_Load2D; ! break; ! } ! return 0; // Unimplemented } - // Helper for above - int VectorStoreNode::opcode(int sopc, uint vlen) { - switch (sopc) { - case Op_StoreB: - switch (vlen) { - case 2: return 0; // Unimplemented - case 4: return Op_Store4B; - case 8: return Op_Store8B; - case 16: return Op_Store16B; - } - break; - case Op_StoreC: - switch (vlen) { - case 2: return Op_Store2C; - case 4: return Op_Store4C; - case 8: return Op_Store8C; - } - break; - case Op_StoreI: - switch (vlen) { - case 2: return Op_Store2I; - case 4: return Op_Store4I; - } - break; - case Op_StoreL: - if (vlen == 2) return Op_Store2L; - break; - case Op_StoreF: - switch (vlen) { - case 2: return Op_Store2F; - case 4: return Op_Store4F; - } - break; - case Op_StoreD: - if (vlen == 2) return Op_Store2D; - break; - } - return 0; // Unimplemented - } - // Return the vector version of a scalar operation node. ! VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) { ! int vopc = opcode(sopc, vlen, opd_t); switch (vopc) { ! case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen); ! case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen); ! case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen); ! case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen); ! case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen); ! case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen); ! case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen); ! case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen); ! case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen); ! case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen); ! case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen); ! case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen); ! case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen); ! case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen); ! case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen); ! case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen); ! case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen); ! case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen); ! case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen); ! case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen); ! case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen); ! case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen); ! case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen); ! case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen); ! case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen); ! case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen); ! case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type()); ! case Op_OrV: return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type()); ! case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type()); } ShouldNotReachHere(); return NULL; } ! // Return the vector version of a scalar load node. ! VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem, ! Node* adr, const TypePtr* atyp, uint vlen) { ! int vopc = opcode(opc, vlen); ! switch(vopc) { ! case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp); ! case Op_Load8B: return new (C, 3) Load8BNode(ctl, mem, adr, atyp); ! case Op_Load4B: return new (C, 3) Load4BNode(ctl, mem, adr, atyp); ! case Op_Load8C: return new (C, 3) Load8CNode(ctl, mem, adr, atyp); ! case Op_Load4C: return new (C, 3) Load4CNode(ctl, mem, adr, atyp); ! case Op_Load2C: return new (C, 3) Load2CNode(ctl, mem, adr, atyp); ! case Op_Load8S: return new (C, 3) Load8SNode(ctl, mem, adr, atyp); ! case Op_Load4S: return new (C, 3) Load4SNode(ctl, mem, adr, atyp); ! case Op_Load2S: return new (C, 3) Load2SNode(ctl, mem, adr, atyp); ! case Op_Load4I: return new (C, 3) Load4INode(ctl, mem, adr, atyp); ! case Op_Load2I: return new (C, 3) Load2INode(ctl, mem, adr, atyp); ! ! case Op_Load2L: return new (C, 3) Load2LNode(ctl, mem, adr, atyp); ! ! case Op_Load4F: return new (C, 3) Load4FNode(ctl, mem, adr, atyp); ! case Op_Load2F: return new (C, 3) Load2FNode(ctl, mem, adr, atyp); ! ! case Op_Load2D: return new (C, 3) Load2DNode(ctl, mem, adr, atyp); } ShouldNotReachHere(); return NULL; } // Return the vector version of a scalar store node. ! VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem, Node* adr, const TypePtr* atyp, Node* val, uint vlen) { ! int vopc = opcode(opc, vlen); ! ! switch(vopc) { ! case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val); ! case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val); ! case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val); ! ! case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val); ! case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val); ! case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val); ! ! case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val); ! case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val); ! ! case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val); ! ! case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val); ! case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val); ! ! case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val); ! } ! ShouldNotReachHere(); ! return NULL; } // Extract a scalar element of vector. ! Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) { ! BasicType bt = opd_t->array_element_basic_type(); ! assert(position < VectorNode::max_vlen(bt), "pos in range"); ConINode* pos = ConINode::make(C, (int)position); switch (bt) { case T_BOOLEAN: case T_BYTE: return new (C, 3) ExtractBNode(v, pos); --- 114,297 ---- case Op_LoadS: case Op_LoadI: case Op_LoadL: case Op_LoadF: case Op_LoadD: ! return Op_LoadVector; case Op_StoreB: case Op_StoreC: case Op_StoreI: case Op_StoreL: case Op_StoreF: case Op_StoreD: ! return Op_StoreVector; } return 0; // Unimplemented } ! bool VectorNode::implemented(int opc, uint vlen, BasicType bt) { ! if (is_java_primitive(bt) && ! (vlen > 1) && is_power_of_2(vlen) && ! Matcher::vector_size_supported(bt, vlen)) { ! int vopc = VectorNode::opcode(opc, vlen, bt); ! return vopc > 0 && Matcher::has_match_rule(vopc); } ! return false; } // Return the vector version of a scalar operation node. ! VectorNode* VectorNode::make(Compile* C, int opc, Node* n1, Node* n2, uint vlen, BasicType bt) { ! const TypeVect* vt = TypeVect::make(bt, vlen); ! int vopc = VectorNode::opcode(opc, vlen, bt); switch (vopc) { ! case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vt); ! case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vt); ! case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vt); ! case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vt); ! case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vt); ! case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vt); ! case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vt); ! case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vt); ! case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vt); ! case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vt); ! case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vt); ! case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vt); ! case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vt); ! case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vt); ! case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vt); ! case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vt); ! case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vt); ! case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vt); ! case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vt); ! case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vt); ! case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vt); ! case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vt); ! case Op_RShiftVB: return new (C, 3) RShiftVBNode(n1, n2, vt); ! case Op_RShiftVC: return new (C, 3) RShiftVCNode(n1, n2, vt); ! case Op_RShiftVS: return new (C, 3) RShiftVSNode(n1, n2, vt); ! case Op_RShiftVI: return new (C, 3) RShiftVINode(n1, n2, vt); ! case Op_AndV: return new (C, 3) AndVNode(n1, n2, vt); ! case Op_OrV: return new (C, 3) OrVNode (n1, n2, vt); ! case Op_XorV: return new (C, 3) XorVNode(n1, n2, vt); } ShouldNotReachHere(); return NULL; + } ! // Scalar promotion ! VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) { ! BasicType bt = opd_t->array_element_basic_type(); ! const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen) ! : TypeVect::make(bt, vlen); ! switch (bt) { ! case T_BOOLEAN: ! case T_BYTE: ! return new (C, 2) ReplicateBNode(s, vt); ! case T_CHAR: ! return new (C, 2) ReplicateCNode(s, vt); ! case T_SHORT: ! return new (C, 2) ReplicateSNode(s, vt); ! case T_INT: ! return new (C, 2) ReplicateINode(s, vt); ! case T_LONG: ! return new (C, 2) ReplicateLNode(s, vt); ! case T_FLOAT: ! return new (C, 2) ReplicateFNode(s, vt); ! case T_DOUBLE: ! return new (C, 2) ReplicateDNode(s, vt); ! } ! ShouldNotReachHere(); ! return NULL; ! } ! // Return initial Pack node. Additional operands added with add_opd() calls. ! PackNode* PackNode::make(Compile* C, Node* s, uint vlen, BasicType bt) { ! const TypeVect* vt = TypeVect::make(bt, vlen); ! switch (bt) { ! case T_BOOLEAN: ! case T_BYTE: ! return new (C, vlen+1) PackBNode(s, vt); ! case T_CHAR: ! return new (C, vlen+1) PackCNode(s, vt); ! case T_SHORT: ! return new (C, vlen+1) PackSNode(s, vt); ! case T_INT: ! return new (C, vlen+1) PackINode(s, vt); ! case T_LONG: ! return new (C, vlen+1) PackLNode(s, vt); ! case T_FLOAT: ! return new (C, vlen+1) PackFNode(s, vt); ! case T_DOUBLE: ! return new (C, vlen+1) PackDNode(s, vt); ! } ! ShouldNotReachHere(); ! return NULL; ! } ! // Create a binary tree form for Packs. [lo, hi) (half-open) range ! Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) { ! int ct = hi - lo; ! assert(is_power_of_2(ct), "power of 2"); ! if (ct == 2) { ! PackNode* pk = PackNode::make(C, in(lo), 2, vect_type()->element_basic_type()); ! pk->add_opd(1, in(lo+1)); ! return pk; ! } else { ! int mid = lo + ct/2; ! Node* n1 = binaryTreePack(C, lo, mid); ! Node* n2 = binaryTreePack(C, mid, hi ); ! BasicType bt = vect_type()->element_basic_type(); ! switch (bt) { ! case T_BOOLEAN: ! case T_BYTE: ! return new (C, 3) PackSNode(n1, n2, TypeVect::make(T_SHORT, 2)); ! case T_CHAR: ! case T_SHORT: ! return new (C, 3) PackINode(n1, n2, TypeVect::make(T_INT, 2)); ! case T_INT: ! return new (C, 3) PackLNode(n1, n2, TypeVect::make(T_LONG, 2)); ! case T_LONG: ! return new (C, 3) Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2)); ! case T_FLOAT: ! return new (C, 3) PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2)); ! case T_DOUBLE: ! return new (C, 3) Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2)); } ShouldNotReachHere(); + } return NULL; } + // Return the vector version of a scalar load node. + LoadVectorNode* LoadVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem, + Node* adr, const TypePtr* atyp, uint vlen, BasicType bt) { + const TypeVect* vt = TypeVect::make(bt, vlen); + return new (C, 3) LoadVectorNode(ctl, mem, adr, atyp, vt); + return NULL; + } + // Return the vector version of a scalar store node. ! StoreVectorNode* StoreVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem, Node* adr, const TypePtr* atyp, Node* val, uint vlen) { ! return new (C, 4) StoreVectorNode(ctl, mem, adr, atyp, val); } // Extract a scalar element of vector. ! Node* ExtractNode::make(Compile* C, Node* v, uint position, BasicType bt) { ! assert((int)position < Matcher::max_vector_size(bt), "pos in range"); ConINode* pos = ConINode::make(C, (int)position); switch (bt) { case T_BOOLEAN: case T_BYTE: return new (C, 3) ExtractBNode(v, pos);
*** 476,480 **** --- 309,314 ---- return new (C, 3) ExtractDNode(v, pos); } ShouldNotReachHere(); return NULL; } +
src/share/vm/opto/vectornode.cpp
Index Unified diffs Context diffs Sdiffs Wdiffs Patch New Old Previous File Next File