1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "ci/ciCallSite.hpp"
  28 #include "ci/ciCPCache.hpp"
  29 #include "ci/ciMemberName.hpp"
  30 #include "ci/ciMethodHandle.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/parse.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/subnode.hpp"
  42 
  43 
  44 // Utility function.
  45 const TypeFunc* CallGenerator::tf() const {
  46   return TypeFunc::make(method());
  47 }
  48 
  49 //-----------------------------ParseGenerator---------------------------------
  50 // Internal class which handles all direct bytecode traversal.
  51 class ParseGenerator : public InlineCallGenerator {
  52 private:
  53   bool  _is_osr;
  54   float _expected_uses;
  55 
  56 public:
  57   ParseGenerator(ciMethod* method, float expected_uses, bool is_osr = false)
  58     : InlineCallGenerator(method)
  59   {
  60     _is_osr        = is_osr;
  61     _expected_uses = expected_uses;
  62     assert(InlineTree::check_can_parse(method) == NULL, "parse must be possible");
  63   }
  64 
  65   virtual bool      is_parse() const           { return true; }
  66   virtual JVMState* generate(JVMState* jvms);
  67   int is_osr() { return _is_osr; }
  68 
  69 };
  70 
  71 JVMState* ParseGenerator::generate(JVMState* jvms) {
  72   Compile* C = Compile::current();
  73 
  74   if (is_osr()) {
  75     // The JVMS for a OSR has a single argument (see its TypeFunc).
  76     assert(jvms->depth() == 1, "no inline OSR");
  77   }
  78 
  79   if (C->failing()) {
  80     return NULL;  // bailing out of the compile; do not try to parse
  81   }
  82 
  83   Parse parser(jvms, method(), _expected_uses);
  84   // Grab signature for matching/allocation
  85 #ifdef ASSERT
  86   if (parser.tf() != (parser.depth() == 1 ? C->tf() : tf())) {
  87     MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
  88     assert(C->env()->system_dictionary_modification_counter_changed(),
  89            "Must invalidate if TypeFuncs differ");
  90   }
  91 #endif
  92 
  93   GraphKit& exits = parser.exits();
  94 
  95   if (C->failing()) {
  96     while (exits.pop_exception_state() != NULL) ;
  97     return NULL;
  98   }
  99 
 100   assert(exits.jvms()->same_calls_as(jvms), "sanity");
 101 
 102   // Simply return the exit state of the parser,
 103   // augmented by any exceptional states.
 104   return exits.transfer_exceptions_into_jvms();
 105 }
 106 
 107 //---------------------------DirectCallGenerator------------------------------
 108 // Internal class which handles all out-of-line calls w/o receiver type checks.
 109 class DirectCallGenerator : public CallGenerator {
 110  private:
 111   CallStaticJavaNode* _call_node;
 112   // Force separate memory and I/O projections for the exceptional
 113   // paths to facilitate late inlinig.
 114   bool                _separate_io_proj;
 115 
 116  public:
 117   DirectCallGenerator(ciMethod* method, bool separate_io_proj)
 118     : CallGenerator(method),
 119       _separate_io_proj(separate_io_proj)
 120   {
 121   }
 122   virtual JVMState* generate(JVMState* jvms);
 123 
 124   CallStaticJavaNode* call_node() const { return _call_node; }
 125 };
 126 
 127 JVMState* DirectCallGenerator::generate(JVMState* jvms) {
 128   GraphKit kit(jvms);
 129   bool is_static = method()->is_static();
 130   address target = is_static ? SharedRuntime::get_resolve_static_call_stub()
 131                              : SharedRuntime::get_resolve_opt_virtual_call_stub();
 132 
 133   if (kit.C->log() != NULL) {
 134     kit.C->log()->elem("direct_call bci='%d'", jvms->bci());
 135   }
 136 
 137   CallStaticJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallStaticJavaNode(tf(), target, method(), kit.bci());
 138   _call_node = call;  // Save the call node in case we need it later
 139   if (!is_static) {
 140     // Make an explicit receiver null_check as part of this call.
 141     // Since we share a map with the caller, his JVMS gets adjusted.
 142     kit.null_check_receiver(method());
 143     if (kit.stopped()) {
 144       // And dump it back to the caller, decorated with any exceptions:
 145       return kit.transfer_exceptions_into_jvms();
 146     }
 147     // Mark the call node as virtual, sort of:
 148     call->set_optimized_virtual(true);
 149     if (method()->is_method_handle_intrinsic() ||
 150         method()->is_compiled_lambda_form()) {
 151       call->set_method_handle_invoke(true);
 152     }
 153   }
 154   kit.set_arguments_for_java_call(call);
 155   kit.set_edges_for_java_call(call, false, _separate_io_proj);
 156   Node* ret = kit.set_results_for_java_call(call, _separate_io_proj);
 157   kit.push_node(method()->return_type()->basic_type(), ret);
 158   return kit.transfer_exceptions_into_jvms();
 159 }
 160 
 161 //---------------------------DynamicCallGenerator-----------------------------
 162 // Internal class which handles all out-of-line invokedynamic calls.
 163 class DynamicCallGenerator : public CallGenerator {
 164 public:
 165   DynamicCallGenerator(ciMethod* method)
 166     : CallGenerator(method)
 167   {
 168   }
 169   virtual JVMState* generate(JVMState* jvms);
 170 };
 171 
 172 JVMState* DynamicCallGenerator::generate(JVMState* jvms) {
 173   GraphKit kit(jvms);
 174   Compile* C = kit.C;
 175   PhaseGVN& gvn = kit.gvn();
 176 
 177   if (C->log() != NULL) {
 178     C->log()->elem("dynamic_call bci='%d'", jvms->bci());
 179   }
 180 
 181   // Get the constant pool cache from the caller class.
 182   ciMethod* caller_method = jvms->method();
 183   ciBytecodeStream str(caller_method);
 184   str.force_bci(jvms->bci());  // Set the stream to the invokedynamic bci.
 185   assert(str.cur_bc() == Bytecodes::_invokedynamic, "wrong place to issue a dynamic call!");
 186   ciCPCache* cpcache = str.get_cpcache();
 187 
 188   // Get the offset of the CallSite from the constant pool cache
 189   // pointer.
 190   int index = str.get_method_index();
 191   size_t call_site_offset = cpcache->get_f1_offset(index);
 192 
 193   // Load the CallSite object from the constant pool cache.
 194   const TypeOopPtr* cpcache_type   = TypeOopPtr::make_from_constant(cpcache);  // returns TypeAryPtr of type T_OBJECT
 195   const TypeOopPtr* call_site_type = TypeOopPtr::make_from_klass(C->env()->CallSite_klass());
 196   Node* cpcache_adr   = kit.makecon(cpcache_type);
 197   Node* call_site_adr = kit.basic_plus_adr(cpcache_adr, call_site_offset);
 198   // The oops in the constant pool cache are not compressed; load then as raw pointers.
 199   Node* call_site     = kit.make_load(kit.control(), call_site_adr, call_site_type, T_ADDRESS, Compile::AliasIdxRaw);
 200 
 201   // Load the target MethodHandle from the CallSite object.
 202   const TypeOopPtr* target_type = TypeOopPtr::make_from_klass(C->env()->MethodHandle_klass());
 203   Node* target_mh_adr = kit.basic_plus_adr(call_site, java_lang_invoke_CallSite::target_offset_in_bytes());
 204   Node* target_mh     = kit.make_load(kit.control(), target_mh_adr, target_type, T_OBJECT);
 205 
 206   address resolve_stub = SharedRuntime::get_resolve_opt_virtual_call_stub();
 207 
 208   CallStaticJavaNode* call = new (C, tf()->domain()->cnt()) CallStaticJavaNode(tf(), resolve_stub, method(), kit.bci());
 209   // invokedynamic is treated as an optimized invokevirtual.
 210   call->set_optimized_virtual(true);
 211   // Take extra care (in the presence of argument motion) not to trash the SP:
 212   call->set_method_handle_invoke(true);
 213 
 214   // Pass the target MethodHandle as first argument and shift the
 215   // other arguments.
 216   call->init_req(0 + TypeFunc::Parms, target_mh);
 217   uint nargs = call->method()->arg_size();
 218   for (uint i = 1; i < nargs; i++) {
 219     Node* arg = kit.argument(i - 1);
 220     call->init_req(i + TypeFunc::Parms, arg);
 221   }
 222 
 223   kit.set_edges_for_java_call(call);
 224   Node* ret = kit.set_results_for_java_call(call);
 225   kit.push_node(method()->return_type()->basic_type(), ret);
 226   return kit.transfer_exceptions_into_jvms();
 227 }
 228 
 229 //--------------------------VirtualCallGenerator------------------------------
 230 // Internal class which handles all out-of-line calls checking receiver type.
 231 class VirtualCallGenerator : public CallGenerator {
 232 private:
 233   int _vtable_index;
 234 public:
 235   VirtualCallGenerator(ciMethod* method, int vtable_index)
 236     : CallGenerator(method), _vtable_index(vtable_index)
 237   {
 238     assert(vtable_index == methodOopDesc::invalid_vtable_index ||
 239            vtable_index >= 0, "either invalid or usable");
 240   }
 241   virtual bool      is_virtual() const          { return true; }
 242   virtual JVMState* generate(JVMState* jvms);
 243 };
 244 
 245 JVMState* VirtualCallGenerator::generate(JVMState* jvms) {
 246   GraphKit kit(jvms);
 247   Node* receiver = kit.argument(0);
 248 
 249   if (kit.C->log() != NULL) {
 250     kit.C->log()->elem("virtual_call bci='%d'", jvms->bci());
 251   }
 252 
 253   // If the receiver is a constant null, do not torture the system
 254   // by attempting to call through it.  The compile will proceed
 255   // correctly, but may bail out in final_graph_reshaping, because
 256   // the call instruction will have a seemingly deficient out-count.
 257   // (The bailout says something misleading about an "infinite loop".)
 258   if (kit.gvn().type(receiver)->higher_equal(TypePtr::NULL_PTR)) {
 259     kit.inc_sp(method()->arg_size());  // restore arguments
 260     kit.uncommon_trap(Deoptimization::Reason_null_check,
 261                       Deoptimization::Action_none,
 262                       NULL, "null receiver");
 263     return kit.transfer_exceptions_into_jvms();
 264   }
 265 
 266   // Ideally we would unconditionally do a null check here and let it
 267   // be converted to an implicit check based on profile information.
 268   // However currently the conversion to implicit null checks in
 269   // Block::implicit_null_check() only looks for loads and stores, not calls.
 270   ciMethod *caller = kit.method();
 271   ciMethodData *caller_md = (caller == NULL) ? NULL : caller->method_data();
 272   if (!UseInlineCaches || !ImplicitNullChecks ||
 273        ((ImplicitNullCheckThreshold > 0) && caller_md &&
 274        (caller_md->trap_count(Deoptimization::Reason_null_check)
 275        >= (uint)ImplicitNullCheckThreshold))) {
 276     // Make an explicit receiver null_check as part of this call.
 277     // Since we share a map with the caller, his JVMS gets adjusted.
 278     receiver = kit.null_check_receiver(method());
 279     if (kit.stopped()) {
 280       // And dump it back to the caller, decorated with any exceptions:
 281       return kit.transfer_exceptions_into_jvms();
 282     }
 283   }
 284 
 285   assert(!method()->is_static(), "virtual call must not be to static");
 286   assert(!method()->is_final(), "virtual call should not be to final");
 287   assert(!method()->is_private(), "virtual call should not be to private");
 288   assert(_vtable_index == methodOopDesc::invalid_vtable_index || !UseInlineCaches,
 289          "no vtable calls if +UseInlineCaches ");
 290   address target = SharedRuntime::get_resolve_virtual_call_stub();
 291   // Normal inline cache used for call
 292   CallDynamicJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallDynamicJavaNode(tf(), target, method(), _vtable_index, kit.bci());
 293   kit.set_arguments_for_java_call(call);
 294   kit.set_edges_for_java_call(call);
 295   Node* ret = kit.set_results_for_java_call(call);
 296   kit.push_node(method()->return_type()->basic_type(), ret);
 297 
 298   // Represent the effect of an implicit receiver null_check
 299   // as part of this call.  Since we share a map with the caller,
 300   // his JVMS gets adjusted.
 301   kit.cast_not_null(receiver);
 302   return kit.transfer_exceptions_into_jvms();
 303 }
 304 
 305 CallGenerator* CallGenerator::for_inline(ciMethod* m, float expected_uses) {
 306   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
 307   return new ParseGenerator(m, expected_uses);
 308 }
 309 
 310 // As a special case, the JVMS passed to this CallGenerator is
 311 // for the method execution already in progress, not just the JVMS
 312 // of the caller.  Thus, this CallGenerator cannot be mixed with others!
 313 CallGenerator* CallGenerator::for_osr(ciMethod* m, int osr_bci) {
 314   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
 315   float past_uses = m->interpreter_invocation_count();
 316   float expected_uses = past_uses;
 317   return new ParseGenerator(m, expected_uses, true);
 318 }
 319 
 320 CallGenerator* CallGenerator::for_direct_call(ciMethod* m, bool separate_io_proj) {
 321   assert(!m->is_abstract(), "for_direct_call mismatch");
 322   return new DirectCallGenerator(m, separate_io_proj);
 323 }
 324 
 325 CallGenerator* CallGenerator::for_virtual_call(ciMethod* m, int vtable_index) {
 326   assert(!m->is_static(), "for_virtual_call mismatch");
 327   assert(!m->is_method_handle_intrinsic(), "should be a direct call");
 328   return new VirtualCallGenerator(m, vtable_index);
 329 }
 330 
 331 CallGenerator* CallGenerator::for_dynamic_call(ciMethod* m) {
 332   assert(m->is_compiled_lambda_form(), "for_dynamic_call mismatch");
 333   //@@ FIXME: this should be done via a direct call
 334   return new DynamicCallGenerator(m);
 335 }
 336 
 337 // Allow inlining decisions to be delayed
 338 class LateInlineCallGenerator : public DirectCallGenerator {
 339   CallGenerator* _inline_cg;
 340 
 341  public:
 342   LateInlineCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 343     DirectCallGenerator(method, true), _inline_cg(inline_cg) {}
 344 
 345   virtual bool      is_late_inline() const { return true; }
 346 
 347   // Convert the CallStaticJava into an inline
 348   virtual void do_late_inline();
 349 
 350   JVMState* generate(JVMState* jvms) {
 351     // Record that this call site should be revisited once the main
 352     // parse is finished.
 353     Compile::current()->add_late_inline(this);
 354 
 355     // Emit the CallStaticJava and request separate projections so
 356     // that the late inlining logic can distinguish between fall
 357     // through and exceptional uses of the memory and io projections
 358     // as is done for allocations and macro expansion.
 359     return DirectCallGenerator::generate(jvms);
 360   }
 361 
 362 };
 363 
 364 
 365 void LateInlineCallGenerator::do_late_inline() {
 366   // Can't inline it
 367   if (call_node() == NULL || call_node()->outcnt() == 0 ||
 368       call_node()->in(0) == NULL || call_node()->in(0)->is_top())
 369     return;
 370 
 371   CallStaticJavaNode* call = call_node();
 372 
 373   // Make a clone of the JVMState that appropriate to use for driving a parse
 374   Compile* C = Compile::current();
 375   JVMState* jvms     = call->jvms()->clone_shallow(C);
 376   uint size = call->req();
 377   SafePointNode* map = new (C, size) SafePointNode(size, jvms);
 378   for (uint i1 = 0; i1 < size; i1++) {
 379     map->init_req(i1, call->in(i1));
 380   }
 381 
 382   // Make sure the state is a MergeMem for parsing.
 383   if (!map->in(TypeFunc::Memory)->is_MergeMem()) {
 384     map->set_req(TypeFunc::Memory, MergeMemNode::make(C, map->in(TypeFunc::Memory)));
 385   }
 386 
 387   // Make enough space for the expression stack and transfer the incoming arguments
 388   int nargs    = method()->arg_size();
 389   jvms->set_map(map);
 390   map->ensure_stack(jvms, jvms->method()->max_stack());
 391   if (nargs > 0) {
 392     for (int i1 = 0; i1 < nargs; i1++) {
 393       map->set_req(i1 + jvms->argoff(), call->in(TypeFunc::Parms + i1));
 394     }
 395   }
 396 
 397   CompileLog* log = C->log();
 398   if (log != NULL) {
 399     log->head("late_inline method='%d'", log->identify(method()));
 400     JVMState* p = jvms;
 401     while (p != NULL) {
 402       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
 403       p = p->caller();
 404     }
 405     log->tail("late_inline");
 406   }
 407 
 408   // Setup default node notes to be picked up by the inlining
 409   Node_Notes* old_nn = C->default_node_notes();
 410   if (old_nn != NULL) {
 411     Node_Notes* entry_nn = old_nn->clone(C);
 412     entry_nn->set_jvms(jvms);
 413     C->set_default_node_notes(entry_nn);
 414   }
 415 
 416   // Now perform the inling using the synthesized JVMState
 417   JVMState* new_jvms = _inline_cg->generate(jvms);
 418   if (new_jvms == NULL)  return;  // no change
 419   if (C->failing())      return;
 420 
 421   // Capture any exceptional control flow
 422   GraphKit kit(new_jvms);
 423 
 424   // Find the result object
 425   Node* result = C->top();
 426   int   result_size = method()->return_type()->size();
 427   if (result_size != 0 && !kit.stopped()) {
 428     result = (result_size == 1) ? kit.pop() : kit.pop_pair();
 429   }
 430 
 431   kit.replace_call(call, result);
 432 }
 433 
 434 
 435 CallGenerator* CallGenerator::for_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 436   return new LateInlineCallGenerator(method, inline_cg);
 437 }
 438 
 439 
 440 //---------------------------WarmCallGenerator--------------------------------
 441 // Internal class which handles initial deferral of inlining decisions.
 442 class WarmCallGenerator : public CallGenerator {
 443   WarmCallInfo*   _call_info;
 444   CallGenerator*  _if_cold;
 445   CallGenerator*  _if_hot;
 446   bool            _is_virtual;   // caches virtuality of if_cold
 447   bool            _is_inline;    // caches inline-ness of if_hot
 448 
 449 public:
 450   WarmCallGenerator(WarmCallInfo* ci,
 451                     CallGenerator* if_cold,
 452                     CallGenerator* if_hot)
 453     : CallGenerator(if_cold->method())
 454   {
 455     assert(method() == if_hot->method(), "consistent choices");
 456     _call_info  = ci;
 457     _if_cold    = if_cold;
 458     _if_hot     = if_hot;
 459     _is_virtual = if_cold->is_virtual();
 460     _is_inline  = if_hot->is_inline();
 461   }
 462 
 463   virtual bool      is_inline() const           { return _is_inline; }
 464   virtual bool      is_virtual() const          { return _is_virtual; }
 465   virtual bool      is_deferred() const         { return true; }
 466 
 467   virtual JVMState* generate(JVMState* jvms);
 468 };
 469 
 470 
 471 CallGenerator* CallGenerator::for_warm_call(WarmCallInfo* ci,
 472                                             CallGenerator* if_cold,
 473                                             CallGenerator* if_hot) {
 474   return new WarmCallGenerator(ci, if_cold, if_hot);
 475 }
 476 
 477 JVMState* WarmCallGenerator::generate(JVMState* jvms) {
 478   Compile* C = Compile::current();
 479   if (C->log() != NULL) {
 480     C->log()->elem("warm_call bci='%d'", jvms->bci());
 481   }
 482   jvms = _if_cold->generate(jvms);
 483   if (jvms != NULL) {
 484     Node* m = jvms->map()->control();
 485     if (m->is_CatchProj()) m = m->in(0);  else m = C->top();
 486     if (m->is_Catch())     m = m->in(0);  else m = C->top();
 487     if (m->is_Proj())      m = m->in(0);  else m = C->top();
 488     if (m->is_CallJava()) {
 489       _call_info->set_call(m->as_Call());
 490       _call_info->set_hot_cg(_if_hot);
 491 #ifndef PRODUCT
 492       if (PrintOpto || PrintOptoInlining) {
 493         tty->print_cr("Queueing for warm inlining at bci %d:", jvms->bci());
 494         tty->print("WCI: ");
 495         _call_info->print();
 496       }
 497 #endif
 498       _call_info->set_heat(_call_info->compute_heat());
 499       C->set_warm_calls(_call_info->insert_into(C->warm_calls()));
 500     }
 501   }
 502   return jvms;
 503 }
 504 
 505 void WarmCallInfo::make_hot() {
 506   Unimplemented();
 507 }
 508 
 509 void WarmCallInfo::make_cold() {
 510   // No action:  Just dequeue.
 511 }
 512 
 513 
 514 //------------------------PredictedCallGenerator------------------------------
 515 // Internal class which handles all out-of-line calls checking receiver type.
 516 class PredictedCallGenerator : public CallGenerator {
 517   ciKlass*       _predicted_receiver;
 518   CallGenerator* _if_missed;
 519   CallGenerator* _if_hit;
 520   float          _hit_prob;
 521 
 522 public:
 523   PredictedCallGenerator(ciKlass* predicted_receiver,
 524                          CallGenerator* if_missed,
 525                          CallGenerator* if_hit, float hit_prob)
 526     : CallGenerator(if_missed->method())
 527   {
 528     // The call profile data may predict the hit_prob as extreme as 0 or 1.
 529     // Remove the extremes values from the range.
 530     if (hit_prob > PROB_MAX)   hit_prob = PROB_MAX;
 531     if (hit_prob < PROB_MIN)   hit_prob = PROB_MIN;
 532 
 533     _predicted_receiver = predicted_receiver;
 534     _if_missed          = if_missed;
 535     _if_hit             = if_hit;
 536     _hit_prob           = hit_prob;
 537   }
 538 
 539   virtual bool      is_virtual()   const    { return true; }
 540   virtual bool      is_inline()    const    { return _if_hit->is_inline(); }
 541   virtual bool      is_deferred()  const    { return _if_hit->is_deferred(); }
 542 
 543   virtual JVMState* generate(JVMState* jvms);
 544 };
 545 
 546 
 547 CallGenerator* CallGenerator::for_predicted_call(ciKlass* predicted_receiver,
 548                                                  CallGenerator* if_missed,
 549                                                  CallGenerator* if_hit,
 550                                                  float hit_prob) {
 551   return new PredictedCallGenerator(predicted_receiver, if_missed, if_hit, hit_prob);
 552 }
 553 
 554 
 555 JVMState* PredictedCallGenerator::generate(JVMState* jvms) {
 556   GraphKit kit(jvms);
 557   PhaseGVN& gvn = kit.gvn();
 558   // We need an explicit receiver null_check before checking its type.
 559   // We share a map with the caller, so his JVMS gets adjusted.
 560   Node* receiver = kit.argument(0);
 561 
 562   CompileLog* log = kit.C->log();
 563   if (log != NULL) {
 564     log->elem("predicted_call bci='%d' klass='%d'",
 565               jvms->bci(), log->identify(_predicted_receiver));
 566   }
 567 
 568   receiver = kit.null_check_receiver(method());
 569   if (kit.stopped()) {
 570     return kit.transfer_exceptions_into_jvms();
 571   }
 572 
 573   Node* exact_receiver = receiver;  // will get updated in place...
 574   Node* slow_ctl = kit.type_check_receiver(receiver,
 575                                            _predicted_receiver, _hit_prob,
 576                                            &exact_receiver);
 577 
 578   SafePointNode* slow_map = NULL;
 579   JVMState* slow_jvms;
 580   { PreserveJVMState pjvms(&kit);
 581     kit.set_control(slow_ctl);
 582     if (!kit.stopped()) {
 583       slow_jvms = _if_missed->generate(kit.sync_jvms());
 584       if (kit.failing())
 585         return NULL;  // might happen because of NodeCountInliningCutoff
 586       assert(slow_jvms != NULL, "must be");
 587       kit.add_exception_states_from(slow_jvms);
 588       kit.set_map(slow_jvms->map());
 589       if (!kit.stopped())
 590         slow_map = kit.stop();
 591     }
 592   }
 593 
 594   if (kit.stopped()) {
 595     // Instance exactly does not matches the desired type.
 596     kit.set_jvms(slow_jvms);
 597     return kit.transfer_exceptions_into_jvms();
 598   }
 599 
 600   // fall through if the instance exactly matches the desired type
 601   kit.replace_in_map(receiver, exact_receiver);
 602 
 603   // Make the hot call:
 604   JVMState* new_jvms = _if_hit->generate(kit.sync_jvms());
 605   if (new_jvms == NULL) {
 606     // Inline failed, so make a direct call.
 607     assert(_if_hit->is_inline(), "must have been a failed inline");
 608     CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
 609     new_jvms = cg->generate(kit.sync_jvms());
 610   }
 611   kit.add_exception_states_from(new_jvms);
 612   kit.set_jvms(new_jvms);
 613 
 614   // Need to merge slow and fast?
 615   if (slow_map == NULL) {
 616     // The fast path is the only path remaining.
 617     return kit.transfer_exceptions_into_jvms();
 618   }
 619 
 620   if (kit.stopped()) {
 621     // Inlined method threw an exception, so it's just the slow path after all.
 622     kit.set_jvms(slow_jvms);
 623     return kit.transfer_exceptions_into_jvms();
 624   }
 625 
 626   // Finish the diamond.
 627   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
 628   RegionNode* region = new (kit.C, 3) RegionNode(3);
 629   region->init_req(1, kit.control());
 630   region->init_req(2, slow_map->control());
 631   kit.set_control(gvn.transform(region));
 632   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
 633   iophi->set_req(2, slow_map->i_o());
 634   kit.set_i_o(gvn.transform(iophi));
 635   kit.merge_memory(slow_map->merged_memory(), region, 2);
 636   uint tos = kit.jvms()->stkoff() + kit.sp();
 637   uint limit = slow_map->req();
 638   for (uint i = TypeFunc::Parms; i < limit; i++) {
 639     // Skip unused stack slots; fast forward to monoff();
 640     if (i == tos) {
 641       i = kit.jvms()->monoff();
 642       if( i >= limit ) break;
 643     }
 644     Node* m = kit.map()->in(i);
 645     Node* n = slow_map->in(i);
 646     if (m != n) {
 647       const Type* t = gvn.type(m)->meet(gvn.type(n));
 648       Node* phi = PhiNode::make(region, m, t);
 649       phi->set_req(2, n);
 650       kit.map()->set_req(i, gvn.transform(phi));
 651     }
 652   }
 653   return kit.transfer_exceptions_into_jvms();
 654 }
 655 
 656 
 657 CallGenerator* CallGenerator::for_method_handle_call(JVMState* jvms, ciMethod* caller, ciMethod* callee) {
 658   assert(callee->is_method_handle_intrinsic() ||
 659          callee->is_compiled_lambda_form(), "for_method_handle_call mismatch");
 660   CallGenerator* cg = CallGenerator::for_method_handle_inline(jvms, caller, callee);
 661   if (cg != NULL)
 662     return cg;
 663   return CallGenerator::for_direct_call(callee);
 664 }
 665 
 666 CallGenerator* CallGenerator::for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee) {
 667   GraphKit kit(jvms);
 668   PhaseGVN& gvn = kit.gvn();
 669   Compile* C = kit.C;
 670   vmIntrinsics::ID iid = callee->intrinsic_id();
 671   switch (iid) {
 672   case vmIntrinsics::_invokeBasic:
 673     {
 674       // get MethodHandle receiver
 675       Node* receiver = kit.argument(0);
 676       if (receiver->Opcode() == Op_ConP) {
 677         const TypeOopPtr* oop_ptr = receiver->bottom_type()->is_oopptr();
 678         ciMethod* target = oop_ptr->const_oop()->as_method_handle()->get_vmtarget();
 679         guarantee(!target->is_method_handle_intrinsic(), "should not happen");  // XXX remove
 680         const int vtable_index = methodOopDesc::invalid_vtable_index;
 681         CallGenerator* cg = C->call_generator(target, vtable_index, false, jvms, true, PROB_ALWAYS);
 682         if (cg != NULL && cg->is_inline())
 683           return cg;
 684       } else {
 685         if (PrintInlining)  CompileTask::print_inlining(callee, jvms->depth() - 1, jvms->bci(), "receiver not constant");
 686       }
 687     }
 688     break;
 689 
 690   case vmIntrinsics::_linkToVirtual:
 691   case vmIntrinsics::_linkToStatic:
 692   case vmIntrinsics::_linkToSpecial:
 693   case vmIntrinsics::_linkToInterface:
 694     {
 695       // pop MemberName argument
 696       Node* member_name = kit.argument(callee->arg_size() - 1);
 697       if (member_name->Opcode() == Op_ConP) {
 698         const TypeOopPtr* oop_ptr = member_name->bottom_type()->is_oopptr();
 699         ciMethod* target = oop_ptr->const_oop()->as_member_name()->get_vmtarget();
 700 
 701         // In lamda forms we erase signature types to avoid resolving issues
 702         // involving class loaders.  When we optimize a method handle invoke
 703         // to a direct call we must cast the receiver and arguments to its
 704         // actual types.
 705         ciSignature* signature = target->signature();
 706         const int receiver_skip = target->is_static() ? 0 : 1;
 707         // Cast receiver to its type.
 708         if (!target->is_static()) {
 709           Node* arg = kit.argument(0);
 710           const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
 711           const Type*       sig_type = TypeOopPtr::make_from_klass(signature->accessing_klass());
 712           if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 713             Node* cast_obj = gvn.transform(new (C, 2) CheckCastPPNode(kit.control(), arg, sig_type));
 714             kit.set_argument(0, cast_obj);
 715           }
 716         }
 717         // Cast reference arguments to its type.
 718         for (int i = 0; i < signature->count(); i++) {
 719           ciType* t = signature->type_at(i);
 720           if (t->is_klass()) {
 721             Node* arg = kit.argument(receiver_skip + i);
 722             const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
 723             const Type*       sig_type = TypeOopPtr::make_from_klass(t->as_klass());
 724             if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 725               Node* cast_obj = gvn.transform(new (C, 2) CheckCastPPNode(kit.control(), arg, sig_type));
 726               kit.set_argument(receiver_skip + i, cast_obj);
 727             }
 728           }
 729         }
 730         const int vtable_index = methodOopDesc::invalid_vtable_index;
 731         const bool call_is_virtual = target->is_abstract();  // FIXME workaround
 732         CallGenerator* cg = C->call_generator(target, vtable_index, call_is_virtual, jvms, true, PROB_ALWAYS);
 733         if (cg != NULL && cg->is_inline())
 734           return cg;
 735       }
 736     }
 737     break;
 738 
 739   default:
 740     fatal(err_msg("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 741     break;
 742   }
 743   return NULL;
 744 }
 745 
 746 
 747 //-------------------------UncommonTrapCallGenerator-----------------------------
 748 // Internal class which handles all out-of-line calls checking receiver type.
 749 class UncommonTrapCallGenerator : public CallGenerator {
 750   Deoptimization::DeoptReason _reason;
 751   Deoptimization::DeoptAction _action;
 752 
 753 public:
 754   UncommonTrapCallGenerator(ciMethod* m,
 755                             Deoptimization::DeoptReason reason,
 756                             Deoptimization::DeoptAction action)
 757     : CallGenerator(m)
 758   {
 759     _reason = reason;
 760     _action = action;
 761   }
 762 
 763   virtual bool      is_virtual() const          { ShouldNotReachHere(); return false; }
 764   virtual bool      is_trap() const             { return true; }
 765 
 766   virtual JVMState* generate(JVMState* jvms);
 767 };
 768 
 769 
 770 CallGenerator*
 771 CallGenerator::for_uncommon_trap(ciMethod* m,
 772                                  Deoptimization::DeoptReason reason,
 773                                  Deoptimization::DeoptAction action) {
 774   return new UncommonTrapCallGenerator(m, reason, action);
 775 }
 776 
 777 
 778 JVMState* UncommonTrapCallGenerator::generate(JVMState* jvms) {
 779   GraphKit kit(jvms);
 780   // Take the trap with arguments pushed on the stack.  (Cf. null_check_receiver).
 781   int nargs = method()->arg_size();
 782   kit.inc_sp(nargs);
 783   assert(nargs <= kit.sp() && kit.sp() <= jvms->stk_size(), "sane sp w/ args pushed");
 784   if (_reason == Deoptimization::Reason_class_check &&
 785       _action == Deoptimization::Action_maybe_recompile) {
 786     // Temp fix for 6529811
 787     // Don't allow uncommon_trap to override our decision to recompile in the event
 788     // of a class cast failure for a monomorphic call as it will never let us convert
 789     // the call to either bi-morphic or megamorphic and can lead to unc-trap loops
 790     bool keep_exact_action = true;
 791     kit.uncommon_trap(_reason, _action, NULL, "monomorphic vcall checkcast", false, keep_exact_action);
 792   } else {
 793     kit.uncommon_trap(_reason, _action);
 794   }
 795   return kit.transfer_exceptions_into_jvms();
 796 }
 797 
 798 // (Note:  Moved hook_up_call to GraphKit::set_edges_for_java_call.)
 799 
 800 // (Node:  Merged hook_up_exits into ParseGenerator::generate.)
 801 
 802 #define NODES_OVERHEAD_PER_METHOD (30.0)
 803 #define NODES_PER_BYTECODE (9.5)
 804 
 805 void WarmCallInfo::init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor) {
 806   int call_count = profile.count();
 807   int code_size = call_method->code_size();
 808 
 809   // Expected execution count is based on the historical count:
 810   _count = call_count < 0 ? 1 : call_site->method()->scale_count(call_count, prof_factor);
 811 
 812   // Expected profit from inlining, in units of simple call-overheads.
 813   _profit = 1.0;
 814 
 815   // Expected work performed by the call in units of call-overheads.
 816   // %%% need an empirical curve fit for "work" (time in call)
 817   float bytecodes_per_call = 3;
 818   _work = 1.0 + code_size / bytecodes_per_call;
 819 
 820   // Expected size of compilation graph:
 821   // -XX:+PrintParseStatistics once reported:
 822   //  Methods seen: 9184  Methods parsed: 9184  Nodes created: 1582391
 823   //  Histogram of 144298 parsed bytecodes:
 824   // %%% Need an better predictor for graph size.
 825   _size = NODES_OVERHEAD_PER_METHOD + (NODES_PER_BYTECODE * code_size);
 826 }
 827 
 828 // is_cold:  Return true if the node should never be inlined.
 829 // This is true if any of the key metrics are extreme.
 830 bool WarmCallInfo::is_cold() const {
 831   if (count()  <  WarmCallMinCount)        return true;
 832   if (profit() <  WarmCallMinProfit)       return true;
 833   if (work()   >  WarmCallMaxWork)         return true;
 834   if (size()   >  WarmCallMaxSize)         return true;
 835   return false;
 836 }
 837 
 838 // is_hot:  Return true if the node should be inlined immediately.
 839 // This is true if any of the key metrics are extreme.
 840 bool WarmCallInfo::is_hot() const {
 841   assert(!is_cold(), "eliminate is_cold cases before testing is_hot");
 842   if (count()  >= HotCallCountThreshold)   return true;
 843   if (profit() >= HotCallProfitThreshold)  return true;
 844   if (work()   <= HotCallTrivialWork)      return true;
 845   if (size()   <= HotCallTrivialSize)      return true;
 846   return false;
 847 }
 848 
 849 // compute_heat:
 850 float WarmCallInfo::compute_heat() const {
 851   assert(!is_cold(), "compute heat only on warm nodes");
 852   assert(!is_hot(),  "compute heat only on warm nodes");
 853   int min_size = MAX2(0,   (int)HotCallTrivialSize);
 854   int max_size = MIN2(500, (int)WarmCallMaxSize);
 855   float method_size = (size() - min_size) / MAX2(1, max_size - min_size);
 856   float size_factor;
 857   if      (method_size < 0.05)  size_factor = 4;   // 2 sigmas better than avg.
 858   else if (method_size < 0.15)  size_factor = 2;   // 1 sigma better than avg.
 859   else if (method_size < 0.5)   size_factor = 1;   // better than avg.
 860   else                          size_factor = 0.5; // worse than avg.
 861   return (count() * profit() * size_factor);
 862 }
 863 
 864 bool WarmCallInfo::warmer_than(WarmCallInfo* that) {
 865   assert(this != that, "compare only different WCIs");
 866   assert(this->heat() != 0 && that->heat() != 0, "call compute_heat 1st");
 867   if (this->heat() > that->heat())   return true;
 868   if (this->heat() < that->heat())   return false;
 869   assert(this->heat() == that->heat(), "no NaN heat allowed");
 870   // Equal heat.  Break the tie some other way.
 871   if (!this->call() || !that->call())  return (address)this > (address)that;
 872   return this->call()->_idx > that->call()->_idx;
 873 }
 874 
 875 //#define UNINIT_NEXT ((WarmCallInfo*)badAddress)
 876 #define UNINIT_NEXT ((WarmCallInfo*)NULL)
 877 
 878 WarmCallInfo* WarmCallInfo::insert_into(WarmCallInfo* head) {
 879   assert(next() == UNINIT_NEXT, "not yet on any list");
 880   WarmCallInfo* prev_p = NULL;
 881   WarmCallInfo* next_p = head;
 882   while (next_p != NULL && next_p->warmer_than(this)) {
 883     prev_p = next_p;
 884     next_p = prev_p->next();
 885   }
 886   // Install this between prev_p and next_p.
 887   this->set_next(next_p);
 888   if (prev_p == NULL)
 889     head = this;
 890   else
 891     prev_p->set_next(this);
 892   return head;
 893 }
 894 
 895 WarmCallInfo* WarmCallInfo::remove_from(WarmCallInfo* head) {
 896   WarmCallInfo* prev_p = NULL;
 897   WarmCallInfo* next_p = head;
 898   while (next_p != this) {
 899     assert(next_p != NULL, "this must be in the list somewhere");
 900     prev_p = next_p;
 901     next_p = prev_p->next();
 902   }
 903   next_p = this->next();
 904   debug_only(this->set_next(UNINIT_NEXT));
 905   // Remove this from between prev_p and next_p.
 906   if (prev_p == NULL)
 907     head = next_p;
 908   else
 909     prev_p->set_next(next_p);
 910   return head;
 911 }
 912 
 913 WarmCallInfo WarmCallInfo::_always_hot(WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE(),
 914                                        WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE());
 915 WarmCallInfo WarmCallInfo::_always_cold(WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE(),
 916                                         WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE());
 917 
 918 WarmCallInfo* WarmCallInfo::always_hot() {
 919   assert(_always_hot.is_hot(), "must always be hot");
 920   return &_always_hot;
 921 }
 922 
 923 WarmCallInfo* WarmCallInfo::always_cold() {
 924   assert(_always_cold.is_cold(), "must always be cold");
 925   return &_always_cold;
 926 }
 927 
 928 
 929 #ifndef PRODUCT
 930 
 931 void WarmCallInfo::print() const {
 932   tty->print("%s : C=%6.1f P=%6.1f W=%6.1f S=%6.1f H=%6.1f -> %p",
 933              is_cold() ? "cold" : is_hot() ? "hot " : "warm",
 934              count(), profit(), work(), size(), compute_heat(), next());
 935   tty->cr();
 936   if (call() != NULL)  call()->dump();
 937 }
 938 
 939 void print_wci(WarmCallInfo* ci) {
 940   ci->print();
 941 }
 942 
 943 void WarmCallInfo::print_all() const {
 944   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
 945     p->print();
 946 }
 947 
 948 int WarmCallInfo::count_all() const {
 949   int cnt = 0;
 950   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
 951     cnt++;
 952   return cnt;
 953 }
 954 
 955 #endif //PRODUCT