1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "libadt/vectset.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/compile.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/locknode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/macro.hpp"
  36 #include "opto/memnode.hpp"
  37 #include "opto/node.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/subnode.hpp"
  42 #include "opto/type.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 
  45 
  46 //
  47 // Replace any references to "oldref" in inputs to "use" with "newref".
  48 // Returns the number of replacements made.
  49 //
  50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  51   int nreplacements = 0;
  52   uint req = use->req();
  53   for (uint j = 0; j < use->len(); j++) {
  54     Node *uin = use->in(j);
  55     if (uin == oldref) {
  56       if (j < req)
  57         use->set_req(j, newref);
  58       else
  59         use->set_prec(j, newref);
  60       nreplacements++;
  61     } else if (j >= req && uin == NULL) {
  62       break;
  63     }
  64   }
  65   return nreplacements;
  66 }
  67 
  68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  69   // Copy debug information and adjust JVMState information
  70   uint old_dbg_start = oldcall->tf()->domain()->cnt();
  71   uint new_dbg_start = newcall->tf()->domain()->cnt();
  72   int jvms_adj  = new_dbg_start - old_dbg_start;
  73   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  74 
  75   Dict* sosn_map = new Dict(cmpkey,hashkey);
  76   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  77     Node* old_in = oldcall->in(i);
  78     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  79     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  80       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  81       uint old_unique = C->unique();
  82       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
  83       if (old_unique != C->unique()) {
  84         new_in->set_req(0, C->root()); // reset control edge
  85         new_in = transform_later(new_in); // Register new node.
  86       }
  87       old_in = new_in;
  88     }
  89     newcall->add_req(old_in);
  90   }
  91 
  92   newcall->set_jvms(oldcall->jvms());
  93   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
  94     jvms->set_map(newcall);
  95     jvms->set_locoff(jvms->locoff()+jvms_adj);
  96     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
  97     jvms->set_monoff(jvms->monoff()+jvms_adj);
  98     jvms->set_scloff(jvms->scloff()+jvms_adj);
  99     jvms->set_endoff(jvms->endoff()+jvms_adj);
 100   }
 101 }
 102 
 103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
 104   Node* cmp;
 105   if (mask != 0) {
 106     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
 107     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
 108   } else {
 109     cmp = word;
 110   }
 111   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
 112   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 113   transform_later(iff);
 114 
 115   // Fast path taken.
 116   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
 117 
 118   // Fast path not-taken, i.e. slow path
 119   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
 120 
 121   if (return_fast_path) {
 122     region->init_req(edge, slow_taken); // Capture slow-control
 123     return fast_taken;
 124   } else {
 125     region->init_req(edge, fast_taken); // Capture fast-control
 126     return slow_taken;
 127   }
 128 }
 129 
 130 //--------------------copy_predefined_input_for_runtime_call--------------------
 131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 132   // Set fixed predefined input arguments
 133   call->init_req( TypeFunc::Control, ctrl );
 134   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 135   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 136   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 137   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 138 }
 139 
 140 //------------------------------make_slow_call---------------------------------
 141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
 142 
 143   // Slow-path call
 144   int size = slow_call_type->domain()->cnt();
 145  CallNode *call = leaf_name
 146    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 147    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 148 
 149   // Slow path call has no side-effects, uses few values
 150   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 151   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 152   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 153   copy_call_debug_info(oldcall, call);
 154   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 155   _igvn.replace_node(oldcall, call);
 156   transform_later(call);
 157 
 158   return call;
 159 }
 160 
 161 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 162   _fallthroughproj = NULL;
 163   _fallthroughcatchproj = NULL;
 164   _ioproj_fallthrough = NULL;
 165   _ioproj_catchall = NULL;
 166   _catchallcatchproj = NULL;
 167   _memproj_fallthrough = NULL;
 168   _memproj_catchall = NULL;
 169   _resproj = NULL;
 170   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 171     ProjNode *pn = call->fast_out(i)->as_Proj();
 172     switch (pn->_con) {
 173       case TypeFunc::Control:
 174       {
 175         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 176         _fallthroughproj = pn;
 177         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 178         const Node *cn = pn->fast_out(j);
 179         if (cn->is_Catch()) {
 180           ProjNode *cpn = NULL;
 181           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 182             cpn = cn->fast_out(k)->as_Proj();
 183             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 184             if (cpn->_con == CatchProjNode::fall_through_index)
 185               _fallthroughcatchproj = cpn;
 186             else {
 187               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 188               _catchallcatchproj = cpn;
 189             }
 190           }
 191         }
 192         break;
 193       }
 194       case TypeFunc::I_O:
 195         if (pn->_is_io_use)
 196           _ioproj_catchall = pn;
 197         else
 198           _ioproj_fallthrough = pn;
 199         break;
 200       case TypeFunc::Memory:
 201         if (pn->_is_io_use)
 202           _memproj_catchall = pn;
 203         else
 204           _memproj_fallthrough = pn;
 205         break;
 206       case TypeFunc::Parms:
 207         _resproj = pn;
 208         break;
 209       default:
 210         assert(false, "unexpected projection from allocation node.");
 211     }
 212   }
 213 
 214 }
 215 
 216 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 217 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
 218   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 219   if (!UseG1GC) {
 220     // vanilla/CMS post barrier
 221     Node *shift = p2x->unique_out();
 222     Node *addp = shift->unique_out();
 223     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 224       Node *mem = addp->last_out(j);
 225       if (UseCondCardMark && mem->is_Load()) {
 226         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 227         // The load is checking if the card has been written so
 228         // replace it with zero to fold the test.
 229         _igvn.replace_node(mem, intcon(0));
 230         continue;
 231       }
 232       assert(mem->is_Store(), "store required");
 233       _igvn.replace_node(mem, mem->in(MemNode::Memory));
 234     }
 235   } else {
 236     // G1 pre/post barriers
 237     assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
 238     // It could be only one user, URShift node, in Object.clone() instrinsic
 239     // but the new allocation is passed to arraycopy stub and it could not
 240     // be scalar replaced. So we don't check the case.
 241 
 242     // Remove G1 post barrier.
 243 
 244     // Search for CastP2X->Xor->URShift->Cmp path which
 245     // checks if the store done to a different from the value's region.
 246     // And replace Cmp with #0 (false) to collapse G1 post barrier.
 247     Node* xorx = NULL;
 248     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
 249       Node* u = p2x->fast_out(i);
 250       if (u->Opcode() == Op_XorX) {
 251         xorx = u;
 252         break;
 253       }
 254     }
 255     assert(xorx != NULL, "missing G1 post barrier");
 256     Node* shift = xorx->unique_out();
 257     Node* cmpx = shift->unique_out();
 258     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 259     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 260     "missing region check in G1 post barrier");
 261     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 262 
 263     // Remove G1 pre barrier.
 264 
 265     // Search "if (marking != 0)" check and set it to "false".
 266     Node* this_region = p2x->in(0);
 267     assert(this_region != NULL, "");
 268     // There is no G1 pre barrier if previous stored value is NULL
 269     // (for example, after initialization).
 270     if (this_region->is_Region() && this_region->req() == 3) {
 271       int ind = 1;
 272       if (!this_region->in(ind)->is_IfFalse()) {
 273         ind = 2;
 274       }
 275       if (this_region->in(ind)->is_IfFalse()) {
 276         Node* bol = this_region->in(ind)->in(0)->in(1);
 277         assert(bol->is_Bool(), "");
 278         cmpx = bol->in(1);
 279         if (bol->as_Bool()->_test._test == BoolTest::ne &&
 280             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
 281             cmpx->in(1)->is_Load()) {
 282           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
 283           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
 284                                               PtrQueue::byte_offset_of_active());
 285           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
 286               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 287               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
 288             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 289           }
 290         }
 291       }
 292     }
 293     // Now CastP2X can be removed since it is used only on dead path
 294     // which currently still alive until igvn optimize it.
 295     assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
 296     _igvn.replace_node(p2x, top());
 297   }
 298 }
 299 
 300 // Search for a memory operation for the specified memory slice.
 301 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 302   Node *orig_mem = mem;
 303   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 304   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 305   while (true) {
 306     if (mem == alloc_mem || mem == start_mem ) {
 307       return mem;  // hit one of our sentinels
 308     } else if (mem->is_MergeMem()) {
 309       mem = mem->as_MergeMem()->memory_at(alias_idx);
 310     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 311       Node *in = mem->in(0);
 312       // we can safely skip over safepoints, calls, locks and membars because we
 313       // already know that the object is safe to eliminate.
 314       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 315         return in;
 316       } else if (in->is_Call()) {
 317         CallNode *call = in->as_Call();
 318         if (!call->may_modify(tinst, phase)) {
 319           mem = call->in(TypeFunc::Memory);
 320         }
 321         mem = in->in(TypeFunc::Memory);
 322       } else if (in->is_MemBar()) {
 323         mem = in->in(TypeFunc::Memory);
 324       } else {
 325         assert(false, "unexpected projection");
 326       }
 327     } else if (mem->is_Store()) {
 328       const TypePtr* atype = mem->as_Store()->adr_type();
 329       int adr_idx = Compile::current()->get_alias_index(atype);
 330       if (adr_idx == alias_idx) {
 331         assert(atype->isa_oopptr(), "address type must be oopptr");
 332         int adr_offset = atype->offset();
 333         uint adr_iid = atype->is_oopptr()->instance_id();
 334         // Array elements references have the same alias_idx
 335         // but different offset and different instance_id.
 336         if (adr_offset == offset && adr_iid == alloc->_idx)
 337           return mem;
 338       } else {
 339         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 340       }
 341       mem = mem->in(MemNode::Memory);
 342     } else if (mem->is_ClearArray()) {
 343       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 344         // Can not bypass initialization of the instance
 345         // we are looking.
 346         debug_only(intptr_t offset;)
 347         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 348         InitializeNode* init = alloc->as_Allocate()->initialization();
 349         // We are looking for stored value, return Initialize node
 350         // or memory edge from Allocate node.
 351         if (init != NULL)
 352           return init;
 353         else
 354           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 355       }
 356       // Otherwise skip it (the call updated 'mem' value).
 357     } else if (mem->Opcode() == Op_SCMemProj) {
 358       assert(mem->in(0)->is_LoadStore(), "sanity");
 359       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
 360       int adr_idx = Compile::current()->get_alias_index(atype);
 361       if (adr_idx == alias_idx) {
 362         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 363         return NULL;
 364       }
 365       mem = mem->in(0)->in(MemNode::Memory);
 366     } else {
 367       return mem;
 368     }
 369     assert(mem != orig_mem, "dead memory loop");
 370   }
 371 }
 372 
 373 //
 374 // Given a Memory Phi, compute a value Phi containing the values from stores
 375 // on the input paths.
 376 // Note: this function is recursive, its depth is limied by the "level" argument
 377 // Returns the computed Phi, or NULL if it cannot compute it.
 378 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
 379   assert(mem->is_Phi(), "sanity");
 380   int alias_idx = C->get_alias_index(adr_t);
 381   int offset = adr_t->offset();
 382   int instance_id = adr_t->instance_id();
 383 
 384   // Check if an appropriate value phi already exists.
 385   Node* region = mem->in(0);
 386   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 387     Node* phi = region->fast_out(k);
 388     if (phi->is_Phi() && phi != mem &&
 389         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
 390       return phi;
 391     }
 392   }
 393   // Check if an appropriate new value phi already exists.
 394   Node* new_phi = value_phis->find(mem->_idx);
 395   if (new_phi != NULL)
 396     return new_phi;
 397 
 398   if (level <= 0) {
 399     return NULL; // Give up: phi tree too deep
 400   }
 401   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 402   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 403 
 404   uint length = mem->req();
 405   GrowableArray <Node *> values(length, length, NULL);
 406 
 407   // create a new Phi for the value
 408   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
 409   transform_later(phi);
 410   value_phis->push(phi, mem->_idx);
 411 
 412   for (uint j = 1; j < length; j++) {
 413     Node *in = mem->in(j);
 414     if (in == NULL || in->is_top()) {
 415       values.at_put(j, in);
 416     } else  {
 417       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 418       if (val == start_mem || val == alloc_mem) {
 419         // hit a sentinel, return appropriate 0 value
 420         values.at_put(j, _igvn.zerocon(ft));
 421         continue;
 422       }
 423       if (val->is_Initialize()) {
 424         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 425       }
 426       if (val == NULL) {
 427         return NULL;  // can't find a value on this path
 428       }
 429       if (val == mem) {
 430         values.at_put(j, mem);
 431       } else if (val->is_Store()) {
 432         values.at_put(j, val->in(MemNode::ValueIn));
 433       } else if(val->is_Proj() && val->in(0) == alloc) {
 434         values.at_put(j, _igvn.zerocon(ft));
 435       } else if (val->is_Phi()) {
 436         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 437         if (val == NULL) {
 438           return NULL;
 439         }
 440         values.at_put(j, val);
 441       } else if (val->Opcode() == Op_SCMemProj) {
 442         assert(val->in(0)->is_LoadStore(), "sanity");
 443         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 444         return NULL;
 445       } else {
 446 #ifdef ASSERT
 447         val->dump();
 448         assert(false, "unknown node on this path");
 449 #endif
 450         return NULL;  // unknown node on this path
 451       }
 452     }
 453   }
 454   // Set Phi's inputs
 455   for (uint j = 1; j < length; j++) {
 456     if (values.at(j) == mem) {
 457       phi->init_req(j, phi);
 458     } else {
 459       phi->init_req(j, values.at(j));
 460     }
 461   }
 462   return phi;
 463 }
 464 
 465 // Search the last value stored into the object's field.
 466 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
 467   assert(adr_t->is_known_instance_field(), "instance required");
 468   int instance_id = adr_t->instance_id();
 469   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 470 
 471   int alias_idx = C->get_alias_index(adr_t);
 472   int offset = adr_t->offset();
 473   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 474   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 475   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 476   Arena *a = Thread::current()->resource_area();
 477   VectorSet visited(a);
 478 
 479 
 480   bool done = sfpt_mem == alloc_mem;
 481   Node *mem = sfpt_mem;
 482   while (!done) {
 483     if (visited.test_set(mem->_idx)) {
 484       return NULL;  // found a loop, give up
 485     }
 486     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 487     if (mem == start_mem || mem == alloc_mem) {
 488       done = true;  // hit a sentinel, return appropriate 0 value
 489     } else if (mem->is_Initialize()) {
 490       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 491       if (mem == NULL) {
 492         done = true; // Something go wrong.
 493       } else if (mem->is_Store()) {
 494         const TypePtr* atype = mem->as_Store()->adr_type();
 495         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 496         done = true;
 497       }
 498     } else if (mem->is_Store()) {
 499       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 500       assert(atype != NULL, "address type must be oopptr");
 501       assert(C->get_alias_index(atype) == alias_idx &&
 502              atype->is_known_instance_field() && atype->offset() == offset &&
 503              atype->instance_id() == instance_id, "store is correct memory slice");
 504       done = true;
 505     } else if (mem->is_Phi()) {
 506       // try to find a phi's unique input
 507       Node *unique_input = NULL;
 508       Node *top = C->top();
 509       for (uint i = 1; i < mem->req(); i++) {
 510         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 511         if (n == NULL || n == top || n == mem) {
 512           continue;
 513         } else if (unique_input == NULL) {
 514           unique_input = n;
 515         } else if (unique_input != n) {
 516           unique_input = top;
 517           break;
 518         }
 519       }
 520       if (unique_input != NULL && unique_input != top) {
 521         mem = unique_input;
 522       } else {
 523         done = true;
 524       }
 525     } else {
 526       assert(false, "unexpected node");
 527     }
 528   }
 529   if (mem != NULL) {
 530     if (mem == start_mem || mem == alloc_mem) {
 531       // hit a sentinel, return appropriate 0 value
 532       return _igvn.zerocon(ft);
 533     } else if (mem->is_Store()) {
 534       return mem->in(MemNode::ValueIn);
 535     } else if (mem->is_Phi()) {
 536       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 537       Node_Stack value_phis(a, 8);
 538       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 539       if (phi != NULL) {
 540         return phi;
 541       } else {
 542         // Kill all new Phis
 543         while(value_phis.is_nonempty()) {
 544           Node* n = value_phis.node();
 545           _igvn.replace_node(n, C->top());
 546           value_phis.pop();
 547         }
 548       }
 549     }
 550   }
 551   // Something go wrong.
 552   return NULL;
 553 }
 554 
 555 // Check the possibility of scalar replacement.
 556 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 557   //  Scan the uses of the allocation to check for anything that would
 558   //  prevent us from eliminating it.
 559   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 560   DEBUG_ONLY( Node* disq_node = NULL; )
 561   bool  can_eliminate = true;
 562 
 563   Node* res = alloc->result_cast();
 564   const TypeOopPtr* res_type = NULL;
 565   if (res == NULL) {
 566     // All users were eliminated.
 567   } else if (!res->is_CheckCastPP()) {
 568     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 569     can_eliminate = false;
 570   } else {
 571     res_type = _igvn.type(res)->isa_oopptr();
 572     if (res_type == NULL) {
 573       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 574       can_eliminate = false;
 575     } else if (res_type->isa_aryptr()) {
 576       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 577       if (length < 0) {
 578         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 579         can_eliminate = false;
 580       }
 581     }
 582   }
 583 
 584   if (can_eliminate && res != NULL) {
 585     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 586                                j < jmax && can_eliminate; j++) {
 587       Node* use = res->fast_out(j);
 588 
 589       if (use->is_AddP()) {
 590         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 591         int offset = addp_type->offset();
 592 
 593         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 594           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 595           can_eliminate = false;
 596           break;
 597         }
 598         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 599                                    k < kmax && can_eliminate; k++) {
 600           Node* n = use->fast_out(k);
 601           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
 602             DEBUG_ONLY(disq_node = n;)
 603             if (n->is_Load() || n->is_LoadStore()) {
 604               NOT_PRODUCT(fail_eliminate = "Field load";)
 605             } else {
 606               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
 607             }
 608             can_eliminate = false;
 609           }
 610         }
 611       } else if (use->is_SafePoint()) {
 612         SafePointNode* sfpt = use->as_SafePoint();
 613         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 614           // Object is passed as argument.
 615           DEBUG_ONLY(disq_node = use;)
 616           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 617           can_eliminate = false;
 618         }
 619         Node* sfptMem = sfpt->memory();
 620         if (sfptMem == NULL || sfptMem->is_top()) {
 621           DEBUG_ONLY(disq_node = use;)
 622           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 623           can_eliminate = false;
 624         } else {
 625           safepoints.append_if_missing(sfpt);
 626         }
 627       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 628         if (use->is_Phi()) {
 629           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 630             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 631           } else {
 632             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 633           }
 634           DEBUG_ONLY(disq_node = use;)
 635         } else {
 636           if (use->Opcode() == Op_Return) {
 637             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 638           }else {
 639             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 640           }
 641           DEBUG_ONLY(disq_node = use;)
 642         }
 643         can_eliminate = false;
 644       }
 645     }
 646   }
 647 
 648 #ifndef PRODUCT
 649   if (PrintEliminateAllocations) {
 650     if (can_eliminate) {
 651       tty->print("Scalar ");
 652       if (res == NULL)
 653         alloc->dump();
 654       else
 655         res->dump();
 656     } else {
 657       tty->print("NotScalar (%s)", fail_eliminate);
 658       if (res == NULL)
 659         alloc->dump();
 660       else
 661         res->dump();
 662 #ifdef ASSERT
 663       if (disq_node != NULL) {
 664           tty->print("  >>>> ");
 665           disq_node->dump();
 666       }
 667 #endif /*ASSERT*/
 668     }
 669   }
 670 #endif
 671   return can_eliminate;
 672 }
 673 
 674 // Do scalar replacement.
 675 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 676   GrowableArray <SafePointNode *> safepoints_done;
 677 
 678   ciKlass* klass = NULL;
 679   ciInstanceKlass* iklass = NULL;
 680   int nfields = 0;
 681   int array_base;
 682   int element_size;
 683   BasicType basic_elem_type;
 684   ciType* elem_type;
 685 
 686   Node* res = alloc->result_cast();
 687   const TypeOopPtr* res_type = NULL;
 688   if (res != NULL) { // Could be NULL when there are no users
 689     res_type = _igvn.type(res)->isa_oopptr();
 690   }
 691 
 692   if (res != NULL) {
 693     klass = res_type->klass();
 694     if (res_type->isa_instptr()) {
 695       // find the fields of the class which will be needed for safepoint debug information
 696       assert(klass->is_instance_klass(), "must be an instance klass.");
 697       iklass = klass->as_instance_klass();
 698       nfields = iklass->nof_nonstatic_fields();
 699     } else {
 700       // find the array's elements which will be needed for safepoint debug information
 701       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 702       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 703       elem_type = klass->as_array_klass()->element_type();
 704       basic_elem_type = elem_type->basic_type();
 705       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 706       element_size = type2aelembytes(basic_elem_type);
 707     }
 708   }
 709   //
 710   // Process the safepoint uses
 711   //
 712   while (safepoints.length() > 0) {
 713     SafePointNode* sfpt = safepoints.pop();
 714     Node* mem = sfpt->memory();
 715     uint first_ind = sfpt->req();
 716     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
 717 #ifdef ASSERT
 718                                                  alloc,
 719 #endif
 720                                                  first_ind, nfields);
 721     sobj->init_req(0, C->root());
 722     transform_later(sobj);
 723 
 724     // Scan object's fields adding an input to the safepoint for each field.
 725     for (int j = 0; j < nfields; j++) {
 726       intptr_t offset;
 727       ciField* field = NULL;
 728       if (iklass != NULL) {
 729         field = iklass->nonstatic_field_at(j);
 730         offset = field->offset();
 731         elem_type = field->type();
 732         basic_elem_type = field->layout_type();
 733       } else {
 734         offset = array_base + j * (intptr_t)element_size;
 735       }
 736 
 737       const Type *field_type;
 738       // The next code is taken from Parse::do_get_xxx().
 739       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 740         if (!elem_type->is_loaded()) {
 741           field_type = TypeInstPtr::BOTTOM;
 742         } else if (field != NULL && field->is_constant() && field->is_static()) {
 743           // This can happen if the constant oop is non-perm.
 744           ciObject* con = field->constant_value().as_object();
 745           // Do not "join" in the previous type; it doesn't add value,
 746           // and may yield a vacuous result if the field is of interface type.
 747           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 748           assert(field_type != NULL, "field singleton type must be consistent");
 749         } else {
 750           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 751         }
 752         if (UseCompressedOops) {
 753           field_type = field_type->make_narrowoop();
 754           basic_elem_type = T_NARROWOOP;
 755         }
 756       } else {
 757         field_type = Type::get_const_basic_type(basic_elem_type);
 758       }
 759 
 760       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 761 
 762       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
 763       if (field_val == NULL) {
 764         // We weren't able to find a value for this field,
 765         // give up on eliminating this allocation.
 766 
 767         // Remove any extra entries we added to the safepoint.
 768         uint last = sfpt->req() - 1;
 769         for (int k = 0;  k < j; k++) {
 770           sfpt->del_req(last--);
 771         }
 772         // rollback processed safepoints
 773         while (safepoints_done.length() > 0) {
 774           SafePointNode* sfpt_done = safepoints_done.pop();
 775           // remove any extra entries we added to the safepoint
 776           last = sfpt_done->req() - 1;
 777           for (int k = 0;  k < nfields; k++) {
 778             sfpt_done->del_req(last--);
 779           }
 780           JVMState *jvms = sfpt_done->jvms();
 781           jvms->set_endoff(sfpt_done->req());
 782           // Now make a pass over the debug information replacing any references
 783           // to SafePointScalarObjectNode with the allocated object.
 784           int start = jvms->debug_start();
 785           int end   = jvms->debug_end();
 786           for (int i = start; i < end; i++) {
 787             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 788               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 789               if (scobj->first_index() == sfpt_done->req() &&
 790                   scobj->n_fields() == (uint)nfields) {
 791                 assert(scobj->alloc() == alloc, "sanity");
 792                 sfpt_done->set_req(i, res);
 793               }
 794             }
 795           }
 796         }
 797 #ifndef PRODUCT
 798         if (PrintEliminateAllocations) {
 799           if (field != NULL) {
 800             tty->print("=== At SafePoint node %d can't find value of Field: ",
 801                        sfpt->_idx);
 802             field->print();
 803             int field_idx = C->get_alias_index(field_addr_type);
 804             tty->print(" (alias_idx=%d)", field_idx);
 805           } else { // Array's element
 806             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 807                        sfpt->_idx, j);
 808           }
 809           tty->print(", which prevents elimination of: ");
 810           if (res == NULL)
 811             alloc->dump();
 812           else
 813             res->dump();
 814         }
 815 #endif
 816         return false;
 817       }
 818       if (UseCompressedOops && field_type->isa_narrowoop()) {
 819         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 820         // to be able scalar replace the allocation.
 821         if (field_val->is_EncodeP()) {
 822           field_val = field_val->in(1);
 823         } else {
 824           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
 825         }
 826       }
 827       sfpt->add_req(field_val);
 828     }
 829     JVMState *jvms = sfpt->jvms();
 830     jvms->set_endoff(sfpt->req());
 831     // Now make a pass over the debug information replacing any references
 832     // to the allocated object with "sobj"
 833     int start = jvms->debug_start();
 834     int end   = jvms->debug_end();
 835     for (int i = start; i < end; i++) {
 836       if (sfpt->in(i) == res) {
 837         sfpt->set_req(i, sobj);
 838       }
 839     }
 840     safepoints_done.append_if_missing(sfpt); // keep it for rollback
 841   }
 842   return true;
 843 }
 844 
 845 // Process users of eliminated allocation.
 846 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
 847   Node* res = alloc->result_cast();
 848   if (res != NULL) {
 849     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 850       Node *use = res->last_out(j);
 851       uint oc1 = res->outcnt();
 852 
 853       if (use->is_AddP()) {
 854         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 855           Node *n = use->last_out(k);
 856           uint oc2 = use->outcnt();
 857           if (n->is_Store()) {
 858 #ifdef ASSERT
 859             // Verify that there is no dependent MemBarVolatile nodes,
 860             // they should be removed during IGVN, see MemBarNode::Ideal().
 861             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
 862                                        p < pmax; p++) {
 863               Node* mb = n->fast_out(p);
 864               assert(mb->is_Initialize() || !mb->is_MemBar() ||
 865                      mb->req() <= MemBarNode::Precedent ||
 866                      mb->in(MemBarNode::Precedent) != n,
 867                      "MemBarVolatile should be eliminated for non-escaping object");
 868             }
 869 #endif
 870             _igvn.replace_node(n, n->in(MemNode::Memory));
 871           } else {
 872             eliminate_card_mark(n);
 873           }
 874           k -= (oc2 - use->outcnt());
 875         }
 876       } else {
 877         eliminate_card_mark(use);
 878       }
 879       j -= (oc1 - res->outcnt());
 880     }
 881     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
 882     _igvn.remove_dead_node(res);
 883   }
 884 
 885   //
 886   // Process other users of allocation's projections
 887   //
 888   if (_resproj != NULL && _resproj->outcnt() != 0) {
 889     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
 890       Node *use = _resproj->last_out(j);
 891       uint oc1 = _resproj->outcnt();
 892       if (use->is_Initialize()) {
 893         // Eliminate Initialize node.
 894         InitializeNode *init = use->as_Initialize();
 895         assert(init->outcnt() <= 2, "only a control and memory projection expected");
 896         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
 897         if (ctrl_proj != NULL) {
 898            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
 899           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
 900         }
 901         Node *mem_proj = init->proj_out(TypeFunc::Memory);
 902         if (mem_proj != NULL) {
 903           Node *mem = init->in(TypeFunc::Memory);
 904 #ifdef ASSERT
 905           if (mem->is_MergeMem()) {
 906             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
 907           } else {
 908             assert(mem == _memproj_fallthrough, "allocation memory projection");
 909           }
 910 #endif
 911           _igvn.replace_node(mem_proj, mem);
 912         }
 913       } else if (use->is_AddP()) {
 914         // raw memory addresses used only by the initialization
 915         _igvn.replace_node(use, C->top());
 916       } else  {
 917         assert(false, "only Initialize or AddP expected");
 918       }
 919       j -= (oc1 - _resproj->outcnt());
 920     }
 921   }
 922   if (_fallthroughcatchproj != NULL) {
 923     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
 924   }
 925   if (_memproj_fallthrough != NULL) {
 926     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
 927   }
 928   if (_memproj_catchall != NULL) {
 929     _igvn.replace_node(_memproj_catchall, C->top());
 930   }
 931   if (_ioproj_fallthrough != NULL) {
 932     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
 933   }
 934   if (_ioproj_catchall != NULL) {
 935     _igvn.replace_node(_ioproj_catchall, C->top());
 936   }
 937   if (_catchallcatchproj != NULL) {
 938     _igvn.replace_node(_catchallcatchproj, C->top());
 939   }
 940 }
 941 
 942 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
 943 
 944   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
 945     return false;
 946   }
 947 
 948   extract_call_projections(alloc);
 949 
 950   GrowableArray <SafePointNode *> safepoints;
 951   if (!can_eliminate_allocation(alloc, safepoints)) {
 952     return false;
 953   }
 954 
 955   if (!scalar_replacement(alloc, safepoints)) {
 956     return false;
 957   }
 958 
 959   CompileLog* log = C->log();
 960   if (log != NULL) {
 961     Node* klass = alloc->in(AllocateNode::KlassNode);
 962     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
 963     log->head("eliminate_allocation type='%d'",
 964               log->identify(tklass->klass()));
 965     JVMState* p = alloc->jvms();
 966     while (p != NULL) {
 967       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
 968       p = p->caller();
 969     }
 970     log->tail("eliminate_allocation");
 971   }
 972 
 973   process_users_of_allocation(alloc);
 974 
 975 #ifndef PRODUCT
 976   if (PrintEliminateAllocations) {
 977     if (alloc->is_AllocateArray())
 978       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
 979     else
 980       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
 981   }
 982 #endif
 983 
 984   return true;
 985 }
 986 
 987 
 988 //---------------------------set_eden_pointers-------------------------
 989 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
 990   if (UseTLAB) {                // Private allocation: load from TLS
 991     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
 992     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
 993     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
 994     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
 995     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
 996   } else {                      // Shared allocation: load from globals
 997     CollectedHeap* ch = Universe::heap();
 998     address top_adr = (address)ch->top_addr();
 999     address end_adr = (address)ch->end_addr();
1000     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1001     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1002   }
1003 }
1004 
1005 
1006 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1007   Node* adr = basic_plus_adr(base, offset);
1008   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1009   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
1010   transform_later(value);
1011   return value;
1012 }
1013 
1014 
1015 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1016   Node* adr = basic_plus_adr(base, offset);
1017   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
1018   transform_later(mem);
1019   return mem;
1020 }
1021 
1022 //=============================================================================
1023 //
1024 //                              A L L O C A T I O N
1025 //
1026 // Allocation attempts to be fast in the case of frequent small objects.
1027 // It breaks down like this:
1028 //
1029 // 1) Size in doublewords is computed.  This is a constant for objects and
1030 // variable for most arrays.  Doubleword units are used to avoid size
1031 // overflow of huge doubleword arrays.  We need doublewords in the end for
1032 // rounding.
1033 //
1034 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1035 // the slow path into the VM.  The slow path can throw any required
1036 // exceptions, and does all the special checks for very large arrays.  The
1037 // size test can constant-fold away for objects.  For objects with
1038 // finalizers it constant-folds the otherway: you always go slow with
1039 // finalizers.
1040 //
1041 // 3) If NOT using TLABs, this is the contended loop-back point.
1042 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1043 //
1044 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1045 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1046 // "size*8" we always enter the VM, where "largish" is a constant picked small
1047 // enough that there's always space between the eden max and 4Gig (old space is
1048 // there so it's quite large) and large enough that the cost of entering the VM
1049 // is dwarfed by the cost to initialize the space.
1050 //
1051 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1052 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1053 // adjusted heap top back down; there is no contention.
1054 //
1055 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1056 // fields.
1057 //
1058 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1059 // oop flavor.
1060 //
1061 //=============================================================================
1062 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1063 // Allocations bigger than this always go the slow route.
1064 // This value must be small enough that allocation attempts that need to
1065 // trigger exceptions go the slow route.  Also, it must be small enough so
1066 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1067 //=============================================================================j//
1068 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1069 // The allocator will coalesce int->oop copies away.  See comment in
1070 // coalesce.cpp about how this works.  It depends critically on the exact
1071 // code shape produced here, so if you are changing this code shape
1072 // make sure the GC info for the heap-top is correct in and around the
1073 // slow-path call.
1074 //
1075 
1076 void PhaseMacroExpand::expand_allocate_common(
1077             AllocateNode* alloc, // allocation node to be expanded
1078             Node* length,  // array length for an array allocation
1079             const TypeFunc* slow_call_type, // Type of slow call
1080             address slow_call_address  // Address of slow call
1081     )
1082 {
1083 
1084   Node* ctrl = alloc->in(TypeFunc::Control);
1085   Node* mem  = alloc->in(TypeFunc::Memory);
1086   Node* i_o  = alloc->in(TypeFunc::I_O);
1087   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1088   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1089   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1090 
1091   Node* storestore = alloc->storestore();
1092   if (storestore != NULL) {
1093     // Break this link that is no longer useful and confuses register allocation
1094     storestore->set_req(MemBarNode::Precedent, top());
1095   }
1096 
1097   assert(ctrl != NULL, "must have control");
1098   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1099   // they will not be used if "always_slow" is set
1100   enum { slow_result_path = 1, fast_result_path = 2 };
1101   Node *result_region;
1102   Node *result_phi_rawmem;
1103   Node *result_phi_rawoop;
1104   Node *result_phi_i_o;
1105 
1106   // The initial slow comparison is a size check, the comparison
1107   // we want to do is a BoolTest::gt
1108   bool always_slow = false;
1109   int tv = _igvn.find_int_con(initial_slow_test, -1);
1110   if (tv >= 0) {
1111     always_slow = (tv == 1);
1112     initial_slow_test = NULL;
1113   } else {
1114     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1115   }
1116 
1117   if (C->env()->dtrace_alloc_probes() ||
1118       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
1119                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
1120     // Force slow-path allocation
1121     always_slow = true;
1122     initial_slow_test = NULL;
1123   }
1124 
1125 
1126   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1127   Node *slow_region = NULL;
1128   Node *toobig_false = ctrl;
1129 
1130   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1131   // generate the initial test if necessary
1132   if (initial_slow_test != NULL ) {
1133     slow_region = new (C, 3) RegionNode(3);
1134 
1135     // Now make the initial failure test.  Usually a too-big test but
1136     // might be a TRUE for finalizers or a fancy class check for
1137     // newInstance0.
1138     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1139     transform_later(toobig_iff);
1140     // Plug the failing-too-big test into the slow-path region
1141     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
1142     transform_later(toobig_true);
1143     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1144     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
1145     transform_later(toobig_false);
1146   } else {         // No initial test, just fall into next case
1147     toobig_false = ctrl;
1148     debug_only(slow_region = NodeSentinel);
1149   }
1150 
1151   Node *slow_mem = mem;  // save the current memory state for slow path
1152   // generate the fast allocation code unless we know that the initial test will always go slow
1153   if (!always_slow) {
1154     // Fast path modifies only raw memory.
1155     if (mem->is_MergeMem()) {
1156       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1157     }
1158 
1159     Node* eden_top_adr;
1160     Node* eden_end_adr;
1161 
1162     set_eden_pointers(eden_top_adr, eden_end_adr);
1163 
1164     // Load Eden::end.  Loop invariant and hoisted.
1165     //
1166     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1167     //       a TLAB to work around a bug where these values were being moved across
1168     //       a safepoint.  These are not oops, so they cannot be include in the oop
1169     //       map, but they can be changed by a GC.   The proper way to fix this would
1170     //       be to set the raw memory state when generating a  SafepointNode.  However
1171     //       this will require extensive changes to the loop optimization in order to
1172     //       prevent a degradation of the optimization.
1173     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1174     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1175 
1176     // allocate the Region and Phi nodes for the result
1177     result_region = new (C, 3) RegionNode(3);
1178     result_phi_rawmem = new (C, 3) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1179     result_phi_rawoop = new (C, 3) PhiNode(result_region, TypeRawPtr::BOTTOM);
1180     result_phi_i_o    = new (C, 3) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1181 
1182     // We need a Region for the loop-back contended case.
1183     enum { fall_in_path = 1, contended_loopback_path = 2 };
1184     Node *contended_region;
1185     Node *contended_phi_rawmem;
1186     if (UseTLAB) {
1187       contended_region = toobig_false;
1188       contended_phi_rawmem = mem;
1189     } else {
1190       contended_region = new (C, 3) RegionNode(3);
1191       contended_phi_rawmem = new (C, 3) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1192       // Now handle the passing-too-big test.  We fall into the contended
1193       // loop-back merge point.
1194       contended_region    ->init_req(fall_in_path, toobig_false);
1195       contended_phi_rawmem->init_req(fall_in_path, mem);
1196       transform_later(contended_region);
1197       transform_later(contended_phi_rawmem);
1198     }
1199 
1200     // Load(-locked) the heap top.
1201     // See note above concerning the control input when using a TLAB
1202     Node *old_eden_top = UseTLAB
1203       ? new (C, 3) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
1204       : new (C, 3) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
1205 
1206     transform_later(old_eden_top);
1207     // Add to heap top to get a new heap top
1208     Node *new_eden_top = new (C, 4) AddPNode(top(), old_eden_top, size_in_bytes);
1209     transform_later(new_eden_top);
1210     // Check for needing a GC; compare against heap end
1211     Node *needgc_cmp = new (C, 3) CmpPNode(new_eden_top, eden_end);
1212     transform_later(needgc_cmp);
1213     Node *needgc_bol = new (C, 2) BoolNode(needgc_cmp, BoolTest::ge);
1214     transform_later(needgc_bol);
1215     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
1216     transform_later(needgc_iff);
1217 
1218     // Plug the failing-heap-space-need-gc test into the slow-path region
1219     Node *needgc_true = new (C, 1) IfTrueNode(needgc_iff);
1220     transform_later(needgc_true);
1221     if (initial_slow_test) {
1222       slow_region->init_req(need_gc_path, needgc_true);
1223       // This completes all paths into the slow merge point
1224       transform_later(slow_region);
1225     } else {                      // No initial slow path needed!
1226       // Just fall from the need-GC path straight into the VM call.
1227       slow_region = needgc_true;
1228     }
1229     // No need for a GC.  Setup for the Store-Conditional
1230     Node *needgc_false = new (C, 1) IfFalseNode(needgc_iff);
1231     transform_later(needgc_false);
1232 
1233     // Grab regular I/O before optional prefetch may change it.
1234     // Slow-path does no I/O so just set it to the original I/O.
1235     result_phi_i_o->init_req(slow_result_path, i_o);
1236 
1237     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1238                               old_eden_top, new_eden_top, length);
1239 
1240     // Name successful fast-path variables
1241     Node* fast_oop = old_eden_top;
1242     Node* fast_oop_ctrl;
1243     Node* fast_oop_rawmem;
1244 
1245     // Store (-conditional) the modified eden top back down.
1246     // StorePConditional produces flags for a test PLUS a modified raw
1247     // memory state.
1248     if (UseTLAB) {
1249       Node* store_eden_top =
1250         new (C, 4) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1251                               TypeRawPtr::BOTTOM, new_eden_top);
1252       transform_later(store_eden_top);
1253       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1254       fast_oop_rawmem = store_eden_top;
1255     } else {
1256       Node* store_eden_top =
1257         new (C, 5) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1258                                          new_eden_top, fast_oop/*old_eden_top*/);
1259       transform_later(store_eden_top);
1260       Node *contention_check = new (C, 2) BoolNode(store_eden_top, BoolTest::ne);
1261       transform_later(contention_check);
1262       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
1263       transform_later(store_eden_top);
1264 
1265       // If not using TLABs, check to see if there was contention.
1266       IfNode *contention_iff = new (C, 2) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
1267       transform_later(contention_iff);
1268       Node *contention_true = new (C, 1) IfTrueNode(contention_iff);
1269       transform_later(contention_true);
1270       // If contention, loopback and try again.
1271       contended_region->init_req(contended_loopback_path, contention_true);
1272       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
1273 
1274       // Fast-path succeeded with no contention!
1275       Node *contention_false = new (C, 1) IfFalseNode(contention_iff);
1276       transform_later(contention_false);
1277       fast_oop_ctrl = contention_false;
1278 
1279       // Bump total allocated bytes for this thread
1280       Node* thread = new (C, 1) ThreadLocalNode();
1281       transform_later(thread);
1282       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
1283                                              in_bytes(JavaThread::allocated_bytes_offset()));
1284       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1285                                     0, TypeLong::LONG, T_LONG);
1286 #ifdef _LP64
1287       Node* alloc_size = size_in_bytes;
1288 #else
1289       Node* alloc_size = new (C, 2) ConvI2LNode(size_in_bytes);
1290       transform_later(alloc_size);
1291 #endif
1292       Node* new_alloc_bytes = new (C, 3) AddLNode(alloc_bytes, alloc_size);
1293       transform_later(new_alloc_bytes);
1294       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1295                                    0, new_alloc_bytes, T_LONG);
1296     }
1297 
1298     InitializeNode* init = alloc->initialization();
1299     fast_oop_rawmem = initialize_object(alloc,
1300                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1301                                         klass_node, length, size_in_bytes);
1302 
1303     // If initialization is performed by an array copy, any required
1304     // MemBarStoreStore was already added. If the object does not
1305     // escape no need for a MemBarStoreStore. Otherwise we need a
1306     // MemBarStoreStore so that stores that initialize this object
1307     // can't be reordered with a subsequent store that makes this
1308     // object accessible by other threads.
1309     if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
1310       if (init == NULL || init->req() < InitializeNode::RawStores) {
1311         // No InitializeNode or no stores captured by zeroing
1312         // elimination. Simply add the MemBarStoreStore after object
1313         // initialization.
1314         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot, fast_oop_rawmem);
1315         transform_later(mb);
1316 
1317         mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1318         mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1319         fast_oop_ctrl = new (C, 1) ProjNode(mb,TypeFunc::Control);
1320         transform_later(fast_oop_ctrl);
1321         fast_oop_rawmem = new (C, 1) ProjNode(mb,TypeFunc::Memory);
1322         transform_later(fast_oop_rawmem);
1323       } else {
1324         // Add the MemBarStoreStore after the InitializeNode so that
1325         // all stores performing the initialization that were moved
1326         // before the InitializeNode happen before the storestore
1327         // barrier.
1328 
1329         Node* init_ctrl = init->proj_out(TypeFunc::Control);
1330         Node* init_mem = init->proj_out(TypeFunc::Memory);
1331 
1332         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1333         transform_later(mb);
1334 
1335         Node* ctrl = new (C, 1) ProjNode(init,TypeFunc::Control);
1336         transform_later(ctrl);
1337         Node* mem = new (C, 1) ProjNode(init,TypeFunc::Memory);
1338         transform_later(mem);
1339 
1340         // The MemBarStoreStore depends on control and memory coming
1341         // from the InitializeNode
1342         mb->init_req(TypeFunc::Memory, mem);
1343         mb->init_req(TypeFunc::Control, ctrl);
1344 
1345         ctrl = new (C, 1) ProjNode(mb,TypeFunc::Control);
1346         transform_later(ctrl);
1347         mem = new (C, 1) ProjNode(mb,TypeFunc::Memory);
1348         transform_later(mem);
1349 
1350         // All nodes that depended on the InitializeNode for control
1351         // and memory must now depend on the MemBarNode that itself
1352         // depends on the InitializeNode
1353         _igvn.replace_node(init_ctrl, ctrl);
1354         _igvn.replace_node(init_mem, mem);
1355       }
1356     }
1357 
1358     if (C->env()->dtrace_extended_probes()) {
1359       // Slow-path call
1360       int size = TypeFunc::Parms + 2;
1361       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1362                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1363                                                       "dtrace_object_alloc",
1364                                                       TypeRawPtr::BOTTOM);
1365 
1366       // Get base of thread-local storage area
1367       Node* thread = new (C, 1) ThreadLocalNode();
1368       transform_later(thread);
1369 
1370       call->init_req(TypeFunc::Parms+0, thread);
1371       call->init_req(TypeFunc::Parms+1, fast_oop);
1372       call->init_req(TypeFunc::Control, fast_oop_ctrl);
1373       call->init_req(TypeFunc::I_O    , top()); // does no i/o
1374       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1375       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1376       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1377       transform_later(call);
1378       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
1379       transform_later(fast_oop_ctrl);
1380       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
1381       transform_later(fast_oop_rawmem);
1382     }
1383 
1384     // Plug in the successful fast-path into the result merge point
1385     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1386     result_phi_rawoop->init_req(fast_result_path, fast_oop);
1387     result_phi_i_o   ->init_req(fast_result_path, i_o);
1388     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1389   } else {
1390     slow_region = ctrl;
1391     result_phi_i_o = i_o; // Rename it to use in the following code.
1392   }
1393 
1394   // Generate slow-path call
1395   CallNode *call = new (C, slow_call_type->domain()->cnt())
1396     CallStaticJavaNode(slow_call_type, slow_call_address,
1397                        OptoRuntime::stub_name(slow_call_address),
1398                        alloc->jvms()->bci(),
1399                        TypePtr::BOTTOM);
1400   call->init_req( TypeFunc::Control, slow_region );
1401   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1402   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1403   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1404   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1405 
1406   call->init_req(TypeFunc::Parms+0, klass_node);
1407   if (length != NULL) {
1408     call->init_req(TypeFunc::Parms+1, length);
1409   }
1410 
1411   // Copy debug information and adjust JVMState information, then replace
1412   // allocate node with the call
1413   copy_call_debug_info((CallNode *) alloc,  call);
1414   if (!always_slow) {
1415     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1416   } else {
1417     // Hook i_o projection to avoid its elimination during allocation
1418     // replacement (when only a slow call is generated).
1419     call->set_req(TypeFunc::I_O, result_phi_i_o);
1420   }
1421   _igvn.replace_node(alloc, call);
1422   transform_later(call);
1423 
1424   // Identify the output projections from the allocate node and
1425   // adjust any references to them.
1426   // The control and io projections look like:
1427   //
1428   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1429   //  Allocate                   Catch
1430   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1431   //
1432   //  We are interested in the CatchProj nodes.
1433   //
1434   extract_call_projections(call);
1435 
1436   // An allocate node has separate memory projections for the uses on
1437   // the control and i_o paths. Replace the control memory projection with
1438   // result_phi_rawmem (unless we are only generating a slow call when
1439   // both memory projections are combined)
1440   if (!always_slow && _memproj_fallthrough != NULL) {
1441     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1442       Node *use = _memproj_fallthrough->fast_out(i);
1443       _igvn.hash_delete(use);
1444       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1445       _igvn._worklist.push(use);
1446       // back up iterator
1447       --i;
1448     }
1449   }
1450   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1451   // _memproj_catchall so we end up with a call that has only 1 memory projection.
1452   if (_memproj_catchall != NULL ) {
1453     if (_memproj_fallthrough == NULL) {
1454       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
1455       transform_later(_memproj_fallthrough);
1456     }
1457     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1458       Node *use = _memproj_catchall->fast_out(i);
1459       _igvn.hash_delete(use);
1460       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1461       _igvn._worklist.push(use);
1462       // back up iterator
1463       --i;
1464     }
1465     assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
1466     _igvn.remove_dead_node(_memproj_catchall);
1467   }
1468 
1469   // An allocate node has separate i_o projections for the uses on the control
1470   // and i_o paths. Always replace the control i_o projection with result i_o
1471   // otherwise incoming i_o become dead when only a slow call is generated
1472   // (it is different from memory projections where both projections are
1473   // combined in such case).
1474   if (_ioproj_fallthrough != NULL) {
1475     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1476       Node *use = _ioproj_fallthrough->fast_out(i);
1477       _igvn.hash_delete(use);
1478       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1479       _igvn._worklist.push(use);
1480       // back up iterator
1481       --i;
1482     }
1483   }
1484   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1485   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1486   if (_ioproj_catchall != NULL ) {
1487     if (_ioproj_fallthrough == NULL) {
1488       _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
1489       transform_later(_ioproj_fallthrough);
1490     }
1491     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1492       Node *use = _ioproj_catchall->fast_out(i);
1493       _igvn.hash_delete(use);
1494       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1495       _igvn._worklist.push(use);
1496       // back up iterator
1497       --i;
1498     }
1499     assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
1500     _igvn.remove_dead_node(_ioproj_catchall);
1501   }
1502 
1503   // if we generated only a slow call, we are done
1504   if (always_slow) {
1505     // Now we can unhook i_o.
1506     if (result_phi_i_o->outcnt() > 1) {
1507       call->set_req(TypeFunc::I_O, top());
1508     } else {
1509       assert(result_phi_i_o->unique_ctrl_out() == call, "");
1510       // Case of new array with negative size known during compilation.
1511       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1512       // following code since call to runtime will throw exception.
1513       // As result there will be no users of i_o after the call.
1514       // Leave i_o attached to this call to avoid problems in preceding graph.
1515     }
1516     return;
1517   }
1518 
1519 
1520   if (_fallthroughcatchproj != NULL) {
1521     ctrl = _fallthroughcatchproj->clone();
1522     transform_later(ctrl);
1523     _igvn.replace_node(_fallthroughcatchproj, result_region);
1524   } else {
1525     ctrl = top();
1526   }
1527   Node *slow_result;
1528   if (_resproj == NULL) {
1529     // no uses of the allocation result
1530     slow_result = top();
1531   } else {
1532     slow_result = _resproj->clone();
1533     transform_later(slow_result);
1534     _igvn.replace_node(_resproj, result_phi_rawoop);
1535   }
1536 
1537   // Plug slow-path into result merge point
1538   result_region    ->init_req( slow_result_path, ctrl );
1539   result_phi_rawoop->init_req( slow_result_path, slow_result);
1540   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1541   transform_later(result_region);
1542   transform_later(result_phi_rawoop);
1543   transform_later(result_phi_rawmem);
1544   transform_later(result_phi_i_o);
1545   // This completes all paths into the result merge point
1546 }
1547 
1548 
1549 // Helper for PhaseMacroExpand::expand_allocate_common.
1550 // Initializes the newly-allocated storage.
1551 Node*
1552 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1553                                     Node* control, Node* rawmem, Node* object,
1554                                     Node* klass_node, Node* length,
1555                                     Node* size_in_bytes) {
1556   InitializeNode* init = alloc->initialization();
1557   // Store the klass & mark bits
1558   Node* mark_node = NULL;
1559   // For now only enable fast locking for non-array types
1560   if (UseBiasedLocking && (length == NULL)) {
1561     mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
1562   } else {
1563     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1564   }
1565   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1566 
1567   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
1568   int header_size = alloc->minimum_header_size();  // conservatively small
1569 
1570   // Array length
1571   if (length != NULL) {         // Arrays need length field
1572     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1573     // conservatively small header size:
1574     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1575     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1576     if (k->is_array_klass())    // we know the exact header size in most cases:
1577       header_size = Klass::layout_helper_header_size(k->layout_helper());
1578   }
1579 
1580   // Clear the object body, if necessary.
1581   if (init == NULL) {
1582     // The init has somehow disappeared; be cautious and clear everything.
1583     //
1584     // This can happen if a node is allocated but an uncommon trap occurs
1585     // immediately.  In this case, the Initialize gets associated with the
1586     // trap, and may be placed in a different (outer) loop, if the Allocate
1587     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1588     // there can be two Allocates to one Initialize.  The answer in all these
1589     // edge cases is safety first.  It is always safe to clear immediately
1590     // within an Allocate, and then (maybe or maybe not) clear some more later.
1591     if (!ZeroTLAB)
1592       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1593                                             header_size, size_in_bytes,
1594                                             &_igvn);
1595   } else {
1596     if (!init->is_complete()) {
1597       // Try to win by zeroing only what the init does not store.
1598       // We can also try to do some peephole optimizations,
1599       // such as combining some adjacent subword stores.
1600       rawmem = init->complete_stores(control, rawmem, object,
1601                                      header_size, size_in_bytes, &_igvn);
1602     }
1603     // We have no more use for this link, since the AllocateNode goes away:
1604     init->set_req(InitializeNode::RawAddress, top());
1605     // (If we keep the link, it just confuses the register allocator,
1606     // who thinks he sees a real use of the address by the membar.)
1607   }
1608 
1609   return rawmem;
1610 }
1611 
1612 // Generate prefetch instructions for next allocations.
1613 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1614                                         Node*& contended_phi_rawmem,
1615                                         Node* old_eden_top, Node* new_eden_top,
1616                                         Node* length) {
1617    enum { fall_in_path = 1, pf_path = 2 };
1618    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1619       // Generate prefetch allocation with watermark check.
1620       // As an allocation hits the watermark, we will prefetch starting
1621       // at a "distance" away from watermark.
1622 
1623       Node *pf_region = new (C, 3) RegionNode(3);
1624       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1625                                                 TypeRawPtr::BOTTOM );
1626       // I/O is used for Prefetch
1627       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
1628 
1629       Node *thread = new (C, 1) ThreadLocalNode();
1630       transform_later(thread);
1631 
1632       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
1633                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1634       transform_later(eden_pf_adr);
1635 
1636       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
1637                                    contended_phi_rawmem, eden_pf_adr,
1638                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
1639       transform_later(old_pf_wm);
1640 
1641       // check against new_eden_top
1642       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
1643       transform_later(need_pf_cmp);
1644       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
1645       transform_later(need_pf_bol);
1646       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
1647                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1648       transform_later(need_pf_iff);
1649 
1650       // true node, add prefetchdistance
1651       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
1652       transform_later(need_pf_true);
1653 
1654       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
1655       transform_later(need_pf_false);
1656 
1657       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
1658                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1659       transform_later(new_pf_wmt );
1660       new_pf_wmt->set_req(0, need_pf_true);
1661 
1662       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
1663                                        contended_phi_rawmem, eden_pf_adr,
1664                                        TypeRawPtr::BOTTOM, new_pf_wmt );
1665       transform_later(store_new_wmt);
1666 
1667       // adding prefetches
1668       pf_phi_abio->init_req( fall_in_path, i_o );
1669 
1670       Node *prefetch_adr;
1671       Node *prefetch;
1672       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
1673       uint step_size = AllocatePrefetchStepSize;
1674       uint distance = 0;
1675 
1676       for ( uint i = 0; i < lines; i++ ) {
1677         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
1678                                             _igvn.MakeConX(distance) );
1679         transform_later(prefetch_adr);
1680         prefetch = new (C, 3) PrefetchAllocationNode( i_o, prefetch_adr );
1681         transform_later(prefetch);
1682         distance += step_size;
1683         i_o = prefetch;
1684       }
1685       pf_phi_abio->set_req( pf_path, i_o );
1686 
1687       pf_region->init_req( fall_in_path, need_pf_false );
1688       pf_region->init_req( pf_path, need_pf_true );
1689 
1690       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1691       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1692 
1693       transform_later(pf_region);
1694       transform_later(pf_phi_rawmem);
1695       transform_later(pf_phi_abio);
1696 
1697       needgc_false = pf_region;
1698       contended_phi_rawmem = pf_phi_rawmem;
1699       i_o = pf_phi_abio;
1700    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1701       // Insert a prefetch for each allocation.
1702       // This code is used for Sparc with BIS.
1703       Node *pf_region = new (C, 3) RegionNode(3);
1704       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1705                                                 TypeRawPtr::BOTTOM );
1706 
1707       // Generate several prefetch instructions.
1708       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1709       uint step_size = AllocatePrefetchStepSize;
1710       uint distance = AllocatePrefetchDistance;
1711 
1712       // Next cache address.
1713       Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
1714                                             _igvn.MakeConX(distance));
1715       transform_later(cache_adr);
1716       cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
1717       transform_later(cache_adr);
1718       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1719       cache_adr = new (C, 3) AndXNode(cache_adr, mask);
1720       transform_later(cache_adr);
1721       cache_adr = new (C, 2) CastX2PNode(cache_adr);
1722       transform_later(cache_adr);
1723 
1724       // Prefetch
1725       Node *prefetch = new (C, 3) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1726       prefetch->set_req(0, needgc_false);
1727       transform_later(prefetch);
1728       contended_phi_rawmem = prefetch;
1729       Node *prefetch_adr;
1730       distance = step_size;
1731       for ( uint i = 1; i < lines; i++ ) {
1732         prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
1733                                             _igvn.MakeConX(distance) );
1734         transform_later(prefetch_adr);
1735         prefetch = new (C, 3) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1736         transform_later(prefetch);
1737         distance += step_size;
1738         contended_phi_rawmem = prefetch;
1739       }
1740    } else if( AllocatePrefetchStyle > 0 ) {
1741       // Insert a prefetch for each allocation only on the fast-path
1742       Node *prefetch_adr;
1743       Node *prefetch;
1744       // Generate several prefetch instructions.
1745       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1746       uint step_size = AllocatePrefetchStepSize;
1747       uint distance = AllocatePrefetchDistance;
1748       for ( uint i = 0; i < lines; i++ ) {
1749         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
1750                                             _igvn.MakeConX(distance) );
1751         transform_later(prefetch_adr);
1752         prefetch = new (C, 3) PrefetchAllocationNode( i_o, prefetch_adr );
1753         // Do not let it float too high, since if eden_top == eden_end,
1754         // both might be null.
1755         if( i == 0 ) { // Set control for first prefetch, next follows it
1756           prefetch->init_req(0, needgc_false);
1757         }
1758         transform_later(prefetch);
1759         distance += step_size;
1760         i_o = prefetch;
1761       }
1762    }
1763    return i_o;
1764 }
1765 
1766 
1767 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1768   expand_allocate_common(alloc, NULL,
1769                          OptoRuntime::new_instance_Type(),
1770                          OptoRuntime::new_instance_Java());
1771 }
1772 
1773 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1774   Node* length = alloc->in(AllocateNode::ALength);
1775   InitializeNode* init = alloc->initialization();
1776   Node* klass_node = alloc->in(AllocateNode::KlassNode);
1777   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1778   address slow_call_address;  // Address of slow call
1779   if (init != NULL && init->is_complete_with_arraycopy() &&
1780       k->is_type_array_klass()) {
1781     // Don't zero type array during slow allocation in VM since
1782     // it will be initialized later by arraycopy in compiled code.
1783     slow_call_address = OptoRuntime::new_array_nozero_Java();
1784   } else {
1785     slow_call_address = OptoRuntime::new_array_Java();
1786   }
1787   expand_allocate_common(alloc, length,
1788                          OptoRuntime::new_array_Type(),
1789                          slow_call_address);
1790 }
1791 
1792 //-----------------------mark_eliminated_locking_nodes-----------------------
1793 // During EA obj may point to several objects but after few ideal graph
1794 // transformations (CCP) it may point to only one non escaping object
1795 // (but still using phi), corresponding locks and unlocks will be marked
1796 // for elimination. Later obj could be replaced with a new node (new phi)
1797 // and which does not have escape information. And later after some graph
1798 // reshape other locks and unlocks (which were not marked for elimination
1799 // before) are connected to this new obj (phi) but they still will not be
1800 // marked for elimination since new obj has no escape information.
1801 // Mark all associated (same box and obj) lock and unlock nodes for
1802 // elimination if some of them marked already.
1803 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
1804   if (!alock->is_eliminated()) {
1805     return;
1806   }
1807   if (!alock->is_coarsened()) { // Eliminated by EA
1808       // Create new "eliminated" BoxLock node and use it
1809       // in monitor debug info for the same object.
1810       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1811       Node* obj = alock->obj_node();
1812       if (!oldbox->is_eliminated()) {
1813         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1814         // Note: BoxLock node is marked eliminated only here
1815         // and it is used to indicate that all associated lock
1816         // and unlock nodes are marked for elimination.
1817         newbox->set_eliminated();
1818         transform_later(newbox);
1819         // Replace old box node with new box for all users
1820         // of the same object.
1821         for (uint i = 0; i < oldbox->outcnt();) {
1822 
1823           bool next_edge = true;
1824           Node* u = oldbox->raw_out(i);
1825           if (u->is_AbstractLock() &&
1826               u->as_AbstractLock()->obj_node() == obj &&
1827               u->as_AbstractLock()->box_node() == oldbox) {
1828             // Mark all associated locks and unlocks.
1829             u->as_AbstractLock()->set_eliminated();
1830             _igvn.hash_delete(u);
1831             u->set_req(TypeFunc::Parms + 1, newbox);
1832             next_edge = false;
1833           }
1834           // Replace old box in monitor debug info.
1835           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1836             SafePointNode* sfn = u->as_SafePoint();
1837             JVMState* youngest_jvms = sfn->jvms();
1838             int max_depth = youngest_jvms->depth();
1839             for (int depth = 1; depth <= max_depth; depth++) {
1840               JVMState* jvms = youngest_jvms->of_depth(depth);
1841               int num_mon  = jvms->nof_monitors();
1842               // Loop over monitors
1843               for (int idx = 0; idx < num_mon; idx++) {
1844                 Node* obj_node = sfn->monitor_obj(jvms, idx);
1845                 Node* box_node = sfn->monitor_box(jvms, idx);
1846                 if (box_node == oldbox && obj_node == obj) {
1847                   int j = jvms->monitor_box_offset(idx);
1848                   _igvn.hash_delete(u);
1849                   u->set_req(j, newbox);
1850                   next_edge = false;
1851                 }
1852               } // for (int idx = 0;
1853             } // for (int depth = 1;
1854           } // if (u->is_SafePoint()
1855           if (next_edge) i++;
1856         } // for (uint i = 0; i < oldbox->outcnt();)
1857       } // if (!oldbox->is_eliminated())
1858   } // if (!alock->is_coarsened())
1859 }
1860 
1861 // we have determined that this lock/unlock can be eliminated, we simply
1862 // eliminate the node without expanding it.
1863 //
1864 // Note:  The membar's associated with the lock/unlock are currently not
1865 //        eliminated.  This should be investigated as a future enhancement.
1866 //
1867 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
1868 
1869   if (!alock->is_eliminated()) {
1870     return false;
1871   }
1872 #ifdef ASSERT
1873   if (alock->is_Lock() && !alock->is_coarsened()) {
1874     // Check that new "eliminated" BoxLock node is created.
1875     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1876     assert(oldbox->is_eliminated(), "should be done already");
1877   }
1878 #endif
1879   CompileLog* log = C->log();
1880   if (log != NULL) {
1881     log->head("eliminate_lock lock='%d'",
1882               alock->is_Lock());
1883     JVMState* p = alock->jvms();
1884     while (p != NULL) {
1885       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1886       p = p->caller();
1887     }
1888     log->tail("eliminate_lock");
1889   }
1890 
1891   #ifndef PRODUCT
1892   if (PrintEliminateLocks) {
1893     if (alock->is_Lock()) {
1894       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
1895     } else {
1896       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
1897     }
1898   }
1899   #endif
1900 
1901   Node* mem  = alock->in(TypeFunc::Memory);
1902   Node* ctrl = alock->in(TypeFunc::Control);
1903 
1904   extract_call_projections(alock);
1905   // There are 2 projections from the lock.  The lock node will
1906   // be deleted when its last use is subsumed below.
1907   assert(alock->outcnt() == 2 &&
1908          _fallthroughproj != NULL &&
1909          _memproj_fallthrough != NULL,
1910          "Unexpected projections from Lock/Unlock");
1911 
1912   Node* fallthroughproj = _fallthroughproj;
1913   Node* memproj_fallthrough = _memproj_fallthrough;
1914 
1915   // The memory projection from a lock/unlock is RawMem
1916   // The input to a Lock is merged memory, so extract its RawMem input
1917   // (unless the MergeMem has been optimized away.)
1918   if (alock->is_Lock()) {
1919     // Seach for MemBarAcquireLock node and delete it also.
1920     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
1921     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
1922     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
1923     Node* memproj = membar->proj_out(TypeFunc::Memory);
1924     _igvn.replace_node(ctrlproj, fallthroughproj);
1925     _igvn.replace_node(memproj, memproj_fallthrough);
1926 
1927     // Delete FastLock node also if this Lock node is unique user
1928     // (a loop peeling may clone a Lock node).
1929     Node* flock = alock->as_Lock()->fastlock_node();
1930     if (flock->outcnt() == 1) {
1931       assert(flock->unique_out() == alock, "sanity");
1932       _igvn.replace_node(flock, top());
1933     }
1934   }
1935 
1936   // Seach for MemBarReleaseLock node and delete it also.
1937   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
1938       ctrl->in(0)->is_MemBar()) {
1939     MemBarNode* membar = ctrl->in(0)->as_MemBar();
1940     assert(membar->Opcode() == Op_MemBarReleaseLock &&
1941            mem->is_Proj() && membar == mem->in(0), "");
1942     _igvn.replace_node(fallthroughproj, ctrl);
1943     _igvn.replace_node(memproj_fallthrough, mem);
1944     fallthroughproj = ctrl;
1945     memproj_fallthrough = mem;
1946     ctrl = membar->in(TypeFunc::Control);
1947     mem  = membar->in(TypeFunc::Memory);
1948   }
1949 
1950   _igvn.replace_node(fallthroughproj, ctrl);
1951   _igvn.replace_node(memproj_fallthrough, mem);
1952   return true;
1953 }
1954 
1955 
1956 //------------------------------expand_lock_node----------------------
1957 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
1958 
1959   Node* ctrl = lock->in(TypeFunc::Control);
1960   Node* mem = lock->in(TypeFunc::Memory);
1961   Node* obj = lock->obj_node();
1962   Node* box = lock->box_node();
1963   Node* flock = lock->fastlock_node();
1964 
1965   // Make the merge point
1966   Node *region;
1967   Node *mem_phi;
1968   Node *slow_path;
1969 
1970   if (UseOptoBiasInlining) {
1971     /*
1972      *  See the full description in MacroAssembler::biased_locking_enter().
1973      *
1974      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
1975      *    // The object is biased.
1976      *    proto_node = klass->prototype_header;
1977      *    o_node = thread | proto_node;
1978      *    x_node = o_node ^ mark_word;
1979      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
1980      *      // Done.
1981      *    } else {
1982      *      if( (x_node & biased_lock_mask) != 0 ) {
1983      *        // The klass's prototype header is no longer biased.
1984      *        cas(&mark_word, mark_word, proto_node)
1985      *        goto cas_lock;
1986      *      } else {
1987      *        // The klass's prototype header is still biased.
1988      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
1989      *          old = mark_word;
1990      *          new = o_node;
1991      *        } else {
1992      *          // Different thread or anonymous biased.
1993      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
1994      *          new = thread | old;
1995      *        }
1996      *        // Try to rebias.
1997      *        if( cas(&mark_word, old, new) == 0 ) {
1998      *          // Done.
1999      *        } else {
2000      *          goto slow_path; // Failed.
2001      *        }
2002      *      }
2003      *    }
2004      *  } else {
2005      *    // The object is not biased.
2006      *    cas_lock:
2007      *    if( FastLock(obj) == 0 ) {
2008      *      // Done.
2009      *    } else {
2010      *      slow_path:
2011      *      OptoRuntime::complete_monitor_locking_Java(obj);
2012      *    }
2013      *  }
2014      */
2015 
2016     region  = new (C, 5) RegionNode(5);
2017     // create a Phi for the memory state
2018     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2019 
2020     Node* fast_lock_region  = new (C, 3) RegionNode(3);
2021     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2022 
2023     // First, check mark word for the biased lock pattern.
2024     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2025 
2026     // Get fast path - mark word has the biased lock pattern.
2027     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2028                          markOopDesc::biased_lock_mask_in_place,
2029                          markOopDesc::biased_lock_pattern, true);
2030     // fast_lock_region->in(1) is set to slow path.
2031     fast_lock_mem_phi->init_req(1, mem);
2032 
2033     // Now check that the lock is biased to the current thread and has
2034     // the same epoch and bias as Klass::_prototype_header.
2035 
2036     // Special-case a fresh allocation to avoid building nodes:
2037     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2038     if (klass_node == NULL) {
2039       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2040       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
2041 #ifdef _LP64
2042       if (UseCompressedOops && klass_node->is_DecodeN()) {
2043         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2044         klass_node->in(1)->init_req(0, ctrl);
2045       } else
2046 #endif
2047       klass_node->init_req(0, ctrl);
2048     }
2049     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2050 
2051     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
2052     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
2053     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
2054     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
2055 
2056     // Get slow path - mark word does NOT match the value.
2057     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2058                                       (~markOopDesc::age_mask_in_place), 0);
2059     // region->in(3) is set to fast path - the object is biased to the current thread.
2060     mem_phi->init_req(3, mem);
2061 
2062 
2063     // Mark word does NOT match the value (thread | Klass::_prototype_header).
2064 
2065 
2066     // First, check biased pattern.
2067     // Get fast path - _prototype_header has the same biased lock pattern.
2068     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2069                           markOopDesc::biased_lock_mask_in_place, 0, true);
2070 
2071     not_biased_ctrl = fast_lock_region->in(2); // Slow path
2072     // fast_lock_region->in(2) - the prototype header is no longer biased
2073     // and we have to revoke the bias on this object.
2074     // We are going to try to reset the mark of this object to the prototype
2075     // value and fall through to the CAS-based locking scheme.
2076     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2077     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
2078                                                  proto_node, mark_node);
2079     transform_later(cas);
2080     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
2081     fast_lock_mem_phi->init_req(2, proj);
2082 
2083 
2084     // Second, check epoch bits.
2085     Node* rebiased_region  = new (C, 3) RegionNode(3);
2086     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
2087     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
2088 
2089     // Get slow path - mark word does NOT match epoch bits.
2090     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2091                                       markOopDesc::epoch_mask_in_place, 0);
2092     // The epoch of the current bias is not valid, attempt to rebias the object
2093     // toward the current thread.
2094     rebiased_region->init_req(2, epoch_ctrl);
2095     old_phi->init_req(2, mark_node);
2096     new_phi->init_req(2, o_node);
2097 
2098     // rebiased_region->in(1) is set to fast path.
2099     // The epoch of the current bias is still valid but we know
2100     // nothing about the owner; it might be set or it might be clear.
2101     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
2102                              markOopDesc::age_mask_in_place |
2103                              markOopDesc::epoch_mask_in_place);
2104     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
2105     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
2106     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
2107     old_phi->init_req(1, old);
2108     new_phi->init_req(1, new_mark);
2109 
2110     transform_later(rebiased_region);
2111     transform_later(old_phi);
2112     transform_later(new_phi);
2113 
2114     // Try to acquire the bias of the object using an atomic operation.
2115     // If this fails we will go in to the runtime to revoke the object's bias.
2116     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
2117                                            new_phi, old_phi);
2118     transform_later(cas);
2119     proj = transform_later( new (C, 1) SCMemProjNode(cas));
2120 
2121     // Get slow path - Failed to CAS.
2122     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2123     mem_phi->init_req(4, proj);
2124     // region->in(4) is set to fast path - the object is rebiased to the current thread.
2125 
2126     // Failed to CAS.
2127     slow_path  = new (C, 3) RegionNode(3);
2128     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2129 
2130     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2131     slow_mem->init_req(1, proj);
2132 
2133     // Call CAS-based locking scheme (FastLock node).
2134 
2135     transform_later(fast_lock_region);
2136     transform_later(fast_lock_mem_phi);
2137 
2138     // Get slow path - FastLock failed to lock the object.
2139     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2140     mem_phi->init_req(2, fast_lock_mem_phi);
2141     // region->in(2) is set to fast path - the object is locked to the current thread.
2142 
2143     slow_path->init_req(2, ctrl); // Capture slow-control
2144     slow_mem->init_req(2, fast_lock_mem_phi);
2145 
2146     transform_later(slow_path);
2147     transform_later(slow_mem);
2148     // Reset lock's memory edge.
2149     lock->set_req(TypeFunc::Memory, slow_mem);
2150 
2151   } else {
2152     region  = new (C, 3) RegionNode(3);
2153     // create a Phi for the memory state
2154     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2155 
2156     // Optimize test; set region slot 2
2157     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2158     mem_phi->init_req(2, mem);
2159   }
2160 
2161   // Make slow path call
2162   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
2163 
2164   extract_call_projections(call);
2165 
2166   // Slow path can only throw asynchronous exceptions, which are always
2167   // de-opted.  So the compiler thinks the slow-call can never throw an
2168   // exception.  If it DOES throw an exception we would need the debug
2169   // info removed first (since if it throws there is no monitor).
2170   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2171            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2172 
2173   // Capture slow path
2174   // disconnect fall-through projection from call and create a new one
2175   // hook up users of fall-through projection to region
2176   Node *slow_ctrl = _fallthroughproj->clone();
2177   transform_later(slow_ctrl);
2178   _igvn.hash_delete(_fallthroughproj);
2179   _fallthroughproj->disconnect_inputs(NULL);
2180   region->init_req(1, slow_ctrl);
2181   // region inputs are now complete
2182   transform_later(region);
2183   _igvn.replace_node(_fallthroughproj, region);
2184 
2185   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2186   mem_phi->init_req(1, memproj );
2187   transform_later(mem_phi);
2188   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2189 }
2190 
2191 //------------------------------expand_unlock_node----------------------
2192 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2193 
2194   Node* ctrl = unlock->in(TypeFunc::Control);
2195   Node* mem = unlock->in(TypeFunc::Memory);
2196   Node* obj = unlock->obj_node();
2197   Node* box = unlock->box_node();
2198 
2199   // No need for a null check on unlock
2200 
2201   // Make the merge point
2202   Node *region;
2203   Node *mem_phi;
2204 
2205   if (UseOptoBiasInlining) {
2206     // Check for biased locking unlock case, which is a no-op.
2207     // See the full description in MacroAssembler::biased_locking_exit().
2208     region  = new (C, 4) RegionNode(4);
2209     // create a Phi for the memory state
2210     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2211     mem_phi->init_req(3, mem);
2212 
2213     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2214     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2215                          markOopDesc::biased_lock_mask_in_place,
2216                          markOopDesc::biased_lock_pattern);
2217   } else {
2218     region  = new (C, 3) RegionNode(3);
2219     // create a Phi for the memory state
2220     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2221   }
2222 
2223   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
2224   funlock = transform_later( funlock )->as_FastUnlock();
2225   // Optimize test; set region slot 2
2226   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2227 
2228   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
2229 
2230   extract_call_projections(call);
2231 
2232   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2233            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2234 
2235   // No exceptions for unlocking
2236   // Capture slow path
2237   // disconnect fall-through projection from call and create a new one
2238   // hook up users of fall-through projection to region
2239   Node *slow_ctrl = _fallthroughproj->clone();
2240   transform_later(slow_ctrl);
2241   _igvn.hash_delete(_fallthroughproj);
2242   _fallthroughproj->disconnect_inputs(NULL);
2243   region->init_req(1, slow_ctrl);
2244   // region inputs are now complete
2245   transform_later(region);
2246   _igvn.replace_node(_fallthroughproj, region);
2247 
2248   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2249   mem_phi->init_req(1, memproj );
2250   mem_phi->init_req(2, mem);
2251   transform_later(mem_phi);
2252   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2253 }
2254 
2255 //---------------------------eliminate_macro_nodes----------------------
2256 // Eliminate scalar replaced allocations and associated locks.
2257 void PhaseMacroExpand::eliminate_macro_nodes() {
2258   if (C->macro_count() == 0)
2259     return;
2260 
2261   // First, attempt to eliminate locks
2262   int cnt = C->macro_count();
2263   for (int i=0; i < cnt; i++) {
2264     Node *n = C->macro_node(i);
2265     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2266       // Before elimination mark all associated (same box and obj)
2267       // lock and unlock nodes.
2268       mark_eliminated_locking_nodes(n->as_AbstractLock());
2269     }
2270   }
2271   bool progress = true;
2272   while (progress) {
2273     progress = false;
2274     for (int i = C->macro_count(); i > 0; i--) {
2275       Node * n = C->macro_node(i-1);
2276       bool success = false;
2277       debug_only(int old_macro_count = C->macro_count(););
2278       if (n->is_AbstractLock()) {
2279         success = eliminate_locking_node(n->as_AbstractLock());
2280       }
2281       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2282       progress = progress || success;
2283     }
2284   }
2285   // Next, attempt to eliminate allocations
2286   progress = true;
2287   while (progress) {
2288     progress = false;
2289     for (int i = C->macro_count(); i > 0; i--) {
2290       Node * n = C->macro_node(i-1);
2291       bool success = false;
2292       debug_only(int old_macro_count = C->macro_count(););
2293       switch (n->class_id()) {
2294       case Node::Class_Allocate:
2295       case Node::Class_AllocateArray:
2296         success = eliminate_allocate_node(n->as_Allocate());
2297         break;
2298       case Node::Class_Lock:
2299       case Node::Class_Unlock:
2300         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2301         break;
2302       default:
2303         assert(n->Opcode() == Op_LoopLimit ||
2304                n->Opcode() == Op_Opaque1   ||
2305                n->Opcode() == Op_Opaque2, "unknown node type in macro list");
2306       }
2307       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2308       progress = progress || success;
2309     }
2310   }
2311 }
2312 
2313 //------------------------------expand_macro_nodes----------------------
2314 //  Returns true if a failure occurred.
2315 bool PhaseMacroExpand::expand_macro_nodes() {
2316   // Last attempt to eliminate macro nodes.
2317   eliminate_macro_nodes();
2318 
2319   // Make sure expansion will not cause node limit to be exceeded.
2320   // Worst case is a macro node gets expanded into about 50 nodes.
2321   // Allow 50% more for optimization.
2322   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
2323     return true;
2324 
2325   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2326   bool progress = true;
2327   while (progress) {
2328     progress = false;
2329     for (int i = C->macro_count(); i > 0; i--) {
2330       Node * n = C->macro_node(i-1);
2331       bool success = false;
2332       debug_only(int old_macro_count = C->macro_count(););
2333       if (n->Opcode() == Op_LoopLimit) {
2334         // Remove it from macro list and put on IGVN worklist to optimize.
2335         C->remove_macro_node(n);
2336         _igvn._worklist.push(n);
2337         success = true;
2338       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2339         _igvn.replace_node(n, n->in(1));
2340         success = true;
2341       }
2342       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2343       progress = progress || success;
2344     }
2345   }
2346 
2347   // expand "macro" nodes
2348   // nodes are removed from the macro list as they are processed
2349   while (C->macro_count() > 0) {
2350     int macro_count = C->macro_count();
2351     Node * n = C->macro_node(macro_count-1);
2352     assert(n->is_macro(), "only macro nodes expected here");
2353     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2354       // node is unreachable, so don't try to expand it
2355       C->remove_macro_node(n);
2356       continue;
2357     }
2358     switch (n->class_id()) {
2359     case Node::Class_Allocate:
2360       expand_allocate(n->as_Allocate());
2361       break;
2362     case Node::Class_AllocateArray:
2363       expand_allocate_array(n->as_AllocateArray());
2364       break;
2365     case Node::Class_Lock:
2366       expand_lock_node(n->as_Lock());
2367       break;
2368     case Node::Class_Unlock:
2369       expand_unlock_node(n->as_Unlock());
2370       break;
2371     default:
2372       assert(false, "unknown node type in macro list");
2373     }
2374     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2375     if (C->failing())  return true;
2376   }
2377 
2378   _igvn.set_delay_transform(false);
2379   _igvn.optimize();
2380   if (C->failing())  return true;
2381   return false;
2382 }