--- old/src/share/vm/opto/vectornode.cpp Sat Jun 2 20:04:23 2012 +++ new/src/share/vm/opto/vectornode.cpp Sat Jun 2 20:04:22 2012 @@ -1,5 +1,5 @@ /* - * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. + * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it @@ -28,141 +28,10 @@ //------------------------------VectorNode-------------------------------------- -// Return vector type for an element type and vector length. -const Type* VectorNode::vect_type(BasicType elt_bt, uint len) { - assert(len <= VectorNode::max_vlen(elt_bt), "len in range"); - switch(elt_bt) { - case T_BOOLEAN: - case T_BYTE: - switch(len) { - case 2: return TypeInt::CHAR; - case 4: return TypeInt::INT; - case 8: return TypeLong::LONG; - } - break; - case T_CHAR: - case T_SHORT: - switch(len) { - case 2: return TypeInt::INT; - case 4: return TypeLong::LONG; - } - break; - case T_INT: - switch(len) { - case 2: return TypeLong::LONG; - } - break; - case T_LONG: - break; - case T_FLOAT: - switch(len) { - case 2: return Type::DOUBLE; - } - break; - case T_DOUBLE: - break; - } - ShouldNotReachHere(); - return NULL; -} - -// Scalar promotion -VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) { - BasicType bt = opd_t->array_element_basic_type(); - assert(vlen <= VectorNode::max_vlen(bt), "vlen in range"); - switch (bt) { - case T_BOOLEAN: - case T_BYTE: - if (vlen == 16) return new (C, 2) Replicate16BNode(s); - if (vlen == 8) return new (C, 2) Replicate8BNode(s); - if (vlen == 4) return new (C, 2) Replicate4BNode(s); - break; - case T_CHAR: - if (vlen == 8) return new (C, 2) Replicate8CNode(s); - if (vlen == 4) return new (C, 2) Replicate4CNode(s); - if (vlen == 2) return new (C, 2) Replicate2CNode(s); - break; - case T_SHORT: - if (vlen == 8) return new (C, 2) Replicate8SNode(s); - if (vlen == 4) return new (C, 2) Replicate4SNode(s); - if (vlen == 2) return new (C, 2) Replicate2SNode(s); - break; - case T_INT: - if (vlen == 4) return new (C, 2) Replicate4INode(s); - if (vlen == 2) return new (C, 2) Replicate2INode(s); - break; - case T_LONG: - if (vlen == 2) return new (C, 2) Replicate2LNode(s); - break; - case T_FLOAT: - if (vlen == 4) return new (C, 2) Replicate4FNode(s); - if (vlen == 2) return new (C, 2) Replicate2FNode(s); - break; - case T_DOUBLE: - if (vlen == 2) return new (C, 2) Replicate2DNode(s); - break; - } - ShouldNotReachHere(); - return NULL; -} - -// Return initial Pack node. Additional operands added with add_opd() calls. -PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) { - BasicType bt = opd_t->array_element_basic_type(); - switch (bt) { - case T_BOOLEAN: - case T_BYTE: - return new (C, 2) PackBNode(s); - case T_CHAR: - return new (C, 2) PackCNode(s); - case T_SHORT: - return new (C, 2) PackSNode(s); - case T_INT: - return new (C, 2) PackINode(s); - case T_LONG: - return new (C, 2) PackLNode(s); - case T_FLOAT: - return new (C, 2) PackFNode(s); - case T_DOUBLE: - return new (C, 2) PackDNode(s); - } - ShouldNotReachHere(); - return NULL; -} - -// Create a binary tree form for Packs. [lo, hi) (half-open) range -Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) { - int ct = hi - lo; - assert(is_power_of_2(ct), "power of 2"); - int mid = lo + ct/2; - Node* n1 = ct == 2 ? in(lo) : binaryTreePack(C, lo, mid); - Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi ); - int rslt_bsize = ct * type2aelembytes(elt_basic_type()); - if (bottom_type()->is_floatingpoint()) { - switch (rslt_bsize) { - case 8: return new (C, 3) PackFNode(n1, n2); - case 16: return new (C, 3) PackDNode(n1, n2); - } - } else { - assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long"); - switch (rslt_bsize) { - case 2: return new (C, 3) Pack2x1BNode(n1, n2); - case 4: return new (C, 3) Pack2x2BNode(n1, n2); - case 8: return new (C, 3) PackINode(n1, n2); - case 16: return new (C, 3) PackLNode(n1, n2); - } - } - ShouldNotReachHere(); - return NULL; -} - // Return the vector operator for the specified scalar operation -// and vector length. One use is to check if the code generator +// and vector length. Also used to check if the code generator // supports the vector operation. -int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) { - BasicType bt = opd_t->array_element_basic_type(); - if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt))) - return 0; // unimplemented +int VectorNode::opcode(int sopc, uint vlen, BasicType bt) { switch (sopc) { case Op_AddI: switch (bt) { @@ -221,13 +90,13 @@ case T_INT: return Op_LShiftVI; } ShouldNotReachHere(); - case Op_URShiftI: + case Op_RShiftI: switch (bt) { case T_BOOLEAN: - case T_BYTE: return Op_URShiftVB; - case T_CHAR: return Op_URShiftVC; - case T_SHORT: return Op_URShiftVS; - case T_INT: return Op_URShiftVI; + case T_BYTE: return Op_RShiftVB; + case T_CHAR: return Op_RShiftVC; + case T_SHORT: return Op_RShiftVS; + case T_INT: return Op_RShiftVI; } ShouldNotReachHere(); case Op_AndI: @@ -247,7 +116,7 @@ case Op_LoadL: case Op_LoadF: case Op_LoadD: - return VectorLoadNode::opcode(sopc, vlen); + return Op_LoadVector; case Op_StoreB: case Op_StoreC: @@ -255,208 +124,172 @@ case Op_StoreL: case Op_StoreF: case Op_StoreD: - return VectorStoreNode::opcode(sopc, vlen); + return Op_StoreVector; } return 0; // Unimplemented } -// Helper for above. -int VectorLoadNode::opcode(int sopc, uint vlen) { - switch (sopc) { - case Op_LoadB: - switch (vlen) { - case 2: return 0; // Unimplemented - case 4: return Op_Load4B; - case 8: return Op_Load8B; - case 16: return Op_Load16B; - } - break; - case Op_LoadUS: - switch (vlen) { - case 2: return Op_Load2C; - case 4: return Op_Load4C; - case 8: return Op_Load8C; - } - break; - case Op_LoadS: - switch (vlen) { - case 2: return Op_Load2S; - case 4: return Op_Load4S; - case 8: return Op_Load8S; - } - break; - case Op_LoadI: - switch (vlen) { - case 2: return Op_Load2I; - case 4: return Op_Load4I; - } - break; - case Op_LoadL: - if (vlen == 2) return Op_Load2L; - break; - case Op_LoadF: - switch (vlen) { - case 2: return Op_Load2F; - case 4: return Op_Load4F; - } - break; - case Op_LoadD: - if (vlen == 2) return Op_Load2D; - break; +bool VectorNode::implemented(int opc, uint vlen, BasicType bt) { + if (is_java_primitive(bt) && + (vlen > 1) && is_power_of_2(vlen) && + Matcher::vector_size_supported(bt, vlen)) { + int vopc = VectorNode::opcode(opc, vlen, bt); + return vopc > 0 && Matcher::has_match_rule(vopc); } - return 0; // Unimplemented + return false; } -// Helper for above -int VectorStoreNode::opcode(int sopc, uint vlen) { - switch (sopc) { - case Op_StoreB: - switch (vlen) { - case 2: return 0; // Unimplemented - case 4: return Op_Store4B; - case 8: return Op_Store8B; - case 16: return Op_Store16B; - } - break; - case Op_StoreC: - switch (vlen) { - case 2: return Op_Store2C; - case 4: return Op_Store4C; - case 8: return Op_Store8C; - } - break; - case Op_StoreI: - switch (vlen) { - case 2: return Op_Store2I; - case 4: return Op_Store4I; - } - break; - case Op_StoreL: - if (vlen == 2) return Op_Store2L; - break; - case Op_StoreF: - switch (vlen) { - case 2: return Op_Store2F; - case 4: return Op_Store4F; - } - break; - case Op_StoreD: - if (vlen == 2) return Op_Store2D; - break; - } - return 0; // Unimplemented -} - // Return the vector version of a scalar operation node. -VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) { - int vopc = opcode(sopc, vlen, opd_t); +VectorNode* VectorNode::make(Compile* C, int opc, Node* n1, Node* n2, uint vlen, BasicType bt) { + const TypeVect* vt = TypeVect::make(bt, vlen); + int vopc = VectorNode::opcode(opc, vlen, bt); switch (vopc) { - case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen); - case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen); - case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen); - case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen); - case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen); - case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen); - case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen); + case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vt); + case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vt); + case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vt); + case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vt); + case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vt); + case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vt); + case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vt); - case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen); - case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen); - case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen); - case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen); - case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen); - case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen); - case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen); + case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vt); + case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vt); + case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vt); + case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vt); + case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vt); + case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vt); + case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vt); - case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen); - case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen); + case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vt); + case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vt); - case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen); - case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen); + case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vt); + case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vt); - case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen); - case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen); - case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen); - case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen); + case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vt); + case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vt); + case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vt); + case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vt); - case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen); - case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen); - case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen); - case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen); + case Op_RShiftVB: return new (C, 3) RShiftVBNode(n1, n2, vt); + case Op_RShiftVC: return new (C, 3) RShiftVCNode(n1, n2, vt); + case Op_RShiftVS: return new (C, 3) RShiftVSNode(n1, n2, vt); + case Op_RShiftVI: return new (C, 3) RShiftVINode(n1, n2, vt); - case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type()); - case Op_OrV: return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type()); - case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type()); + case Op_AndV: return new (C, 3) AndVNode(n1, n2, vt); + case Op_OrV: return new (C, 3) OrVNode (n1, n2, vt); + case Op_XorV: return new (C, 3) XorVNode(n1, n2, vt); } ShouldNotReachHere(); return NULL; + } -// Return the vector version of a scalar load node. -VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem, - Node* adr, const TypePtr* atyp, uint vlen) { - int vopc = opcode(opc, vlen); +// Scalar promotion +VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) { + BasicType bt = opd_t->array_element_basic_type(); + const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen) + : TypeVect::make(bt, vlen); + switch (bt) { + case T_BOOLEAN: + case T_BYTE: + return new (C, 2) ReplicateBNode(s, vt); + case T_CHAR: + return new (C, 2) ReplicateCNode(s, vt); + case T_SHORT: + return new (C, 2) ReplicateSNode(s, vt); + case T_INT: + return new (C, 2) ReplicateINode(s, vt); + case T_LONG: + return new (C, 2) ReplicateLNode(s, vt); + case T_FLOAT: + return new (C, 2) ReplicateFNode(s, vt); + case T_DOUBLE: + return new (C, 2) ReplicateDNode(s, vt); + } + ShouldNotReachHere(); + return NULL; +} - switch(vopc) { - case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp); - case Op_Load8B: return new (C, 3) Load8BNode(ctl, mem, adr, atyp); - case Op_Load4B: return new (C, 3) Load4BNode(ctl, mem, adr, atyp); +// Return initial Pack node. Additional operands added with add_opd() calls. +PackNode* PackNode::make(Compile* C, Node* s, uint vlen, BasicType bt) { + const TypeVect* vt = TypeVect::make(bt, vlen); + switch (bt) { + case T_BOOLEAN: + case T_BYTE: + return new (C, vlen+1) PackBNode(s, vt); + case T_CHAR: + return new (C, vlen+1) PackCNode(s, vt); + case T_SHORT: + return new (C, vlen+1) PackSNode(s, vt); + case T_INT: + return new (C, vlen+1) PackINode(s, vt); + case T_LONG: + return new (C, vlen+1) PackLNode(s, vt); + case T_FLOAT: + return new (C, vlen+1) PackFNode(s, vt); + case T_DOUBLE: + return new (C, vlen+1) PackDNode(s, vt); + } + ShouldNotReachHere(); + return NULL; +} - case Op_Load8C: return new (C, 3) Load8CNode(ctl, mem, adr, atyp); - case Op_Load4C: return new (C, 3) Load4CNode(ctl, mem, adr, atyp); - case Op_Load2C: return new (C, 3) Load2CNode(ctl, mem, adr, atyp); +// Create a binary tree form for Packs. [lo, hi) (half-open) range +Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) { + int ct = hi - lo; + assert(is_power_of_2(ct), "power of 2"); + if (ct == 2) { + PackNode* pk = PackNode::make(C, in(lo), 2, vect_type()->element_basic_type()); + pk->add_opd(1, in(lo+1)); + return pk; - case Op_Load8S: return new (C, 3) Load8SNode(ctl, mem, adr, atyp); - case Op_Load4S: return new (C, 3) Load4SNode(ctl, mem, adr, atyp); - case Op_Load2S: return new (C, 3) Load2SNode(ctl, mem, adr, atyp); + } else { + int mid = lo + ct/2; + Node* n1 = binaryTreePack(C, lo, mid); + Node* n2 = binaryTreePack(C, mid, hi ); - case Op_Load4I: return new (C, 3) Load4INode(ctl, mem, adr, atyp); - case Op_Load2I: return new (C, 3) Load2INode(ctl, mem, adr, atyp); - - case Op_Load2L: return new (C, 3) Load2LNode(ctl, mem, adr, atyp); - - case Op_Load4F: return new (C, 3) Load4FNode(ctl, mem, adr, atyp); - case Op_Load2F: return new (C, 3) Load2FNode(ctl, mem, adr, atyp); - - case Op_Load2D: return new (C, 3) Load2DNode(ctl, mem, adr, atyp); + BasicType bt = vect_type()->element_basic_type(); + switch (bt) { + case T_BOOLEAN: + case T_BYTE: + return new (C, 3) PackSNode(n1, n2, TypeVect::make(T_SHORT, 2)); + case T_CHAR: + case T_SHORT: + return new (C, 3) PackINode(n1, n2, TypeVect::make(T_INT, 2)); + case T_INT: + return new (C, 3) PackLNode(n1, n2, TypeVect::make(T_LONG, 2)); + case T_LONG: + return new (C, 3) Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2)); + case T_FLOAT: + return new (C, 3) PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2)); + case T_DOUBLE: + return new (C, 3) Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2)); + } + ShouldNotReachHere(); } - ShouldNotReachHere(); return NULL; } +// Return the vector version of a scalar load node. +LoadVectorNode* LoadVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem, + Node* adr, const TypePtr* atyp, uint vlen, BasicType bt) { + const TypeVect* vt = TypeVect::make(bt, vlen); + return new (C, 3) LoadVectorNode(ctl, mem, adr, atyp, vt); + return NULL; +} + // Return the vector version of a scalar store node. -VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem, +StoreVectorNode* StoreVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem, Node* adr, const TypePtr* atyp, Node* val, uint vlen) { - int vopc = opcode(opc, vlen); - - switch(vopc) { - case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val); - case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val); - case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val); - - case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val); - case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val); - case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val); - - case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val); - case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val); - - case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val); - - case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val); - case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val); - - case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val); - } - ShouldNotReachHere(); - return NULL; + return new (C, 4) StoreVectorNode(ctl, mem, adr, atyp, val); } // Extract a scalar element of vector. -Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) { - BasicType bt = opd_t->array_element_basic_type(); - assert(position < VectorNode::max_vlen(bt), "pos in range"); +Node* ExtractNode::make(Compile* C, Node* v, uint position, BasicType bt) { + assert((int)position < Matcher::max_vector_size(bt), "pos in range"); ConINode* pos = ConINode::make(C, (int)position); switch (bt) { case T_BOOLEAN: @@ -478,3 +311,4 @@ ShouldNotReachHere(); return NULL; } +