1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "compiler/oopMap.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/chaitin.hpp"
  34 #include "opto/coalesce.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/idealGraphPrinter.hpp"
  37 #include "opto/indexSet.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/memnode.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/rootnode.hpp"
  42 
  43 //=============================================================================
  44 
  45 #ifndef PRODUCT
  46 void LRG::dump( ) const {
  47   ttyLocker ttyl;
  48   tty->print("%d ",num_regs());
  49   _mask.dump();
  50   if( _msize_valid ) {
  51     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
  52     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
  53   } else {
  54     tty->print(", #?(%d) ",_mask.Size());
  55   }
  56 
  57   tty->print("EffDeg: ");
  58   if( _degree_valid ) tty->print( "%d ", _eff_degree );
  59   else tty->print("? ");
  60 
  61   if( is_multidef() ) {
  62     tty->print("MultiDef ");
  63     if (_defs != NULL) {
  64       tty->print("(");
  65       for (int i = 0; i < _defs->length(); i++) {
  66         tty->print("N%d ", _defs->at(i)->_idx);
  67       }
  68       tty->print(") ");
  69     }
  70   }
  71   else if( _def == 0 ) tty->print("Dead ");
  72   else tty->print("Def: N%d ",_def->_idx);
  73 
  74   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
  75   // Flags
  76   if( _is_oop ) tty->print("Oop ");
  77   if( _is_float ) tty->print("Float ");
  78   if( _was_spilled1 ) tty->print("Spilled ");
  79   if( _was_spilled2 ) tty->print("Spilled2 ");
  80   if( _direct_conflict ) tty->print("Direct_conflict ");
  81   if( _fat_proj ) tty->print("Fat ");
  82   if( _was_lo ) tty->print("Lo ");
  83   if( _has_copy ) tty->print("Copy ");
  84   if( _at_risk ) tty->print("Risk ");
  85 
  86   if( _must_spill ) tty->print("Must_spill ");
  87   if( _is_bound ) tty->print("Bound ");
  88   if( _msize_valid ) {
  89     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
  90   }
  91 
  92   tty->cr();
  93 }
  94 #endif
  95 
  96 //------------------------------score------------------------------------------
  97 // Compute score from cost and area.  Low score is best to spill.
  98 static double raw_score( double cost, double area ) {
  99   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
 100 }
 101 
 102 double LRG::score() const {
 103   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
 104   // Bigger area lowers score, encourages spilling this live range.
 105   // Bigger cost raise score, prevents spilling this live range.
 106   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
 107   // to turn a divide by a constant into a multiply by the reciprical).
 108   double score = raw_score( _cost, _area);
 109 
 110   // Account for area.  Basically, LRGs covering large areas are better
 111   // to spill because more other LRGs get freed up.
 112   if( _area == 0.0 )            // No area?  Then no progress to spill
 113     return 1e35;
 114 
 115   if( _was_spilled2 )           // If spilled once before, we are unlikely
 116     return score + 1e30;        // to make progress again.
 117 
 118   if( _cost >= _area*3.0 )      // Tiny area relative to cost
 119     return score + 1e17;        // Probably no progress to spill
 120 
 121   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
 122     return score + 1e10;        // Likely no progress to spill
 123 
 124   return score;
 125 }
 126 
 127 //------------------------------LRG_List---------------------------------------
 128 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
 129   memset( _lidxs, 0, sizeof(uint)*max );
 130 }
 131 
 132 void LRG_List::extend( uint nidx, uint lidx ) {
 133   _nesting.check();
 134   if( nidx >= _max ) {
 135     uint size = 16;
 136     while( size <= nidx ) size <<=1;
 137     _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
 138     _max = size;
 139   }
 140   while( _cnt <= nidx )
 141     _lidxs[_cnt++] = 0;
 142   _lidxs[nidx] = lidx;
 143 }
 144 
 145 #define NUMBUCKS 3
 146 
 147 //------------------------------Chaitin----------------------------------------
 148 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
 149   : PhaseRegAlloc(unique, cfg, matcher,
 150 #ifndef PRODUCT
 151        print_chaitin_statistics
 152 #else
 153        NULL
 154 #endif
 155        ),
 156     _names(unique), _uf_map(unique),
 157     _maxlrg(0), _live(0),
 158     _spilled_once(Thread::current()->resource_area()),
 159     _spilled_twice(Thread::current()->resource_area()),
 160     _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
 161     _oldphi(unique)
 162 #ifndef PRODUCT
 163   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
 164 #endif
 165 {
 166   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
 167 
 168   _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq);
 169 
 170   uint i,j;
 171   // Build a list of basic blocks, sorted by frequency
 172   _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
 173   // Experiment with sorting strategies to speed compilation
 174   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
 175   Block **buckets[NUMBUCKS];             // Array of buckets
 176   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
 177   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
 178   for( i = 0; i < NUMBUCKS; i++ ) {
 179     buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
 180     buckcnt[i] = 0;
 181     // Bump by three orders of magnitude each time
 182     cutoff *= 0.001;
 183     buckval[i] = cutoff;
 184     for( j = 0; j < _cfg._num_blocks; j++ ) {
 185       buckets[i][j] = NULL;
 186     }
 187   }
 188   // Sort blocks into buckets
 189   for( i = 0; i < _cfg._num_blocks; i++ ) {
 190     for( j = 0; j < NUMBUCKS; j++ ) {
 191       if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
 192         // Assign block to end of list for appropriate bucket
 193         buckets[j][buckcnt[j]++] = _cfg._blocks[i];
 194         break;                      // kick out of inner loop
 195       }
 196     }
 197   }
 198   // Dump buckets into final block array
 199   uint blkcnt = 0;
 200   for( i = 0; i < NUMBUCKS; i++ ) {
 201     for( j = 0; j < buckcnt[i]; j++ ) {
 202       _blks[blkcnt++] = buckets[i][j];
 203     }
 204   }
 205 
 206   assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
 207 }
 208 
 209 void PhaseChaitin::Register_Allocate() {
 210 
 211   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
 212   // slots in this area are called "arg_slots".  Above the NEW FP (and in
 213   // registers) is the outgoing argument area; above that is the spill/temp
 214   // area.  These are all "frame_slots".  Arg_slots start at the zero
 215   // stack_slots and count up to the known arg_size.  Frame_slots start at
 216   // the stack_slot #arg_size and go up.  After allocation I map stack
 217   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
 218   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
 219 
 220   _trip_cnt = 0;
 221   _alternate = 0;
 222   _matcher._allocation_started = true;
 223 
 224   ResourceArea live_arena;      // Arena for liveness & IFG info
 225   ResourceMark rm(&live_arena);
 226 
 227   // Need live-ness for the IFG; need the IFG for coalescing.  If the
 228   // liveness is JUST for coalescing, then I can get some mileage by renaming
 229   // all copy-related live ranges low and then using the max copy-related
 230   // live range as a cut-off for LIVE and the IFG.  In other words, I can
 231   // build a subset of LIVE and IFG just for copies.
 232   PhaseLive live(_cfg,_names,&live_arena);
 233 
 234   // Need IFG for coalescing and coloring
 235   PhaseIFG ifg( &live_arena );
 236   _ifg = &ifg;
 237 
 238   if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
 239 
 240   // Come out of SSA world to the Named world.  Assign (virtual) registers to
 241   // Nodes.  Use the same register for all inputs and the output of PhiNodes
 242   // - effectively ending SSA form.  This requires either coalescing live
 243   // ranges or inserting copies.  For the moment, we insert "virtual copies"
 244   // - we pretend there is a copy prior to each Phi in predecessor blocks.
 245   // We will attempt to coalesce such "virtual copies" before we manifest
 246   // them for real.
 247   de_ssa();
 248 
 249 #ifdef ASSERT
 250   // Veify the graph before RA.
 251   verify(&live_arena);
 252 #endif
 253 
 254   {
 255     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
 256     _live = NULL;                 // Mark live as being not available
 257     rm.reset_to_mark();           // Reclaim working storage
 258     IndexSet::reset_memory(C, &live_arena);
 259     ifg.init(_maxlrg);            // Empty IFG
 260     gather_lrg_masks( false );    // Collect LRG masks
 261     live.compute( _maxlrg );      // Compute liveness
 262     _live = &live;                // Mark LIVE as being available
 263   }
 264 
 265   // Base pointers are currently "used" by instructions which define new
 266   // derived pointers.  This makes base pointers live up to the where the
 267   // derived pointer is made, but not beyond.  Really, they need to be live
 268   // across any GC point where the derived value is live.  So this code looks
 269   // at all the GC points, and "stretches" the live range of any base pointer
 270   // to the GC point.
 271   if( stretch_base_pointer_live_ranges(&live_arena) ) {
 272     NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
 273     // Since some live range stretched, I need to recompute live
 274     _live = NULL;
 275     rm.reset_to_mark();         // Reclaim working storage
 276     IndexSet::reset_memory(C, &live_arena);
 277     ifg.init(_maxlrg);
 278     gather_lrg_masks( false );
 279     live.compute( _maxlrg );
 280     _live = &live;
 281   }
 282   // Create the interference graph using virtual copies
 283   build_ifg_virtual( );  // Include stack slots this time
 284 
 285   // Aggressive (but pessimistic) copy coalescing.
 286   // This pass works on virtual copies.  Any virtual copies which are not
 287   // coalesced get manifested as actual copies
 288   {
 289     // The IFG is/was triangular.  I am 'squaring it up' so Union can run
 290     // faster.  Union requires a 'for all' operation which is slow on the
 291     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
 292     // meaning I can visit all the Nodes neighbors less than a Node in time
 293     // O(# of neighbors), but I have to visit all the Nodes greater than a
 294     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
 295     _ifg->SquareUp();
 296 
 297     PhaseAggressiveCoalesce coalesce( *this );
 298     coalesce.coalesce_driver( );
 299     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
 300     // not match the Phi itself, insert a copy.
 301     coalesce.insert_copies(_matcher);
 302   }
 303 
 304   // After aggressive coalesce, attempt a first cut at coloring.
 305   // To color, we need the IFG and for that we need LIVE.
 306   {
 307     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
 308     _live = NULL;
 309     rm.reset_to_mark();           // Reclaim working storage
 310     IndexSet::reset_memory(C, &live_arena);
 311     ifg.init(_maxlrg);
 312     gather_lrg_masks( true );
 313     live.compute( _maxlrg );
 314     _live = &live;
 315   }
 316 
 317   // Build physical interference graph
 318   uint must_spill = 0;
 319   must_spill = build_ifg_physical( &live_arena );
 320   // If we have a guaranteed spill, might as well spill now
 321   if( must_spill ) {
 322     if( !_maxlrg ) return;
 323     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
 324     C->check_node_count(10*must_spill, "out of nodes before split");
 325     if (C->failing())  return;
 326     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
 327     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 328     // or we failed to split
 329     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
 330     if (C->failing())  return;
 331 
 332     NOT_PRODUCT( C->verify_graph_edges(); )
 333 
 334     compact();                  // Compact LRGs; return new lower max lrg
 335 
 336     {
 337       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
 338       _live = NULL;
 339       rm.reset_to_mark();         // Reclaim working storage
 340       IndexSet::reset_memory(C, &live_arena);
 341       ifg.init(_maxlrg);          // Build a new interference graph
 342       gather_lrg_masks( true );   // Collect intersect mask
 343       live.compute( _maxlrg );    // Compute LIVE
 344       _live = &live;
 345     }
 346     build_ifg_physical( &live_arena );
 347     _ifg->SquareUp();
 348     _ifg->Compute_Effective_Degree();
 349     // Only do conservative coalescing if requested
 350     if( OptoCoalesce ) {
 351       // Conservative (and pessimistic) copy coalescing of those spills
 352       PhaseConservativeCoalesce coalesce( *this );
 353       // If max live ranges greater than cutoff, don't color the stack.
 354       // This cutoff can be larger than below since it is only done once.
 355       coalesce.coalesce_driver( );
 356     }
 357     compress_uf_map_for_nodes();
 358 
 359 #ifdef ASSERT
 360     verify(&live_arena, true);
 361 #endif
 362   } else {
 363     ifg.SquareUp();
 364     ifg.Compute_Effective_Degree();
 365 #ifdef ASSERT
 366     set_was_low();
 367 #endif
 368   }
 369 
 370   // Prepare for Simplify & Select
 371   cache_lrg_info();           // Count degree of LRGs
 372 
 373   // Simplify the InterFerence Graph by removing LRGs of low degree.
 374   // LRGs of low degree are trivially colorable.
 375   Simplify();
 376 
 377   // Select colors by re-inserting LRGs back into the IFG in reverse order.
 378   // Return whether or not something spills.
 379   uint spills = Select( );
 380 
 381   // If we spill, split and recycle the entire thing
 382   while( spills ) {
 383     if( _trip_cnt++ > 24 ) {
 384       DEBUG_ONLY( dump_for_spill_split_recycle(); )
 385       if( _trip_cnt > 27 ) {
 386         C->record_method_not_compilable("failed spill-split-recycle sanity check");
 387         return;
 388       }
 389     }
 390 
 391     if( !_maxlrg ) return;
 392     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
 393     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 394     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
 395     if (C->failing())  return;
 396 
 397     compact();                  // Compact LRGs; return new lower max lrg
 398 
 399     // Nuke the live-ness and interference graph and LiveRanGe info
 400     {
 401       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
 402       _live = NULL;
 403       rm.reset_to_mark();         // Reclaim working storage
 404       IndexSet::reset_memory(C, &live_arena);
 405       ifg.init(_maxlrg);
 406 
 407       // Create LiveRanGe array.
 408       // Intersect register masks for all USEs and DEFs
 409       gather_lrg_masks( true );
 410       live.compute( _maxlrg );
 411       _live = &live;
 412     }
 413     must_spill = build_ifg_physical( &live_arena );
 414     _ifg->SquareUp();
 415     _ifg->Compute_Effective_Degree();
 416 
 417     // Only do conservative coalescing if requested
 418     if( OptoCoalesce ) {
 419       // Conservative (and pessimistic) copy coalescing
 420       PhaseConservativeCoalesce coalesce( *this );
 421       // Check for few live ranges determines how aggressive coalesce is.
 422       coalesce.coalesce_driver( );
 423     }
 424     compress_uf_map_for_nodes();
 425 #ifdef ASSERT
 426     verify(&live_arena, true);
 427 #endif
 428     cache_lrg_info();           // Count degree of LRGs
 429 
 430     // Simplify the InterFerence Graph by removing LRGs of low degree.
 431     // LRGs of low degree are trivially colorable.
 432     Simplify();
 433 
 434     // Select colors by re-inserting LRGs back into the IFG in reverse order.
 435     // Return whether or not something spills.
 436     spills = Select( );
 437   }
 438 
 439   // Count number of Simplify-Select trips per coloring success.
 440   _allocator_attempts += _trip_cnt + 1;
 441   _allocator_successes += 1;
 442 
 443   // Peephole remove copies
 444   post_allocate_copy_removal();
 445 
 446 #ifdef ASSERT
 447   // Veify the graph after RA.
 448   verify(&live_arena);
 449 #endif
 450 
 451   // max_reg is past the largest *register* used.
 452   // Convert that to a frame_slot number.
 453   if( _max_reg <= _matcher._new_SP )
 454     _framesize = C->out_preserve_stack_slots();
 455   else _framesize = _max_reg -_matcher._new_SP;
 456   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
 457 
 458   // This frame must preserve the required fp alignment
 459   _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
 460   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
 461 #ifndef PRODUCT
 462   _total_framesize += _framesize;
 463   if( (int)_framesize > _max_framesize )
 464     _max_framesize = _framesize;
 465 #endif
 466 
 467   // Convert CISC spills
 468   fixup_spills();
 469 
 470   // Log regalloc results
 471   CompileLog* log = Compile::current()->log();
 472   if (log != NULL) {
 473     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
 474   }
 475 
 476   if (C->failing())  return;
 477 
 478   NOT_PRODUCT( C->verify_graph_edges(); )
 479 
 480   // Move important info out of the live_arena to longer lasting storage.
 481   alloc_node_regs(_names.Size());
 482   for( uint i=0; i < _names.Size(); i++ ) {
 483     if( _names[i] ) {           // Live range associated with Node?
 484       LRG &lrg = lrgs( _names[i] );
 485       if( lrg.num_regs() == 1 ) {
 486         _node_regs[i].set1( lrg.reg() );
 487       } else {                  // Must be a register-pair
 488         if( !lrg._fat_proj ) {  // Must be aligned adjacent register pair
 489           // Live ranges record the highest register in their mask.
 490           // We want the low register for the AD file writer's convenience.
 491           _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
 492         } else {                // Misaligned; extract 2 bits
 493           OptoReg::Name hi = lrg.reg(); // Get hi register
 494           lrg.Remove(hi);       // Yank from mask
 495           int lo = lrg.mask().find_first_elem(); // Find lo
 496           _node_regs[i].set_pair( hi, lo );
 497         }
 498       }
 499       if( lrg._is_oop ) _node_oops.set(i);
 500     } else {
 501       _node_regs[i].set_bad();
 502     }
 503   }
 504 
 505   // Done!
 506   _live = NULL;
 507   _ifg = NULL;
 508   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
 509 }
 510 
 511 //------------------------------de_ssa-----------------------------------------
 512 void PhaseChaitin::de_ssa() {
 513   // Set initial Names for all Nodes.  Most Nodes get the virtual register
 514   // number.  A few get the ZERO live range number.  These do not
 515   // get allocated, but instead rely on correct scheduling to ensure that
 516   // only one instance is simultaneously live at a time.
 517   uint lr_counter = 1;
 518   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 519     Block *b = _cfg._blocks[i];
 520     uint cnt = b->_nodes.size();
 521 
 522     // Handle all the normal Nodes in the block
 523     for( uint j = 0; j < cnt; j++ ) {
 524       Node *n = b->_nodes[j];
 525       // Pre-color to the zero live range, or pick virtual register
 526       const RegMask &rm = n->out_RegMask();
 527       _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
 528     }
 529   }
 530   // Reset the Union-Find mapping to be identity
 531   reset_uf_map(lr_counter);
 532 }
 533 
 534 
 535 //------------------------------gather_lrg_masks-------------------------------
 536 // Gather LiveRanGe information, including register masks.  Modification of
 537 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
 538 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
 539 
 540   // Nail down the frame pointer live range
 541   uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
 542   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
 543 
 544   // For all blocks
 545   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 546     Block *b = _cfg._blocks[i];
 547 
 548     // For all instructions
 549     for( uint j = 1; j < b->_nodes.size(); j++ ) {
 550       Node *n = b->_nodes[j];
 551       uint input_edge_start =1; // Skip control most nodes
 552       if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
 553       uint idx = n->is_Copy();
 554 
 555       // Get virtual register number, same as LiveRanGe index
 556       uint vreg = n2lidx(n);
 557       LRG &lrg = lrgs(vreg);
 558       if( vreg ) {              // No vreg means un-allocable (e.g. memory)
 559 
 560         // Collect has-copy bit
 561         if( idx ) {
 562           lrg._has_copy = 1;
 563           uint clidx = n2lidx(n->in(idx));
 564           LRG &copy_src = lrgs(clidx);
 565           copy_src._has_copy = 1;
 566         }
 567 
 568         // Check for float-vs-int live range (used in register-pressure
 569         // calculations)
 570         const Type *n_type = n->bottom_type();
 571         if( n_type->is_floatingpoint() )
 572           lrg._is_float = 1;
 573 
 574         // Check for twice prior spilling.  Once prior spilling might have
 575         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
 576         // further spilling is unlikely to make progress.
 577         if( _spilled_once.test(n->_idx) ) {
 578           lrg._was_spilled1 = 1;
 579           if( _spilled_twice.test(n->_idx) )
 580             lrg._was_spilled2 = 1;
 581         }
 582 
 583 #ifndef PRODUCT
 584         if (trace_spilling() && lrg._def != NULL) {
 585           // collect defs for MultiDef printing
 586           if (lrg._defs == NULL) {
 587             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
 588             lrg._defs->append(lrg._def);
 589           }
 590           lrg._defs->append(n);
 591         }
 592 #endif
 593 
 594         // Check for a single def LRG; these can spill nicely
 595         // via rematerialization.  Flag as NULL for no def found
 596         // yet, or 'n' for single def or -1 for many defs.
 597         lrg._def = lrg._def ? NodeSentinel : n;
 598 
 599         // Limit result register mask to acceptable registers
 600         const RegMask &rm = n->out_RegMask();
 601         lrg.AND( rm );
 602         // Check for bound register masks
 603         const RegMask &lrgmask = lrg.mask();
 604         if( lrgmask.is_bound1() || lrgmask.is_bound2() )
 605           lrg._is_bound = 1;
 606 
 607         // Check for maximum frequency value
 608         if( lrg._maxfreq < b->_freq )
 609           lrg._maxfreq = b->_freq;
 610 
 611         int ireg = n->ideal_reg();
 612         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
 613                 "oops must be in Op_RegP's" );
 614         // Check for oop-iness, or long/double
 615         // Check for multi-kill projection
 616         switch( ireg ) {
 617         case MachProjNode::fat_proj:
 618           // Fat projections have size equal to number of registers killed
 619           lrg.set_num_regs(rm.Size());
 620           lrg.set_reg_pressure(lrg.num_regs());
 621           lrg._fat_proj = 1;
 622           lrg._is_bound = 1;
 623           break;
 624         case Op_RegP:
 625 #ifdef _LP64
 626           lrg.set_num_regs(2);  // Size is 2 stack words
 627 #else
 628           lrg.set_num_regs(1);  // Size is 1 stack word
 629 #endif
 630           // Register pressure is tracked relative to the maximum values
 631           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
 632           // and relative to other types which compete for the same regs.
 633           //
 634           // The following table contains suggested values based on the
 635           // architectures as defined in each .ad file.
 636           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
 637           // compile-speed or performance.
 638           // Note1:
 639           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
 640           // since .ad registers are defined as high and low halves.
 641           // These reg_pressure values remain compatible with the code
 642           // in is_high_pressure() which relates get_invalid_mask_size(),
 643           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
 644           // Note2:
 645           // SPARC -d32 has 24 registers available for integral values,
 646           // but only 10 of these are safe for 64-bit longs.
 647           // Using set_reg_pressure(2) for both int and long means
 648           // the allocator will believe it can fit 26 longs into
 649           // registers.  Using 2 for longs and 1 for ints means the
 650           // allocator will attempt to put 52 integers into registers.
 651           // The settings below limit this problem to methods with
 652           // many long values which are being run on 32-bit SPARC.
 653           //
 654           // ------------------- reg_pressure --------------------
 655           // Each entry is reg_pressure_per_value,number_of_regs
 656           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
 657           // IA32     2     1     1          1    1          6           6
 658           // IA64     1     1     1          1    1         50          41
 659           // SPARC    2     2     2          2    2         48 (24)     52 (26)
 660           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
 661           // AMD64    1     1     1          1    1         14          15
 662           // -----------------------------------------------------
 663 #if defined(SPARC)
 664           lrg.set_reg_pressure(2);  // use for v9 as well
 665 #else
 666           lrg.set_reg_pressure(1);  // normally one value per register
 667 #endif
 668           if( n_type->isa_oop_ptr() ) {
 669             lrg._is_oop = 1;
 670           }
 671           break;
 672         case Op_RegL:           // Check for long or double
 673         case Op_RegD:
 674           lrg.set_num_regs(2);
 675           // Define platform specific register pressure
 676 #if defined(SPARC) || defined(ARM)
 677           lrg.set_reg_pressure(2);
 678 #elif defined(IA32)
 679           if( ireg == Op_RegL ) {
 680             lrg.set_reg_pressure(2);
 681           } else {
 682             lrg.set_reg_pressure(1);
 683           }
 684 #else
 685           lrg.set_reg_pressure(1);  // normally one value per register
 686 #endif
 687           // If this def of a double forces a mis-aligned double,
 688           // flag as '_fat_proj' - really flag as allowing misalignment
 689           // AND changes how we count interferences.  A mis-aligned
 690           // double can interfere with TWO aligned pairs, or effectively
 691           // FOUR registers!
 692           if( rm.is_misaligned_Pair() ) {
 693             lrg._fat_proj = 1;
 694             lrg._is_bound = 1;
 695           }
 696           break;
 697         case Op_RegF:
 698         case Op_RegI:
 699         case Op_RegN:
 700         case Op_RegFlags:
 701         case 0:                 // not an ideal register
 702           lrg.set_num_regs(1);
 703 #ifdef SPARC
 704           lrg.set_reg_pressure(2);
 705 #else
 706           lrg.set_reg_pressure(1);
 707 #endif
 708           break;
 709         default:
 710           ShouldNotReachHere();
 711         }
 712       }
 713 
 714       // Now do the same for inputs
 715       uint cnt = n->req();
 716       // Setup for CISC SPILLING
 717       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
 718       if( UseCISCSpill && after_aggressive ) {
 719         inp = n->cisc_operand();
 720         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
 721           // Convert operand number to edge index number
 722           inp = n->as_Mach()->operand_index(inp);
 723       }
 724       // Prepare register mask for each input
 725       for( uint k = input_edge_start; k < cnt; k++ ) {
 726         uint vreg = n2lidx(n->in(k));
 727         if( !vreg ) continue;
 728 
 729         // If this instruction is CISC Spillable, add the flags
 730         // bit to its appropriate input
 731         if( UseCISCSpill && after_aggressive && inp == k ) {
 732 #ifndef PRODUCT
 733           if( TraceCISCSpill ) {
 734             tty->print("  use_cisc_RegMask: ");
 735             n->dump();
 736           }
 737 #endif
 738           n->as_Mach()->use_cisc_RegMask();
 739         }
 740 
 741         LRG &lrg = lrgs(vreg);
 742         // // Testing for floating point code shape
 743         // Node *test = n->in(k);
 744         // if( test->is_Mach() ) {
 745         //   MachNode *m = test->as_Mach();
 746         //   int  op = m->ideal_Opcode();
 747         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
 748         //     int zzz = 1;
 749         //   }
 750         // }
 751 
 752         // Limit result register mask to acceptable registers.
 753         // Do not limit registers from uncommon uses before
 754         // AggressiveCoalesce.  This effectively pre-virtual-splits
 755         // around uncommon uses of common defs.
 756         const RegMask &rm = n->in_RegMask(k);
 757         if( !after_aggressive &&
 758           _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
 759           // Since we are BEFORE aggressive coalesce, leave the register
 760           // mask untrimmed by the call.  This encourages more coalescing.
 761           // Later, AFTER aggressive, this live range will have to spill
 762           // but the spiller handles slow-path calls very nicely.
 763         } else {
 764           lrg.AND( rm );
 765         }
 766         // Check for bound register masks
 767         const RegMask &lrgmask = lrg.mask();
 768         if( lrgmask.is_bound1() || lrgmask.is_bound2() )
 769           lrg._is_bound = 1;
 770         // If this use of a double forces a mis-aligned double,
 771         // flag as '_fat_proj' - really flag as allowing misalignment
 772         // AND changes how we count interferences.  A mis-aligned
 773         // double can interfere with TWO aligned pairs, or effectively
 774         // FOUR registers!
 775         if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
 776           lrg._fat_proj = 1;
 777           lrg._is_bound = 1;
 778         }
 779         // if the LRG is an unaligned pair, we will have to spill
 780         // so clear the LRG's register mask if it is not already spilled
 781         if ( !n->is_SpillCopy() &&
 782                (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
 783                lrgmask.is_misaligned_Pair()) {
 784           lrg.Clear();
 785         }
 786 
 787         // Check for maximum frequency value
 788         if( lrg._maxfreq < b->_freq )
 789           lrg._maxfreq = b->_freq;
 790 
 791       } // End for all allocated inputs
 792     } // end for all instructions
 793   } // end for all blocks
 794 
 795   // Final per-liverange setup
 796   for( uint i2=0; i2<_maxlrg; i2++ ) {
 797     LRG &lrg = lrgs(i2);
 798     if( lrg.num_regs() == 2 && !lrg._fat_proj )
 799       lrg.ClearToPairs();
 800     lrg.compute_set_mask_size();
 801     if( lrg.not_free() ) {      // Handle case where we lose from the start
 802       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
 803       lrg._direct_conflict = 1;
 804     }
 805     lrg.set_degree(0);          // no neighbors in IFG yet
 806   }
 807 }
 808 
 809 //------------------------------set_was_low------------------------------------
 810 // Set the was-lo-degree bit.  Conservative coalescing should not change the
 811 // colorability of the graph.  If any live range was of low-degree before
 812 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
 813 // The bit is checked in Simplify.
 814 void PhaseChaitin::set_was_low() {
 815 #ifdef ASSERT
 816   for( uint i = 1; i < _maxlrg; i++ ) {
 817     int size = lrgs(i).num_regs();
 818     uint old_was_lo = lrgs(i)._was_lo;
 819     lrgs(i)._was_lo = 0;
 820     if( lrgs(i).lo_degree() ) {
 821       lrgs(i)._was_lo = 1;      // Trivially of low degree
 822     } else {                    // Else check the Brigg's assertion
 823       // Brigg's observation is that the lo-degree neighbors of a
 824       // hi-degree live range will not interfere with the color choices
 825       // of said hi-degree live range.  The Simplify reverse-stack-coloring
 826       // order takes care of the details.  Hence you do not have to count
 827       // low-degree neighbors when determining if this guy colors.
 828       int briggs_degree = 0;
 829       IndexSet *s = _ifg->neighbors(i);
 830       IndexSetIterator elements(s);
 831       uint lidx;
 832       while((lidx = elements.next()) != 0) {
 833         if( !lrgs(lidx).lo_degree() )
 834           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
 835       }
 836       if( briggs_degree < lrgs(i).degrees_of_freedom() )
 837         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
 838     }
 839     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
 840   }
 841 #endif
 842 }
 843 
 844 #define REGISTER_CONSTRAINED 16
 845 
 846 //------------------------------cache_lrg_info---------------------------------
 847 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
 848 void PhaseChaitin::cache_lrg_info( ) {
 849 
 850   for( uint i = 1; i < _maxlrg; i++ ) {
 851     LRG &lrg = lrgs(i);
 852 
 853     // Check for being of low degree: means we can be trivially colored.
 854     // Low degree, dead or must-spill guys just get to simplify right away
 855     if( lrg.lo_degree() ||
 856        !lrg.alive() ||
 857         lrg._must_spill ) {
 858       // Split low degree list into those guys that must get a
 859       // register and those that can go to register or stack.
 860       // The idea is LRGs that can go register or stack color first when
 861       // they have a good chance of getting a register.  The register-only
 862       // lo-degree live ranges always get a register.
 863       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
 864       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
 865         lrg._next = _lo_stk_degree;
 866         _lo_stk_degree = i;
 867       } else {
 868         lrg._next = _lo_degree;
 869         _lo_degree = i;
 870       }
 871     } else {                    // Else high degree
 872       lrgs(_hi_degree)._prev = i;
 873       lrg._next = _hi_degree;
 874       lrg._prev = 0;
 875       _hi_degree = i;
 876     }
 877   }
 878 }
 879 
 880 //------------------------------Pre-Simplify-----------------------------------
 881 // Simplify the IFG by removing LRGs of low degree that have NO copies
 882 void PhaseChaitin::Pre_Simplify( ) {
 883 
 884   // Warm up the lo-degree no-copy list
 885   int lo_no_copy = 0;
 886   for( uint i = 1; i < _maxlrg; i++ ) {
 887     if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
 888         !lrgs(i).alive() ||
 889         lrgs(i)._must_spill ) {
 890       lrgs(i)._next = lo_no_copy;
 891       lo_no_copy = i;
 892     }
 893   }
 894 
 895   while( lo_no_copy ) {
 896     uint lo = lo_no_copy;
 897     lo_no_copy = lrgs(lo)._next;
 898     int size = lrgs(lo).num_regs();
 899 
 900     // Put the simplified guy on the simplified list.
 901     lrgs(lo)._next = _simplified;
 902     _simplified = lo;
 903 
 904     // Yank this guy from the IFG.
 905     IndexSet *adj = _ifg->remove_node( lo );
 906 
 907     // If any neighbors' degrees fall below their number of
 908     // allowed registers, then put that neighbor on the low degree
 909     // list.  Note that 'degree' can only fall and 'numregs' is
 910     // unchanged by this action.  Thus the two are equal at most once,
 911     // so LRGs hit the lo-degree worklists at most once.
 912     IndexSetIterator elements(adj);
 913     uint neighbor;
 914     while ((neighbor = elements.next()) != 0) {
 915       LRG *n = &lrgs(neighbor);
 916       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
 917 
 918       // Check for just becoming of-low-degree
 919       if( n->just_lo_degree() && !n->_has_copy ) {
 920         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
 921         // Put on lo-degree list
 922         n->_next = lo_no_copy;
 923         lo_no_copy = neighbor;
 924       }
 925     }
 926   } // End of while lo-degree no_copy worklist not empty
 927 
 928   // No more lo-degree no-copy live ranges to simplify
 929 }
 930 
 931 //------------------------------Simplify---------------------------------------
 932 // Simplify the IFG by removing LRGs of low degree.
 933 void PhaseChaitin::Simplify( ) {
 934 
 935   while( 1 ) {                  // Repeat till simplified it all
 936     // May want to explore simplifying lo_degree before _lo_stk_degree.
 937     // This might result in more spills coloring into registers during
 938     // Select().
 939     while( _lo_degree || _lo_stk_degree ) {
 940       // If possible, pull from lo_stk first
 941       uint lo;
 942       if( _lo_degree ) {
 943         lo = _lo_degree;
 944         _lo_degree = lrgs(lo)._next;
 945       } else {
 946         lo = _lo_stk_degree;
 947         _lo_stk_degree = lrgs(lo)._next;
 948       }
 949 
 950       // Put the simplified guy on the simplified list.
 951       lrgs(lo)._next = _simplified;
 952       _simplified = lo;
 953       // If this guy is "at risk" then mark his current neighbors
 954       if( lrgs(lo)._at_risk ) {
 955         IndexSetIterator elements(_ifg->neighbors(lo));
 956         uint datum;
 957         while ((datum = elements.next()) != 0) {
 958           lrgs(datum)._risk_bias = lo;
 959         }
 960       }
 961 
 962       // Yank this guy from the IFG.
 963       IndexSet *adj = _ifg->remove_node( lo );
 964 
 965       // If any neighbors' degrees fall below their number of
 966       // allowed registers, then put that neighbor on the low degree
 967       // list.  Note that 'degree' can only fall and 'numregs' is
 968       // unchanged by this action.  Thus the two are equal at most once,
 969       // so LRGs hit the lo-degree worklist at most once.
 970       IndexSetIterator elements(adj);
 971       uint neighbor;
 972       while ((neighbor = elements.next()) != 0) {
 973         LRG *n = &lrgs(neighbor);
 974 #ifdef ASSERT
 975         if( VerifyOpto || VerifyRegisterAllocator ) {
 976           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
 977         }
 978 #endif
 979 
 980         // Check for just becoming of-low-degree just counting registers.
 981         // _must_spill live ranges are already on the low degree list.
 982         if( n->just_lo_degree() && !n->_must_spill ) {
 983           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
 984           // Pull from hi-degree list
 985           uint prev = n->_prev;
 986           uint next = n->_next;
 987           if( prev ) lrgs(prev)._next = next;
 988           else _hi_degree = next;
 989           lrgs(next)._prev = prev;
 990           n->_next = _lo_degree;
 991           _lo_degree = neighbor;
 992         }
 993       }
 994     } // End of while lo-degree/lo_stk_degree worklist not empty
 995 
 996     // Check for got everything: is hi-degree list empty?
 997     if( !_hi_degree ) break;
 998 
 999     // Time to pick a potential spill guy
1000     uint lo_score = _hi_degree;
1001     double score = lrgs(lo_score).score();
1002     double area = lrgs(lo_score)._area;
1003     double cost = lrgs(lo_score)._cost;
1004     bool bound = lrgs(lo_score)._is_bound;
1005 
1006     // Find cheapest guy
1007     debug_only( int lo_no_simplify=0; );
1008     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
1009       assert( !(*_ifg->_yanked)[i], "" );
1010       // It's just vaguely possible to move hi-degree to lo-degree without
1011       // going through a just-lo-degree stage: If you remove a double from
1012       // a float live range it's degree will drop by 2 and you can skip the
1013       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
1014       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1015       if( lrgs(i).lo_degree() ) {
1016         lo_score = i;
1017         break;
1018       }
1019       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1020       double iscore = lrgs(i).score();
1021       double iarea = lrgs(i)._area;
1022       double icost = lrgs(i)._cost;
1023       bool ibound = lrgs(i)._is_bound;
1024 
1025       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1026       // wins.  Ties happen because all live ranges in question have spilled
1027       // a few times before and the spill-score adds a huge number which
1028       // washes out the low order bits.  We are choosing the lesser of 2
1029       // evils; in this case pick largest area to spill.
1030       // Ties also happen when live ranges are defined and used only inside
1031       // one block. In which case their area is 0 and score set to max.
1032       // In such case choose bound live range over unbound to free registers
1033       // or with smaller cost to spill.
1034       if( iscore < score ||
1035           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1036           (iscore == score && iarea == area &&
1037            ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
1038         lo_score = i;
1039         score = iscore;
1040         area = iarea;
1041         cost = icost;
1042         bound = ibound;
1043       }
1044     }
1045     LRG *lo_lrg = &lrgs(lo_score);
1046     // The live range we choose for spilling is either hi-degree, or very
1047     // rarely it can be low-degree.  If we choose a hi-degree live range
1048     // there better not be any lo-degree choices.
1049     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1050 
1051     // Pull from hi-degree list
1052     uint prev = lo_lrg->_prev;
1053     uint next = lo_lrg->_next;
1054     if( prev ) lrgs(prev)._next = next;
1055     else _hi_degree = next;
1056     lrgs(next)._prev = prev;
1057     // Jam him on the lo-degree list, despite his high degree.
1058     // Maybe he'll get a color, and maybe he'll spill.
1059     // Only Select() will know.
1060     lrgs(lo_score)._at_risk = true;
1061     _lo_degree = lo_score;
1062     lo_lrg->_next = 0;
1063 
1064   } // End of while not simplified everything
1065 
1066 }
1067 
1068 //------------------------------bias_color-------------------------------------
1069 // Choose a color using the biasing heuristic
1070 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1071 
1072   // Check for "at_risk" LRG's
1073   uint risk_lrg = Find(lrg._risk_bias);
1074   if( risk_lrg != 0 ) {
1075     // Walk the colored neighbors of the "at_risk" candidate
1076     // Choose a color which is both legal and already taken by a neighbor
1077     // of the "at_risk" candidate in order to improve the chances of the
1078     // "at_risk" candidate of coloring
1079     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1080     uint datum;
1081     while ((datum = elements.next()) != 0) {
1082       OptoReg::Name reg = lrgs(datum).reg();
1083       // If this LRG's register is legal for us, choose it
1084       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1085           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1086           (lrg.num_regs()==1 || // either size 1
1087            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
1088         return reg;
1089     }
1090   }
1091 
1092   uint copy_lrg = Find(lrg._copy_bias);
1093   if( copy_lrg != 0 ) {
1094     // If he has a color,
1095     if( !(*(_ifg->_yanked))[copy_lrg] ) {
1096       OptoReg::Name reg = lrgs(copy_lrg).reg();
1097       //  And it is legal for you,
1098       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1099           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1100           (lrg.num_regs()==1 || // either size 1
1101            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
1102         return reg;
1103     } else if( chunk == 0 ) {
1104       // Choose a color which is legal for him
1105       RegMask tempmask = lrg.mask();
1106       tempmask.AND(lrgs(copy_lrg).mask());
1107       OptoReg::Name reg;
1108       if( lrg.num_regs() == 1 ) {
1109         reg = tempmask.find_first_elem();
1110       } else {
1111         tempmask.ClearToPairs();
1112         reg = tempmask.find_first_pair();
1113       }
1114       if( OptoReg::is_valid(reg) )
1115         return reg;
1116     }
1117   }
1118 
1119   // If no bias info exists, just go with the register selection ordering
1120   if( lrg.num_regs() == 2 ) {
1121     // Find an aligned pair
1122     return OptoReg::add(lrg.mask().find_first_pair(),chunk);
1123   }
1124 
1125   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1126   // copy removal to remove many more copies, by preventing a just-assigned
1127   // register from being repeatedly assigned.
1128   OptoReg::Name reg = lrg.mask().find_first_elem();
1129   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1130     // This 'Remove; find; Insert' idiom is an expensive way to find the
1131     // SECOND element in the mask.
1132     lrg.Remove(reg);
1133     OptoReg::Name reg2 = lrg.mask().find_first_elem();
1134     lrg.Insert(reg);
1135     if( OptoReg::is_reg(reg2))
1136       reg = reg2;
1137   }
1138   return OptoReg::add( reg, chunk );
1139 }
1140 
1141 //------------------------------choose_color-----------------------------------
1142 // Choose a color in the current chunk
1143 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1144   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1145   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1146 
1147   if( lrg.num_regs() == 1 ||    // Common Case
1148       !lrg._fat_proj )          // Aligned+adjacent pairs ok
1149     // Use a heuristic to "bias" the color choice
1150     return bias_color(lrg, chunk);
1151 
1152   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1153 
1154   // Fat-proj case or misaligned double argument.
1155   assert(lrg.compute_mask_size() == lrg.num_regs() ||
1156          lrg.num_regs() == 2,"fat projs exactly color" );
1157   assert( !chunk, "always color in 1st chunk" );
1158   // Return the highest element in the set.
1159   return lrg.mask().find_last_elem();
1160 }
1161 
1162 //------------------------------Select-----------------------------------------
1163 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1164 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
1165 // everything going back is guaranteed a color.  Select that color.  If some
1166 // hi-degree LRG cannot get a color then we record that we must spill.
1167 uint PhaseChaitin::Select( ) {
1168   uint spill_reg = LRG::SPILL_REG;
1169   _max_reg = OptoReg::Name(0);  // Past max register used
1170   while( _simplified ) {
1171     // Pull next LRG from the simplified list - in reverse order of removal
1172     uint lidx = _simplified;
1173     LRG *lrg = &lrgs(lidx);
1174     _simplified = lrg->_next;
1175 
1176 
1177 #ifndef PRODUCT
1178     if (trace_spilling()) {
1179       ttyLocker ttyl;
1180       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1181                     lrg->degrees_of_freedom());
1182       lrg->dump();
1183     }
1184 #endif
1185 
1186     // Re-insert into the IFG
1187     _ifg->re_insert(lidx);
1188     if( !lrg->alive() ) continue;
1189     // capture allstackedness flag before mask is hacked
1190     const int is_allstack = lrg->mask().is_AllStack();
1191 
1192     // Yeah, yeah, yeah, I know, I know.  I can refactor this
1193     // to avoid the GOTO, although the refactored code will not
1194     // be much clearer.  We arrive here IFF we have a stack-based
1195     // live range that cannot color in the current chunk, and it
1196     // has to move into the next free stack chunk.
1197     int chunk = 0;              // Current chunk is first chunk
1198     retry_next_chunk:
1199 
1200     // Remove neighbor colors
1201     IndexSet *s = _ifg->neighbors(lidx);
1202 
1203     debug_only(RegMask orig_mask = lrg->mask();)
1204     IndexSetIterator elements(s);
1205     uint neighbor;
1206     while ((neighbor = elements.next()) != 0) {
1207       // Note that neighbor might be a spill_reg.  In this case, exclusion
1208       // of its color will be a no-op, since the spill_reg chunk is in outer
1209       // space.  Also, if neighbor is in a different chunk, this exclusion
1210       // will be a no-op.  (Later on, if lrg runs out of possible colors in
1211       // its chunk, a new chunk of color may be tried, in which case
1212       // examination of neighbors is started again, at retry_next_chunk.)
1213       LRG &nlrg = lrgs(neighbor);
1214       OptoReg::Name nreg = nlrg.reg();
1215       // Only subtract masks in the same chunk
1216       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1217 #ifndef PRODUCT
1218         uint size = lrg->mask().Size();
1219         RegMask rm = lrg->mask();
1220 #endif
1221         lrg->SUBTRACT(nlrg.mask());
1222 #ifndef PRODUCT
1223         if (trace_spilling() && lrg->mask().Size() != size) {
1224           ttyLocker ttyl;
1225           tty->print("L%d ", lidx);
1226           rm.dump();
1227           tty->print(" intersected L%d ", neighbor);
1228           nlrg.mask().dump();
1229           tty->print(" removed ");
1230           rm.SUBTRACT(lrg->mask());
1231           rm.dump();
1232           tty->print(" leaving ");
1233           lrg->mask().dump();
1234           tty->cr();
1235         }
1236 #endif
1237       }
1238     }
1239     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1240     // Aligned pairs need aligned masks
1241     if( lrg->num_regs() == 2 && !lrg->_fat_proj )
1242       lrg->ClearToPairs();
1243 
1244     // Check if a color is available and if so pick the color
1245     OptoReg::Name reg = choose_color( *lrg, chunk );
1246 #ifdef SPARC
1247     debug_only(lrg->compute_set_mask_size());
1248     assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1249 #endif
1250 
1251     //---------------
1252     // If we fail to color and the AllStack flag is set, trigger
1253     // a chunk-rollover event
1254     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1255       // Bump register mask up to next stack chunk
1256       chunk += RegMask::CHUNK_SIZE;
1257       lrg->Set_All();
1258 
1259       goto retry_next_chunk;
1260     }
1261 
1262     //---------------
1263     // Did we get a color?
1264     else if( OptoReg::is_valid(reg)) {
1265 #ifndef PRODUCT
1266       RegMask avail_rm = lrg->mask();
1267 #endif
1268 
1269       // Record selected register
1270       lrg->set_reg(reg);
1271 
1272       if( reg >= _max_reg )     // Compute max register limit
1273         _max_reg = OptoReg::add(reg,1);
1274       // Fold reg back into normal space
1275       reg = OptoReg::add(reg,-chunk);
1276 
1277       // If the live range is not bound, then we actually had some choices
1278       // to make.  In this case, the mask has more bits in it than the colors
1279       // chosen.  Restrict the mask to just what was picked.
1280       if( lrg->num_regs() == 1 ) { // Size 1 live range
1281         lrg->Clear();           // Clear the mask
1282         lrg->Insert(reg);       // Set regmask to match selected reg
1283         lrg->set_mask_size(1);
1284       } else if( !lrg->_fat_proj ) {
1285         // For pairs, also insert the low bit of the pair
1286         assert( lrg->num_regs() == 2, "unbound fatproj???" );
1287         lrg->Clear();           // Clear the mask
1288         lrg->Insert(reg);       // Set regmask to match selected reg
1289         lrg->Insert(OptoReg::add(reg,-1));
1290         lrg->set_mask_size(2);
1291       } else {                  // Else fatproj
1292         // mask must be equal to fatproj bits, by definition
1293       }
1294 #ifndef PRODUCT
1295       if (trace_spilling()) {
1296         ttyLocker ttyl;
1297         tty->print("L%d selected ", lidx);
1298         lrg->mask().dump();
1299         tty->print(" from ");
1300         avail_rm.dump();
1301         tty->cr();
1302       }
1303 #endif
1304       // Note that reg is the highest-numbered register in the newly-bound mask.
1305     } // end color available case
1306 
1307     //---------------
1308     // Live range is live and no colors available
1309     else {
1310       assert( lrg->alive(), "" );
1311       assert( !lrg->_fat_proj || lrg->is_multidef() ||
1312               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1313       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1314 
1315       // Assign the special spillreg register
1316       lrg->set_reg(OptoReg::Name(spill_reg++));
1317       // Do not empty the regmask; leave mask_size lying around
1318       // for use during Spilling
1319 #ifndef PRODUCT
1320       if( trace_spilling() ) {
1321         ttyLocker ttyl;
1322         tty->print("L%d spilling with neighbors: ", lidx);
1323         s->dump();
1324         debug_only(tty->print(" original mask: "));
1325         debug_only(orig_mask.dump());
1326         dump_lrg(lidx);
1327       }
1328 #endif
1329     } // end spill case
1330 
1331   }
1332 
1333   return spill_reg-LRG::SPILL_REG;      // Return number of spills
1334 }
1335 
1336 
1337 //------------------------------copy_was_spilled-------------------------------
1338 // Copy 'was_spilled'-edness from the source Node to the dst Node.
1339 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1340   if( _spilled_once.test(src->_idx) ) {
1341     _spilled_once.set(dst->_idx);
1342     lrgs(Find(dst))._was_spilled1 = 1;
1343     if( _spilled_twice.test(src->_idx) ) {
1344       _spilled_twice.set(dst->_idx);
1345       lrgs(Find(dst))._was_spilled2 = 1;
1346     }
1347   }
1348 }
1349 
1350 //------------------------------set_was_spilled--------------------------------
1351 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
1352 void PhaseChaitin::set_was_spilled( Node *n ) {
1353   if( _spilled_once.test_set(n->_idx) )
1354     _spilled_twice.set(n->_idx);
1355 }
1356 
1357 //------------------------------fixup_spills-----------------------------------
1358 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
1359 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1360 void PhaseChaitin::fixup_spills() {
1361   // This function does only cisc spill work.
1362   if( !UseCISCSpill ) return;
1363 
1364   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
1365 
1366   // Grab the Frame Pointer
1367   Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
1368 
1369   // For all blocks
1370   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1371     Block *b = _cfg._blocks[i];
1372 
1373     // For all instructions in block
1374     uint last_inst = b->end_idx();
1375     for( uint j = 1; j <= last_inst; j++ ) {
1376       Node *n = b->_nodes[j];
1377 
1378       // Dead instruction???
1379       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1380               C->top() == n ||  // Or the random TOP node
1381               n->is_Proj(),     // Or a fat-proj kill node
1382               "No dead instructions after post-alloc" );
1383 
1384       int inp = n->cisc_operand();
1385       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1386         // Convert operand number to edge index number
1387         MachNode *mach = n->as_Mach();
1388         inp = mach->operand_index(inp);
1389         Node *src = n->in(inp);   // Value to load or store
1390         LRG &lrg_cisc = lrgs( Find_const(src) );
1391         OptoReg::Name src_reg = lrg_cisc.reg();
1392         // Doubles record the HIGH register of an adjacent pair.
1393         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1394         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1395           // This is a CISC Spill, get stack offset and construct new node
1396 #ifndef PRODUCT
1397           if( TraceCISCSpill ) {
1398             tty->print("    reg-instr:  ");
1399             n->dump();
1400           }
1401 #endif
1402           int stk_offset = reg2offset(src_reg);
1403           // Bailout if we might exceed node limit when spilling this instruction
1404           C->check_node_count(0, "out of nodes fixing spills");
1405           if (C->failing())  return;
1406           // Transform node
1407           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
1408           cisc->set_req(inp,fp);          // Base register is frame pointer
1409           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1410             assert( cisc->oper_input_base() == 2, "Only adding one edge");
1411             cisc->ins_req(1,src);         // Requires a memory edge
1412           }
1413           b->_nodes.map(j,cisc);          // Insert into basic block
1414           n->subsume_by(cisc); // Correct graph
1415           //
1416           ++_used_cisc_instructions;
1417 #ifndef PRODUCT
1418           if( TraceCISCSpill ) {
1419             tty->print("    cisc-instr: ");
1420             cisc->dump();
1421           }
1422 #endif
1423         } else {
1424 #ifndef PRODUCT
1425           if( TraceCISCSpill ) {
1426             tty->print("    using reg-instr: ");
1427             n->dump();
1428           }
1429 #endif
1430           ++_unused_cisc_instructions;    // input can be on stack
1431         }
1432       }
1433 
1434     } // End of for all instructions
1435 
1436   } // End of for all blocks
1437 }
1438 
1439 //------------------------------find_base_for_derived--------------------------
1440 // Helper to stretch above; recursively discover the base Node for a
1441 // given derived Node.  Easy for AddP-related machine nodes, but needs
1442 // to be recursive for derived Phis.
1443 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1444   // See if already computed; if so return it
1445   if( derived_base_map[derived->_idx] )
1446     return derived_base_map[derived->_idx];
1447 
1448   // See if this happens to be a base.
1449   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1450   // pointers derived from NULL!  These are always along paths that
1451   // can't happen at run-time but the optimizer cannot deduce it so
1452   // we have to handle it gracefully.
1453   assert(!derived->bottom_type()->isa_narrowoop() ||
1454           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1455   const TypePtr *tj = derived->bottom_type()->isa_ptr();
1456   // If its an OOP with a non-zero offset, then it is derived.
1457   if( tj == NULL || tj->_offset == 0 ) {
1458     derived_base_map[derived->_idx] = derived;
1459     return derived;
1460   }
1461   // Derived is NULL+offset?  Base is NULL!
1462   if( derived->is_Con() ) {
1463     Node *base = _matcher.mach_null();
1464     assert(base != NULL, "sanity");
1465     if (base->in(0) == NULL) {
1466       // Initialize it once and make it shared:
1467       // set control to _root and place it into Start block
1468       // (where top() node is placed).
1469       base->init_req(0, _cfg._root);
1470       Block *startb = _cfg._bbs[C->top()->_idx];
1471       startb->_nodes.insert(startb->find_node(C->top()), base );
1472       _cfg._bbs.map( base->_idx, startb );
1473       assert (n2lidx(base) == 0, "should not have LRG yet");
1474     }
1475     if (n2lidx(base) == 0) {
1476       new_lrg(base, maxlrg++);
1477     }
1478     assert(base->in(0) == _cfg._root &&
1479            _cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
1480     derived_base_map[derived->_idx] = base;
1481     return base;
1482   }
1483 
1484   // Check for AddP-related opcodes
1485   if( !derived->is_Phi() ) {
1486     assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
1487     Node *base = derived->in(AddPNode::Base);
1488     derived_base_map[derived->_idx] = base;
1489     return base;
1490   }
1491 
1492   // Recursively find bases for Phis.
1493   // First check to see if we can avoid a base Phi here.
1494   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1495   uint i;
1496   for( i = 2; i < derived->req(); i++ )
1497     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1498       break;
1499   // Went to the end without finding any different bases?
1500   if( i == derived->req() ) {   // No need for a base Phi here
1501     derived_base_map[derived->_idx] = base;
1502     return base;
1503   }
1504 
1505   // Now we see we need a base-Phi here to merge the bases
1506   const Type *t = base->bottom_type();
1507   base = new (C, derived->req()) PhiNode( derived->in(0), t );
1508   for( i = 1; i < derived->req(); i++ ) {
1509     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1510     t = t->meet(base->in(i)->bottom_type());
1511   }
1512   base->as_Phi()->set_type(t);
1513 
1514   // Search the current block for an existing base-Phi
1515   Block *b = _cfg._bbs[derived->_idx];
1516   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1517     Node *phi = b->_nodes[i];
1518     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1519       b->_nodes.insert( i, base ); // Must insert created Phi here as base
1520       _cfg._bbs.map( base->_idx, b );
1521       new_lrg(base,maxlrg++);
1522       break;
1523     }
1524     // See if Phi matches.
1525     uint j;
1526     for( j = 1; j < base->req(); j++ )
1527       if( phi->in(j) != base->in(j) &&
1528           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1529         break;
1530     if( j == base->req() ) {    // All inputs match?
1531       base = phi;               // Then use existing 'phi' and drop 'base'
1532       break;
1533     }
1534   }
1535 
1536 
1537   // Cache info for later passes
1538   derived_base_map[derived->_idx] = base;
1539   return base;
1540 }
1541 
1542 
1543 //------------------------------stretch_base_pointer_live_ranges---------------
1544 // At each Safepoint, insert extra debug edges for each pair of derived value/
1545 // base pointer that is live across the Safepoint for oopmap building.  The
1546 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1547 // required edge set.
1548 bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
1549   int must_recompute_live = false;
1550   uint maxlrg = _maxlrg;
1551   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1552   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1553 
1554   // For all blocks in RPO do...
1555   for( uint i=0; i<_cfg._num_blocks; i++ ) {
1556     Block *b = _cfg._blocks[i];
1557     // Note use of deep-copy constructor.  I cannot hammer the original
1558     // liveout bits, because they are needed by the following coalesce pass.
1559     IndexSet liveout(_live->live(b));
1560 
1561     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
1562       Node *n = b->_nodes[j-1];
1563 
1564       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1565       // like to see in the same register.  Compare uses the loop-phi and so
1566       // extends its live range BUT cannot be part of the cycle.  If this
1567       // extended live range overlaps with the update of the loop-phi value
1568       // we need both alive at the same time -- which requires at least 1
1569       // copy.  But because Intel has only 2-address registers we end up with
1570       // at least 2 copies, one before the loop-phi update instruction and
1571       // one after.  Instead we split the input to the compare just after the
1572       // phi.
1573       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1574         Node *phi = n->in(1);
1575         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1576           Block *phi_block = _cfg._bbs[phi->_idx];
1577           if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
1578             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1579             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
1580             insert_proj( phi_block, 1, spill, maxlrg++ );
1581             n->set_req(1,spill);
1582             must_recompute_live = true;
1583           }
1584         }
1585       }
1586 
1587       // Get value being defined
1588       uint lidx = n2lidx(n);
1589       if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
1590         // Remove from live-out set
1591         liveout.remove(lidx);
1592 
1593         // Copies do not define a new value and so do not interfere.
1594         // Remove the copies source from the liveout set before interfering.
1595         uint idx = n->is_Copy();
1596         if( idx ) liveout.remove( n2lidx(n->in(idx)) );
1597       }
1598 
1599       // Found a safepoint?
1600       JVMState *jvms = n->jvms();
1601       if( jvms ) {
1602         // Now scan for a live derived pointer
1603         IndexSetIterator elements(&liveout);
1604         uint neighbor;
1605         while ((neighbor = elements.next()) != 0) {
1606           // Find reaching DEF for base and derived values
1607           // This works because we are still in SSA during this call.
1608           Node *derived = lrgs(neighbor)._def;
1609           const TypePtr *tj = derived->bottom_type()->isa_ptr();
1610           assert(!derived->bottom_type()->isa_narrowoop() ||
1611                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1612           // If its an OOP with a non-zero offset, then it is derived.
1613           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1614             Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
1615             assert( base->_idx < _names.Size(), "" );
1616             // Add reaching DEFs of derived pointer and base pointer as a
1617             // pair of inputs
1618             n->add_req( derived );
1619             n->add_req( base );
1620 
1621             // See if the base pointer is already live to this point.
1622             // Since I'm working on the SSA form, live-ness amounts to
1623             // reaching def's.  So if I find the base's live range then
1624             // I know the base's def reaches here.
1625             if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
1626                  !liveout.member( n2lidx(base) ) ) && // not live) AND
1627                  (n2lidx(base) > 0)                && // not a constant
1628                  _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
1629               // Base pointer is not currently live.  Since I stretched
1630               // the base pointer to here and it crosses basic-block
1631               // boundaries, the global live info is now incorrect.
1632               // Recompute live.
1633               must_recompute_live = true;
1634             } // End of if base pointer is not live to debug info
1635           }
1636         } // End of scan all live data for derived ptrs crossing GC point
1637       } // End of if found a GC point
1638 
1639       // Make all inputs live
1640       if( !n->is_Phi() ) {      // Phi function uses come from prior block
1641         for( uint k = 1; k < n->req(); k++ ) {
1642           uint lidx = n2lidx(n->in(k));
1643           if( lidx < _maxlrg )
1644             liveout.insert( lidx );
1645         }
1646       }
1647 
1648     } // End of forall instructions in block
1649     liveout.clear();  // Free the memory used by liveout.
1650 
1651   } // End of forall blocks
1652   _maxlrg = maxlrg;
1653 
1654   // If I created a new live range I need to recompute live
1655   if( maxlrg != _ifg->_maxlrg )
1656     must_recompute_live = true;
1657 
1658   return must_recompute_live != 0;
1659 }
1660 
1661 
1662 //------------------------------add_reference----------------------------------
1663 // Extend the node to LRG mapping
1664 void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
1665   _names.extend( node->_idx, n2lidx(old_node) );
1666 }
1667 
1668 //------------------------------dump-------------------------------------------
1669 #ifndef PRODUCT
1670 void PhaseChaitin::dump( const Node *n ) const {
1671   uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
1672   tty->print("L%d",r);
1673   if( r && n->Opcode() != Op_Phi ) {
1674     if( _node_regs ) {          // Got a post-allocation copy of allocation?
1675       tty->print("[");
1676       OptoReg::Name second = get_reg_second(n);
1677       if( OptoReg::is_valid(second) ) {
1678         if( OptoReg::is_reg(second) )
1679           tty->print("%s:",Matcher::regName[second]);
1680         else
1681           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1682       }
1683       OptoReg::Name first = get_reg_first(n);
1684       if( OptoReg::is_reg(first) )
1685         tty->print("%s]",Matcher::regName[first]);
1686       else
1687          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1688     } else
1689     n->out_RegMask().dump();
1690   }
1691   tty->print("/N%d\t",n->_idx);
1692   tty->print("%s === ", n->Name());
1693   uint k;
1694   for( k = 0; k < n->req(); k++) {
1695     Node *m = n->in(k);
1696     if( !m ) tty->print("_ ");
1697     else {
1698       uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1699       tty->print("L%d",r);
1700       // Data MultiNode's can have projections with no real registers.
1701       // Don't die while dumping them.
1702       int op = n->Opcode();
1703       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1704         if( _node_regs ) {
1705           tty->print("[");
1706           OptoReg::Name second = get_reg_second(n->in(k));
1707           if( OptoReg::is_valid(second) ) {
1708             if( OptoReg::is_reg(second) )
1709               tty->print("%s:",Matcher::regName[second]);
1710             else
1711               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
1712                          reg2offset_unchecked(second));
1713           }
1714           OptoReg::Name first = get_reg_first(n->in(k));
1715           if( OptoReg::is_reg(first) )
1716             tty->print("%s]",Matcher::regName[first]);
1717           else
1718             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
1719                        reg2offset_unchecked(first));
1720         } else
1721           n->in_RegMask(k).dump();
1722       }
1723       tty->print("/N%d ",m->_idx);
1724     }
1725   }
1726   if( k < n->len() && n->in(k) ) tty->print("| ");
1727   for( ; k < n->len(); k++ ) {
1728     Node *m = n->in(k);
1729     if( !m ) break;
1730     uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1731     tty->print("L%d",r);
1732     tty->print("/N%d ",m->_idx);
1733   }
1734   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
1735   else n->dump_spec(tty);
1736   if( _spilled_once.test(n->_idx ) ) {
1737     tty->print(" Spill_1");
1738     if( _spilled_twice.test(n->_idx ) )
1739       tty->print(" Spill_2");
1740   }
1741   tty->print("\n");
1742 }
1743 
1744 void PhaseChaitin::dump( const Block * b ) const {
1745   b->dump_head( &_cfg._bbs );
1746 
1747   // For all instructions
1748   for( uint j = 0; j < b->_nodes.size(); j++ )
1749     dump(b->_nodes[j]);
1750   // Print live-out info at end of block
1751   if( _live ) {
1752     tty->print("Liveout: ");
1753     IndexSet *live = _live->live(b);
1754     IndexSetIterator elements(live);
1755     tty->print("{");
1756     uint i;
1757     while ((i = elements.next()) != 0) {
1758       tty->print("L%d ", Find_const(i));
1759     }
1760     tty->print_cr("}");
1761   }
1762   tty->print("\n");
1763 }
1764 
1765 void PhaseChaitin::dump() const {
1766   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
1767               _matcher._new_SP, _framesize );
1768 
1769   // For all blocks
1770   for( uint i = 0; i < _cfg._num_blocks; i++ )
1771     dump(_cfg._blocks[i]);
1772   // End of per-block dump
1773   tty->print("\n");
1774 
1775   if (!_ifg) {
1776     tty->print("(No IFG.)\n");
1777     return;
1778   }
1779 
1780   // Dump LRG array
1781   tty->print("--- Live RanGe Array ---\n");
1782   for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
1783     tty->print("L%d: ",i2);
1784     if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
1785     else tty->print_cr("new LRG");
1786   }
1787   tty->print_cr("");
1788 
1789   // Dump lo-degree list
1790   tty->print("Lo degree: ");
1791   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
1792     tty->print("L%d ",i3);
1793   tty->print_cr("");
1794 
1795   // Dump lo-stk-degree list
1796   tty->print("Lo stk degree: ");
1797   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
1798     tty->print("L%d ",i4);
1799   tty->print_cr("");
1800 
1801   // Dump lo-degree list
1802   tty->print("Hi degree: ");
1803   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
1804     tty->print("L%d ",i5);
1805   tty->print_cr("");
1806 }
1807 
1808 //------------------------------dump_degree_lists------------------------------
1809 void PhaseChaitin::dump_degree_lists() const {
1810   // Dump lo-degree list
1811   tty->print("Lo degree: ");
1812   for( uint i = _lo_degree; i; i = lrgs(i)._next )
1813     tty->print("L%d ",i);
1814   tty->print_cr("");
1815 
1816   // Dump lo-stk-degree list
1817   tty->print("Lo stk degree: ");
1818   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
1819     tty->print("L%d ",i2);
1820   tty->print_cr("");
1821 
1822   // Dump lo-degree list
1823   tty->print("Hi degree: ");
1824   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
1825     tty->print("L%d ",i3);
1826   tty->print_cr("");
1827 }
1828 
1829 //------------------------------dump_simplified--------------------------------
1830 void PhaseChaitin::dump_simplified() const {
1831   tty->print("Simplified: ");
1832   for( uint i = _simplified; i; i = lrgs(i)._next )
1833     tty->print("L%d ",i);
1834   tty->print_cr("");
1835 }
1836 
1837 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
1838   if ((int)reg < 0)
1839     sprintf(buf, "<OptoReg::%d>", (int)reg);
1840   else if (OptoReg::is_reg(reg))
1841     strcpy(buf, Matcher::regName[reg]);
1842   else
1843     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
1844             pc->reg2offset(reg));
1845   return buf+strlen(buf);
1846 }
1847 
1848 //------------------------------dump_register----------------------------------
1849 // Dump a register name into a buffer.  Be intelligent if we get called
1850 // before allocation is complete.
1851 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
1852   if( !this ) {                 // Not got anything?
1853     sprintf(buf,"N%d",n->_idx); // Then use Node index
1854   } else if( _node_regs ) {
1855     // Post allocation, use direct mappings, no LRG info available
1856     print_reg( get_reg_first(n), this, buf );
1857   } else {
1858     uint lidx = Find_const(n); // Grab LRG number
1859     if( !_ifg ) {
1860       sprintf(buf,"L%d",lidx);  // No register binding yet
1861     } else if( !lidx ) {        // Special, not allocated value
1862       strcpy(buf,"Special");
1863     } else if( (lrgs(lidx).num_regs() == 1)
1864                 ? !lrgs(lidx).mask().is_bound1()
1865                 : !lrgs(lidx).mask().is_bound2() ) {
1866       sprintf(buf,"L%d",lidx); // No register binding yet
1867     } else {                    // Hah!  We have a bound machine register
1868       print_reg( lrgs(lidx).reg(), this, buf );
1869     }
1870   }
1871   return buf+strlen(buf);
1872 }
1873 
1874 //----------------------dump_for_spill_split_recycle--------------------------
1875 void PhaseChaitin::dump_for_spill_split_recycle() const {
1876   if( WizardMode && (PrintCompilation || PrintOpto) ) {
1877     // Display which live ranges need to be split and the allocator's state
1878     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
1879     for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
1880       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
1881         tty->print("L%d: ", bidx);
1882         lrgs(bidx).dump();
1883       }
1884     }
1885     tty->cr();
1886     dump();
1887   }
1888 }
1889 
1890 //------------------------------dump_frame------------------------------------
1891 void PhaseChaitin::dump_frame() const {
1892   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
1893   const TypeTuple *domain = C->tf()->domain();
1894   const int        argcnt = domain->cnt() - TypeFunc::Parms;
1895 
1896   // Incoming arguments in registers dump
1897   for( int k = 0; k < argcnt; k++ ) {
1898     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
1899     if( OptoReg::is_reg(parmreg))  {
1900       const char *reg_name = OptoReg::regname(parmreg);
1901       tty->print("#r%3.3d %s", parmreg, reg_name);
1902       parmreg = _matcher._parm_regs[k].second();
1903       if( OptoReg::is_reg(parmreg))  {
1904         tty->print(":%s", OptoReg::regname(parmreg));
1905       }
1906       tty->print("   : parm %d: ", k);
1907       domain->field_at(k + TypeFunc::Parms)->dump();
1908       tty->print_cr("");
1909     }
1910   }
1911 
1912   // Check for un-owned padding above incoming args
1913   OptoReg::Name reg = _matcher._new_SP;
1914   if( reg > _matcher._in_arg_limit ) {
1915     reg = OptoReg::add(reg, -1);
1916     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
1917   }
1918 
1919   // Incoming argument area dump
1920   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
1921   while( reg > begin_in_arg ) {
1922     reg = OptoReg::add(reg, -1);
1923     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1924     int j;
1925     for( j = 0; j < argcnt; j++) {
1926       if( _matcher._parm_regs[j].first() == reg ||
1927           _matcher._parm_regs[j].second() == reg ) {
1928         tty->print("parm %d: ",j);
1929         domain->field_at(j + TypeFunc::Parms)->dump();
1930         tty->print_cr("");
1931         break;
1932       }
1933     }
1934     if( j >= argcnt )
1935       tty->print_cr("HOLE, owned by SELF");
1936   }
1937 
1938   // Old outgoing preserve area
1939   while( reg > _matcher._old_SP ) {
1940     reg = OptoReg::add(reg, -1);
1941     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
1942   }
1943 
1944   // Old SP
1945   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
1946     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
1947 
1948   // Preserve area dump
1949   int regs_per_slot  = NOT_LP64(1) LP64_ONLY(2);
1950   int fixed_slots = C->fixed_slots();
1951   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
1952   OptoReg::Name return_addr = _matcher.return_addr();
1953 
1954   reg = OptoReg::add(reg, -1);
1955   while (OptoReg::is_stack(reg)) {
1956     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1957     if (return_addr == reg) {
1958       tty->print_cr("return address");
1959     } else if (reg >= begin_in_preserve) {
1960       // Preserved slots are present on x86
1961       if (return_addr == OptoReg::add(reg, regs_per_slot))
1962         tty->print_cr("saved fp register");
1963       else if (return_addr == OptoReg::add(reg, 2*regs_per_slot) &&
1964                VerifyStackAtCalls)
1965         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
1966       else
1967         tty->print_cr("in_preserve");
1968     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
1969       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
1970     } else {
1971       tty->print_cr("pad2, stack alignment");
1972     }
1973     reg = OptoReg::add(reg, -1);
1974   }
1975 
1976   // Spill area dump
1977   reg = OptoReg::add(_matcher._new_SP, _framesize );
1978   while( reg > _matcher._out_arg_limit ) {
1979     reg = OptoReg::add(reg, -1);
1980     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
1981   }
1982 
1983   // Outgoing argument area dump
1984   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
1985     reg = OptoReg::add(reg, -1);
1986     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
1987   }
1988 
1989   // Outgoing new preserve area
1990   while( reg > _matcher._new_SP ) {
1991     reg = OptoReg::add(reg, -1);
1992     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
1993   }
1994   tty->print_cr("#");
1995 }
1996 
1997 //------------------------------dump_bb----------------------------------------
1998 void PhaseChaitin::dump_bb( uint pre_order ) const {
1999   tty->print_cr("---dump of B%d---",pre_order);
2000   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
2001     Block *b = _cfg._blocks[i];
2002     if( b->_pre_order == pre_order )
2003       dump(b);
2004   }
2005 }
2006 
2007 //------------------------------dump_lrg---------------------------------------
2008 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
2009   tty->print_cr("---dump of L%d---",lidx);
2010 
2011   if( _ifg ) {
2012     if( lidx >= _maxlrg ) {
2013       tty->print("Attempt to print live range index beyond max live range.\n");
2014       return;
2015     }
2016     tty->print("L%d: ",lidx);
2017     if( lidx < _ifg->_maxlrg ) lrgs(lidx).dump( );
2018     else tty->print_cr("new LRG");
2019   }
2020   if( _ifg && lidx < _ifg->_maxlrg) {
2021     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2022     _ifg->neighbors(lidx)->dump();
2023     tty->cr();
2024   }
2025   // For all blocks
2026   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
2027     Block *b = _cfg._blocks[i];
2028     int dump_once = 0;
2029 
2030     // For all instructions
2031     for( uint j = 0; j < b->_nodes.size(); j++ ) {
2032       Node *n = b->_nodes[j];
2033       if( Find_const(n) == lidx ) {
2034         if( !dump_once++ ) {
2035           tty->cr();
2036           b->dump_head( &_cfg._bbs );
2037         }
2038         dump(n);
2039         continue;
2040       }
2041       if (!defs_only) {
2042         uint cnt = n->req();
2043         for( uint k = 1; k < cnt; k++ ) {
2044           Node *m = n->in(k);
2045           if (!m)  continue;  // be robust in the dumper
2046           if( Find_const(m) == lidx ) {
2047             if( !dump_once++ ) {
2048               tty->cr();
2049               b->dump_head( &_cfg._bbs );
2050             }
2051             dump(n);
2052           }
2053         }
2054       }
2055     }
2056   } // End of per-block dump
2057   tty->cr();
2058 }
2059 #endif // not PRODUCT
2060 
2061 //------------------------------print_chaitin_statistics-------------------------------
2062 int PhaseChaitin::_final_loads  = 0;
2063 int PhaseChaitin::_final_stores = 0;
2064 int PhaseChaitin::_final_memoves= 0;
2065 int PhaseChaitin::_final_copies = 0;
2066 double PhaseChaitin::_final_load_cost  = 0;
2067 double PhaseChaitin::_final_store_cost = 0;
2068 double PhaseChaitin::_final_memove_cost= 0;
2069 double PhaseChaitin::_final_copy_cost  = 0;
2070 int PhaseChaitin::_conserv_coalesce = 0;
2071 int PhaseChaitin::_conserv_coalesce_pair = 0;
2072 int PhaseChaitin::_conserv_coalesce_trie = 0;
2073 int PhaseChaitin::_conserv_coalesce_quad = 0;
2074 int PhaseChaitin::_post_alloc = 0;
2075 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2076 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2077 int PhaseChaitin::_used_cisc_instructions   = 0;
2078 int PhaseChaitin::_unused_cisc_instructions = 0;
2079 int PhaseChaitin::_allocator_attempts       = 0;
2080 int PhaseChaitin::_allocator_successes      = 0;
2081 
2082 #ifndef PRODUCT
2083 uint PhaseChaitin::_high_pressure           = 0;
2084 uint PhaseChaitin::_low_pressure            = 0;
2085 
2086 void PhaseChaitin::print_chaitin_statistics() {
2087   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2088   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2089   tty->print_cr("Adjusted spill cost = %7.0f.",
2090                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2091                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
2092   tty->print("Conservatively coalesced %d copies, %d pairs",
2093                 _conserv_coalesce, _conserv_coalesce_pair);
2094   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2095     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2096   tty->print_cr(", %d post alloc.", _post_alloc);
2097   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2098     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2099                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2100   if( _used_cisc_instructions || _unused_cisc_instructions )
2101     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2102                    _used_cisc_instructions, _unused_cisc_instructions);
2103   if( _allocator_successes != 0 )
2104     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2105   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2106 }
2107 #endif // not PRODUCT