1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/type.hpp"
  38 #include "runtime/atomic.hpp"
  39 #include "runtime/os.hpp"
  40 #ifdef TARGET_ARCH_MODEL_x86_32
  41 # include "adfiles/ad_x86_32.hpp"
  42 #endif
  43 #ifdef TARGET_ARCH_MODEL_x86_64
  44 # include "adfiles/ad_x86_64.hpp"
  45 #endif
  46 #ifdef TARGET_ARCH_MODEL_sparc
  47 # include "adfiles/ad_sparc.hpp"
  48 #endif
  49 #ifdef TARGET_ARCH_MODEL_zero
  50 # include "adfiles/ad_zero.hpp"
  51 #endif
  52 #ifdef TARGET_ARCH_MODEL_arm
  53 # include "adfiles/ad_arm.hpp"
  54 #endif
  55 #ifdef TARGET_ARCH_MODEL_ppc
  56 # include "adfiles/ad_ppc.hpp"
  57 #endif
  58 
  59 OptoReg::Name OptoReg::c_frame_pointer;
  60 
  61 
  62 
  63 const int Matcher::base2reg[Type::lastype] = {
  64   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
  65   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
  66   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
  67   0, 0/*abio*/,
  68   Op_RegP /* Return address */, 0, /* the memories */
  69   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
  70   0  /*bottom*/
  71 };
  72 
  73 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  74 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  75 RegMask Matcher::STACK_ONLY_mask;
  76 RegMask Matcher::c_frame_ptr_mask;
  77 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  78 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  79 
  80 //---------------------------Matcher-------------------------------------------
  81 Matcher::Matcher( Node_List &proj_list ) :
  82   PhaseTransform( Phase::Ins_Select ),
  83 #ifdef ASSERT
  84   _old2new_map(C->comp_arena()),
  85   _new2old_map(C->comp_arena()),
  86 #endif
  87   _shared_nodes(C->comp_arena()),
  88   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  89   _swallowed(swallowed),
  90   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  91   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  92   _must_clone(must_clone), _proj_list(proj_list),
  93   _register_save_policy(register_save_policy),
  94   _c_reg_save_policy(c_reg_save_policy),
  95   _register_save_type(register_save_type),
  96   _ruleName(ruleName),
  97   _allocation_started(false),
  98   _states_arena(Chunk::medium_size),
  99   _visited(&_states_arena),
 100   _shared(&_states_arena),
 101   _dontcare(&_states_arena) {
 102   C->set_matcher(this);
 103 
 104   idealreg2spillmask  [Op_RegI] = NULL;
 105   idealreg2spillmask  [Op_RegN] = NULL;
 106   idealreg2spillmask  [Op_RegL] = NULL;
 107   idealreg2spillmask  [Op_RegF] = NULL;
 108   idealreg2spillmask  [Op_RegD] = NULL;
 109   idealreg2spillmask  [Op_RegP] = NULL;
 110 
 111   idealreg2debugmask  [Op_RegI] = NULL;
 112   idealreg2debugmask  [Op_RegN] = NULL;
 113   idealreg2debugmask  [Op_RegL] = NULL;
 114   idealreg2debugmask  [Op_RegF] = NULL;
 115   idealreg2debugmask  [Op_RegD] = NULL;
 116   idealreg2debugmask  [Op_RegP] = NULL;
 117 
 118   idealreg2mhdebugmask[Op_RegI] = NULL;
 119   idealreg2mhdebugmask[Op_RegN] = NULL;
 120   idealreg2mhdebugmask[Op_RegL] = NULL;
 121   idealreg2mhdebugmask[Op_RegF] = NULL;
 122   idealreg2mhdebugmask[Op_RegD] = NULL;
 123   idealreg2mhdebugmask[Op_RegP] = NULL;
 124 
 125   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 126 }
 127 
 128 //------------------------------warp_incoming_stk_arg------------------------
 129 // This warps a VMReg into an OptoReg::Name
 130 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 131   OptoReg::Name warped;
 132   if( reg->is_stack() ) {  // Stack slot argument?
 133     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 134     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 135     if( warped >= _in_arg_limit )
 136       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 137     if (!RegMask::can_represent(warped)) {
 138       // the compiler cannot represent this method's calling sequence
 139       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 140       return OptoReg::Bad;
 141     }
 142     return warped;
 143   }
 144   return OptoReg::as_OptoReg(reg);
 145 }
 146 
 147 //---------------------------compute_old_SP------------------------------------
 148 OptoReg::Name Compile::compute_old_SP() {
 149   int fixed    = fixed_slots();
 150   int preserve = in_preserve_stack_slots();
 151   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 152 }
 153 
 154 
 155 
 156 #ifdef ASSERT
 157 void Matcher::verify_new_nodes_only(Node* xroot) {
 158   // Make sure that the new graph only references new nodes
 159   ResourceMark rm;
 160   Unique_Node_List worklist;
 161   VectorSet visited(Thread::current()->resource_area());
 162   worklist.push(xroot);
 163   while (worklist.size() > 0) {
 164     Node* n = worklist.pop();
 165     visited <<= n->_idx;
 166     assert(C->node_arena()->contains(n), "dead node");
 167     for (uint j = 0; j < n->req(); j++) {
 168       Node* in = n->in(j);
 169       if (in != NULL) {
 170         assert(C->node_arena()->contains(in), "dead node");
 171         if (!visited.test(in->_idx)) {
 172           worklist.push(in);
 173         }
 174       }
 175     }
 176   }
 177 }
 178 #endif
 179 
 180 
 181 //---------------------------match---------------------------------------------
 182 void Matcher::match( ) {
 183   if( MaxLabelRootDepth < 100 ) { // Too small?
 184     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 185     MaxLabelRootDepth = 100;
 186   }
 187   // One-time initialization of some register masks.
 188   init_spill_mask( C->root()->in(1) );
 189   _return_addr_mask = return_addr();
 190 #ifdef _LP64
 191   // Pointers take 2 slots in 64-bit land
 192   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 193 #endif
 194 
 195   // Map a Java-signature return type into return register-value
 196   // machine registers for 0, 1 and 2 returned values.
 197   const TypeTuple *range = C->tf()->range();
 198   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 199     // Get ideal-register return type
 200     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
 201     // Get machine return register
 202     uint sop = C->start()->Opcode();
 203     OptoRegPair regs = return_value(ireg, false);
 204 
 205     // And mask for same
 206     _return_value_mask = RegMask(regs.first());
 207     if( OptoReg::is_valid(regs.second()) )
 208       _return_value_mask.Insert(regs.second());
 209   }
 210 
 211   // ---------------
 212   // Frame Layout
 213 
 214   // Need the method signature to determine the incoming argument types,
 215   // because the types determine which registers the incoming arguments are
 216   // in, and this affects the matched code.
 217   const TypeTuple *domain = C->tf()->domain();
 218   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 219   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 220   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 221   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 222   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 223   uint i;
 224   for( i = 0; i<argcnt; i++ ) {
 225     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 226   }
 227 
 228   // Pass array of ideal registers and length to USER code (from the AD file)
 229   // that will convert this to an array of register numbers.
 230   const StartNode *start = C->start();
 231   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 232 #ifdef ASSERT
 233   // Sanity check users' calling convention.  Real handy while trying to
 234   // get the initial port correct.
 235   { for (uint i = 0; i<argcnt; i++) {
 236       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 237         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 238         _parm_regs[i].set_bad();
 239         continue;
 240       }
 241       VMReg parm_reg = vm_parm_regs[i].first();
 242       assert(parm_reg->is_valid(), "invalid arg?");
 243       if (parm_reg->is_reg()) {
 244         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 245         assert(can_be_java_arg(opto_parm_reg) ||
 246                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 247                opto_parm_reg == inline_cache_reg(),
 248                "parameters in register must be preserved by runtime stubs");
 249       }
 250       for (uint j = 0; j < i; j++) {
 251         assert(parm_reg != vm_parm_regs[j].first(),
 252                "calling conv. must produce distinct regs");
 253       }
 254     }
 255   }
 256 #endif
 257 
 258   // Do some initial frame layout.
 259 
 260   // Compute the old incoming SP (may be called FP) as
 261   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 262   _old_SP = C->compute_old_SP();
 263   assert( is_even(_old_SP), "must be even" );
 264 
 265   // Compute highest incoming stack argument as
 266   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 267   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 268   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 269   for( i = 0; i < argcnt; i++ ) {
 270     // Permit args to have no register
 271     _calling_convention_mask[i].Clear();
 272     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 273       continue;
 274     }
 275     // calling_convention returns stack arguments as a count of
 276     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 277     // the allocators point of view, taking into account all the
 278     // preserve area, locks & pad2.
 279 
 280     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 281     if( OptoReg::is_valid(reg1))
 282       _calling_convention_mask[i].Insert(reg1);
 283 
 284     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 285     if( OptoReg::is_valid(reg2))
 286       _calling_convention_mask[i].Insert(reg2);
 287 
 288     // Saved biased stack-slot register number
 289     _parm_regs[i].set_pair(reg2, reg1);
 290   }
 291 
 292   // Finally, make sure the incoming arguments take up an even number of
 293   // words, in case the arguments or locals need to contain doubleword stack
 294   // slots.  The rest of the system assumes that stack slot pairs (in
 295   // particular, in the spill area) which look aligned will in fact be
 296   // aligned relative to the stack pointer in the target machine.  Double
 297   // stack slots will always be allocated aligned.
 298   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 299 
 300   // Compute highest outgoing stack argument as
 301   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 302   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 303   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 304 
 305   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
 306     // the compiler cannot represent this method's calling sequence
 307     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 308   }
 309 
 310   if (C->failing())  return;  // bailed out on incoming arg failure
 311 
 312   // ---------------
 313   // Collect roots of matcher trees.  Every node for which
 314   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 315   // can be a valid interior of some tree.
 316   find_shared( C->root() );
 317   find_shared( C->top() );
 318 
 319   C->print_method("Before Matching");
 320 
 321   // Create new ideal node ConP #NULL even if it does exist in old space
 322   // to avoid false sharing if the corresponding mach node is not used.
 323   // The corresponding mach node is only used in rare cases for derived
 324   // pointers.
 325   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 326 
 327   // Swap out to old-space; emptying new-space
 328   Arena *old = C->node_arena()->move_contents(C->old_arena());
 329 
 330   // Save debug and profile information for nodes in old space:
 331   _old_node_note_array = C->node_note_array();
 332   if (_old_node_note_array != NULL) {
 333     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 334                            (C->comp_arena(), _old_node_note_array->length(),
 335                             0, NULL));
 336   }
 337 
 338   // Pre-size the new_node table to avoid the need for range checks.
 339   grow_new_node_array(C->unique());
 340 
 341   // Reset node counter so MachNodes start with _idx at 0
 342   int nodes = C->unique(); // save value
 343   C->set_unique(0);
 344 
 345   // Recursively match trees from old space into new space.
 346   // Correct leaves of new-space Nodes; they point to old-space.
 347   _visited.Clear();             // Clear visit bits for xform call
 348   C->set_cached_top_node(xform( C->top(), nodes ));
 349   if (!C->failing()) {
 350     Node* xroot =        xform( C->root(), 1 );
 351     if (xroot == NULL) {
 352       Matcher::soft_match_failure();  // recursive matching process failed
 353       C->record_method_not_compilable("instruction match failed");
 354     } else {
 355       // During matching shared constants were attached to C->root()
 356       // because xroot wasn't available yet, so transfer the uses to
 357       // the xroot.
 358       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 359         Node* n = C->root()->fast_out(j);
 360         if (C->node_arena()->contains(n)) {
 361           assert(n->in(0) == C->root(), "should be control user");
 362           n->set_req(0, xroot);
 363           --j;
 364           --jmax;
 365         }
 366       }
 367 
 368       // Generate new mach node for ConP #NULL
 369       assert(new_ideal_null != NULL, "sanity");
 370       _mach_null = match_tree(new_ideal_null);
 371       // Don't set control, it will confuse GCM since there are no uses.
 372       // The control will be set when this node is used first time
 373       // in find_base_for_derived().
 374       assert(_mach_null != NULL, "");
 375 
 376       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 377 
 378 #ifdef ASSERT
 379       verify_new_nodes_only(xroot);
 380 #endif
 381     }
 382   }
 383   if (C->top() == NULL || C->root() == NULL) {
 384     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 385   }
 386   if (C->failing()) {
 387     // delete old;
 388     old->destruct_contents();
 389     return;
 390   }
 391   assert( C->top(), "" );
 392   assert( C->root(), "" );
 393   validate_null_checks();
 394 
 395   // Now smoke old-space
 396   NOT_DEBUG( old->destruct_contents() );
 397 
 398   // ------------------------
 399   // Set up save-on-entry registers
 400   Fixup_Save_On_Entry( );
 401 }
 402 
 403 
 404 //------------------------------Fixup_Save_On_Entry----------------------------
 405 // The stated purpose of this routine is to take care of save-on-entry
 406 // registers.  However, the overall goal of the Match phase is to convert into
 407 // machine-specific instructions which have RegMasks to guide allocation.
 408 // So what this procedure really does is put a valid RegMask on each input
 409 // to the machine-specific variations of all Return, TailCall and Halt
 410 // instructions.  It also adds edgs to define the save-on-entry values (and of
 411 // course gives them a mask).
 412 
 413 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 414   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 415   // Do all the pre-defined register masks
 416   rms[TypeFunc::Control  ] = RegMask::Empty;
 417   rms[TypeFunc::I_O      ] = RegMask::Empty;
 418   rms[TypeFunc::Memory   ] = RegMask::Empty;
 419   rms[TypeFunc::ReturnAdr] = ret_adr;
 420   rms[TypeFunc::FramePtr ] = fp;
 421   return rms;
 422 }
 423 
 424 //---------------------------init_first_stack_mask-----------------------------
 425 // Create the initial stack mask used by values spilling to the stack.
 426 // Disallow any debug info in outgoing argument areas by setting the
 427 // initial mask accordingly.
 428 void Matcher::init_first_stack_mask() {
 429 
 430   // Allocate storage for spill masks as masks for the appropriate load type.
 431   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
 432 
 433   idealreg2spillmask  [Op_RegN] = &rms[0];
 434   idealreg2spillmask  [Op_RegI] = &rms[1];
 435   idealreg2spillmask  [Op_RegL] = &rms[2];
 436   idealreg2spillmask  [Op_RegF] = &rms[3];
 437   idealreg2spillmask  [Op_RegD] = &rms[4];
 438   idealreg2spillmask  [Op_RegP] = &rms[5];
 439 
 440   idealreg2debugmask  [Op_RegN] = &rms[6];
 441   idealreg2debugmask  [Op_RegI] = &rms[7];
 442   idealreg2debugmask  [Op_RegL] = &rms[8];
 443   idealreg2debugmask  [Op_RegF] = &rms[9];
 444   idealreg2debugmask  [Op_RegD] = &rms[10];
 445   idealreg2debugmask  [Op_RegP] = &rms[11];
 446 
 447   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 448   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 449   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 450   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 451   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 452   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 453 
 454   OptoReg::Name i;
 455 
 456   // At first, start with the empty mask
 457   C->FIRST_STACK_mask().Clear();
 458 
 459   // Add in the incoming argument area
 460   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 461   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
 462     C->FIRST_STACK_mask().Insert(i);
 463 
 464   // Add in all bits past the outgoing argument area
 465   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
 466             "must be able to represent all call arguments in reg mask");
 467   init = _out_arg_limit;
 468   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 469     C->FIRST_STACK_mask().Insert(i);
 470 
 471   // Finally, set the "infinite stack" bit.
 472   C->FIRST_STACK_mask().set_AllStack();
 473 
 474   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 475 #ifdef _LP64
 476   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 477    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 478 #endif
 479   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 480    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 481   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 482    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
 483   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 484    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 485   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 486    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
 487   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 488    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 489 
 490    if (UseFPUForSpilling) {
 491      // This mask logic assumes that the spill operations are
 492      // symmetric and that the registers involved are the same size.
 493      // On sparc for instance we may have to use 64 bit moves will
 494      // kill 2 registers when used with F0-F31.
 495      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 496      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 497 #ifdef _LP64
 498      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 499      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 500      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 501      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 502 #else
 503      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 504 #ifdef ARM
 505      // ARM has support for moving 64bit values between a pair of
 506      // integer registers and a double register
 507      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 508      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 509 #endif
 510 #endif
 511    }
 512 
 513   // Make up debug masks.  Any spill slot plus callee-save registers.
 514   // Caller-save registers are assumed to be trashable by the various
 515   // inline-cache fixup routines.
 516   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 517   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 518   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 519   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 520   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 521   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 522 
 523   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 524   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 525   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 526   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 527   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 528   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 529 
 530   // Prevent stub compilations from attempting to reference
 531   // callee-saved registers from debug info
 532   bool exclude_soe = !Compile::current()->is_method_compilation();
 533 
 534   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 535     // registers the caller has to save do not work
 536     if( _register_save_policy[i] == 'C' ||
 537         _register_save_policy[i] == 'A' ||
 538         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 539       idealreg2debugmask  [Op_RegN]->Remove(i);
 540       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 541       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 542       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 543       idealreg2debugmask  [Op_RegD]->Remove(i);
 544       idealreg2debugmask  [Op_RegP]->Remove(i);
 545 
 546       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 547       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 548       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 549       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 550       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 551       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 552     }
 553   }
 554 
 555   // Subtract the register we use to save the SP for MethodHandle
 556   // invokes to from the debug mask.
 557   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 558   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 559   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 560   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 561   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 562   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 563   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 564 }
 565 
 566 //---------------------------is_save_on_entry----------------------------------
 567 bool Matcher::is_save_on_entry( int reg ) {
 568   return
 569     _register_save_policy[reg] == 'E' ||
 570     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 571     // Also save argument registers in the trampolining stubs
 572     (C->save_argument_registers() && is_spillable_arg(reg));
 573 }
 574 
 575 //---------------------------Fixup_Save_On_Entry-------------------------------
 576 void Matcher::Fixup_Save_On_Entry( ) {
 577   init_first_stack_mask();
 578 
 579   Node *root = C->root();       // Short name for root
 580   // Count number of save-on-entry registers.
 581   uint soe_cnt = number_of_saved_registers();
 582   uint i;
 583 
 584   // Find the procedure Start Node
 585   StartNode *start = C->start();
 586   assert( start, "Expect a start node" );
 587 
 588   // Save argument registers in the trampolining stubs
 589   if( C->save_argument_registers() )
 590     for( i = 0; i < _last_Mach_Reg; i++ )
 591       if( is_spillable_arg(i) )
 592         soe_cnt++;
 593 
 594   // Input RegMask array shared by all Returns.
 595   // The type for doubles and longs has a count of 2, but
 596   // there is only 1 returned value
 597   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 598   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 599   // Returns have 0 or 1 returned values depending on call signature.
 600   // Return register is specified by return_value in the AD file.
 601   if (ret_edge_cnt > TypeFunc::Parms)
 602     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 603 
 604   // Input RegMask array shared by all Rethrows.
 605   uint reth_edge_cnt = TypeFunc::Parms+1;
 606   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 607   // Rethrow takes exception oop only, but in the argument 0 slot.
 608   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 609 #ifdef _LP64
 610   // Need two slots for ptrs in 64-bit land
 611   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 612 #endif
 613 
 614   // Input RegMask array shared by all TailCalls
 615   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 616   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 617 
 618   // Input RegMask array shared by all TailJumps
 619   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 620   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 621 
 622   // TailCalls have 2 returned values (target & moop), whose masks come
 623   // from the usual MachNode/MachOper mechanism.  Find a sample
 624   // TailCall to extract these masks and put the correct masks into
 625   // the tail_call_rms array.
 626   for( i=1; i < root->req(); i++ ) {
 627     MachReturnNode *m = root->in(i)->as_MachReturn();
 628     if( m->ideal_Opcode() == Op_TailCall ) {
 629       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 630       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 631       break;
 632     }
 633   }
 634 
 635   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 636   // from the usual MachNode/MachOper mechanism.  Find a sample
 637   // TailJump to extract these masks and put the correct masks into
 638   // the tail_jump_rms array.
 639   for( i=1; i < root->req(); i++ ) {
 640     MachReturnNode *m = root->in(i)->as_MachReturn();
 641     if( m->ideal_Opcode() == Op_TailJump ) {
 642       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 643       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 644       break;
 645     }
 646   }
 647 
 648   // Input RegMask array shared by all Halts
 649   uint halt_edge_cnt = TypeFunc::Parms;
 650   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 651 
 652   // Capture the return input masks into each exit flavor
 653   for( i=1; i < root->req(); i++ ) {
 654     MachReturnNode *exit = root->in(i)->as_MachReturn();
 655     switch( exit->ideal_Opcode() ) {
 656       case Op_Return   : exit->_in_rms = ret_rms;  break;
 657       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 658       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 659       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 660       case Op_Halt     : exit->_in_rms = halt_rms; break;
 661       default          : ShouldNotReachHere();
 662     }
 663   }
 664 
 665   // Next unused projection number from Start.
 666   int proj_cnt = C->tf()->domain()->cnt();
 667 
 668   // Do all the save-on-entry registers.  Make projections from Start for
 669   // them, and give them a use at the exit points.  To the allocator, they
 670   // look like incoming register arguments.
 671   for( i = 0; i < _last_Mach_Reg; i++ ) {
 672     if( is_save_on_entry(i) ) {
 673 
 674       // Add the save-on-entry to the mask array
 675       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 676       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 677       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 678       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 679       // Halts need the SOE registers, but only in the stack as debug info.
 680       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 681       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 682 
 683       Node *mproj;
 684 
 685       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 686       // into a single RegD.
 687       if( (i&1) == 0 &&
 688           _register_save_type[i  ] == Op_RegF &&
 689           _register_save_type[i+1] == Op_RegF &&
 690           is_save_on_entry(i+1) ) {
 691         // Add other bit for double
 692         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 693         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 694         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 695         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 696         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 697         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 698         proj_cnt += 2;          // Skip 2 for doubles
 699       }
 700       else if( (i&1) == 1 &&    // Else check for high half of double
 701                _register_save_type[i-1] == Op_RegF &&
 702                _register_save_type[i  ] == Op_RegF &&
 703                is_save_on_entry(i-1) ) {
 704         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 705         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 706         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 707         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 708         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 709         mproj = C->top();
 710       }
 711       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 712       // into a single RegL.
 713       else if( (i&1) == 0 &&
 714           _register_save_type[i  ] == Op_RegI &&
 715           _register_save_type[i+1] == Op_RegI &&
 716         is_save_on_entry(i+1) ) {
 717         // Add other bit for long
 718         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 719         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 720         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 721         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 722         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 723         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 724         proj_cnt += 2;          // Skip 2 for longs
 725       }
 726       else if( (i&1) == 1 &&    // Else check for high half of long
 727                _register_save_type[i-1] == Op_RegI &&
 728                _register_save_type[i  ] == Op_RegI &&
 729                is_save_on_entry(i-1) ) {
 730         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 731         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 732         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 733         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 734         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 735         mproj = C->top();
 736       } else {
 737         // Make a projection for it off the Start
 738         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 739       }
 740 
 741       ret_edge_cnt ++;
 742       reth_edge_cnt ++;
 743       tail_call_edge_cnt ++;
 744       tail_jump_edge_cnt ++;
 745       halt_edge_cnt ++;
 746 
 747       // Add a use of the SOE register to all exit paths
 748       for( uint j=1; j < root->req(); j++ )
 749         root->in(j)->add_req(mproj);
 750     } // End of if a save-on-entry register
 751   } // End of for all machine registers
 752 }
 753 
 754 //------------------------------init_spill_mask--------------------------------
 755 void Matcher::init_spill_mask( Node *ret ) {
 756   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 757 
 758   OptoReg::c_frame_pointer = c_frame_pointer();
 759   c_frame_ptr_mask = c_frame_pointer();
 760 #ifdef _LP64
 761   // pointers are twice as big
 762   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 763 #endif
 764 
 765   // Start at OptoReg::stack0()
 766   STACK_ONLY_mask.Clear();
 767   OptoReg::Name init = OptoReg::stack2reg(0);
 768   // STACK_ONLY_mask is all stack bits
 769   OptoReg::Name i;
 770   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 771     STACK_ONLY_mask.Insert(i);
 772   // Also set the "infinite stack" bit.
 773   STACK_ONLY_mask.set_AllStack();
 774 
 775   // Copy the register names over into the shared world
 776   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 777     // SharedInfo::regName[i] = regName[i];
 778     // Handy RegMasks per machine register
 779     mreg2regmask[i].Insert(i);
 780   }
 781 
 782   // Grab the Frame Pointer
 783   Node *fp  = ret->in(TypeFunc::FramePtr);
 784   Node *mem = ret->in(TypeFunc::Memory);
 785   const TypePtr* atp = TypePtr::BOTTOM;
 786   // Share frame pointer while making spill ops
 787   set_shared(fp);
 788 
 789   // Compute generic short-offset Loads
 790 #ifdef _LP64
 791   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 792 #endif
 793   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
 794   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
 795   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
 796   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
 797   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 798   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 799          spillD != NULL && spillP != NULL, "");
 800 
 801   // Get the ADLC notion of the right regmask, for each basic type.
 802 #ifdef _LP64
 803   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 804 #endif
 805   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 806   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 807   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 808   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 809   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 810 }
 811 
 812 #ifdef ASSERT
 813 static void match_alias_type(Compile* C, Node* n, Node* m) {
 814   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 815   const TypePtr* nat = n->adr_type();
 816   const TypePtr* mat = m->adr_type();
 817   int nidx = C->get_alias_index(nat);
 818   int midx = C->get_alias_index(mat);
 819   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 820   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 821     for (uint i = 1; i < n->req(); i++) {
 822       Node* n1 = n->in(i);
 823       const TypePtr* n1at = n1->adr_type();
 824       if (n1at != NULL) {
 825         nat = n1at;
 826         nidx = C->get_alias_index(n1at);
 827       }
 828     }
 829   }
 830   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 831   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 832     switch (n->Opcode()) {
 833     case Op_PrefetchRead:
 834     case Op_PrefetchWrite:
 835     case Op_PrefetchAllocation:
 836       nidx = Compile::AliasIdxRaw;
 837       nat = TypeRawPtr::BOTTOM;
 838       break;
 839     }
 840   }
 841   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 842     switch (n->Opcode()) {
 843     case Op_ClearArray:
 844       midx = Compile::AliasIdxRaw;
 845       mat = TypeRawPtr::BOTTOM;
 846       break;
 847     }
 848   }
 849   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 850     switch (n->Opcode()) {
 851     case Op_Return:
 852     case Op_Rethrow:
 853     case Op_Halt:
 854     case Op_TailCall:
 855     case Op_TailJump:
 856       nidx = Compile::AliasIdxBot;
 857       nat = TypePtr::BOTTOM;
 858       break;
 859     }
 860   }
 861   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 862     switch (n->Opcode()) {
 863     case Op_StrComp:
 864     case Op_StrEquals:
 865     case Op_StrIndexOf:
 866     case Op_AryEq:
 867     case Op_MemBarVolatile:
 868     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 869       nidx = Compile::AliasIdxTop;
 870       nat = NULL;
 871       break;
 872     }
 873   }
 874   if (nidx != midx) {
 875     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 876       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 877       n->dump();
 878       m->dump();
 879     }
 880     assert(C->subsume_loads() && C->must_alias(nat, midx),
 881            "must not lose alias info when matching");
 882   }
 883 }
 884 #endif
 885 
 886 
 887 //------------------------------MStack-----------------------------------------
 888 // State and MStack class used in xform() and find_shared() iterative methods.
 889 enum Node_State { Pre_Visit,  // node has to be pre-visited
 890                       Visit,  // visit node
 891                  Post_Visit,  // post-visit node
 892              Alt_Post_Visit   // alternative post-visit path
 893                 };
 894 
 895 class MStack: public Node_Stack {
 896   public:
 897     MStack(int size) : Node_Stack(size) { }
 898 
 899     void push(Node *n, Node_State ns) {
 900       Node_Stack::push(n, (uint)ns);
 901     }
 902     void push(Node *n, Node_State ns, Node *parent, int indx) {
 903       ++_inode_top;
 904       if ((_inode_top + 1) >= _inode_max) grow();
 905       _inode_top->node = parent;
 906       _inode_top->indx = (uint)indx;
 907       ++_inode_top;
 908       _inode_top->node = n;
 909       _inode_top->indx = (uint)ns;
 910     }
 911     Node *parent() {
 912       pop();
 913       return node();
 914     }
 915     Node_State state() const {
 916       return (Node_State)index();
 917     }
 918     void set_state(Node_State ns) {
 919       set_index((uint)ns);
 920     }
 921 };
 922 
 923 
 924 //------------------------------xform------------------------------------------
 925 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 926 // Node in new-space.  Given a new-space Node, recursively walk his children.
 927 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 928 Node *Matcher::xform( Node *n, int max_stack ) {
 929   // Use one stack to keep both: child's node/state and parent's node/index
 930   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 931   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 932 
 933   while (mstack.is_nonempty()) {
 934     n = mstack.node();          // Leave node on stack
 935     Node_State nstate = mstack.state();
 936     if (nstate == Visit) {
 937       mstack.set_state(Post_Visit);
 938       Node *oldn = n;
 939       // Old-space or new-space check
 940       if (!C->node_arena()->contains(n)) {
 941         // Old space!
 942         Node* m;
 943         if (has_new_node(n)) {  // Not yet Label/Reduced
 944           m = new_node(n);
 945         } else {
 946           if (!is_dontcare(n)) { // Matcher can match this guy
 947             // Calls match special.  They match alone with no children.
 948             // Their children, the incoming arguments, match normally.
 949             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
 950             if (C->failing())  return NULL;
 951             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
 952           } else {                  // Nothing the matcher cares about
 953             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
 954               // Convert to machine-dependent projection
 955               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
 956 #ifdef ASSERT
 957               _new2old_map.map(m->_idx, n);
 958 #endif
 959               if (m->in(0) != NULL) // m might be top
 960                 collect_null_checks(m, n);
 961             } else {                // Else just a regular 'ol guy
 962               m = n->clone();       // So just clone into new-space
 963 #ifdef ASSERT
 964               _new2old_map.map(m->_idx, n);
 965 #endif
 966               // Def-Use edges will be added incrementally as Uses
 967               // of this node are matched.
 968               assert(m->outcnt() == 0, "no Uses of this clone yet");
 969             }
 970           }
 971 
 972           set_new_node(n, m);       // Map old to new
 973           if (_old_node_note_array != NULL) {
 974             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
 975                                                   n->_idx);
 976             C->set_node_notes_at(m->_idx, nn);
 977           }
 978           debug_only(match_alias_type(C, n, m));
 979         }
 980         n = m;    // n is now a new-space node
 981         mstack.set_node(n);
 982       }
 983 
 984       // New space!
 985       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
 986 
 987       int i;
 988       // Put precedence edges on stack first (match them last).
 989       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
 990         Node *m = oldn->in(i);
 991         if (m == NULL) break;
 992         // set -1 to call add_prec() instead of set_req() during Step1
 993         mstack.push(m, Visit, n, -1);
 994       }
 995 
 996       // For constant debug info, I'd rather have unmatched constants.
 997       int cnt = n->req();
 998       JVMState* jvms = n->jvms();
 999       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1000 
1001       // Now do only debug info.  Clone constants rather than matching.
1002       // Constants are represented directly in the debug info without
1003       // the need for executable machine instructions.
1004       // Monitor boxes are also represented directly.
1005       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1006         Node *m = n->in(i);          // Get input
1007         int op = m->Opcode();
1008         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1009         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
1010             op == Op_ConF || op == Op_ConD || op == Op_ConL
1011             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1012             ) {
1013           m = m->clone();
1014 #ifdef ASSERT
1015           _new2old_map.map(m->_idx, n);
1016 #endif
1017           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1018           mstack.push(m->in(0), Visit, m, 0);
1019         } else {
1020           mstack.push(m, Visit, n, i);
1021         }
1022       }
1023 
1024       // And now walk his children, and convert his inputs to new-space.
1025       for( ; i >= 0; --i ) { // For all normal inputs do
1026         Node *m = n->in(i);  // Get input
1027         if(m != NULL)
1028           mstack.push(m, Visit, n, i);
1029       }
1030 
1031     }
1032     else if (nstate == Post_Visit) {
1033       // Set xformed input
1034       Node *p = mstack.parent();
1035       if (p != NULL) { // root doesn't have parent
1036         int i = (int)mstack.index();
1037         if (i >= 0)
1038           p->set_req(i, n); // required input
1039         else if (i == -1)
1040           p->add_prec(n);   // precedence input
1041         else
1042           ShouldNotReachHere();
1043       }
1044       mstack.pop(); // remove processed node from stack
1045     }
1046     else {
1047       ShouldNotReachHere();
1048     }
1049   } // while (mstack.is_nonempty())
1050   return n; // Return new-space Node
1051 }
1052 
1053 //------------------------------warp_outgoing_stk_arg------------------------
1054 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1055   // Convert outgoing argument location to a pre-biased stack offset
1056   if (reg->is_stack()) {
1057     OptoReg::Name warped = reg->reg2stack();
1058     // Adjust the stack slot offset to be the register number used
1059     // by the allocator.
1060     warped = OptoReg::add(begin_out_arg_area, warped);
1061     // Keep track of the largest numbered stack slot used for an arg.
1062     // Largest used slot per call-site indicates the amount of stack
1063     // that is killed by the call.
1064     if( warped >= out_arg_limit_per_call )
1065       out_arg_limit_per_call = OptoReg::add(warped,1);
1066     if (!RegMask::can_represent(warped)) {
1067       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1068       return OptoReg::Bad;
1069     }
1070     return warped;
1071   }
1072   return OptoReg::as_OptoReg(reg);
1073 }
1074 
1075 
1076 //------------------------------match_sfpt-------------------------------------
1077 // Helper function to match call instructions.  Calls match special.
1078 // They match alone with no children.  Their children, the incoming
1079 // arguments, match normally.
1080 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1081   MachSafePointNode *msfpt = NULL;
1082   MachCallNode      *mcall = NULL;
1083   uint               cnt;
1084   // Split out case for SafePoint vs Call
1085   CallNode *call;
1086   const TypeTuple *domain;
1087   ciMethod*        method = NULL;
1088   bool             is_method_handle_invoke = false;  // for special kill effects
1089   if( sfpt->is_Call() ) {
1090     call = sfpt->as_Call();
1091     domain = call->tf()->domain();
1092     cnt = domain->cnt();
1093 
1094     // Match just the call, nothing else
1095     MachNode *m = match_tree(call);
1096     if (C->failing())  return NULL;
1097     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1098 
1099     // Copy data from the Ideal SafePoint to the machine version
1100     mcall = m->as_MachCall();
1101 
1102     mcall->set_tf(         call->tf());
1103     mcall->set_entry_point(call->entry_point());
1104     mcall->set_cnt(        call->cnt());
1105 
1106     if( mcall->is_MachCallJava() ) {
1107       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1108       const CallJavaNode *call_java =  call->as_CallJava();
1109       method = call_java->method();
1110       mcall_java->_method = method;
1111       mcall_java->_bci = call_java->_bci;
1112       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1113       is_method_handle_invoke = call_java->is_method_handle_invoke();
1114       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1115       if (is_method_handle_invoke) {
1116         C->set_has_method_handle_invokes(true);
1117       }
1118       if( mcall_java->is_MachCallStaticJava() )
1119         mcall_java->as_MachCallStaticJava()->_name =
1120          call_java->as_CallStaticJava()->_name;
1121       if( mcall_java->is_MachCallDynamicJava() )
1122         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1123          call_java->as_CallDynamicJava()->_vtable_index;
1124     }
1125     else if( mcall->is_MachCallRuntime() ) {
1126       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1127     }
1128     msfpt = mcall;
1129   }
1130   // This is a non-call safepoint
1131   else {
1132     call = NULL;
1133     domain = NULL;
1134     MachNode *mn = match_tree(sfpt);
1135     if (C->failing())  return NULL;
1136     msfpt = mn->as_MachSafePoint();
1137     cnt = TypeFunc::Parms;
1138   }
1139 
1140   // Advertise the correct memory effects (for anti-dependence computation).
1141   msfpt->set_adr_type(sfpt->adr_type());
1142 
1143   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1144   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1145   // Empty them all.
1146   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1147 
1148   // Do all the pre-defined non-Empty register masks
1149   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1150   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1151 
1152   // Place first outgoing argument can possibly be put.
1153   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1154   assert( is_even(begin_out_arg_area), "" );
1155   // Compute max outgoing register number per call site.
1156   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1157   // Calls to C may hammer extra stack slots above and beyond any arguments.
1158   // These are usually backing store for register arguments for varargs.
1159   if( call != NULL && call->is_CallRuntime() )
1160     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1161 
1162 
1163   // Do the normal argument list (parameters) register masks
1164   int argcnt = cnt - TypeFunc::Parms;
1165   if( argcnt > 0 ) {          // Skip it all if we have no args
1166     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1167     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1168     int i;
1169     for( i = 0; i < argcnt; i++ ) {
1170       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1171     }
1172     // V-call to pick proper calling convention
1173     call->calling_convention( sig_bt, parm_regs, argcnt );
1174 
1175 #ifdef ASSERT
1176     // Sanity check users' calling convention.  Really handy during
1177     // the initial porting effort.  Fairly expensive otherwise.
1178     { for (int i = 0; i<argcnt; i++) {
1179       if( !parm_regs[i].first()->is_valid() &&
1180           !parm_regs[i].second()->is_valid() ) continue;
1181       VMReg reg1 = parm_regs[i].first();
1182       VMReg reg2 = parm_regs[i].second();
1183       for (int j = 0; j < i; j++) {
1184         if( !parm_regs[j].first()->is_valid() &&
1185             !parm_regs[j].second()->is_valid() ) continue;
1186         VMReg reg3 = parm_regs[j].first();
1187         VMReg reg4 = parm_regs[j].second();
1188         if( !reg1->is_valid() ) {
1189           assert( !reg2->is_valid(), "valid halvsies" );
1190         } else if( !reg3->is_valid() ) {
1191           assert( !reg4->is_valid(), "valid halvsies" );
1192         } else {
1193           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1194           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1195           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1196           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1197           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1198           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1199         }
1200       }
1201     }
1202     }
1203 #endif
1204 
1205     // Visit each argument.  Compute its outgoing register mask.
1206     // Return results now can have 2 bits returned.
1207     // Compute max over all outgoing arguments both per call-site
1208     // and over the entire method.
1209     for( i = 0; i < argcnt; i++ ) {
1210       // Address of incoming argument mask to fill in
1211       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1212       if( !parm_regs[i].first()->is_valid() &&
1213           !parm_regs[i].second()->is_valid() ) {
1214         continue;               // Avoid Halves
1215       }
1216       // Grab first register, adjust stack slots and insert in mask.
1217       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1218       if (OptoReg::is_valid(reg1))
1219         rm->Insert( reg1 );
1220       // Grab second register (if any), adjust stack slots and insert in mask.
1221       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1222       if (OptoReg::is_valid(reg2))
1223         rm->Insert( reg2 );
1224     } // End of for all arguments
1225 
1226     // Compute number of stack slots needed to restore stack in case of
1227     // Pascal-style argument popping.
1228     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1229   }
1230 
1231   if (is_method_handle_invoke) {
1232     // Kill some extra stack space in case method handles want to do
1233     // a little in-place argument insertion.
1234     int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
1235     out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
1236     // Do not update mcall->_argsize because (a) the extra space is not
1237     // pushed as arguments and (b) _argsize is dead (not used anywhere).
1238   }
1239 
1240   // Compute the max stack slot killed by any call.  These will not be
1241   // available for debug info, and will be used to adjust FIRST_STACK_mask
1242   // after all call sites have been visited.
1243   if( _out_arg_limit < out_arg_limit_per_call)
1244     _out_arg_limit = out_arg_limit_per_call;
1245 
1246   if (mcall) {
1247     // Kill the outgoing argument area, including any non-argument holes and
1248     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1249     // Since the max-per-method covers the max-per-call-site and debug info
1250     // is excluded on the max-per-method basis, debug info cannot land in
1251     // this killed area.
1252     uint r_cnt = mcall->tf()->range()->cnt();
1253     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1254     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1255       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1256     } else {
1257       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1258         proj->_rout.Insert(OptoReg::Name(i));
1259     }
1260     if( proj->_rout.is_NotEmpty() )
1261       _proj_list.push(proj);
1262   }
1263   // Transfer the safepoint information from the call to the mcall
1264   // Move the JVMState list
1265   msfpt->set_jvms(sfpt->jvms());
1266   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1267     jvms->set_map(sfpt);
1268   }
1269 
1270   // Debug inputs begin just after the last incoming parameter
1271   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1272           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1273 
1274   // Move the OopMap
1275   msfpt->_oop_map = sfpt->_oop_map;
1276 
1277   // Registers killed by the call are set in the local scheduling pass
1278   // of Global Code Motion.
1279   return msfpt;
1280 }
1281 
1282 //---------------------------match_tree----------------------------------------
1283 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1284 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1285 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1286 // a Load's result RegMask for memoization in idealreg2regmask[]
1287 MachNode *Matcher::match_tree( const Node *n ) {
1288   assert( n->Opcode() != Op_Phi, "cannot match" );
1289   assert( !n->is_block_start(), "cannot match" );
1290   // Set the mark for all locally allocated State objects.
1291   // When this call returns, the _states_arena arena will be reset
1292   // freeing all State objects.
1293   ResourceMark rm( &_states_arena );
1294 
1295   LabelRootDepth = 0;
1296 
1297   // StoreNodes require their Memory input to match any LoadNodes
1298   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1299 #ifdef ASSERT
1300   Node* save_mem_node = _mem_node;
1301   _mem_node = n->is_Store() ? (Node*)n : NULL;
1302 #endif
1303   // State object for root node of match tree
1304   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1305   State *s = new (&_states_arena) State;
1306   s->_kids[0] = NULL;
1307   s->_kids[1] = NULL;
1308   s->_leaf = (Node*)n;
1309   // Label the input tree, allocating labels from top-level arena
1310   Label_Root( n, s, n->in(0), mem );
1311   if (C->failing())  return NULL;
1312 
1313   // The minimum cost match for the whole tree is found at the root State
1314   uint mincost = max_juint;
1315   uint cost = max_juint;
1316   uint i;
1317   for( i = 0; i < NUM_OPERANDS; i++ ) {
1318     if( s->valid(i) &&                // valid entry and
1319         s->_cost[i] < cost &&         // low cost and
1320         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1321       cost = s->_cost[mincost=i];
1322   }
1323   if (mincost == max_juint) {
1324 #ifndef PRODUCT
1325     tty->print("No matching rule for:");
1326     s->dump();
1327 #endif
1328     Matcher::soft_match_failure();
1329     return NULL;
1330   }
1331   // Reduce input tree based upon the state labels to machine Nodes
1332   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1333 #ifdef ASSERT
1334   _old2new_map.map(n->_idx, m);
1335   _new2old_map.map(m->_idx, (Node*)n);
1336 #endif
1337 
1338   // Add any Matcher-ignored edges
1339   uint cnt = n->req();
1340   uint start = 1;
1341   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1342   if( n->is_AddP() ) {
1343     assert( mem == (Node*)1, "" );
1344     start = AddPNode::Base+1;
1345   }
1346   for( i = start; i < cnt; i++ ) {
1347     if( !n->match_edge(i) ) {
1348       if( i < m->req() )
1349         m->ins_req( i, n->in(i) );
1350       else
1351         m->add_req( n->in(i) );
1352     }
1353   }
1354 
1355   debug_only( _mem_node = save_mem_node; )
1356   return m;
1357 }
1358 
1359 
1360 //------------------------------match_into_reg---------------------------------
1361 // Choose to either match this Node in a register or part of the current
1362 // match tree.  Return true for requiring a register and false for matching
1363 // as part of the current match tree.
1364 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1365 
1366   const Type *t = m->bottom_type();
1367 
1368   if( t->singleton() ) {
1369     // Never force constants into registers.  Allow them to match as
1370     // constants or registers.  Copies of the same value will share
1371     // the same register.  See find_shared_node.
1372     return false;
1373   } else {                      // Not a constant
1374     // Stop recursion if they have different Controls.
1375     // Slot 0 of constants is not really a Control.
1376     if( control && m->in(0) && control != m->in(0) ) {
1377 
1378       // Actually, we can live with the most conservative control we
1379       // find, if it post-dominates the others.  This allows us to
1380       // pick up load/op/store trees where the load can float a little
1381       // above the store.
1382       Node *x = control;
1383       const uint max_scan = 6;   // Arbitrary scan cutoff
1384       uint j;
1385       for( j=0; j<max_scan; j++ ) {
1386         if( x->is_Region() )    // Bail out at merge points
1387           return true;
1388         x = x->in(0);
1389         if( x == m->in(0) )     // Does 'control' post-dominate
1390           break;                // m->in(0)?  If so, we can use it
1391       }
1392       if( j == max_scan )       // No post-domination before scan end?
1393         return true;            // Then break the match tree up
1394     }
1395     if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
1396       // These are commonly used in address expressions and can
1397       // efficiently fold into them on X64 in some cases.
1398       return false;
1399     }
1400   }
1401 
1402   // Not forceable cloning.  If shared, put it into a register.
1403   return shared;
1404 }
1405 
1406 
1407 //------------------------------Instruction Selection--------------------------
1408 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1409 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1410 // things the Matcher does not match (e.g., Memory), and things with different
1411 // Controls (hence forced into different blocks).  We pass in the Control
1412 // selected for this entire State tree.
1413 
1414 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1415 // Store and the Load must have identical Memories (as well as identical
1416 // pointers).  Since the Matcher does not have anything for Memory (and
1417 // does not handle DAGs), I have to match the Memory input myself.  If the
1418 // Tree root is a Store, I require all Loads to have the identical memory.
1419 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1420   // Since Label_Root is a recursive function, its possible that we might run
1421   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1422   LabelRootDepth++;
1423   if (LabelRootDepth > MaxLabelRootDepth) {
1424     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1425     return NULL;
1426   }
1427   uint care = 0;                // Edges matcher cares about
1428   uint cnt = n->req();
1429   uint i = 0;
1430 
1431   // Examine children for memory state
1432   // Can only subsume a child into your match-tree if that child's memory state
1433   // is not modified along the path to another input.
1434   // It is unsafe even if the other inputs are separate roots.
1435   Node *input_mem = NULL;
1436   for( i = 1; i < cnt; i++ ) {
1437     if( !n->match_edge(i) ) continue;
1438     Node *m = n->in(i);         // Get ith input
1439     assert( m, "expect non-null children" );
1440     if( m->is_Load() ) {
1441       if( input_mem == NULL ) {
1442         input_mem = m->in(MemNode::Memory);
1443       } else if( input_mem != m->in(MemNode::Memory) ) {
1444         input_mem = NodeSentinel;
1445       }
1446     }
1447   }
1448 
1449   for( i = 1; i < cnt; i++ ){// For my children
1450     if( !n->match_edge(i) ) continue;
1451     Node *m = n->in(i);         // Get ith input
1452     // Allocate states out of a private arena
1453     State *s = new (&_states_arena) State;
1454     svec->_kids[care++] = s;
1455     assert( care <= 2, "binary only for now" );
1456 
1457     // Recursively label the State tree.
1458     s->_kids[0] = NULL;
1459     s->_kids[1] = NULL;
1460     s->_leaf = m;
1461 
1462     // Check for leaves of the State Tree; things that cannot be a part of
1463     // the current tree.  If it finds any, that value is matched as a
1464     // register operand.  If not, then the normal matching is used.
1465     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1466         //
1467         // Stop recursion if this is LoadNode and the root of this tree is a
1468         // StoreNode and the load & store have different memories.
1469         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1470         // Can NOT include the match of a subtree when its memory state
1471         // is used by any of the other subtrees
1472         (input_mem == NodeSentinel) ) {
1473 #ifndef PRODUCT
1474       // Print when we exclude matching due to different memory states at input-loads
1475       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1476         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1477         tty->print_cr("invalid input_mem");
1478       }
1479 #endif
1480       // Switch to a register-only opcode; this value must be in a register
1481       // and cannot be subsumed as part of a larger instruction.
1482       s->DFA( m->ideal_reg(), m );
1483 
1484     } else {
1485       // If match tree has no control and we do, adopt it for entire tree
1486       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1487         control = m->in(0);         // Pick up control
1488       // Else match as a normal part of the match tree.
1489       control = Label_Root(m,s,control,mem);
1490       if (C->failing()) return NULL;
1491     }
1492   }
1493 
1494 
1495   // Call DFA to match this node, and return
1496   svec->DFA( n->Opcode(), n );
1497 
1498 #ifdef ASSERT
1499   uint x;
1500   for( x = 0; x < _LAST_MACH_OPER; x++ )
1501     if( svec->valid(x) )
1502       break;
1503 
1504   if (x >= _LAST_MACH_OPER) {
1505     n->dump();
1506     svec->dump();
1507     assert( false, "bad AD file" );
1508   }
1509 #endif
1510   return control;
1511 }
1512 
1513 
1514 // Con nodes reduced using the same rule can share their MachNode
1515 // which reduces the number of copies of a constant in the final
1516 // program.  The register allocator is free to split uses later to
1517 // split live ranges.
1518 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1519   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1520 
1521   // See if this Con has already been reduced using this rule.
1522   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1523   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1524   if (last != NULL && rule == last->rule()) {
1525     // Don't expect control change for DecodeN
1526     if (leaf->is_DecodeN())
1527       return last;
1528     // Get the new space root.
1529     Node* xroot = new_node(C->root());
1530     if (xroot == NULL) {
1531       // This shouldn't happen give the order of matching.
1532       return NULL;
1533     }
1534 
1535     // Shared constants need to have their control be root so they
1536     // can be scheduled properly.
1537     Node* control = last->in(0);
1538     if (control != xroot) {
1539       if (control == NULL || control == C->root()) {
1540         last->set_req(0, xroot);
1541       } else {
1542         assert(false, "unexpected control");
1543         return NULL;
1544       }
1545     }
1546     return last;
1547   }
1548   return NULL;
1549 }
1550 
1551 
1552 //------------------------------ReduceInst-------------------------------------
1553 // Reduce a State tree (with given Control) into a tree of MachNodes.
1554 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1555 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1556 // Each MachNode has a number of complicated MachOper operands; each
1557 // MachOper also covers a further tree of Ideal Nodes.
1558 
1559 // The root of the Ideal match tree is always an instruction, so we enter
1560 // the recursion here.  After building the MachNode, we need to recurse
1561 // the tree checking for these cases:
1562 // (1) Child is an instruction -
1563 //     Build the instruction (recursively), add it as an edge.
1564 //     Build a simple operand (register) to hold the result of the instruction.
1565 // (2) Child is an interior part of an instruction -
1566 //     Skip over it (do nothing)
1567 // (3) Child is the start of a operand -
1568 //     Build the operand, place it inside the instruction
1569 //     Call ReduceOper.
1570 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1571   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1572 
1573   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1574   if (shared_node != NULL) {
1575     return shared_node;
1576   }
1577 
1578   // Build the object to represent this state & prepare for recursive calls
1579   MachNode *mach = s->MachNodeGenerator( rule, C );
1580   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1581   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1582   Node *leaf = s->_leaf;
1583   // Check for instruction or instruction chain rule
1584   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1585     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1586            "duplicating node that's already been matched");
1587     // Instruction
1588     mach->add_req( leaf->in(0) ); // Set initial control
1589     // Reduce interior of complex instruction
1590     ReduceInst_Interior( s, rule, mem, mach, 1 );
1591   } else {
1592     // Instruction chain rules are data-dependent on their inputs
1593     mach->add_req(0);             // Set initial control to none
1594     ReduceInst_Chain_Rule( s, rule, mem, mach );
1595   }
1596 
1597   // If a Memory was used, insert a Memory edge
1598   if( mem != (Node*)1 ) {
1599     mach->ins_req(MemNode::Memory,mem);
1600 #ifdef ASSERT
1601     // Verify adr type after matching memory operation
1602     const MachOper* oper = mach->memory_operand();
1603     if (oper != NULL && oper != (MachOper*)-1) {
1604       // It has a unique memory operand.  Find corresponding ideal mem node.
1605       Node* m = NULL;
1606       if (leaf->is_Mem()) {
1607         m = leaf;
1608       } else {
1609         m = _mem_node;
1610         assert(m != NULL && m->is_Mem(), "expecting memory node");
1611       }
1612       const Type* mach_at = mach->adr_type();
1613       // DecodeN node consumed by an address may have different type
1614       // then its input. Don't compare types for such case.
1615       if (m->adr_type() != mach_at &&
1616           (m->in(MemNode::Address)->is_DecodeN() ||
1617            m->in(MemNode::Address)->is_AddP() &&
1618            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
1619            m->in(MemNode::Address)->is_AddP() &&
1620            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1621            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
1622         mach_at = m->adr_type();
1623       }
1624       if (m->adr_type() != mach_at) {
1625         m->dump();
1626         tty->print_cr("mach:");
1627         mach->dump(1);
1628       }
1629       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1630     }
1631 #endif
1632   }
1633 
1634   // If the _leaf is an AddP, insert the base edge
1635   if( leaf->is_AddP() )
1636     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1637 
1638   uint num_proj = _proj_list.size();
1639 
1640   // Perform any 1-to-many expansions required
1641   MachNode *ex = mach->Expand(s,_proj_list, mem);
1642   if( ex != mach ) {
1643     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1644     if( ex->in(1)->is_Con() )
1645       ex->in(1)->set_req(0, C->root());
1646     // Remove old node from the graph
1647     for( uint i=0; i<mach->req(); i++ ) {
1648       mach->set_req(i,NULL);
1649     }
1650 #ifdef ASSERT
1651     _new2old_map.map(ex->_idx, s->_leaf);
1652 #endif
1653   }
1654 
1655   // PhaseChaitin::fixup_spills will sometimes generate spill code
1656   // via the matcher.  By the time, nodes have been wired into the CFG,
1657   // and any further nodes generated by expand rules will be left hanging
1658   // in space, and will not get emitted as output code.  Catch this.
1659   // Also, catch any new register allocation constraints ("projections")
1660   // generated belatedly during spill code generation.
1661   if (_allocation_started) {
1662     guarantee(ex == mach, "no expand rules during spill generation");
1663     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1664   }
1665 
1666   if (leaf->is_Con() || leaf->is_DecodeN()) {
1667     // Record the con for sharing
1668     _shared_nodes.map(leaf->_idx, ex);
1669   }
1670 
1671   return ex;
1672 }
1673 
1674 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1675   // 'op' is what I am expecting to receive
1676   int op = _leftOp[rule];
1677   // Operand type to catch childs result
1678   // This is what my child will give me.
1679   int opnd_class_instance = s->_rule[op];
1680   // Choose between operand class or not.
1681   // This is what I will receive.
1682   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1683   // New rule for child.  Chase operand classes to get the actual rule.
1684   int newrule = s->_rule[catch_op];
1685 
1686   if( newrule < NUM_OPERANDS ) {
1687     // Chain from operand or operand class, may be output of shared node
1688     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1689             "Bad AD file: Instruction chain rule must chain from operand");
1690     // Insert operand into array of operands for this instruction
1691     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1692 
1693     ReduceOper( s, newrule, mem, mach );
1694   } else {
1695     // Chain from the result of an instruction
1696     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1697     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1698     Node *mem1 = (Node*)1;
1699     debug_only(Node *save_mem_node = _mem_node;)
1700     mach->add_req( ReduceInst(s, newrule, mem1) );
1701     debug_only(_mem_node = save_mem_node;)
1702   }
1703   return;
1704 }
1705 
1706 
1707 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1708   if( s->_leaf->is_Load() ) {
1709     Node *mem2 = s->_leaf->in(MemNode::Memory);
1710     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1711     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1712     mem = mem2;
1713   }
1714   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1715     if( mach->in(0) == NULL )
1716       mach->set_req(0, s->_leaf->in(0));
1717   }
1718 
1719   // Now recursively walk the state tree & add operand list.
1720   for( uint i=0; i<2; i++ ) {   // binary tree
1721     State *newstate = s->_kids[i];
1722     if( newstate == NULL ) break;      // Might only have 1 child
1723     // 'op' is what I am expecting to receive
1724     int op;
1725     if( i == 0 ) {
1726       op = _leftOp[rule];
1727     } else {
1728       op = _rightOp[rule];
1729     }
1730     // Operand type to catch childs result
1731     // This is what my child will give me.
1732     int opnd_class_instance = newstate->_rule[op];
1733     // Choose between operand class or not.
1734     // This is what I will receive.
1735     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1736     // New rule for child.  Chase operand classes to get the actual rule.
1737     int newrule = newstate->_rule[catch_op];
1738 
1739     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1740       // Operand/operandClass
1741       // Insert operand into array of operands for this instruction
1742       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1743       ReduceOper( newstate, newrule, mem, mach );
1744 
1745     } else {                    // Child is internal operand or new instruction
1746       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1747         // internal operand --> call ReduceInst_Interior
1748         // Interior of complex instruction.  Do nothing but recurse.
1749         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1750       } else {
1751         // instruction --> call build operand(  ) to catch result
1752         //             --> ReduceInst( newrule )
1753         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1754         Node *mem1 = (Node*)1;
1755         debug_only(Node *save_mem_node = _mem_node;)
1756         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1757         debug_only(_mem_node = save_mem_node;)
1758       }
1759     }
1760     assert( mach->_opnds[num_opnds-1], "" );
1761   }
1762   return num_opnds;
1763 }
1764 
1765 // This routine walks the interior of possible complex operands.
1766 // At each point we check our children in the match tree:
1767 // (1) No children -
1768 //     We are a leaf; add _leaf field as an input to the MachNode
1769 // (2) Child is an internal operand -
1770 //     Skip over it ( do nothing )
1771 // (3) Child is an instruction -
1772 //     Call ReduceInst recursively and
1773 //     and instruction as an input to the MachNode
1774 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1775   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1776   State *kid = s->_kids[0];
1777   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1778 
1779   // Leaf?  And not subsumed?
1780   if( kid == NULL && !_swallowed[rule] ) {
1781     mach->add_req( s->_leaf );  // Add leaf pointer
1782     return;                     // Bail out
1783   }
1784 
1785   if( s->_leaf->is_Load() ) {
1786     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1787     mem = s->_leaf->in(MemNode::Memory);
1788     debug_only(_mem_node = s->_leaf;)
1789   }
1790   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1791     if( !mach->in(0) )
1792       mach->set_req(0,s->_leaf->in(0));
1793     else {
1794       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1795     }
1796   }
1797 
1798   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1799     int newrule;
1800     if( i == 0 )
1801       newrule = kid->_rule[_leftOp[rule]];
1802     else
1803       newrule = kid->_rule[_rightOp[rule]];
1804 
1805     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1806       // Internal operand; recurse but do nothing else
1807       ReduceOper( kid, newrule, mem, mach );
1808 
1809     } else {                    // Child is a new instruction
1810       // Reduce the instruction, and add a direct pointer from this
1811       // machine instruction to the newly reduced one.
1812       Node *mem1 = (Node*)1;
1813       debug_only(Node *save_mem_node = _mem_node;)
1814       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1815       debug_only(_mem_node = save_mem_node;)
1816     }
1817   }
1818 }
1819 
1820 
1821 // -------------------------------------------------------------------------
1822 // Java-Java calling convention
1823 // (what you use when Java calls Java)
1824 
1825 //------------------------------find_receiver----------------------------------
1826 // For a given signature, return the OptoReg for parameter 0.
1827 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1828   VMRegPair regs;
1829   BasicType sig_bt = T_OBJECT;
1830   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1831   // Return argument 0 register.  In the LP64 build pointers
1832   // take 2 registers, but the VM wants only the 'main' name.
1833   return OptoReg::as_OptoReg(regs.first());
1834 }
1835 
1836 // A method-klass-holder may be passed in the inline_cache_reg
1837 // and then expanded into the inline_cache_reg and a method_oop register
1838 //   defined in ad_<arch>.cpp
1839 
1840 
1841 //------------------------------find_shared------------------------------------
1842 // Set bits if Node is shared or otherwise a root
1843 void Matcher::find_shared( Node *n ) {
1844   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1845   MStack mstack(C->unique() * 2);
1846   // Mark nodes as address_visited if they are inputs to an address expression
1847   VectorSet address_visited(Thread::current()->resource_area());
1848   mstack.push(n, Visit);     // Don't need to pre-visit root node
1849   while (mstack.is_nonempty()) {
1850     n = mstack.node();       // Leave node on stack
1851     Node_State nstate = mstack.state();
1852     uint nop = n->Opcode();
1853     if (nstate == Pre_Visit) {
1854       if (address_visited.test(n->_idx)) { // Visited in address already?
1855         // Flag as visited and shared now.
1856         set_visited(n);
1857       }
1858       if (is_visited(n)) {   // Visited already?
1859         // Node is shared and has no reason to clone.  Flag it as shared.
1860         // This causes it to match into a register for the sharing.
1861         set_shared(n);       // Flag as shared and
1862         mstack.pop();        // remove node from stack
1863         continue;
1864       }
1865       nstate = Visit; // Not already visited; so visit now
1866     }
1867     if (nstate == Visit) {
1868       mstack.set_state(Post_Visit);
1869       set_visited(n);   // Flag as visited now
1870       bool mem_op = false;
1871 
1872       switch( nop ) {  // Handle some opcodes special
1873       case Op_Phi:             // Treat Phis as shared roots
1874       case Op_Parm:
1875       case Op_Proj:            // All handled specially during matching
1876       case Op_SafePointScalarObject:
1877         set_shared(n);
1878         set_dontcare(n);
1879         break;
1880       case Op_If:
1881       case Op_CountedLoopEnd:
1882         mstack.set_state(Alt_Post_Visit); // Alternative way
1883         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1884         // with matching cmp/branch in 1 instruction.  The Matcher needs the
1885         // Bool and CmpX side-by-side, because it can only get at constants
1886         // that are at the leaves of Match trees, and the Bool's condition acts
1887         // as a constant here.
1888         mstack.push(n->in(1), Visit);         // Clone the Bool
1889         mstack.push(n->in(0), Pre_Visit);     // Visit control input
1890         continue; // while (mstack.is_nonempty())
1891       case Op_ConvI2D:         // These forms efficiently match with a prior
1892       case Op_ConvI2F:         //   Load but not a following Store
1893         if( n->in(1)->is_Load() &&        // Prior load
1894             n->outcnt() == 1 &&           // Not already shared
1895             n->unique_out()->is_Store() ) // Following store
1896           set_shared(n);       // Force it to be a root
1897         break;
1898       case Op_ReverseBytesI:
1899       case Op_ReverseBytesL:
1900         if( n->in(1)->is_Load() &&        // Prior load
1901             n->outcnt() == 1 )            // Not already shared
1902           set_shared(n);                  // Force it to be a root
1903         break;
1904       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1905       case Op_IfFalse:
1906       case Op_IfTrue:
1907       case Op_MachProj:
1908       case Op_MergeMem:
1909       case Op_Catch:
1910       case Op_CatchProj:
1911       case Op_CProj:
1912       case Op_JumpProj:
1913       case Op_JProj:
1914       case Op_NeverBranch:
1915         set_dontcare(n);
1916         break;
1917       case Op_Jump:
1918         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
1919         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1920         continue;                             // while (mstack.is_nonempty())
1921       case Op_StrComp:
1922       case Op_StrEquals:
1923       case Op_StrIndexOf:
1924       case Op_AryEq:
1925         set_shared(n); // Force result into register (it will be anyways)
1926         break;
1927       case Op_ConP: {  // Convert pointers above the centerline to NUL
1928         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1929         const TypePtr* tp = tn->type()->is_ptr();
1930         if (tp->_ptr == TypePtr::AnyNull) {
1931           tn->set_type(TypePtr::NULL_PTR);
1932         }
1933         break;
1934       }
1935       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1936         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1937         const TypePtr* tp = tn->type()->make_ptr();
1938         if (tp && tp->_ptr == TypePtr::AnyNull) {
1939           tn->set_type(TypeNarrowOop::NULL_PTR);
1940         }
1941         break;
1942       }
1943       case Op_Binary:         // These are introduced in the Post_Visit state.
1944         ShouldNotReachHere();
1945         break;
1946       case Op_ClearArray:
1947       case Op_SafePoint:
1948         mem_op = true;
1949         break;
1950       default:
1951         if( n->is_Store() ) {
1952           // Do match stores, despite no ideal reg
1953           mem_op = true;
1954           break;
1955         }
1956         if( n->is_Mem() ) { // Loads and LoadStores
1957           mem_op = true;
1958           // Loads must be root of match tree due to prior load conflict
1959           if( C->subsume_loads() == false )
1960             set_shared(n);
1961         }
1962         // Fall into default case
1963         if( !n->ideal_reg() )
1964           set_dontcare(n);  // Unmatchable Nodes
1965       } // end_switch
1966 
1967       for(int i = n->req() - 1; i >= 0; --i) { // For my children
1968         Node *m = n->in(i); // Get ith input
1969         if (m == NULL) continue;  // Ignore NULLs
1970         uint mop = m->Opcode();
1971 
1972         // Must clone all producers of flags, or we will not match correctly.
1973         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1974         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
1975         // are also there, so we may match a float-branch to int-flags and
1976         // expect the allocator to haul the flags from the int-side to the
1977         // fp-side.  No can do.
1978         if( _must_clone[mop] ) {
1979           mstack.push(m, Visit);
1980           continue; // for(int i = ...)
1981         }
1982 
1983         if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
1984           // Bases used in addresses must be shared but since
1985           // they are shared through a DecodeN they may appear
1986           // to have a single use so force sharing here.
1987           set_shared(m->in(AddPNode::Base)->in(1));
1988         }
1989 
1990         // Clone addressing expressions as they are "free" in memory access instructions
1991         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1992           // Some inputs for address expression are not put on stack
1993           // to avoid marking them as shared and forcing them into register
1994           // if they are used only in address expressions.
1995           // But they should be marked as shared if there are other uses
1996           // besides address expressions.
1997 
1998           Node *off = m->in(AddPNode::Offset);
1999           if( off->is_Con() &&
2000               // When there are other uses besides address expressions
2001               // put it on stack and mark as shared.
2002               !is_visited(m) ) {
2003             address_visited.test_set(m->_idx); // Flag as address_visited
2004             Node *adr = m->in(AddPNode::Address);
2005 
2006             // Intel, ARM and friends can handle 2 adds in addressing mode
2007             if( clone_shift_expressions && adr->is_AddP() &&
2008                 // AtomicAdd is not an addressing expression.
2009                 // Cheap to find it by looking for screwy base.
2010                 !adr->in(AddPNode::Base)->is_top() &&
2011                 // Are there other uses besides address expressions?
2012                 !is_visited(adr) ) {
2013               address_visited.set(adr->_idx); // Flag as address_visited
2014               Node *shift = adr->in(AddPNode::Offset);
2015               // Check for shift by small constant as well
2016               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2017                   shift->in(2)->get_int() <= 3 &&
2018                   // Are there other uses besides address expressions?
2019                   !is_visited(shift) ) {
2020                 address_visited.set(shift->_idx); // Flag as address_visited
2021                 mstack.push(shift->in(2), Visit);
2022                 Node *conv = shift->in(1);
2023 #ifdef _LP64
2024                 // Allow Matcher to match the rule which bypass
2025                 // ConvI2L operation for an array index on LP64
2026                 // if the index value is positive.
2027                 if( conv->Opcode() == Op_ConvI2L &&
2028                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
2029                     // Are there other uses besides address expressions?
2030                     !is_visited(conv) ) {
2031                   address_visited.set(conv->_idx); // Flag as address_visited
2032                   mstack.push(conv->in(1), Pre_Visit);
2033                 } else
2034 #endif
2035                 mstack.push(conv, Pre_Visit);
2036               } else {
2037                 mstack.push(shift, Pre_Visit);
2038               }
2039               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2040               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2041             } else {  // Sparc, Alpha, PPC and friends
2042               mstack.push(adr, Pre_Visit);
2043             }
2044 
2045             // Clone X+offset as it also folds into most addressing expressions
2046             mstack.push(off, Visit);
2047             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2048             continue; // for(int i = ...)
2049           } // if( off->is_Con() )
2050         }   // if( mem_op &&
2051         mstack.push(m, Pre_Visit);
2052       }     // for(int i = ...)
2053     }
2054     else if (nstate == Alt_Post_Visit) {
2055       mstack.pop(); // Remove node from stack
2056       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2057       // shared and all users of the Bool need to move the Cmp in parallel.
2058       // This leaves both the Bool and the If pointing at the Cmp.  To
2059       // prevent the Matcher from trying to Match the Cmp along both paths
2060       // BoolNode::match_edge always returns a zero.
2061 
2062       // We reorder the Op_If in a pre-order manner, so we can visit without
2063       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2064       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2065     }
2066     else if (nstate == Post_Visit) {
2067       mstack.pop(); // Remove node from stack
2068 
2069       // Now hack a few special opcodes
2070       switch( n->Opcode() ) {       // Handle some opcodes special
2071       case Op_StorePConditional:
2072       case Op_StoreIConditional:
2073       case Op_StoreLConditional:
2074       case Op_CompareAndSwapI:
2075       case Op_CompareAndSwapL:
2076       case Op_CompareAndSwapP:
2077       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2078         Node *newval = n->in(MemNode::ValueIn );
2079         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
2080         Node *pair = new (C, 3) BinaryNode( oldval, newval );
2081         n->set_req(MemNode::ValueIn,pair);
2082         n->del_req(LoadStoreNode::ExpectedIn);
2083         break;
2084       }
2085       case Op_CMoveD:              // Convert trinary to binary-tree
2086       case Op_CMoveF:
2087       case Op_CMoveI:
2088       case Op_CMoveL:
2089       case Op_CMoveN:
2090       case Op_CMoveP: {
2091         // Restructure into a binary tree for Matching.  It's possible that
2092         // we could move this code up next to the graph reshaping for IfNodes
2093         // or vice-versa, but I do not want to debug this for Ladybird.
2094         // 10/2/2000 CNC.
2095         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
2096         n->set_req(1,pair1);
2097         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2098         n->set_req(2,pair2);
2099         n->del_req(3);
2100         break;
2101       }
2102       case Op_LoopLimit: {
2103         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(2));
2104         n->set_req(1,pair1);
2105         n->set_req(2,n->in(3));
2106         n->del_req(3);
2107         break;
2108       }
2109       case Op_StrEquals: {
2110         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2111         n->set_req(2,pair1);
2112         n->set_req(3,n->in(4));
2113         n->del_req(4);
2114         break;
2115       }
2116       case Op_StrComp:
2117       case Op_StrIndexOf: {
2118         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2119         n->set_req(2,pair1);
2120         Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
2121         n->set_req(3,pair2);
2122         n->del_req(5);
2123         n->del_req(4);
2124         break;
2125       }
2126       default:
2127         break;
2128       }
2129     }
2130     else {
2131       ShouldNotReachHere();
2132     }
2133   } // end of while (mstack.is_nonempty())
2134 }
2135 
2136 #ifdef ASSERT
2137 // machine-independent root to machine-dependent root
2138 void Matcher::dump_old2new_map() {
2139   _old2new_map.dump();
2140 }
2141 #endif
2142 
2143 //---------------------------collect_null_checks-------------------------------
2144 // Find null checks in the ideal graph; write a machine-specific node for
2145 // it.  Used by later implicit-null-check handling.  Actually collects
2146 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2147 // value being tested.
2148 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2149   Node *iff = proj->in(0);
2150   if( iff->Opcode() == Op_If ) {
2151     // During matching If's have Bool & Cmp side-by-side
2152     BoolNode *b = iff->in(1)->as_Bool();
2153     Node *cmp = iff->in(2);
2154     int opc = cmp->Opcode();
2155     if (opc != Op_CmpP && opc != Op_CmpN) return;
2156 
2157     const Type* ct = cmp->in(2)->bottom_type();
2158     if (ct == TypePtr::NULL_PTR ||
2159         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2160 
2161       bool push_it = false;
2162       if( proj->Opcode() == Op_IfTrue ) {
2163         extern int all_null_checks_found;
2164         all_null_checks_found++;
2165         if( b->_test._test == BoolTest::ne ) {
2166           push_it = true;
2167         }
2168       } else {
2169         assert( proj->Opcode() == Op_IfFalse, "" );
2170         if( b->_test._test == BoolTest::eq ) {
2171           push_it = true;
2172         }
2173       }
2174       if( push_it ) {
2175         _null_check_tests.push(proj);
2176         Node* val = cmp->in(1);
2177 #ifdef _LP64
2178         if (val->bottom_type()->isa_narrowoop() &&
2179             !Matcher::narrow_oop_use_complex_address()) {
2180           //
2181           // Look for DecodeN node which should be pinned to orig_proj.
2182           // On platforms (Sparc) which can not handle 2 adds
2183           // in addressing mode we have to keep a DecodeN node and
2184           // use it to do implicit NULL check in address.
2185           //
2186           // DecodeN node was pinned to non-null path (orig_proj) during
2187           // CastPP transformation in final_graph_reshaping_impl().
2188           //
2189           uint cnt = orig_proj->outcnt();
2190           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2191             Node* d = orig_proj->raw_out(i);
2192             if (d->is_DecodeN() && d->in(1) == val) {
2193               val = d;
2194               val->set_req(0, NULL); // Unpin now.
2195               // Mark this as special case to distinguish from
2196               // a regular case: CmpP(DecodeN, NULL).
2197               val = (Node*)(((intptr_t)val) | 1);
2198               break;
2199             }
2200           }
2201         }
2202 #endif
2203         _null_check_tests.push(val);
2204       }
2205     }
2206   }
2207 }
2208 
2209 //---------------------------validate_null_checks------------------------------
2210 // Its possible that the value being NULL checked is not the root of a match
2211 // tree.  If so, I cannot use the value in an implicit null check.
2212 void Matcher::validate_null_checks( ) {
2213   uint cnt = _null_check_tests.size();
2214   for( uint i=0; i < cnt; i+=2 ) {
2215     Node *test = _null_check_tests[i];
2216     Node *val = _null_check_tests[i+1];
2217     bool is_decoden = ((intptr_t)val) & 1;
2218     val = (Node*)(((intptr_t)val) & ~1);
2219     if (has_new_node(val)) {
2220       Node* new_val = new_node(val);
2221       if (is_decoden) {
2222         assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
2223         // Note: new_val may have a control edge if
2224         // the original ideal node DecodeN was matched before
2225         // it was unpinned in Matcher::collect_null_checks().
2226         // Unpin the mach node and mark it.
2227         new_val->set_req(0, NULL);
2228         new_val = (Node*)(((intptr_t)new_val) | 1);
2229       }
2230       // Is a match-tree root, so replace with the matched value
2231       _null_check_tests.map(i+1, new_val);
2232     } else {
2233       // Yank from candidate list
2234       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2235       _null_check_tests.map(i,_null_check_tests[--cnt]);
2236       _null_check_tests.pop();
2237       _null_check_tests.pop();
2238       i-=2;
2239     }
2240   }
2241 }
2242 
2243 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2244 // atomic instruction acting as a store_load barrier without any
2245 // intervening volatile load, and thus we don't need a barrier here.
2246 // We retain the Node to act as a compiler ordering barrier.
2247 bool Matcher::post_store_load_barrier(const Node *vmb) {
2248   Compile *C = Compile::current();
2249   assert( vmb->is_MemBar(), "" );
2250   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2251   const MemBarNode *mem = (const MemBarNode*)vmb;
2252 
2253   // Get the Proj node, ctrl, that can be used to iterate forward
2254   Node *ctrl = NULL;
2255   DUIterator_Fast imax, i = mem->fast_outs(imax);
2256   while( true ) {
2257     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2258     assert( ctrl->is_Proj(), "only projections here" );
2259     ProjNode *proj = (ProjNode*)ctrl;
2260     if( proj->_con == TypeFunc::Control &&
2261         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2262       break;
2263     i++;
2264   }
2265 
2266   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2267     Node *x = ctrl->fast_out(j);
2268     int xop = x->Opcode();
2269 
2270     // We don't need current barrier if we see another or a lock
2271     // before seeing volatile load.
2272     //
2273     // Op_Fastunlock previously appeared in the Op_* list below.
2274     // With the advent of 1-0 lock operations we're no longer guaranteed
2275     // that a monitor exit operation contains a serializing instruction.
2276 
2277     if (xop == Op_MemBarVolatile ||
2278         xop == Op_FastLock ||
2279         xop == Op_CompareAndSwapL ||
2280         xop == Op_CompareAndSwapP ||
2281         xop == Op_CompareAndSwapN ||
2282         xop == Op_CompareAndSwapI)
2283       return true;
2284 
2285     if (x->is_MemBar()) {
2286       // We must retain this membar if there is an upcoming volatile
2287       // load, which will be preceded by acquire membar.
2288       if (xop == Op_MemBarAcquire)
2289         return false;
2290       // For other kinds of barriers, check by pretending we
2291       // are them, and seeing if we can be removed.
2292       else
2293         return post_store_load_barrier((const MemBarNode*)x);
2294     }
2295 
2296     // Delicate code to detect case of an upcoming fastlock block
2297     if( x->is_If() && x->req() > 1 &&
2298         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2299       Node *iff = x;
2300       Node *bol = iff->in(1);
2301       // The iff might be some random subclass of If or bol might be Con-Top
2302       if (!bol->is_Bool())  return false;
2303       assert( bol->req() > 1, "" );
2304       return (bol->in(1)->Opcode() == Op_FastUnlock);
2305     }
2306     // probably not necessary to check for these
2307     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2308       return false;
2309   }
2310   return false;
2311 }
2312 
2313 //=============================================================================
2314 //---------------------------State---------------------------------------------
2315 State::State(void) {
2316 #ifdef ASSERT
2317   _id = 0;
2318   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2319   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2320   //memset(_cost, -1, sizeof(_cost));
2321   //memset(_rule, -1, sizeof(_rule));
2322 #endif
2323   memset(_valid, 0, sizeof(_valid));
2324 }
2325 
2326 #ifdef ASSERT
2327 State::~State() {
2328   _id = 99;
2329   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2330   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2331   memset(_cost, -3, sizeof(_cost));
2332   memset(_rule, -3, sizeof(_rule));
2333 }
2334 #endif
2335 
2336 #ifndef PRODUCT
2337 //---------------------------dump----------------------------------------------
2338 void State::dump() {
2339   tty->print("\n");
2340   dump(0);
2341 }
2342 
2343 void State::dump(int depth) {
2344   for( int j = 0; j < depth; j++ )
2345     tty->print("   ");
2346   tty->print("--N: ");
2347   _leaf->dump();
2348   uint i;
2349   for( i = 0; i < _LAST_MACH_OPER; i++ )
2350     // Check for valid entry
2351     if( valid(i) ) {
2352       for( int j = 0; j < depth; j++ )
2353         tty->print("   ");
2354         assert(_cost[i] != max_juint, "cost must be a valid value");
2355         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2356         tty->print_cr("%s  %d  %s",
2357                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2358       }
2359   tty->print_cr("");
2360 
2361   for( i=0; i<2; i++ )
2362     if( _kids[i] )
2363       _kids[i]->dump(depth+1);
2364 }
2365 #endif