1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "libadt/vectset.hpp"
  28 #include "memory/allocation.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/escape.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/rootnode.hpp"
  36 
  37 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
  38   uint v = (targIdx << EdgeShift) + ((uint) et);
  39   if (_edges == NULL) {
  40      Arena *a = Compile::current()->comp_arena();
  41     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
  42   }
  43   _edges->append_if_missing(v);
  44 }
  45 
  46 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
  47   uint v = (targIdx << EdgeShift) + ((uint) et);
  48 
  49   _edges->remove(v);
  50 }
  51 
  52 #ifndef PRODUCT
  53 static const char *node_type_names[] = {
  54   "UnknownType",
  55   "JavaObject",
  56   "LocalVar",
  57   "Field"
  58 };
  59 
  60 static const char *esc_names[] = {
  61   "UnknownEscape",
  62   "NoEscape",
  63   "ArgEscape",
  64   "GlobalEscape"
  65 };
  66 
  67 static const char *edge_type_suffix[] = {
  68  "?", // UnknownEdge
  69  "P", // PointsToEdge
  70  "D", // DeferredEdge
  71  "F"  // FieldEdge
  72 };
  73 
  74 void PointsToNode::dump(bool print_state) const {
  75   NodeType nt = node_type();
  76   tty->print("%s ", node_type_names[(int) nt]);
  77   if (print_state) {
  78     EscapeState es = escape_state();
  79     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
  80   }
  81   tty->print("[[");
  82   for (uint i = 0; i < edge_count(); i++) {
  83     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
  84   }
  85   tty->print("]]  ");
  86   if (_node == NULL)
  87     tty->print_cr("<null>");
  88   else
  89     _node->dump();
  90 }
  91 #endif
  92 
  93 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  94   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
  95   _processed(C->comp_arena()),
  96   pt_ptset(C->comp_arena()),
  97   pt_visited(C->comp_arena()),
  98   pt_worklist(C->comp_arena(), 4, 0, 0),
  99   _collecting(true),
 100   _progress(false),
 101   _compile(C),
 102   _igvn(igvn),
 103   _node_map(C->comp_arena()) {
 104 
 105   _phantom_object = C->top()->_idx,
 106   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
 107 
 108   // Add ConP(#NULL) and ConN(#NULL) nodes.
 109   Node* oop_null = igvn->zerocon(T_OBJECT);
 110   _oop_null = oop_null->_idx;
 111   assert(_oop_null < nodes_size(), "should be created already");
 112   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 113 
 114   if (UseCompressedOops) {
 115     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 116     _noop_null = noop_null->_idx;
 117     assert(_noop_null < nodes_size(), "should be created already");
 118     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 119   } else {
 120     _noop_null = _oop_null; // Should be initialized
 121   }
 122   _pcmp_neq = NULL; // Should be initialized
 123   _pcmp_eq  = NULL;
 124 }
 125 
 126 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
 127   PointsToNode *f = ptnode_adr(from_i);
 128   PointsToNode *t = ptnode_adr(to_i);
 129 
 130   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 131   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
 132   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
 133   if (to_i == _phantom_object) { // Quick test for most common object
 134     if (f->has_unknown_ptr()) {
 135       return;
 136     } else {
 137       f->set_has_unknown_ptr();
 138     }
 139   }
 140   add_edge(f, to_i, PointsToNode::PointsToEdge);
 141 }
 142 
 143 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
 144   PointsToNode *f = ptnode_adr(from_i);
 145   PointsToNode *t = ptnode_adr(to_i);
 146 
 147   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 148   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
 149   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
 150   // don't add a self-referential edge, this can occur during removal of
 151   // deferred edges
 152   if (from_i != to_i)
 153     add_edge(f, to_i, PointsToNode::DeferredEdge);
 154 }
 155 
 156 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
 157   const Type *adr_type = phase->type(adr);
 158   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
 159       adr->in(AddPNode::Address)->is_Proj() &&
 160       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
 161     // We are computing a raw address for a store captured by an Initialize
 162     // compute an appropriate address type. AddP cases #3 and #5 (see below).
 163     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 164     assert(offs != Type::OffsetBot ||
 165            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
 166            "offset must be a constant or it is initialization of array");
 167     return offs;
 168   }
 169   const TypePtr *t_ptr = adr_type->isa_ptr();
 170   assert(t_ptr != NULL, "must be a pointer type");
 171   return t_ptr->offset();
 172 }
 173 
 174 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
 175   // Don't add fields to NULL pointer.
 176   if (is_null_ptr(from_i))
 177     return;
 178   PointsToNode *f = ptnode_adr(from_i);
 179   PointsToNode *t = ptnode_adr(to_i);
 180 
 181   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 182   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
 183   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
 184   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
 185   t->set_offset(offset);
 186 
 187   add_edge(f, to_i, PointsToNode::FieldEdge);
 188 }
 189 
 190 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
 191   // Don't change non-escaping state of NULL pointer.
 192   if (is_null_ptr(ni))
 193     return;
 194   PointsToNode *npt = ptnode_adr(ni);
 195   PointsToNode::EscapeState old_es = npt->escape_state();
 196   if (es > old_es)
 197     npt->set_escape_state(es);
 198 }
 199 
 200 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
 201                                PointsToNode::EscapeState es, bool done) {
 202   PointsToNode* ptadr = ptnode_adr(n->_idx);
 203   ptadr->_node = n;
 204   ptadr->set_node_type(nt);
 205 
 206   // inline set_escape_state(idx, es);
 207   PointsToNode::EscapeState old_es = ptadr->escape_state();
 208   if (es > old_es)
 209     ptadr->set_escape_state(es);
 210 
 211   if (done)
 212     _processed.set(n->_idx);
 213 }
 214 
 215 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
 216   uint idx = n->_idx;
 217   PointsToNode::EscapeState es;
 218 
 219   // If we are still collecting or there were no non-escaping allocations
 220   // we don't know the answer yet
 221   if (_collecting)
 222     return PointsToNode::UnknownEscape;
 223 
 224   // if the node was created after the escape computation, return
 225   // UnknownEscape
 226   if (idx >= nodes_size())
 227     return PointsToNode::UnknownEscape;
 228 
 229   es = ptnode_adr(idx)->escape_state();
 230 
 231   // if we have already computed a value, return it
 232   if (es != PointsToNode::UnknownEscape &&
 233       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
 234     return es;
 235 
 236   // PointsTo() calls n->uncast() which can return a new ideal node.
 237   if (n->uncast()->_idx >= nodes_size())
 238     return PointsToNode::UnknownEscape;
 239 
 240   PointsToNode::EscapeState orig_es = es;
 241 
 242   // compute max escape state of anything this node could point to
 243   for(VectorSetI i(PointsTo(n)); i.test() && es != PointsToNode::GlobalEscape; ++i) {
 244     uint pt = i.elem;
 245     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
 246     if (pes > es)
 247       es = pes;
 248   }
 249   if (orig_es != es) {
 250     // cache the computed escape state
 251     assert(es > orig_es, "should have computed an escape state");
 252     set_escape_state(idx, es);
 253   } // orig_es could be PointsToNode::UnknownEscape
 254   return es;
 255 }
 256 
 257 VectorSet* ConnectionGraph::PointsTo(Node * n) {
 258   pt_ptset.Reset();
 259   pt_visited.Reset();
 260   pt_worklist.clear();
 261 
 262 #ifdef ASSERT
 263   Node *orig_n = n;
 264 #endif
 265 
 266   n = n->uncast();
 267   PointsToNode* npt = ptnode_adr(n->_idx);
 268 
 269   // If we have a JavaObject, return just that object
 270   if (npt->node_type() == PointsToNode::JavaObject) {
 271     pt_ptset.set(n->_idx);
 272     return &pt_ptset;
 273   }
 274 #ifdef ASSERT
 275   if (npt->_node == NULL) {
 276     if (orig_n != n)
 277       orig_n->dump();
 278     n->dump();
 279     assert(npt->_node != NULL, "unregistered node");
 280   }
 281 #endif
 282   pt_worklist.push(n->_idx);
 283   while(pt_worklist.length() > 0) {
 284     int ni = pt_worklist.pop();
 285     if (pt_visited.test_set(ni))
 286       continue;
 287 
 288     PointsToNode* pn = ptnode_adr(ni);
 289     // ensure that all inputs of a Phi have been processed
 290     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
 291 
 292     int edges_processed = 0;
 293     uint e_cnt = pn->edge_count();
 294     for (uint e = 0; e < e_cnt; e++) {
 295       uint etgt = pn->edge_target(e);
 296       PointsToNode::EdgeType et = pn->edge_type(e);
 297       if (et == PointsToNode::PointsToEdge) {
 298         pt_ptset.set(etgt);
 299         edges_processed++;
 300       } else if (et == PointsToNode::DeferredEdge) {
 301         pt_worklist.push(etgt);
 302         edges_processed++;
 303       } else {
 304         assert(false,"neither PointsToEdge or DeferredEdge");
 305       }
 306     }
 307     if (edges_processed == 0) {
 308       // no deferred or pointsto edges found.  Assume the value was set
 309       // outside this method.  Add the phantom object to the pointsto set.
 310       pt_ptset.set(_phantom_object);
 311     }
 312   }
 313   return &pt_ptset;
 314 }
 315 
 316 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
 317   // This method is most expensive during ConnectionGraph construction.
 318   // Reuse vectorSet and an additional growable array for deferred edges.
 319   deferred_edges->clear();
 320   visited->Reset();
 321 
 322   visited->set(ni);
 323   PointsToNode *ptn = ptnode_adr(ni);
 324   assert(ptn->node_type() == PointsToNode::LocalVar ||
 325          ptn->node_type() == PointsToNode::Field, "sanity");
 326   assert(ptn->edge_count() != 0, "should have at least phantom_object");
 327 
 328   // Mark current edges as visited and move deferred edges to separate array.
 329   for (uint i = 0; i < ptn->edge_count(); ) {
 330     uint t = ptn->edge_target(i);
 331 #ifdef ASSERT
 332     assert(!visited->test_set(t), "expecting no duplications");
 333 #else
 334     visited->set(t);
 335 #endif
 336     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
 337       ptn->remove_edge(t, PointsToNode::DeferredEdge);
 338       deferred_edges->append(t);
 339     } else {
 340       i++;
 341     }
 342   }
 343   for (int next = 0; next < deferred_edges->length(); ++next) {
 344     uint t = deferred_edges->at(next);
 345     PointsToNode *ptt = ptnode_adr(t);
 346     uint e_cnt = ptt->edge_count();
 347     assert(e_cnt != 0, "should have at least phantom_object");
 348     for (uint e = 0; e < e_cnt; e++) {
 349       uint etgt = ptt->edge_target(e);
 350       if (visited->test_set(etgt))
 351         continue;
 352 
 353       PointsToNode::EdgeType et = ptt->edge_type(e);
 354       if (et == PointsToNode::PointsToEdge) {
 355         add_pointsto_edge(ni, etgt);
 356       } else if (et == PointsToNode::DeferredEdge) {
 357         deferred_edges->append(etgt);
 358       } else {
 359         assert(false,"invalid connection graph");
 360       }
 361     }
 362   }
 363   if (ptn->edge_count() == 0) {
 364     // No pointsto edges found after deferred edges are removed.
 365     // For example, in the next case where call is replaced
 366     // with uncommon trap and as result array's load references
 367     // itself through deferred edges:
 368     //
 369     // A a = b[i];
 370     // if (c!=null) a = c.foo();
 371     // b[i] = a;
 372     //
 373     // Assume the value was set outside this method and
 374     // add edge to phantom object.
 375     add_pointsto_edge(ni, _phantom_object);
 376   }
 377 }
 378 
 379 
 380 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
 381 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
 382 //  a pointsto edge is added if it is a JavaObject
 383 
 384 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
 385   // No fields for NULL pointer.
 386   if (is_null_ptr(adr_i)) {
 387     return;
 388   }
 389   PointsToNode* an = ptnode_adr(adr_i);
 390   PointsToNode* to = ptnode_adr(to_i);
 391   bool deferred = (to->node_type() == PointsToNode::LocalVar);
 392   bool escaped  = (to_i == _phantom_object) && (offs == Type::OffsetTop);
 393   if (escaped) {
 394     // Values in fields escaped during call.
 395     assert(an->escape_state() >= PointsToNode::ArgEscape, "sanity");
 396     offs = Type::OffsetBot;
 397   }
 398   for (uint fe = 0; fe < an->edge_count(); fe++) {
 399     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 400     int fi = an->edge_target(fe);
 401     if (escaped) {
 402       set_escape_state(fi, PointsToNode::GlobalEscape);
 403     }
 404     PointsToNode* pf = ptnode_adr(fi);
 405     int po = pf->offset();
 406     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 407       if (deferred)
 408         add_deferred_edge(fi, to_i);
 409       else
 410         add_pointsto_edge(fi, to_i);
 411     }
 412   }
 413 }
 414 
 415 // Add a deferred  edge from node given by "from_i" to any field of adr_i
 416 // whose offset matches "offset".
 417 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
 418   // No fields for NULL pointer.
 419   if (is_null_ptr(adr_i)) {
 420     return;
 421   }
 422   if (adr_i == _phantom_object) {
 423     // Add only one edge for unknown object.
 424     add_pointsto_edge(from_i, _phantom_object);
 425     return;
 426   }
 427   PointsToNode* an = ptnode_adr(adr_i);
 428   bool is_alloc = an->_node->is_Allocate();
 429   for (uint fe = 0; fe < an->edge_count(); fe++) {
 430     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 431     int fi = an->edge_target(fe);
 432     PointsToNode* pf = ptnode_adr(fi);
 433     int offset = pf->offset();
 434     if (!is_alloc) {
 435       // Assume the field was set outside this method if it is not Allocation
 436       add_pointsto_edge(fi, _phantom_object);
 437     }
 438     if (offset == offs || offset == Type::OffsetBot || offs == Type::OffsetBot) {
 439       add_deferred_edge(from_i, fi);
 440     }
 441   }
 442   // Some fields references (AddP) may still be missing
 443   // until Connection Graph construction is complete.
 444   // For example, loads from RAW pointers with offset 0
 445   // which don't have AddP.
 446   // A reference to phantom_object will be added if
 447   // a field reference is still missing after completing
 448   // Connection Graph (see remove_deferred()).
 449 }
 450 
 451 // Helper functions
 452 
 453 static Node* get_addp_base(Node *addp) {
 454   assert(addp->is_AddP(), "must be AddP");
 455   //
 456   // AddP cases for Base and Address inputs:
 457   // case #1. Direct object's field reference:
 458   //     Allocate
 459   //       |
 460   //     Proj #5 ( oop result )
 461   //       |
 462   //     CheckCastPP (cast to instance type)
 463   //      | |
 464   //     AddP  ( base == address )
 465   //
 466   // case #2. Indirect object's field reference:
 467   //      Phi
 468   //       |
 469   //     CastPP (cast to instance type)
 470   //      | |
 471   //     AddP  ( base == address )
 472   //
 473   // case #3. Raw object's field reference for Initialize node:
 474   //      Allocate
 475   //        |
 476   //      Proj #5 ( oop result )
 477   //  top   |
 478   //     \  |
 479   //     AddP  ( base == top )
 480   //
 481   // case #4. Array's element reference:
 482   //   {CheckCastPP | CastPP}
 483   //     |  | |
 484   //     |  AddP ( array's element offset )
 485   //     |  |
 486   //     AddP ( array's offset )
 487   //
 488   // case #5. Raw object's field reference for arraycopy stub call:
 489   //          The inline_native_clone() case when the arraycopy stub is called
 490   //          after the allocation before Initialize and CheckCastPP nodes.
 491   //      Allocate
 492   //        |
 493   //      Proj #5 ( oop result )
 494   //       | |
 495   //       AddP  ( base == address )
 496   //
 497   // case #6. Constant Pool, ThreadLocal, CastX2P or
 498   //          Raw object's field reference:
 499   //      {ConP, ThreadLocal, CastX2P, raw Load}
 500   //  top   |
 501   //     \  |
 502   //     AddP  ( base == top )
 503   //
 504   // case #7. Klass's field reference.
 505   //      LoadKlass
 506   //       | |
 507   //       AddP  ( base == address )
 508   //
 509   // case #8. narrow Klass's field reference.
 510   //      LoadNKlass
 511   //       |
 512   //      DecodeN
 513   //       | |
 514   //       AddP  ( base == address )
 515   //
 516   Node *base = addp->in(AddPNode::Base)->uncast();
 517   if (base->is_top()) { // The AddP case #3 and #6.
 518     base = addp->in(AddPNode::Address)->uncast();
 519     while (base->is_AddP()) {
 520       // Case #6 (unsafe access) may have several chained AddP nodes.
 521       assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
 522       base = base->in(AddPNode::Address)->uncast();
 523     }
 524     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
 525            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
 526            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
 527            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
 528   }
 529   return base;
 530 }
 531 
 532 static Node* find_second_addp(Node* addp, Node* n) {
 533   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
 534 
 535   Node* addp2 = addp->raw_out(0);
 536   if (addp->outcnt() == 1 && addp2->is_AddP() &&
 537       addp2->in(AddPNode::Base) == n &&
 538       addp2->in(AddPNode::Address) == addp) {
 539 
 540     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
 541     //
 542     // Find array's offset to push it on worklist first and
 543     // as result process an array's element offset first (pushed second)
 544     // to avoid CastPP for the array's offset.
 545     // Otherwise the inserted CastPP (LocalVar) will point to what
 546     // the AddP (Field) points to. Which would be wrong since
 547     // the algorithm expects the CastPP has the same point as
 548     // as AddP's base CheckCastPP (LocalVar).
 549     //
 550     //    ArrayAllocation
 551     //     |
 552     //    CheckCastPP
 553     //     |
 554     //    memProj (from ArrayAllocation CheckCastPP)
 555     //     |  ||
 556     //     |  ||   Int (element index)
 557     //     |  ||    |   ConI (log(element size))
 558     //     |  ||    |   /
 559     //     |  ||   LShift
 560     //     |  ||  /
 561     //     |  AddP (array's element offset)
 562     //     |  |
 563     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
 564     //     | / /
 565     //     AddP (array's offset)
 566     //      |
 567     //     Load/Store (memory operation on array's element)
 568     //
 569     return addp2;
 570   }
 571   return NULL;
 572 }
 573 
 574 //
 575 // Adjust the type and inputs of an AddP which computes the
 576 // address of a field of an instance
 577 //
 578 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
 579   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
 580   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
 581   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
 582   if (t == NULL) {
 583     // We are computing a raw address for a store captured by an Initialize
 584     // compute an appropriate address type (cases #3 and #5).
 585     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
 586     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
 587     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
 588     assert(offs != Type::OffsetBot, "offset must be a constant");
 589     t = base_t->add_offset(offs)->is_oopptr();
 590   }
 591   int inst_id =  base_t->instance_id();
 592   assert(!t->is_known_instance() || t->instance_id() == inst_id,
 593                              "old type must be non-instance or match new type");
 594 
 595   // The type 't' could be subclass of 'base_t'.
 596   // As result t->offset() could be large then base_t's size and it will
 597   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
 598   // constructor verifies correctness of the offset.
 599   //
 600   // It could happened on subclass's branch (from the type profiling
 601   // inlining) which was not eliminated during parsing since the exactness
 602   // of the allocation type was not propagated to the subclass type check.
 603   //
 604   // Or the type 't' could be not related to 'base_t' at all.
 605   // It could happened when CHA type is different from MDO type on a dead path
 606   // (for example, from instanceof check) which is not collapsed during parsing.
 607   //
 608   // Do nothing for such AddP node and don't process its users since
 609   // this code branch will go away.
 610   //
 611   if (!t->is_known_instance() &&
 612       !base_t->klass()->is_subtype_of(t->klass())) {
 613      return false; // bail out
 614   }
 615 
 616   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
 617   // Do NOT remove the next line: ensure a new alias index is allocated
 618   // for the instance type. Note: C++ will not remove it since the call
 619   // has side effect.
 620   int alias_idx = _compile->get_alias_index(tinst);
 621   igvn->set_type(addp, tinst);
 622   // record the allocation in the node map
 623   assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
 624   set_map(addp->_idx, get_map(base->_idx));
 625 
 626   // Set addp's Base and Address to 'base'.
 627   Node *abase = addp->in(AddPNode::Base);
 628   Node *adr   = addp->in(AddPNode::Address);
 629   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
 630       adr->in(0)->_idx == (uint)inst_id) {
 631     // Skip AddP cases #3 and #5.
 632   } else {
 633     assert(!abase->is_top(), "sanity"); // AddP case #3
 634     if (abase != base) {
 635       igvn->hash_delete(addp);
 636       addp->set_req(AddPNode::Base, base);
 637       if (abase == adr) {
 638         addp->set_req(AddPNode::Address, base);
 639       } else {
 640         // AddP case #4 (adr is array's element offset AddP node)
 641 #ifdef ASSERT
 642         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
 643         assert(adr->is_AddP() && atype != NULL &&
 644                atype->instance_id() == inst_id, "array's element offset should be processed first");
 645 #endif
 646       }
 647       igvn->hash_insert(addp);
 648     }
 649   }
 650   // Put on IGVN worklist since at least addp's type was changed above.
 651   record_for_optimizer(addp);
 652   return true;
 653 }
 654 
 655 //
 656 // Create a new version of orig_phi if necessary. Returns either the newly
 657 // created phi or an existing phi.  Sets create_new to indicate whether a new
 658 // phi was created.  Cache the last newly created phi in the node map.
 659 //
 660 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
 661   Compile *C = _compile;
 662   new_created = false;
 663   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
 664   // nothing to do if orig_phi is bottom memory or matches alias_idx
 665   if (phi_alias_idx == alias_idx) {
 666     return orig_phi;
 667   }
 668   // Have we recently created a Phi for this alias index?
 669   PhiNode *result = get_map_phi(orig_phi->_idx);
 670   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
 671     return result;
 672   }
 673   // Previous check may fail when the same wide memory Phi was split into Phis
 674   // for different memory slices. Search all Phis for this region.
 675   if (result != NULL) {
 676     Node* region = orig_phi->in(0);
 677     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 678       Node* phi = region->fast_out(i);
 679       if (phi->is_Phi() &&
 680           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
 681         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
 682         return phi->as_Phi();
 683       }
 684     }
 685   }
 686   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
 687     if (C->do_escape_analysis() == true && !C->failing()) {
 688       // Retry compilation without escape analysis.
 689       // If this is the first failure, the sentinel string will "stick"
 690       // to the Compile object, and the C2Compiler will see it and retry.
 691       C->record_failure(C2Compiler::retry_no_escape_analysis());
 692     }
 693     return NULL;
 694   }
 695   orig_phi_worklist.append_if_missing(orig_phi);
 696   const TypePtr *atype = C->get_adr_type(alias_idx);
 697   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
 698   C->copy_node_notes_to(result, orig_phi);
 699   igvn->set_type(result, result->bottom_type());
 700   record_for_optimizer(result);
 701 
 702   debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
 703   assert(pn == NULL || pn == orig_phi, "wrong node");
 704   set_map(orig_phi->_idx, result);
 705   ptnode_adr(orig_phi->_idx)->_node = orig_phi;
 706 
 707   new_created = true;
 708   return result;
 709 }
 710 
 711 //
 712 // Return a new version of Memory Phi "orig_phi" with the inputs having the
 713 // specified alias index.
 714 //
 715 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
 716 
 717   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
 718   Compile *C = _compile;
 719   bool new_phi_created;
 720   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
 721   if (!new_phi_created) {
 722     return result;
 723   }
 724 
 725   GrowableArray<PhiNode *>  phi_list;
 726   GrowableArray<uint>  cur_input;
 727 
 728   PhiNode *phi = orig_phi;
 729   uint idx = 1;
 730   bool finished = false;
 731   while(!finished) {
 732     while (idx < phi->req()) {
 733       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
 734       if (mem != NULL && mem->is_Phi()) {
 735         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
 736         if (new_phi_created) {
 737           // found an phi for which we created a new split, push current one on worklist and begin
 738           // processing new one
 739           phi_list.push(phi);
 740           cur_input.push(idx);
 741           phi = mem->as_Phi();
 742           result = newphi;
 743           idx = 1;
 744           continue;
 745         } else {
 746           mem = newphi;
 747         }
 748       }
 749       if (C->failing()) {
 750         return NULL;
 751       }
 752       result->set_req(idx++, mem);
 753     }
 754 #ifdef ASSERT
 755     // verify that the new Phi has an input for each input of the original
 756     assert( phi->req() == result->req(), "must have same number of inputs.");
 757     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
 758 #endif
 759     // Check if all new phi's inputs have specified alias index.
 760     // Otherwise use old phi.
 761     for (uint i = 1; i < phi->req(); i++) {
 762       Node* in = result->in(i);
 763       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
 764     }
 765     // we have finished processing a Phi, see if there are any more to do
 766     finished = (phi_list.length() == 0 );
 767     if (!finished) {
 768       phi = phi_list.pop();
 769       idx = cur_input.pop();
 770       PhiNode *prev_result = get_map_phi(phi->_idx);
 771       prev_result->set_req(idx++, result);
 772       result = prev_result;
 773     }
 774   }
 775   return result;
 776 }
 777 
 778 
 779 //
 780 // The next methods are derived from methods in MemNode.
 781 //
 782 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
 783   Node *mem = mmem;
 784   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 785   // means an array I have not precisely typed yet.  Do not do any
 786   // alias stuff with it any time soon.
 787   if( toop->base() != Type::AnyPtr &&
 788       !(toop->klass() != NULL &&
 789         toop->klass()->is_java_lang_Object() &&
 790         toop->offset() == Type::OffsetBot) ) {
 791     mem = mmem->memory_at(alias_idx);
 792     // Update input if it is progress over what we have now
 793   }
 794   return mem;
 795 }
 796 
 797 //
 798 // Move memory users to their memory slices.
 799 //
 800 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *igvn) {
 801   Compile* C = _compile;
 802 
 803   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
 804   assert(tp != NULL, "ptr type");
 805   int alias_idx = C->get_alias_index(tp);
 806   int general_idx = C->get_general_index(alias_idx);
 807 
 808   // Move users first
 809   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 810     Node* use = n->fast_out(i);
 811     if (use->is_MergeMem()) {
 812       MergeMemNode* mmem = use->as_MergeMem();
 813       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
 814       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
 815         continue; // Nothing to do
 816       }
 817       // Replace previous general reference to mem node.
 818       uint orig_uniq = C->unique();
 819       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 820       assert(orig_uniq == C->unique(), "no new nodes");
 821       mmem->set_memory_at(general_idx, m);
 822       --imax;
 823       --i;
 824     } else if (use->is_MemBar()) {
 825       assert(!use->is_Initialize(), "initializing stores should not be moved");
 826       if (use->req() > MemBarNode::Precedent &&
 827           use->in(MemBarNode::Precedent) == n) {
 828         // Don't move related membars.
 829         record_for_optimizer(use);
 830         continue;
 831       }
 832       tp = use->as_MemBar()->adr_type()->isa_ptr();
 833       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
 834           alias_idx == general_idx) {
 835         continue; // Nothing to do
 836       }
 837       // Move to general memory slice.
 838       uint orig_uniq = C->unique();
 839       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 840       assert(orig_uniq == C->unique(), "no new nodes");
 841       igvn->hash_delete(use);
 842       imax -= use->replace_edge(n, m);
 843       igvn->hash_insert(use);
 844       record_for_optimizer(use);
 845       --i;
 846 #ifdef ASSERT
 847     } else if (use->is_Mem()) {
 848       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
 849         // Don't move related cardmark.
 850         continue;
 851       }
 852       // Memory nodes should have new memory input.
 853       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
 854       assert(tp != NULL, "ptr type");
 855       int idx = C->get_alias_index(tp);
 856       assert(get_map(use->_idx) != NULL || idx == alias_idx,
 857              "Following memory nodes should have new memory input or be on the same memory slice");
 858     } else if (use->is_Phi()) {
 859       // Phi nodes should be split and moved already.
 860       tp = use->as_Phi()->adr_type()->isa_ptr();
 861       assert(tp != NULL, "ptr type");
 862       int idx = C->get_alias_index(tp);
 863       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
 864     } else {
 865       use->dump();
 866       assert(false, "should not be here");
 867 #endif
 868     }
 869   }
 870 }
 871 
 872 //
 873 // Search memory chain of "mem" to find a MemNode whose address
 874 // is the specified alias index.
 875 //
 876 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
 877   if (orig_mem == NULL)
 878     return orig_mem;
 879   Compile* C = phase->C;
 880   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
 881   bool is_instance = (toop != NULL) && toop->is_known_instance();
 882   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 883   Node *prev = NULL;
 884   Node *result = orig_mem;
 885   while (prev != result) {
 886     prev = result;
 887     if (result == start_mem)
 888       break;  // hit one of our sentinels
 889     if (result->is_Mem()) {
 890       const Type *at = phase->type(result->in(MemNode::Address));
 891       if (at == Type::TOP)
 892         break; // Dead
 893       assert (at->isa_ptr() != NULL, "pointer type required.");
 894       int idx = C->get_alias_index(at->is_ptr());
 895       if (idx == alias_idx)
 896         break; // Found
 897       if (!is_instance && (at->isa_oopptr() == NULL ||
 898                            !at->is_oopptr()->is_known_instance())) {
 899         break; // Do not skip store to general memory slice.
 900       }
 901       result = result->in(MemNode::Memory);
 902     }
 903     if (!is_instance)
 904       continue;  // don't search further for non-instance types
 905     // skip over a call which does not affect this memory slice
 906     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 907       Node *proj_in = result->in(0);
 908       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
 909         break;  // hit one of our sentinels
 910       } else if (proj_in->is_Call()) {
 911         CallNode *call = proj_in->as_Call();
 912         if (!call->may_modify(toop, phase)) {
 913           result = call->in(TypeFunc::Memory);
 914         }
 915       } else if (proj_in->is_Initialize()) {
 916         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 917         // Stop if this is the initialization for the object instance which
 918         // which contains this memory slice, otherwise skip over it.
 919         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
 920           result = proj_in->in(TypeFunc::Memory);
 921         }
 922       } else if (proj_in->is_MemBar()) {
 923         result = proj_in->in(TypeFunc::Memory);
 924       }
 925     } else if (result->is_MergeMem()) {
 926       MergeMemNode *mmem = result->as_MergeMem();
 927       result = step_through_mergemem(mmem, alias_idx, toop);
 928       if (result == mmem->base_memory()) {
 929         // Didn't find instance memory, search through general slice recursively.
 930         result = mmem->memory_at(C->get_general_index(alias_idx));
 931         result = find_inst_mem(result, alias_idx, orig_phis, phase);
 932         if (C->failing()) {
 933           return NULL;
 934         }
 935         mmem->set_memory_at(alias_idx, result);
 936       }
 937     } else if (result->is_Phi() &&
 938                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
 939       Node *un = result->as_Phi()->unique_input(phase);
 940       if (un != NULL) {
 941         orig_phis.append_if_missing(result->as_Phi());
 942         result = un;
 943       } else {
 944         break;
 945       }
 946     } else if (result->is_ClearArray()) {
 947       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
 948         // Can not bypass initialization of the instance
 949         // we are looking for.
 950         break;
 951       }
 952       // Otherwise skip it (the call updated 'result' value).
 953     } else if (result->Opcode() == Op_SCMemProj) {
 954       assert(result->in(0)->is_LoadStore(), "sanity");
 955       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
 956       if (at != Type::TOP) {
 957         assert (at->isa_ptr() != NULL, "pointer type required.");
 958         int idx = C->get_alias_index(at->is_ptr());
 959         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
 960         break;
 961       }
 962       result = result->in(0)->in(MemNode::Memory);
 963     }
 964   }
 965   if (result->is_Phi()) {
 966     PhiNode *mphi = result->as_Phi();
 967     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 968     const TypePtr *t = mphi->adr_type();
 969     if (!is_instance) {
 970       // Push all non-instance Phis on the orig_phis worklist to update inputs
 971       // during Phase 4 if needed.
 972       orig_phis.append_if_missing(mphi);
 973     } else if (C->get_alias_index(t) != alias_idx) {
 974       // Create a new Phi with the specified alias index type.
 975       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
 976     }
 977   }
 978   // the result is either MemNode, PhiNode, InitializeNode.
 979   return result;
 980 }
 981 
 982 //
 983 //  Convert the types of unescaped object to instance types where possible,
 984 //  propagate the new type information through the graph, and update memory
 985 //  edges and MergeMem inputs to reflect the new type.
 986 //
 987 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
 988 //  The processing is done in 4 phases:
 989 //
 990 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
 991 //            types for the CheckCastPP for allocations where possible.
 992 //            Propagate the the new types through users as follows:
 993 //               casts and Phi:  push users on alloc_worklist
 994 //               AddP:  cast Base and Address inputs to the instance type
 995 //                      push any AddP users on alloc_worklist and push any memnode
 996 //                      users onto memnode_worklist.
 997 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
 998 //            search the Memory chain for a store with the appropriate type
 999 //            address type.  If a Phi is found, create a new version with
1000 //            the appropriate memory slices from each of the Phi inputs.
1001 //            For stores, process the users as follows:
1002 //               MemNode:  push on memnode_worklist
1003 //               MergeMem: push on mergemem_worklist
1004 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
1005 //            moving the first node encountered of each  instance type to the
1006 //            the input corresponding to its alias index.
1007 //            appropriate memory slice.
1008 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
1009 //
1010 // In the following example, the CheckCastPP nodes are the cast of allocation
1011 // results and the allocation of node 29 is unescaped and eligible to be an
1012 // instance type.
1013 //
1014 // We start with:
1015 //
1016 //     7 Parm #memory
1017 //    10  ConI  "12"
1018 //    19  CheckCastPP   "Foo"
1019 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
1020 //    29  CheckCastPP   "Foo"
1021 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
1022 //
1023 //    40  StoreP  25   7  20   ... alias_index=4
1024 //    50  StoreP  35  40  30   ... alias_index=4
1025 //    60  StoreP  45  50  20   ... alias_index=4
1026 //    70  LoadP    _  60  30   ... alias_index=4
1027 //    80  Phi     75  50  60   Memory alias_index=4
1028 //    90  LoadP    _  80  30   ... alias_index=4
1029 //   100  LoadP    _  80  20   ... alias_index=4
1030 //
1031 //
1032 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
1033 // and creating a new alias index for node 30.  This gives:
1034 //
1035 //     7 Parm #memory
1036 //    10  ConI  "12"
1037 //    19  CheckCastPP   "Foo"
1038 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
1039 //    29  CheckCastPP   "Foo"  iid=24
1040 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
1041 //
1042 //    40  StoreP  25   7  20   ... alias_index=4
1043 //    50  StoreP  35  40  30   ... alias_index=6
1044 //    60  StoreP  45  50  20   ... alias_index=4
1045 //    70  LoadP    _  60  30   ... alias_index=6
1046 //    80  Phi     75  50  60   Memory alias_index=4
1047 //    90  LoadP    _  80  30   ... alias_index=6
1048 //   100  LoadP    _  80  20   ... alias_index=4
1049 //
1050 // In phase 2, new memory inputs are computed for the loads and stores,
1051 // And a new version of the phi is created.  In phase 4, the inputs to
1052 // node 80 are updated and then the memory nodes are updated with the
1053 // values computed in phase 2.  This results in:
1054 //
1055 //     7 Parm #memory
1056 //    10  ConI  "12"
1057 //    19  CheckCastPP   "Foo"
1058 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
1059 //    29  CheckCastPP   "Foo"  iid=24
1060 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
1061 //
1062 //    40  StoreP  25  7   20   ... alias_index=4
1063 //    50  StoreP  35  7   30   ... alias_index=6
1064 //    60  StoreP  45  40  20   ... alias_index=4
1065 //    70  LoadP    _  50  30   ... alias_index=6
1066 //    80  Phi     75  40  60   Memory alias_index=4
1067 //   120  Phi     75  50  50   Memory alias_index=6
1068 //    90  LoadP    _ 120  30   ... alias_index=6
1069 //   100  LoadP    _  80  20   ... alias_index=4
1070 //
1071 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
1072   GrowableArray<Node *>  memnode_worklist;
1073   GrowableArray<PhiNode *>  orig_phis;
1074 
1075   PhaseIterGVN  *igvn = _igvn;
1076   uint new_index_start = (uint) _compile->num_alias_types();
1077   Arena* arena = Thread::current()->resource_area();
1078   VectorSet visited(arena);
1079 
1080 
1081   //  Phase 1:  Process possible allocations from alloc_worklist.
1082   //  Create instance types for the CheckCastPP for allocations where possible.
1083   //
1084   // (Note: don't forget to change the order of the second AddP node on
1085   //  the alloc_worklist if the order of the worklist processing is changed,
1086   //  see the comment in find_second_addp().)
1087   //
1088   while (alloc_worklist.length() != 0) {
1089     Node *n = alloc_worklist.pop();
1090     uint ni = n->_idx;
1091     const TypeOopPtr* tinst = NULL;
1092     if (n->is_Call()) {
1093       CallNode *alloc = n->as_Call();
1094       // copy escape information to call node
1095       PointsToNode* ptn = ptnode_adr(alloc->_idx);
1096       PointsToNode::EscapeState es = escape_state(alloc);
1097       // We have an allocation or call which returns a Java object,
1098       // see if it is unescaped.
1099       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
1100         continue;
1101 
1102       // Find CheckCastPP for the allocate or for the return value of a call
1103       n = alloc->result_cast();
1104       if (n == NULL) {            // No uses except Initialize node
1105         if (alloc->is_Allocate()) {
1106           // Set the scalar_replaceable flag for allocation
1107           // so it could be eliminated if it has no uses.
1108           alloc->as_Allocate()->_is_scalar_replaceable = true;
1109         }
1110         continue;
1111       }
1112       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
1113         assert(!alloc->is_Allocate(), "allocation should have unique type");
1114         continue;
1115       }
1116 
1117       // The inline code for Object.clone() casts the allocation result to
1118       // java.lang.Object and then to the actual type of the allocated
1119       // object. Detect this case and use the second cast.
1120       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
1121       // the allocation result is cast to java.lang.Object and then
1122       // to the actual Array type.
1123       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
1124           && (alloc->is_AllocateArray() ||
1125               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
1126         Node *cast2 = NULL;
1127         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1128           Node *use = n->fast_out(i);
1129           if (use->is_CheckCastPP()) {
1130             cast2 = use;
1131             break;
1132           }
1133         }
1134         if (cast2 != NULL) {
1135           n = cast2;
1136         } else {
1137           // Non-scalar replaceable if the allocation type is unknown statically
1138           // (reflection allocation), the object can't be restored during
1139           // deoptimization without precise type.
1140           continue;
1141         }
1142       }
1143       if (alloc->is_Allocate()) {
1144         // Set the scalar_replaceable flag for allocation
1145         // so it could be eliminated.
1146         alloc->as_Allocate()->_is_scalar_replaceable = true;
1147       }
1148       set_escape_state(n->_idx, es); // CheckCastPP escape state
1149       // in order for an object to be scalar-replaceable, it must be:
1150       //   - a direct allocation (not a call returning an object)
1151       //   - non-escaping
1152       //   - eligible to be a unique type
1153       //   - not determined to be ineligible by escape analysis
1154       assert(ptnode_adr(alloc->_idx)->_node != NULL &&
1155              ptnode_adr(n->_idx)->_node != NULL, "should be registered");
1156       set_map(alloc->_idx, n);
1157       set_map(n->_idx, alloc);
1158       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
1159       if (t == NULL)
1160         continue;  // not a TypeOopPtr
1161       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
1162       igvn->hash_delete(n);
1163       igvn->set_type(n,  tinst);
1164       n->raise_bottom_type(tinst);
1165       igvn->hash_insert(n);
1166       record_for_optimizer(n);
1167       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
1168 
1169         // First, put on the worklist all Field edges from Connection Graph
1170         // which is more accurate then putting immediate users from Ideal Graph.
1171         for (uint e = 0; e < ptn->edge_count(); e++) {
1172           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
1173           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
1174                  "only AddP nodes are Field edges in CG");
1175           if (use->outcnt() > 0) { // Don't process dead nodes
1176             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
1177             if (addp2 != NULL) {
1178               assert(alloc->is_AllocateArray(),"array allocation was expected");
1179               alloc_worklist.append_if_missing(addp2);
1180             }
1181             alloc_worklist.append_if_missing(use);
1182           }
1183         }
1184 
1185         // An allocation may have an Initialize which has raw stores. Scan
1186         // the users of the raw allocation result and push AddP users
1187         // on alloc_worklist.
1188         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
1189         assert (raw_result != NULL, "must have an allocation result");
1190         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
1191           Node *use = raw_result->fast_out(i);
1192           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
1193             Node* addp2 = find_second_addp(use, raw_result);
1194             if (addp2 != NULL) {
1195               assert(alloc->is_AllocateArray(),"array allocation was expected");
1196               alloc_worklist.append_if_missing(addp2);
1197             }
1198             alloc_worklist.append_if_missing(use);
1199           } else if (use->is_MemBar()) {
1200             memnode_worklist.append_if_missing(use);
1201           }
1202         }
1203       }
1204     } else if (n->is_AddP()) {
1205       VectorSet* ptset = PointsTo(get_addp_base(n));
1206       assert(ptset->Size() == 1, "AddP address is unique");
1207       uint elem = ptset->getelem(); // Allocation node's index
1208       if (elem == _phantom_object) {
1209         assert(false, "escaped allocation");
1210         continue; // Assume the value was set outside this method.
1211       }
1212       Node *base = get_map(elem);  // CheckCastPP node
1213       if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
1214       tinst = igvn->type(base)->isa_oopptr();
1215     } else if (n->is_Phi() ||
1216                n->is_CheckCastPP() ||
1217                n->is_EncodeP() ||
1218                n->is_DecodeN() ||
1219                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
1220       if (visited.test_set(n->_idx)) {
1221         assert(n->is_Phi(), "loops only through Phi's");
1222         continue;  // already processed
1223       }
1224       VectorSet* ptset = PointsTo(n);
1225       if (ptset->Size() == 1) {
1226         uint elem = ptset->getelem(); // Allocation node's index
1227         if (elem == _phantom_object) {
1228           assert(false, "escaped allocation");
1229           continue; // Assume the value was set outside this method.
1230         }
1231         Node *val = get_map(elem);   // CheckCastPP node
1232         TypeNode *tn = n->as_Type();
1233         tinst = igvn->type(val)->isa_oopptr();
1234         assert(tinst != NULL && tinst->is_known_instance() &&
1235                (uint)tinst->instance_id() == elem , "instance type expected.");
1236 
1237         const Type *tn_type = igvn->type(tn);
1238         const TypeOopPtr *tn_t;
1239         if (tn_type->isa_narrowoop()) {
1240           tn_t = tn_type->make_ptr()->isa_oopptr();
1241         } else {
1242           tn_t = tn_type->isa_oopptr();
1243         }
1244 
1245         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
1246           if (tn_type->isa_narrowoop()) {
1247             tn_type = tinst->make_narrowoop();
1248           } else {
1249             tn_type = tinst;
1250           }
1251           igvn->hash_delete(tn);
1252           igvn->set_type(tn, tn_type);
1253           tn->set_type(tn_type);
1254           igvn->hash_insert(tn);
1255           record_for_optimizer(n);
1256         } else {
1257           assert(tn_type == TypePtr::NULL_PTR ||
1258                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
1259                  "unexpected type");
1260           continue; // Skip dead path with different type
1261         }
1262       }
1263     } else {
1264       debug_only(n->dump();)
1265       assert(false, "EA: unexpected node");
1266       continue;
1267     }
1268     // push allocation's users on appropriate worklist
1269     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1270       Node *use = n->fast_out(i);
1271       if(use->is_Mem() && use->in(MemNode::Address) == n) {
1272         // Load/store to instance's field
1273         memnode_worklist.append_if_missing(use);
1274       } else if (use->is_MemBar()) {
1275         memnode_worklist.append_if_missing(use);
1276       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
1277         Node* addp2 = find_second_addp(use, n);
1278         if (addp2 != NULL) {
1279           alloc_worklist.append_if_missing(addp2);
1280         }
1281         alloc_worklist.append_if_missing(use);
1282       } else if (use->is_Phi() ||
1283                  use->is_CheckCastPP() ||
1284                  use->is_EncodeP() ||
1285                  use->is_DecodeN() ||
1286                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
1287         alloc_worklist.append_if_missing(use);
1288 #ifdef ASSERT
1289       } else if (use->is_Mem()) {
1290         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
1291       } else if (use->is_MergeMem()) {
1292         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1293       } else if (use->is_SafePoint()) {
1294         // Look for MergeMem nodes for calls which reference unique allocation
1295         // (through CheckCastPP nodes) even for debug info.
1296         Node* m = use->in(TypeFunc::Memory);
1297         if (m->is_MergeMem()) {
1298           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1299         }
1300       } else {
1301         uint op = use->Opcode();
1302         if (!(op == Op_CmpP || op == Op_Conv2B ||
1303               op == Op_CastP2X || op == Op_StoreCM ||
1304               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
1305               op == Op_StrEquals || op == Op_StrIndexOf)) {
1306           n->dump();
1307           use->dump();
1308           assert(false, "EA: missing allocation reference path");
1309         }
1310 #endif
1311       }
1312     }
1313 
1314   }
1315   // New alias types were created in split_AddP().
1316   uint new_index_end = (uint) _compile->num_alias_types();
1317 
1318   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1319   //            compute new values for Memory inputs  (the Memory inputs are not
1320   //            actually updated until phase 4.)
1321   if (memnode_worklist.length() == 0)
1322     return;  // nothing to do
1323 
1324   while (memnode_worklist.length() != 0) {
1325     Node *n = memnode_worklist.pop();
1326     if (visited.test_set(n->_idx))
1327       continue;
1328     if (n->is_Phi() || n->is_ClearArray()) {
1329       // we don't need to do anything, but the users must be pushed
1330     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
1331       // we don't need to do anything, but the users must be pushed
1332       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
1333       if (n == NULL)
1334         continue;
1335     } else {
1336       assert(n->is_Mem(), "memory node required.");
1337       Node *addr = n->in(MemNode::Address);
1338       const Type *addr_t = igvn->type(addr);
1339       if (addr_t == Type::TOP)
1340         continue;
1341       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
1342       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
1343       assert ((uint)alias_idx < new_index_end, "wrong alias index");
1344       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
1345       if (_compile->failing()) {
1346         return;
1347       }
1348       if (mem != n->in(MemNode::Memory)) {
1349         // We delay the memory edge update since we need old one in
1350         // MergeMem code below when instances memory slices are separated.
1351         debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
1352         assert(pn == NULL || pn == n, "wrong node");
1353         set_map(n->_idx, mem);
1354         ptnode_adr(n->_idx)->_node = n;
1355       }
1356       if (n->is_Load()) {
1357         continue;  // don't push users
1358       } else if (n->is_LoadStore()) {
1359         // get the memory projection
1360         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1361           Node *use = n->fast_out(i);
1362           if (use->Opcode() == Op_SCMemProj) {
1363             n = use;
1364             break;
1365           }
1366         }
1367         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
1368       }
1369     }
1370     // push user on appropriate worklist
1371     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1372       Node *use = n->fast_out(i);
1373       if (use->is_Phi() || use->is_ClearArray()) {
1374         memnode_worklist.append_if_missing(use);
1375       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
1376         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
1377           continue;
1378         memnode_worklist.append_if_missing(use);
1379       } else if (use->is_MemBar()) {
1380         memnode_worklist.append_if_missing(use);
1381 #ifdef ASSERT
1382       } else if(use->is_Mem()) {
1383         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
1384       } else if (use->is_MergeMem()) {
1385         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1386       } else {
1387         uint op = use->Opcode();
1388         if (!(op == Op_StoreCM ||
1389               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
1390                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
1391               op == Op_AryEq || op == Op_StrComp ||
1392               op == Op_StrEquals || op == Op_StrIndexOf)) {
1393           n->dump();
1394           use->dump();
1395           assert(false, "EA: missing memory path");
1396         }
1397 #endif
1398       }
1399     }
1400   }
1401 
1402   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
1403   //            Walk each memory slice moving the first node encountered of each
1404   //            instance type to the the input corresponding to its alias index.
1405   uint length = _mergemem_worklist.length();
1406   for( uint next = 0; next < length; ++next ) {
1407     MergeMemNode* nmm = _mergemem_worklist.at(next);
1408     assert(!visited.test_set(nmm->_idx), "should not be visited before");
1409     // Note: we don't want to use MergeMemStream here because we only want to
1410     // scan inputs which exist at the start, not ones we add during processing.
1411     // Note 2: MergeMem may already contains instance memory slices added
1412     // during find_inst_mem() call when memory nodes were processed above.
1413     igvn->hash_delete(nmm);
1414     uint nslices = nmm->req();
1415     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
1416       Node* mem = nmm->in(i);
1417       Node* cur = NULL;
1418       if (mem == NULL || mem->is_top())
1419         continue;
1420       // First, update mergemem by moving memory nodes to corresponding slices
1421       // if their type became more precise since this mergemem was created.
1422       while (mem->is_Mem()) {
1423         const Type *at = igvn->type(mem->in(MemNode::Address));
1424         if (at != Type::TOP) {
1425           assert (at->isa_ptr() != NULL, "pointer type required.");
1426           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
1427           if (idx == i) {
1428             if (cur == NULL)
1429               cur = mem;
1430           } else {
1431             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
1432               nmm->set_memory_at(idx, mem);
1433             }
1434           }
1435         }
1436         mem = mem->in(MemNode::Memory);
1437       }
1438       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
1439       // Find any instance of the current type if we haven't encountered
1440       // already a memory slice of the instance along the memory chain.
1441       for (uint ni = new_index_start; ni < new_index_end; ni++) {
1442         if((uint)_compile->get_general_index(ni) == i) {
1443           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
1444           if (nmm->is_empty_memory(m)) {
1445             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
1446             if (_compile->failing()) {
1447               return;
1448             }
1449             nmm->set_memory_at(ni, result);
1450           }
1451         }
1452       }
1453     }
1454     // Find the rest of instances values
1455     for (uint ni = new_index_start; ni < new_index_end; ni++) {
1456       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
1457       Node* result = step_through_mergemem(nmm, ni, tinst);
1458       if (result == nmm->base_memory()) {
1459         // Didn't find instance memory, search through general slice recursively.
1460         result = nmm->memory_at(_compile->get_general_index(ni));
1461         result = find_inst_mem(result, ni, orig_phis, igvn);
1462         if (_compile->failing()) {
1463           return;
1464         }
1465         nmm->set_memory_at(ni, result);
1466       }
1467     }
1468     igvn->hash_insert(nmm);
1469     record_for_optimizer(nmm);
1470   }
1471 
1472   //  Phase 4:  Update the inputs of non-instance memory Phis and
1473   //            the Memory input of memnodes
1474   // First update the inputs of any non-instance Phi's from
1475   // which we split out an instance Phi.  Note we don't have
1476   // to recursively process Phi's encounted on the input memory
1477   // chains as is done in split_memory_phi() since they  will
1478   // also be processed here.
1479   for (int j = 0; j < orig_phis.length(); j++) {
1480     PhiNode *phi = orig_phis.at(j);
1481     int alias_idx = _compile->get_alias_index(phi->adr_type());
1482     igvn->hash_delete(phi);
1483     for (uint i = 1; i < phi->req(); i++) {
1484       Node *mem = phi->in(i);
1485       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
1486       if (_compile->failing()) {
1487         return;
1488       }
1489       if (mem != new_mem) {
1490         phi->set_req(i, new_mem);
1491       }
1492     }
1493     igvn->hash_insert(phi);
1494     record_for_optimizer(phi);
1495   }
1496 
1497   // Update the memory inputs of MemNodes with the value we computed
1498   // in Phase 2 and move stores memory users to corresponding memory slices.
1499 
1500   // Disable memory split verification code until the fix for 6984348.
1501   // Currently it produces false negative results since it does not cover all cases.
1502 #if 0 // ifdef ASSERT
1503   visited.Reset();
1504   Node_Stack old_mems(arena, _compile->unique() >> 2);
1505 #endif
1506   for (uint i = 0; i < nodes_size(); i++) {
1507     Node *nmem = get_map(i);
1508     if (nmem != NULL) {
1509       Node *n = ptnode_adr(i)->_node;
1510       assert(n != NULL, "sanity");
1511       if (n->is_Mem()) {
1512 #if 0 // ifdef ASSERT
1513         Node* old_mem = n->in(MemNode::Memory);
1514         if (!visited.test_set(old_mem->_idx)) {
1515           old_mems.push(old_mem, old_mem->outcnt());
1516         }
1517 #endif
1518         assert(n->in(MemNode::Memory) != nmem, "sanity");
1519         if (!n->is_Load()) {
1520           // Move memory users of a store first.
1521           move_inst_mem(n, orig_phis, igvn);
1522         }
1523         // Now update memory input
1524         igvn->hash_delete(n);
1525         n->set_req(MemNode::Memory, nmem);
1526         igvn->hash_insert(n);
1527         record_for_optimizer(n);
1528       } else {
1529         assert(n->is_Allocate() || n->is_CheckCastPP() ||
1530                n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
1531       }
1532     }
1533   }
1534 #if 0 // ifdef ASSERT
1535   // Verify that memory was split correctly
1536   while (old_mems.is_nonempty()) {
1537     Node* old_mem = old_mems.node();
1538     uint  old_cnt = old_mems.index();
1539     old_mems.pop();
1540     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
1541   }
1542 #endif
1543 }
1544 
1545 bool ConnectionGraph::has_candidates(Compile *C) {
1546   // EA brings benefits only when the code has allocations and/or locks which
1547   // are represented by ideal Macro nodes.
1548   int cnt = C->macro_count();
1549   for( int i=0; i < cnt; i++ ) {
1550     Node *n = C->macro_node(i);
1551     if ( n->is_Allocate() )
1552       return true;
1553     if( n->is_Lock() ) {
1554       Node* obj = n->as_Lock()->obj_node()->uncast();
1555       if( !(obj->is_Parm() || obj->is_Con()) )
1556         return true;
1557     }
1558   }
1559   return false;
1560 }
1561 
1562 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
1563   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
1564   // to create space for them in ConnectionGraph::_nodes[].
1565   Node* oop_null = igvn->zerocon(T_OBJECT);
1566   Node* noop_null = igvn->zerocon(T_NARROWOOP);
1567 
1568   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
1569   // Perform escape analysis
1570   if (congraph->compute_escape()) {
1571     // There are non escaping objects.
1572     C->set_congraph(congraph);
1573   }
1574 
1575   // Cleanup.
1576   if (oop_null->outcnt() == 0)
1577     igvn->hash_delete(oop_null);
1578   if (noop_null->outcnt() == 0)
1579     igvn->hash_delete(noop_null);
1580 }
1581 
1582 bool ConnectionGraph::compute_escape() {
1583   Compile* C = _compile;
1584 
1585   // 1. Populate Connection Graph (CG) with Ideal nodes.
1586 
1587   Unique_Node_List worklist_init;
1588   worklist_init.map(C->unique(), NULL);  // preallocate space
1589 
1590   // Initialize worklist
1591   if (C->root() != NULL) {
1592     worklist_init.push(C->root());
1593   }
1594 
1595   GrowableArray<Node*> alloc_worklist;
1596   GrowableArray<Node*> addp_worklist;
1597   GrowableArray<Node*> ptr_cmp_worklist;
1598   GrowableArray<Node*> storestore_worklist;
1599   PhaseGVN* igvn = _igvn;
1600 
1601   // Push all useful nodes onto CG list and set their type.
1602   for( uint next = 0; next < worklist_init.size(); ++next ) {
1603     Node* n = worklist_init.at(next);
1604     record_for_escape_analysis(n, igvn);
1605     // Only allocations and java static calls results are checked
1606     // for an escape status. See process_call_result() below.
1607     if (n->is_Allocate() || n->is_CallStaticJava() &&
1608         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
1609       alloc_worklist.append(n);
1610     } else if(n->is_AddP()) {
1611       // Collect address nodes. Use them during stage 3 below
1612       // to build initial connection graph field edges.
1613       addp_worklist.append(n);
1614     } else if (n->is_MergeMem()) {
1615       // Collect all MergeMem nodes to add memory slices for
1616       // scalar replaceable objects in split_unique_types().
1617       _mergemem_worklist.append(n->as_MergeMem());
1618     } else if (OptimizePtrCompare && n->is_Cmp() &&
1619                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
1620       // Compare pointers nodes
1621       ptr_cmp_worklist.append(n);
1622     } else if (n->is_MemBarStoreStore()) {
1623       // Collect all MemBarStoreStore nodes so that depending on the
1624       // escape status of the associated Allocate node some of them
1625       // may be eliminated.
1626       storestore_worklist.append(n);
1627     }
1628     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1629       Node* m = n->fast_out(i);   // Get user
1630       worklist_init.push(m);
1631     }
1632   }
1633 
1634   if (alloc_worklist.length() == 0) {
1635     _collecting = false;
1636     return false; // Nothing to do.
1637   }
1638 
1639   // 2. First pass to create simple CG edges (doesn't require to walk CG).
1640   uint delayed_size = _delayed_worklist.size();
1641   for( uint next = 0; next < delayed_size; ++next ) {
1642     Node* n = _delayed_worklist.at(next);
1643     build_connection_graph(n, igvn);
1644   }
1645 
1646   // 3. Pass to create initial fields edges (JavaObject -F-> AddP)
1647   //    to reduce number of iterations during stage 4 below.
1648   uint addp_length = addp_worklist.length();
1649   for( uint next = 0; next < addp_length; ++next ) {
1650     Node* n = addp_worklist.at(next);
1651     Node* base = get_addp_base(n);
1652     if (base->is_Proj() && base->in(0)->is_Call())
1653       base = base->in(0);
1654     PointsToNode::NodeType nt = ptnode_adr(base->_idx)->node_type();
1655     if (nt == PointsToNode::JavaObject) {
1656       build_connection_graph(n, igvn);
1657     }
1658   }
1659 
1660   GrowableArray<int> cg_worklist;
1661   cg_worklist.append(_phantom_object);
1662   GrowableArray<uint>  worklist;
1663 
1664   // 4. Build Connection Graph which need
1665   //    to walk the connection graph.
1666   _progress = false;
1667   for (uint ni = 0; ni < nodes_size(); ni++) {
1668     PointsToNode* ptn = ptnode_adr(ni);
1669     Node *n = ptn->_node;
1670     if (n != NULL) { // Call, AddP, LoadP, StoreP
1671       build_connection_graph(n, igvn);
1672       if (ptn->node_type() != PointsToNode::UnknownType)
1673         cg_worklist.append(n->_idx); // Collect CG nodes
1674       if (!_processed.test(n->_idx))
1675         worklist.append(n->_idx); // Collect C/A/L/S nodes
1676     }
1677   }
1678 
1679   // After IGVN user nodes may have smaller _idx than
1680   // their inputs so they will be processed first in
1681   // previous loop. Because of that not all Graph
1682   // edges will be created. Walk over interesting
1683   // nodes again until no new edges are created.
1684   //
1685   // Normally only 1-3 passes needed to build
1686   // Connection Graph depending on graph complexity.
1687   // Observed 8 passes in jvm2008 compiler.compiler.
1688   // Set limit to 20 to catch situation when something
1689   // did go wrong and recompile the method without EA.
1690   // Also limit build time to 30 sec (60 in debug VM).
1691 
1692 #define CG_BUILD_ITER_LIMIT 20
1693 
1694 #ifdef ASSERT
1695 #define CG_BUILD_TIME_LIMIT 60.0
1696 #else
1697 #define CG_BUILD_TIME_LIMIT 30.0
1698 #endif
1699 
1700   uint length = worklist.length();
1701   int iterations = 0;
1702   elapsedTimer time;
1703   while(_progress &&
1704         (iterations++   < CG_BUILD_ITER_LIMIT) &&
1705         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1706     time.start();
1707     _progress = false;
1708     for( uint next = 0; next < length; ++next ) {
1709       int ni = worklist.at(next);
1710       PointsToNode* ptn = ptnode_adr(ni);
1711       Node* n = ptn->_node;
1712       assert(n != NULL, "should be known node");
1713       build_connection_graph(n, igvn);
1714     }
1715     time.stop();
1716   }
1717   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
1718       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
1719     assert(false, err_msg("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1720            time.seconds(), iterations, nodes_size(), length));
1721     // Possible infinite build_connection_graph loop,
1722     // bailout (no changes to ideal graph were made).
1723     _collecting = false;
1724     return false;
1725   }
1726 #undef CG_BUILD_ITER_LIMIT
1727 #undef CG_BUILD_TIME_LIMIT
1728 
1729   // 5. Propagate escaped states.
1730   worklist.clear();
1731 
1732   // mark all nodes reachable from GlobalEscape nodes
1733   (void)propagate_escape_state(&cg_worklist, &worklist, PointsToNode::GlobalEscape);
1734 
1735   // mark all nodes reachable from ArgEscape nodes
1736   bool has_non_escaping_obj = propagate_escape_state(&cg_worklist, &worklist, PointsToNode::ArgEscape);
1737 
1738   Arena* arena = Thread::current()->resource_area();
1739   VectorSet visited(arena);
1740 
1741   // 6. Find fields initializing values for not escaped allocations
1742   uint alloc_length = alloc_worklist.length();
1743   for (uint next = 0; next < alloc_length; ++next) {
1744     Node* n = alloc_worklist.at(next);
1745     PointsToNode::EscapeState es = ptnode_adr(n->_idx)->escape_state();
1746     if (es == PointsToNode::NoEscape) {
1747       has_non_escaping_obj = true;
1748       if (n->is_Allocate()) {
1749         find_init_values(n, &visited, igvn);
1750         // The object allocated by this Allocate node will never be
1751         // seen by an other thread. Mark it so that when it is
1752         // expanded no MemBarStoreStore is added.
1753         n->as_Allocate()->initialization()->set_does_not_escape();
1754       }
1755     } else if ((es == PointsToNode::ArgEscape) && n->is_Allocate()) {
1756       // Same as above. Mark this Allocate node so that when it is
1757       // expanded no MemBarStoreStore is added.
1758       n->as_Allocate()->initialization()->set_does_not_escape();
1759     }
1760   }
1761 
1762   uint cg_length = cg_worklist.length();
1763 
1764   // Skip the rest of code if all objects escaped.
1765   if (!has_non_escaping_obj) {
1766     cg_length = 0;
1767     addp_length = 0;
1768   }
1769 
1770   for (uint next = 0; next < cg_length; ++next) {
1771     int ni = cg_worklist.at(next);
1772     PointsToNode* ptn = ptnode_adr(ni);
1773     PointsToNode::NodeType nt = ptn->node_type();
1774     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
1775       if (ptn->edge_count() == 0) {
1776         // No values were found. Assume the value was set
1777         // outside this method - add edge to phantom object.
1778         add_pointsto_edge(ni, _phantom_object);
1779       }
1780     }
1781   }
1782 
1783   // 7. Remove deferred edges from the graph.
1784   for (uint next = 0; next < cg_length; ++next) {
1785     int ni = cg_worklist.at(next);
1786     PointsToNode* ptn = ptnode_adr(ni);
1787     PointsToNode::NodeType nt = ptn->node_type();
1788     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
1789       remove_deferred(ni, &worklist, &visited);
1790     }
1791   }
1792 
1793   // 8. Adjust escape state of nonescaping objects.
1794   for (uint next = 0; next < addp_length; ++next) {
1795     Node* n = addp_worklist.at(next);
1796     adjust_escape_state(n);
1797   }
1798 
1799   // push all NoEscape nodes on the worklist
1800   worklist.clear();
1801   for( uint next = 0; next < cg_length; ++next ) {
1802     int nk = cg_worklist.at(next);
1803     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape &&
1804         !is_null_ptr(nk))
1805       worklist.push(nk);
1806   }
1807 
1808   alloc_worklist.clear();
1809   // Propagate scalar_replaceable value.
1810   while(worklist.length() > 0) {
1811     uint nk = worklist.pop();
1812     PointsToNode* ptn = ptnode_adr(nk);
1813     Node* n = ptn->_node;
1814     bool scalar_replaceable = ptn->scalar_replaceable();
1815     if (n->is_Allocate() && scalar_replaceable) {
1816       // Push scalar replaceable allocations on alloc_worklist
1817       // for processing in split_unique_types(). Note,
1818       // following code may change scalar_replaceable value.
1819       alloc_worklist.append(n);
1820     }
1821     uint e_cnt = ptn->edge_count();
1822     for (uint ei = 0; ei < e_cnt; ei++) {
1823       uint npi = ptn->edge_target(ei);
1824       if (is_null_ptr(npi))
1825         continue;
1826       PointsToNode *np = ptnode_adr(npi);
1827       if (np->escape_state() < PointsToNode::NoEscape) {
1828         set_escape_state(npi, PointsToNode::NoEscape);
1829         if (!scalar_replaceable) {
1830           np->set_scalar_replaceable(false);
1831         }
1832         worklist.push(npi);
1833       } else if (np->scalar_replaceable() && !scalar_replaceable) {
1834         np->set_scalar_replaceable(false);
1835         worklist.push(npi);
1836       }
1837     }
1838   }
1839 
1840   _collecting = false;
1841   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
1842 
1843   assert(ptnode_adr(_oop_null)->escape_state() == PointsToNode::NoEscape &&
1844          ptnode_adr(_oop_null)->edge_count() == 0, "sanity");
1845   if (UseCompressedOops) {
1846     assert(ptnode_adr(_noop_null)->escape_state() == PointsToNode::NoEscape &&
1847            ptnode_adr(_noop_null)->edge_count() == 0, "sanity");
1848   }
1849 
1850   if (EliminateLocks && has_non_escaping_obj) {
1851     // Mark locks before changing ideal graph.
1852     int cnt = C->macro_count();
1853     for( int i=0; i < cnt; i++ ) {
1854       Node *n = C->macro_node(i);
1855       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1856         AbstractLockNode* alock = n->as_AbstractLock();
1857         if (!alock->is_non_esc_obj()) {
1858           PointsToNode::EscapeState es = escape_state(alock->obj_node());
1859           assert(es != PointsToNode::UnknownEscape, "should know");
1860           if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
1861             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1862             // The lock could be marked eliminated by lock coarsening
1863             // code during first IGVN before EA. Replace coarsened flag
1864             // to eliminate all associated locks/unlocks.
1865             alock->set_non_esc_obj();
1866           }
1867         }
1868       }
1869     }
1870   }
1871 
1872   if (OptimizePtrCompare && has_non_escaping_obj) {
1873     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1874     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1875     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1876     // Optimize objects compare.
1877     while (ptr_cmp_worklist.length() != 0) {
1878       Node *n = ptr_cmp_worklist.pop();
1879       Node *res = optimize_ptr_compare(n);
1880       if (res != NULL) {
1881 #ifndef PRODUCT
1882         if (PrintOptimizePtrCompare) {
1883           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1884           if (Verbose) {
1885             n->dump(1);
1886           }
1887         }
1888 #endif
1889         _igvn->replace_node(n, res);
1890       }
1891     }
1892     // cleanup
1893     if (_pcmp_neq->outcnt() == 0)
1894       igvn->hash_delete(_pcmp_neq);
1895     if (_pcmp_eq->outcnt()  == 0)
1896       igvn->hash_delete(_pcmp_eq);
1897   }
1898 
1899   // For MemBarStoreStore nodes added in library_call.cpp, check
1900   // escape status of associated AllocateNode and optimize out
1901   // MemBarStoreStore node if the allocated object never escapes.
1902   while (storestore_worklist.length() != 0) {
1903     Node *n = storestore_worklist.pop();
1904     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1905     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1906     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1907     PointsToNode::EscapeState es = ptnode_adr(alloc->_idx)->escape_state();
1908     if (es == PointsToNode::NoEscape || es == PointsToNode::ArgEscape) {
1909       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1910       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1911       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1912 
1913       _igvn->register_new_node_with_optimizer(mb);
1914       _igvn->replace_node(storestore, mb);
1915     }
1916   }
1917 
1918 #ifndef PRODUCT
1919   if (PrintEscapeAnalysis) {
1920     dump(); // Dump ConnectionGraph
1921   }
1922 #endif
1923 
1924   bool has_scalar_replaceable_candidates = false;
1925   alloc_length = alloc_worklist.length();
1926   for (uint next = 0; next < alloc_length; ++next) {
1927     Node* n = alloc_worklist.at(next);
1928     PointsToNode* ptn = ptnode_adr(n->_idx);
1929     assert(ptn->escape_state() == PointsToNode::NoEscape, "sanity");
1930     if (ptn->scalar_replaceable()) {
1931       has_scalar_replaceable_candidates = true;
1932       break;
1933     }
1934   }
1935 
1936   if ( has_scalar_replaceable_candidates &&
1937        C->AliasLevel() >= 3 && EliminateAllocations ) {
1938 
1939     // Now use the escape information to create unique types for
1940     // scalar replaceable objects.
1941     split_unique_types(alloc_worklist);
1942 
1943     if (C->failing())  return false;
1944 
1945     C->print_method("After Escape Analysis", 2);
1946 
1947 #ifdef ASSERT
1948   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
1949     tty->print("=== No allocations eliminated for ");
1950     C->method()->print_short_name();
1951     if(!EliminateAllocations) {
1952       tty->print(" since EliminateAllocations is off ===");
1953     } else if(!has_scalar_replaceable_candidates) {
1954       tty->print(" since there are no scalar replaceable candidates ===");
1955     } else if(C->AliasLevel() < 3) {
1956       tty->print(" since AliasLevel < 3 ===");
1957     }
1958     tty->cr();
1959 #endif
1960   }
1961   return has_non_escaping_obj;
1962 }
1963 
1964 // Find fields initializing values for allocations.
1965 void ConnectionGraph::find_init_values(Node* alloc, VectorSet* visited, PhaseTransform* phase) {
1966   assert(alloc->is_Allocate(), "Should be called for Allocate nodes only");
1967   PointsToNode* pta = ptnode_adr(alloc->_idx);
1968   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1969   InitializeNode* ini = alloc->as_Allocate()->initialization();
1970 
1971   Compile* C = _compile;
1972   visited->Reset();
1973   // Check if a oop field's initializing value is recorded and add
1974   // a corresponding NULL field's value if it is not recorded.
1975   // Connection Graph does not record a default initialization by NULL
1976   // captured by Initialize node.
1977   //
1978   uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
1979   uint ae_cnt = pta->edge_count();
1980   bool visited_bottom_offset = false;
1981   for (uint ei = 0; ei < ae_cnt; ei++) {
1982     uint nidx = pta->edge_target(ei); // Field (AddP)
1983     PointsToNode* ptn = ptnode_adr(nidx);
1984     assert(ptn->_node->is_AddP(), "Should be AddP nodes only");
1985     int offset = ptn->offset();
1986     if (offset == Type::OffsetBot) {
1987       if (!visited_bottom_offset) {
1988         visited_bottom_offset = true;
1989         // Check only oop fields.
1990         const Type* adr_type = ptn->_node->as_AddP()->bottom_type();
1991         if (!adr_type->isa_aryptr() ||
1992             (adr_type->isa_aryptr()->klass() == NULL) ||
1993              adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
1994           // OffsetBot is used to reference array's element,
1995           // always add reference to NULL since we don't
1996           // known which element is referenced.
1997           add_edge_from_fields(alloc->_idx, null_idx, offset);
1998         }
1999       }
2000     } else if (offset != oopDesc::klass_offset_in_bytes() &&
2001                !visited->test_set(offset)) {
2002 
2003       // Check only oop fields.
2004       const Type* adr_type = ptn->_node->as_AddP()->bottom_type();
2005       BasicType basic_field_type = T_INT;
2006       if (adr_type->isa_instptr()) {
2007         ciField* field = C->alias_type(adr_type->isa_instptr())->field();
2008         if (field != NULL) {
2009           basic_field_type = field->layout_type();
2010         } else {
2011           // Ignore non field load (for example, klass load)
2012         }
2013       } else if (adr_type->isa_aryptr()) {
2014         if (offset != arrayOopDesc::length_offset_in_bytes()) {
2015           const Type* elemtype = adr_type->isa_aryptr()->elem();
2016           basic_field_type = elemtype->array_element_basic_type();
2017         } else {
2018           // Ignore array length load
2019         }
2020 #ifdef ASSERT
2021       } else {
2022         // Raw pointers are used for initializing stores so skip it
2023         // since it should be recorded already
2024         Node* base = get_addp_base(ptn->_node);
2025         assert(adr_type->isa_rawptr() && base->is_Proj() &&
2026                (base->in(0) == alloc),"unexpected pointer type");
2027 #endif
2028       }
2029       if (basic_field_type == T_OBJECT ||
2030           basic_field_type == T_NARROWOOP ||
2031           basic_field_type == T_ARRAY) {
2032         Node* value = NULL;
2033         if (ini != NULL) {
2034           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
2035           Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
2036           if (store != NULL && store->is_Store()) {
2037             value = store->in(MemNode::ValueIn);
2038           } else {
2039             // There could be initializing stores which follow allocation.
2040             // For example, a volatile field store is not collected
2041             // by Initialize node.
2042             //
2043             // Need to check for dependent loads to separate such stores from
2044             // stores which follow loads. For now, add initial value NULL so
2045             // that compare pointers optimization works correctly.
2046           }
2047         }
2048         if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
2049           // A field's initializing value was not recorded. Add NULL.
2050           add_edge_from_fields(alloc->_idx, null_idx, offset);
2051         }
2052       }
2053     }
2054   }
2055 }
2056 
2057 // Adjust escape state after Connection Graph is built.
2058 void ConnectionGraph::adjust_escape_state(Node* n) {
2059   PointsToNode* ptn = ptnode_adr(n->_idx);
2060   assert(n->is_AddP(), "Should be called for AddP nodes only");
2061   // Search for objects which are not scalar replaceable
2062   // and mark them to propagate the state to referenced objects.
2063   //
2064 
2065   int offset = ptn->offset();
2066   Node* base = get_addp_base(n);
2067   VectorSet* ptset = PointsTo(base);
2068   int ptset_size = ptset->Size();
2069 
2070   // An object is not scalar replaceable if the field which may point
2071   // to it has unknown offset (unknown element of an array of objects).
2072   //
2073 
2074   if (offset == Type::OffsetBot) {
2075     uint e_cnt = ptn->edge_count();
2076     for (uint ei = 0; ei < e_cnt; ei++) {
2077       uint npi = ptn->edge_target(ei);
2078       ptnode_adr(npi)->set_scalar_replaceable(false);
2079     }
2080   }
2081 
2082   // Currently an object is not scalar replaceable if a LoadStore node
2083   // access its field since the field value is unknown after it.
2084   //
2085   bool has_LoadStore = false;
2086   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2087     Node *use = n->fast_out(i);
2088     if (use->is_LoadStore()) {
2089       has_LoadStore = true;
2090       break;
2091     }
2092   }
2093   // An object is not scalar replaceable if the address points
2094   // to unknown field (unknown element for arrays, offset is OffsetBot).
2095   //
2096   // Or the address may point to more then one object. This may produce
2097   // the false positive result (set not scalar replaceable)
2098   // since the flow-insensitive escape analysis can't separate
2099   // the case when stores overwrite the field's value from the case
2100   // when stores happened on different control branches.
2101   //
2102   // Note: it will disable scalar replacement in some cases:
2103   //
2104   //    Point p[] = new Point[1];
2105   //    p[0] = new Point(); // Will be not scalar replaced
2106   //
2107   // but it will save us from incorrect optimizations in next cases:
2108   //
2109   //    Point p[] = new Point[1];
2110   //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
2111   //
2112   if (ptset_size > 1 || ptset_size != 0 &&
2113       (has_LoadStore || offset == Type::OffsetBot)) {
2114     for( VectorSetI j(ptset); j.test(); ++j ) {
2115       ptnode_adr(j.elem)->set_scalar_replaceable(false);
2116     }
2117   }
2118 }
2119 
2120 // Propagate escape states to referenced nodes.
2121 bool ConnectionGraph::propagate_escape_state(GrowableArray<int>* cg_worklist,
2122                                              GrowableArray<uint>* worklist,
2123                                              PointsToNode::EscapeState esc_state) {
2124   bool has_java_obj = false;
2125 
2126   // push all nodes with the same escape state on the worklist
2127   uint cg_length = cg_worklist->length();
2128   for (uint next = 0; next < cg_length; ++next) {
2129     int nk = cg_worklist->at(next);
2130     if (ptnode_adr(nk)->escape_state() == esc_state)
2131       worklist->push(nk);
2132   }
2133   // mark all reachable nodes
2134   while (worklist->length() > 0) {
2135     int pt = worklist->pop();
2136     PointsToNode* ptn = ptnode_adr(pt);
2137     if (ptn->node_type() == PointsToNode::JavaObject &&
2138         !is_null_ptr(pt)) {
2139       has_java_obj = true;
2140       if (esc_state > PointsToNode::NoEscape) {
2141         // fields values are unknown if object escapes
2142         add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
2143       }
2144     }
2145     uint e_cnt = ptn->edge_count();
2146     for (uint ei = 0; ei < e_cnt; ei++) {
2147       uint npi = ptn->edge_target(ei);
2148       if (is_null_ptr(npi))
2149         continue;
2150       PointsToNode *np = ptnode_adr(npi);
2151       if (np->escape_state() < esc_state) {
2152         set_escape_state(npi, esc_state);
2153         worklist->push(npi);
2154       }
2155     }
2156   }
2157   // Has not escaping java objects
2158   return has_java_obj && (esc_state < PointsToNode::GlobalEscape);
2159 }
2160 
2161 // Optimize objects compare.
2162 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
2163   assert(OptimizePtrCompare, "sanity");
2164   // Clone returned Set since PointsTo() returns pointer
2165   // to the same structure ConnectionGraph.pt_ptset.
2166   VectorSet ptset1 = *PointsTo(n->in(1));
2167   VectorSet ptset2 = *PointsTo(n->in(2));
2168 
2169   // Check simple cases first.
2170   if (ptset1.Size() == 1) {
2171     uint pt1 = ptset1.getelem();
2172     PointsToNode* ptn1 = ptnode_adr(pt1);
2173     if (ptn1->escape_state() == PointsToNode::NoEscape) {
2174       if (ptset2.Size() == 1 && ptset2.getelem() == pt1) {
2175         // Comparing the same not escaping object.
2176         return _pcmp_eq;
2177       }
2178       Node* obj = ptn1->_node;
2179       // Comparing not escaping allocation.
2180       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
2181           !ptset2.test(pt1)) {
2182         return _pcmp_neq; // This includes nullness check.
2183       }
2184     }
2185   } else if (ptset2.Size() == 1) {
2186     uint pt2 = ptset2.getelem();
2187     PointsToNode* ptn2 = ptnode_adr(pt2);
2188     if (ptn2->escape_state() == PointsToNode::NoEscape) {
2189       Node* obj = ptn2->_node;
2190       // Comparing not escaping allocation.
2191       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
2192           !ptset1.test(pt2)) {
2193         return _pcmp_neq; // This includes nullness check.
2194       }
2195     }
2196   }
2197 
2198   if (!ptset1.disjoint(ptset2)) {
2199     return NULL; // Sets are not disjoint
2200   }
2201 
2202   // Sets are disjoint.
2203   bool set1_has_unknown_ptr = ptset1.test(_phantom_object) != 0;
2204   bool set2_has_unknown_ptr = ptset2.test(_phantom_object) != 0;
2205   bool set1_has_null_ptr   = (ptset1.test(_oop_null) | ptset1.test(_noop_null)) != 0;
2206   bool set2_has_null_ptr   = (ptset2.test(_oop_null) | ptset2.test(_noop_null)) != 0;
2207 
2208   if (set1_has_unknown_ptr && set2_has_null_ptr ||
2209       set2_has_unknown_ptr && set1_has_null_ptr) {
2210     // Check nullness of unknown object.
2211     return NULL;
2212   }
2213 
2214   // Disjointness by itself is not sufficient since
2215   // alias analysis is not complete for escaped objects.
2216   // Disjoint sets are definitely unrelated only when
2217   // at least one set has only not escaping objects.
2218   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
2219     bool has_only_non_escaping_alloc = true;
2220     for (VectorSetI i(&ptset1); i.test(); ++i) {
2221       uint pt = i.elem;
2222       PointsToNode* ptn = ptnode_adr(pt);
2223       Node* obj = ptn->_node;
2224       if (ptn->escape_state() != PointsToNode::NoEscape ||
2225           !(obj->is_Allocate() || obj->is_CallStaticJava())) {
2226         has_only_non_escaping_alloc = false;
2227         break;
2228       }
2229     }
2230     if (has_only_non_escaping_alloc) {
2231       return _pcmp_neq;
2232     }
2233   }
2234   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
2235     bool has_only_non_escaping_alloc = true;
2236     for (VectorSetI i(&ptset2); i.test(); ++i) {
2237       uint pt = i.elem;
2238       PointsToNode* ptn = ptnode_adr(pt);
2239       Node* obj = ptn->_node;
2240       if (ptn->escape_state() != PointsToNode::NoEscape ||
2241           !(obj->is_Allocate() || obj->is_CallStaticJava())) {
2242         has_only_non_escaping_alloc = false;
2243         break;
2244       }
2245     }
2246     if (has_only_non_escaping_alloc) {
2247       return _pcmp_neq;
2248     }
2249   }
2250   return NULL;
2251 }
2252 
2253 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
2254     bool is_arraycopy = false;
2255     switch (call->Opcode()) {
2256 #ifdef ASSERT
2257     case Op_Allocate:
2258     case Op_AllocateArray:
2259     case Op_Lock:
2260     case Op_Unlock:
2261       assert(false, "should be done already");
2262       break;
2263 #endif
2264     case Op_CallLeafNoFP:
2265       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
2266                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
2267       // fall through
2268     case Op_CallLeaf:
2269     {
2270       // Stub calls, objects do not escape but they are not scale replaceable.
2271       // Adjust escape state for outgoing arguments.
2272       const TypeTuple * d = call->tf()->domain();
2273       bool src_has_oops = false;
2274       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2275         const Type* at = d->field_at(i);
2276         Node *arg = call->in(i)->uncast();
2277         const Type *aat = phase->type(arg);
2278         PointsToNode::EscapeState arg_esc = ptnode_adr(arg->_idx)->escape_state();
2279         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
2280             (is_arraycopy || arg_esc < PointsToNode::ArgEscape)) {
2281 #ifdef ASSERT
2282           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2283                  aat->isa_ptr() != NULL, "expecting an Ptr");
2284           if (!(is_arraycopy ||
2285                 call->as_CallLeaf()->_name != NULL &&
2286                 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
2287                  strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
2288           ) {
2289             call->dump();
2290             assert(false, "EA: unexpected CallLeaf");
2291           }
2292 #endif
2293           if (arg_esc < PointsToNode::ArgEscape) {
2294             set_escape_state(arg->_idx, PointsToNode::ArgEscape);
2295             Node* arg_base = arg;
2296             if (arg->is_AddP()) {
2297               //
2298               // The inline_native_clone() case when the arraycopy stub is called
2299               // after the allocation before Initialize and CheckCastPP nodes.
2300               // Or normal arraycopy for object arrays case.
2301               //
2302               // Set AddP's base (Allocate) as not scalar replaceable since
2303               // pointer to the base (with offset) is passed as argument.
2304               //
2305               arg_base = get_addp_base(arg);
2306               set_escape_state(arg_base->_idx, PointsToNode::ArgEscape);
2307             }
2308           }
2309 
2310           bool arg_has_oops = aat->isa_oopptr() &&
2311                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
2312                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
2313           if (i == TypeFunc::Parms) {
2314             src_has_oops = arg_has_oops;
2315           }
2316           //
2317           // src or dst could be j.l.Object when other is basic type array:
2318           //
2319           //   arraycopy(char[],0,Object*,0,size);
2320           //   arraycopy(Object*,0,char[],0,size);
2321           //
2322           // Do nothing special in such cases.
2323           //
2324           if (is_arraycopy && (i > TypeFunc::Parms) &&
2325               src_has_oops && arg_has_oops) {
2326             // Destination object's fields reference an unknown object.
2327             Node* arg_base = arg;
2328             if (arg->is_AddP()) {
2329               arg_base = get_addp_base(arg);
2330             }
2331             for (VectorSetI s(PointsTo(arg_base)); s.test(); ++s) {
2332               uint ps = s.elem;
2333               set_escape_state(ps, PointsToNode::ArgEscape);
2334               add_edge_from_fields(ps, _phantom_object, Type::OffsetBot);
2335             }
2336             // Conservatively all values in source object fields globally escape
2337             // since we don't know if values in destination object fields
2338             // escape (it could be traced but it is too expensive).
2339             Node* src = call->in(TypeFunc::Parms)->uncast();
2340             Node* src_base = src;
2341             if (src->is_AddP()) {
2342               src_base  = get_addp_base(src);
2343             }
2344             for (VectorSetI s(PointsTo(src_base)); s.test(); ++s) {
2345               uint ps = s.elem;
2346               set_escape_state(ps, PointsToNode::ArgEscape);
2347               // Use OffsetTop to indicate fields global escape.
2348               add_edge_from_fields(ps, _phantom_object, Type::OffsetTop);
2349             }
2350           }
2351         }
2352       }
2353       break;
2354     }
2355 
2356     case Op_CallStaticJava:
2357     // For a static call, we know exactly what method is being called.
2358     // Use bytecode estimator to record the call's escape affects
2359     {
2360       ciMethod *meth = call->as_CallJava()->method();
2361       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
2362       // fall-through if not a Java method or no analyzer information
2363       if (call_analyzer != NULL) {
2364         const TypeTuple * d = call->tf()->domain();
2365         bool copy_dependencies = false;
2366         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2367           const Type* at = d->field_at(i);
2368           int k = i - TypeFunc::Parms;
2369           Node *arg = call->in(i)->uncast();
2370 
2371           if (at->isa_oopptr() != NULL &&
2372               ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
2373 
2374             bool global_escapes = false;
2375             bool fields_escapes = false;
2376             if (!call_analyzer->is_arg_stack(k)) {
2377               // The argument global escapes, mark everything it could point to
2378               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
2379               global_escapes = true;
2380             } else {
2381               if (!call_analyzer->is_arg_local(k)) {
2382                 // The argument itself doesn't escape, but any fields might
2383                 fields_escapes = true;
2384               }
2385               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
2386               copy_dependencies = true;
2387             }
2388 
2389             for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
2390               uint pt = j.elem;
2391               if (global_escapes) {
2392                 // The argument global escapes, mark everything it could point to
2393                 set_escape_state(pt, PointsToNode::GlobalEscape);
2394                 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
2395               } else {
2396                 set_escape_state(pt, PointsToNode::ArgEscape);
2397                 if (fields_escapes) {
2398                   // The argument itself doesn't escape, but any fields might.
2399                   // Use OffsetTop to indicate such case.
2400                   add_edge_from_fields(pt, _phantom_object, Type::OffsetTop);
2401                 }
2402               }
2403             }
2404           }
2405         }
2406         if (copy_dependencies)
2407           call_analyzer->copy_dependencies(_compile->dependencies());
2408         break;
2409       }
2410     }
2411 
2412     default:
2413     // Fall-through here if not a Java method or no analyzer information
2414     // or some other type of call, assume the worst case: all arguments
2415     // globally escape.
2416     {
2417       // adjust escape state for  outgoing arguments
2418       const TypeTuple * d = call->tf()->domain();
2419       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2420         const Type* at = d->field_at(i);
2421         if (at->isa_oopptr() != NULL) {
2422           Node *arg = call->in(i)->uncast();
2423           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
2424           for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
2425             uint pt = j.elem;
2426             set_escape_state(pt, PointsToNode::GlobalEscape);
2427             add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
2428           }
2429         }
2430       }
2431     }
2432   }
2433 }
2434 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
2435   CallNode   *call = resproj->in(0)->as_Call();
2436   uint    call_idx = call->_idx;
2437   uint resproj_idx = resproj->_idx;
2438 
2439   switch (call->Opcode()) {
2440     case Op_Allocate:
2441     {
2442       Node *k = call->in(AllocateNode::KlassNode);
2443       const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
2444       assert(kt != NULL, "TypeKlassPtr  required.");
2445       ciKlass* cik = kt->klass();
2446 
2447       PointsToNode::EscapeState es;
2448       uint edge_to;
2449       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
2450          !cik->is_instance_klass() || // StressReflectiveCode
2451           cik->as_instance_klass()->has_finalizer()) {
2452         es = PointsToNode::GlobalEscape;
2453         edge_to = _phantom_object; // Could not be worse
2454       } else {
2455         es = PointsToNode::NoEscape;
2456         edge_to = call_idx;
2457         assert(ptnode_adr(call_idx)->scalar_replaceable(), "sanity");
2458       }
2459       set_escape_state(call_idx, es);
2460       add_pointsto_edge(resproj_idx, edge_to);
2461       _processed.set(resproj_idx);
2462       break;
2463     }
2464 
2465     case Op_AllocateArray:
2466     {
2467 
2468       Node *k = call->in(AllocateNode::KlassNode);
2469       const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
2470       assert(kt != NULL, "TypeKlassPtr  required.");
2471       ciKlass* cik = kt->klass();
2472 
2473       PointsToNode::EscapeState es;
2474       uint edge_to;
2475       if (!cik->is_array_klass()) { // StressReflectiveCode
2476         es = PointsToNode::GlobalEscape;
2477         edge_to = _phantom_object;
2478       } else {
2479         es = PointsToNode::NoEscape;
2480         edge_to = call_idx;
2481         assert(ptnode_adr(call_idx)->scalar_replaceable(), "sanity");
2482         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
2483         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
2484           // Not scalar replaceable if the length is not constant or too big.
2485           ptnode_adr(call_idx)->set_scalar_replaceable(false);
2486         }
2487       }
2488       set_escape_state(call_idx, es);
2489       add_pointsto_edge(resproj_idx, edge_to);
2490       _processed.set(resproj_idx);
2491       break;
2492     }
2493 
2494     case Op_CallStaticJava:
2495     // For a static call, we know exactly what method is being called.
2496     // Use bytecode estimator to record whether the call's return value escapes
2497     {
2498       bool done = true;
2499       const TypeTuple *r = call->tf()->range();
2500       const Type* ret_type = NULL;
2501 
2502       if (r->cnt() > TypeFunc::Parms)
2503         ret_type = r->field_at(TypeFunc::Parms);
2504 
2505       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
2506       //        _multianewarray functions return a TypeRawPtr.
2507       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
2508         _processed.set(resproj_idx);
2509         break;  // doesn't return a pointer type
2510       }
2511       ciMethod *meth = call->as_CallJava()->method();
2512       const TypeTuple * d = call->tf()->domain();
2513       if (meth == NULL) {
2514         // not a Java method, assume global escape
2515         set_escape_state(call_idx, PointsToNode::GlobalEscape);
2516         add_pointsto_edge(resproj_idx, _phantom_object);
2517       } else {
2518         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
2519         bool copy_dependencies = false;
2520 
2521         if (call_analyzer->is_return_allocated()) {
2522           // Returns a newly allocated unescaped object, simply
2523           // update dependency information.
2524           // Mark it as NoEscape so that objects referenced by
2525           // it's fields will be marked as NoEscape at least.
2526           set_escape_state(call_idx, PointsToNode::NoEscape);
2527           ptnode_adr(call_idx)->set_scalar_replaceable(false);
2528           // Fields values are unknown
2529           add_edge_from_fields(call_idx, _phantom_object, Type::OffsetBot);
2530           add_pointsto_edge(resproj_idx, call_idx);
2531           copy_dependencies = true;
2532         } else {
2533           // determine whether any arguments are returned
2534           set_escape_state(call_idx, PointsToNode::ArgEscape);
2535           bool ret_arg = false;
2536           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2537             const Type* at = d->field_at(i);
2538             if (at->isa_oopptr() != NULL) {
2539               Node *arg = call->in(i)->uncast();
2540 
2541               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2542                 ret_arg = true;
2543                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
2544                 if (arg_esp->node_type() == PointsToNode::UnknownType)
2545                   done = false;
2546                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
2547                   add_pointsto_edge(resproj_idx, arg->_idx);
2548                 else
2549                   add_deferred_edge(resproj_idx, arg->_idx);
2550               }
2551             }
2552           }
2553           if (done) {
2554             copy_dependencies = true;
2555             // is_return_local() is true when only arguments are returned.
2556             if (!ret_arg || !call_analyzer->is_return_local()) {
2557               // Returns unknown object.
2558               add_pointsto_edge(resproj_idx, _phantom_object);
2559             }
2560           }
2561         }
2562         if (copy_dependencies)
2563           call_analyzer->copy_dependencies(_compile->dependencies());
2564       }
2565       if (done)
2566         _processed.set(resproj_idx);
2567       break;
2568     }
2569 
2570     default:
2571     // Some other type of call, assume the worst case that the
2572     // returned value, if any, globally escapes.
2573     {
2574       const TypeTuple *r = call->tf()->range();
2575       if (r->cnt() > TypeFunc::Parms) {
2576         const Type* ret_type = r->field_at(TypeFunc::Parms);
2577 
2578         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
2579         //        _multianewarray functions return a TypeRawPtr.
2580         if (ret_type->isa_ptr() != NULL) {
2581           set_escape_state(call_idx, PointsToNode::GlobalEscape);
2582           add_pointsto_edge(resproj_idx, _phantom_object);
2583         }
2584       }
2585       _processed.set(resproj_idx);
2586     }
2587   }
2588 }
2589 
2590 // Populate Connection Graph with Ideal nodes and create simple
2591 // connection graph edges (do not need to check the node_type of inputs
2592 // or to call PointsTo() to walk the connection graph).
2593 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
2594   if (_processed.test(n->_idx))
2595     return; // No need to redefine node's state.
2596 
2597   if (n->is_Call()) {
2598     // Arguments to allocation and locking don't escape.
2599     if (n->is_Allocate()) {
2600       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
2601       record_for_optimizer(n);
2602     } else if (n->is_Lock() || n->is_Unlock()) {
2603       // Put Lock and Unlock nodes on IGVN worklist to process them during
2604       // the first IGVN optimization when escape information is still available.
2605       record_for_optimizer(n);
2606       _processed.set(n->_idx);
2607     } else {
2608       // Don't mark as processed since call's arguments have to be processed.
2609       PointsToNode::NodeType nt = PointsToNode::UnknownType;
2610       PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
2611 
2612       // Check if a call returns an object.
2613       const TypeTuple *r = n->as_Call()->tf()->range();
2614       if (r->cnt() > TypeFunc::Parms &&
2615           r->field_at(TypeFunc::Parms)->isa_ptr() &&
2616           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
2617         nt = PointsToNode::JavaObject;
2618         if (!n->is_CallStaticJava()) {
2619           // Since the called mathod is statically unknown assume
2620           // the worst case that the returned value globally escapes.
2621           es = PointsToNode::GlobalEscape;
2622         }
2623       }
2624       add_node(n, nt, es, false);
2625     }
2626     return;
2627   }
2628 
2629   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
2630   // ThreadLocal has RawPrt type.
2631   switch (n->Opcode()) {
2632     case Op_AddP:
2633     {
2634       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
2635       break;
2636     }
2637     case Op_CastX2P:
2638     { // "Unsafe" memory access.
2639       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2640       break;
2641     }
2642     case Op_CastPP:
2643     case Op_CheckCastPP:
2644     case Op_EncodeP:
2645     case Op_DecodeN:
2646     {
2647       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2648       int ti = n->in(1)->_idx;
2649       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2650       if (nt == PointsToNode::UnknownType) {
2651         _delayed_worklist.push(n); // Process it later.
2652         break;
2653       } else if (nt == PointsToNode::JavaObject) {
2654         add_pointsto_edge(n->_idx, ti);
2655       } else {
2656         add_deferred_edge(n->_idx, ti);
2657       }
2658       _processed.set(n->_idx);
2659       break;
2660     }
2661     case Op_ConP:
2662     {
2663       // assume all pointer constants globally escape except for null
2664       PointsToNode::EscapeState es;
2665       if (phase->type(n) == TypePtr::NULL_PTR)
2666         es = PointsToNode::NoEscape;
2667       else
2668         es = PointsToNode::GlobalEscape;
2669 
2670       add_node(n, PointsToNode::JavaObject, es, true);
2671       break;
2672     }
2673     case Op_ConN:
2674     {
2675       // assume all narrow oop constants globally escape except for null
2676       PointsToNode::EscapeState es;
2677       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
2678         es = PointsToNode::NoEscape;
2679       else
2680         es = PointsToNode::GlobalEscape;
2681 
2682       add_node(n, PointsToNode::JavaObject, es, true);
2683       break;
2684     }
2685     case Op_CreateEx:
2686     {
2687       // assume that all exception objects globally escape
2688       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2689       break;
2690     }
2691     case Op_LoadKlass:
2692     case Op_LoadNKlass:
2693     {
2694       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2695       break;
2696     }
2697     case Op_LoadP:
2698     case Op_LoadN:
2699     {
2700       const Type *t = phase->type(n);
2701       if (t->make_ptr() == NULL) {
2702         _processed.set(n->_idx);
2703         return;
2704       }
2705       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2706       break;
2707     }
2708     case Op_Parm:
2709     {
2710       _processed.set(n->_idx); // No need to redefine it state.
2711       uint con = n->as_Proj()->_con;
2712       if (con < TypeFunc::Parms)
2713         return;
2714       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
2715       if (t->isa_ptr() == NULL)
2716         return;
2717       // We have to assume all input parameters globally escape
2718       // (Note: passing 'false' since _processed is already set).
2719       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
2720       break;
2721     }
2722     case Op_PartialSubtypeCheck:
2723     { // Produces Null or notNull and is used in CmpP.
2724       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
2725       break;
2726     }
2727     case Op_Phi:
2728     {
2729       const Type *t = n->as_Phi()->type();
2730       if (t->make_ptr() == NULL) {
2731         // nothing to do if not an oop or narrow oop
2732         _processed.set(n->_idx);
2733         return;
2734       }
2735       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2736       uint i;
2737       for (i = 1; i < n->req() ; i++) {
2738         Node* in = n->in(i);
2739         if (in == NULL)
2740           continue;  // ignore NULL
2741         in = in->uncast();
2742         if (in->is_top() || in == n)
2743           continue;  // ignore top or inputs which go back this node
2744         int ti = in->_idx;
2745         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2746         if (nt == PointsToNode::UnknownType) {
2747           break;
2748         } else if (nt == PointsToNode::JavaObject) {
2749           add_pointsto_edge(n->_idx, ti);
2750         } else {
2751           add_deferred_edge(n->_idx, ti);
2752         }
2753       }
2754       if (i >= n->req())
2755         _processed.set(n->_idx);
2756       else
2757         _delayed_worklist.push(n);
2758       break;
2759     }
2760     case Op_Proj:
2761     {
2762       // we are only interested in the oop result projection from a call
2763       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2764         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
2765         assert(r->cnt() > TypeFunc::Parms, "sanity");
2766         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
2767           add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2768           int ti = n->in(0)->_idx;
2769           // The call may not be registered yet (since not all its inputs are registered)
2770           // if this is the projection from backbranch edge of Phi.
2771           if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
2772             process_call_result(n->as_Proj(), phase);
2773           }
2774           if (!_processed.test(n->_idx)) {
2775             // The call's result may need to be processed later if the call
2776             // returns it's argument and the argument is not processed yet.
2777             _delayed_worklist.push(n);
2778           }
2779           break;
2780         }
2781       }
2782       _processed.set(n->_idx);
2783       break;
2784     }
2785     case Op_Return:
2786     {
2787       if( n->req() > TypeFunc::Parms &&
2788           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2789         // Treat Return value as LocalVar with GlobalEscape escape state.
2790         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
2791         int ti = n->in(TypeFunc::Parms)->_idx;
2792         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2793         if (nt == PointsToNode::UnknownType) {
2794           _delayed_worklist.push(n); // Process it later.
2795           break;
2796         } else if (nt == PointsToNode::JavaObject) {
2797           add_pointsto_edge(n->_idx, ti);
2798         } else {
2799           add_deferred_edge(n->_idx, ti);
2800         }
2801       }
2802       _processed.set(n->_idx);
2803       break;
2804     }
2805     case Op_StoreP:
2806     case Op_StoreN:
2807     {
2808       const Type *adr_type = phase->type(n->in(MemNode::Address));
2809       adr_type = adr_type->make_ptr();
2810       if (adr_type->isa_oopptr()) {
2811         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2812       } else {
2813         Node* adr = n->in(MemNode::Address);
2814         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
2815             adr->in(AddPNode::Address)->is_Proj() &&
2816             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2817           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2818           // We are computing a raw address for a store captured
2819           // by an Initialize compute an appropriate address type.
2820           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2821           assert(offs != Type::OffsetBot, "offset must be a constant");
2822         } else {
2823           _processed.set(n->_idx);
2824           return;
2825         }
2826       }
2827       break;
2828     }
2829     case Op_StorePConditional:
2830     case Op_CompareAndSwapP:
2831     case Op_CompareAndSwapN:
2832     {
2833       const Type *adr_type = phase->type(n->in(MemNode::Address));
2834       adr_type = adr_type->make_ptr();
2835       if (adr_type->isa_oopptr()) {
2836         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2837       } else {
2838         _processed.set(n->_idx);
2839         return;
2840       }
2841       break;
2842     }
2843     case Op_AryEq:
2844     case Op_StrComp:
2845     case Op_StrEquals:
2846     case Op_StrIndexOf:
2847     {
2848       // char[] arrays passed to string intrinsics are not scalar replaceable.
2849       add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2850       break;
2851     }
2852     case Op_ThreadLocal:
2853     {
2854       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
2855       break;
2856     }
2857     default:
2858       ;
2859       // nothing to do
2860   }
2861   return;
2862 }
2863 
2864 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
2865   uint n_idx = n->_idx;
2866   assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
2867 
2868   // Don't set processed bit for AddP, LoadP, StoreP since
2869   // they may need more then one pass to process.
2870   // Also don't mark as processed Call nodes since their
2871   // arguments may need more then one pass to process.
2872   if (_processed.test(n_idx))
2873     return; // No need to redefine node's state.
2874 
2875   if (n->is_Call()) {
2876     CallNode *call = n->as_Call();
2877     process_call_arguments(call, phase);
2878     return;
2879   }
2880 
2881   switch (n->Opcode()) {
2882     case Op_AddP:
2883     {
2884       Node *base = get_addp_base(n);
2885       int offset = address_offset(n, phase);
2886       // Create a field edge to this node from everything base could point to.
2887       for( VectorSetI i(PointsTo(base)); i.test(); ++i ) {
2888         uint pt = i.elem;
2889         add_field_edge(pt, n_idx, offset);
2890       }
2891       break;
2892     }
2893     case Op_CastX2P:
2894     {
2895       assert(false, "Op_CastX2P");
2896       break;
2897     }
2898     case Op_CastPP:
2899     case Op_CheckCastPP:
2900     case Op_EncodeP:
2901     case Op_DecodeN:
2902     {
2903       int ti = n->in(1)->_idx;
2904       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
2905       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2906         add_pointsto_edge(n_idx, ti);
2907       } else {
2908         add_deferred_edge(n_idx, ti);
2909       }
2910       _processed.set(n_idx);
2911       break;
2912     }
2913     case Op_ConP:
2914     {
2915       assert(false, "Op_ConP");
2916       break;
2917     }
2918     case Op_ConN:
2919     {
2920       assert(false, "Op_ConN");
2921       break;
2922     }
2923     case Op_CreateEx:
2924     {
2925       assert(false, "Op_CreateEx");
2926       break;
2927     }
2928     case Op_LoadKlass:
2929     case Op_LoadNKlass:
2930     {
2931       assert(false, "Op_LoadKlass");
2932       break;
2933     }
2934     case Op_LoadP:
2935     case Op_LoadN:
2936     {
2937       const Type *t = phase->type(n);
2938 #ifdef ASSERT
2939       if (t->make_ptr() == NULL)
2940         assert(false, "Op_LoadP");
2941 #endif
2942 
2943       Node* adr = n->in(MemNode::Address)->uncast();
2944       Node* adr_base;
2945       if (adr->is_AddP()) {
2946         adr_base = get_addp_base(adr);
2947       } else {
2948         adr_base = adr;
2949       }
2950 
2951       // For everything "adr_base" could point to, create a deferred edge from
2952       // this node to each field with the same offset.
2953       int offset = address_offset(adr, phase);
2954       for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
2955         uint pt = i.elem;
2956         if (adr->is_AddP()) {
2957           // Add field edge if it is missing.
2958           add_field_edge(pt, adr->_idx, offset);
2959         }
2960         add_deferred_edge_to_fields(n_idx, pt, offset);
2961       }
2962       break;
2963     }
2964     case Op_Parm:
2965     {
2966       assert(false, "Op_Parm");
2967       break;
2968     }
2969     case Op_PartialSubtypeCheck:
2970     {
2971       assert(false, "Op_PartialSubtypeCheck");
2972       break;
2973     }
2974     case Op_Phi:
2975     {
2976 #ifdef ASSERT
2977       const Type *t = n->as_Phi()->type();
2978       if (t->make_ptr() == NULL)
2979         assert(false, "Op_Phi");
2980 #endif
2981       for (uint i = 1; i < n->req() ; i++) {
2982         Node* in = n->in(i);
2983         if (in == NULL)
2984           continue;  // ignore NULL
2985         in = in->uncast();
2986         if (in->is_top() || in == n)
2987           continue;  // ignore top or inputs which go back this node
2988         int ti = in->_idx;
2989         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2990         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
2991         if (nt == PointsToNode::JavaObject) {
2992           add_pointsto_edge(n_idx, ti);
2993         } else {
2994           add_deferred_edge(n_idx, ti);
2995         }
2996       }
2997       _processed.set(n_idx);
2998       break;
2999     }
3000     case Op_Proj:
3001     {
3002       // we are only interested in the oop result projection from a call
3003       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
3004         assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
3005                "all nodes should be registered");
3006         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
3007         assert(r->cnt() > TypeFunc::Parms, "sanity");
3008         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
3009           process_call_result(n->as_Proj(), phase);
3010           assert(_processed.test(n_idx), "all call results should be processed");
3011           break;
3012         }
3013       }
3014       assert(false, "Op_Proj");
3015       break;
3016     }
3017     case Op_Return:
3018     {
3019 #ifdef ASSERT
3020       if( n->req() <= TypeFunc::Parms ||
3021           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
3022         assert(false, "Op_Return");
3023       }
3024 #endif
3025       int ti = n->in(TypeFunc::Parms)->_idx;
3026       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
3027       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
3028         add_pointsto_edge(n_idx, ti);
3029       } else {
3030         add_deferred_edge(n_idx, ti);
3031       }
3032       _processed.set(n_idx);
3033       break;
3034     }
3035     case Op_StoreP:
3036     case Op_StoreN:
3037     case Op_StorePConditional:
3038     case Op_CompareAndSwapP:
3039     case Op_CompareAndSwapN:
3040     {
3041       Node *adr = n->in(MemNode::Address);
3042       const Type *adr_type = phase->type(adr)->make_ptr();
3043 #ifdef ASSERT
3044       if (!adr_type->isa_oopptr())
3045         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
3046 #endif
3047 
3048       assert(adr->is_AddP(), "expecting an AddP");
3049       Node *adr_base = get_addp_base(adr);
3050       Node *val = n->in(MemNode::ValueIn)->uncast();
3051       int offset = address_offset(adr, phase);
3052       // For everything "adr_base" could point to, create a deferred edge
3053       // to "val" from each field with the same offset.
3054       for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
3055         uint pt = i.elem;
3056         // Add field edge if it is missing.
3057         add_field_edge(pt, adr->_idx, offset);
3058         add_edge_from_fields(pt, val->_idx, offset);
3059       }
3060       break;
3061     }
3062     case Op_AryEq:
3063     case Op_StrComp:
3064     case Op_StrEquals:
3065     case Op_StrIndexOf:
3066     {
3067       // char[] arrays passed to string intrinsic do not escape but
3068       // they are not scalar replaceable. Adjust escape state for them.
3069       // Start from in(2) edge since in(1) is memory edge.
3070       for (uint i = 2; i < n->req(); i++) {
3071         Node* adr = n->in(i)->uncast();
3072         const Type *at = phase->type(adr);
3073         if (!adr->is_top() && at->isa_ptr()) {
3074           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
3075                  at->isa_ptr() != NULL, "expecting an Ptr");
3076           if (adr->is_AddP()) {
3077             adr = get_addp_base(adr);
3078           }
3079           // Mark as ArgEscape everything "adr" could point to.
3080           set_escape_state(adr->_idx, PointsToNode::ArgEscape);
3081         }
3082       }
3083       _processed.set(n_idx);
3084       break;
3085     }
3086     case Op_ThreadLocal:
3087     {
3088       assert(false, "Op_ThreadLocal");
3089       break;
3090     }
3091     default:
3092       // This method should be called only for EA specific nodes.
3093       ShouldNotReachHere();
3094   }
3095 }
3096 
3097 #ifndef PRODUCT
3098 void ConnectionGraph::dump() {
3099   bool first = true;
3100 
3101   uint size = nodes_size();
3102   for (uint ni = 0; ni < size; ni++) {
3103     PointsToNode *ptn = ptnode_adr(ni);
3104     PointsToNode::NodeType ptn_type = ptn->node_type();
3105 
3106     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
3107       continue;
3108     PointsToNode::EscapeState es = escape_state(ptn->_node);
3109     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
3110       if (first) {
3111         tty->cr();
3112         tty->print("======== Connection graph for ");
3113         _compile->method()->print_short_name();
3114         tty->cr();
3115         first = false;
3116       }
3117       tty->print("%6d ", ni);
3118       ptn->dump();
3119       // Print all locals which reference this allocation
3120       for (uint li = ni; li < size; li++) {
3121         PointsToNode *ptn_loc = ptnode_adr(li);
3122         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
3123         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
3124              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
3125           ptnode_adr(li)->dump(false);
3126         }
3127       }
3128       if (Verbose) {
3129         // Print all fields which reference this allocation
3130         for (uint i = 0; i < ptn->edge_count(); i++) {
3131           uint ei = ptn->edge_target(i);
3132           ptnode_adr(ei)->dump(false);
3133         }
3134       }
3135       tty->cr();
3136     }
3137   }
3138 }
3139 #endif