1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/rootnode.hpp"
  37 
  38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  40   _collecting(true),
  41   _verify(false),
  42   _compile(C),
  43   _igvn(igvn),
  44   _node_map(C->comp_arena()) {
  45   // Add unknown java object.
  46   add_java_object(C->top(), PointsToNode::GlobalEscape);
  47   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  48   // Add ConP(#NULL) and ConN(#NULL) nodes.
  49   Node* oop_null = igvn->zerocon(T_OBJECT);
  50   assert(oop_null->_idx < nodes_size(), "should be created already");
  51   add_java_object(oop_null, PointsToNode::NoEscape);
  52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  53   if (UseCompressedOops) {
  54     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  55     assert(noop_null->_idx < nodes_size(), "should be created already");
  56     map_ideal_node(noop_null, null_obj);
  57   }
  58   _pcmp_neq = NULL; // Should be initialized
  59   _pcmp_eq  = NULL;
  60 }
  61 
  62 bool ConnectionGraph::has_candidates(Compile *C) {
  63   // EA brings benefits only when the code has allocations and/or locks which
  64   // are represented by ideal Macro nodes.
  65   int cnt = C->macro_count();
  66   for( int i=0; i < cnt; i++ ) {
  67     Node *n = C->macro_node(i);
  68     if ( n->is_Allocate() )
  69       return true;
  70     if( n->is_Lock() ) {
  71       Node* obj = n->as_Lock()->obj_node()->uncast();
  72       if( !(obj->is_Parm() || obj->is_Con()) )
  73         return true;
  74     }
  75   }
  76   return false;
  77 }
  78 
  79 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  80   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
  81   ResourceMark rm;
  82 
  83   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  84   // to create space for them in ConnectionGraph::_nodes[].
  85   Node* oop_null = igvn->zerocon(T_OBJECT);
  86   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  87   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  88   // Perform escape analysis
  89   if (congraph->compute_escape()) {
  90     // There are non escaping objects.
  91     C->set_congraph(congraph);
  92   }
  93   // Cleanup.
  94   if (oop_null->outcnt() == 0)
  95     igvn->hash_delete(oop_null);
  96   if (noop_null->outcnt() == 0)
  97     igvn->hash_delete(noop_null);
  98 }
  99 
 100 bool ConnectionGraph::compute_escape() {
 101   Compile* C = _compile;
 102   PhaseGVN* igvn = _igvn;
 103 
 104   // Worklists used by EA.
 105   Unique_Node_List delayed_worklist;
 106   GrowableArray<Node*> alloc_worklist;
 107   GrowableArray<Node*> ptr_cmp_worklist;
 108   GrowableArray<Node*> storestore_worklist;
 109   GrowableArray<PointsToNode*>   ptnodes_worklist;
 110   GrowableArray<JavaObjectNode*> java_objects_worklist;
 111   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 112   GrowableArray<FieldNode*>      oop_fields_worklist;
 113   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 114 
 115   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
 116 
 117   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 118   ideal_nodes.map(C->unique(), NULL);  // preallocate space
 119   // Initialize worklist
 120   if (C->root() != NULL) {
 121     ideal_nodes.push(C->root());
 122   }
 123   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 124     Node* n = ideal_nodes.at(next);
 125     // Create PointsTo nodes and add them to Connection Graph. Called
 126     // only once per ideal node since ideal_nodes is Unique_Node list.
 127     add_node_to_connection_graph(n, &delayed_worklist);
 128     PointsToNode* ptn = ptnode_adr(n->_idx);
 129     if (ptn != NULL) {
 130       ptnodes_worklist.append(ptn);
 131       if (ptn->is_JavaObject()) {
 132         java_objects_worklist.append(ptn->as_JavaObject());
 133         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 134             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 135           // Only allocations and java static calls results are interesting.
 136           non_escaped_worklist.append(ptn->as_JavaObject());
 137         }
 138       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 139         oop_fields_worklist.append(ptn->as_Field());
 140       }
 141     }
 142     if (n->is_MergeMem()) {
 143       // Collect all MergeMem nodes to add memory slices for
 144       // scalar replaceable objects in split_unique_types().
 145       _mergemem_worklist.append(n->as_MergeMem());
 146     } else if (OptimizePtrCompare && n->is_Cmp() &&
 147                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 148       // Collect compare pointers nodes.
 149       ptr_cmp_worklist.append(n);
 150     } else if (n->is_MemBarStoreStore()) {
 151       // Collect all MemBarStoreStore nodes so that depending on the
 152       // escape status of the associated Allocate node some of them
 153       // may be eliminated.
 154       storestore_worklist.append(n);
 155 #ifdef ASSERT
 156     } else if(n->is_AddP()) {
 157       // Collect address nodes for graph verification.
 158       addp_worklist.append(n);
 159 #endif
 160     }
 161     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 162       Node* m = n->fast_out(i);   // Get user
 163       ideal_nodes.push(m);
 164     }
 165   }
 166   if (non_escaped_worklist.length() == 0) {
 167     _collecting = false;
 168     return false; // Nothing to do.
 169   }
 170   // Add final simple edges to graph.
 171   while(delayed_worklist.size() > 0) {
 172     Node* n = delayed_worklist.pop();
 173     add_final_edges(n);
 174   }
 175   int ptnodes_length = ptnodes_worklist.length();
 176 
 177 #ifdef ASSERT
 178   if (VerifyConnectionGraph) {
 179     // Verify that no new simple edges could be created and all
 180     // local vars has edges.
 181     _verify = true;
 182     for (int next = 0; next < ptnodes_length; ++next) {
 183       PointsToNode* ptn = ptnodes_worklist.at(next);
 184       add_final_edges(ptn->ideal_node());
 185       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 186         ptn->dump();
 187         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 188       }
 189     }
 190     _verify = false;
 191   }
 192 #endif
 193 
 194   // 2. Finish Graph construction by propagating references to all
 195   //    java objects through graph.
 196   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 197                                  java_objects_worklist, oop_fields_worklist)) {
 198     // All objects escaped or hit time or iterations limits.
 199     _collecting = false;
 200     return false;
 201   }
 202 
 203   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 204   //    scalar replaceable allocations on alloc_worklist for processing
 205   //    in split_unique_types().
 206   int non_escaped_length = non_escaped_worklist.length();
 207   for (int next = 0; next < non_escaped_length; next++) {
 208     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 209     if (ptn->escape_state() == PointsToNode::NoEscape &&
 210         ptn->scalar_replaceable()) {
 211       adjust_scalar_replaceable_state(ptn);
 212       if (ptn->scalar_replaceable()) {
 213         alloc_worklist.append(ptn->ideal_node());
 214       }
 215     }
 216   }
 217 
 218 #ifdef ASSERT
 219   if (VerifyConnectionGraph) {
 220     // Verify that graph is complete - no new edges could be added or needed.
 221     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 222                             java_objects_worklist, addp_worklist);
 223   }
 224   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 225   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 226          null_obj->edge_count() == 0 &&
 227          !null_obj->arraycopy_src() &&
 228          !null_obj->arraycopy_dst(), "sanity");
 229 #endif
 230 
 231   _collecting = false;
 232 
 233   } // TracePhase t3("connectionGraph")
 234 
 235   // 4. Optimize ideal graph based on EA information.
 236   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 237   if (has_non_escaping_obj) {
 238     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 239   }
 240 
 241 #ifndef PRODUCT
 242   if (PrintEscapeAnalysis) {
 243     dump(ptnodes_worklist); // Dump ConnectionGraph
 244   }
 245 #endif
 246 
 247   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 248 #ifdef ASSERT
 249   if (VerifyConnectionGraph) {
 250     int alloc_length = alloc_worklist.length();
 251     for (int next = 0; next < alloc_length; ++next) {
 252       Node* n = alloc_worklist.at(next);
 253       PointsToNode* ptn = ptnode_adr(n->_idx);
 254       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 255     }
 256   }
 257 #endif
 258 
 259   // 5. Separate memory graph for scalar replaceable allcations.
 260   if (has_scalar_replaceable_candidates &&
 261       C->AliasLevel() >= 3 && EliminateAllocations) {
 262     // Now use the escape information to create unique types for
 263     // scalar replaceable objects.
 264     split_unique_types(alloc_worklist);
 265     if (C->failing())  return false;
 266     C->print_method("After Escape Analysis", 2);
 267 
 268 #ifdef ASSERT
 269   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 270     tty->print("=== No allocations eliminated for ");
 271     C->method()->print_short_name();
 272     if(!EliminateAllocations) {
 273       tty->print(" since EliminateAllocations is off ===");
 274     } else if(!has_scalar_replaceable_candidates) {
 275       tty->print(" since there are no scalar replaceable candidates ===");
 276     } else if(C->AliasLevel() < 3) {
 277       tty->print(" since AliasLevel < 3 ===");
 278     }
 279     tty->cr();
 280 #endif
 281   }
 282   return has_non_escaping_obj;
 283 }
 284 
 285 // Utility function for nodes that load an object
 286 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 287   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 288   // ThreadLocal has RawPtr type.
 289   const Type* t = _igvn->type(n);
 290   if (t->make_ptr() != NULL) {
 291     Node* adr = n->in(MemNode::Address);
 292 #ifdef ASSERT
 293     if (!adr->is_AddP()) {
 294       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 295     } else {
 296       assert((ptnode_adr(adr->_idx) == NULL ||
 297               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 298     }
 299 #endif
 300     add_local_var_and_edge(n, PointsToNode::NoEscape,
 301                            adr, delayed_worklist);
 302   }
 303 }
 304 
 305 // Populate Connection Graph with PointsTo nodes and create simple
 306 // connection graph edges.
 307 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 308   assert(!_verify, "this method sould not be called for verification");
 309   PhaseGVN* igvn = _igvn;
 310   uint n_idx = n->_idx;
 311   PointsToNode* n_ptn = ptnode_adr(n_idx);
 312   if (n_ptn != NULL)
 313     return; // No need to redefine PointsTo node during first iteration.
 314 
 315   if (n->is_Call()) {
 316     // Arguments to allocation and locking don't escape.
 317     if (n->is_AbstractLock()) {
 318       // Put Lock and Unlock nodes on IGVN worklist to process them during
 319       // first IGVN optimization when escape information is still available.
 320       record_for_optimizer(n);
 321     } else if (n->is_Allocate()) {
 322       add_call_node(n->as_Call());
 323       record_for_optimizer(n);
 324     } else {
 325       if (n->is_CallStaticJava()) {
 326         const char* name = n->as_CallStaticJava()->_name;
 327         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 328           return; // Skip uncommon traps
 329       }
 330       // Don't mark as processed since call's arguments have to be processed.
 331       delayed_worklist->push(n);
 332       // Check if a call returns an object.
 333       if (n->as_Call()->returns_pointer() &&
 334           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
 335         add_call_node(n->as_Call());
 336       }
 337     }
 338     return;
 339   }
 340   // Put this check here to process call arguments since some call nodes
 341   // point to phantom_obj.
 342   if (n_ptn == phantom_obj || n_ptn == null_obj)
 343     return; // Skip predefined nodes.
 344 
 345   int opcode = n->Opcode();
 346   switch (opcode) {
 347     case Op_AddP: {
 348       Node* base = get_addp_base(n);
 349       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 350       // Field nodes are created for all field types. They are used in
 351       // adjust_scalar_replaceable_state() and split_unique_types().
 352       // Note, non-oop fields will have only base edges in Connection
 353       // Graph because such fields are not used for oop loads and stores.
 354       int offset = address_offset(n, igvn);
 355       add_field(n, PointsToNode::NoEscape, offset);
 356       if (ptn_base == NULL) {
 357         delayed_worklist->push(n); // Process it later.
 358       } else {
 359         n_ptn = ptnode_adr(n_idx);
 360         add_base(n_ptn->as_Field(), ptn_base);
 361       }
 362       break;
 363     }
 364     case Op_CastX2P: {
 365       map_ideal_node(n, phantom_obj);
 366       break;
 367     }
 368     case Op_CastPP:
 369     case Op_CheckCastPP:
 370     case Op_EncodeP:
 371     case Op_DecodeN:
 372     case Op_EncodePKlass:
 373     case Op_DecodeNKlass: {
 374       add_local_var_and_edge(n, PointsToNode::NoEscape,
 375                              n->in(1), delayed_worklist);
 376       break;
 377     }
 378     case Op_CMoveP: {
 379       add_local_var(n, PointsToNode::NoEscape);
 380       // Do not add edges during first iteration because some could be
 381       // not defined yet.
 382       delayed_worklist->push(n);
 383       break;
 384     }
 385     case Op_ConP:
 386     case Op_ConN:
 387     case Op_ConNKlass: {
 388       // assume all oop constants globally escape except for null
 389       PointsToNode::EscapeState es;
 390       if (igvn->type(n) == TypePtr::NULL_PTR ||
 391           igvn->type(n) == TypeNarrowOop::NULL_PTR) {
 392         es = PointsToNode::NoEscape;
 393       } else {
 394         es = PointsToNode::GlobalEscape;
 395       }
 396       add_java_object(n, es);
 397       break;
 398     }
 399     case Op_CreateEx: {
 400       // assume that all exception objects globally escape
 401       add_java_object(n, PointsToNode::GlobalEscape);
 402       break;
 403     }
 404     case Op_LoadKlass:
 405     case Op_LoadNKlass: {
 406       // Unknown class is loaded
 407       map_ideal_node(n, phantom_obj);
 408       break;
 409     }
 410     case Op_LoadP:
 411     case Op_LoadN:
 412     case Op_LoadPLocked: {
 413       add_objload_to_connection_graph(n, delayed_worklist);
 414       break;
 415     }
 416     case Op_Parm: {
 417       map_ideal_node(n, phantom_obj);
 418       break;
 419     }
 420     case Op_PartialSubtypeCheck: {
 421       // Produces Null or notNull and is used in only in CmpP so
 422       // phantom_obj could be used.
 423       map_ideal_node(n, phantom_obj); // Result is unknown
 424       break;
 425     }
 426     case Op_Phi: {
 427       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 428       // ThreadLocal has RawPtr type.
 429       const Type* t = n->as_Phi()->type();
 430       if (t->make_ptr() != NULL) {
 431         add_local_var(n, PointsToNode::NoEscape);
 432         // Do not add edges during first iteration because some could be
 433         // not defined yet.
 434         delayed_worklist->push(n);
 435       }
 436       break;
 437     }
 438     case Op_Proj: {
 439       // we are only interested in the oop result projection from a call
 440       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 441           n->in(0)->as_Call()->returns_pointer()) {
 442         add_local_var_and_edge(n, PointsToNode::NoEscape,
 443                                n->in(0), delayed_worklist);
 444       }
 445       break;
 446     }
 447     case Op_Rethrow: // Exception object escapes
 448     case Op_Return: {
 449       if (n->req() > TypeFunc::Parms &&
 450           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 451         // Treat Return value as LocalVar with GlobalEscape escape state.
 452         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 453                                n->in(TypeFunc::Parms), delayed_worklist);
 454       }
 455       break;
 456     }
 457     case Op_GetAndSetP:
 458     case Op_GetAndSetN: {
 459       add_objload_to_connection_graph(n, delayed_worklist);
 460       // fallthrough
 461     }
 462     case Op_StoreP:
 463     case Op_StoreN:
 464     case Op_StoreNKlass:
 465     case Op_StorePConditional:
 466     case Op_CompareAndSwapP:
 467     case Op_CompareAndSwapN: {
 468       Node* adr = n->in(MemNode::Address);
 469       const Type *adr_type = igvn->type(adr);
 470       adr_type = adr_type->make_ptr();
 471       if (adr_type->isa_oopptr() ||
 472           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 473                         (adr_type == TypeRawPtr::NOTNULL &&
 474                          adr->in(AddPNode::Address)->is_Proj() &&
 475                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 476         delayed_worklist->push(n); // Process it later.
 477 #ifdef ASSERT
 478         assert(adr->is_AddP(), "expecting an AddP");
 479         if (adr_type == TypeRawPtr::NOTNULL) {
 480           // Verify a raw address for a store captured by Initialize node.
 481           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 482           assert(offs != Type::OffsetBot, "offset must be a constant");
 483         }
 484 #endif
 485       } else {
 486         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 487         if (adr->is_BoxLock())
 488           break;
 489         // Stored value escapes in unsafe access.
 490         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 491           // Pointer stores in G1 barriers looks like unsafe access.
 492           // Ignore such stores to be able scalar replace non-escaping
 493           // allocations.
 494           if (UseG1GC && adr->is_AddP()) {
 495             Node* base = get_addp_base(adr);
 496             if (base->Opcode() == Op_LoadP &&
 497                 base->in(MemNode::Address)->is_AddP()) {
 498               adr = base->in(MemNode::Address);
 499               Node* tls = get_addp_base(adr);
 500               if (tls->Opcode() == Op_ThreadLocal) {
 501                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 502                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 503                                      PtrQueue::byte_offset_of_buf())) {
 504                   break; // G1 pre barier previous oop value store.
 505                 }
 506                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 507                                      PtrQueue::byte_offset_of_buf())) {
 508                   break; // G1 post barier card address store.
 509                 }
 510               }
 511             }
 512           }
 513           delayed_worklist->push(n); // Process unsafe access later.
 514           break;
 515         }
 516 #ifdef ASSERT
 517         n->dump(1);
 518         assert(false, "not unsafe or G1 barrier raw StoreP");
 519 #endif
 520       }
 521       break;
 522     }
 523     case Op_AryEq:
 524     case Op_StrComp:
 525     case Op_StrEquals:
 526     case Op_StrIndexOf: {
 527       add_local_var(n, PointsToNode::ArgEscape);
 528       delayed_worklist->push(n); // Process it later.
 529       break;
 530     }
 531     case Op_ThreadLocal: {
 532       add_java_object(n, PointsToNode::ArgEscape);
 533       break;
 534     }
 535     default:
 536       ; // Do nothing for nodes not related to EA.
 537   }
 538   return;
 539 }
 540 
 541 #ifdef ASSERT
 542 #define ELSE_FAIL(name)                               \
 543       /* Should not be called for not pointer type. */  \
 544       n->dump(1);                                       \
 545       assert(false, name);                              \
 546       break;
 547 #else
 548 #define ELSE_FAIL(name) \
 549       break;
 550 #endif
 551 
 552 // Add final simple edges to graph.
 553 void ConnectionGraph::add_final_edges(Node *n) {
 554   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 555 #ifdef ASSERT
 556   if (_verify && n_ptn->is_JavaObject())
 557     return; // This method does not change graph for JavaObject.
 558 #endif
 559 
 560   if (n->is_Call()) {
 561     process_call_arguments(n->as_Call());
 562     return;
 563   }
 564   assert(n->is_Store() || n->is_LoadStore() ||
 565          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 566          "node should be registered already");
 567   int opcode = n->Opcode();
 568   switch (opcode) {
 569     case Op_AddP: {
 570       Node* base = get_addp_base(n);
 571       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 572       assert(ptn_base != NULL, "field's base should be registered");
 573       add_base(n_ptn->as_Field(), ptn_base);
 574       break;
 575     }
 576     case Op_CastPP:
 577     case Op_CheckCastPP:
 578     case Op_EncodeP:
 579     case Op_DecodeN:
 580     case Op_EncodePKlass:
 581     case Op_DecodeNKlass: {
 582       add_local_var_and_edge(n, PointsToNode::NoEscape,
 583                              n->in(1), NULL);
 584       break;
 585     }
 586     case Op_CMoveP: {
 587       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 588         Node* in = n->in(i);
 589         if (in == NULL)
 590           continue;  // ignore NULL
 591         Node* uncast_in = in->uncast();
 592         if (uncast_in->is_top() || uncast_in == n)
 593           continue;  // ignore top or inputs which go back this node
 594         PointsToNode* ptn = ptnode_adr(in->_idx);
 595         assert(ptn != NULL, "node should be registered");
 596         add_edge(n_ptn, ptn);
 597       }
 598       break;
 599     }
 600     case Op_LoadP:
 601     case Op_LoadN:
 602     case Op_LoadPLocked: {
 603       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 604       // ThreadLocal has RawPtr type.
 605       const Type* t = _igvn->type(n);
 606       if (t->make_ptr() != NULL) {
 607         Node* adr = n->in(MemNode::Address);
 608         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 609         break;
 610       }
 611       ELSE_FAIL("Op_LoadP");
 612     }
 613     case Op_Phi: {
 614       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 615       // ThreadLocal has RawPtr type.
 616       const Type* t = n->as_Phi()->type();
 617       if (t->make_ptr() != NULL) {
 618         for (uint i = 1; i < n->req(); i++) {
 619           Node* in = n->in(i);
 620           if (in == NULL)
 621             continue;  // ignore NULL
 622           Node* uncast_in = in->uncast();
 623           if (uncast_in->is_top() || uncast_in == n)
 624             continue;  // ignore top or inputs which go back this node
 625           PointsToNode* ptn = ptnode_adr(in->_idx);
 626           assert(ptn != NULL, "node should be registered");
 627           add_edge(n_ptn, ptn);
 628         }
 629         break;
 630       }
 631       ELSE_FAIL("Op_Phi");
 632     }
 633     case Op_Proj: {
 634       // we are only interested in the oop result projection from a call
 635       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 636           n->in(0)->as_Call()->returns_pointer()) {
 637         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 638         break;
 639       }
 640       ELSE_FAIL("Op_Proj");
 641     }
 642     case Op_Rethrow: // Exception object escapes
 643     case Op_Return: {
 644       if (n->req() > TypeFunc::Parms &&
 645           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 646         // Treat Return value as LocalVar with GlobalEscape escape state.
 647         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 648                                n->in(TypeFunc::Parms), NULL);
 649         break;
 650       }
 651       ELSE_FAIL("Op_Return");
 652     }
 653     case Op_StoreP:
 654     case Op_StoreN:
 655     case Op_StoreNKlass:
 656     case Op_StorePConditional:
 657     case Op_CompareAndSwapP:
 658     case Op_CompareAndSwapN:
 659     case Op_GetAndSetP:
 660     case Op_GetAndSetN: {
 661       Node* adr = n->in(MemNode::Address);
 662       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 663         const Type* t = _igvn->type(n);
 664         if (t->make_ptr() != NULL) {
 665           add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 666         }
 667       }
 668       const Type *adr_type = _igvn->type(adr);
 669       adr_type = adr_type->make_ptr();
 670       if (adr_type->isa_oopptr() ||
 671           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 672                         (adr_type == TypeRawPtr::NOTNULL &&
 673                          adr->in(AddPNode::Address)->is_Proj() &&
 674                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 675         // Point Address to Value
 676         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 677         assert(adr_ptn != NULL &&
 678                adr_ptn->as_Field()->is_oop(), "node should be registered");
 679         Node *val = n->in(MemNode::ValueIn);
 680         PointsToNode* ptn = ptnode_adr(val->_idx);
 681         assert(ptn != NULL, "node should be registered");
 682         add_edge(adr_ptn, ptn);
 683         break;
 684       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 685         // Stored value escapes in unsafe access.
 686         Node *val = n->in(MemNode::ValueIn);
 687         PointsToNode* ptn = ptnode_adr(val->_idx);
 688         assert(ptn != NULL, "node should be registered");
 689         ptn->set_escape_state(PointsToNode::GlobalEscape);
 690         // Add edge to object for unsafe access with offset.
 691         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 692         assert(adr_ptn != NULL, "node should be registered");
 693         if (adr_ptn->is_Field()) {
 694           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 695           add_edge(adr_ptn, ptn);
 696         }
 697         break;
 698       }
 699       ELSE_FAIL("Op_StoreP");
 700     }
 701     case Op_AryEq:
 702     case Op_StrComp:
 703     case Op_StrEquals:
 704     case Op_StrIndexOf: {
 705       // char[] arrays passed to string intrinsic do not escape but
 706       // they are not scalar replaceable. Adjust escape state for them.
 707       // Start from in(2) edge since in(1) is memory edge.
 708       for (uint i = 2; i < n->req(); i++) {
 709         Node* adr = n->in(i);
 710         const Type* at = _igvn->type(adr);
 711         if (!adr->is_top() && at->isa_ptr()) {
 712           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 713                  at->isa_ptr() != NULL, "expecting a pointer");
 714           if (adr->is_AddP()) {
 715             adr = get_addp_base(adr);
 716           }
 717           PointsToNode* ptn = ptnode_adr(adr->_idx);
 718           assert(ptn != NULL, "node should be registered");
 719           add_edge(n_ptn, ptn);
 720         }
 721       }
 722       break;
 723     }
 724     default: {
 725       // This method should be called only for EA specific nodes which may
 726       // miss some edges when they were created.
 727 #ifdef ASSERT
 728       n->dump(1);
 729 #endif
 730       guarantee(false, "unknown node");
 731     }
 732   }
 733   return;
 734 }
 735 
 736 void ConnectionGraph::add_call_node(CallNode* call) {
 737   assert(call->returns_pointer(), "only for call which returns pointer");
 738   uint call_idx = call->_idx;
 739   if (call->is_Allocate()) {
 740     Node* k = call->in(AllocateNode::KlassNode);
 741     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 742     assert(kt != NULL, "TypeKlassPtr  required.");
 743     ciKlass* cik = kt->klass();
 744     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 745     bool scalar_replaceable = true;
 746     if (call->is_AllocateArray()) {
 747       if (!cik->is_array_klass()) { // StressReflectiveCode
 748         es = PointsToNode::GlobalEscape;
 749       } else {
 750         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 751         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 752           // Not scalar replaceable if the length is not constant or too big.
 753           scalar_replaceable = false;
 754         }
 755       }
 756     } else {  // Allocate instance
 757       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 758          !cik->is_instance_klass() || // StressReflectiveCode
 759           cik->as_instance_klass()->has_finalizer()) {
 760         es = PointsToNode::GlobalEscape;
 761       }
 762     }
 763     add_java_object(call, es);
 764     PointsToNode* ptn = ptnode_adr(call_idx);
 765     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 766       ptn->set_scalar_replaceable(false);
 767     }
 768   } else if (call->is_CallStaticJava()) {
 769     // Call nodes could be different types:
 770     //
 771     // 1. CallDynamicJavaNode (what happened during call is unknown):
 772     //
 773     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 774     //
 775     //    - all oop arguments are escaping globally;
 776     //
 777     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 778     //
 779     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 780     //
 781     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 782     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 783     //      during call is returned;
 784     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 785     //      which are returned and does not escape during call;
 786     //
 787     //    - oop arguments escaping status is defined by bytecode analysis;
 788     //
 789     // For a static call, we know exactly what method is being called.
 790     // Use bytecode estimator to record whether the call's return value escapes.
 791     ciMethod* meth = call->as_CallJava()->method();
 792     if (meth == NULL) {
 793       const char* name = call->as_CallStaticJava()->_name;
 794       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 795       // Returns a newly allocated unescaped object.
 796       add_java_object(call, PointsToNode::NoEscape);
 797       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 798     } else {
 799       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 800       call_analyzer->copy_dependencies(_compile->dependencies());
 801       if (call_analyzer->is_return_allocated()) {
 802         // Returns a newly allocated unescaped object, simply
 803         // update dependency information.
 804         // Mark it as NoEscape so that objects referenced by
 805         // it's fields will be marked as NoEscape at least.
 806         add_java_object(call, PointsToNode::NoEscape);
 807         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 808       } else {
 809         // Determine whether any arguments are returned.
 810         const TypeTuple* d = call->tf()->domain();
 811         bool ret_arg = false;
 812         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 813           if (d->field_at(i)->isa_ptr() != NULL &&
 814               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 815             ret_arg = true;
 816             break;
 817           }
 818         }
 819         if (ret_arg) {
 820           add_local_var(call, PointsToNode::ArgEscape);
 821         } else {
 822           // Returns unknown object.
 823           map_ideal_node(call, phantom_obj);
 824         }
 825       }
 826     }
 827   } else {
 828     // An other type of call, assume the worst case:
 829     // returned value is unknown and globally escapes.
 830     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 831     map_ideal_node(call, phantom_obj);
 832   }
 833 }
 834 
 835 void ConnectionGraph::process_call_arguments(CallNode *call) {
 836     bool is_arraycopy = false;
 837     switch (call->Opcode()) {
 838 #ifdef ASSERT
 839     case Op_Allocate:
 840     case Op_AllocateArray:
 841     case Op_Lock:
 842     case Op_Unlock:
 843       assert(false, "should be done already");
 844       break;
 845 #endif
 846     case Op_CallLeafNoFP:
 847       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
 848                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
 849       // fall through
 850     case Op_CallLeaf: {
 851       // Stub calls, objects do not escape but they are not scale replaceable.
 852       // Adjust escape state for outgoing arguments.
 853       const TypeTuple * d = call->tf()->domain();
 854       bool src_has_oops = false;
 855       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 856         const Type* at = d->field_at(i);
 857         Node *arg = call->in(i);
 858         const Type *aat = _igvn->type(arg);
 859         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 860           continue;
 861         if (arg->is_AddP()) {
 862           //
 863           // The inline_native_clone() case when the arraycopy stub is called
 864           // after the allocation before Initialize and CheckCastPP nodes.
 865           // Or normal arraycopy for object arrays case.
 866           //
 867           // Set AddP's base (Allocate) as not scalar replaceable since
 868           // pointer to the base (with offset) is passed as argument.
 869           //
 870           arg = get_addp_base(arg);
 871         }
 872         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 873         assert(arg_ptn != NULL, "should be registered");
 874         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 875         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 876           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 877                  aat->isa_ptr() != NULL, "expecting an Ptr");
 878           bool arg_has_oops = aat->isa_oopptr() &&
 879                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 880                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 881           if (i == TypeFunc::Parms) {
 882             src_has_oops = arg_has_oops;
 883           }
 884           //
 885           // src or dst could be j.l.Object when other is basic type array:
 886           //
 887           //   arraycopy(char[],0,Object*,0,size);
 888           //   arraycopy(Object*,0,char[],0,size);
 889           //
 890           // Don't add edges in such cases.
 891           //
 892           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 893                                        arg_has_oops && (i > TypeFunc::Parms);
 894 #ifdef ASSERT
 895           if (!(is_arraycopy ||
 896                 (call->as_CallLeaf()->_name != NULL &&
 897                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 898                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 899                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 900                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 901                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 902                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0)
 903                   ))) {
 904             call->dump();
 905             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
 906           }
 907 #endif
 908           // Always process arraycopy's destination object since
 909           // we need to add all possible edges to references in
 910           // source object.
 911           if (arg_esc >= PointsToNode::ArgEscape &&
 912               !arg_is_arraycopy_dest) {
 913             continue;
 914           }
 915           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 916           if (arg_is_arraycopy_dest) {
 917             Node* src = call->in(TypeFunc::Parms);
 918             if (src->is_AddP()) {
 919               src = get_addp_base(src);
 920             }
 921             PointsToNode* src_ptn = ptnode_adr(src->_idx);
 922             assert(src_ptn != NULL, "should be registered");
 923             if (arg_ptn != src_ptn) {
 924               // Special arraycopy edge:
 925               // A destination object's field can't have the source object
 926               // as base since objects escape states are not related.
 927               // Only escape state of destination object's fields affects
 928               // escape state of fields in source object.
 929               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
 930             }
 931           }
 932         }
 933       }
 934       break;
 935     }
 936     case Op_CallStaticJava: {
 937       // For a static call, we know exactly what method is being called.
 938       // Use bytecode estimator to record the call's escape affects
 939 #ifdef ASSERT
 940       const char* name = call->as_CallStaticJava()->_name;
 941       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
 942 #endif
 943       ciMethod* meth = call->as_CallJava()->method();
 944       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
 945       // fall-through if not a Java method or no analyzer information
 946       if (call_analyzer != NULL) {
 947         PointsToNode* call_ptn = ptnode_adr(call->_idx);
 948         const TypeTuple* d = call->tf()->domain();
 949         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 950           const Type* at = d->field_at(i);
 951           int k = i - TypeFunc::Parms;
 952           Node* arg = call->in(i);
 953           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 954           if (at->isa_ptr() != NULL &&
 955               call_analyzer->is_arg_returned(k)) {
 956             // The call returns arguments.
 957             if (call_ptn != NULL) { // Is call's result used?
 958               assert(call_ptn->is_LocalVar(), "node should be registered");
 959               assert(arg_ptn != NULL, "node should be registered");
 960               add_edge(call_ptn, arg_ptn);
 961             }
 962           }
 963           if (at->isa_oopptr() != NULL &&
 964               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
 965             if (!call_analyzer->is_arg_stack(k)) {
 966               // The argument global escapes
 967               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
 968             } else {
 969               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 970               if (!call_analyzer->is_arg_local(k)) {
 971                 // The argument itself doesn't escape, but any fields might
 972                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
 973               }
 974             }
 975           }
 976         }
 977         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
 978           // The call returns arguments.
 979           assert(call_ptn->edge_count() > 0, "sanity");
 980           if (!call_analyzer->is_return_local()) {
 981             // Returns also unknown object.
 982             add_edge(call_ptn, phantom_obj);
 983           }
 984         }
 985         break;
 986       }
 987     }
 988     default: {
 989       // Fall-through here if not a Java method or no analyzer information
 990       // or some other type of call, assume the worst case: all arguments
 991       // globally escape.
 992       const TypeTuple* d = call->tf()->domain();
 993       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 994         const Type* at = d->field_at(i);
 995         if (at->isa_oopptr() != NULL) {
 996           Node* arg = call->in(i);
 997           if (arg->is_AddP()) {
 998             arg = get_addp_base(arg);
 999           }
1000           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1001           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1002         }
1003       }
1004     }
1005   }
1006 }
1007 
1008 
1009 // Finish Graph construction.
1010 bool ConnectionGraph::complete_connection_graph(
1011                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1012                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1013                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1014                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1015   // Normally only 1-3 passes needed to build Connection Graph depending
1016   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1017   // Set limit to 20 to catch situation when something did go wrong and
1018   // bailout Escape Analysis.
1019   // Also limit build time to 30 sec (60 in debug VM).
1020 #define CG_BUILD_ITER_LIMIT 20
1021 #ifdef ASSERT
1022 #define CG_BUILD_TIME_LIMIT 60.0
1023 #else
1024 #define CG_BUILD_TIME_LIMIT 30.0
1025 #endif
1026 
1027   // Propagate GlobalEscape and ArgEscape escape states and check that
1028   // we still have non-escaping objects. The method pushs on _worklist
1029   // Field nodes which reference phantom_object.
1030   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1031     return false; // Nothing to do.
1032   }
1033   // Now propagate references to all JavaObject nodes.
1034   int java_objects_length = java_objects_worklist.length();
1035   elapsedTimer time;
1036   int new_edges = 1;
1037   int iterations = 0;
1038   do {
1039     while ((new_edges > 0) &&
1040           (iterations++   < CG_BUILD_ITER_LIMIT) &&
1041           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1042       time.start();
1043       new_edges = 0;
1044       // Propagate references to phantom_object for nodes pushed on _worklist
1045       // by find_non_escaped_objects() and find_field_value().
1046       new_edges += add_java_object_edges(phantom_obj, false);
1047       for (int next = 0; next < java_objects_length; ++next) {
1048         JavaObjectNode* ptn = java_objects_worklist.at(next);
1049         new_edges += add_java_object_edges(ptn, true);
1050       }
1051       if (new_edges > 0) {
1052         // Update escape states on each iteration if graph was updated.
1053         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1054           return false; // Nothing to do.
1055         }
1056       }
1057       time.stop();
1058     }
1059     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
1060         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1061       time.start();
1062       // Find fields which have unknown value.
1063       int fields_length = oop_fields_worklist.length();
1064       for (int next = 0; next < fields_length; next++) {
1065         FieldNode* field = oop_fields_worklist.at(next);
1066         if (field->edge_count() == 0) {
1067           new_edges += find_field_value(field);
1068           // This code may added new edges to phantom_object.
1069           // Need an other cycle to propagate references to phantom_object.
1070         }
1071       }
1072       time.stop();
1073     } else {
1074       new_edges = 0; // Bailout
1075     }
1076   } while (new_edges > 0);
1077 
1078   // Bailout if passed limits.
1079   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
1080       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
1081     Compile* C = _compile;
1082     if (C->log() != NULL) {
1083       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1084       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
1085       C->log()->end_elem(" limit'");
1086     }
1087     assert(false, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1088            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1089     // Possible infinite build_connection_graph loop,
1090     // bailout (no changes to ideal graph were made).
1091     return false;
1092   }
1093 #ifdef ASSERT
1094   if (Verbose && PrintEscapeAnalysis) {
1095     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1096                   iterations, nodes_size(), ptnodes_worklist.length());
1097   }
1098 #endif
1099 
1100 #undef CG_BUILD_ITER_LIMIT
1101 #undef CG_BUILD_TIME_LIMIT
1102 
1103   // Find fields initialized by NULL for non-escaping Allocations.
1104   int non_escaped_length = non_escaped_worklist.length();
1105   for (int next = 0; next < non_escaped_length; next++) {
1106     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1107     PointsToNode::EscapeState es = ptn->escape_state();
1108     assert(es <= PointsToNode::ArgEscape, "sanity");
1109     if (es == PointsToNode::NoEscape) {
1110       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1111         // Adding references to NULL object does not change escape states
1112         // since it does not escape. Also no fields are added to NULL object.
1113         add_java_object_edges(null_obj, false);
1114       }
1115     }
1116     Node* n = ptn->ideal_node();
1117     if (n->is_Allocate()) {
1118       // The object allocated by this Allocate node will never be
1119       // seen by an other thread. Mark it so that when it is
1120       // expanded no MemBarStoreStore is added.
1121       InitializeNode* ini = n->as_Allocate()->initialization();
1122       if (ini != NULL)
1123         ini->set_does_not_escape();
1124     }
1125   }
1126   return true; // Finished graph construction.
1127 }
1128 
1129 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1130 // and check that we still have non-escaping java objects.
1131 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1132                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1133   GrowableArray<PointsToNode*> escape_worklist;
1134   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1135   int ptnodes_length = ptnodes_worklist.length();
1136   for (int next = 0; next < ptnodes_length; ++next) {
1137     PointsToNode* ptn = ptnodes_worklist.at(next);
1138     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1139         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1140       escape_worklist.push(ptn);
1141     }
1142   }
1143   // Set escape states to referenced nodes (edges list).
1144   while (escape_worklist.length() > 0) {
1145     PointsToNode* ptn = escape_worklist.pop();
1146     PointsToNode::EscapeState es  = ptn->escape_state();
1147     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1148     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1149         es >= PointsToNode::ArgEscape) {
1150       // GlobalEscape or ArgEscape state of field means it has unknown value.
1151       if (add_edge(ptn, phantom_obj)) {
1152         // New edge was added
1153         add_field_uses_to_worklist(ptn->as_Field());
1154       }
1155     }
1156     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1157       PointsToNode* e = i.get();
1158       if (e->is_Arraycopy()) {
1159         assert(ptn->arraycopy_dst(), "sanity");
1160         // Propagate only fields escape state through arraycopy edge.
1161         if (e->fields_escape_state() < field_es) {
1162           set_fields_escape_state(e, field_es);
1163           escape_worklist.push(e);
1164         }
1165       } else if (es >= field_es) {
1166         // fields_escape_state is also set to 'es' if it is less than 'es'.
1167         if (e->escape_state() < es) {
1168           set_escape_state(e, es);
1169           escape_worklist.push(e);
1170         }
1171       } else {
1172         // Propagate field escape state.
1173         bool es_changed = false;
1174         if (e->fields_escape_state() < field_es) {
1175           set_fields_escape_state(e, field_es);
1176           es_changed = true;
1177         }
1178         if ((e->escape_state() < field_es) &&
1179             e->is_Field() && ptn->is_JavaObject() &&
1180             e->as_Field()->is_oop()) {
1181           // Change escape state of referenced fileds.
1182           set_escape_state(e, field_es);
1183           es_changed = true;;
1184         } else if (e->escape_state() < es) {
1185           set_escape_state(e, es);
1186           es_changed = true;;
1187         }
1188         if (es_changed) {
1189           escape_worklist.push(e);
1190         }
1191       }
1192     }
1193   }
1194   // Remove escaped objects from non_escaped list.
1195   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1196     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1197     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1198       non_escaped_worklist.delete_at(next);
1199     }
1200     if (ptn->escape_state() == PointsToNode::NoEscape) {
1201       // Find fields in non-escaped allocations which have unknown value.
1202       find_init_values(ptn, phantom_obj, NULL);
1203     }
1204   }
1205   return (non_escaped_worklist.length() > 0);
1206 }
1207 
1208 // Add all references to JavaObject node by walking over all uses.
1209 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1210   int new_edges = 0;
1211   if (populate_worklist) {
1212     // Populate _worklist by uses of jobj's uses.
1213     for (UseIterator i(jobj); i.has_next(); i.next()) {
1214       PointsToNode* use = i.get();
1215       if (use->is_Arraycopy())
1216         continue;
1217       add_uses_to_worklist(use);
1218       if (use->is_Field() && use->as_Field()->is_oop()) {
1219         // Put on worklist all field's uses (loads) and
1220         // related field nodes (same base and offset).
1221         add_field_uses_to_worklist(use->as_Field());
1222       }
1223     }
1224   }
1225   while(_worklist.length() > 0) {
1226     PointsToNode* use = _worklist.pop();
1227     if (PointsToNode::is_base_use(use)) {
1228       // Add reference from jobj to field and from field to jobj (field's base).
1229       use = PointsToNode::get_use_node(use)->as_Field();
1230       if (add_base(use->as_Field(), jobj)) {
1231         new_edges++;
1232       }
1233       continue;
1234     }
1235     assert(!use->is_JavaObject(), "sanity");
1236     if (use->is_Arraycopy()) {
1237       if (jobj == null_obj) // NULL object does not have field edges
1238         continue;
1239       // Added edge from Arraycopy node to arraycopy's source java object
1240       if (add_edge(use, jobj)) {
1241         jobj->set_arraycopy_src();
1242         new_edges++;
1243       }
1244       // and stop here.
1245       continue;
1246     }
1247     if (!add_edge(use, jobj))
1248       continue; // No new edge added, there was such edge already.
1249     new_edges++;
1250     if (use->is_LocalVar()) {
1251       add_uses_to_worklist(use);
1252       if (use->arraycopy_dst()) {
1253         for (EdgeIterator i(use); i.has_next(); i.next()) {
1254           PointsToNode* e = i.get();
1255           if (e->is_Arraycopy()) {
1256             if (jobj == null_obj) // NULL object does not have field edges
1257               continue;
1258             // Add edge from arraycopy's destination java object to Arraycopy node.
1259             if (add_edge(jobj, e)) {
1260               new_edges++;
1261               jobj->set_arraycopy_dst();
1262             }
1263           }
1264         }
1265       }
1266     } else {
1267       // Added new edge to stored in field values.
1268       // Put on worklist all field's uses (loads) and
1269       // related field nodes (same base and offset).
1270       add_field_uses_to_worklist(use->as_Field());
1271     }
1272   }
1273   return new_edges;
1274 }
1275 
1276 // Put on worklist all related field nodes.
1277 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1278   assert(field->is_oop(), "sanity");
1279   int offset = field->offset();
1280   add_uses_to_worklist(field);
1281   // Loop over all bases of this field and push on worklist Field nodes
1282   // with the same offset and base (since they may reference the same field).
1283   for (BaseIterator i(field); i.has_next(); i.next()) {
1284     PointsToNode* base = i.get();
1285     add_fields_to_worklist(field, base);
1286     // Check if the base was source object of arraycopy and go over arraycopy's
1287     // destination objects since values stored to a field of source object are
1288     // accessable by uses (loads) of fields of destination objects.
1289     if (base->arraycopy_src()) {
1290       for (UseIterator j(base); j.has_next(); j.next()) {
1291         PointsToNode* arycp = j.get();
1292         if (arycp->is_Arraycopy()) {
1293           for (UseIterator k(arycp); k.has_next(); k.next()) {
1294             PointsToNode* abase = k.get();
1295             if (abase->arraycopy_dst() && abase != base) {
1296               // Look for the same arracopy reference.
1297               add_fields_to_worklist(field, abase);
1298             }
1299           }
1300         }
1301       }
1302     }
1303   }
1304 }
1305 
1306 // Put on worklist all related field nodes.
1307 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1308   int offset = field->offset();
1309   if (base->is_LocalVar()) {
1310     for (UseIterator j(base); j.has_next(); j.next()) {
1311       PointsToNode* f = j.get();
1312       if (PointsToNode::is_base_use(f)) { // Field
1313         f = PointsToNode::get_use_node(f);
1314         if (f == field || !f->as_Field()->is_oop())
1315           continue;
1316         int offs = f->as_Field()->offset();
1317         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1318           add_to_worklist(f);
1319         }
1320       }
1321     }
1322   } else {
1323     assert(base->is_JavaObject(), "sanity");
1324     if (// Skip phantom_object since it is only used to indicate that
1325         // this field's content globally escapes.
1326         (base != phantom_obj) &&
1327         // NULL object node does not have fields.
1328         (base != null_obj)) {
1329       for (EdgeIterator i(base); i.has_next(); i.next()) {
1330         PointsToNode* f = i.get();
1331         // Skip arraycopy edge since store to destination object field
1332         // does not update value in source object field.
1333         if (f->is_Arraycopy()) {
1334           assert(base->arraycopy_dst(), "sanity");
1335           continue;
1336         }
1337         if (f == field || !f->as_Field()->is_oop())
1338           continue;
1339         int offs = f->as_Field()->offset();
1340         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1341           add_to_worklist(f);
1342         }
1343       }
1344     }
1345   }
1346 }
1347 
1348 // Find fields which have unknown value.
1349 int ConnectionGraph::find_field_value(FieldNode* field) {
1350   // Escaped fields should have init value already.
1351   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1352   int new_edges = 0;
1353   for (BaseIterator i(field); i.has_next(); i.next()) {
1354     PointsToNode* base = i.get();
1355     if (base->is_JavaObject()) {
1356       // Skip Allocate's fields which will be processed later.
1357       if (base->ideal_node()->is_Allocate())
1358         return 0;
1359       assert(base == null_obj, "only NULL ptr base expected here");
1360     }
1361   }
1362   if (add_edge(field, phantom_obj)) {
1363     // New edge was added
1364     new_edges++;
1365     add_field_uses_to_worklist(field);
1366   }
1367   return new_edges;
1368 }
1369 
1370 // Find fields initializing values for allocations.
1371 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1372   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1373   int new_edges = 0;
1374   Node* alloc = pta->ideal_node();
1375   if (init_val == phantom_obj) {
1376     // Do nothing for Allocate nodes since its fields values are "known".
1377     if (alloc->is_Allocate())
1378       return 0;
1379     assert(alloc->as_CallStaticJava(), "sanity");
1380 #ifdef ASSERT
1381     if (alloc->as_CallStaticJava()->method() == NULL) {
1382       const char* name = alloc->as_CallStaticJava()->_name;
1383       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1384     }
1385 #endif
1386     // Non-escaped allocation returned from Java or runtime call have
1387     // unknown values in fields.
1388     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1389       PointsToNode* ptn = i.get();
1390       if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
1391         if (add_edge(ptn, phantom_obj)) {
1392           // New edge was added
1393           new_edges++;
1394           add_field_uses_to_worklist(ptn->as_Field());
1395         }
1396       }
1397     }
1398     return new_edges;
1399   }
1400   assert(init_val == null_obj, "sanity");
1401   // Do nothing for Call nodes since its fields values are unknown.
1402   if (!alloc->is_Allocate())
1403     return 0;
1404 
1405   InitializeNode* ini = alloc->as_Allocate()->initialization();
1406   Compile* C = _compile;
1407   bool visited_bottom_offset = false;
1408   GrowableArray<int> offsets_worklist;
1409 
1410   // Check if an oop field's initializing value is recorded and add
1411   // a corresponding NULL if field's value if it is not recorded.
1412   // Connection Graph does not record a default initialization by NULL
1413   // captured by Initialize node.
1414   //
1415   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1416     PointsToNode* ptn = i.get(); // Field (AddP)
1417     if (!ptn->is_Field() || !ptn->as_Field()->is_oop())
1418       continue; // Not oop field
1419     int offset = ptn->as_Field()->offset();
1420     if (offset == Type::OffsetBot) {
1421       if (!visited_bottom_offset) {
1422         // OffsetBot is used to reference array's element,
1423         // always add reference to NULL to all Field nodes since we don't
1424         // known which element is referenced.
1425         if (add_edge(ptn, null_obj)) {
1426           // New edge was added
1427           new_edges++;
1428           add_field_uses_to_worklist(ptn->as_Field());
1429           visited_bottom_offset = true;
1430         }
1431       }
1432     } else {
1433       // Check only oop fields.
1434       const Type* adr_type = ptn->ideal_node()->as_AddP()->bottom_type();
1435       if (adr_type->isa_rawptr()) {
1436 #ifdef ASSERT
1437         // Raw pointers are used for initializing stores so skip it
1438         // since it should be recorded already
1439         Node* base = get_addp_base(ptn->ideal_node());
1440         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1441                (base->in(0) == alloc),"unexpected pointer type");
1442 #endif
1443         continue;
1444       }
1445       if (!offsets_worklist.contains(offset)) {
1446         offsets_worklist.append(offset);
1447         Node* value = NULL;
1448         if (ini != NULL) {
1449           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
1450           Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
1451           if (store != NULL && store->is_Store()) {
1452             value = store->in(MemNode::ValueIn);
1453           } else {
1454             // There could be initializing stores which follow allocation.
1455             // For example, a volatile field store is not collected
1456             // by Initialize node.
1457             //
1458             // Need to check for dependent loads to separate such stores from
1459             // stores which follow loads. For now, add initial value NULL so
1460             // that compare pointers optimization works correctly.
1461           }
1462         }
1463         if (value == NULL) {
1464           // A field's initializing value was not recorded. Add NULL.
1465           if (add_edge(ptn, null_obj)) {
1466             // New edge was added
1467             new_edges++;
1468             add_field_uses_to_worklist(ptn->as_Field());
1469           }
1470         }
1471       }
1472     }
1473   }
1474   return new_edges;
1475 }
1476 
1477 // Adjust scalar_replaceable state after Connection Graph is built.
1478 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1479   // Search for non-escaping objects which are not scalar replaceable
1480   // and mark them to propagate the state to referenced objects.
1481 
1482   // 1. An object is not scalar replaceable if the field into which it is
1483   // stored has unknown offset (stored into unknown element of an array).
1484   //
1485   for (UseIterator i(jobj); i.has_next(); i.next()) {
1486     PointsToNode* use = i.get();
1487     assert(!use->is_Arraycopy(), "sanity");
1488     if (use->is_Field()) {
1489       FieldNode* field = use->as_Field();
1490       assert(field->is_oop() && field->scalar_replaceable() &&
1491              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1492       if (field->offset() == Type::OffsetBot) {
1493         jobj->set_scalar_replaceable(false);
1494         return;
1495       }
1496     }
1497     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1498     // 2. An object is not scalar replaceable if it is merged with other objects.
1499     for (EdgeIterator j(use); j.has_next(); j.next()) {
1500       PointsToNode* ptn = j.get();
1501       if (ptn->is_JavaObject() && ptn != jobj) {
1502         // Mark all objects.
1503         jobj->set_scalar_replaceable(false);
1504          ptn->set_scalar_replaceable(false);
1505       }
1506     }
1507     if (!jobj->scalar_replaceable()) {
1508       return;
1509     }
1510   }
1511 
1512   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1513     // Non-escaping object node should point only to field nodes.
1514     FieldNode* field = j.get()->as_Field();
1515     int offset = field->as_Field()->offset();
1516 
1517     // 3. An object is not scalar replaceable if it has a field with unknown
1518     // offset (array's element is accessed in loop).
1519     if (offset == Type::OffsetBot) {
1520       jobj->set_scalar_replaceable(false);
1521       return;
1522     }
1523     // 4. Currently an object is not scalar replaceable if a LoadStore node
1524     // access its field since the field value is unknown after it.
1525     //
1526     Node* n = field->ideal_node();
1527     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1528       if (n->fast_out(i)->is_LoadStore()) {
1529         jobj->set_scalar_replaceable(false);
1530         return;
1531       }
1532     }
1533 
1534     // 5. Or the address may point to more then one object. This may produce
1535     // the false positive result (set not scalar replaceable)
1536     // since the flow-insensitive escape analysis can't separate
1537     // the case when stores overwrite the field's value from the case
1538     // when stores happened on different control branches.
1539     //
1540     // Note: it will disable scalar replacement in some cases:
1541     //
1542     //    Point p[] = new Point[1];
1543     //    p[0] = new Point(); // Will be not scalar replaced
1544     //
1545     // but it will save us from incorrect optimizations in next cases:
1546     //
1547     //    Point p[] = new Point[1];
1548     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1549     //
1550     if (field->base_count() > 1) {
1551       for (BaseIterator i(field); i.has_next(); i.next()) {
1552         PointsToNode* base = i.get();
1553         // Don't take into account LocalVar nodes which
1554         // may point to only one object which should be also
1555         // this field's base by now.
1556         if (base->is_JavaObject() && base != jobj) {
1557           // Mark all bases.
1558           jobj->set_scalar_replaceable(false);
1559           base->set_scalar_replaceable(false);
1560         }
1561       }
1562     }
1563   }
1564 }
1565 
1566 #ifdef ASSERT
1567 void ConnectionGraph::verify_connection_graph(
1568                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1569                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1570                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1571                          GrowableArray<Node*>& addp_worklist) {
1572   // Verify that graph is complete - no new edges could be added.
1573   int java_objects_length = java_objects_worklist.length();
1574   int non_escaped_length  = non_escaped_worklist.length();
1575   int new_edges = 0;
1576   for (int next = 0; next < java_objects_length; ++next) {
1577     JavaObjectNode* ptn = java_objects_worklist.at(next);
1578     new_edges += add_java_object_edges(ptn, true);
1579   }
1580   assert(new_edges == 0, "graph was not complete");
1581   // Verify that escape state is final.
1582   int length = non_escaped_worklist.length();
1583   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1584   assert((non_escaped_length == non_escaped_worklist.length()) &&
1585          (non_escaped_length == length) &&
1586          (_worklist.length() == 0), "escape state was not final");
1587 
1588   // Verify fields information.
1589   int addp_length = addp_worklist.length();
1590   for (int next = 0; next < addp_length; ++next ) {
1591     Node* n = addp_worklist.at(next);
1592     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1593     if (field->is_oop()) {
1594       // Verify that field has all bases
1595       Node* base = get_addp_base(n);
1596       PointsToNode* ptn = ptnode_adr(base->_idx);
1597       if (ptn->is_JavaObject()) {
1598         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1599       } else {
1600         assert(ptn->is_LocalVar(), "sanity");
1601         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1602           PointsToNode* e = i.get();
1603           if (e->is_JavaObject()) {
1604             assert(field->has_base(e->as_JavaObject()), "sanity");
1605           }
1606         }
1607       }
1608       // Verify that all fields have initializing values.
1609       if (field->edge_count() == 0) {
1610         field->dump();
1611         assert(field->edge_count() > 0, "sanity");
1612       }
1613     }
1614   }
1615 }
1616 #endif
1617 
1618 // Optimize ideal graph.
1619 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1620                                            GrowableArray<Node*>& storestore_worklist) {
1621   Compile* C = _compile;
1622   PhaseIterGVN* igvn = _igvn;
1623   if (EliminateLocks) {
1624     // Mark locks before changing ideal graph.
1625     int cnt = C->macro_count();
1626     for( int i=0; i < cnt; i++ ) {
1627       Node *n = C->macro_node(i);
1628       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1629         AbstractLockNode* alock = n->as_AbstractLock();
1630         if (!alock->is_non_esc_obj()) {
1631           if (not_global_escape(alock->obj_node())) {
1632             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1633             // The lock could be marked eliminated by lock coarsening
1634             // code during first IGVN before EA. Replace coarsened flag
1635             // to eliminate all associated locks/unlocks.
1636             alock->set_non_esc_obj();
1637           }
1638         }
1639       }
1640     }
1641   }
1642 
1643   if (OptimizePtrCompare) {
1644     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1645     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1646     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1647     // Optimize objects compare.
1648     while (ptr_cmp_worklist.length() != 0) {
1649       Node *n = ptr_cmp_worklist.pop();
1650       Node *res = optimize_ptr_compare(n);
1651       if (res != NULL) {
1652 #ifndef PRODUCT
1653         if (PrintOptimizePtrCompare) {
1654           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1655           if (Verbose) {
1656             n->dump(1);
1657           }
1658         }
1659 #endif
1660         igvn->replace_node(n, res);
1661       }
1662     }
1663     // cleanup
1664     if (_pcmp_neq->outcnt() == 0)
1665       igvn->hash_delete(_pcmp_neq);
1666     if (_pcmp_eq->outcnt()  == 0)
1667       igvn->hash_delete(_pcmp_eq);
1668   }
1669 
1670   // For MemBarStoreStore nodes added in library_call.cpp, check
1671   // escape status of associated AllocateNode and optimize out
1672   // MemBarStoreStore node if the allocated object never escapes.
1673   while (storestore_worklist.length() != 0) {
1674     Node *n = storestore_worklist.pop();
1675     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1676     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1677     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1678     if (not_global_escape(alloc)) {
1679       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1680       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1681       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1682       igvn->register_new_node_with_optimizer(mb);
1683       igvn->replace_node(storestore, mb);
1684     }
1685   }
1686 }
1687 
1688 // Optimize objects compare.
1689 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1690   assert(OptimizePtrCompare, "sanity");
1691   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1692   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1693   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1694   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1695   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1696   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1697 
1698   // Check simple cases first.
1699   if (jobj1 != NULL) {
1700     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1701       if (jobj1 == jobj2) {
1702         // Comparing the same not escaping object.
1703         return _pcmp_eq;
1704       }
1705       Node* obj = jobj1->ideal_node();
1706       // Comparing not escaping allocation.
1707       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1708           !ptn2->points_to(jobj1)) {
1709         return _pcmp_neq; // This includes nullness check.
1710       }
1711     }
1712   }
1713   if (jobj2 != NULL) {
1714     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1715       Node* obj = jobj2->ideal_node();
1716       // Comparing not escaping allocation.
1717       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1718           !ptn1->points_to(jobj2)) {
1719         return _pcmp_neq; // This includes nullness check.
1720       }
1721     }
1722   }
1723   if (jobj1 != NULL && jobj1 != phantom_obj &&
1724       jobj2 != NULL && jobj2 != phantom_obj &&
1725       jobj1->ideal_node()->is_Con() &&
1726       jobj2->ideal_node()->is_Con()) {
1727     // Klass or String constants compare. Need to be careful with
1728     // compressed pointers - compare types of ConN and ConP instead of nodes.
1729     const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr();
1730     const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr();
1731     assert(t1 != NULL && t2 != NULL, "sanity");
1732     if (t1->make_ptr() == t2->make_ptr()) {
1733       return _pcmp_eq;
1734     } else {
1735       return _pcmp_neq;
1736     }
1737   }
1738   if (ptn1->meet(ptn2)) {
1739     return NULL; // Sets are not disjoint
1740   }
1741 
1742   // Sets are disjoint.
1743   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1744   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1745   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1746   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1747   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1748       set2_has_unknown_ptr && set1_has_null_ptr) {
1749     // Check nullness of unknown object.
1750     return NULL;
1751   }
1752 
1753   // Disjointness by itself is not sufficient since
1754   // alias analysis is not complete for escaped objects.
1755   // Disjoint sets are definitely unrelated only when
1756   // at least one set has only not escaping allocations.
1757   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1758     if (ptn1->non_escaping_allocation()) {
1759       return _pcmp_neq;
1760     }
1761   }
1762   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1763     if (ptn2->non_escaping_allocation()) {
1764       return _pcmp_neq;
1765     }
1766   }
1767   return NULL;
1768 }
1769 
1770 // Connection Graph constuction functions.
1771 
1772 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1773   PointsToNode* ptadr = _nodes.at(n->_idx);
1774   if (ptadr != NULL) {
1775     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1776     return;
1777   }
1778   Compile* C = _compile;
1779   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
1780   _nodes.at_put(n->_idx, ptadr);
1781 }
1782 
1783 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1784   PointsToNode* ptadr = _nodes.at(n->_idx);
1785   if (ptadr != NULL) {
1786     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1787     return;
1788   }
1789   Compile* C = _compile;
1790   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
1791   _nodes.at_put(n->_idx, ptadr);
1792 }
1793 
1794 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1795   PointsToNode* ptadr = _nodes.at(n->_idx);
1796   if (ptadr != NULL) {
1797     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1798     return;
1799   }
1800   bool unsafe = false;
1801   bool is_oop = is_oop_field(n, offset, &unsafe);
1802   if (unsafe) {
1803     es = PointsToNode::GlobalEscape;
1804   }
1805   Compile* C = _compile;
1806   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
1807   _nodes.at_put(n->_idx, field);
1808 }
1809 
1810 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1811                                     PointsToNode* src, PointsToNode* dst) {
1812   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1813   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1814   PointsToNode* ptadr = _nodes.at(n->_idx);
1815   if (ptadr != NULL) {
1816     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
1817     return;
1818   }
1819   Compile* C = _compile;
1820   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
1821   _nodes.at_put(n->_idx, ptadr);
1822   // Add edge from arraycopy node to source object.
1823   (void)add_edge(ptadr, src);
1824   src->set_arraycopy_src();
1825   // Add edge from destination object to arraycopy node.
1826   (void)add_edge(dst, ptadr);
1827   dst->set_arraycopy_dst();
1828 }
1829 
1830 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
1831   const Type* adr_type = n->as_AddP()->bottom_type();
1832   BasicType bt = T_INT;
1833   if (offset == Type::OffsetBot) {
1834     // Check only oop fields.
1835     if (!adr_type->isa_aryptr() ||
1836         (adr_type->isa_aryptr()->klass() == NULL) ||
1837          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
1838       // OffsetBot is used to reference array's element. Ignore first AddP.
1839       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
1840         bt = T_OBJECT;
1841       }
1842     }
1843   } else if (offset != oopDesc::klass_offset_in_bytes()) {
1844     if (adr_type->isa_instptr()) {
1845       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
1846       if (field != NULL) {
1847         bt = field->layout_type();
1848       } else {
1849         // Check for unsafe oop field access
1850         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1851           int opcode = n->fast_out(i)->Opcode();
1852           if (opcode == Op_StoreP || opcode == Op_LoadP ||
1853               opcode == Op_StoreN || opcode == Op_LoadN) {
1854             bt = T_OBJECT;
1855             (*unsafe) = true;
1856             break;
1857           }
1858         }
1859       }
1860     } else if (adr_type->isa_aryptr()) {
1861       if (offset == arrayOopDesc::length_offset_in_bytes()) {
1862         // Ignore array length load.
1863       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
1864         // Ignore first AddP.
1865       } else {
1866         const Type* elemtype = adr_type->isa_aryptr()->elem();
1867         bt = elemtype->array_element_basic_type();
1868       }
1869     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
1870       // Allocation initialization, ThreadLocal field access, unsafe access
1871       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1872         int opcode = n->fast_out(i)->Opcode();
1873         if (opcode == Op_StoreP || opcode == Op_LoadP ||
1874             opcode == Op_StoreN || opcode == Op_LoadN) {
1875           bt = T_OBJECT;
1876           break;
1877         }
1878       }
1879     }
1880   }
1881   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
1882 }
1883 
1884 // Returns unique pointed java object or NULL.
1885 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
1886   assert(!_collecting, "should not call when contructed graph");
1887   // If the node was created after the escape computation we can't answer.
1888   uint idx = n->_idx;
1889   if (idx >= nodes_size()) {
1890     return NULL;
1891   }
1892   PointsToNode* ptn = ptnode_adr(idx);
1893   if (ptn->is_JavaObject()) {
1894     return ptn->as_JavaObject();
1895   }
1896   assert(ptn->is_LocalVar(), "sanity");
1897   // Check all java objects it points to.
1898   JavaObjectNode* jobj = NULL;
1899   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1900     PointsToNode* e = i.get();
1901     if (e->is_JavaObject()) {
1902       if (jobj == NULL) {
1903         jobj = e->as_JavaObject();
1904       } else if (jobj != e) {
1905         return NULL;
1906       }
1907     }
1908   }
1909   return jobj;
1910 }
1911 
1912 // Return true if this node points only to non-escaping allocations.
1913 bool PointsToNode::non_escaping_allocation() {
1914   if (is_JavaObject()) {
1915     Node* n = ideal_node();
1916     if (n->is_Allocate() || n->is_CallStaticJava()) {
1917       return (escape_state() == PointsToNode::NoEscape);
1918     } else {
1919       return false;
1920     }
1921   }
1922   assert(is_LocalVar(), "sanity");
1923   // Check all java objects it points to.
1924   for (EdgeIterator i(this); i.has_next(); i.next()) {
1925     PointsToNode* e = i.get();
1926     if (e->is_JavaObject()) {
1927       Node* n = e->ideal_node();
1928       if ((e->escape_state() != PointsToNode::NoEscape) ||
1929           !(n->is_Allocate() || n->is_CallStaticJava())) {
1930         return false;
1931       }
1932     }
1933   }
1934   return true;
1935 }
1936 
1937 // Return true if we know the node does not escape globally.
1938 bool ConnectionGraph::not_global_escape(Node *n) {
1939   assert(!_collecting, "should not call during graph construction");
1940   // If the node was created after the escape computation we can't answer.
1941   uint idx = n->_idx;
1942   if (idx >= nodes_size()) {
1943     return false;
1944   }
1945   PointsToNode* ptn = ptnode_adr(idx);
1946   PointsToNode::EscapeState es = ptn->escape_state();
1947   // If we have already computed a value, return it.
1948   if (es >= PointsToNode::GlobalEscape)
1949     return false;
1950   if (ptn->is_JavaObject()) {
1951     return true; // (es < PointsToNode::GlobalEscape);
1952   }
1953   assert(ptn->is_LocalVar(), "sanity");
1954   // Check all java objects it points to.
1955   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1956     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
1957       return false;
1958   }
1959   return true;
1960 }
1961 
1962 
1963 // Helper functions
1964 
1965 // Return true if this node points to specified node or nodes it points to.
1966 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
1967   if (is_JavaObject()) {
1968     return (this == ptn);
1969   }
1970   assert(is_LocalVar(), "sanity");
1971   for (EdgeIterator i(this); i.has_next(); i.next()) {
1972     if (i.get() == ptn)
1973       return true;
1974   }
1975   return false;
1976 }
1977 
1978 // Return true if one node points to an other.
1979 bool PointsToNode::meet(PointsToNode* ptn) {
1980   if (this == ptn) {
1981     return true;
1982   } else if (ptn->is_JavaObject()) {
1983     return this->points_to(ptn->as_JavaObject());
1984   } else if (this->is_JavaObject()) {
1985     return ptn->points_to(this->as_JavaObject());
1986   }
1987   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
1988   int ptn_count =  ptn->edge_count();
1989   for (EdgeIterator i(this); i.has_next(); i.next()) {
1990     PointsToNode* this_e = i.get();
1991     for (int j = 0; j < ptn_count; j++) {
1992       if (this_e == ptn->edge(j))
1993         return true;
1994     }
1995   }
1996   return false;
1997 }
1998 
1999 #ifdef ASSERT
2000 // Return true if bases point to this java object.
2001 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2002   for (BaseIterator i(this); i.has_next(); i.next()) {
2003     if (i.get() == jobj)
2004       return true;
2005   }
2006   return false;
2007 }
2008 #endif
2009 
2010 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2011   const Type *adr_type = phase->type(adr);
2012   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2013       adr->in(AddPNode::Address)->is_Proj() &&
2014       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2015     // We are computing a raw address for a store captured by an Initialize
2016     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2017     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2018     assert(offs != Type::OffsetBot ||
2019            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2020            "offset must be a constant or it is initialization of array");
2021     return offs;
2022   }
2023   const TypePtr *t_ptr = adr_type->isa_ptr();
2024   assert(t_ptr != NULL, "must be a pointer type");
2025   return t_ptr->offset();
2026 }
2027 
2028 Node* ConnectionGraph::get_addp_base(Node *addp) {
2029   assert(addp->is_AddP(), "must be AddP");
2030   //
2031   // AddP cases for Base and Address inputs:
2032   // case #1. Direct object's field reference:
2033   //     Allocate
2034   //       |
2035   //     Proj #5 ( oop result )
2036   //       |
2037   //     CheckCastPP (cast to instance type)
2038   //      | |
2039   //     AddP  ( base == address )
2040   //
2041   // case #2. Indirect object's field reference:
2042   //      Phi
2043   //       |
2044   //     CastPP (cast to instance type)
2045   //      | |
2046   //     AddP  ( base == address )
2047   //
2048   // case #3. Raw object's field reference for Initialize node:
2049   //      Allocate
2050   //        |
2051   //      Proj #5 ( oop result )
2052   //  top   |
2053   //     \  |
2054   //     AddP  ( base == top )
2055   //
2056   // case #4. Array's element reference:
2057   //   {CheckCastPP | CastPP}
2058   //     |  | |
2059   //     |  AddP ( array's element offset )
2060   //     |  |
2061   //     AddP ( array's offset )
2062   //
2063   // case #5. Raw object's field reference for arraycopy stub call:
2064   //          The inline_native_clone() case when the arraycopy stub is called
2065   //          after the allocation before Initialize and CheckCastPP nodes.
2066   //      Allocate
2067   //        |
2068   //      Proj #5 ( oop result )
2069   //       | |
2070   //       AddP  ( base == address )
2071   //
2072   // case #6. Constant Pool, ThreadLocal, CastX2P or
2073   //          Raw object's field reference:
2074   //      {ConP, ThreadLocal, CastX2P, raw Load}
2075   //  top   |
2076   //     \  |
2077   //     AddP  ( base == top )
2078   //
2079   // case #7. Klass's field reference.
2080   //      LoadKlass
2081   //       | |
2082   //       AddP  ( base == address )
2083   //
2084   // case #8. narrow Klass's field reference.
2085   //      LoadNKlass
2086   //       |
2087   //      DecodeN
2088   //       | |
2089   //       AddP  ( base == address )
2090   //
2091   Node *base = addp->in(AddPNode::Base);
2092   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2093     base = addp->in(AddPNode::Address);
2094     while (base->is_AddP()) {
2095       // Case #6 (unsafe access) may have several chained AddP nodes.
2096       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2097       base = base->in(AddPNode::Address);
2098     }
2099     Node* uncast_base = base->uncast();
2100     int opcode = uncast_base->Opcode();
2101     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2102            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2103            (uncast_base->is_Mem() && uncast_base->bottom_type() == TypeRawPtr::NOTNULL) ||
2104            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2105   }
2106   return base;
2107 }
2108 
2109 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2110   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2111   Node* addp2 = addp->raw_out(0);
2112   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2113       addp2->in(AddPNode::Base) == n &&
2114       addp2->in(AddPNode::Address) == addp) {
2115     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2116     //
2117     // Find array's offset to push it on worklist first and
2118     // as result process an array's element offset first (pushed second)
2119     // to avoid CastPP for the array's offset.
2120     // Otherwise the inserted CastPP (LocalVar) will point to what
2121     // the AddP (Field) points to. Which would be wrong since
2122     // the algorithm expects the CastPP has the same point as
2123     // as AddP's base CheckCastPP (LocalVar).
2124     //
2125     //    ArrayAllocation
2126     //     |
2127     //    CheckCastPP
2128     //     |
2129     //    memProj (from ArrayAllocation CheckCastPP)
2130     //     |  ||
2131     //     |  ||   Int (element index)
2132     //     |  ||    |   ConI (log(element size))
2133     //     |  ||    |   /
2134     //     |  ||   LShift
2135     //     |  ||  /
2136     //     |  AddP (array's element offset)
2137     //     |  |
2138     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2139     //     | / /
2140     //     AddP (array's offset)
2141     //      |
2142     //     Load/Store (memory operation on array's element)
2143     //
2144     return addp2;
2145   }
2146   return NULL;
2147 }
2148 
2149 //
2150 // Adjust the type and inputs of an AddP which computes the
2151 // address of a field of an instance
2152 //
2153 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2154   PhaseGVN* igvn = _igvn;
2155   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2156   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2157   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2158   if (t == NULL) {
2159     // We are computing a raw address for a store captured by an Initialize
2160     // compute an appropriate address type (cases #3 and #5).
2161     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2162     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2163     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2164     assert(offs != Type::OffsetBot, "offset must be a constant");
2165     t = base_t->add_offset(offs)->is_oopptr();
2166   }
2167   int inst_id =  base_t->instance_id();
2168   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2169                              "old type must be non-instance or match new type");
2170 
2171   // The type 't' could be subclass of 'base_t'.
2172   // As result t->offset() could be large then base_t's size and it will
2173   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2174   // constructor verifies correctness of the offset.
2175   //
2176   // It could happened on subclass's branch (from the type profiling
2177   // inlining) which was not eliminated during parsing since the exactness
2178   // of the allocation type was not propagated to the subclass type check.
2179   //
2180   // Or the type 't' could be not related to 'base_t' at all.
2181   // It could happened when CHA type is different from MDO type on a dead path
2182   // (for example, from instanceof check) which is not collapsed during parsing.
2183   //
2184   // Do nothing for such AddP node and don't process its users since
2185   // this code branch will go away.
2186   //
2187   if (!t->is_known_instance() &&
2188       !base_t->klass()->is_subtype_of(t->klass())) {
2189      return false; // bail out
2190   }
2191   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2192   // Do NOT remove the next line: ensure a new alias index is allocated
2193   // for the instance type. Note: C++ will not remove it since the call
2194   // has side effect.
2195   int alias_idx = _compile->get_alias_index(tinst);
2196   igvn->set_type(addp, tinst);
2197   // record the allocation in the node map
2198   set_map(addp, get_map(base->_idx));
2199   // Set addp's Base and Address to 'base'.
2200   Node *abase = addp->in(AddPNode::Base);
2201   Node *adr   = addp->in(AddPNode::Address);
2202   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2203       adr->in(0)->_idx == (uint)inst_id) {
2204     // Skip AddP cases #3 and #5.
2205   } else {
2206     assert(!abase->is_top(), "sanity"); // AddP case #3
2207     if (abase != base) {
2208       igvn->hash_delete(addp);
2209       addp->set_req(AddPNode::Base, base);
2210       if (abase == adr) {
2211         addp->set_req(AddPNode::Address, base);
2212       } else {
2213         // AddP case #4 (adr is array's element offset AddP node)
2214 #ifdef ASSERT
2215         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2216         assert(adr->is_AddP() && atype != NULL &&
2217                atype->instance_id() == inst_id, "array's element offset should be processed first");
2218 #endif
2219       }
2220       igvn->hash_insert(addp);
2221     }
2222   }
2223   // Put on IGVN worklist since at least addp's type was changed above.
2224   record_for_optimizer(addp);
2225   return true;
2226 }
2227 
2228 //
2229 // Create a new version of orig_phi if necessary. Returns either the newly
2230 // created phi or an existing phi.  Sets create_new to indicate whether a new
2231 // phi was created.  Cache the last newly created phi in the node map.
2232 //
2233 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2234   Compile *C = _compile;
2235   PhaseGVN* igvn = _igvn;
2236   new_created = false;
2237   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2238   // nothing to do if orig_phi is bottom memory or matches alias_idx
2239   if (phi_alias_idx == alias_idx) {
2240     return orig_phi;
2241   }
2242   // Have we recently created a Phi for this alias index?
2243   PhiNode *result = get_map_phi(orig_phi->_idx);
2244   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2245     return result;
2246   }
2247   // Previous check may fail when the same wide memory Phi was split into Phis
2248   // for different memory slices. Search all Phis for this region.
2249   if (result != NULL) {
2250     Node* region = orig_phi->in(0);
2251     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2252       Node* phi = region->fast_out(i);
2253       if (phi->is_Phi() &&
2254           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2255         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2256         return phi->as_Phi();
2257       }
2258     }
2259   }
2260   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
2261     if (C->do_escape_analysis() == true && !C->failing()) {
2262       // Retry compilation without escape analysis.
2263       // If this is the first failure, the sentinel string will "stick"
2264       // to the Compile object, and the C2Compiler will see it and retry.
2265       C->record_failure(C2Compiler::retry_no_escape_analysis());
2266     }
2267     return NULL;
2268   }
2269   orig_phi_worklist.append_if_missing(orig_phi);
2270   const TypePtr *atype = C->get_adr_type(alias_idx);
2271   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2272   C->copy_node_notes_to(result, orig_phi);
2273   igvn->set_type(result, result->bottom_type());
2274   record_for_optimizer(result);
2275   set_map(orig_phi, result);
2276   new_created = true;
2277   return result;
2278 }
2279 
2280 //
2281 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2282 // specified alias index.
2283 //
2284 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2285   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2286   Compile *C = _compile;
2287   PhaseGVN* igvn = _igvn;
2288   bool new_phi_created;
2289   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2290   if (!new_phi_created) {
2291     return result;
2292   }
2293   GrowableArray<PhiNode *>  phi_list;
2294   GrowableArray<uint>  cur_input;
2295   PhiNode *phi = orig_phi;
2296   uint idx = 1;
2297   bool finished = false;
2298   while(!finished) {
2299     while (idx < phi->req()) {
2300       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2301       if (mem != NULL && mem->is_Phi()) {
2302         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2303         if (new_phi_created) {
2304           // found an phi for which we created a new split, push current one on worklist and begin
2305           // processing new one
2306           phi_list.push(phi);
2307           cur_input.push(idx);
2308           phi = mem->as_Phi();
2309           result = newphi;
2310           idx = 1;
2311           continue;
2312         } else {
2313           mem = newphi;
2314         }
2315       }
2316       if (C->failing()) {
2317         return NULL;
2318       }
2319       result->set_req(idx++, mem);
2320     }
2321 #ifdef ASSERT
2322     // verify that the new Phi has an input for each input of the original
2323     assert( phi->req() == result->req(), "must have same number of inputs.");
2324     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2325 #endif
2326     // Check if all new phi's inputs have specified alias index.
2327     // Otherwise use old phi.
2328     for (uint i = 1; i < phi->req(); i++) {
2329       Node* in = result->in(i);
2330       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2331     }
2332     // we have finished processing a Phi, see if there are any more to do
2333     finished = (phi_list.length() == 0 );
2334     if (!finished) {
2335       phi = phi_list.pop();
2336       idx = cur_input.pop();
2337       PhiNode *prev_result = get_map_phi(phi->_idx);
2338       prev_result->set_req(idx++, result);
2339       result = prev_result;
2340     }
2341   }
2342   return result;
2343 }
2344 
2345 //
2346 // The next methods are derived from methods in MemNode.
2347 //
2348 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2349   Node *mem = mmem;
2350   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2351   // means an array I have not precisely typed yet.  Do not do any
2352   // alias stuff with it any time soon.
2353   if (toop->base() != Type::AnyPtr &&
2354       !(toop->klass() != NULL &&
2355         toop->klass()->is_java_lang_Object() &&
2356         toop->offset() == Type::OffsetBot)) {
2357     mem = mmem->memory_at(alias_idx);
2358     // Update input if it is progress over what we have now
2359   }
2360   return mem;
2361 }
2362 
2363 //
2364 // Move memory users to their memory slices.
2365 //
2366 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2367   Compile* C = _compile;
2368   PhaseGVN* igvn = _igvn;
2369   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2370   assert(tp != NULL, "ptr type");
2371   int alias_idx = C->get_alias_index(tp);
2372   int general_idx = C->get_general_index(alias_idx);
2373 
2374   // Move users first
2375   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2376     Node* use = n->fast_out(i);
2377     if (use->is_MergeMem()) {
2378       MergeMemNode* mmem = use->as_MergeMem();
2379       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2380       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2381         continue; // Nothing to do
2382       }
2383       // Replace previous general reference to mem node.
2384       uint orig_uniq = C->unique();
2385       Node* m = find_inst_mem(n, general_idx, orig_phis);
2386       assert(orig_uniq == C->unique(), "no new nodes");
2387       mmem->set_memory_at(general_idx, m);
2388       --imax;
2389       --i;
2390     } else if (use->is_MemBar()) {
2391       assert(!use->is_Initialize(), "initializing stores should not be moved");
2392       if (use->req() > MemBarNode::Precedent &&
2393           use->in(MemBarNode::Precedent) == n) {
2394         // Don't move related membars.
2395         record_for_optimizer(use);
2396         continue;
2397       }
2398       tp = use->as_MemBar()->adr_type()->isa_ptr();
2399       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2400           alias_idx == general_idx) {
2401         continue; // Nothing to do
2402       }
2403       // Move to general memory slice.
2404       uint orig_uniq = C->unique();
2405       Node* m = find_inst_mem(n, general_idx, orig_phis);
2406       assert(orig_uniq == C->unique(), "no new nodes");
2407       igvn->hash_delete(use);
2408       imax -= use->replace_edge(n, m);
2409       igvn->hash_insert(use);
2410       record_for_optimizer(use);
2411       --i;
2412 #ifdef ASSERT
2413     } else if (use->is_Mem()) {
2414       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2415         // Don't move related cardmark.
2416         continue;
2417       }
2418       // Memory nodes should have new memory input.
2419       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2420       assert(tp != NULL, "ptr type");
2421       int idx = C->get_alias_index(tp);
2422       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2423              "Following memory nodes should have new memory input or be on the same memory slice");
2424     } else if (use->is_Phi()) {
2425       // Phi nodes should be split and moved already.
2426       tp = use->as_Phi()->adr_type()->isa_ptr();
2427       assert(tp != NULL, "ptr type");
2428       int idx = C->get_alias_index(tp);
2429       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2430     } else {
2431       use->dump();
2432       assert(false, "should not be here");
2433 #endif
2434     }
2435   }
2436 }
2437 
2438 //
2439 // Search memory chain of "mem" to find a MemNode whose address
2440 // is the specified alias index.
2441 //
2442 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2443   if (orig_mem == NULL)
2444     return orig_mem;
2445   Compile* C = _compile;
2446   PhaseGVN* igvn = _igvn;
2447   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2448   bool is_instance = (toop != NULL) && toop->is_known_instance();
2449   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2450   Node *prev = NULL;
2451   Node *result = orig_mem;
2452   while (prev != result) {
2453     prev = result;
2454     if (result == start_mem)
2455       break;  // hit one of our sentinels
2456     if (result->is_Mem()) {
2457       const Type *at = igvn->type(result->in(MemNode::Address));
2458       if (at == Type::TOP)
2459         break; // Dead
2460       assert (at->isa_ptr() != NULL, "pointer type required.");
2461       int idx = C->get_alias_index(at->is_ptr());
2462       if (idx == alias_idx)
2463         break; // Found
2464       if (!is_instance && (at->isa_oopptr() == NULL ||
2465                            !at->is_oopptr()->is_known_instance())) {
2466         break; // Do not skip store to general memory slice.
2467       }
2468       result = result->in(MemNode::Memory);
2469     }
2470     if (!is_instance)
2471       continue;  // don't search further for non-instance types
2472     // skip over a call which does not affect this memory slice
2473     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2474       Node *proj_in = result->in(0);
2475       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2476         break;  // hit one of our sentinels
2477       } else if (proj_in->is_Call()) {
2478         CallNode *call = proj_in->as_Call();
2479         if (!call->may_modify(toop, igvn)) {
2480           result = call->in(TypeFunc::Memory);
2481         }
2482       } else if (proj_in->is_Initialize()) {
2483         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2484         // Stop if this is the initialization for the object instance which
2485         // which contains this memory slice, otherwise skip over it.
2486         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2487           result = proj_in->in(TypeFunc::Memory);
2488         }
2489       } else if (proj_in->is_MemBar()) {
2490         result = proj_in->in(TypeFunc::Memory);
2491       }
2492     } else if (result->is_MergeMem()) {
2493       MergeMemNode *mmem = result->as_MergeMem();
2494       result = step_through_mergemem(mmem, alias_idx, toop);
2495       if (result == mmem->base_memory()) {
2496         // Didn't find instance memory, search through general slice recursively.
2497         result = mmem->memory_at(C->get_general_index(alias_idx));
2498         result = find_inst_mem(result, alias_idx, orig_phis);
2499         if (C->failing()) {
2500           return NULL;
2501         }
2502         mmem->set_memory_at(alias_idx, result);
2503       }
2504     } else if (result->is_Phi() &&
2505                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2506       Node *un = result->as_Phi()->unique_input(igvn);
2507       if (un != NULL) {
2508         orig_phis.append_if_missing(result->as_Phi());
2509         result = un;
2510       } else {
2511         break;
2512       }
2513     } else if (result->is_ClearArray()) {
2514       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2515         // Can not bypass initialization of the instance
2516         // we are looking for.
2517         break;
2518       }
2519       // Otherwise skip it (the call updated 'result' value).
2520     } else if (result->Opcode() == Op_SCMemProj) {
2521       assert(result->in(0)->is_LoadStore(), "sanity");
2522       const Type *at = igvn->type(result->in(0)->in(MemNode::Address));
2523       if (at != Type::TOP) {
2524         assert (at->isa_ptr() != NULL, "pointer type required.");
2525         int idx = C->get_alias_index(at->is_ptr());
2526         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2527         break;
2528       }
2529       result = result->in(0)->in(MemNode::Memory);
2530     }
2531   }
2532   if (result->is_Phi()) {
2533     PhiNode *mphi = result->as_Phi();
2534     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2535     const TypePtr *t = mphi->adr_type();
2536     if (!is_instance) {
2537       // Push all non-instance Phis on the orig_phis worklist to update inputs
2538       // during Phase 4 if needed.
2539       orig_phis.append_if_missing(mphi);
2540     } else if (C->get_alias_index(t) != alias_idx) {
2541       // Create a new Phi with the specified alias index type.
2542       result = split_memory_phi(mphi, alias_idx, orig_phis);
2543     }
2544   }
2545   // the result is either MemNode, PhiNode, InitializeNode.
2546   return result;
2547 }
2548 
2549 //
2550 //  Convert the types of unescaped object to instance types where possible,
2551 //  propagate the new type information through the graph, and update memory
2552 //  edges and MergeMem inputs to reflect the new type.
2553 //
2554 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2555 //  The processing is done in 4 phases:
2556 //
2557 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2558 //            types for the CheckCastPP for allocations where possible.
2559 //            Propagate the the new types through users as follows:
2560 //               casts and Phi:  push users on alloc_worklist
2561 //               AddP:  cast Base and Address inputs to the instance type
2562 //                      push any AddP users on alloc_worklist and push any memnode
2563 //                      users onto memnode_worklist.
2564 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2565 //            search the Memory chain for a store with the appropriate type
2566 //            address type.  If a Phi is found, create a new version with
2567 //            the appropriate memory slices from each of the Phi inputs.
2568 //            For stores, process the users as follows:
2569 //               MemNode:  push on memnode_worklist
2570 //               MergeMem: push on mergemem_worklist
2571 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2572 //            moving the first node encountered of each  instance type to the
2573 //            the input corresponding to its alias index.
2574 //            appropriate memory slice.
2575 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2576 //
2577 // In the following example, the CheckCastPP nodes are the cast of allocation
2578 // results and the allocation of node 29 is unescaped and eligible to be an
2579 // instance type.
2580 //
2581 // We start with:
2582 //
2583 //     7 Parm #memory
2584 //    10  ConI  "12"
2585 //    19  CheckCastPP   "Foo"
2586 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2587 //    29  CheckCastPP   "Foo"
2588 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2589 //
2590 //    40  StoreP  25   7  20   ... alias_index=4
2591 //    50  StoreP  35  40  30   ... alias_index=4
2592 //    60  StoreP  45  50  20   ... alias_index=4
2593 //    70  LoadP    _  60  30   ... alias_index=4
2594 //    80  Phi     75  50  60   Memory alias_index=4
2595 //    90  LoadP    _  80  30   ... alias_index=4
2596 //   100  LoadP    _  80  20   ... alias_index=4
2597 //
2598 //
2599 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2600 // and creating a new alias index for node 30.  This gives:
2601 //
2602 //     7 Parm #memory
2603 //    10  ConI  "12"
2604 //    19  CheckCastPP   "Foo"
2605 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2606 //    29  CheckCastPP   "Foo"  iid=24
2607 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2608 //
2609 //    40  StoreP  25   7  20   ... alias_index=4
2610 //    50  StoreP  35  40  30   ... alias_index=6
2611 //    60  StoreP  45  50  20   ... alias_index=4
2612 //    70  LoadP    _  60  30   ... alias_index=6
2613 //    80  Phi     75  50  60   Memory alias_index=4
2614 //    90  LoadP    _  80  30   ... alias_index=6
2615 //   100  LoadP    _  80  20   ... alias_index=4
2616 //
2617 // In phase 2, new memory inputs are computed for the loads and stores,
2618 // And a new version of the phi is created.  In phase 4, the inputs to
2619 // node 80 are updated and then the memory nodes are updated with the
2620 // values computed in phase 2.  This results in:
2621 //
2622 //     7 Parm #memory
2623 //    10  ConI  "12"
2624 //    19  CheckCastPP   "Foo"
2625 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2626 //    29  CheckCastPP   "Foo"  iid=24
2627 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2628 //
2629 //    40  StoreP  25  7   20   ... alias_index=4
2630 //    50  StoreP  35  7   30   ... alias_index=6
2631 //    60  StoreP  45  40  20   ... alias_index=4
2632 //    70  LoadP    _  50  30   ... alias_index=6
2633 //    80  Phi     75  40  60   Memory alias_index=4
2634 //   120  Phi     75  50  50   Memory alias_index=6
2635 //    90  LoadP    _ 120  30   ... alias_index=6
2636 //   100  LoadP    _  80  20   ... alias_index=4
2637 //
2638 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
2639   GrowableArray<Node *>  memnode_worklist;
2640   GrowableArray<PhiNode *>  orig_phis;
2641   PhaseIterGVN  *igvn = _igvn;
2642   uint new_index_start = (uint) _compile->num_alias_types();
2643   Arena* arena = Thread::current()->resource_area();
2644   VectorSet visited(arena);
2645   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2646   uint unique_old = _compile->unique();
2647 
2648   //  Phase 1:  Process possible allocations from alloc_worklist.
2649   //  Create instance types for the CheckCastPP for allocations where possible.
2650   //
2651   // (Note: don't forget to change the order of the second AddP node on
2652   //  the alloc_worklist if the order of the worklist processing is changed,
2653   //  see the comment in find_second_addp().)
2654   //
2655   while (alloc_worklist.length() != 0) {
2656     Node *n = alloc_worklist.pop();
2657     uint ni = n->_idx;
2658     if (n->is_Call()) {
2659       CallNode *alloc = n->as_Call();
2660       // copy escape information to call node
2661       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2662       PointsToNode::EscapeState es = ptn->escape_state();
2663       // We have an allocation or call which returns a Java object,
2664       // see if it is unescaped.
2665       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2666         continue;
2667       // Find CheckCastPP for the allocate or for the return value of a call
2668       n = alloc->result_cast();
2669       if (n == NULL) {            // No uses except Initialize node
2670         if (alloc->is_Allocate()) {
2671           // Set the scalar_replaceable flag for allocation
2672           // so it could be eliminated if it has no uses.
2673           alloc->as_Allocate()->_is_scalar_replaceable = true;
2674         }
2675         continue;
2676       }
2677       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2678         assert(!alloc->is_Allocate(), "allocation should have unique type");
2679         continue;
2680       }
2681 
2682       // The inline code for Object.clone() casts the allocation result to
2683       // java.lang.Object and then to the actual type of the allocated
2684       // object. Detect this case and use the second cast.
2685       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2686       // the allocation result is cast to java.lang.Object and then
2687       // to the actual Array type.
2688       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2689           && (alloc->is_AllocateArray() ||
2690               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2691         Node *cast2 = NULL;
2692         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2693           Node *use = n->fast_out(i);
2694           if (use->is_CheckCastPP()) {
2695             cast2 = use;
2696             break;
2697           }
2698         }
2699         if (cast2 != NULL) {
2700           n = cast2;
2701         } else {
2702           // Non-scalar replaceable if the allocation type is unknown statically
2703           // (reflection allocation), the object can't be restored during
2704           // deoptimization without precise type.
2705           continue;
2706         }
2707       }
2708       if (alloc->is_Allocate()) {
2709         // Set the scalar_replaceable flag for allocation
2710         // so it could be eliminated.
2711         alloc->as_Allocate()->_is_scalar_replaceable = true;
2712       }
2713       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2714       // in order for an object to be scalar-replaceable, it must be:
2715       //   - a direct allocation (not a call returning an object)
2716       //   - non-escaping
2717       //   - eligible to be a unique type
2718       //   - not determined to be ineligible by escape analysis
2719       set_map(alloc, n);
2720       set_map(n, alloc);
2721       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2722       if (t == NULL)
2723         continue;  // not a TypeOopPtr
2724       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
2725       igvn->hash_delete(n);
2726       igvn->set_type(n,  tinst);
2727       n->raise_bottom_type(tinst);
2728       igvn->hash_insert(n);
2729       record_for_optimizer(n);
2730       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2731 
2732         // First, put on the worklist all Field edges from Connection Graph
2733         // which is more accurate then putting immediate users from Ideal Graph.
2734         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2735           PointsToNode* tgt = e.get();
2736           Node* use = tgt->ideal_node();
2737           assert(tgt->is_Field() && use->is_AddP(),
2738                  "only AddP nodes are Field edges in CG");
2739           if (use->outcnt() > 0) { // Don't process dead nodes
2740             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2741             if (addp2 != NULL) {
2742               assert(alloc->is_AllocateArray(),"array allocation was expected");
2743               alloc_worklist.append_if_missing(addp2);
2744             }
2745             alloc_worklist.append_if_missing(use);
2746           }
2747         }
2748 
2749         // An allocation may have an Initialize which has raw stores. Scan
2750         // the users of the raw allocation result and push AddP users
2751         // on alloc_worklist.
2752         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2753         assert (raw_result != NULL, "must have an allocation result");
2754         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2755           Node *use = raw_result->fast_out(i);
2756           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2757             Node* addp2 = find_second_addp(use, raw_result);
2758             if (addp2 != NULL) {
2759               assert(alloc->is_AllocateArray(),"array allocation was expected");
2760               alloc_worklist.append_if_missing(addp2);
2761             }
2762             alloc_worklist.append_if_missing(use);
2763           } else if (use->is_MemBar()) {
2764             memnode_worklist.append_if_missing(use);
2765           }
2766         }
2767       }
2768     } else if (n->is_AddP()) {
2769       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2770       if (jobj == NULL || jobj == phantom_obj) {
2771 #ifdef ASSERT
2772         ptnode_adr(get_addp_base(n)->_idx)->dump();
2773         ptnode_adr(n->_idx)->dump();
2774         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2775 #endif
2776         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2777         return;
2778       }
2779       Node *base = get_map(jobj->idx());  // CheckCastPP node
2780       if (!split_AddP(n, base)) continue; // wrong type from dead path
2781     } else if (n->is_Phi() ||
2782                n->is_CheckCastPP() ||
2783                n->is_EncodeP() ||
2784                n->is_DecodeN() ||
2785                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
2786       if (visited.test_set(n->_idx)) {
2787         assert(n->is_Phi(), "loops only through Phi's");
2788         continue;  // already processed
2789       }
2790       JavaObjectNode* jobj = unique_java_object(n);
2791       if (jobj == NULL || jobj == phantom_obj) {
2792 #ifdef ASSERT
2793         ptnode_adr(n->_idx)->dump();
2794         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2795 #endif
2796         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2797         return;
2798       } else {
2799         Node *val = get_map(jobj->idx());   // CheckCastPP node
2800         TypeNode *tn = n->as_Type();
2801         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
2802         assert(tinst != NULL && tinst->is_known_instance() &&
2803                tinst->instance_id() == jobj->idx() , "instance type expected.");
2804 
2805         const Type *tn_type = igvn->type(tn);
2806         const TypeOopPtr *tn_t;
2807         if (tn_type->isa_narrowoop()) {
2808           tn_t = tn_type->make_ptr()->isa_oopptr();
2809         } else {
2810           tn_t = tn_type->isa_oopptr();
2811         }
2812         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
2813           if (tn_type->isa_narrowoop()) {
2814             tn_type = tinst->make_narrowoop();
2815           } else {
2816             tn_type = tinst;
2817           }
2818           igvn->hash_delete(tn);
2819           igvn->set_type(tn, tn_type);
2820           tn->set_type(tn_type);
2821           igvn->hash_insert(tn);
2822           record_for_optimizer(n);
2823         } else {
2824           assert(tn_type == TypePtr::NULL_PTR ||
2825                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
2826                  "unexpected type");
2827           continue; // Skip dead path with different type
2828         }
2829       }
2830     } else {
2831       debug_only(n->dump();)
2832       assert(false, "EA: unexpected node");
2833       continue;
2834     }
2835     // push allocation's users on appropriate worklist
2836     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2837       Node *use = n->fast_out(i);
2838       if(use->is_Mem() && use->in(MemNode::Address) == n) {
2839         // Load/store to instance's field
2840         memnode_worklist.append_if_missing(use);
2841       } else if (use->is_MemBar()) {
2842         memnode_worklist.append_if_missing(use);
2843       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
2844         Node* addp2 = find_second_addp(use, n);
2845         if (addp2 != NULL) {
2846           alloc_worklist.append_if_missing(addp2);
2847         }
2848         alloc_worklist.append_if_missing(use);
2849       } else if (use->is_Phi() ||
2850                  use->is_CheckCastPP() ||
2851                  use->is_EncodeNarrowPtr() ||
2852                  use->is_DecodeNarrowPtr() ||
2853                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
2854         alloc_worklist.append_if_missing(use);
2855 #ifdef ASSERT
2856       } else if (use->is_Mem()) {
2857         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
2858       } else if (use->is_MergeMem()) {
2859         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2860       } else if (use->is_SafePoint()) {
2861         // Look for MergeMem nodes for calls which reference unique allocation
2862         // (through CheckCastPP nodes) even for debug info.
2863         Node* m = use->in(TypeFunc::Memory);
2864         if (m->is_MergeMem()) {
2865           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2866         }
2867       } else {
2868         uint op = use->Opcode();
2869         if (!(op == Op_CmpP || op == Op_Conv2B ||
2870               op == Op_CastP2X || op == Op_StoreCM ||
2871               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
2872               op == Op_StrEquals || op == Op_StrIndexOf)) {
2873           n->dump();
2874           use->dump();
2875           assert(false, "EA: missing allocation reference path");
2876         }
2877 #endif
2878       }
2879     }
2880 
2881   }
2882   // New alias types were created in split_AddP().
2883   uint new_index_end = (uint) _compile->num_alias_types();
2884   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
2885 
2886   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2887   //            compute new values for Memory inputs  (the Memory inputs are not
2888   //            actually updated until phase 4.)
2889   if (memnode_worklist.length() == 0)
2890     return;  // nothing to do
2891   while (memnode_worklist.length() != 0) {
2892     Node *n = memnode_worklist.pop();
2893     if (visited.test_set(n->_idx))
2894       continue;
2895     if (n->is_Phi() || n->is_ClearArray()) {
2896       // we don't need to do anything, but the users must be pushed
2897     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
2898       // we don't need to do anything, but the users must be pushed
2899       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
2900       if (n == NULL)
2901         continue;
2902     } else {
2903       assert(n->is_Mem(), "memory node required.");
2904       Node *addr = n->in(MemNode::Address);
2905       const Type *addr_t = igvn->type(addr);
2906       if (addr_t == Type::TOP)
2907         continue;
2908       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
2909       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
2910       assert ((uint)alias_idx < new_index_end, "wrong alias index");
2911       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
2912       if (_compile->failing()) {
2913         return;
2914       }
2915       if (mem != n->in(MemNode::Memory)) {
2916         // We delay the memory edge update since we need old one in
2917         // MergeMem code below when instances memory slices are separated.
2918         set_map(n, mem);
2919       }
2920       if (n->is_Load()) {
2921         continue;  // don't push users
2922       } else if (n->is_LoadStore()) {
2923         // get the memory projection
2924         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2925           Node *use = n->fast_out(i);
2926           if (use->Opcode() == Op_SCMemProj) {
2927             n = use;
2928             break;
2929           }
2930         }
2931         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
2932       }
2933     }
2934     // push user on appropriate worklist
2935     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2936       Node *use = n->fast_out(i);
2937       if (use->is_Phi() || use->is_ClearArray()) {
2938         memnode_worklist.append_if_missing(use);
2939       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
2940         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
2941           continue;
2942         memnode_worklist.append_if_missing(use);
2943       } else if (use->is_MemBar()) {
2944         memnode_worklist.append_if_missing(use);
2945 #ifdef ASSERT
2946       } else if(use->is_Mem()) {
2947         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
2948       } else if (use->is_MergeMem()) {
2949         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2950       } else {
2951         uint op = use->Opcode();
2952         if (!(op == Op_StoreCM ||
2953               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
2954                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
2955               op == Op_AryEq || op == Op_StrComp ||
2956               op == Op_StrEquals || op == Op_StrIndexOf)) {
2957           n->dump();
2958           use->dump();
2959           assert(false, "EA: missing memory path");
2960         }
2961 #endif
2962       }
2963     }
2964   }
2965 
2966   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
2967   //            Walk each memory slice moving the first node encountered of each
2968   //            instance type to the the input corresponding to its alias index.
2969   uint length = _mergemem_worklist.length();
2970   for( uint next = 0; next < length; ++next ) {
2971     MergeMemNode* nmm = _mergemem_worklist.at(next);
2972     assert(!visited.test_set(nmm->_idx), "should not be visited before");
2973     // Note: we don't want to use MergeMemStream here because we only want to
2974     // scan inputs which exist at the start, not ones we add during processing.
2975     // Note 2: MergeMem may already contains instance memory slices added
2976     // during find_inst_mem() call when memory nodes were processed above.
2977     igvn->hash_delete(nmm);
2978     uint nslices = nmm->req();
2979     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
2980       Node* mem = nmm->in(i);
2981       Node* cur = NULL;
2982       if (mem == NULL || mem->is_top())
2983         continue;
2984       // First, update mergemem by moving memory nodes to corresponding slices
2985       // if their type became more precise since this mergemem was created.
2986       while (mem->is_Mem()) {
2987         const Type *at = igvn->type(mem->in(MemNode::Address));
2988         if (at != Type::TOP) {
2989           assert (at->isa_ptr() != NULL, "pointer type required.");
2990           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
2991           if (idx == i) {
2992             if (cur == NULL)
2993               cur = mem;
2994           } else {
2995             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
2996               nmm->set_memory_at(idx, mem);
2997             }
2998           }
2999         }
3000         mem = mem->in(MemNode::Memory);
3001       }
3002       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3003       // Find any instance of the current type if we haven't encountered
3004       // already a memory slice of the instance along the memory chain.
3005       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3006         if((uint)_compile->get_general_index(ni) == i) {
3007           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3008           if (nmm->is_empty_memory(m)) {
3009             Node* result = find_inst_mem(mem, ni, orig_phis);
3010             if (_compile->failing()) {
3011               return;
3012             }
3013             nmm->set_memory_at(ni, result);
3014           }
3015         }
3016       }
3017     }
3018     // Find the rest of instances values
3019     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3020       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3021       Node* result = step_through_mergemem(nmm, ni, tinst);
3022       if (result == nmm->base_memory()) {
3023         // Didn't find instance memory, search through general slice recursively.
3024         result = nmm->memory_at(_compile->get_general_index(ni));
3025         result = find_inst_mem(result, ni, orig_phis);
3026         if (_compile->failing()) {
3027           return;
3028         }
3029         nmm->set_memory_at(ni, result);
3030       }
3031     }
3032     igvn->hash_insert(nmm);
3033     record_for_optimizer(nmm);
3034   }
3035 
3036   //  Phase 4:  Update the inputs of non-instance memory Phis and
3037   //            the Memory input of memnodes
3038   // First update the inputs of any non-instance Phi's from
3039   // which we split out an instance Phi.  Note we don't have
3040   // to recursively process Phi's encounted on the input memory
3041   // chains as is done in split_memory_phi() since they  will
3042   // also be processed here.
3043   for (int j = 0; j < orig_phis.length(); j++) {
3044     PhiNode *phi = orig_phis.at(j);
3045     int alias_idx = _compile->get_alias_index(phi->adr_type());
3046     igvn->hash_delete(phi);
3047     for (uint i = 1; i < phi->req(); i++) {
3048       Node *mem = phi->in(i);
3049       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3050       if (_compile->failing()) {
3051         return;
3052       }
3053       if (mem != new_mem) {
3054         phi->set_req(i, new_mem);
3055       }
3056     }
3057     igvn->hash_insert(phi);
3058     record_for_optimizer(phi);
3059   }
3060 
3061   // Update the memory inputs of MemNodes with the value we computed
3062   // in Phase 2 and move stores memory users to corresponding memory slices.
3063   // Disable memory split verification code until the fix for 6984348.
3064   // Currently it produces false negative results since it does not cover all cases.
3065 #if 0 // ifdef ASSERT
3066   visited.Reset();
3067   Node_Stack old_mems(arena, _compile->unique() >> 2);
3068 #endif
3069   for (uint i = 0; i < ideal_nodes.size(); i++) {
3070     Node*    n = ideal_nodes.at(i);
3071     Node* nmem = get_map(n->_idx);
3072     assert(nmem != NULL, "sanity");
3073     if (n->is_Mem()) {
3074 #if 0 // ifdef ASSERT
3075       Node* old_mem = n->in(MemNode::Memory);
3076       if (!visited.test_set(old_mem->_idx)) {
3077         old_mems.push(old_mem, old_mem->outcnt());
3078       }
3079 #endif
3080       assert(n->in(MemNode::Memory) != nmem, "sanity");
3081       if (!n->is_Load()) {
3082         // Move memory users of a store first.
3083         move_inst_mem(n, orig_phis);
3084       }
3085       // Now update memory input
3086       igvn->hash_delete(n);
3087       n->set_req(MemNode::Memory, nmem);
3088       igvn->hash_insert(n);
3089       record_for_optimizer(n);
3090     } else {
3091       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3092              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3093     }
3094   }
3095 #if 0 // ifdef ASSERT
3096   // Verify that memory was split correctly
3097   while (old_mems.is_nonempty()) {
3098     Node* old_mem = old_mems.node();
3099     uint  old_cnt = old_mems.index();
3100     old_mems.pop();
3101     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3102   }
3103 #endif
3104 }
3105 
3106 #ifndef PRODUCT
3107 static const char *node_type_names[] = {
3108   "UnknownType",
3109   "JavaObject",
3110   "LocalVar",
3111   "Field",
3112   "Arraycopy"
3113 };
3114 
3115 static const char *esc_names[] = {
3116   "UnknownEscape",
3117   "NoEscape",
3118   "ArgEscape",
3119   "GlobalEscape"
3120 };
3121 
3122 void PointsToNode::dump(bool print_state) const {
3123   NodeType nt = node_type();
3124   tty->print("%s ", node_type_names[(int) nt]);
3125   if (print_state) {
3126     EscapeState es = escape_state();
3127     EscapeState fields_es = fields_escape_state();
3128     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3129     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3130       tty->print("NSR");
3131   }
3132   if (is_Field()) {
3133     FieldNode* f = (FieldNode*)this;
3134     tty->print("(");
3135     for (BaseIterator i(f); i.has_next(); i.next()) {
3136       PointsToNode* b = i.get();
3137       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3138     }
3139     tty->print(" )");
3140   }
3141   tty->print("[");
3142   for (EdgeIterator i(this); i.has_next(); i.next()) {
3143     PointsToNode* e = i.get();
3144     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3145   }
3146   tty->print(" [");
3147   for (UseIterator i(this); i.has_next(); i.next()) {
3148     PointsToNode* u = i.get();
3149     bool is_base = false;
3150     if (PointsToNode::is_base_use(u)) {
3151       is_base = true;
3152       u = PointsToNode::get_use_node(u)->as_Field();
3153     }
3154     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3155   }
3156   tty->print(" ]]  ");
3157   if (_node == NULL)
3158     tty->print_cr("<null>");
3159   else
3160     _node->dump();
3161 }
3162 
3163 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3164   bool first = true;
3165   int ptnodes_length = ptnodes_worklist.length();
3166   for (int i = 0; i < ptnodes_length; i++) {
3167     PointsToNode *ptn = ptnodes_worklist.at(i);
3168     if (ptn == NULL || !ptn->is_JavaObject())
3169       continue;
3170     PointsToNode::EscapeState es = ptn->escape_state();
3171     if (ptn->ideal_node()->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
3172       if (first) {
3173         tty->cr();
3174         tty->print("======== Connection graph for ");
3175         _compile->method()->print_short_name();
3176         tty->cr();
3177         first = false;
3178       }
3179       ptn->dump();
3180       // Print all locals and fields which reference this allocation
3181       for (UseIterator j(ptn); j.has_next(); j.next()) {
3182         PointsToNode* use = j.get();
3183         if (use->is_LocalVar()) {
3184           use->dump(Verbose);
3185         } else if (Verbose) {
3186           use->dump();
3187         }
3188       }
3189       tty->cr();
3190     }
3191   }
3192 }
3193 #endif