1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
  27 
  28 class BiasedLockingCounters;
  29 
  30 // Contains all the definitions needed for x86 assembly code generation.
  31 
  32 // Calling convention
  33 class Argument VALUE_OBJ_CLASS_SPEC {
  34  public:
  35   enum {
  36 #ifdef _LP64
  37 #ifdef _WIN64
  38     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  39     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  40 #else
  41     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  42     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  43 #endif // _WIN64
  44     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  45     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  46 #else
  47     n_register_parameters = 0   // 0 registers used to pass arguments
  48 #endif // _LP64
  49   };
  50 };
  51 
  52 
  53 #ifdef _LP64
  54 // Symbolically name the register arguments used by the c calling convention.
  55 // Windows is different from linux/solaris. So much for standards...
  56 
  57 #ifdef _WIN64
  58 
  59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  61 REGISTER_DECLARATION(Register, c_rarg2, r8);
  62 REGISTER_DECLARATION(Register, c_rarg3, r9);
  63 
  64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  68 
  69 #else
  70 
  71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  75 REGISTER_DECLARATION(Register, c_rarg4, r8);
  76 REGISTER_DECLARATION(Register, c_rarg5, r9);
  77 
  78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  86 
  87 #endif // _WIN64
  88 
  89 // Symbolically name the register arguments used by the Java calling convention.
  90 // We have control over the convention for java so we can do what we please.
  91 // What pleases us is to offset the java calling convention so that when
  92 // we call a suitable jni method the arguments are lined up and we don't
  93 // have to do little shuffling. A suitable jni method is non-static and a
  94 // small number of arguments (two fewer args on windows)
  95 //
  96 //        |-------------------------------------------------------|
  97 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
  98 //        |-------------------------------------------------------|
  99 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
 100 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
 101 //        |-------------------------------------------------------|
 102 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 103 //        |-------------------------------------------------------|
 104 
 105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 108 // Windows runs out of register args here
 109 #ifdef _WIN64
 110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 112 #else
 113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 115 #endif /* _WIN64 */
 116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 117 
 118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 126 
 127 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 128 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 129 
 130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 132 
 133 #else
 134 // rscratch1 will apear in 32bit code that is dead but of course must compile
 135 // Using noreg ensures if the dead code is incorrectly live and executed it
 136 // will cause an assertion failure
 137 #define rscratch1 noreg
 138 #define rscratch2 noreg
 139 
 140 #endif // _LP64
 141 
 142 // JSR 292 fixed register usages:
 143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
 144 
 145 // Address is an abstraction used to represent a memory location
 146 // using any of the amd64 addressing modes with one object.
 147 //
 148 // Note: A register location is represented via a Register, not
 149 //       via an address for efficiency & simplicity reasons.
 150 
 151 class ArrayAddress;
 152 
 153 class Address VALUE_OBJ_CLASS_SPEC {
 154  public:
 155   enum ScaleFactor {
 156     no_scale = -1,
 157     times_1  =  0,
 158     times_2  =  1,
 159     times_4  =  2,
 160     times_8  =  3,
 161     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 162   };
 163   static ScaleFactor times(int size) {
 164     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 165     if (size == 8)  return times_8;
 166     if (size == 4)  return times_4;
 167     if (size == 2)  return times_2;
 168     return times_1;
 169   }
 170   static int scale_size(ScaleFactor scale) {
 171     assert(scale != no_scale, "");
 172     assert(((1 << (int)times_1) == 1 &&
 173             (1 << (int)times_2) == 2 &&
 174             (1 << (int)times_4) == 4 &&
 175             (1 << (int)times_8) == 8), "");
 176     return (1 << (int)scale);
 177   }
 178 
 179  private:
 180   Register         _base;
 181   Register         _index;
 182   ScaleFactor      _scale;
 183   int              _disp;
 184   RelocationHolder _rspec;
 185 
 186   // Easily misused constructors make them private
 187   // %%% can we make these go away?
 188   NOT_LP64(Address(address loc, RelocationHolder spec);)
 189   Address(int disp, address loc, relocInfo::relocType rtype);
 190   Address(int disp, address loc, RelocationHolder spec);
 191 
 192  public:
 193 
 194  int disp() { return _disp; }
 195   // creation
 196   Address()
 197     : _base(noreg),
 198       _index(noreg),
 199       _scale(no_scale),
 200       _disp(0) {
 201   }
 202 
 203   // No default displacement otherwise Register can be implicitly
 204   // converted to 0(Register) which is quite a different animal.
 205 
 206   Address(Register base, int disp)
 207     : _base(base),
 208       _index(noreg),
 209       _scale(no_scale),
 210       _disp(disp) {
 211   }
 212 
 213   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 214     : _base (base),
 215       _index(index),
 216       _scale(scale),
 217       _disp (disp) {
 218     assert(!index->is_valid() == (scale == Address::no_scale),
 219            "inconsistent address");
 220   }
 221 
 222   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 223     : _base (base),
 224       _index(index.register_or_noreg()),
 225       _scale(scale),
 226       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 227     if (!index.is_register())  scale = Address::no_scale;
 228     assert(!_index->is_valid() == (scale == Address::no_scale),
 229            "inconsistent address");
 230   }
 231 
 232   Address plus_disp(int disp) const {
 233     Address a = (*this);
 234     a._disp += disp;
 235     return a;
 236   }
 237   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
 238     Address a = (*this);
 239     a._disp += disp.constant_or_zero() * scale_size(scale);
 240     if (disp.is_register()) {
 241       assert(!a.index()->is_valid(), "competing indexes");
 242       a._index = disp.as_register();
 243       a._scale = scale;
 244     }
 245     return a;
 246   }
 247   bool is_same_address(Address a) const {
 248     // disregard _rspec
 249     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
 250   }
 251 
 252   // The following two overloads are used in connection with the
 253   // ByteSize type (see sizes.hpp).  They simplify the use of
 254   // ByteSize'd arguments in assembly code. Note that their equivalent
 255   // for the optimized build are the member functions with int disp
 256   // argument since ByteSize is mapped to an int type in that case.
 257   //
 258   // Note: DO NOT introduce similar overloaded functions for WordSize
 259   // arguments as in the optimized mode, both ByteSize and WordSize
 260   // are mapped to the same type and thus the compiler cannot make a
 261   // distinction anymore (=> compiler errors).
 262 
 263 #ifdef ASSERT
 264   Address(Register base, ByteSize disp)
 265     : _base(base),
 266       _index(noreg),
 267       _scale(no_scale),
 268       _disp(in_bytes(disp)) {
 269   }
 270 
 271   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 272     : _base(base),
 273       _index(index),
 274       _scale(scale),
 275       _disp(in_bytes(disp)) {
 276     assert(!index->is_valid() == (scale == Address::no_scale),
 277            "inconsistent address");
 278   }
 279 
 280   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 281     : _base (base),
 282       _index(index.register_or_noreg()),
 283       _scale(scale),
 284       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 285     if (!index.is_register())  scale = Address::no_scale;
 286     assert(!_index->is_valid() == (scale == Address::no_scale),
 287            "inconsistent address");
 288   }
 289 
 290 #endif // ASSERT
 291 
 292   // accessors
 293   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 294   Register    base()             const { return _base;  }
 295   Register    index()            const { return _index; }
 296   ScaleFactor scale()            const { return _scale; }
 297   int         disp()             const { return _disp;  }
 298 
 299   // Convert the raw encoding form into the form expected by the constructor for
 300   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 301   // that to noreg for the Address constructor.
 302   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
 303 
 304   static Address make_array(ArrayAddress);
 305 
 306  private:
 307   bool base_needs_rex() const {
 308     return _base != noreg && _base->encoding() >= 8;
 309   }
 310 
 311   bool index_needs_rex() const {
 312     return _index != noreg &&_index->encoding() >= 8;
 313   }
 314 
 315   relocInfo::relocType reloc() const { return _rspec.type(); }
 316 
 317   friend class Assembler;
 318   friend class MacroAssembler;
 319   friend class LIR_Assembler; // base/index/scale/disp
 320 };
 321 
 322 //
 323 // AddressLiteral has been split out from Address because operands of this type
 324 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 325 // the few instructions that need to deal with address literals are unique and the
 326 // MacroAssembler does not have to implement every instruction in the Assembler
 327 // in order to search for address literals that may need special handling depending
 328 // on the instruction and the platform. As small step on the way to merging i486/amd64
 329 // directories.
 330 //
 331 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 332   friend class ArrayAddress;
 333   RelocationHolder _rspec;
 334   // Typically we use AddressLiterals we want to use their rval
 335   // However in some situations we want the lval (effect address) of the item.
 336   // We provide a special factory for making those lvals.
 337   bool _is_lval;
 338 
 339   // If the target is far we'll need to load the ea of this to
 340   // a register to reach it. Otherwise if near we can do rip
 341   // relative addressing.
 342 
 343   address          _target;
 344 
 345  protected:
 346   // creation
 347   AddressLiteral()
 348     : _is_lval(false),
 349       _target(NULL)
 350   {}
 351 
 352   public:
 353 
 354 
 355   AddressLiteral(address target, relocInfo::relocType rtype);
 356 
 357   AddressLiteral(address target, RelocationHolder const& rspec)
 358     : _rspec(rspec),
 359       _is_lval(false),
 360       _target(target)
 361   {}
 362 
 363   AddressLiteral addr() {
 364     AddressLiteral ret = *this;
 365     ret._is_lval = true;
 366     return ret;
 367   }
 368 
 369 
 370  private:
 371 
 372   address target() { return _target; }
 373   bool is_lval() { return _is_lval; }
 374 
 375   relocInfo::relocType reloc() const { return _rspec.type(); }
 376   const RelocationHolder& rspec() const { return _rspec; }
 377 
 378   friend class Assembler;
 379   friend class MacroAssembler;
 380   friend class Address;
 381   friend class LIR_Assembler;
 382 };
 383 
 384 // Convience classes
 385 class RuntimeAddress: public AddressLiteral {
 386 
 387   public:
 388 
 389   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 390 
 391 };
 392 
 393 class OopAddress: public AddressLiteral {
 394 
 395   public:
 396 
 397   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
 398 
 399 };
 400 
 401 class ExternalAddress: public AddressLiteral {
 402  private:
 403   static relocInfo::relocType reloc_for_target(address target) {
 404     // Sometimes ExternalAddress is used for values which aren't
 405     // exactly addresses, like the card table base.
 406     // external_word_type can't be used for values in the first page
 407     // so just skip the reloc in that case.
 408     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 409   }
 410 
 411  public:
 412 
 413   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
 414 
 415 };
 416 
 417 class InternalAddress: public AddressLiteral {
 418 
 419   public:
 420 
 421   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 422 
 423 };
 424 
 425 // x86 can do array addressing as a single operation since disp can be an absolute
 426 // address amd64 can't. We create a class that expresses the concept but does extra
 427 // magic on amd64 to get the final result
 428 
 429 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 430   private:
 431 
 432   AddressLiteral _base;
 433   Address        _index;
 434 
 435   public:
 436 
 437   ArrayAddress() {};
 438   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 439   AddressLiteral base() { return _base; }
 440   Address index() { return _index; }
 441 
 442 };
 443 
 444 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
 445 
 446 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 447 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 448 // is what you get. The Assembler is generating code into a CodeBuffer.
 449 
 450 class Assembler : public AbstractAssembler  {
 451   friend class AbstractAssembler; // for the non-virtual hack
 452   friend class LIR_Assembler; // as_Address()
 453   friend class StubGenerator;
 454 
 455  public:
 456   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 457     zero          = 0x4,
 458     notZero       = 0x5,
 459     equal         = 0x4,
 460     notEqual      = 0x5,
 461     less          = 0xc,
 462     lessEqual     = 0xe,
 463     greater       = 0xf,
 464     greaterEqual  = 0xd,
 465     below         = 0x2,
 466     belowEqual    = 0x6,
 467     above         = 0x7,
 468     aboveEqual    = 0x3,
 469     overflow      = 0x0,
 470     noOverflow    = 0x1,
 471     carrySet      = 0x2,
 472     carryClear    = 0x3,
 473     negative      = 0x8,
 474     positive      = 0x9,
 475     parity        = 0xa,
 476     noParity      = 0xb
 477   };
 478 
 479   enum Prefix {
 480     // segment overrides
 481     CS_segment = 0x2e,
 482     SS_segment = 0x36,
 483     DS_segment = 0x3e,
 484     ES_segment = 0x26,
 485     FS_segment = 0x64,
 486     GS_segment = 0x65,
 487 
 488     REX        = 0x40,
 489 
 490     REX_B      = 0x41,
 491     REX_X      = 0x42,
 492     REX_XB     = 0x43,
 493     REX_R      = 0x44,
 494     REX_RB     = 0x45,
 495     REX_RX     = 0x46,
 496     REX_RXB    = 0x47,
 497 
 498     REX_W      = 0x48,
 499 
 500     REX_WB     = 0x49,
 501     REX_WX     = 0x4A,
 502     REX_WXB    = 0x4B,
 503     REX_WR     = 0x4C,
 504     REX_WRB    = 0x4D,
 505     REX_WRX    = 0x4E,
 506     REX_WRXB   = 0x4F,
 507 
 508     VEX_3bytes = 0xC4,
 509     VEX_2bytes = 0xC5
 510   };
 511 
 512   enum VexPrefix {
 513     VEX_B = 0x20,
 514     VEX_X = 0x40,
 515     VEX_R = 0x80,
 516     VEX_W = 0x80
 517   };
 518 
 519   enum VexSimdPrefix {
 520     VEX_SIMD_NONE = 0x0,
 521     VEX_SIMD_66   = 0x1,
 522     VEX_SIMD_F3   = 0x2,
 523     VEX_SIMD_F2   = 0x3
 524   };
 525 
 526   enum VexOpcode {
 527     VEX_OPCODE_NONE  = 0x0,
 528     VEX_OPCODE_0F    = 0x1,
 529     VEX_OPCODE_0F_38 = 0x2,
 530     VEX_OPCODE_0F_3A = 0x3
 531   };
 532 
 533   enum WhichOperand {
 534     // input to locate_operand, and format code for relocations
 535     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 536     disp32_operand = 1,          // embedded 32-bit displacement or address
 537     call32_operand = 2,          // embedded 32-bit self-relative displacement
 538 #ifndef _LP64
 539     _WhichOperand_limit = 3
 540 #else
 541      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 542     _WhichOperand_limit = 4
 543 #endif
 544   };
 545 
 546 
 547 
 548   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 549   // of instructions are freely declared without the need for wrapping them an ifdef.
 550   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 551   // In the .cpp file the implementations are wrapped so that they are dropped out
 552   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
 553   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 554   //
 555   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 556   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 557 
 558 private:
 559 
 560 
 561   // 64bit prefixes
 562   int prefix_and_encode(int reg_enc, bool byteinst = false);
 563   int prefixq_and_encode(int reg_enc);
 564 
 565   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
 566   int prefixq_and_encode(int dst_enc, int src_enc);
 567 
 568   void prefix(Register reg);
 569   void prefix(Address adr);
 570   void prefixq(Address adr);
 571 
 572   void prefix(Address adr, Register reg,  bool byteinst = false);
 573   void prefix(Address adr, XMMRegister reg);
 574   void prefixq(Address adr, Register reg);
 575   void prefixq(Address adr, XMMRegister reg);
 576 
 577   void prefetch_prefix(Address src);
 578 
 579   void rex_prefix(Address adr, XMMRegister xreg,
 580                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 581   int  rex_prefix_and_encode(int dst_enc, int src_enc,
 582                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 583 
 584   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
 585                   int nds_enc, VexSimdPrefix pre, VexOpcode opc,
 586                   bool vector256);
 587 
 588   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
 589                   VexSimdPrefix pre, VexOpcode opc,
 590                   bool vex_w, bool vector256);
 591 
 592   void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
 593                   VexSimdPrefix pre, bool vector256 = false) {
 594      vex_prefix(src, nds->encoding(), dst->encoding(),
 595                 pre, VEX_OPCODE_0F, false, vector256);
 596   }
 597 
 598   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
 599                              VexSimdPrefix pre, VexOpcode opc,
 600                              bool vex_w, bool vector256);
 601 
 602   int  vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 603                              VexSimdPrefix pre, bool vector256 = false) {
 604      return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
 605                                   pre, VEX_OPCODE_0F, false, vector256);
 606   }
 607 
 608   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
 609                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 610                    bool rex_w = false, bool vector256 = false);
 611 
 612   void simd_prefix(XMMRegister dst, Address src,
 613                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 614     simd_prefix(dst, xnoreg, src, pre, opc);
 615   }
 616   void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
 617     simd_prefix(src, dst, pre);
 618   }
 619   void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
 620                      VexSimdPrefix pre) {
 621     bool rex_w = true;
 622     simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
 623   }
 624 
 625 
 626   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 627                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 628                              bool rex_w = false, bool vector256 = false);
 629 
 630   int simd_prefix_and_encode(XMMRegister dst, XMMRegister src,
 631                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 632     return simd_prefix_and_encode(dst, xnoreg, src, pre, opc);
 633   }
 634 
 635   // Move/convert 32-bit integer value.
 636   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
 637                              VexSimdPrefix pre) {
 638     // It is OK to cast from Register to XMMRegister to pass argument here
 639     // since only encoding is used in simd_prefix_and_encode() and number of
 640     // Gen and Xmm registers are the same.
 641     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
 642   }
 643   int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
 644     return simd_prefix_and_encode(dst, xnoreg, src, pre);
 645   }
 646   int simd_prefix_and_encode(Register dst, XMMRegister src,
 647                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 648     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
 649   }
 650 
 651   // Move/convert 64-bit integer value.
 652   int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
 653                                VexSimdPrefix pre) {
 654     bool rex_w = true;
 655     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
 656   }
 657   int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
 658     return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
 659   }
 660   int simd_prefix_and_encode_q(Register dst, XMMRegister src,
 661                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 662     bool rex_w = true;
 663     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
 664   }
 665 
 666   // Helper functions for groups of instructions
 667   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 668 
 669   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 670   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
 671   // only 32bit??
 672   void emit_arith(int op1, int op2, Register dst, jobject obj);
 673   void emit_arith(int op1, int op2, Register dst, Register src);
 674 
 675   void emit_operand(Register reg,
 676                     Register base, Register index, Address::ScaleFactor scale,
 677                     int disp,
 678                     RelocationHolder const& rspec,
 679                     int rip_relative_correction = 0);
 680 
 681   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 682 
 683   // operands that only take the original 32bit registers
 684   void emit_operand32(Register reg, Address adr);
 685 
 686   void emit_operand(XMMRegister reg,
 687                     Register base, Register index, Address::ScaleFactor scale,
 688                     int disp,
 689                     RelocationHolder const& rspec);
 690 
 691   void emit_operand(XMMRegister reg, Address adr);
 692 
 693   void emit_operand(MMXRegister reg, Address adr);
 694 
 695   // workaround gcc (3.2.1-7) bug
 696   void emit_operand(Address adr, MMXRegister reg);
 697 
 698 
 699   // Immediate-to-memory forms
 700   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 701 
 702   void emit_farith(int b1, int b2, int i);
 703 
 704 
 705  protected:
 706   #ifdef ASSERT
 707   void check_relocation(RelocationHolder const& rspec, int format);
 708   #endif
 709 
 710   inline void emit_long64(jlong x);
 711 
 712   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 713   void emit_data(jint data, RelocationHolder const& rspec, int format);
 714   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 715   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 716 
 717   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 718 
 719   // These are all easily abused and hence protected
 720 
 721   // 32BIT ONLY SECTION
 722 #ifndef _LP64
 723   // Make these disappear in 64bit mode since they would never be correct
 724   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 725   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 726 
 727   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 728   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 729 
 730   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 731 #else
 732   // 64BIT ONLY SECTION
 733   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 734 
 735   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 736   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 737 
 738   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 739   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 740 #endif // _LP64
 741 
 742   // These are unique in that we are ensured by the caller that the 32bit
 743   // relative in these instructions will always be able to reach the potentially
 744   // 64bit address described by entry. Since they can take a 64bit address they
 745   // don't have the 32 suffix like the other instructions in this class.
 746 
 747   void call_literal(address entry, RelocationHolder const& rspec);
 748   void jmp_literal(address entry, RelocationHolder const& rspec);
 749 
 750   // Avoid using directly section
 751   // Instructions in this section are actually usable by anyone without danger
 752   // of failure but have performance issues that are addressed my enhanced
 753   // instructions which will do the proper thing base on the particular cpu.
 754   // We protect them because we don't trust you...
 755 
 756   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 757   // could cause a partial flag stall since they don't set CF flag.
 758   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 759   // which call inc() & dec() or add() & sub() in accordance with
 760   // the product flag UseIncDec value.
 761 
 762   void decl(Register dst);
 763   void decl(Address dst);
 764   void decq(Register dst);
 765   void decq(Address dst);
 766 
 767   void incl(Register dst);
 768   void incl(Address dst);
 769   void incq(Register dst);
 770   void incq(Address dst);
 771 
 772   // New cpus require use of movsd and movss to avoid partial register stall
 773   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 774   // The selection is done in MacroAssembler::movdbl() and movflt().
 775 
 776   // Move Scalar Single-Precision Floating-Point Values
 777   void movss(XMMRegister dst, Address src);
 778   void movss(XMMRegister dst, XMMRegister src);
 779   void movss(Address dst, XMMRegister src);
 780 
 781   // Move Scalar Double-Precision Floating-Point Values
 782   void movsd(XMMRegister dst, Address src);
 783   void movsd(XMMRegister dst, XMMRegister src);
 784   void movsd(Address dst, XMMRegister src);
 785   void movlpd(XMMRegister dst, Address src);
 786 
 787   // New cpus require use of movaps and movapd to avoid partial register stall
 788   // when moving between registers.
 789   void movaps(XMMRegister dst, XMMRegister src);
 790   void movapd(XMMRegister dst, XMMRegister src);
 791 
 792   // End avoid using directly
 793 
 794 
 795   // Instruction prefixes
 796   void prefix(Prefix p);
 797 
 798   public:
 799 
 800   // Creation
 801   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
 802 
 803   // Decoding
 804   static address locate_operand(address inst, WhichOperand which);
 805   static address locate_next_instruction(address inst);
 806 
 807   // Utilities
 808   static bool is_polling_page_far() NOT_LP64({ return false;});
 809 
 810   // Generic instructions
 811   // Does 32bit or 64bit as needed for the platform. In some sense these
 812   // belong in macro assembler but there is no need for both varieties to exist
 813 
 814   void lea(Register dst, Address src);
 815 
 816   void mov(Register dst, Register src);
 817 
 818   void pusha();
 819   void popa();
 820 
 821   void pushf();
 822   void popf();
 823 
 824   void push(int32_t imm32);
 825 
 826   void push(Register src);
 827 
 828   void pop(Register dst);
 829 
 830   // These are dummies to prevent surprise implicit conversions to Register
 831   void push(void* v);
 832   void pop(void* v);
 833 
 834   // These do register sized moves/scans
 835   void rep_mov();
 836   void rep_set();
 837   void repne_scan();
 838 #ifdef _LP64
 839   void repne_scanl();
 840 #endif
 841 
 842   // Vanilla instructions in lexical order
 843 
 844   void adcl(Address dst, int32_t imm32);
 845   void adcl(Address dst, Register src);
 846   void adcl(Register dst, int32_t imm32);
 847   void adcl(Register dst, Address src);
 848   void adcl(Register dst, Register src);
 849 
 850   void adcq(Register dst, int32_t imm32);
 851   void adcq(Register dst, Address src);
 852   void adcq(Register dst, Register src);
 853 
 854   void addl(Address dst, int32_t imm32);
 855   void addl(Address dst, Register src);
 856   void addl(Register dst, int32_t imm32);
 857   void addl(Register dst, Address src);
 858   void addl(Register dst, Register src);
 859 
 860   void addq(Address dst, int32_t imm32);
 861   void addq(Address dst, Register src);
 862   void addq(Register dst, int32_t imm32);
 863   void addq(Register dst, Address src);
 864   void addq(Register dst, Register src);
 865 
 866   void addr_nop_4();
 867   void addr_nop_5();
 868   void addr_nop_7();
 869   void addr_nop_8();
 870 
 871   // Add Scalar Double-Precision Floating-Point Values
 872   void addsd(XMMRegister dst, Address src);
 873   void addsd(XMMRegister dst, XMMRegister src);
 874 
 875   // Add Scalar Single-Precision Floating-Point Values
 876   void addss(XMMRegister dst, Address src);
 877   void addss(XMMRegister dst, XMMRegister src);
 878 
 879   void andl(Address  dst, int32_t imm32);
 880   void andl(Register dst, int32_t imm32);
 881   void andl(Register dst, Address src);
 882   void andl(Register dst, Register src);
 883 
 884   void andq(Address  dst, int32_t imm32);
 885   void andq(Register dst, int32_t imm32);
 886   void andq(Register dst, Address src);
 887   void andq(Register dst, Register src);
 888 
 889   // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
 890   void andpd(XMMRegister dst, XMMRegister src);
 891 
 892   // Bitwise Logical AND of Packed Single-Precision Floating-Point Values
 893   void andps(XMMRegister dst, XMMRegister src);
 894 
 895   void bsfl(Register dst, Register src);
 896   void bsrl(Register dst, Register src);
 897 
 898 #ifdef _LP64
 899   void bsfq(Register dst, Register src);
 900   void bsrq(Register dst, Register src);
 901 #endif
 902 
 903   void bswapl(Register reg);
 904 
 905   void bswapq(Register reg);
 906 
 907   void call(Label& L, relocInfo::relocType rtype);
 908   void call(Register reg);  // push pc; pc <- reg
 909   void call(Address adr);   // push pc; pc <- adr
 910 
 911   void cdql();
 912 
 913   void cdqq();
 914 
 915   void cld() { emit_byte(0xfc); }
 916 
 917   void clflush(Address adr);
 918 
 919   void cmovl(Condition cc, Register dst, Register src);
 920   void cmovl(Condition cc, Register dst, Address src);
 921 
 922   void cmovq(Condition cc, Register dst, Register src);
 923   void cmovq(Condition cc, Register dst, Address src);
 924 
 925 
 926   void cmpb(Address dst, int imm8);
 927 
 928   void cmpl(Address dst, int32_t imm32);
 929 
 930   void cmpl(Register dst, int32_t imm32);
 931   void cmpl(Register dst, Register src);
 932   void cmpl(Register dst, Address src);
 933 
 934   void cmpq(Address dst, int32_t imm32);
 935   void cmpq(Address dst, Register src);
 936 
 937   void cmpq(Register dst, int32_t imm32);
 938   void cmpq(Register dst, Register src);
 939   void cmpq(Register dst, Address src);
 940 
 941   // these are dummies used to catch attempting to convert NULL to Register
 942   void cmpl(Register dst, void* junk); // dummy
 943   void cmpq(Register dst, void* junk); // dummy
 944 
 945   void cmpw(Address dst, int imm16);
 946 
 947   void cmpxchg8 (Address adr);
 948 
 949   void cmpxchgl(Register reg, Address adr);
 950 
 951   void cmpxchgq(Register reg, Address adr);
 952 
 953   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
 954   void comisd(XMMRegister dst, Address src);
 955   void comisd(XMMRegister dst, XMMRegister src);
 956 
 957   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
 958   void comiss(XMMRegister dst, Address src);
 959   void comiss(XMMRegister dst, XMMRegister src);
 960 
 961   // Identify processor type and features
 962   void cpuid() {
 963     emit_byte(0x0F);
 964     emit_byte(0xA2);
 965   }
 966 
 967   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
 968   void cvtsd2ss(XMMRegister dst, XMMRegister src);
 969   void cvtsd2ss(XMMRegister dst, Address src);
 970 
 971   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
 972   void cvtsi2sdl(XMMRegister dst, Register src);
 973   void cvtsi2sdl(XMMRegister dst, Address src);
 974   void cvtsi2sdq(XMMRegister dst, Register src);
 975   void cvtsi2sdq(XMMRegister dst, Address src);
 976 
 977   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
 978   void cvtsi2ssl(XMMRegister dst, Register src);
 979   void cvtsi2ssl(XMMRegister dst, Address src);
 980   void cvtsi2ssq(XMMRegister dst, Register src);
 981   void cvtsi2ssq(XMMRegister dst, Address src);
 982 
 983   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
 984   void cvtdq2pd(XMMRegister dst, XMMRegister src);
 985 
 986   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
 987   void cvtdq2ps(XMMRegister dst, XMMRegister src);
 988 
 989   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
 990   void cvtss2sd(XMMRegister dst, XMMRegister src);
 991   void cvtss2sd(XMMRegister dst, Address src);
 992 
 993   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
 994   void cvttsd2sil(Register dst, Address src);
 995   void cvttsd2sil(Register dst, XMMRegister src);
 996   void cvttsd2siq(Register dst, XMMRegister src);
 997 
 998   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
 999   void cvttss2sil(Register dst, XMMRegister src);
1000   void cvttss2siq(Register dst, XMMRegister src);
1001 
1002   // Divide Scalar Double-Precision Floating-Point Values
1003   void divsd(XMMRegister dst, Address src);
1004   void divsd(XMMRegister dst, XMMRegister src);
1005 
1006   // Divide Scalar Single-Precision Floating-Point Values
1007   void divss(XMMRegister dst, Address src);
1008   void divss(XMMRegister dst, XMMRegister src);
1009 
1010   void emms();
1011 
1012   void fabs();
1013 
1014   void fadd(int i);
1015 
1016   void fadd_d(Address src);
1017   void fadd_s(Address src);
1018 
1019   // "Alternate" versions of x87 instructions place result down in FPU
1020   // stack instead of on TOS
1021 
1022   void fadda(int i); // "alternate" fadd
1023   void faddp(int i = 1);
1024 
1025   void fchs();
1026 
1027   void fcom(int i);
1028 
1029   void fcomp(int i = 1);
1030   void fcomp_d(Address src);
1031   void fcomp_s(Address src);
1032 
1033   void fcompp();
1034 
1035   void fcos();
1036 
1037   void fdecstp();
1038 
1039   void fdiv(int i);
1040   void fdiv_d(Address src);
1041   void fdivr_s(Address src);
1042   void fdiva(int i);  // "alternate" fdiv
1043   void fdivp(int i = 1);
1044 
1045   void fdivr(int i);
1046   void fdivr_d(Address src);
1047   void fdiv_s(Address src);
1048 
1049   void fdivra(int i); // "alternate" reversed fdiv
1050 
1051   void fdivrp(int i = 1);
1052 
1053   void ffree(int i = 0);
1054 
1055   void fild_d(Address adr);
1056   void fild_s(Address adr);
1057 
1058   void fincstp();
1059 
1060   void finit();
1061 
1062   void fist_s (Address adr);
1063   void fistp_d(Address adr);
1064   void fistp_s(Address adr);
1065 
1066   void fld1();
1067 
1068   void fld_d(Address adr);
1069   void fld_s(Address adr);
1070   void fld_s(int index);
1071   void fld_x(Address adr);  // extended-precision (80-bit) format
1072 
1073   void fldcw(Address src);
1074 
1075   void fldenv(Address src);
1076 
1077   void fldlg2();
1078 
1079   void fldln2();
1080 
1081   void fldz();
1082 
1083   void flog();
1084   void flog10();
1085 
1086   void fmul(int i);
1087 
1088   void fmul_d(Address src);
1089   void fmul_s(Address src);
1090 
1091   void fmula(int i);  // "alternate" fmul
1092 
1093   void fmulp(int i = 1);
1094 
1095   void fnsave(Address dst);
1096 
1097   void fnstcw(Address src);
1098 
1099   void fnstsw_ax();
1100 
1101   void fprem();
1102   void fprem1();
1103 
1104   void frstor(Address src);
1105 
1106   void fsin();
1107 
1108   void fsqrt();
1109 
1110   void fst_d(Address adr);
1111   void fst_s(Address adr);
1112 
1113   void fstp_d(Address adr);
1114   void fstp_d(int index);
1115   void fstp_s(Address adr);
1116   void fstp_x(Address adr); // extended-precision (80-bit) format
1117 
1118   void fsub(int i);
1119   void fsub_d(Address src);
1120   void fsub_s(Address src);
1121 
1122   void fsuba(int i);  // "alternate" fsub
1123 
1124   void fsubp(int i = 1);
1125 
1126   void fsubr(int i);
1127   void fsubr_d(Address src);
1128   void fsubr_s(Address src);
1129 
1130   void fsubra(int i); // "alternate" reversed fsub
1131 
1132   void fsubrp(int i = 1);
1133 
1134   void ftan();
1135 
1136   void ftst();
1137 
1138   void fucomi(int i = 1);
1139   void fucomip(int i = 1);
1140 
1141   void fwait();
1142 
1143   void fxch(int i = 1);
1144 
1145   void fxrstor(Address src);
1146 
1147   void fxsave(Address dst);
1148 
1149   void fyl2x();
1150 
1151   void hlt();
1152 
1153   void idivl(Register src);
1154   void divl(Register src); // Unsigned division
1155 
1156   void idivq(Register src);
1157 
1158   void imull(Register dst, Register src);
1159   void imull(Register dst, Register src, int value);
1160 
1161   void imulq(Register dst, Register src);
1162   void imulq(Register dst, Register src, int value);
1163 
1164 
1165   // jcc is the generic conditional branch generator to run-
1166   // time routines, jcc is used for branches to labels. jcc
1167   // takes a branch opcode (cc) and a label (L) and generates
1168   // either a backward branch or a forward branch and links it
1169   // to the label fixup chain. Usage:
1170   //
1171   // Label L;      // unbound label
1172   // jcc(cc, L);   // forward branch to unbound label
1173   // bind(L);      // bind label to the current pc
1174   // jcc(cc, L);   // backward branch to bound label
1175   // bind(L);      // illegal: a label may be bound only once
1176   //
1177   // Note: The same Label can be used for forward and backward branches
1178   // but it may be bound only once.
1179 
1180   void jcc(Condition cc, Label& L, bool maybe_short = true);
1181 
1182   // Conditional jump to a 8-bit offset to L.
1183   // WARNING: be very careful using this for forward jumps.  If the label is
1184   // not bound within an 8-bit offset of this instruction, a run-time error
1185   // will occur.
1186   void jccb(Condition cc, Label& L);
1187 
1188   void jmp(Address entry);    // pc <- entry
1189 
1190   // Label operations & relative jumps (PPUM Appendix D)
1191   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
1192 
1193   void jmp(Register entry); // pc <- entry
1194 
1195   // Unconditional 8-bit offset jump to L.
1196   // WARNING: be very careful using this for forward jumps.  If the label is
1197   // not bound within an 8-bit offset of this instruction, a run-time error
1198   // will occur.
1199   void jmpb(Label& L);
1200 
1201   void ldmxcsr( Address src );
1202 
1203   void leal(Register dst, Address src);
1204 
1205   void leaq(Register dst, Address src);
1206 
1207   void lfence() {
1208     emit_byte(0x0F);
1209     emit_byte(0xAE);
1210     emit_byte(0xE8);
1211   }
1212 
1213   void lock();
1214 
1215   void lzcntl(Register dst, Register src);
1216 
1217 #ifdef _LP64
1218   void lzcntq(Register dst, Register src);
1219 #endif
1220 
1221   enum Membar_mask_bits {
1222     StoreStore = 1 << 3,
1223     LoadStore  = 1 << 2,
1224     StoreLoad  = 1 << 1,
1225     LoadLoad   = 1 << 0
1226   };
1227 
1228   // Serializes memory and blows flags
1229   void membar(Membar_mask_bits order_constraint) {
1230     if (os::is_MP()) {
1231       // We only have to handle StoreLoad
1232       if (order_constraint & StoreLoad) {
1233         // All usable chips support "locked" instructions which suffice
1234         // as barriers, and are much faster than the alternative of
1235         // using cpuid instruction. We use here a locked add [esp],0.
1236         // This is conveniently otherwise a no-op except for blowing
1237         // flags.
1238         // Any change to this code may need to revisit other places in
1239         // the code where this idiom is used, in particular the
1240         // orderAccess code.
1241         lock();
1242         addl(Address(rsp, 0), 0);// Assert the lock# signal here
1243       }
1244     }
1245   }
1246 
1247   void mfence();
1248 
1249   // Moves
1250 
1251   void mov64(Register dst, int64_t imm64);
1252 
1253   void movb(Address dst, Register src);
1254   void movb(Address dst, int imm8);
1255   void movb(Register dst, Address src);
1256 
1257   void movdl(XMMRegister dst, Register src);
1258   void movdl(Register dst, XMMRegister src);
1259   void movdl(XMMRegister dst, Address src);
1260 
1261   // Move Double Quadword
1262   void movdq(XMMRegister dst, Register src);
1263   void movdq(Register dst, XMMRegister src);
1264 
1265   // Move Aligned Double Quadword
1266   void movdqa(XMMRegister dst, XMMRegister src);
1267 
1268   // Move Unaligned Double Quadword
1269   void movdqu(Address     dst, XMMRegister src);
1270   void movdqu(XMMRegister dst, Address src);
1271   void movdqu(XMMRegister dst, XMMRegister src);
1272 
1273   void movl(Register dst, int32_t imm32);
1274   void movl(Address dst, int32_t imm32);
1275   void movl(Register dst, Register src);
1276   void movl(Register dst, Address src);
1277   void movl(Address dst, Register src);
1278 
1279   // These dummies prevent using movl from converting a zero (like NULL) into Register
1280   // by giving the compiler two choices it can't resolve
1281 
1282   void movl(Address  dst, void* junk);
1283   void movl(Register dst, void* junk);
1284 
1285 #ifdef _LP64
1286   void movq(Register dst, Register src);
1287   void movq(Register dst, Address src);
1288   void movq(Address  dst, Register src);
1289 #endif
1290 
1291   void movq(Address     dst, MMXRegister src );
1292   void movq(MMXRegister dst, Address src );
1293 
1294 #ifdef _LP64
1295   // These dummies prevent using movq from converting a zero (like NULL) into Register
1296   // by giving the compiler two choices it can't resolve
1297 
1298   void movq(Address  dst, void* dummy);
1299   void movq(Register dst, void* dummy);
1300 #endif
1301 
1302   // Move Quadword
1303   void movq(Address     dst, XMMRegister src);
1304   void movq(XMMRegister dst, Address src);
1305 
1306   void movsbl(Register dst, Address src);
1307   void movsbl(Register dst, Register src);
1308 
1309 #ifdef _LP64
1310   void movsbq(Register dst, Address src);
1311   void movsbq(Register dst, Register src);
1312 
1313   // Move signed 32bit immediate to 64bit extending sign
1314   void movslq(Address  dst, int32_t imm64);
1315   void movslq(Register dst, int32_t imm64);
1316 
1317   void movslq(Register dst, Address src);
1318   void movslq(Register dst, Register src);
1319   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1320 #endif
1321 
1322   void movswl(Register dst, Address src);
1323   void movswl(Register dst, Register src);
1324 
1325 #ifdef _LP64
1326   void movswq(Register dst, Address src);
1327   void movswq(Register dst, Register src);
1328 #endif
1329 
1330   void movw(Address dst, int imm16);
1331   void movw(Register dst, Address src);
1332   void movw(Address dst, Register src);
1333 
1334   void movzbl(Register dst, Address src);
1335   void movzbl(Register dst, Register src);
1336 
1337 #ifdef _LP64
1338   void movzbq(Register dst, Address src);
1339   void movzbq(Register dst, Register src);
1340 #endif
1341 
1342   void movzwl(Register dst, Address src);
1343   void movzwl(Register dst, Register src);
1344 
1345 #ifdef _LP64
1346   void movzwq(Register dst, Address src);
1347   void movzwq(Register dst, Register src);
1348 #endif
1349 
1350   void mull(Address src);
1351   void mull(Register src);
1352 
1353   // Multiply Scalar Double-Precision Floating-Point Values
1354   void mulsd(XMMRegister dst, Address src);
1355   void mulsd(XMMRegister dst, XMMRegister src);
1356 
1357   // Multiply Scalar Single-Precision Floating-Point Values
1358   void mulss(XMMRegister dst, Address src);
1359   void mulss(XMMRegister dst, XMMRegister src);
1360 
1361   void negl(Register dst);
1362 
1363 #ifdef _LP64
1364   void negq(Register dst);
1365 #endif
1366 
1367   void nop(int i = 1);
1368 
1369   void notl(Register dst);
1370 
1371 #ifdef _LP64
1372   void notq(Register dst);
1373 #endif
1374 
1375   void orl(Address dst, int32_t imm32);
1376   void orl(Register dst, int32_t imm32);
1377   void orl(Register dst, Address src);
1378   void orl(Register dst, Register src);
1379 
1380   void orq(Address dst, int32_t imm32);
1381   void orq(Register dst, int32_t imm32);
1382   void orq(Register dst, Address src);
1383   void orq(Register dst, Register src);
1384 
1385   // Pack with unsigned saturation
1386   void packuswb(XMMRegister dst, XMMRegister src);
1387   void packuswb(XMMRegister dst, Address src);
1388 
1389   // SSE4.2 string instructions
1390   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1391   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1392 
1393   // SSE4.1 packed move
1394   void pmovzxbw(XMMRegister dst, XMMRegister src);
1395   void pmovzxbw(XMMRegister dst, Address src);
1396 
1397 #ifndef _LP64 // no 32bit push/pop on amd64
1398   void popl(Address dst);
1399 #endif
1400 
1401 #ifdef _LP64
1402   void popq(Address dst);
1403 #endif
1404 
1405   void popcntl(Register dst, Address src);
1406   void popcntl(Register dst, Register src);
1407 
1408 #ifdef _LP64
1409   void popcntq(Register dst, Address src);
1410   void popcntq(Register dst, Register src);
1411 #endif
1412 
1413   // Prefetches (SSE, SSE2, 3DNOW only)
1414 
1415   void prefetchnta(Address src);
1416   void prefetchr(Address src);
1417   void prefetcht0(Address src);
1418   void prefetcht1(Address src);
1419   void prefetcht2(Address src);
1420   void prefetchw(Address src);
1421 
1422   // POR - Bitwise logical OR
1423   void por(XMMRegister dst, XMMRegister src);
1424   void por(XMMRegister dst, Address src);
1425 
1426   // Shuffle Packed Doublewords
1427   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1428   void pshufd(XMMRegister dst, Address src,     int mode);
1429 
1430   // Shuffle Packed Low Words
1431   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1432   void pshuflw(XMMRegister dst, Address src,     int mode);
1433 
1434   // Shift Right by bits Logical Quadword Immediate
1435   void psrlq(XMMRegister dst, int shift);
1436 
1437   // Shift Right by bytes Logical DoubleQuadword Immediate
1438   void psrldq(XMMRegister dst, int shift);
1439 
1440   // Logical Compare Double Quadword
1441   void ptest(XMMRegister dst, XMMRegister src);
1442   void ptest(XMMRegister dst, Address src);
1443 
1444   // Interleave Low Bytes
1445   void punpcklbw(XMMRegister dst, XMMRegister src);
1446   void punpcklbw(XMMRegister dst, Address src);
1447 
1448   // Interleave Low Doublewords
1449   void punpckldq(XMMRegister dst, XMMRegister src);
1450   void punpckldq(XMMRegister dst, Address src);
1451 
1452 #ifndef _LP64 // no 32bit push/pop on amd64
1453   void pushl(Address src);
1454 #endif
1455 
1456   void pushq(Address src);
1457 
1458   // Xor Packed Byte Integer Values
1459   void pxor(XMMRegister dst, Address src);
1460   void pxor(XMMRegister dst, XMMRegister src);
1461 
1462   void rcll(Register dst, int imm8);
1463 
1464   void rclq(Register dst, int imm8);
1465 
1466   void ret(int imm16);
1467 
1468   void sahf();
1469 
1470   void sarl(Register dst, int imm8);
1471   void sarl(Register dst);
1472 
1473   void sarq(Register dst, int imm8);
1474   void sarq(Register dst);
1475 
1476   void sbbl(Address dst, int32_t imm32);
1477   void sbbl(Register dst, int32_t imm32);
1478   void sbbl(Register dst, Address src);
1479   void sbbl(Register dst, Register src);
1480 
1481   void sbbq(Address dst, int32_t imm32);
1482   void sbbq(Register dst, int32_t imm32);
1483   void sbbq(Register dst, Address src);
1484   void sbbq(Register dst, Register src);
1485 
1486   void setb(Condition cc, Register dst);
1487 
1488   void shldl(Register dst, Register src);
1489 
1490   void shll(Register dst, int imm8);
1491   void shll(Register dst);
1492 
1493   void shlq(Register dst, int imm8);
1494   void shlq(Register dst);
1495 
1496   void shrdl(Register dst, Register src);
1497 
1498   void shrl(Register dst, int imm8);
1499   void shrl(Register dst);
1500 
1501   void shrq(Register dst, int imm8);
1502   void shrq(Register dst);
1503 
1504   void smovl(); // QQQ generic?
1505 
1506   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1507   void sqrtsd(XMMRegister dst, Address src);
1508   void sqrtsd(XMMRegister dst, XMMRegister src);
1509 
1510   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1511   void sqrtss(XMMRegister dst, Address src);
1512   void sqrtss(XMMRegister dst, XMMRegister src);
1513 
1514   void std() { emit_byte(0xfd); }
1515 
1516   void stmxcsr( Address dst );
1517 
1518   void subl(Address dst, int32_t imm32);
1519   void subl(Address dst, Register src);
1520   void subl(Register dst, int32_t imm32);
1521   void subl(Register dst, Address src);
1522   void subl(Register dst, Register src);
1523 
1524   void subq(Address dst, int32_t imm32);
1525   void subq(Address dst, Register src);
1526   void subq(Register dst, int32_t imm32);
1527   void subq(Register dst, Address src);
1528   void subq(Register dst, Register src);
1529 
1530   void subl_imm32(Register dst, int32_t imm32);
1531   void subq_imm32(Register dst, int32_t imm32);
1532 
1533   // Subtract Scalar Double-Precision Floating-Point Values
1534   void subsd(XMMRegister dst, Address src);
1535   void subsd(XMMRegister dst, XMMRegister src);
1536 
1537   // Subtract Scalar Single-Precision Floating-Point Values
1538   void subss(XMMRegister dst, Address src);
1539   void subss(XMMRegister dst, XMMRegister src);
1540 
1541   void testb(Register dst, int imm8);
1542 
1543   void testl(Register dst, int32_t imm32);
1544   void testl(Register dst, Register src);
1545   void testl(Register dst, Address src);
1546 
1547   void testq(Register dst, int32_t imm32);
1548   void testq(Register dst, Register src);
1549 
1550 
1551   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1552   void ucomisd(XMMRegister dst, Address src);
1553   void ucomisd(XMMRegister dst, XMMRegister src);
1554 
1555   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1556   void ucomiss(XMMRegister dst, Address src);
1557   void ucomiss(XMMRegister dst, XMMRegister src);
1558 
1559   void xaddl(Address dst, Register src);
1560 
1561   void xaddq(Address dst, Register src);
1562 
1563   void xchgl(Register reg, Address adr);
1564   void xchgl(Register dst, Register src);
1565 
1566   void xchgq(Register reg, Address adr);
1567   void xchgq(Register dst, Register src);
1568 
1569   // Get Value of Extended Control Register
1570   void xgetbv() {
1571     emit_byte(0x0F);
1572     emit_byte(0x01);
1573     emit_byte(0xD0);
1574   }
1575 
1576   void xorl(Register dst, int32_t imm32);
1577   void xorl(Register dst, Address src);
1578   void xorl(Register dst, Register src);
1579 
1580   void xorq(Register dst, Address src);
1581   void xorq(Register dst, Register src);
1582 
1583   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1584   void xorpd(XMMRegister dst, XMMRegister src);
1585 
1586   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1587   void xorps(XMMRegister dst, XMMRegister src);
1588 
1589   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1590 
1591   // AVX 3-operands instructions (encoded with VEX prefix)
1592   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
1593   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1594   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
1595   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1596   void vandpd(XMMRegister dst, XMMRegister nds, Address src);
1597   void vandps(XMMRegister dst, XMMRegister nds, Address src);
1598   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
1599   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1600   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
1601   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1602   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
1603   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1604   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
1605   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1606   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
1607   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1608   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
1609   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1610   void vxorpd(XMMRegister dst, XMMRegister nds, Address src);
1611   void vxorps(XMMRegister dst, XMMRegister nds, Address src);
1612 
1613 
1614  protected:
1615   // Next instructions require address alignment 16 bytes SSE mode.
1616   // They should be called only from corresponding MacroAssembler instructions.
1617   void andpd(XMMRegister dst, Address src);
1618   void andps(XMMRegister dst, Address src);
1619   void xorpd(XMMRegister dst, Address src);
1620   void xorps(XMMRegister dst, Address src);
1621 
1622 };
1623 
1624 
1625 // MacroAssembler extends Assembler by frequently used macros.
1626 //
1627 // Instructions for which a 'better' code sequence exists depending
1628 // on arguments should also go in here.
1629 
1630 class MacroAssembler: public Assembler {
1631   friend class LIR_Assembler;
1632   friend class Runtime1;      // as_Address()
1633 
1634  protected:
1635 
1636   Address as_Address(AddressLiteral adr);
1637   Address as_Address(ArrayAddress adr);
1638 
1639   // Support for VM calls
1640   //
1641   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1642   // may customize this version by overriding it for its purposes (e.g., to save/restore
1643   // additional registers when doing a VM call).
1644 #ifdef CC_INTERP
1645   // c++ interpreter never wants to use interp_masm version of call_VM
1646   #define VIRTUAL
1647 #else
1648   #define VIRTUAL virtual
1649 #endif
1650 
1651   VIRTUAL void call_VM_leaf_base(
1652     address entry_point,               // the entry point
1653     int     number_of_arguments        // the number of arguments to pop after the call
1654   );
1655 
1656   // This is the base routine called by the different versions of call_VM. The interpreter
1657   // may customize this version by overriding it for its purposes (e.g., to save/restore
1658   // additional registers when doing a VM call).
1659   //
1660   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
1661   // returns the register which contains the thread upon return. If a thread register has been
1662   // specified, the return value will correspond to that register. If no last_java_sp is specified
1663   // (noreg) than rsp will be used instead.
1664   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
1665     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
1666     Register java_thread,              // the thread if computed before     ; use noreg otherwise
1667     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
1668     address  entry_point,              // the entry point
1669     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
1670     bool     check_exceptions          // whether to check for pending exceptions after return
1671   );
1672 
1673   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1674   // The implementation is only non-empty for the InterpreterMacroAssembler,
1675   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
1676   virtual void check_and_handle_popframe(Register java_thread);
1677   virtual void check_and_handle_earlyret(Register java_thread);
1678 
1679   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
1680 
1681   // helpers for FPU flag access
1682   // tmp is a temporary register, if none is available use noreg
1683   void save_rax   (Register tmp);
1684   void restore_rax(Register tmp);
1685 
1686  public:
1687   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1688 
1689   // Support for NULL-checks
1690   //
1691   // Generates code that causes a NULL OS exception if the content of reg is NULL.
1692   // If the accessed location is M[reg + offset] and the offset is known, provide the
1693   // offset. No explicit code generation is needed if the offset is within a certain
1694   // range (0 <= offset <= page_size).
1695 
1696   void null_check(Register reg, int offset = -1);
1697   static bool needs_explicit_null_check(intptr_t offset);
1698 
1699   // Required platform-specific helpers for Label::patch_instructions.
1700   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1701   void pd_patch_instruction(address branch, address target);
1702 #ifndef PRODUCT
1703   static void pd_print_patched_instruction(address branch);
1704 #endif
1705 
1706   // The following 4 methods return the offset of the appropriate move instruction
1707 
1708   // Support for fast byte/short loading with zero extension (depending on particular CPU)
1709   int load_unsigned_byte(Register dst, Address src);
1710   int load_unsigned_short(Register dst, Address src);
1711 
1712   // Support for fast byte/short loading with sign extension (depending on particular CPU)
1713   int load_signed_byte(Register dst, Address src);
1714   int load_signed_short(Register dst, Address src);
1715 
1716   // Support for sign-extension (hi:lo = extend_sign(lo))
1717   void extend_sign(Register hi, Register lo);
1718 
1719   // Load and store values by size and signed-ness
1720   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
1721   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
1722 
1723   // Support for inc/dec with optimal instruction selection depending on value
1724 
1725   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
1726   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
1727 
1728   void decrementl(Address dst, int value = 1);
1729   void decrementl(Register reg, int value = 1);
1730 
1731   void decrementq(Register reg, int value = 1);
1732   void decrementq(Address dst, int value = 1);
1733 
1734   void incrementl(Address dst, int value = 1);
1735   void incrementl(Register reg, int value = 1);
1736 
1737   void incrementq(Register reg, int value = 1);
1738   void incrementq(Address dst, int value = 1);
1739 
1740 
1741   // Support optimal SSE move instructions.
1742   void movflt(XMMRegister dst, XMMRegister src) {
1743     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
1744     else                       { movss (dst, src); return; }
1745   }
1746   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
1747   void movflt(XMMRegister dst, AddressLiteral src);
1748   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
1749 
1750   void movdbl(XMMRegister dst, XMMRegister src) {
1751     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
1752     else                       { movsd (dst, src); return; }
1753   }
1754 
1755   void movdbl(XMMRegister dst, AddressLiteral src);
1756 
1757   void movdbl(XMMRegister dst, Address src) {
1758     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
1759     else                         { movlpd(dst, src); return; }
1760   }
1761   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
1762 
1763   void incrementl(AddressLiteral dst);
1764   void incrementl(ArrayAddress dst);
1765 
1766   // Alignment
1767   void align(int modulus);
1768 
1769   // A 5 byte nop that is safe for patching (see patch_verified_entry)
1770   void fat_nop();
1771 
1772   // Stack frame creation/removal
1773   void enter();
1774   void leave();
1775 
1776   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
1777   // The pointer will be loaded into the thread register.
1778   void get_thread(Register thread);
1779 
1780 
1781   // Support for VM calls
1782   //
1783   // It is imperative that all calls into the VM are handled via the call_VM macros.
1784   // They make sure that the stack linkage is setup correctly. call_VM's correspond
1785   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1786 
1787 
1788   void call_VM(Register oop_result,
1789                address entry_point,
1790                bool check_exceptions = true);
1791   void call_VM(Register oop_result,
1792                address entry_point,
1793                Register arg_1,
1794                bool check_exceptions = true);
1795   void call_VM(Register oop_result,
1796                address entry_point,
1797                Register arg_1, Register arg_2,
1798                bool check_exceptions = true);
1799   void call_VM(Register oop_result,
1800                address entry_point,
1801                Register arg_1, Register arg_2, Register arg_3,
1802                bool check_exceptions = true);
1803 
1804   // Overloadings with last_Java_sp
1805   void call_VM(Register oop_result,
1806                Register last_java_sp,
1807                address entry_point,
1808                int number_of_arguments = 0,
1809                bool check_exceptions = true);
1810   void call_VM(Register oop_result,
1811                Register last_java_sp,
1812                address entry_point,
1813                Register arg_1, bool
1814                check_exceptions = true);
1815   void call_VM(Register oop_result,
1816                Register last_java_sp,
1817                address entry_point,
1818                Register arg_1, Register arg_2,
1819                bool check_exceptions = true);
1820   void call_VM(Register oop_result,
1821                Register last_java_sp,
1822                address entry_point,
1823                Register arg_1, Register arg_2, Register arg_3,
1824                bool check_exceptions = true);
1825 
1826   // These always tightly bind to MacroAssembler::call_VM_base
1827   // bypassing the virtual implementation
1828   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
1829   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
1830   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
1831   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
1832   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
1833 
1834   void call_VM_leaf(address entry_point,
1835                     int number_of_arguments = 0);
1836   void call_VM_leaf(address entry_point,
1837                     Register arg_1);
1838   void call_VM_leaf(address entry_point,
1839                     Register arg_1, Register arg_2);
1840   void call_VM_leaf(address entry_point,
1841                     Register arg_1, Register arg_2, Register arg_3);
1842 
1843   // These always tightly bind to MacroAssembler::call_VM_leaf_base
1844   // bypassing the virtual implementation
1845   void super_call_VM_leaf(address entry_point);
1846   void super_call_VM_leaf(address entry_point, Register arg_1);
1847   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
1848   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
1849   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
1850 
1851   // last Java Frame (fills frame anchor)
1852   void set_last_Java_frame(Register thread,
1853                            Register last_java_sp,
1854                            Register last_java_fp,
1855                            address last_java_pc);
1856 
1857   // thread in the default location (r15_thread on 64bit)
1858   void set_last_Java_frame(Register last_java_sp,
1859                            Register last_java_fp,
1860                            address last_java_pc);
1861 
1862   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
1863 
1864   // thread in the default location (r15_thread on 64bit)
1865   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
1866 
1867   // Stores
1868   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
1869   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
1870 
1871 #ifndef SERIALGC
1872 
1873   void g1_write_barrier_pre(Register obj,
1874                             Register pre_val,
1875                             Register thread,
1876                             Register tmp,
1877                             bool tosca_live,
1878                             bool expand_call);
1879 
1880   void g1_write_barrier_post(Register store_addr,
1881                              Register new_val,
1882                              Register thread,
1883                              Register tmp,
1884                              Register tmp2);
1885 
1886 #endif // SERIALGC
1887 
1888   // split store_check(Register obj) to enhance instruction interleaving
1889   void store_check_part_1(Register obj);
1890   void store_check_part_2(Register obj);
1891 
1892   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
1893   void c2bool(Register x);
1894 
1895   // C++ bool manipulation
1896 
1897   void movbool(Register dst, Address src);
1898   void movbool(Address dst, bool boolconst);
1899   void movbool(Address dst, Register src);
1900   void testbool(Register dst);
1901 
1902   // oop manipulations
1903   void load_klass(Register dst, Register src);
1904   void store_klass(Register dst, Register src);
1905 
1906   void load_heap_oop(Register dst, Address src);
1907   void load_heap_oop_not_null(Register dst, Address src);
1908   void store_heap_oop(Address dst, Register src);
1909 
1910   // Used for storing NULL. All other oop constants should be
1911   // stored using routines that take a jobject.
1912   void store_heap_oop_null(Address dst);
1913 
1914   void load_prototype_header(Register dst, Register src);
1915 
1916 #ifdef _LP64
1917   void store_klass_gap(Register dst, Register src);
1918 
1919   // This dummy is to prevent a call to store_heap_oop from
1920   // converting a zero (like NULL) into a Register by giving
1921   // the compiler two choices it can't resolve
1922 
1923   void store_heap_oop(Address dst, void* dummy);
1924 
1925   void encode_heap_oop(Register r);
1926   void decode_heap_oop(Register r);
1927   void encode_heap_oop_not_null(Register r);
1928   void decode_heap_oop_not_null(Register r);
1929   void encode_heap_oop_not_null(Register dst, Register src);
1930   void decode_heap_oop_not_null(Register dst, Register src);
1931 
1932   void set_narrow_oop(Register dst, jobject obj);
1933   void set_narrow_oop(Address dst, jobject obj);
1934   void cmp_narrow_oop(Register dst, jobject obj);
1935   void cmp_narrow_oop(Address dst, jobject obj);
1936 
1937   // if heap base register is used - reinit it with the correct value
1938   void reinit_heapbase();
1939 
1940   DEBUG_ONLY(void verify_heapbase(const char* msg);)
1941 
1942 #endif // _LP64
1943 
1944   // Int division/remainder for Java
1945   // (as idivl, but checks for special case as described in JVM spec.)
1946   // returns idivl instruction offset for implicit exception handling
1947   int corrected_idivl(Register reg);
1948 
1949   // Long division/remainder for Java
1950   // (as idivq, but checks for special case as described in JVM spec.)
1951   // returns idivq instruction offset for implicit exception handling
1952   int corrected_idivq(Register reg);
1953 
1954   void int3();
1955 
1956   // Long operation macros for a 32bit cpu
1957   // Long negation for Java
1958   void lneg(Register hi, Register lo);
1959 
1960   // Long multiplication for Java
1961   // (destroys contents of eax, ebx, ecx and edx)
1962   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
1963 
1964   // Long shifts for Java
1965   // (semantics as described in JVM spec.)
1966   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
1967   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
1968 
1969   // Long compare for Java
1970   // (semantics as described in JVM spec.)
1971   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
1972 
1973 
1974   // misc
1975 
1976   // Sign extension
1977   void sign_extend_short(Register reg);
1978   void sign_extend_byte(Register reg);
1979 
1980   // Division by power of 2, rounding towards 0
1981   void division_with_shift(Register reg, int shift_value);
1982 
1983   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
1984   //
1985   // CF (corresponds to C0) if x < y
1986   // PF (corresponds to C2) if unordered
1987   // ZF (corresponds to C3) if x = y
1988   //
1989   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1990   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
1991   void fcmp(Register tmp);
1992   // Variant of the above which allows y to be further down the stack
1993   // and which only pops x and y if specified. If pop_right is
1994   // specified then pop_left must also be specified.
1995   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
1996 
1997   // Floating-point comparison for Java
1998   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
1999   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
2000   // (semantics as described in JVM spec.)
2001   void fcmp2int(Register dst, bool unordered_is_less);
2002   // Variant of the above which allows y to be further down the stack
2003   // and which only pops x and y if specified. If pop_right is
2004   // specified then pop_left must also be specified.
2005   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
2006 
2007   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
2008   // tmp is a temporary register, if none is available use noreg
2009   void fremr(Register tmp);
2010 
2011 
2012   // same as fcmp2int, but using SSE2
2013   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
2014   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
2015 
2016   // Inlined sin/cos generator for Java; must not use CPU instruction
2017   // directly on Intel as it does not have high enough precision
2018   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
2019   // number of FPU stack slots in use; all but the topmost will
2020   // require saving if a slow case is necessary. Assumes argument is
2021   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
2022   // this code.
2023   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
2024 
2025   // branch to L if FPU flag C2 is set/not set
2026   // tmp is a temporary register, if none is available use noreg
2027   void jC2 (Register tmp, Label& L);
2028   void jnC2(Register tmp, Label& L);
2029 
2030   // Pop ST (ffree & fincstp combined)
2031   void fpop();
2032 
2033   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
2034   void push_fTOS();
2035 
2036   // pops double TOS element from CPU stack and pushes on FPU stack
2037   void pop_fTOS();
2038 
2039   void empty_FPU_stack();
2040 
2041   void push_IU_state();
2042   void pop_IU_state();
2043 
2044   void push_FPU_state();
2045   void pop_FPU_state();
2046 
2047   void push_CPU_state();
2048   void pop_CPU_state();
2049 
2050   // Round up to a power of two
2051   void round_to(Register reg, int modulus);
2052 
2053   // Callee saved registers handling
2054   void push_callee_saved_registers();
2055   void pop_callee_saved_registers();
2056 
2057   // allocation
2058   void eden_allocate(
2059     Register obj,                      // result: pointer to object after successful allocation
2060     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2061     int      con_size_in_bytes,        // object size in bytes if   known at compile time
2062     Register t1,                       // temp register
2063     Label&   slow_case                 // continuation point if fast allocation fails
2064   );
2065   void tlab_allocate(
2066     Register obj,                      // result: pointer to object after successful allocation
2067     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2068     int      con_size_in_bytes,        // object size in bytes if   known at compile time
2069     Register t1,                       // temp register
2070     Register t2,                       // temp register
2071     Label&   slow_case                 // continuation point if fast allocation fails
2072   );
2073   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
2074   void incr_allocated_bytes(Register thread,
2075                             Register var_size_in_bytes, int con_size_in_bytes,
2076                             Register t1 = noreg);
2077 
2078   // interface method calling
2079   void lookup_interface_method(Register recv_klass,
2080                                Register intf_klass,
2081                                RegisterOrConstant itable_index,
2082                                Register method_result,
2083                                Register scan_temp,
2084                                Label& no_such_interface);
2085 
2086   // Test sub_klass against super_klass, with fast and slow paths.
2087 
2088   // The fast path produces a tri-state answer: yes / no / maybe-slow.
2089   // One of the three labels can be NULL, meaning take the fall-through.
2090   // If super_check_offset is -1, the value is loaded up from super_klass.
2091   // No registers are killed, except temp_reg.
2092   void check_klass_subtype_fast_path(Register sub_klass,
2093                                      Register super_klass,
2094                                      Register temp_reg,
2095                                      Label* L_success,
2096                                      Label* L_failure,
2097                                      Label* L_slow_path,
2098                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
2099 
2100   // The rest of the type check; must be wired to a corresponding fast path.
2101   // It does not repeat the fast path logic, so don't use it standalone.
2102   // The temp_reg and temp2_reg can be noreg, if no temps are available.
2103   // Updates the sub's secondary super cache as necessary.
2104   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
2105   void check_klass_subtype_slow_path(Register sub_klass,
2106                                      Register super_klass,
2107                                      Register temp_reg,
2108                                      Register temp2_reg,
2109                                      Label* L_success,
2110                                      Label* L_failure,
2111                                      bool set_cond_codes = false);
2112 
2113   // Simplified, combined version, good for typical uses.
2114   // Falls through on failure.
2115   void check_klass_subtype(Register sub_klass,
2116                            Register super_klass,
2117                            Register temp_reg,
2118                            Label& L_success);
2119 
2120   // method handles (JSR 292)
2121   void check_method_handle_type(Register mtype_reg, Register mh_reg,
2122                                 Register temp_reg,
2123                                 Label& wrong_method_type);
2124   void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
2125                                   Register temp_reg);
2126   void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
2127   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
2128 
2129 
2130   //----
2131   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
2132 
2133   // Debugging
2134 
2135   // only if +VerifyOops
2136   void verify_oop(Register reg, const char* s = "broken oop");
2137   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
2138 
2139   // only if +VerifyFPU
2140   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
2141 
2142   // prints msg, dumps registers and stops execution
2143   void stop(const char* msg);
2144 
2145   // prints msg and continues
2146   void warn(const char* msg);
2147 
2148   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
2149   static void debug64(char* msg, int64_t pc, int64_t regs[]);
2150 
2151   void os_breakpoint();
2152 
2153   void untested()                                { stop("untested"); }
2154 
2155   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
2156 
2157   void should_not_reach_here()                   { stop("should not reach here"); }
2158 
2159   void print_CPU_state();
2160 
2161   // Stack overflow checking
2162   void bang_stack_with_offset(int offset) {
2163     // stack grows down, caller passes positive offset
2164     assert(offset > 0, "must bang with negative offset");
2165     movl(Address(rsp, (-offset)), rax);
2166   }
2167 
2168   // Writes to stack successive pages until offset reached to check for
2169   // stack overflow + shadow pages.  Also, clobbers tmp
2170   void bang_stack_size(Register size, Register tmp);
2171 
2172   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2173                                                 Register tmp,
2174                                                 int offset);
2175 
2176   // Support for serializing memory accesses between threads
2177   void serialize_memory(Register thread, Register tmp);
2178 
2179   void verify_tlab();
2180 
2181   // Biased locking support
2182   // lock_reg and obj_reg must be loaded up with the appropriate values.
2183   // swap_reg must be rax, and is killed.
2184   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
2185   // be killed; if not supplied, push/pop will be used internally to
2186   // allocate a temporary (inefficient, avoid if possible).
2187   // Optional slow case is for implementations (interpreter and C1) which branch to
2188   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
2189   // Returns offset of first potentially-faulting instruction for null
2190   // check info (currently consumed only by C1). If
2191   // swap_reg_contains_mark is true then returns -1 as it is assumed
2192   // the calling code has already passed any potential faults.
2193   int biased_locking_enter(Register lock_reg, Register obj_reg,
2194                            Register swap_reg, Register tmp_reg,
2195                            bool swap_reg_contains_mark,
2196                            Label& done, Label* slow_case = NULL,
2197                            BiasedLockingCounters* counters = NULL);
2198   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
2199 
2200 
2201   Condition negate_condition(Condition cond);
2202 
2203   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
2204   // operands. In general the names are modified to avoid hiding the instruction in Assembler
2205   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
2206   // here in MacroAssembler. The major exception to this rule is call
2207 
2208   // Arithmetics
2209 
2210 
2211   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
2212   void addptr(Address dst, Register src);
2213 
2214   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
2215   void addptr(Register dst, int32_t src);
2216   void addptr(Register dst, Register src);
2217   void addptr(Register dst, RegisterOrConstant src) {
2218     if (src.is_constant()) addptr(dst, (int) src.as_constant());
2219     else                   addptr(dst,       src.as_register());
2220   }
2221 
2222   void andptr(Register dst, int32_t src);
2223   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
2224 
2225   void cmp8(AddressLiteral src1, int imm);
2226 
2227   // renamed to drag out the casting of address to int32_t/intptr_t
2228   void cmp32(Register src1, int32_t imm);
2229 
2230   void cmp32(AddressLiteral src1, int32_t imm);
2231   // compare reg - mem, or reg - &mem
2232   void cmp32(Register src1, AddressLiteral src2);
2233 
2234   void cmp32(Register src1, Address src2);
2235 
2236 #ifndef _LP64
2237   void cmpoop(Address dst, jobject obj);
2238   void cmpoop(Register dst, jobject obj);
2239 #endif // _LP64
2240 
2241   // NOTE src2 must be the lval. This is NOT an mem-mem compare
2242   void cmpptr(Address src1, AddressLiteral src2);
2243 
2244   void cmpptr(Register src1, AddressLiteral src2);
2245 
2246   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2247   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2248   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2249 
2250   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2251   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2252 
2253   // cmp64 to avoild hiding cmpq
2254   void cmp64(Register src1, AddressLiteral src);
2255 
2256   void cmpxchgptr(Register reg, Address adr);
2257 
2258   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
2259 
2260 
2261   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
2262 
2263 
2264   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
2265 
2266   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
2267 
2268   void shlptr(Register dst, int32_t shift);
2269   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
2270 
2271   void shrptr(Register dst, int32_t shift);
2272   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
2273 
2274   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
2275   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
2276 
2277   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2278 
2279   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2280   void subptr(Register dst, int32_t src);
2281   void subptr_imm32(Register dst, int32_t src);
2282   void subptr(Register dst, Register src);
2283   void subptr(Register dst, RegisterOrConstant src) {
2284     if (src.is_constant()) subptr(dst, (int) src.as_constant());
2285     else                   subptr(dst,       src.as_register());
2286   }
2287 
2288   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2289   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2290 
2291   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2292   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2293 
2294   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
2295 
2296 
2297 
2298   // Helper functions for statistics gathering.
2299   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
2300   void cond_inc32(Condition cond, AddressLiteral counter_addr);
2301   // Unconditional atomic increment.
2302   void atomic_incl(AddressLiteral counter_addr);
2303 
2304   void lea(Register dst, AddressLiteral adr);
2305   void lea(Address dst, AddressLiteral adr);
2306   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
2307 
2308   void leal32(Register dst, Address src) { leal(dst, src); }
2309 
2310   // Import other testl() methods from the parent class or else
2311   // they will be hidden by the following overriding declaration.
2312   using Assembler::testl;
2313   void testl(Register dst, AddressLiteral src);
2314 
2315   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2316   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2317   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2318 
2319   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
2320   void testptr(Register src1, Register src2);
2321 
2322   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2323   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2324 
2325   // Calls
2326 
2327   void call(Label& L, relocInfo::relocType rtype);
2328   void call(Register entry);
2329 
2330   // NOTE: this call tranfers to the effective address of entry NOT
2331   // the address contained by entry. This is because this is more natural
2332   // for jumps/calls.
2333   void call(AddressLiteral entry);
2334 
2335   // Jumps
2336 
2337   // NOTE: these jumps tranfer to the effective address of dst NOT
2338   // the address contained by dst. This is because this is more natural
2339   // for jumps/calls.
2340   void jump(AddressLiteral dst);
2341   void jump_cc(Condition cc, AddressLiteral dst);
2342 
2343   // 32bit can do a case table jump in one instruction but we no longer allow the base
2344   // to be installed in the Address class. This jump will tranfers to the address
2345   // contained in the location described by entry (not the address of entry)
2346   void jump(ArrayAddress entry);
2347 
2348   // Floating
2349 
2350   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
2351   void andpd(XMMRegister dst, AddressLiteral src);
2352 
2353   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
2354   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
2355   void andps(XMMRegister dst, AddressLiteral src);
2356 
2357   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
2358   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
2359   void comiss(XMMRegister dst, AddressLiteral src);
2360 
2361   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
2362   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
2363   void comisd(XMMRegister dst, AddressLiteral src);
2364 
2365   void fadd_s(Address src)        { Assembler::fadd_s(src); }
2366   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
2367 
2368   void fldcw(Address src) { Assembler::fldcw(src); }
2369   void fldcw(AddressLiteral src);
2370 
2371   void fld_s(int index)   { Assembler::fld_s(index); }
2372   void fld_s(Address src) { Assembler::fld_s(src); }
2373   void fld_s(AddressLiteral src);
2374 
2375   void fld_d(Address src) { Assembler::fld_d(src); }
2376   void fld_d(AddressLiteral src);
2377 
2378   void fld_x(Address src) { Assembler::fld_x(src); }
2379   void fld_x(AddressLiteral src);
2380 
2381   void fmul_s(Address src)        { Assembler::fmul_s(src); }
2382   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
2383 
2384   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
2385   void ldmxcsr(AddressLiteral src);
2386 
2387 private:
2388   // these are private because users should be doing movflt/movdbl
2389 
2390   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
2391   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
2392   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
2393   void movss(XMMRegister dst, AddressLiteral src);
2394 
2395   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
2396   void movlpd(XMMRegister dst, AddressLiteral src);
2397 
2398 public:
2399 
2400   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
2401   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
2402   void addsd(XMMRegister dst, AddressLiteral src);
2403 
2404   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
2405   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
2406   void addss(XMMRegister dst, AddressLiteral src);
2407 
2408   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
2409   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
2410   void divsd(XMMRegister dst, AddressLiteral src);
2411 
2412   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
2413   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
2414   void divss(XMMRegister dst, AddressLiteral src);
2415 
2416   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
2417   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
2418   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
2419   void movsd(XMMRegister dst, AddressLiteral src);
2420 
2421   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
2422   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
2423   void mulsd(XMMRegister dst, AddressLiteral src);
2424 
2425   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
2426   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
2427   void mulss(XMMRegister dst, AddressLiteral src);
2428 
2429   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
2430   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
2431   void sqrtsd(XMMRegister dst, AddressLiteral src);
2432 
2433   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
2434   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
2435   void sqrtss(XMMRegister dst, AddressLiteral src);
2436 
2437   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
2438   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
2439   void subsd(XMMRegister dst, AddressLiteral src);
2440 
2441   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
2442   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
2443   void subss(XMMRegister dst, AddressLiteral src);
2444 
2445   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
2446   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
2447   void ucomiss(XMMRegister dst, AddressLiteral src);
2448 
2449   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
2450   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
2451   void ucomisd(XMMRegister dst, AddressLiteral src);
2452 
2453   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
2454   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
2455   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
2456   void xorpd(XMMRegister dst, AddressLiteral src);
2457 
2458   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
2459   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
2460   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
2461   void xorps(XMMRegister dst, AddressLiteral src);
2462 
2463   // AVX 3-operands instructions
2464 
2465   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
2466   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
2467   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2468 
2469   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
2470   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
2471   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2472 
2473   void vandpd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vandpd(dst, nds, src); }
2474   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2475 
2476   void vandps(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vandps(dst, nds, src); }
2477   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2478 
2479   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
2480   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
2481   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2482 
2483   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
2484   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
2485   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2486 
2487   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
2488   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
2489   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2490 
2491   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
2492   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
2493   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2494 
2495   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
2496   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
2497   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2498 
2499   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
2500   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
2501   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2502 
2503   void vxorpd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vxorpd(dst, nds, src); }
2504   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2505 
2506   void vxorps(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vxorps(dst, nds, src); }
2507   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2508 
2509 
2510   // Data
2511 
2512   void cmov32( Condition cc, Register dst, Address  src);
2513   void cmov32( Condition cc, Register dst, Register src);
2514 
2515   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
2516 
2517   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2518   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2519 
2520   void movoop(Register dst, jobject obj);
2521   void movoop(Address dst, jobject obj);
2522 
2523   void movptr(ArrayAddress dst, Register src);
2524   // can this do an lea?
2525   void movptr(Register dst, ArrayAddress src);
2526 
2527   void movptr(Register dst, Address src);
2528 
2529   void movptr(Register dst, AddressLiteral src);
2530 
2531   void movptr(Register dst, intptr_t src);
2532   void movptr(Register dst, Register src);
2533   void movptr(Address dst, intptr_t src);
2534 
2535   void movptr(Address dst, Register src);
2536 
2537   void movptr(Register dst, RegisterOrConstant src) {
2538     if (src.is_constant()) movptr(dst, src.as_constant());
2539     else                   movptr(dst, src.as_register());
2540   }
2541 
2542 #ifdef _LP64
2543   // Generally the next two are only used for moving NULL
2544   // Although there are situations in initializing the mark word where
2545   // they could be used. They are dangerous.
2546 
2547   // They only exist on LP64 so that int32_t and intptr_t are not the same
2548   // and we have ambiguous declarations.
2549 
2550   void movptr(Address dst, int32_t imm32);
2551   void movptr(Register dst, int32_t imm32);
2552 #endif // _LP64
2553 
2554   // to avoid hiding movl
2555   void mov32(AddressLiteral dst, Register src);
2556   void mov32(Register dst, AddressLiteral src);
2557 
2558   // to avoid hiding movb
2559   void movbyte(ArrayAddress dst, int src);
2560 
2561   // Can push value or effective address
2562   void pushptr(AddressLiteral src);
2563 
2564   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2565   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2566 
2567   void pushoop(jobject obj);
2568 
2569   // sign extend as need a l to ptr sized element
2570   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2571   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2572 
2573   // C2 compiled method's prolog code.
2574   void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
2575 
2576   // IndexOf strings.
2577   // Small strings are loaded through stack if they cross page boundary.
2578   void string_indexof(Register str1, Register str2,
2579                       Register cnt1, Register cnt2,
2580                       int int_cnt2,  Register result,
2581                       XMMRegister vec, Register tmp);
2582 
2583   // IndexOf for constant substrings with size >= 8 elements
2584   // which don't need to be loaded through stack.
2585   void string_indexofC8(Register str1, Register str2,
2586                       Register cnt1, Register cnt2,
2587                       int int_cnt2,  Register result,
2588                       XMMRegister vec, Register tmp);
2589 
2590     // Smallest code: we don't need to load through stack,
2591     // check string tail.
2592 
2593   // Compare strings.
2594   void string_compare(Register str1, Register str2,
2595                       Register cnt1, Register cnt2, Register result,
2596                       XMMRegister vec1);
2597 
2598   // Compare char[] arrays.
2599   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
2600                           Register limit, Register result, Register chr,
2601                           XMMRegister vec1, XMMRegister vec2);
2602 
2603   // Fill primitive arrays
2604   void generate_fill(BasicType t, bool aligned,
2605                      Register to, Register value, Register count,
2606                      Register rtmp, XMMRegister xtmp);
2607 
2608 #undef VIRTUAL
2609 
2610 };
2611 
2612 /**
2613  * class SkipIfEqual:
2614  *
2615  * Instantiating this class will result in assembly code being output that will
2616  * jump around any code emitted between the creation of the instance and it's
2617  * automatic destruction at the end of a scope block, depending on the value of
2618  * the flag passed to the constructor, which will be checked at run-time.
2619  */
2620 class SkipIfEqual {
2621  private:
2622   MacroAssembler* _masm;
2623   Label _label;
2624 
2625  public:
2626    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
2627    ~SkipIfEqual();
2628 };
2629 
2630 #ifdef ASSERT
2631 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
2632 #endif
2633 
2634 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP