1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "libadt/vectset.hpp"
  28 #include "memory/allocation.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/escape.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/rootnode.hpp"
  36 
  37 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  38   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  39   _collecting(true),
  40   _verify(false),
  41   _compile(C),
  42   _igvn(igvn),
  43   _node_map(C->comp_arena()) {
  44 
  45   add_java_object(C->top(), PointsToNode::GlobalEscape);
  46   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  47 
  48   // Add ConP(#NULL) and ConN(#NULL) nodes.
  49   Node* oop_null = igvn->zerocon(T_OBJECT);
  50   assert(oop_null->_idx < nodes_size(), "should be created already");
  51   add_java_object(oop_null, PointsToNode::NoEscape);
  52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  53 
  54   if (UseCompressedOops) {
  55     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  56     assert(noop_null->_idx < nodes_size(), "should be created already");
  57     map_ideal_node(noop_null, null_obj);
  58   }
  59   _pcmp_neq = NULL; // Should be initialized
  60   _pcmp_eq  = NULL;
  61 }
  62 
  63 // Connection Graph constuction functions.
  64 
  65 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
  66   PointsToNode* ptadr = _nodes.at(n->_idx);
  67   if (ptadr != NULL) {
  68     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
  69     return;
  70   }
  71   ptadr = new LocalVarNode(n, es);
  72   _nodes.at_put(n->_idx, ptadr);
  73 }
  74 
  75 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
  76   PointsToNode* ptadr = _nodes.at(n->_idx);
  77   if (ptadr != NULL) {
  78     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
  79     return;
  80   }
  81   ptadr = new JavaObjectNode(n, es);
  82   _nodes.at_put(n->_idx, ptadr);
  83 }
  84 
  85 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
  86   PointsToNode* ptadr = _nodes.at(n->_idx);
  87   if (ptadr != NULL) {
  88     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
  89     return;
  90   }
  91   bool is_oop = is_oop_field(n, offset);
  92   FieldNode* field = new FieldNode(n, es, offset, is_oop);
  93   _nodes.at_put(n->_idx, field);
  94 }
  95 
  96 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
  97                                     PointsToNode* src, PointsToNode* dst) {
  98   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
  99   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
 100   PointsToNode* ptadr = _nodes.at(n->_idx);
 101   if (ptadr != NULL) {
 102     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
 103     return;
 104   }
 105   ptadr = new ArraycopyNode(n, es);
 106   _nodes.at_put(n->_idx, ptadr);
 107   // Add edge from arraycopy node to source object.
 108   (void)add_edge(ptadr, src);
 109   src->set_arraycopy_src();
 110   // Add edge from destination object to arraycopy node.
 111   (void)add_edge(dst, ptadr);
 112   dst->set_arraycopy_dst();
 113 }
 114 
 115 bool ConnectionGraph::is_oop_field(Node* n, int offset) {
 116   const Type* adr_type = n->as_AddP()->bottom_type();
 117   BasicType bt = T_INT;
 118   if (offset == Type::OffsetBot) {
 119     // Check only oop fields.
 120     if (!adr_type->isa_aryptr() ||
 121         (adr_type->isa_aryptr()->klass() == NULL) ||
 122          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
 123       // OffsetBot is used to reference array's element. Ignore first AddP.
 124       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
 125         bt = T_OBJECT;
 126       }
 127     }
 128   } else if (offset != oopDesc::klass_offset_in_bytes()) {
 129     if (adr_type->isa_instptr()) {
 130       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
 131       if (field != NULL) {
 132         bt = field->layout_type();
 133       } else {
 134         // Ignore non field load (for example, klass load)
 135       }
 136     } else if (adr_type->isa_aryptr()) {
 137       if (offset == arrayOopDesc::length_offset_in_bytes()) {
 138         // Ignore array length load.
 139       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
 140         // Ignore first AddP.
 141       } else {
 142         const Type* elemtype = adr_type->isa_aryptr()->elem();
 143         bt = elemtype->array_element_basic_type();
 144       }
 145     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
 146       // Allocation initialization, ThreadLocal field access, unsafe access
 147       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 148         int opcode = n->fast_out(i)->Opcode();
 149         if (opcode == Op_StoreP || opcode == Op_LoadP ||
 150             opcode == Op_StoreN || opcode == Op_LoadN) {
 151           bt = T_OBJECT;
 152         }
 153       }
 154     }
 155   }
 156   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
 157 }
 158 
 159 // Add all references to JavaObject node by walking over all uses.
 160 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj,
 161                                             bool populate_worklist) {
 162   int new_edges = 0;
 163   if (populate_worklist) {
 164     // Populate _worklist by uses of jobj's uses.
 165     uint count = jobj->use_count();
 166     for (uint i = 0; i < count; i++) {
 167       PointsToNode* use = jobj->use(i);
 168       if (use->is_Arraycopy())
 169         continue;
 170 
 171       add_uses_to_worklist(use);
 172       if (use->is_Field() && use->as_Field()->is_oop()) {
 173         // Put on worklist all field's uses (loads) and
 174         // related field nodes (same base and offset).
 175         add_field_uses_to_worklist(use->as_Field());
 176       }
 177     }
 178   }
 179 
 180   while(_worklist.length() > 0) {
 181     PointsToNode* use = _worklist.pop();
 182 
 183     if (PointsToNode::is_base_use(use)) {
 184       // Add reference from jobj to field and from field to jobj (field's base).
 185       use = PointsToNode::get_use_node(use)->as_Field();
 186       if (add_base(use->as_Field(), jobj))
 187         new_edges++;
 188       continue;
 189     }
 190     assert(!use->is_JavaObject(), "sanity");
 191 
 192     if (use->is_Arraycopy()) {
 193       if (jobj == null_obj) // NULL object does not have field edges
 194         continue;
 195 
 196       // Added edge from Arraycopy node to arraycopy's source java object
 197       if (add_edge(use, jobj)) {
 198         jobj->set_arraycopy_src();
 199         new_edges++;
 200       }
 201       // and stop here.
 202       continue;
 203     }
 204 
 205     if (!add_edge(use, jobj))
 206       continue; // No new edge added, there was such edge already.
 207 
 208     new_edges++;
 209 
 210     if (use->is_LocalVar()) {
 211       add_uses_to_worklist(use);
 212       if (use->arraycopy_dst()) {
 213         uint ecnt = use->edge_count();
 214         for (uint j = 0; j < ecnt; j++) {
 215           PointsToNode* e = use->edge(j);
 216           if (e->is_Arraycopy()) {
 217             if (jobj == null_obj) // NULL object does not have field edges
 218               continue;
 219             // Add edge from arraycopy's destination java object to Arraycopy node.
 220             if (add_edge(jobj, e)) {
 221               new_edges++;
 222               jobj->set_arraycopy_dst();
 223             }
 224           }
 225         }
 226       }
 227     } else {
 228       // Added new edge to stored in field values.
 229       // Put on worklist all field's uses (loads) and
 230       // related field nodes (same base and offset).
 231       add_field_uses_to_worklist(use->as_Field());
 232     }
 233   }
 234   return new_edges;
 235 }
 236 
 237 // Put on worklist all related field nodes.
 238 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
 239   assert(field->is_oop(), "sanity");
 240   int offset = field->offset();
 241   add_uses_to_worklist(field);
 242 
 243   // Loop over all bases of this field and push on worklist Field nodes
 244   // with the same offset and base (since they may reference the same field).
 245   uint bcnt = field->base_count();
 246   for (uint i = 0; i < bcnt; i++) {
 247     PointsToNode* base = field->base(i);
 248     add_fields_to_worklist(field, base);
 249 
 250     // Check if the base was source object of arraycopy and go over arraycopy's
 251     // destination objects since values stored to a field of source object are
 252     // accessable by uses (loads) of fields of destination objects.
 253     if (base->arraycopy_src()) {
 254       uint ucnt = base->use_count();
 255       for (uint j = 0; j < ucnt; j++) {
 256         PointsToNode* arycp = base->use(j);
 257         if (arycp->is_Arraycopy()) {
 258           uint acnt = arycp->use_count();
 259           for (uint j = 0; j < acnt; j++) {
 260             PointsToNode* abase = arycp->use(j);
 261             if (abase->arraycopy_dst() && abase != base) {
 262               // Look for the same arracopy reference.
 263               add_fields_to_worklist(field, abase);
 264             }
 265           }
 266         }
 267       }
 268     }
 269   }
 270 }
 271 
 272 // Put on worklist all related field nodes.
 273 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
 274   int offset = field->offset();
 275   if (base->is_LocalVar()) {
 276     uint fcnt = base->use_count();
 277     for (uint j = 0; j < fcnt; j++) {
 278       PointsToNode* f = base->use(j);
 279       if (PointsToNode::is_base_use(f)) { // Field
 280         f = PointsToNode::get_use_node(f);
 281         if (f == field || !f->as_Field()->is_oop())
 282           continue;
 283         int offs = f->as_Field()->offset();
 284         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
 285           add_to_worklist(f);
 286         }
 287       }
 288     }
 289   } else {
 290     assert(base->is_JavaObject(), "sanity");
 291     if (// Skip phantom_object since it is only used to indicate that
 292         // this field's content globally escapes.
 293         (base != phantom_obj) &&
 294         // NULL object node does not have fields.
 295         (base != null_obj)) {
 296       uint fcnt = base->edge_count();
 297       for (uint j = 0; j < fcnt; j++) {
 298         PointsToNode* f = base->edge(j);
 299         // Skip arraycopy edge since store to destination object field
 300         // does not update value in source object field.
 301         if (f->is_Arraycopy()) {
 302           assert(base->arraycopy_dst(), "sanity");
 303           continue;
 304         }
 305         if (f == field || !f->as_Field()->is_oop())
 306           continue;
 307         int offs = f->as_Field()->offset();
 308         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
 309           add_to_worklist(f);
 310         }
 311       }
 312     }
 313   }
 314 }
 315 
 316 // Returns unique pointed java object or NULL.
 317 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
 318   assert(!_collecting, "should not call when contructed graph");
 319 
 320   // If the node was created after the escape computation we can't answer.
 321   uint idx = n->_idx;
 322   if (idx >= nodes_size())
 323     return NULL;
 324 
 325   PointsToNode* ptn = ptnode_adr(idx);
 326   if (ptn->is_JavaObject()) {
 327     return ptn->as_JavaObject();
 328   }
 329 
 330   assert(ptn->is_LocalVar(), "sanity");
 331   // Check all java objects it points to.
 332   uint count = ptn->edge_count();
 333   JavaObjectNode* jobj = NULL;
 334   for (uint i = 0; i < count; i++) {
 335     PointsToNode* e = ptn->edge(i);
 336     if (e->is_JavaObject()) {
 337       if (jobj == NULL) {
 338         jobj = e->as_JavaObject();
 339       } else if (jobj != e) {
 340         return NULL;
 341       }
 342     }
 343   }
 344   return jobj;
 345 }
 346 
 347 // Return true if nodes points only to non-escaped allocations.
 348 bool PointsToNode::not_escaped_allocation() {
 349   if (is_JavaObject()) {
 350     Node* n = ideal_node();
 351     if (n->is_Allocate() || n->is_CallStaticJava()) {
 352       return (escape_state() == PointsToNode::NoEscape);
 353     } else {
 354       return false;
 355     }
 356   }
 357   assert(is_LocalVar(), "sanity");
 358   // Check all java objects it points to.
 359   uint count = edge_count();
 360   for (uint i = 0; i < count; i++) {
 361     PointsToNode* e = edge(i);
 362     if (e->is_JavaObject()) {
 363       Node* n = e->ideal_node();
 364       if ((e->escape_state() != PointsToNode::NoEscape) ||
 365           !(n->is_Allocate() || n->is_CallStaticJava())) {
 366         return false;
 367       }
 368     }
 369   }
 370   return true;
 371 }
 372 
 373 // Return true if we know the node does not escape globally.
 374 bool ConnectionGraph::not_global_escape(Node *n) {
 375   assert(!_collecting, "should not call when contructed graph");
 376 
 377   // If the node was created after the escape computation we can't answer.
 378   uint idx = n->_idx;
 379   if (idx >= nodes_size())
 380     return false;
 381 
 382   PointsToNode* ptn = ptnode_adr(idx);
 383   PointsToNode::EscapeState es = ptn->escape_state();
 384 
 385   // If we have already computed a value, return it.
 386   if (es >= PointsToNode::GlobalEscape)
 387     return false;
 388 
 389   if (ptn->is_JavaObject()) {
 390     return (es < PointsToNode::GlobalEscape);
 391   }
 392 
 393   assert(ptn->is_LocalVar(), "sanity");
 394   // Check all java objects it points to.
 395   uint count = ptn->edge_count();
 396   for (uint i = 0; i < count; i++) {
 397     if (ptn->edge(i)->escape_state() >= PointsToNode::GlobalEscape)
 398       return false;
 399   }
 400   return true;
 401 }
 402 
 403 
 404 // Helper functions
 405 
 406 // Return true if this node points to specified node or nodes it points to.
 407 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
 408   if (this->is_JavaObject())
 409     return (this == ptn);
 410 
 411   assert(this->is_LocalVar(), "sanity");
 412 
 413   uint count = this->edge_count();
 414   for (uint i = 0; i < count; i++) {
 415     PointsToNode* e = this->edge(i);
 416     if (e == ptn)
 417       return true;
 418   }
 419   return false;
 420 }
 421 
 422 // Return true if one node points to an other.
 423 bool PointsToNode::meet(PointsToNode* ptn) {
 424   if (this == ptn)
 425     return true;
 426 
 427   if (ptn->is_JavaObject())
 428     return this->points_to(ptn->as_JavaObject());
 429 
 430   if (this->is_JavaObject())
 431     return ptn->points_to(this->as_JavaObject());
 432 
 433   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
 434 
 435   uint this_count = this->edge_count();
 436   uint  ptn_count =  ptn->edge_count();
 437   for (uint i = 0; i < this_count; i++) {
 438     PointsToNode* this_e = this->edge(i);
 439     for (uint j = 0; j < ptn_count; j++) {
 440       PointsToNode* ptn_e = ptn->edge(j);
 441       if (this_e == ptn_e)
 442         return true;
 443     }
 444   }
 445   return false;
 446 }
 447 
 448 #ifdef ASSERT
 449 // Return true if bases points to this java object.
 450 bool FieldNode::has_base(JavaObjectNode* jobj) const {
 451   uint count = this->base_count();
 452   for (uint i = 0; i < count; i++) {
 453     PointsToNode* b = this->base(i);
 454     if (b == jobj)
 455       return true;
 456   }
 457   return false;
 458 }
 459 #endif
 460 
 461 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
 462   const Type *adr_type = phase->type(adr);
 463   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
 464       adr->in(AddPNode::Address)->is_Proj() &&
 465       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
 466     // We are computing a raw address for a store captured by an Initialize
 467     // compute an appropriate address type. AddP cases #3 and #5 (see below).
 468     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 469     assert(offs != Type::OffsetBot ||
 470            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
 471            "offset must be a constant or it is initialization of array");
 472     return offs;
 473   }
 474   const TypePtr *t_ptr = adr_type->isa_ptr();
 475   assert(t_ptr != NULL, "must be a pointer type");
 476   return t_ptr->offset();
 477 }
 478 
 479 Node* ConnectionGraph::get_addp_base(Node *addp) {
 480   assert(addp->is_AddP(), "must be AddP");
 481   //
 482   // AddP cases for Base and Address inputs:
 483   // case #1. Direct object's field reference:
 484   //     Allocate
 485   //       |
 486   //     Proj #5 ( oop result )
 487   //       |
 488   //     CheckCastPP (cast to instance type)
 489   //      | |
 490   //     AddP  ( base == address )
 491   //
 492   // case #2. Indirect object's field reference:
 493   //      Phi
 494   //       |
 495   //     CastPP (cast to instance type)
 496   //      | |
 497   //     AddP  ( base == address )
 498   //
 499   // case #3. Raw object's field reference for Initialize node:
 500   //      Allocate
 501   //        |
 502   //      Proj #5 ( oop result )
 503   //  top   |
 504   //     \  |
 505   //     AddP  ( base == top )
 506   //
 507   // case #4. Array's element reference:
 508   //   {CheckCastPP | CastPP}
 509   //     |  | |
 510   //     |  AddP ( array's element offset )
 511   //     |  |
 512   //     AddP ( array's offset )
 513   //
 514   // case #5. Raw object's field reference for arraycopy stub call:
 515   //          The inline_native_clone() case when the arraycopy stub is called
 516   //          after the allocation before Initialize and CheckCastPP nodes.
 517   //      Allocate
 518   //        |
 519   //      Proj #5 ( oop result )
 520   //       | |
 521   //       AddP  ( base == address )
 522   //
 523   // case #6. Constant Pool, ThreadLocal, CastX2P or
 524   //          Raw object's field reference:
 525   //      {ConP, ThreadLocal, CastX2P, raw Load}
 526   //  top   |
 527   //     \  |
 528   //     AddP  ( base == top )
 529   //
 530   // case #7. Klass's field reference.
 531   //      LoadKlass
 532   //       | |
 533   //       AddP  ( base == address )
 534   //
 535   // case #8. narrow Klass's field reference.
 536   //      LoadNKlass
 537   //       |
 538   //      DecodeN
 539   //       | |
 540   //       AddP  ( base == address )
 541   //
 542   Node *base = addp->in(AddPNode::Base);
 543   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
 544     base = addp->in(AddPNode::Address);
 545     while (base->is_AddP()) {
 546       // Case #6 (unsafe access) may have several chained AddP nodes.
 547       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
 548       base = base->in(AddPNode::Address);
 549     }
 550     Node* uncast_base = base->uncast();
 551     int opcode = uncast_base->Opcode();
 552     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
 553            opcode == Op_CastX2P || uncast_base->is_DecodeN() ||
 554            (uncast_base->is_Mem() && uncast_base->bottom_type() == TypeRawPtr::NOTNULL) ||
 555            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
 556   }
 557   return base;
 558 }
 559 
 560 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
 561   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
 562 
 563   Node* addp2 = addp->raw_out(0);
 564   if (addp->outcnt() == 1 && addp2->is_AddP() &&
 565       addp2->in(AddPNode::Base) == n &&
 566       addp2->in(AddPNode::Address) == addp) {
 567 
 568     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
 569     //
 570     // Find array's offset to push it on worklist first and
 571     // as result process an array's element offset first (pushed second)
 572     // to avoid CastPP for the array's offset.
 573     // Otherwise the inserted CastPP (LocalVar) will point to what
 574     // the AddP (Field) points to. Which would be wrong since
 575     // the algorithm expects the CastPP has the same point as
 576     // as AddP's base CheckCastPP (LocalVar).
 577     //
 578     //    ArrayAllocation
 579     //     |
 580     //    CheckCastPP
 581     //     |
 582     //    memProj (from ArrayAllocation CheckCastPP)
 583     //     |  ||
 584     //     |  ||   Int (element index)
 585     //     |  ||    |   ConI (log(element size))
 586     //     |  ||    |   /
 587     //     |  ||   LShift
 588     //     |  ||  /
 589     //     |  AddP (array's element offset)
 590     //     |  |
 591     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
 592     //     | / /
 593     //     AddP (array's offset)
 594     //      |
 595     //     Load/Store (memory operation on array's element)
 596     //
 597     return addp2;
 598   }
 599   return NULL;
 600 }
 601 
 602 //
 603 // Adjust the type and inputs of an AddP which computes the
 604 // address of a field of an instance
 605 //
 606 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
 607   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
 608   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
 609   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
 610   if (t == NULL) {
 611     // We are computing a raw address for a store captured by an Initialize
 612     // compute an appropriate address type (cases #3 and #5).
 613     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
 614     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
 615     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
 616     assert(offs != Type::OffsetBot, "offset must be a constant");
 617     t = base_t->add_offset(offs)->is_oopptr();
 618   }
 619   int inst_id =  base_t->instance_id();
 620   assert(!t->is_known_instance() || t->instance_id() == inst_id,
 621                              "old type must be non-instance or match new type");
 622 
 623   // The type 't' could be subclass of 'base_t'.
 624   // As result t->offset() could be large then base_t's size and it will
 625   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
 626   // constructor verifies correctness of the offset.
 627   //
 628   // It could happened on subclass's branch (from the type profiling
 629   // inlining) which was not eliminated during parsing since the exactness
 630   // of the allocation type was not propagated to the subclass type check.
 631   //
 632   // Or the type 't' could be not related to 'base_t' at all.
 633   // It could happened when CHA type is different from MDO type on a dead path
 634   // (for example, from instanceof check) which is not collapsed during parsing.
 635   //
 636   // Do nothing for such AddP node and don't process its users since
 637   // this code branch will go away.
 638   //
 639   if (!t->is_known_instance() &&
 640       !base_t->klass()->is_subtype_of(t->klass())) {
 641      return false; // bail out
 642   }
 643 
 644   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
 645   // Do NOT remove the next line: ensure a new alias index is allocated
 646   // for the instance type. Note: C++ will not remove it since the call
 647   // has side effect.
 648   int alias_idx = _compile->get_alias_index(tinst);
 649   igvn->set_type(addp, tinst);
 650   // record the allocation in the node map
 651   set_map(addp, get_map(base->_idx));
 652 
 653   // Set addp's Base and Address to 'base'.
 654   Node *abase = addp->in(AddPNode::Base);
 655   Node *adr   = addp->in(AddPNode::Address);
 656   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
 657       adr->in(0)->_idx == (uint)inst_id) {
 658     // Skip AddP cases #3 and #5.
 659   } else {
 660     assert(!abase->is_top(), "sanity"); // AddP case #3
 661     if (abase != base) {
 662       igvn->hash_delete(addp);
 663       addp->set_req(AddPNode::Base, base);
 664       if (abase == adr) {
 665         addp->set_req(AddPNode::Address, base);
 666       } else {
 667         // AddP case #4 (adr is array's element offset AddP node)
 668 #ifdef ASSERT
 669         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
 670         assert(adr->is_AddP() && atype != NULL &&
 671                atype->instance_id() == inst_id, "array's element offset should be processed first");
 672 #endif
 673       }
 674       igvn->hash_insert(addp);
 675     }
 676   }
 677   // Put on IGVN worklist since at least addp's type was changed above.
 678   record_for_optimizer(addp);
 679   return true;
 680 }
 681 
 682 //
 683 // Create a new version of orig_phi if necessary. Returns either the newly
 684 // created phi or an existing phi.  Sets create_new to indicate whether a new
 685 // phi was created.  Cache the last newly created phi in the node map.
 686 //
 687 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
 688   Compile *C = _compile;
 689   new_created = false;
 690   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
 691   // nothing to do if orig_phi is bottom memory or matches alias_idx
 692   if (phi_alias_idx == alias_idx) {
 693     return orig_phi;
 694   }
 695   // Have we recently created a Phi for this alias index?
 696   PhiNode *result = get_map_phi(orig_phi->_idx);
 697   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
 698     return result;
 699   }
 700   // Previous check may fail when the same wide memory Phi was split into Phis
 701   // for different memory slices. Search all Phis for this region.
 702   if (result != NULL) {
 703     Node* region = orig_phi->in(0);
 704     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 705       Node* phi = region->fast_out(i);
 706       if (phi->is_Phi() &&
 707           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
 708         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
 709         return phi->as_Phi();
 710       }
 711     }
 712   }
 713   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
 714     if (C->do_escape_analysis() == true && !C->failing()) {
 715       // Retry compilation without escape analysis.
 716       // If this is the first failure, the sentinel string will "stick"
 717       // to the Compile object, and the C2Compiler will see it and retry.
 718       C->record_failure(C2Compiler::retry_no_escape_analysis());
 719     }
 720     return NULL;
 721   }
 722   orig_phi_worklist.append_if_missing(orig_phi);
 723   const TypePtr *atype = C->get_adr_type(alias_idx);
 724   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
 725   C->copy_node_notes_to(result, orig_phi);
 726   igvn->set_type(result, result->bottom_type());
 727   record_for_optimizer(result);
 728 
 729   set_map(orig_phi, result);
 730 
 731   new_created = true;
 732   return result;
 733 }
 734 
 735 //
 736 // Return a new version of Memory Phi "orig_phi" with the inputs having the
 737 // specified alias index.
 738 //
 739 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
 740 
 741   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
 742   Compile *C = _compile;
 743   bool new_phi_created;
 744   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
 745   if (!new_phi_created) {
 746     return result;
 747   }
 748 
 749   GrowableArray<PhiNode *>  phi_list;
 750   GrowableArray<uint>  cur_input;
 751 
 752   PhiNode *phi = orig_phi;
 753   uint idx = 1;
 754   bool finished = false;
 755   while(!finished) {
 756     while (idx < phi->req()) {
 757       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
 758       if (mem != NULL && mem->is_Phi()) {
 759         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
 760         if (new_phi_created) {
 761           // found an phi for which we created a new split, push current one on worklist and begin
 762           // processing new one
 763           phi_list.push(phi);
 764           cur_input.push(idx);
 765           phi = mem->as_Phi();
 766           result = newphi;
 767           idx = 1;
 768           continue;
 769         } else {
 770           mem = newphi;
 771         }
 772       }
 773       if (C->failing()) {
 774         return NULL;
 775       }
 776       result->set_req(idx++, mem);
 777     }
 778 #ifdef ASSERT
 779     // verify that the new Phi has an input for each input of the original
 780     assert( phi->req() == result->req(), "must have same number of inputs.");
 781     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
 782 #endif
 783     // Check if all new phi's inputs have specified alias index.
 784     // Otherwise use old phi.
 785     for (uint i = 1; i < phi->req(); i++) {
 786       Node* in = result->in(i);
 787       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
 788     }
 789     // we have finished processing a Phi, see if there are any more to do
 790     finished = (phi_list.length() == 0 );
 791     if (!finished) {
 792       phi = phi_list.pop();
 793       idx = cur_input.pop();
 794       PhiNode *prev_result = get_map_phi(phi->_idx);
 795       prev_result->set_req(idx++, result);
 796       result = prev_result;
 797     }
 798   }
 799   return result;
 800 }
 801 
 802 
 803 //
 804 // The next methods are derived from methods in MemNode.
 805 //
 806 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
 807   Node *mem = mmem;
 808   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 809   // means an array I have not precisely typed yet.  Do not do any
 810   // alias stuff with it any time soon.
 811   if (toop->base() != Type::AnyPtr &&
 812       !(toop->klass() != NULL &&
 813         toop->klass()->is_java_lang_Object() &&
 814         toop->offset() == Type::OffsetBot)) {
 815     mem = mmem->memory_at(alias_idx);
 816     // Update input if it is progress over what we have now
 817   }
 818   return mem;
 819 }
 820 
 821 //
 822 // Move memory users to their memory slices.
 823 //
 824 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *igvn) {
 825   Compile* C = _compile;
 826 
 827   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
 828   assert(tp != NULL, "ptr type");
 829   int alias_idx = C->get_alias_index(tp);
 830   int general_idx = C->get_general_index(alias_idx);
 831 
 832   // Move users first
 833   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 834     Node* use = n->fast_out(i);
 835     if (use->is_MergeMem()) {
 836       MergeMemNode* mmem = use->as_MergeMem();
 837       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
 838       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
 839         continue; // Nothing to do
 840       }
 841       // Replace previous general reference to mem node.
 842       uint orig_uniq = C->unique();
 843       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 844       assert(orig_uniq == C->unique(), "no new nodes");
 845       mmem->set_memory_at(general_idx, m);
 846       --imax;
 847       --i;
 848     } else if (use->is_MemBar()) {
 849       assert(!use->is_Initialize(), "initializing stores should not be moved");
 850       if (use->req() > MemBarNode::Precedent &&
 851           use->in(MemBarNode::Precedent) == n) {
 852         // Don't move related membars.
 853         record_for_optimizer(use);
 854         continue;
 855       }
 856       tp = use->as_MemBar()->adr_type()->isa_ptr();
 857       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
 858           alias_idx == general_idx) {
 859         continue; // Nothing to do
 860       }
 861       // Move to general memory slice.
 862       uint orig_uniq = C->unique();
 863       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 864       assert(orig_uniq == C->unique(), "no new nodes");
 865       igvn->hash_delete(use);
 866       imax -= use->replace_edge(n, m);
 867       igvn->hash_insert(use);
 868       record_for_optimizer(use);
 869       --i;
 870 #ifdef ASSERT
 871     } else if (use->is_Mem()) {
 872       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
 873         // Don't move related cardmark.
 874         continue;
 875       }
 876       // Memory nodes should have new memory input.
 877       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
 878       assert(tp != NULL, "ptr type");
 879       int idx = C->get_alias_index(tp);
 880       assert(get_map(use->_idx) != NULL || idx == alias_idx,
 881              "Following memory nodes should have new memory input or be on the same memory slice");
 882     } else if (use->is_Phi()) {
 883       // Phi nodes should be split and moved already.
 884       tp = use->as_Phi()->adr_type()->isa_ptr();
 885       assert(tp != NULL, "ptr type");
 886       int idx = C->get_alias_index(tp);
 887       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
 888     } else {
 889       use->dump();
 890       assert(false, "should not be here");
 891 #endif
 892     }
 893   }
 894 }
 895 
 896 //
 897 // Search memory chain of "mem" to find a MemNode whose address
 898 // is the specified alias index.
 899 //
 900 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
 901   if (orig_mem == NULL)
 902     return orig_mem;
 903   Compile* C = phase->C;
 904   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
 905   bool is_instance = (toop != NULL) && toop->is_known_instance();
 906   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 907   Node *prev = NULL;
 908   Node *result = orig_mem;
 909   while (prev != result) {
 910     prev = result;
 911     if (result == start_mem)
 912       break;  // hit one of our sentinels
 913     if (result->is_Mem()) {
 914       const Type *at = phase->type(result->in(MemNode::Address));
 915       if (at == Type::TOP)
 916         break; // Dead
 917       assert (at->isa_ptr() != NULL, "pointer type required.");
 918       int idx = C->get_alias_index(at->is_ptr());
 919       if (idx == alias_idx)
 920         break; // Found
 921       if (!is_instance && (at->isa_oopptr() == NULL ||
 922                            !at->is_oopptr()->is_known_instance())) {
 923         break; // Do not skip store to general memory slice.
 924       }
 925       result = result->in(MemNode::Memory);
 926     }
 927     if (!is_instance)
 928       continue;  // don't search further for non-instance types
 929     // skip over a call which does not affect this memory slice
 930     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 931       Node *proj_in = result->in(0);
 932       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
 933         break;  // hit one of our sentinels
 934       } else if (proj_in->is_Call()) {
 935         CallNode *call = proj_in->as_Call();
 936         if (!call->may_modify(toop, phase)) {
 937           result = call->in(TypeFunc::Memory);
 938         }
 939       } else if (proj_in->is_Initialize()) {
 940         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 941         // Stop if this is the initialization for the object instance which
 942         // which contains this memory slice, otherwise skip over it.
 943         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
 944           result = proj_in->in(TypeFunc::Memory);
 945         }
 946       } else if (proj_in->is_MemBar()) {
 947         result = proj_in->in(TypeFunc::Memory);
 948       }
 949     } else if (result->is_MergeMem()) {
 950       MergeMemNode *mmem = result->as_MergeMem();
 951       result = step_through_mergemem(mmem, alias_idx, toop);
 952       if (result == mmem->base_memory()) {
 953         // Didn't find instance memory, search through general slice recursively.
 954         result = mmem->memory_at(C->get_general_index(alias_idx));
 955         result = find_inst_mem(result, alias_idx, orig_phis, phase);
 956         if (C->failing()) {
 957           return NULL;
 958         }
 959         mmem->set_memory_at(alias_idx, result);
 960       }
 961     } else if (result->is_Phi() &&
 962                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
 963       Node *un = result->as_Phi()->unique_input(phase);
 964       if (un != NULL) {
 965         orig_phis.append_if_missing(result->as_Phi());
 966         result = un;
 967       } else {
 968         break;
 969       }
 970     } else if (result->is_ClearArray()) {
 971       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
 972         // Can not bypass initialization of the instance
 973         // we are looking for.
 974         break;
 975       }
 976       // Otherwise skip it (the call updated 'result' value).
 977     } else if (result->Opcode() == Op_SCMemProj) {
 978       assert(result->in(0)->is_LoadStore(), "sanity");
 979       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
 980       if (at != Type::TOP) {
 981         assert (at->isa_ptr() != NULL, "pointer type required.");
 982         int idx = C->get_alias_index(at->is_ptr());
 983         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
 984         break;
 985       }
 986       result = result->in(0)->in(MemNode::Memory);
 987     }
 988   }
 989   if (result->is_Phi()) {
 990     PhiNode *mphi = result->as_Phi();
 991     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 992     const TypePtr *t = mphi->adr_type();
 993     if (!is_instance) {
 994       // Push all non-instance Phis on the orig_phis worklist to update inputs
 995       // during Phase 4 if needed.
 996       orig_phis.append_if_missing(mphi);
 997     } else if (C->get_alias_index(t) != alias_idx) {
 998       // Create a new Phi with the specified alias index type.
 999       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
1000     }
1001   }
1002   // the result is either MemNode, PhiNode, InitializeNode.
1003   return result;
1004 }
1005 
1006 //
1007 //  Convert the types of unescaped object to instance types where possible,
1008 //  propagate the new type information through the graph, and update memory
1009 //  edges and MergeMem inputs to reflect the new type.
1010 //
1011 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
1012 //  The processing is done in 4 phases:
1013 //
1014 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
1015 //            types for the CheckCastPP for allocations where possible.
1016 //            Propagate the the new types through users as follows:
1017 //               casts and Phi:  push users on alloc_worklist
1018 //               AddP:  cast Base and Address inputs to the instance type
1019 //                      push any AddP users on alloc_worklist and push any memnode
1020 //                      users onto memnode_worklist.
1021 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1022 //            search the Memory chain for a store with the appropriate type
1023 //            address type.  If a Phi is found, create a new version with
1024 //            the appropriate memory slices from each of the Phi inputs.
1025 //            For stores, process the users as follows:
1026 //               MemNode:  push on memnode_worklist
1027 //               MergeMem: push on mergemem_worklist
1028 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
1029 //            moving the first node encountered of each  instance type to the
1030 //            the input corresponding to its alias index.
1031 //            appropriate memory slice.
1032 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
1033 //
1034 // In the following example, the CheckCastPP nodes are the cast of allocation
1035 // results and the allocation of node 29 is unescaped and eligible to be an
1036 // instance type.
1037 //
1038 // We start with:
1039 //
1040 //     7 Parm #memory
1041 //    10  ConI  "12"
1042 //    19  CheckCastPP   "Foo"
1043 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
1044 //    29  CheckCastPP   "Foo"
1045 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
1046 //
1047 //    40  StoreP  25   7  20   ... alias_index=4
1048 //    50  StoreP  35  40  30   ... alias_index=4
1049 //    60  StoreP  45  50  20   ... alias_index=4
1050 //    70  LoadP    _  60  30   ... alias_index=4
1051 //    80  Phi     75  50  60   Memory alias_index=4
1052 //    90  LoadP    _  80  30   ... alias_index=4
1053 //   100  LoadP    _  80  20   ... alias_index=4
1054 //
1055 //
1056 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
1057 // and creating a new alias index for node 30.  This gives:
1058 //
1059 //     7 Parm #memory
1060 //    10  ConI  "12"
1061 //    19  CheckCastPP   "Foo"
1062 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
1063 //    29  CheckCastPP   "Foo"  iid=24
1064 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
1065 //
1066 //    40  StoreP  25   7  20   ... alias_index=4
1067 //    50  StoreP  35  40  30   ... alias_index=6
1068 //    60  StoreP  45  50  20   ... alias_index=4
1069 //    70  LoadP    _  60  30   ... alias_index=6
1070 //    80  Phi     75  50  60   Memory alias_index=4
1071 //    90  LoadP    _  80  30   ... alias_index=6
1072 //   100  LoadP    _  80  20   ... alias_index=4
1073 //
1074 // In phase 2, new memory inputs are computed for the loads and stores,
1075 // And a new version of the phi is created.  In phase 4, the inputs to
1076 // node 80 are updated and then the memory nodes are updated with the
1077 // values computed in phase 2.  This results in:
1078 //
1079 //     7 Parm #memory
1080 //    10  ConI  "12"
1081 //    19  CheckCastPP   "Foo"
1082 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
1083 //    29  CheckCastPP   "Foo"  iid=24
1084 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
1085 //
1086 //    40  StoreP  25  7   20   ... alias_index=4
1087 //    50  StoreP  35  7   30   ... alias_index=6
1088 //    60  StoreP  45  40  20   ... alias_index=4
1089 //    70  LoadP    _  50  30   ... alias_index=6
1090 //    80  Phi     75  40  60   Memory alias_index=4
1091 //   120  Phi     75  50  50   Memory alias_index=6
1092 //    90  LoadP    _ 120  30   ... alias_index=6
1093 //   100  LoadP    _  80  20   ... alias_index=4
1094 //
1095 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
1096   GrowableArray<Node *>  memnode_worklist;
1097   GrowableArray<PhiNode *>  orig_phis;
1098 
1099   PhaseIterGVN  *igvn = _igvn;
1100   uint new_index_start = (uint) _compile->num_alias_types();
1101   Arena* arena = Thread::current()->resource_area();
1102   VectorSet visited(arena);
1103 
1104   ideal_nodes.clear(); // Reset for use with set_map/get_map.
1105 
1106   uint unique_old = _compile->unique();
1107 
1108   //  Phase 1:  Process possible allocations from alloc_worklist.
1109   //  Create instance types for the CheckCastPP for allocations where possible.
1110   //
1111   // (Note: don't forget to change the order of the second AddP node on
1112   //  the alloc_worklist if the order of the worklist processing is changed,
1113   //  see the comment in find_second_addp().)
1114   //
1115   while (alloc_worklist.length() != 0) {
1116     Node *n = alloc_worklist.pop();
1117     uint ni = n->_idx;
1118     if (n->is_Call()) {
1119       CallNode *alloc = n->as_Call();
1120       // copy escape information to call node
1121       PointsToNode* ptn = ptnode_adr(alloc->_idx);
1122       PointsToNode::EscapeState es = ptn->escape_state();
1123       // We have an allocation or call which returns a Java object,
1124       // see if it is unescaped.
1125       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
1126         continue;
1127 
1128       // Find CheckCastPP for the allocate or for the return value of a call
1129       n = alloc->result_cast();
1130       if (n == NULL) {            // No uses except Initialize node
1131         if (alloc->is_Allocate()) {
1132           // Set the scalar_replaceable flag for allocation
1133           // so it could be eliminated if it has no uses.
1134           alloc->as_Allocate()->_is_scalar_replaceable = true;
1135         }
1136         continue;
1137       }
1138       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
1139         assert(!alloc->is_Allocate(), "allocation should have unique type");
1140         continue;
1141       }
1142 
1143       // The inline code for Object.clone() casts the allocation result to
1144       // java.lang.Object and then to the actual type of the allocated
1145       // object. Detect this case and use the second cast.
1146       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
1147       // the allocation result is cast to java.lang.Object and then
1148       // to the actual Array type.
1149       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
1150           && (alloc->is_AllocateArray() ||
1151               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
1152         Node *cast2 = NULL;
1153         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1154           Node *use = n->fast_out(i);
1155           if (use->is_CheckCastPP()) {
1156             cast2 = use;
1157             break;
1158           }
1159         }
1160         if (cast2 != NULL) {
1161           n = cast2;
1162         } else {
1163           // Non-scalar replaceable if the allocation type is unknown statically
1164           // (reflection allocation), the object can't be restored during
1165           // deoptimization without precise type.
1166           continue;
1167         }
1168       }
1169       if (alloc->is_Allocate()) {
1170         // Set the scalar_replaceable flag for allocation
1171         // so it could be eliminated.
1172         alloc->as_Allocate()->_is_scalar_replaceable = true;
1173       }
1174       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
1175       // in order for an object to be scalar-replaceable, it must be:
1176       //   - a direct allocation (not a call returning an object)
1177       //   - non-escaping
1178       //   - eligible to be a unique type
1179       //   - not determined to be ineligible by escape analysis
1180       set_map(alloc, n);
1181       set_map(n, alloc);
1182       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
1183       if (t == NULL)
1184         continue;  // not a TypeOopPtr
1185       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
1186       igvn->hash_delete(n);
1187       igvn->set_type(n,  tinst);
1188       n->raise_bottom_type(tinst);
1189       igvn->hash_insert(n);
1190       record_for_optimizer(n);
1191       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
1192 
1193         // First, put on the worklist all Field edges from Connection Graph
1194         // which is more accurate then putting immediate users from Ideal Graph.
1195         for (uint e = 0; e < ptn->edge_count(); e++) {
1196           PointsToNode* tgt = ptn->edge(e);
1197           Node* use = tgt->ideal_node();
1198           assert(tgt->is_Field() && use->is_AddP(),
1199                  "only AddP nodes are Field edges in CG");
1200           if (use->outcnt() > 0) { // Don't process dead nodes
1201             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
1202             if (addp2 != NULL) {
1203               assert(alloc->is_AllocateArray(),"array allocation was expected");
1204               alloc_worklist.append_if_missing(addp2);
1205             }
1206             alloc_worklist.append_if_missing(use);
1207           }
1208         }
1209 
1210         // An allocation may have an Initialize which has raw stores. Scan
1211         // the users of the raw allocation result and push AddP users
1212         // on alloc_worklist.
1213         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
1214         assert (raw_result != NULL, "must have an allocation result");
1215         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
1216           Node *use = raw_result->fast_out(i);
1217           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
1218             Node* addp2 = find_second_addp(use, raw_result);
1219             if (addp2 != NULL) {
1220               assert(alloc->is_AllocateArray(),"array allocation was expected");
1221               alloc_worklist.append_if_missing(addp2);
1222             }
1223             alloc_worklist.append_if_missing(use);
1224           } else if (use->is_MemBar()) {
1225             memnode_worklist.append_if_missing(use);
1226           }
1227         }
1228       }
1229     } else if (n->is_AddP()) {
1230       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
1231       if (jobj == NULL || jobj == phantom_obj) {
1232 #ifdef ASSERT
1233         ptnode_adr(get_addp_base(n)->_idx)->dump();
1234         ptnode_adr(n->_idx)->dump();
1235         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
1236 #endif
1237         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
1238         return;
1239       }
1240       Node *base = get_map(jobj->idx());  // CheckCastPP node
1241       if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
1242     } else if (n->is_Phi() ||
1243                n->is_CheckCastPP() ||
1244                n->is_EncodeP() ||
1245                n->is_DecodeN() ||
1246                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
1247       if (visited.test_set(n->_idx)) {
1248         assert(n->is_Phi(), "loops only through Phi's");
1249         continue;  // already processed
1250       }
1251       JavaObjectNode* jobj = unique_java_object(n);
1252       if (jobj == NULL || jobj == phantom_obj) {
1253 #ifdef ASSERT
1254         ptnode_adr(n->_idx)->dump();
1255         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
1256 #endif
1257         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
1258         return;
1259       } else {
1260         Node *val = get_map(jobj->idx());   // CheckCastPP node
1261         TypeNode *tn = n->as_Type();
1262         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
1263         assert(tinst != NULL && tinst->is_known_instance() &&
1264                tinst->instance_id() == jobj->idx() , "instance type expected.");
1265 
1266         const Type *tn_type = igvn->type(tn);
1267         const TypeOopPtr *tn_t;
1268         if (tn_type->isa_narrowoop()) {
1269           tn_t = tn_type->make_ptr()->isa_oopptr();
1270         } else {
1271           tn_t = tn_type->isa_oopptr();
1272         }
1273 
1274         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
1275           if (tn_type->isa_narrowoop()) {
1276             tn_type = tinst->make_narrowoop();
1277           } else {
1278             tn_type = tinst;
1279           }
1280           igvn->hash_delete(tn);
1281           igvn->set_type(tn, tn_type);
1282           tn->set_type(tn_type);
1283           igvn->hash_insert(tn);
1284           record_for_optimizer(n);
1285         } else {
1286           assert(tn_type == TypePtr::NULL_PTR ||
1287                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
1288                  "unexpected type");
1289           continue; // Skip dead path with different type
1290         }
1291       }
1292     } else {
1293       debug_only(n->dump();)
1294       assert(false, "EA: unexpected node");
1295       continue;
1296     }
1297     // push allocation's users on appropriate worklist
1298     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1299       Node *use = n->fast_out(i);
1300       if(use->is_Mem() && use->in(MemNode::Address) == n) {
1301         // Load/store to instance's field
1302         memnode_worklist.append_if_missing(use);
1303       } else if (use->is_MemBar()) {
1304         memnode_worklist.append_if_missing(use);
1305       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
1306         Node* addp2 = find_second_addp(use, n);
1307         if (addp2 != NULL) {
1308           alloc_worklist.append_if_missing(addp2);
1309         }
1310         alloc_worklist.append_if_missing(use);
1311       } else if (use->is_Phi() ||
1312                  use->is_CheckCastPP() ||
1313                  use->is_EncodeP() ||
1314                  use->is_DecodeN() ||
1315                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
1316         alloc_worklist.append_if_missing(use);
1317 #ifdef ASSERT
1318       } else if (use->is_Mem()) {
1319         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
1320       } else if (use->is_MergeMem()) {
1321         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1322       } else if (use->is_SafePoint()) {
1323         // Look for MergeMem nodes for calls which reference unique allocation
1324         // (through CheckCastPP nodes) even for debug info.
1325         Node* m = use->in(TypeFunc::Memory);
1326         if (m->is_MergeMem()) {
1327           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1328         }
1329       } else {
1330         uint op = use->Opcode();
1331         if (!(op == Op_CmpP || op == Op_Conv2B ||
1332               op == Op_CastP2X || op == Op_StoreCM ||
1333               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
1334               op == Op_StrEquals || op == Op_StrIndexOf)) {
1335           n->dump();
1336           use->dump();
1337           assert(false, "EA: missing allocation reference path");
1338         }
1339 #endif
1340       }
1341     }
1342 
1343   }
1344   // New alias types were created in split_AddP().
1345   uint new_index_end = (uint) _compile->num_alias_types();
1346 
1347   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
1348 
1349   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1350   //            compute new values for Memory inputs  (the Memory inputs are not
1351   //            actually updated until phase 4.)
1352   if (memnode_worklist.length() == 0)
1353     return;  // nothing to do
1354 
1355   while (memnode_worklist.length() != 0) {
1356     Node *n = memnode_worklist.pop();
1357     if (visited.test_set(n->_idx))
1358       continue;
1359     if (n->is_Phi() || n->is_ClearArray()) {
1360       // we don't need to do anything, but the users must be pushed
1361     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
1362       // we don't need to do anything, but the users must be pushed
1363       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
1364       if (n == NULL)
1365         continue;
1366     } else {
1367       assert(n->is_Mem(), "memory node required.");
1368       Node *addr = n->in(MemNode::Address);
1369       const Type *addr_t = igvn->type(addr);
1370       if (addr_t == Type::TOP)
1371         continue;
1372       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
1373       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
1374       assert ((uint)alias_idx < new_index_end, "wrong alias index");
1375       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
1376       if (_compile->failing()) {
1377         return;
1378       }
1379       if (mem != n->in(MemNode::Memory)) {
1380         // We delay the memory edge update since we need old one in
1381         // MergeMem code below when instances memory slices are separated.
1382         set_map(n, mem);
1383       }
1384       if (n->is_Load()) {
1385         continue;  // don't push users
1386       } else if (n->is_LoadStore()) {
1387         // get the memory projection
1388         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1389           Node *use = n->fast_out(i);
1390           if (use->Opcode() == Op_SCMemProj) {
1391             n = use;
1392             break;
1393           }
1394         }
1395         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
1396       }
1397     }
1398     // push user on appropriate worklist
1399     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1400       Node *use = n->fast_out(i);
1401       if (use->is_Phi() || use->is_ClearArray()) {
1402         memnode_worklist.append_if_missing(use);
1403       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
1404         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
1405           continue;
1406         memnode_worklist.append_if_missing(use);
1407       } else if (use->is_MemBar()) {
1408         memnode_worklist.append_if_missing(use);
1409 #ifdef ASSERT
1410       } else if(use->is_Mem()) {
1411         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
1412       } else if (use->is_MergeMem()) {
1413         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
1414       } else {
1415         uint op = use->Opcode();
1416         if (!(op == Op_StoreCM ||
1417               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
1418                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
1419               op == Op_AryEq || op == Op_StrComp ||
1420               op == Op_StrEquals || op == Op_StrIndexOf)) {
1421           n->dump();
1422           use->dump();
1423           assert(false, "EA: missing memory path");
1424         }
1425 #endif
1426       }
1427     }
1428   }
1429 
1430   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
1431   //            Walk each memory slice moving the first node encountered of each
1432   //            instance type to the the input corresponding to its alias index.
1433   uint length = _mergemem_worklist.length();
1434   for( uint next = 0; next < length; ++next ) {
1435     MergeMemNode* nmm = _mergemem_worklist.at(next);
1436     assert(!visited.test_set(nmm->_idx), "should not be visited before");
1437     // Note: we don't want to use MergeMemStream here because we only want to
1438     // scan inputs which exist at the start, not ones we add during processing.
1439     // Note 2: MergeMem may already contains instance memory slices added
1440     // during find_inst_mem() call when memory nodes were processed above.
1441     igvn->hash_delete(nmm);
1442     uint nslices = nmm->req();
1443     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
1444       Node* mem = nmm->in(i);
1445       Node* cur = NULL;
1446       if (mem == NULL || mem->is_top())
1447         continue;
1448       // First, update mergemem by moving memory nodes to corresponding slices
1449       // if their type became more precise since this mergemem was created.
1450       while (mem->is_Mem()) {
1451         const Type *at = igvn->type(mem->in(MemNode::Address));
1452         if (at != Type::TOP) {
1453           assert (at->isa_ptr() != NULL, "pointer type required.");
1454           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
1455           if (idx == i) {
1456             if (cur == NULL)
1457               cur = mem;
1458           } else {
1459             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
1460               nmm->set_memory_at(idx, mem);
1461             }
1462           }
1463         }
1464         mem = mem->in(MemNode::Memory);
1465       }
1466       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
1467       // Find any instance of the current type if we haven't encountered
1468       // already a memory slice of the instance along the memory chain.
1469       for (uint ni = new_index_start; ni < new_index_end; ni++) {
1470         if((uint)_compile->get_general_index(ni) == i) {
1471           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
1472           if (nmm->is_empty_memory(m)) {
1473             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
1474             if (_compile->failing()) {
1475               return;
1476             }
1477             nmm->set_memory_at(ni, result);
1478           }
1479         }
1480       }
1481     }
1482     // Find the rest of instances values
1483     for (uint ni = new_index_start; ni < new_index_end; ni++) {
1484       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
1485       Node* result = step_through_mergemem(nmm, ni, tinst);
1486       if (result == nmm->base_memory()) {
1487         // Didn't find instance memory, search through general slice recursively.
1488         result = nmm->memory_at(_compile->get_general_index(ni));
1489         result = find_inst_mem(result, ni, orig_phis, igvn);
1490         if (_compile->failing()) {
1491           return;
1492         }
1493         nmm->set_memory_at(ni, result);
1494       }
1495     }
1496     igvn->hash_insert(nmm);
1497     record_for_optimizer(nmm);
1498   }
1499 
1500   //  Phase 4:  Update the inputs of non-instance memory Phis and
1501   //            the Memory input of memnodes
1502   // First update the inputs of any non-instance Phi's from
1503   // which we split out an instance Phi.  Note we don't have
1504   // to recursively process Phi's encounted on the input memory
1505   // chains as is done in split_memory_phi() since they  will
1506   // also be processed here.
1507   for (int j = 0; j < orig_phis.length(); j++) {
1508     PhiNode *phi = orig_phis.at(j);
1509     int alias_idx = _compile->get_alias_index(phi->adr_type());
1510     igvn->hash_delete(phi);
1511     for (uint i = 1; i < phi->req(); i++) {
1512       Node *mem = phi->in(i);
1513       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
1514       if (_compile->failing()) {
1515         return;
1516       }
1517       if (mem != new_mem) {
1518         phi->set_req(i, new_mem);
1519       }
1520     }
1521     igvn->hash_insert(phi);
1522     record_for_optimizer(phi);
1523   }
1524 
1525   // Update the memory inputs of MemNodes with the value we computed
1526   // in Phase 2 and move stores memory users to corresponding memory slices.
1527 
1528   // Disable memory split verification code until the fix for 6984348.
1529   // Currently it produces false negative results since it does not cover all cases.
1530 #if 0 // ifdef ASSERT
1531   visited.Reset();
1532   Node_Stack old_mems(arena, _compile->unique() >> 2);
1533 #endif
1534   for (uint i = 0; i < ideal_nodes.size(); i++) {
1535     Node*    n = ideal_nodes.at(i);
1536     Node* nmem = get_map(n->_idx);
1537     assert(nmem != NULL, "sanity");
1538     if (n->is_Mem()) {
1539 #if 0 // ifdef ASSERT
1540       Node* old_mem = n->in(MemNode::Memory);
1541       if (!visited.test_set(old_mem->_idx)) {
1542         old_mems.push(old_mem, old_mem->outcnt());
1543       }
1544 #endif
1545       assert(n->in(MemNode::Memory) != nmem, "sanity");
1546       if (!n->is_Load()) {
1547         // Move memory users of a store first.
1548         move_inst_mem(n, orig_phis, igvn);
1549       }
1550       // Now update memory input
1551       igvn->hash_delete(n);
1552       n->set_req(MemNode::Memory, nmem);
1553       igvn->hash_insert(n);
1554       record_for_optimizer(n);
1555     } else {
1556       assert(n->is_Allocate() || n->is_CheckCastPP() ||
1557              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
1558     }
1559   }
1560 #if 0 // ifdef ASSERT
1561   // Verify that memory was split correctly
1562   while (old_mems.is_nonempty()) {
1563     Node* old_mem = old_mems.node();
1564     uint  old_cnt = old_mems.index();
1565     old_mems.pop();
1566     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
1567   }
1568 #endif
1569 }
1570 
1571 bool ConnectionGraph::has_candidates(Compile *C) {
1572   // EA brings benefits only when the code has allocations and/or locks which
1573   // are represented by ideal Macro nodes.
1574   int cnt = C->macro_count();
1575   for( int i=0; i < cnt; i++ ) {
1576     Node *n = C->macro_node(i);
1577     if ( n->is_Allocate() )
1578       return true;
1579     if( n->is_Lock() ) {
1580       Node* obj = n->as_Lock()->obj_node()->uncast();
1581       if( !(obj->is_Parm() || obj->is_Con()) )
1582         return true;
1583     }
1584   }
1585   return false;
1586 }
1587 
1588 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
1589   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
1590 
1591   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
1592   // to create space for them in ConnectionGraph::_nodes[].
1593   Node* oop_null = igvn->zerocon(T_OBJECT);
1594   Node* noop_null = igvn->zerocon(T_NARROWOOP);
1595 
1596   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
1597   // Perform escape analysis
1598   if (congraph->compute_escape()) {
1599     // There are non escaping objects.
1600     C->set_congraph(congraph);
1601   }
1602 
1603   // Cleanup.
1604   if (oop_null->outcnt() == 0)
1605     igvn->hash_delete(oop_null);
1606   if (noop_null->outcnt() == 0)
1607     igvn->hash_delete(noop_null);
1608 }
1609 
1610 bool ConnectionGraph::compute_escape() {
1611   Compile* C = _compile;
1612   PhaseGVN* igvn = _igvn;
1613 
1614   // 1. Populate Connection Graph (CG) with PointsTo nodes.
1615 
1616   ideal_nodes.map(C->unique(), NULL);  // preallocate space
1617 
1618   // Initialize worklist
1619   if (C->root() != NULL) {
1620     ideal_nodes.push(C->root());
1621   }
1622 
1623   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
1624 
1625   Unique_Node_List delayed_worklist;
1626   GrowableArray<Node*> alloc_worklist;
1627   GrowableArray<Node*> ptr_cmp_worklist;
1628   GrowableArray<Node*> storestore_worklist;
1629 
1630   GrowableArray<PointsToNode*>   ptnodes_worklist;
1631   GrowableArray<JavaObjectNode*> java_objects_worklist;
1632   GrowableArray<JavaObjectNode*> non_escaped_worklist;
1633   GrowableArray<FieldNode*>      oop_fields_worklist;
1634 
1635   { Compile::TracePhase t3("buildConnectionGraph", &Phase::_t_buildConnectionGraph, true);
1636 
1637   // Push all useful nodes onto CG list and set their type.
1638   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
1639     Node* n = ideal_nodes.at(next);
1640 
1641     // It is called only once per node since ideal_nodes is Unique_Node list.
1642     build_connection_graph(n, &delayed_worklist, igvn);
1643 
1644     PointsToNode* ptn = ptnode_adr(n->_idx);
1645     if (ptn != NULL) {
1646       ptnodes_worklist.append(ptn);
1647       if (ptn->is_JavaObject()) {
1648         java_objects_worklist.append(ptn->as_JavaObject());
1649         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
1650             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
1651           // Only allocations and java static calls results are interesting.
1652           non_escaped_worklist.append(ptn->as_JavaObject());
1653         }
1654       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
1655         oop_fields_worklist.append(ptn->as_Field());
1656       }
1657     }
1658     if (n->is_MergeMem()) {
1659       // Collect all MergeMem nodes to add memory slices for
1660       // scalar replaceable objects in split_unique_types().
1661       _mergemem_worklist.append(n->as_MergeMem());
1662     } else if (OptimizePtrCompare && n->is_Cmp() &&
1663                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
1664       // Compare pointers nodes
1665       ptr_cmp_worklist.append(n);
1666     } else if (n->is_MemBarStoreStore()) {
1667       // Collect all MemBarStoreStore nodes so that depending on the
1668       // escape status of the associated Allocate node some of them
1669       // may be eliminated.
1670       storestore_worklist.append(n);
1671 #ifdef ASSERT
1672     } else if(n->is_AddP()) {
1673       // Collect address nodes. Use them during stage 3 below
1674       // to build initial connection graph field edges.
1675       addp_worklist.append(n);
1676 #endif
1677     }
1678     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1679       Node* m = n->fast_out(i);   // Get user
1680       ideal_nodes.push(m);
1681     }
1682   }
1683 
1684   if (non_escaped_worklist.length() == 0) {
1685     _collecting = false;
1686     return false; // Nothing to do.
1687   }
1688 
1689   // Add final simple edges.
1690   while(delayed_worklist.size() > 0) {
1691     Node* n = delayed_worklist.pop();
1692     build_connection_graph(n, NULL, igvn);
1693   }
1694 
1695   uint ptnodes_length = ptnodes_worklist.length();
1696 
1697 #ifdef ASSERT
1698   if (VerifyConnectionGraph) {
1699     // Verify that no new simple edges could be created and all
1700     // local vars has edges.
1701     _verify = true;
1702     for (uint next = 0; next < ptnodes_length; ++next) {
1703       PointsToNode* ptn = ptnodes_worklist.at(next);
1704       build_connection_graph(ptn->ideal_node(), NULL, igvn);
1705       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
1706         ptn->dump();
1707         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
1708       }
1709     }
1710     _verify = false;
1711   }
1712 #endif
1713 
1714   // 2. Finish Graph construction.
1715 
1716   // Normally only 1-3 passes needed to build
1717   // Connection Graph depending on graph complexity.
1718   // Observed 8 passes in jvm2008 compiler.compiler.
1719   // Set limit to 20 to catch situation when something
1720   // did go wrong and recompile the method without EA.
1721   // Also limit build time to 30 sec (60 in debug VM).
1722 
1723 #define CG_BUILD_ITER_LIMIT 20
1724 
1725 #ifdef ASSERT
1726 #define CG_BUILD_TIME_LIMIT 60.0
1727 #else
1728 #define CG_BUILD_TIME_LIMIT 30.0
1729 #endif
1730 
1731   int iterations = 0;
1732 
1733   // Propagate GlobalEscape and ArgEscape escape states
1734   // and check that we still have non escaped objects.
1735   // The method pushs on _worklist Field nodes which reference phantom_object.
1736   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1737     _collecting = false;
1738     return false; // Nothing to do.
1739   }
1740 
1741   // Propagate references to all JavaObject nodes.
1742   uint java_objects_length = java_objects_worklist.length();
1743 
1744   elapsedTimer time;
1745   int new_edges = 1;
1746   while ((new_edges > 0) &&
1747         (iterations++   < CG_BUILD_ITER_LIMIT) &&
1748         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1749     time.start();
1750     new_edges = 0;
1751     // Propagate references to phantom_object for nodes pushed on _worklist
1752     // by find_non_escaped_objects().
1753     new_edges += add_java_object_edges(phantom_obj, false);
1754     for (uint next = 0; next < java_objects_length; ++next) {
1755       JavaObjectNode* ptn = java_objects_worklist.at(next);
1756       new_edges += add_java_object_edges(ptn, true);
1757     }
1758     if (new_edges > 0) {
1759       // Update escape states on each iteration if graph was updated.
1760       if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1761         _collecting = false;
1762         return false; // Nothing to do.
1763       }
1764     }
1765     time.stop();
1766   }
1767 
1768   time.start();
1769   // Find fields which have unknown value.
1770   uint fields_length = oop_fields_worklist.length();
1771   for (uint next = 0; next < fields_length; next++) {
1772     FieldNode* field = oop_fields_worklist.at(next);
1773     if (field->edge_count() == 0) {
1774       new_edges += find_field_value(field);
1775     }
1776   }
1777   time.stop();
1778 
1779   while ((new_edges > 0) &&
1780         (iterations++   < CG_BUILD_ITER_LIMIT) &&
1781         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1782     time.start();
1783     new_edges = 0;
1784     // Propagate references to phantom_object for nodes pushed on _worklist
1785     // by previous code.
1786     new_edges += add_java_object_edges(phantom_obj, false);
1787     if (new_edges > 0) {
1788       // Update escape states on each iteration if graph was updated.
1789       if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1790         _collecting = false;
1791         return false; // Nothing to do.
1792       }
1793     }
1794     time.stop();
1795   }
1796 
1797   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
1798       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
1799     assert(false, err_msg("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1800            time.seconds(), iterations, nodes_size(), ptnodes_length));
1801     // Possible infinite build_connection_graph loop,
1802     // bailout (no changes to ideal graph were made).
1803     _collecting = false;
1804     return false;
1805   }
1806 
1807 #ifdef ASSERT
1808   if (Verbose && PrintEscapeAnalysis) {
1809     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1810                   iterations, nodes_size(), ptnodes_length);
1811   }
1812 #endif
1813 
1814 #undef CG_BUILD_ITER_LIMIT
1815 #undef CG_BUILD_TIME_LIMIT
1816 
1817 
1818   // 3. Find fields initialized by NULL for non escaped Allocations.
1819 
1820   uint non_escaped_length = non_escaped_worklist.length();
1821   for (uint next = 0; next < non_escaped_length; next++) {
1822     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1823     PointsToNode::EscapeState es = ptn->escape_state();
1824     assert(es <= PointsToNode::ArgEscape, "sanity");
1825 
1826     if (es == PointsToNode::NoEscape) {
1827       if (find_init_values(ptn, null_obj, igvn) > 0) {
1828         // Adding references to NULL object does not change escape states
1829         // since it does not escape. Also no fields are added to NULL object.
1830         add_java_object_edges(null_obj, false);
1831       }
1832     }
1833     Node* n = ptn->ideal_node();
1834     if (n->is_Allocate()) {
1835       // The object allocated by this Allocate node will never be
1836       // seen by an other thread. Mark it so that when it is
1837       // expanded no MemBarStoreStore is added.
1838       InitializeNode* ini = n->as_Allocate()->initialization();
1839       if (ini != NULL)
1840         ini->set_does_not_escape();
1841     }
1842   }
1843 
1844 #ifdef ASSERT
1845   if (VerifyConnectionGraph) {
1846     uint addp_length = addp_worklist.length();
1847     for (uint next = 0; next < addp_length; ++next ) {
1848       Node* n = addp_worklist.at(next);
1849       FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1850       if (field->is_oop()) {
1851         // Verify that field has all bases
1852         Node* base = get_addp_base(n);
1853         PointsToNode* ptn = ptnode_adr(base->_idx);
1854         if (ptn->is_JavaObject()) {
1855           assert(field->has_base(ptn->as_JavaObject()), "sanity");
1856         } else {
1857           assert(ptn->is_LocalVar(), "sanity");
1858           uint count = ptn->edge_count();
1859           for (uint i = 0; i < count; i++) {
1860             PointsToNode* e = ptn->edge(i);
1861             if (e->is_JavaObject()) {
1862               assert(field->has_base(e->as_JavaObject()), "sanity");
1863             }
1864           }
1865         }
1866         // Verify that all fields have initializing values.
1867         if (field->edge_count() == 0) {
1868           field->dump();
1869           assert(field->edge_count() > 0, "sanity");
1870         }
1871       }
1872     }
1873   }
1874 #endif
1875 
1876   // 4. Adjust scalar_replaceable state of nonescaping objects.
1877 
1878   for (uint next = 0; next < non_escaped_length; next++) {
1879     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1880     if (ptn->escape_state() == PointsToNode::NoEscape &&
1881         ptn->scalar_replaceable()) {
1882       adjust_scalar_replaceable_state(ptn);
1883 
1884       if (ptn->scalar_replaceable()) {
1885         // Push scalar replaceable allocations on alloc_worklist
1886         // for processing in split_unique_types().
1887         alloc_worklist.append(ptn->ideal_node());
1888       }
1889     }
1890   }
1891 
1892 #ifdef ASSERT
1893   if (VerifyConnectionGraph) {
1894     // Verify that graph is complete - no new edges could be added.
1895     new_edges = 0;
1896     for (uint next = 0; next < java_objects_length; ++next) {
1897       JavaObjectNode* ptn = java_objects_worklist.at(next);
1898       new_edges += add_java_object_edges(ptn, true);
1899     }
1900     assert(new_edges == 0, "graph was not complete");
1901 
1902     // Verify that escape state is final.
1903     uint length = non_escaped_worklist.length();
1904     find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1905     assert((non_escaped_length == (uint)non_escaped_worklist.length()) &&
1906            (non_escaped_length == length) &&
1907            (_worklist.length() == 0), "escape state was not final");
1908   }
1909 #endif
1910 
1911   _collecting = false;
1912   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
1913 
1914   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
1915          null_obj->edge_count() == 0 &&
1916          !null_obj->arraycopy_src() &&
1917          !null_obj->arraycopy_dst(), "sanity");
1918 
1919   } // TracePhase t3("buildConnectionGraph")
1920 
1921   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
1922 
1923   if (EliminateLocks && has_non_escaping_obj) {
1924     // Mark locks before changing ideal graph.
1925     int cnt = C->macro_count();
1926     for( int i=0; i < cnt; i++ ) {
1927       Node *n = C->macro_node(i);
1928       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1929         AbstractLockNode* alock = n->as_AbstractLock();
1930         if (!alock->is_non_esc_obj()) {
1931           if (not_global_escape(alock->obj_node())) {
1932             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1933             // The lock could be marked eliminated by lock coarsening
1934             // code during first IGVN before EA. Replace coarsened flag
1935             // to eliminate all associated locks/unlocks.
1936             alock->set_non_esc_obj();
1937           }
1938         }
1939       }
1940     }
1941   }
1942 
1943   if (OptimizePtrCompare && has_non_escaping_obj) {
1944     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1945     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1946     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1947     // Optimize objects compare.
1948     while (ptr_cmp_worklist.length() != 0) {
1949       Node *n = ptr_cmp_worklist.pop();
1950       Node *res = optimize_ptr_compare(n);
1951       if (res != NULL) {
1952 #ifndef PRODUCT
1953         if (PrintOptimizePtrCompare) {
1954           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1955           if (Verbose) {
1956             n->dump(1);
1957           }
1958         }
1959 #endif
1960         _igvn->replace_node(n, res);
1961       }
1962     }
1963     // cleanup
1964     if (_pcmp_neq->outcnt() == 0)
1965       igvn->hash_delete(_pcmp_neq);
1966     if (_pcmp_eq->outcnt()  == 0)
1967       igvn->hash_delete(_pcmp_eq);
1968   }
1969 
1970   // For MemBarStoreStore nodes added in library_call.cpp, check
1971   // escape status of associated AllocateNode and optimize out
1972   // MemBarStoreStore node if the allocated object never escapes.
1973   while (storestore_worklist.length() != 0) {
1974     Node *n = storestore_worklist.pop();
1975     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1976     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1977     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1978     PointsToNode::EscapeState es = ptnode_adr(alloc->_idx)->escape_state();
1979     if (es == PointsToNode::NoEscape || es == PointsToNode::ArgEscape) {
1980       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1981       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1982       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1983 
1984       _igvn->register_new_node_with_optimizer(mb);
1985       _igvn->replace_node(storestore, mb);
1986     }
1987   }
1988 
1989 #ifndef PRODUCT
1990   if (PrintEscapeAnalysis) {
1991     dump(ptnodes_worklist); // Dump ConnectionGraph
1992   }
1993 #endif
1994 
1995   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
1996 #ifdef ASSERT
1997   if (VerifyConnectionGraph) {
1998     uint alloc_length = alloc_worklist.length();
1999     for (uint next = 0; next < alloc_length; ++next) {
2000       Node* n = alloc_worklist.at(next);
2001       PointsToNode* ptn = ptnode_adr(n->_idx);
2002       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
2003     }
2004   }
2005 #endif
2006 
2007   if (has_scalar_replaceable_candidates &&
2008       C->AliasLevel() >= 3 && EliminateAllocations) {
2009 
2010     // Now use the escape information to create unique types for
2011     // scalar replaceable objects.
2012     split_unique_types(alloc_worklist);
2013 
2014     if (C->failing())  return false;
2015 
2016     C->print_method("After Escape Analysis", 2);
2017 
2018 #ifdef ASSERT
2019   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
2020     tty->print("=== No allocations eliminated for ");
2021     C->method()->print_short_name();
2022     if(!EliminateAllocations) {
2023       tty->print(" since EliminateAllocations is off ===");
2024     } else if(!has_scalar_replaceable_candidates) {
2025       tty->print(" since there are no scalar replaceable candidates ===");
2026     } else if(C->AliasLevel() < 3) {
2027       tty->print(" since AliasLevel < 3 ===");
2028     }
2029     tty->cr();
2030 #endif
2031   }
2032   return has_non_escaping_obj;
2033 }
2034 
2035 // Find fields which have unknown value.
2036 int ConnectionGraph::find_field_value(FieldNode* field) {
2037   // Escaped fields should have init value already.
2038   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
2039 
2040   int new_edges = 0;
2041 
2042   uint bcnt = field->base_count();
2043   for (uint i = 0; i < bcnt; i++) {
2044     PointsToNode* base = field->base(i);
2045     if (base->is_JavaObject()) {
2046       // Skip Allocate's fields which will be processed later.
2047       if (base->ideal_node()->is_Allocate())
2048         return 0;
2049       assert(base == null_obj, "only NULL ptr base expected here");
2050     }
2051   }
2052   if (add_edge(field, phantom_obj)) {
2053     // New edge was added
2054     new_edges++;
2055     add_field_uses_to_worklist(field);
2056   }
2057   return new_edges;
2058 }
2059 
2060 // Find fields initializing values for allocations.
2061 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
2062   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2063 
2064   int new_edges = 0;
2065 
2066   Node* alloc = pta->ideal_node();
2067 
2068   if (init_val == phantom_obj) {
2069     // Do nothing for Allocate nodes since its fields values are "known".
2070     if (alloc->is_Allocate())
2071       return 0;
2072 
2073     assert(alloc->as_CallStaticJava(), "sanity");
2074 #ifdef ASSERT
2075     if (alloc->as_CallStaticJava()->method() == NULL) {
2076       const char* name = alloc->as_CallStaticJava()->_name;
2077       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
2078     }
2079 #endif
2080 
2081     // Non-escaped allocation returned from Java or runtime call have
2082     // unknown values in fields.
2083     uint cnt = pta->edge_count();
2084     for (uint i = 0; i < cnt; i++) {
2085       PointsToNode* ptn = pta->edge(i);
2086       if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
2087         if (add_edge(ptn, phantom_obj)) {
2088           // New edge was added
2089           new_edges++;
2090           add_field_uses_to_worklist(ptn->as_Field());
2091         }
2092       }
2093     }
2094     return new_edges;
2095   }
2096 
2097   assert(init_val == null_obj, "sanity");
2098   // Do nothing for Call nodes since its fields values are unknown.
2099   if (!alloc->is_Allocate())
2100     return 0;
2101 
2102   InitializeNode* ini = alloc->as_Allocate()->initialization();
2103 
2104   Compile* C = _compile;
2105   bool visited_bottom_offset = false;
2106   GrowableArray<int> offsets_worklist;
2107 
2108   // Check if a oop field's initializing value is recorded and add
2109   // a corresponding NULL if field's value if it is not recorded.
2110   // Connection Graph does not record a default initialization by NULL
2111   // captured by Initialize node.
2112   //
2113   uint ae_cnt = pta->edge_count();
2114   for (uint ei = 0; ei < ae_cnt; ei++) {
2115 
2116     PointsToNode* ptn = pta->edge(ei); // Field (AddP)
2117     if (!ptn->is_Field() || !ptn->as_Field()->is_oop())
2118       continue; // Not oop field
2119 
2120     int offset = ptn->as_Field()->offset();
2121     if (offset == Type::OffsetBot) {
2122       if (!visited_bottom_offset) {
2123         // OffsetBot is used to reference array's element,
2124         // always add reference to NULL to all Field nodes since we don't
2125         // known which element is referenced.
2126         if (add_edge(ptn, null_obj)) {
2127           // New edge was added
2128           new_edges++;
2129           add_field_uses_to_worklist(ptn->as_Field());
2130           visited_bottom_offset = true;
2131         }
2132       }
2133     } else {
2134       // Check only oop fields.
2135       const Type* adr_type = ptn->ideal_node()->as_AddP()->bottom_type();
2136       if (adr_type->isa_rawptr()) {
2137 #ifdef ASSERT
2138         // Raw pointers are used for initializing stores so skip it
2139         // since it should be recorded already
2140         Node* base = get_addp_base(ptn->ideal_node());
2141         assert(adr_type->isa_rawptr() && base->is_Proj() &&
2142                (base->in(0) == alloc),"unexpected pointer type");
2143 #endif
2144         continue;
2145       }
2146       if (!offsets_worklist.contains(offset)) {
2147         offsets_worklist.append(offset);
2148         Node* value = NULL;
2149         if (ini != NULL) {
2150           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
2151           Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
2152           if (store != NULL && store->is_Store()) {
2153             value = store->in(MemNode::ValueIn);
2154           } else {
2155             // There could be initializing stores which follow allocation.
2156             // For example, a volatile field store is not collected
2157             // by Initialize node.
2158             //
2159             // Need to check for dependent loads to separate such stores from
2160             // stores which follow loads. For now, add initial value NULL so
2161             // that compare pointers optimization works correctly.
2162           }
2163         }
2164         if (value == NULL) {
2165           // A field's initializing value was not recorded. Add NULL.
2166           if (add_edge(ptn, null_obj)) {
2167             // New edge was added
2168             new_edges++;
2169             add_field_uses_to_worklist(ptn->as_Field());
2170           }
2171         }
2172       }
2173     }
2174   }
2175   return new_edges;
2176 }
2177 
2178 // Adjust scalar_replaceable state after Connection Graph is built.
2179 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
2180   // Search for non escaped objects which are not scalar replaceable
2181   // and mark them to propagate the state to referenced objects.
2182 
2183   // 1. An object is not scalar replaceable if the field into which it is
2184   // stored has unknown offset (stored into unknown element of an array).
2185   //
2186   uint count = jobj->use_count();
2187   for (uint i = 0; i < count; i++) {
2188     PointsToNode* use = jobj->use(i);
2189     assert(!use->is_Arraycopy(), "sanity");
2190     if (use->is_Field()) {
2191       FieldNode* field = use->as_Field();
2192       assert(field->is_oop() && field->scalar_replaceable() &&
2193              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
2194       if (field->offset() == Type::OffsetBot) {
2195         jobj->set_scalar_replaceable(false);
2196         return;
2197       }
2198     }
2199     assert(use->is_Field() || use->is_LocalVar(), "sanity");
2200 
2201     // 2. An object is not scalar replaceable if it is merged with other objects.
2202     uint e_count = use->edge_count();
2203     for (uint j = 0; j < e_count; j++) {
2204       PointsToNode* ptn = use->edge(j);
2205       if (ptn->is_JavaObject() && ptn != jobj) {
2206         // Mark all objects.
2207         jobj->set_scalar_replaceable(false);
2208          ptn->set_scalar_replaceable(false);
2209       }
2210     }
2211     if (!jobj->scalar_replaceable()) {
2212       return;
2213     }
2214   }
2215 
2216   count = jobj->edge_count();
2217   for (uint i = 0; i < count; i++) {
2218     // Non escaped object should points only to fields.
2219     FieldNode* field = jobj->edge(i)->as_Field();
2220     int offset = field->as_Field()->offset();
2221 
2222     // 3. An object is not scalar replaceable if it has a field with unknown
2223     // offset (array's element is accessed in loop).
2224     if (offset == Type::OffsetBot) {
2225       jobj->set_scalar_replaceable(false);
2226       return;
2227     }
2228 
2229     // 4. Currently an object is not scalar replaceable if a LoadStore node
2230     // access its field since the field value is unknown after it.
2231     //
2232     Node* n = field->ideal_node();
2233     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2234       if (n->fast_out(i)->is_LoadStore()) {
2235         jobj->set_scalar_replaceable(false);
2236         return;
2237       }
2238     }
2239 
2240     // 5. Or the address may point to more then one object. This may produce
2241     // the false positive result (set not scalar replaceable)
2242     // since the flow-insensitive escape analysis can't separate
2243     // the case when stores overwrite the field's value from the case
2244     // when stores happened on different control branches.
2245     //
2246     // Note: it will disable scalar replacement in some cases:
2247     //
2248     //    Point p[] = new Point[1];
2249     //    p[0] = new Point(); // Will be not scalar replaced
2250     //
2251     // but it will save us from incorrect optimizations in next cases:
2252     //
2253     //    Point p[] = new Point[1];
2254     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
2255     //
2256     uint bcnt = field->base_count();
2257     if (bcnt > 1) {
2258       for (uint i = 0; i < bcnt; i++) {
2259         PointsToNode* base = field->base(i);
2260         // Don't take into account LocalVar nodes which
2261         // may point to only one object which should be also
2262         // this field's base by now.
2263         if (base->is_JavaObject() && base != jobj) {
2264           // Mark all bases.
2265           jobj->set_scalar_replaceable(false);
2266           base->set_scalar_replaceable(false);
2267         }
2268       }
2269     }
2270   }
2271 }
2272 
2273 
2274 // Propagate GlobalEscape and ArgEscape escape states to all nodes
2275 // and check that we still have non escaped java objects.
2276 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
2277                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
2278   GrowableArray<PointsToNode*> escape_worklist;
2279 
2280   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
2281   uint ptnodes_length = ptnodes_worklist.length();
2282   for (uint next = 0; next < ptnodes_length; ++next) {
2283     PointsToNode* ptn = ptnodes_worklist.at(next);
2284     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
2285         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
2286       escape_worklist.push(ptn);
2287     }
2288   }
2289   // Set escape states to referenced nodes (edges list).
2290   while (escape_worklist.length() > 0) {
2291     PointsToNode* ptn = escape_worklist.pop();
2292     PointsToNode::EscapeState es  = ptn->escape_state();
2293     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
2294     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
2295         es >= PointsToNode::ArgEscape) {
2296       // GlobalEscape or ArgEscape state of field means it has unknown value.
2297       if (add_edge(ptn, phantom_obj)) {
2298         // New edge was added
2299         add_field_uses_to_worklist(ptn->as_Field());
2300       }
2301     }
2302     uint cnt = ptn->edge_count();
2303     for (uint i = 0; i < cnt; i++) {
2304       PointsToNode* e = ptn->edge(i);
2305       if (e->is_Arraycopy()) {
2306         assert(ptn->arraycopy_dst(), "sanity");
2307         // Propagate only fields escape state through arraycopy edge.
2308         if (e->fields_escape_state() < field_es) {
2309           set_fields_escape_state(e, field_es);
2310           escape_worklist.push(e);
2311         }
2312       } else if (es >= field_es) {
2313         // fields_escape_state is also set to 'es' if it is less than 'es'.
2314         if (e->escape_state() < es) {
2315           set_escape_state(e, es);
2316           escape_worklist.push(e);
2317         }
2318       } else {
2319         // Propagate field escape state.
2320         bool es_changed = false;
2321         if (e->fields_escape_state() < field_es) {
2322           set_fields_escape_state(e, field_es);
2323           es_changed = true;
2324         }
2325         if ((e->escape_state() < field_es) &&
2326             e->is_Field() && ptn->is_JavaObject() &&
2327             e->as_Field()->is_oop()) {
2328           // Change escape state of referenced fileds.
2329           set_escape_state(e, field_es);
2330           es_changed = true;;
2331         } else if (e->escape_state() < es) {
2332           set_escape_state(e, es);
2333           es_changed = true;;
2334         }
2335         if (es_changed) {
2336           escape_worklist.push(e);
2337         }
2338       }
2339     }
2340   }
2341 
2342   // Remove escaped objects from non_escaped list.
2343   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
2344     JavaObjectNode* ptn = non_escaped_worklist.at(next);
2345     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
2346       non_escaped_worklist.delete_at(next);
2347     }
2348     if (ptn->escape_state() == PointsToNode::NoEscape) {
2349       // Find fields in non-escaped allocations which have unknown value.
2350       find_init_values(ptn, phantom_obj, NULL);
2351     }
2352   }
2353 
2354   return (non_escaped_worklist.length() > 0);
2355 }
2356 
2357 // Optimize objects compare.
2358 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
2359   assert(OptimizePtrCompare, "sanity");
2360 
2361   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
2362   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
2363   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
2364   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
2365 
2366   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
2367   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
2368 
2369   // Check simple cases first.
2370   if (jobj1 != NULL) {
2371     if (jobj1->escape_state() == PointsToNode::NoEscape) {
2372       if (jobj1 == jobj2) {
2373         // Comparing the same not escaping object.
2374         return _pcmp_eq;
2375       }
2376       Node* obj = jobj1->ideal_node();
2377       // Comparing not escaping allocation.
2378       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
2379           !ptn2->points_to(jobj1)) {
2380         return _pcmp_neq; // This includes nullness check.
2381       }
2382     }
2383   }
2384   if (jobj2 != NULL) {
2385     if (jobj2->escape_state() == PointsToNode::NoEscape) {
2386       Node* obj = jobj2->ideal_node();
2387       // Comparing not escaping allocation.
2388       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
2389           !ptn1->points_to(jobj2)) {
2390         return _pcmp_neq; // This includes nullness check.
2391       }
2392     }
2393   }
2394 
2395   if (jobj1 != NULL && jobj1 != phantom_obj &&
2396       jobj2 != NULL && jobj2 != phantom_obj &&
2397       jobj1->ideal_node()->is_Con() &&
2398       jobj2->ideal_node()->is_Con()) {
2399     // Klass or String constants compare. Need to be careful with
2400     // compressed pointers - compare types of ConN and ConP instead of nodes.
2401     const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr();
2402     const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr();
2403     assert(t1 != NULL && t2 != NULL, "sanity");
2404     if (t1->make_ptr() == t2->make_ptr()) {
2405       return _pcmp_eq;
2406     } else {
2407       return _pcmp_neq;
2408     }
2409   }
2410 
2411   if (ptn1->meet(ptn2)) {
2412     return NULL; // Sets are not disjoint
2413   }
2414 
2415   // Sets are disjoint.
2416   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
2417   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
2418   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
2419   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
2420 
2421   if (set1_has_unknown_ptr && set2_has_null_ptr ||
2422       set2_has_unknown_ptr && set1_has_null_ptr) {
2423     // Check nullness of unknown object.
2424     return NULL;
2425   }
2426 
2427   // Disjointness by itself is not sufficient since
2428   // alias analysis is not complete for escaped objects.
2429   // Disjoint sets are definitely unrelated only when
2430   // at least one set has only not escaping allocations.
2431   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
2432     if (ptn1->not_escaped_allocation()) {
2433       return _pcmp_neq;
2434     }
2435   }
2436   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
2437     if (ptn2->not_escaped_allocation()) {
2438       return _pcmp_neq;
2439     }
2440   }
2441   return NULL;
2442 }
2443 
2444 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
2445     bool is_arraycopy = false;
2446     switch (call->Opcode()) {
2447 #ifdef ASSERT
2448     case Op_Allocate:
2449     case Op_AllocateArray:
2450     case Op_Lock:
2451     case Op_Unlock:
2452       assert(false, "should be done already");
2453       break;
2454 #endif
2455     case Op_CallLeafNoFP:
2456       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
2457                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
2458       // fall through
2459     case Op_CallLeaf:
2460     {
2461       // Stub calls, objects do not escape but they are not scale replaceable.
2462       // Adjust escape state for outgoing arguments.
2463       const TypeTuple * d = call->tf()->domain();
2464       bool src_has_oops = false;
2465       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2466         const Type* at = d->field_at(i);
2467         Node *arg = call->in(i);
2468         const Type *aat = phase->type(arg);
2469         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
2470           continue;
2471         if (arg->is_AddP()) {
2472           //
2473           // The inline_native_clone() case when the arraycopy stub is called
2474           // after the allocation before Initialize and CheckCastPP nodes.
2475           // Or normal arraycopy for object arrays case.
2476           //
2477           // Set AddP's base (Allocate) as not scalar replaceable since
2478           // pointer to the base (with offset) is passed as argument.
2479           //
2480           arg = get_addp_base(arg);
2481         }
2482         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2483         assert(arg_ptn != NULL, "should be registered");
2484         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2485         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2486           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2487                  aat->isa_ptr() != NULL, "expecting an Ptr");
2488           bool arg_has_oops = aat->isa_oopptr() &&
2489                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
2490                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
2491           if (i == TypeFunc::Parms) {
2492             src_has_oops = arg_has_oops;
2493           }
2494           //
2495           // src or dst could be j.l.Object when other is basic type array:
2496           //
2497           //   arraycopy(char[],0,Object*,0,size);
2498           //   arraycopy(Object*,0,char[],0,size);
2499           //
2500           // Don't add edges in such cases.
2501           //
2502           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2503                                        arg_has_oops && (i > TypeFunc::Parms);
2504 #ifdef ASSERT
2505           if (!(is_arraycopy ||
2506                 call->as_CallLeaf()->_name != NULL &&
2507                 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
2508                  strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
2509           ) {
2510             call->dump();
2511             assert(false, "EA: unexpected CallLeaf");
2512           }
2513 #endif
2514           // Always process arraycopy's destination object since
2515           // we need to add all possible edges to references in
2516           // source object.
2517           if (arg_esc >= PointsToNode::ArgEscape &&
2518               !arg_is_arraycopy_dest) {
2519             continue;
2520           }
2521           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
2522           if (arg_is_arraycopy_dest) {
2523             Node* src = call->in(TypeFunc::Parms);
2524             if (src->is_AddP()) {
2525               src = get_addp_base(src);
2526             }
2527             PointsToNode* src_ptn = ptnode_adr(src->_idx);
2528             assert(src_ptn != NULL, "should be registered");
2529             if (arg_ptn != src_ptn) {
2530               // Special arraycopy edge:
2531               // A destination object's field can't have the source object
2532               // as base since objects escape states are not related.
2533               // Only escape state of destination object's fields affects
2534               // escape state of fields in source object.
2535               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
2536             }
2537           }
2538         }
2539       }
2540       break;
2541     }
2542 
2543     case Op_CallStaticJava:
2544     // For a static call, we know exactly what method is being called.
2545     // Use bytecode estimator to record the call's escape affects
2546     {
2547 #ifdef ASSERT
2548       const char* name = call->as_CallStaticJava()->_name;
2549       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2550 #endif
2551 
2552       ciMethod* meth = call->as_CallJava()->method();
2553       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
2554       // fall-through if not a Java method or no analyzer information
2555       if (call_analyzer != NULL) {
2556         PointsToNode* call_ptn = ptnode_adr(call->_idx);
2557         const TypeTuple* d = call->tf()->domain();
2558         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2559           const Type* at = d->field_at(i);
2560           int k = i - TypeFunc::Parms;
2561           Node* arg = call->in(i);
2562           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2563           if (at->isa_ptr() != NULL &&
2564               call_analyzer->is_arg_returned(k)) {
2565             // The call returns arguments.
2566             if (call_ptn != NULL) { // Is call's result used?
2567               assert(call_ptn->is_LocalVar(), "node should be registered");
2568               assert(arg_ptn != NULL, "node should be registered");
2569               add_edge(call_ptn, arg_ptn);
2570             }
2571           }
2572           if (at->isa_oopptr() != NULL &&
2573               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2574             bool global_escapes = false;
2575             bool fields_escapes = false;
2576             if (!call_analyzer->is_arg_stack(k)) {
2577               // The argument global escapes
2578               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
2579             } else {
2580               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
2581               if (!call_analyzer->is_arg_local(k)) {
2582                 // The argument itself doesn't escape, but any fields might
2583                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
2584               }
2585             }
2586           }
2587         }
2588         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
2589           // The call returns arguments.
2590           assert(call_ptn->edge_count() > 0, "sanity");
2591           if (!call_analyzer->is_return_local()) {
2592             // Returns also unknown object.
2593             add_edge(call_ptn, phantom_obj);
2594           }
2595         }
2596         break;
2597       }
2598     }
2599 
2600     default:
2601     // Fall-through here if not a Java method or no analyzer information
2602     // or some other type of call, assume the worst case: all arguments
2603     // globally escape.
2604     {
2605       const TypeTuple* d = call->tf()->domain();
2606       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2607         const Type* at = d->field_at(i);
2608         if (at->isa_oopptr() != NULL) {
2609           Node* arg = call->in(i);
2610           if (arg->is_AddP()) {
2611             arg = get_addp_base(arg);
2612           }
2613           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
2614           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
2615         }
2616       }
2617     }
2618   }
2619 }
2620 
2621 void ConnectionGraph::add_call_node(CallNode* call) {
2622   assert(call->returns_pointer(), "only for call which returns pointer");
2623   uint    call_idx = call->_idx;
2624   if (call->is_Allocate()) {
2625     Node* k = call->in(AllocateNode::KlassNode);
2626     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
2627     assert(kt != NULL, "TypeKlassPtr  required.");
2628     ciKlass* cik = kt->klass();
2629 
2630     PointsToNode::EscapeState es = PointsToNode::NoEscape;
2631     bool scalar_replaceable = true;
2632     if (call->is_AllocateArray()) {
2633       if (!cik->is_array_klass()) { // StressReflectiveCode
2634         es = PointsToNode::GlobalEscape;
2635       } else {
2636         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
2637         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
2638           // Not scalar replaceable if the length is not constant or too big.
2639           scalar_replaceable = false;
2640         }
2641       }
2642     } else {  // Allocate instance
2643       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
2644          !cik->is_instance_klass() || // StressReflectiveCode
2645           cik->as_instance_klass()->has_finalizer()) {
2646         es = PointsToNode::GlobalEscape;
2647       }
2648     }
2649     add_java_object(call, es);
2650     PointsToNode* ptn = ptnode_adr(call_idx);
2651     if (!scalar_replaceable && ptn->scalar_replaceable())
2652       ptn->set_scalar_replaceable(false);
2653 
2654   } else if (call->is_CallStaticJava()) {
2655     // Call nodes could be different types:
2656     //
2657     // 1. CallDynamicJavaNode (what happened during call is unknown):
2658     //
2659     //    - mapped to GlobalEscape JavaObject node if oop is returned;
2660     //
2661     //    - all oop arguments are escaping globally;
2662     //
2663     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2664     //
2665     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
2666     //
2667     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2668     //    - mapped to NoEscape JavaObject node if non escaped object allocated
2669     //      during call is returned;
2670     //    - mapped to ArgEscape LocalVar node pointed to object arguments
2671     //      which are returned and does not escape during call;
2672     //
2673     //    - oop arguments escaping status is defined by bytecode analysis;
2674     //
2675 
2676     // For a static call, we know exactly what method is being called.
2677     // Use bytecode estimator to record whether the call's return value escapes.
2678     ciMethod* meth = call->as_CallJava()->method();
2679     if (meth == NULL) {
2680       const char* name = call->as_CallStaticJava()->_name;
2681       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
2682       // Returns a newly allocated unescaped object.
2683       add_java_object(call, PointsToNode::NoEscape);
2684       ptnode_adr(call_idx)->set_scalar_replaceable(false);
2685     } else {
2686       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2687       call_analyzer->copy_dependencies(_compile->dependencies());
2688       if (call_analyzer->is_return_allocated()) {
2689         // Returns a newly allocated unescaped object, simply
2690         // update dependency information.
2691         // Mark it as NoEscape so that objects referenced by
2692         // it's fields will be marked as NoEscape at least.
2693         add_java_object(call, PointsToNode::NoEscape);
2694         ptnode_adr(call_idx)->set_scalar_replaceable(false);
2695       } else {
2696         // Determine whether any arguments are returned.
2697         const TypeTuple* d = call->tf()->domain();
2698         bool ret_arg = false;
2699         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2700           if (d->field_at(i)->isa_ptr() != NULL &&
2701               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2702             ret_arg = true;
2703             break;
2704           }
2705         }
2706         if (ret_arg) {
2707           add_local_var(call, PointsToNode::ArgEscape);
2708         } else {
2709           // Returns unknown object.
2710           map_ideal_node(call, phantom_obj);
2711         }
2712       }
2713     }
2714   } else {
2715     // An other type of call, assume the worst case:
2716     // returned value is unknown and globally escapes.
2717     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
2718     map_ideal_node(call, phantom_obj);
2719   }
2720 }
2721 
2722 // Populate Connection Graph with PointsTo nodes and create simple
2723 // connection graph edges.
2724 void ConnectionGraph::build_connection_graph(Node *n,
2725                                              Unique_Node_List *delayed_worklist,
2726                                              PhaseTransform *phase) {
2727   // During first iteration create PointsTo nodes and simple edges.
2728   // During second iteration create the rest of edges.
2729   bool first_iteration = (delayed_worklist != NULL);
2730 
2731   uint n_idx = n->_idx;
2732   PointsToNode* n_ptn = ptnode_adr(n_idx);
2733   if (first_iteration && n_ptn != NULL)
2734     return; // No need to redefine PointsTo node during first iteration.
2735 
2736 #ifdef ASSERT
2737   if (_verify && n_ptn->is_JavaObject())
2738     return; // Following code for JavaObject does not change graph.
2739 #endif
2740 
2741   if (n->is_Call()) {
2742     if (!first_iteration) {
2743       process_call_arguments(n->as_Call(), phase);
2744       return;
2745     }
2746     // Arguments to allocation and locking don't escape.
2747     if (n->is_AbstractLock()) {
2748       // Put Lock and Unlock nodes on IGVN worklist to process them during
2749       // first IGVN optimization when escape information is still available.
2750       record_for_optimizer(n);
2751     } else if (n->is_Allocate()) {
2752       add_call_node(n->as_Call());
2753       record_for_optimizer(n);
2754     } else {
2755       if (n->is_CallStaticJava()) {
2756         const char* name = n->as_CallStaticJava()->_name;
2757         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
2758           return; // Skip uncommon traps
2759       }
2760       // Don't mark as processed since call's arguments have to be processed.
2761       delayed_worklist->push(n);
2762 
2763       // Check if a call returns an object.
2764       if (n->as_Call()->returns_pointer() &&
2765           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
2766         add_call_node(n->as_Call());
2767       }
2768     }
2769     return;
2770   }
2771 
2772   // Put this check here to process call arguments since some call nodes
2773   // point to phantom_obj.
2774   if (n_ptn == phantom_obj || n_ptn == null_obj)
2775     return; // Skip predefined nodes.
2776 
2777   assert(first_iteration || n->is_Store() || n->is_LoadStore() ||
2778          n_ptn != NULL && n_ptn->ideal_node() != NULL,
2779          "node should be registered during second iteration");
2780 
2781   int opcode = n->Opcode();
2782   switch (opcode) {
2783     case Op_AddP:
2784     {
2785       Node* base = get_addp_base(n);
2786       PointsToNode* ptn = ptnode_adr(base->_idx);
2787       if (first_iteration) {
2788         // Field node is created for all field types. It will help in
2789         // split_unique_types(). Note, there will be no uses of non oop fields
2790         // in Connection Graph.
2791         int offset = address_offset(n, phase);
2792         add_field(n, PointsToNode::NoEscape, offset);
2793         if (ptn == NULL) {
2794           delayed_worklist->push(n);
2795           return; // Process it later.
2796         }
2797         n_ptn = ptnode_adr(n_idx);
2798       } else {
2799         assert(ptn != NULL, "node should be registered");
2800       }
2801       add_base(n_ptn->as_Field(), ptn);
2802       break;
2803     }
2804     case Op_CastX2P:
2805     {
2806       if (first_iteration) {
2807         // "Unsafe" memory access to unknown object.
2808         map_ideal_node(n, phantom_obj);
2809       } else {
2810         assert(false, "Op_CastX2P");
2811       }
2812       break;
2813     }
2814     case Op_CastPP:
2815     case Op_CheckCastPP:
2816     case Op_EncodeP:
2817     case Op_DecodeN:
2818     {
2819       add_local_var_and_edge(n, PointsToNode::NoEscape,
2820                              n->in(1), delayed_worklist);
2821       break;
2822     }
2823     case Op_CMoveP:
2824     {
2825       if (first_iteration) {
2826         add_local_var(n, PointsToNode::NoEscape);
2827         // Do not add edges during first iteration because some could be
2828         // not defined yet.
2829         delayed_worklist->push(n);
2830         return; // Process it later.
2831       } else {
2832         for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
2833           Node* in = n->in(i);
2834           if (in == NULL)
2835             continue;  // ignore NULL
2836           Node* uncast_in = in->uncast();
2837           if (uncast_in->is_top() || uncast_in == n)
2838             continue;  // ignore top or inputs which go back this node
2839 
2840           PointsToNode* ptn = ptnode_adr(in->_idx);
2841           assert(ptn != NULL, "node should be registered");
2842           add_edge(n_ptn, ptn);
2843         }
2844       }
2845       break;
2846     }
2847     case Op_ConP:
2848     case Op_ConN:
2849     {
2850       // assume all oop constants globally escape except for null
2851       if (first_iteration) {
2852         PointsToNode::EscapeState es;
2853         if (phase->type(n) == TypePtr::NULL_PTR ||
2854             phase->type(n) == TypeNarrowOop::NULL_PTR) {
2855           es = PointsToNode::NoEscape;
2856         } else {
2857           es = PointsToNode::GlobalEscape;
2858         }
2859         add_java_object(n, es);
2860       } else {
2861         assert(false, "Op_ConP");
2862       }
2863       break;
2864     }
2865     case Op_CreateEx:
2866     {
2867       if (first_iteration) {
2868         // assume that all exception objects globally escape
2869         add_java_object(n, PointsToNode::GlobalEscape);
2870       } else {
2871         assert(false, "Op_CreateEx");
2872       }
2873       break;
2874     }
2875     case Op_LoadKlass:
2876     case Op_LoadNKlass:
2877     {
2878       if (first_iteration) {
2879         // Unknown class is loaded
2880         map_ideal_node(n, phantom_obj);
2881       } else {
2882         assert(false, "Op_LoadKlass");
2883       }
2884       break;
2885     }
2886     case Op_LoadP:
2887     case Op_LoadN:
2888     case Op_LoadPLocked:
2889     {
2890       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
2891       // ThreadLocal has RawPrt type.
2892       const Type* t = phase->type(n);
2893       if (t->make_ptr() != NULL) {
2894         Node* adr = n->in(MemNode::Address);
2895         if (!adr->is_AddP()) {
2896           assert(phase->type(adr)->isa_rawptr(), "sanity");
2897         } else {
2898           assert((ptnode_adr(adr->_idx) == NULL ||
2899                   ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
2900         }
2901         add_local_var_and_edge(n, PointsToNode::NoEscape,
2902                                adr, delayed_worklist);
2903 #ifdef ASSERT
2904       } else if (!first_iteration) {
2905         n->dump(1);
2906         assert(false, "Op_LoadP");
2907 #endif
2908       }
2909       break;
2910     }
2911     case Op_Parm:
2912     {
2913       if (first_iteration) {
2914         // We have to assume all input parameters globally escape
2915         map_ideal_node(n, phantom_obj);
2916       } else {
2917         assert(false, "Op_Parm");
2918       }
2919       break;
2920     }
2921     case Op_PartialSubtypeCheck:
2922     {
2923       if (first_iteration) {
2924         // Produces Null or notNull and is used in only in CmpP so
2925         // phantom_obj could be used.
2926         map_ideal_node(n, phantom_obj); // Result is unknown
2927       } else {
2928         // Arguments are klasses which globally escape so do not need
2929         // to point to them.
2930         assert(false, "Op_PartialSubtypeCheck");
2931       }
2932       break;
2933     }
2934     case Op_Phi:
2935     {
2936       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
2937       // ThreadLocal has RawPrt type.
2938       const Type* t = n->as_Phi()->type();
2939       if (t->make_ptr() != NULL) {
2940         if (first_iteration) {
2941           add_local_var(n, PointsToNode::NoEscape);
2942           // Do not add edges during first iteration because some could be
2943           // not defined yet.
2944           delayed_worklist->push(n);
2945           return; // Process it later.
2946         } else {
2947           for (uint i = 1; i < n->req(); i++) {
2948             Node* in = n->in(i);
2949             if (in == NULL)
2950               continue;  // ignore NULL
2951             Node* uncast_in = in->uncast();
2952             if (uncast_in->is_top() || uncast_in == n)
2953               continue;  // ignore top or inputs which go back this node
2954 
2955             PointsToNode* ptn = ptnode_adr(in->_idx);
2956             assert(ptn != NULL, "node should be registered");
2957             add_edge(n_ptn, ptn);
2958           }
2959         }
2960 #ifdef ASSERT
2961       } else if (!first_iteration) {
2962         n->dump(1);
2963         assert(false, "Op_Phi");
2964 #endif
2965       }
2966       break;
2967     }
2968     case Op_Proj:
2969     {
2970       // we are only interested in the oop result projection from a call
2971       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
2972           n->in(0)->as_Call()->returns_pointer()) {
2973         add_local_var_and_edge(n, PointsToNode::NoEscape,
2974                                n->in(0), delayed_worklist);
2975 #ifdef ASSERT
2976       } else if (!first_iteration) {
2977         n->dump(1);
2978         assert(false, "Op_Proj");
2979 #endif
2980       }
2981       break;
2982     }
2983     case Op_Rethrow: // Exception object escapes
2984     case Op_Return:
2985     {
2986       if (n->req() > TypeFunc::Parms &&
2987           phase->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
2988         // Treat Return value as LocalVar with GlobalEscape escape state.
2989         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
2990                                n->in(TypeFunc::Parms), delayed_worklist);
2991 #ifdef ASSERT
2992       } else if (!first_iteration) {
2993         assert(false, "Op_Return");
2994 #endif
2995       }
2996       break;
2997     }
2998     case Op_StoreP:
2999     case Op_StoreN:
3000     case Op_StorePConditional:
3001     case Op_CompareAndSwapP:
3002     case Op_CompareAndSwapN:
3003     {
3004       Node* adr = n->in(MemNode::Address);
3005       const Type *adr_type = phase->type(adr);
3006       adr_type = adr_type->make_ptr();
3007       if (adr_type->isa_oopptr() ||
3008           (opcode == Op_StoreP || opcode == Op_StoreN) &&
3009                         (adr_type == TypeRawPtr::NOTNULL &&
3010                          adr->in(AddPNode::Address)->is_Proj() &&
3011                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
3012 #ifdef ASSERT
3013         assert(adr->is_AddP(), "expecting an AddP");
3014         if (adr_type == TypeRawPtr::NOTNULL) {
3015           // Verify a raw address for a store captured by Initialize node.
3016           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3017           assert(offs != Type::OffsetBot, "offset must be a constant");
3018         }
3019 #endif
3020         if (first_iteration) {
3021           delayed_worklist->push(n);
3022           return; // Process it later.
3023         } else {
3024           // Point Address to Value
3025           PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
3026           assert(adr_ptn != NULL &&
3027                  adr_ptn->as_Field()->is_oop(), "node should be registered");
3028           Node *val = n->in(MemNode::ValueIn);
3029           PointsToNode* ptn = ptnode_adr(val->_idx);
3030           assert(ptn != NULL, "node should be registered");
3031           add_edge(adr_ptn, ptn);
3032         }
3033 #ifdef ASSERT
3034       } else {
3035         // Ignore copy the displaced header to the BoxNode (OSR compilation).
3036         if (adr->is_BoxLock())
3037           break;
3038 
3039         if (!adr->is_AddP()) {
3040           n->dump(1);
3041           assert(adr->is_AddP(), "expecting an AddP");
3042         }
3043         // Ignore G1 barrier's stores.
3044         if (!UseG1GC || (opcode != Op_StoreP) ||
3045             (adr_type != TypeRawPtr::BOTTOM)) {
3046           n->dump(1);
3047           assert(false, "not G1 barrier raw StoreP");
3048         }
3049 #endif
3050       }
3051       break;
3052     }
3053     case Op_AryEq:
3054     case Op_StrComp:
3055     case Op_StrEquals:
3056     case Op_StrIndexOf:
3057     {
3058       if (first_iteration) {
3059         add_local_var(n, PointsToNode::ArgEscape);
3060         delayed_worklist->push(n);
3061         return; // Process it later.
3062       } else {
3063         // char[] arrays passed to string intrinsic do not escape but
3064         // they are not scalar replaceable. Adjust escape state for them.
3065         // Start from in(2) edge since in(1) is memory edge.
3066         for (uint i = 2; i < n->req(); i++) {
3067           Node* adr = n->in(i);
3068           const Type* at = phase->type(adr);
3069           if (!adr->is_top() && at->isa_ptr()) {
3070             assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
3071                    at->isa_ptr() != NULL, "expecting a pointer");
3072             if (adr->is_AddP()) {
3073               adr = get_addp_base(adr);
3074             }
3075             PointsToNode* ptn = ptnode_adr(adr->_idx);
3076             assert(ptn != NULL, "node should be registered");
3077             add_edge(n_ptn, ptn);
3078           }
3079         }
3080       }
3081       break;
3082     }
3083     case Op_ThreadLocal:
3084     {
3085       if (first_iteration) {
3086         add_java_object(n, PointsToNode::ArgEscape);
3087       } else {
3088         assert(false, "Op_ThreadLocal");
3089       }
3090       break;
3091     }
3092     default:
3093       if (first_iteration) {
3094         ; // nothing to do
3095       } else {
3096         // This method should be called only for EA specific nodes during second iteration.
3097         ShouldNotReachHere();
3098       }
3099   }
3100   return;
3101 }
3102 
3103 #ifndef PRODUCT
3104 static const char *node_type_names[] = {
3105   "UnknownType",
3106   "JavaObject",
3107   "LocalVar",
3108   "Field",
3109   "Arraycopy"
3110 };
3111 
3112 static const char *esc_names[] = {
3113   "UnknownEscape",
3114   "NoEscape",
3115   "ArgEscape",
3116   "GlobalEscape"
3117 };
3118 
3119 void PointsToNode::dump(bool print_state) const {
3120   NodeType nt = node_type();
3121   tty->print("%s ", node_type_names[(int) nt]);
3122   if (print_state) {
3123     EscapeState es = escape_state();
3124     EscapeState fields_es = fields_escape_state();
3125     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3126     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3127       tty->print("NSR");
3128   }
3129   if (is_Field()) {
3130     FieldNode* f = (FieldNode*)this;
3131     tty->print("(");
3132     for (uint i = 0; i < f->base_count(); i++) {
3133       PointsToNode* b = f->base(i);
3134       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3135     }
3136     tty->print(" )");
3137   }
3138   tty->print("[");
3139   for (uint i = 0; i < edge_count(); i++) {
3140     PointsToNode* e = edge(i);
3141     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3142   }
3143   tty->print(" [");
3144   for (uint i = 0; i < use_count(); i++) {
3145     PointsToNode* u = use(i);
3146     bool is_base = false;
3147     if (PointsToNode::is_base_use(u)) {
3148       is_base = true;
3149       u = PointsToNode::get_use_node(u)->as_Field();
3150     }
3151     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3152   }
3153   tty->print(" ]]  ");
3154   if (_node == NULL)
3155     tty->print_cr("<null>");
3156   else
3157     _node->dump();
3158 }
3159 
3160 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3161   bool first = true;
3162 
3163   uint ptnodes_length = ptnodes_worklist.length();
3164   for (uint i = 0; i < ptnodes_length; i++) {
3165     PointsToNode *ptn = ptnodes_worklist.at(i);
3166     if (ptn == NULL || !ptn->is_JavaObject())
3167       continue;
3168     PointsToNode::EscapeState es = ptn->escape_state();
3169     if (ptn->ideal_node()->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
3170       if (first) {
3171         tty->cr();
3172         tty->print("======== Connection graph for ");
3173         _compile->method()->print_short_name();
3174         tty->cr();
3175         first = false;
3176       }
3177       ptn->dump();
3178       // Print all locals and fields which reference this allocation
3179       uint count = ptn->use_count();
3180       for (uint i = 0; i < count; i++) {
3181         PointsToNode* use = ptn->use(i);
3182         if (use->is_LocalVar()) {
3183           use->dump(Verbose);
3184         } else if (Verbose) {
3185           use->dump();
3186         }
3187       }
3188       tty->cr();
3189     }
3190   }
3191 }
3192 #endif