1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/rootnode.hpp"
  37 
  38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  40   _collecting(true),
  41   _verify(false),
  42   _compile(C),
  43   _igvn(igvn),
  44   _node_map(C->comp_arena()) {
  45   // Add unknown java object.
  46   add_java_object(C->top(), PointsToNode::GlobalEscape);
  47   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  48   // Add ConP(#NULL) and ConN(#NULL) nodes.
  49   Node* oop_null = igvn->zerocon(T_OBJECT);
  50   assert(oop_null->_idx < nodes_size(), "should be created already");
  51   add_java_object(oop_null, PointsToNode::NoEscape);
  52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  53   if (UseCompressedOops) {
  54     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  55     assert(noop_null->_idx < nodes_size(), "should be created already");
  56     map_ideal_node(noop_null, null_obj);
  57   }
  58   _pcmp_neq = NULL; // Should be initialized
  59   _pcmp_eq  = NULL;
  60 }
  61 
  62 bool ConnectionGraph::has_candidates(Compile *C) {
  63   // EA brings benefits only when the code has allocations and/or locks which
  64   // are represented by ideal Macro nodes.
  65   int cnt = C->macro_count();
  66   for( int i=0; i < cnt; i++ ) {
  67     Node *n = C->macro_node(i);
  68     if ( n->is_Allocate() )
  69       return true;
  70     if( n->is_Lock() ) {
  71       Node* obj = n->as_Lock()->obj_node()->uncast();
  72       if( !(obj->is_Parm() || obj->is_Con()) )
  73         return true;
  74     }
  75   }
  76   return false;
  77 }
  78 
  79 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  80   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
  81   ResourceMark rm;
  82 
  83   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  84   // to create space for them in ConnectionGraph::_nodes[].
  85   Node* oop_null = igvn->zerocon(T_OBJECT);
  86   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  87   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  88   // Perform escape analysis
  89   if (congraph->compute_escape()) {
  90     // There are non escaping objects.
  91     C->set_congraph(congraph);
  92   }
  93   // Cleanup.
  94   if (oop_null->outcnt() == 0)
  95     igvn->hash_delete(oop_null);
  96   if (noop_null->outcnt() == 0)
  97     igvn->hash_delete(noop_null);
  98 }
  99 
 100 bool ConnectionGraph::compute_escape() {
 101   Compile* C = _compile;
 102   PhaseGVN* igvn = _igvn;
 103 
 104   // Worklists used by EA.
 105   Unique_Node_List delayed_worklist;
 106   GrowableArray<Node*> alloc_worklist;
 107   GrowableArray<Node*> ptr_cmp_worklist;
 108   GrowableArray<Node*> storestore_worklist;
 109   GrowableArray<PointsToNode*>   ptnodes_worklist;
 110   GrowableArray<JavaObjectNode*> java_objects_worklist;
 111   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 112   GrowableArray<FieldNode*>      oop_fields_worklist;
 113   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 114 
 115   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
 116 
 117   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 118   ideal_nodes.map(C->unique(), NULL);  // preallocate space
 119   // Initialize worklist
 120   if (C->root() != NULL) {
 121     ideal_nodes.push(C->root());
 122   }
 123   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 124     Node* n = ideal_nodes.at(next);
 125     // Create PointsTo nodes and add them to Connection Graph. Called
 126     // only once per ideal node since ideal_nodes is Unique_Node list.
 127     add_node_to_connection_graph(n, &delayed_worklist);
 128     PointsToNode* ptn = ptnode_adr(n->_idx);
 129     if (ptn != NULL) {
 130       ptnodes_worklist.append(ptn);
 131       if (ptn->is_JavaObject()) {
 132         java_objects_worklist.append(ptn->as_JavaObject());
 133         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 134             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 135           // Only allocations and java static calls results are interesting.
 136           non_escaped_worklist.append(ptn->as_JavaObject());
 137         }
 138       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 139         oop_fields_worklist.append(ptn->as_Field());
 140       }
 141     }
 142     if (n->is_MergeMem()) {
 143       // Collect all MergeMem nodes to add memory slices for
 144       // scalar replaceable objects in split_unique_types().
 145       _mergemem_worklist.append(n->as_MergeMem());
 146     } else if (OptimizePtrCompare && n->is_Cmp() &&
 147                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 148       // Collect compare pointers nodes.
 149       ptr_cmp_worklist.append(n);
 150     } else if (n->is_MemBarStoreStore()) {
 151       // Collect all MemBarStoreStore nodes so that depending on the
 152       // escape status of the associated Allocate node some of them
 153       // may be eliminated.
 154       storestore_worklist.append(n);
 155 #ifdef ASSERT
 156     } else if(n->is_AddP()) {
 157       // Collect address nodes for graph verification.
 158       addp_worklist.append(n);
 159 #endif
 160     }
 161     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 162       Node* m = n->fast_out(i);   // Get user
 163       ideal_nodes.push(m);
 164     }
 165   }
 166   if (non_escaped_worklist.length() == 0) {
 167     _collecting = false;
 168     return false; // Nothing to do.
 169   }
 170   // Add final simple edges to graph.
 171   while(delayed_worklist.size() > 0) {
 172     Node* n = delayed_worklist.pop();
 173     add_final_edges(n);
 174   }
 175   int ptnodes_length = ptnodes_worklist.length();
 176 
 177 #ifdef ASSERT
 178   if (VerifyConnectionGraph) {
 179     // Verify that no new simple edges could be created and all
 180     // local vars has edges.
 181     _verify = true;
 182     for (int next = 0; next < ptnodes_length; ++next) {
 183       PointsToNode* ptn = ptnodes_worklist.at(next);
 184       add_final_edges(ptn->ideal_node());
 185       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 186         ptn->dump();
 187         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 188       }
 189     }
 190     _verify = false;
 191   }
 192 #endif
 193 
 194   // 2. Finish Graph construction by propagating references to all
 195   //    java objects through graph.
 196   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 197                                  java_objects_worklist, oop_fields_worklist)) {
 198     // All objects escaped or hit time or iterations limits.
 199     _collecting = false;
 200     return false;
 201   }
 202 
 203   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 204   //    scalar replaceable allocations on alloc_worklist for processing
 205   //    in split_unique_types().
 206   int non_escaped_length = non_escaped_worklist.length();
 207   for (int next = 0; next < non_escaped_length; next++) {
 208     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 209     if (ptn->escape_state() == PointsToNode::NoEscape &&
 210         ptn->scalar_replaceable()) {
 211       adjust_scalar_replaceable_state(ptn);
 212       if (ptn->scalar_replaceable()) {
 213         alloc_worklist.append(ptn->ideal_node());
 214       }
 215     }
 216   }
 217 
 218 #ifdef ASSERT
 219   if (VerifyConnectionGraph) {
 220     // Verify that graph is complete - no new edges could be added or needed.
 221     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 222                             java_objects_worklist, addp_worklist);
 223   }
 224   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 225   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 226          null_obj->edge_count() == 0 &&
 227          !null_obj->arraycopy_src() &&
 228          !null_obj->arraycopy_dst(), "sanity");
 229 #endif
 230 
 231   _collecting = false;
 232 
 233   } // TracePhase t3("connectionGraph")
 234 
 235   // 4. Optimize ideal graph based on EA information.
 236   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 237   if (has_non_escaping_obj) {
 238     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 239   }
 240 
 241 #ifndef PRODUCT
 242   if (PrintEscapeAnalysis) {
 243     dump(ptnodes_worklist); // Dump ConnectionGraph
 244   }
 245 #endif
 246 
 247   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 248 #ifdef ASSERT
 249   if (VerifyConnectionGraph) {
 250     int alloc_length = alloc_worklist.length();
 251     for (int next = 0; next < alloc_length; ++next) {
 252       Node* n = alloc_worklist.at(next);
 253       PointsToNode* ptn = ptnode_adr(n->_idx);
 254       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 255     }
 256   }
 257 #endif
 258 
 259   // 5. Separate memory graph for scalar replaceable allcations.
 260   if (has_scalar_replaceable_candidates &&
 261       C->AliasLevel() >= 3 && EliminateAllocations) {
 262     // Now use the escape information to create unique types for
 263     // scalar replaceable objects.
 264     split_unique_types(alloc_worklist);
 265     if (C->failing())  return false;
 266     C->print_method("After Escape Analysis", 2);
 267 
 268 #ifdef ASSERT
 269   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 270     tty->print("=== No allocations eliminated for ");
 271     C->method()->print_short_name();
 272     if(!EliminateAllocations) {
 273       tty->print(" since EliminateAllocations is off ===");
 274     } else if(!has_scalar_replaceable_candidates) {
 275       tty->print(" since there are no scalar replaceable candidates ===");
 276     } else if(C->AliasLevel() < 3) {
 277       tty->print(" since AliasLevel < 3 ===");
 278     }
 279     tty->cr();
 280 #endif
 281   }
 282   return has_non_escaping_obj;
 283 }
 284 
 285 // Populate Connection Graph with PointsTo nodes and create simple
 286 // connection graph edges.
 287 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 288   assert(!_verify, "this method sould not be called for verification");
 289   PhaseGVN* igvn = _igvn;
 290   uint n_idx = n->_idx;
 291   PointsToNode* n_ptn = ptnode_adr(n_idx);
 292   if (n_ptn != NULL)
 293     return; // No need to redefine PointsTo node during first iteration.
 294 
 295   if (n->is_Call()) {
 296     // Arguments to allocation and locking don't escape.
 297     if (n->is_AbstractLock()) {
 298       // Put Lock and Unlock nodes on IGVN worklist to process them during
 299       // first IGVN optimization when escape information is still available.
 300       record_for_optimizer(n);
 301     } else if (n->is_Allocate()) {
 302       add_call_node(n->as_Call());
 303       record_for_optimizer(n);
 304     } else {
 305       if (n->is_CallStaticJava()) {
 306         const char* name = n->as_CallStaticJava()->_name;
 307         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 308           return; // Skip uncommon traps
 309       }
 310       // Don't mark as processed since call's arguments have to be processed.
 311       delayed_worklist->push(n);
 312       // Check if a call returns an object.
 313       if (n->as_Call()->returns_pointer() &&
 314           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
 315         add_call_node(n->as_Call());
 316       }
 317     }
 318     return;
 319   }
 320   // Put this check here to process call arguments since some call nodes
 321   // point to phantom_obj.
 322   if (n_ptn == phantom_obj || n_ptn == null_obj)
 323     return; // Skip predefined nodes.
 324 
 325   int opcode = n->Opcode();
 326   switch (opcode) {
 327     case Op_AddP: {
 328       Node* base = get_addp_base(n);
 329       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 330       // Field nodes are created for all field types. They are used in
 331       // adjust_scalar_replaceable_state() and split_unique_types().
 332       // Note, non-oop fields will have only base edges in Connection
 333       // Graph because such fields are not used for oop loads and stores.
 334       int offset = address_offset(n, igvn);
 335       add_field(n, PointsToNode::NoEscape, offset);
 336       if (ptn_base == NULL) {
 337         delayed_worklist->push(n); // Process it later.
 338       } else {
 339         n_ptn = ptnode_adr(n_idx);
 340         add_base(n_ptn->as_Field(), ptn_base);
 341       }
 342       break;
 343     }
 344     case Op_CastX2P: {
 345       map_ideal_node(n, phantom_obj);
 346       break;
 347     }
 348     case Op_CastPP:
 349     case Op_CheckCastPP:
 350     case Op_EncodeP:
 351     case Op_DecodeN: {
 352       add_local_var_and_edge(n, PointsToNode::NoEscape,
 353                              n->in(1), delayed_worklist);
 354       break;
 355     }
 356     case Op_CMoveP: {
 357       add_local_var(n, PointsToNode::NoEscape);
 358       // Do not add edges during first iteration because some could be
 359       // not defined yet.
 360       delayed_worklist->push(n);
 361       break;
 362     }
 363     case Op_ConP:
 364     case Op_ConN: {
 365       // assume all oop constants globally escape except for null
 366       PointsToNode::EscapeState es;
 367       if (igvn->type(n) == TypePtr::NULL_PTR ||
 368           igvn->type(n) == TypeNarrowOop::NULL_PTR) {
 369         es = PointsToNode::NoEscape;
 370       } else {
 371         es = PointsToNode::GlobalEscape;
 372       }
 373       add_java_object(n, es);
 374       break;
 375     }
 376     case Op_CreateEx: {
 377       // assume that all exception objects globally escape
 378       add_java_object(n, PointsToNode::GlobalEscape);
 379       break;
 380     }
 381     case Op_LoadKlass:
 382     case Op_LoadNKlass: {
 383       // Unknown class is loaded
 384       map_ideal_node(n, phantom_obj);
 385       break;
 386     }
 387     case Op_LoadP:
 388     case Op_LoadN:
 389     case Op_LoadPLocked: {
 390       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 391       // ThreadLocal has RawPrt type.
 392       const Type* t = igvn->type(n);
 393       if (t->make_ptr() != NULL) {
 394         Node* adr = n->in(MemNode::Address);
 395 #ifdef ASSERT
 396         if (!adr->is_AddP()) {
 397           assert(igvn->type(adr)->isa_rawptr(), "sanity");
 398         } else {
 399           assert((ptnode_adr(adr->_idx) == NULL ||
 400                   ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 401         }
 402 #endif
 403         add_local_var_and_edge(n, PointsToNode::NoEscape,
 404                                adr, delayed_worklist);
 405       }
 406       break;
 407     }
 408     case Op_Parm: {
 409       map_ideal_node(n, phantom_obj);
 410       break;
 411     }
 412     case Op_PartialSubtypeCheck: {
 413       // Produces Null or notNull and is used in only in CmpP so
 414       // phantom_obj could be used.
 415       map_ideal_node(n, phantom_obj); // Result is unknown
 416       break;
 417     }
 418     case Op_Phi: {
 419       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 420       // ThreadLocal has RawPrt type.
 421       const Type* t = n->as_Phi()->type();
 422       if (t->make_ptr() != NULL) {
 423         add_local_var(n, PointsToNode::NoEscape);
 424         // Do not add edges during first iteration because some could be
 425         // not defined yet.
 426         delayed_worklist->push(n);
 427       }
 428       break;
 429     }
 430     case Op_Proj: {
 431       // we are only interested in the oop result projection from a call
 432       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 433           n->in(0)->as_Call()->returns_pointer()) {
 434         add_local_var_and_edge(n, PointsToNode::NoEscape,
 435                                n->in(0), delayed_worklist);
 436       }
 437       break;
 438     }
 439     case Op_Rethrow: // Exception object escapes
 440     case Op_Return: {
 441       if (n->req() > TypeFunc::Parms &&
 442           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 443         // Treat Return value as LocalVar with GlobalEscape escape state.
 444         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 445                                n->in(TypeFunc::Parms), delayed_worklist);
 446       }
 447       break;
 448     }
 449     case Op_StoreP:
 450     case Op_StoreN:
 451     case Op_StorePConditional:
 452     case Op_CompareAndSwapP:
 453     case Op_CompareAndSwapN: {
 454       Node* adr = n->in(MemNode::Address);
 455       const Type *adr_type = igvn->type(adr);
 456       adr_type = adr_type->make_ptr();
 457       if (adr_type->isa_oopptr() ||
 458           (opcode == Op_StoreP || opcode == Op_StoreN) &&
 459                         (adr_type == TypeRawPtr::NOTNULL &&
 460                          adr->in(AddPNode::Address)->is_Proj() &&
 461                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 462         delayed_worklist->push(n); // Process it later.
 463 #ifdef ASSERT
 464         assert(adr->is_AddP(), "expecting an AddP");
 465         if (adr_type == TypeRawPtr::NOTNULL) {
 466           // Verify a raw address for a store captured by Initialize node.
 467           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 468           assert(offs != Type::OffsetBot, "offset must be a constant");
 469         }
 470 #endif
 471       } else {
 472         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 473         if (adr->is_BoxLock())
 474           break;
 475         // Stored value escapes in unsafe access.
 476         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 477           // Pointer stores in G1 barriers looks like unsafe access.
 478           // Ignore such stores to be able scalar replace non-escaping
 479           // allocations.
 480           if (UseG1GC && adr->is_AddP()) {
 481             Node* base = get_addp_base(adr);
 482             if (base->Opcode() == Op_LoadP &&
 483                 base->in(MemNode::Address)->is_AddP()) {
 484               adr = base->in(MemNode::Address);
 485               Node* tls = get_addp_base(adr);
 486               if (tls->Opcode() == Op_ThreadLocal) {
 487                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 488                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 489                                      PtrQueue::byte_offset_of_buf())) {
 490                   break; // G1 pre barier previous oop value store.
 491                 }
 492                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 493                                      PtrQueue::byte_offset_of_buf())) {
 494                   break; // G1 post barier card address store.
 495                 }
 496               }
 497             }
 498           }
 499           delayed_worklist->push(n); // Process unsafe access later.
 500           break;
 501         }
 502 #ifdef ASSERT
 503         n->dump(1);
 504         assert(false, "not unsafe or G1 barrier raw StoreP");
 505 #endif
 506       }
 507       break;
 508     }
 509     case Op_AryEq:
 510     case Op_StrComp:
 511     case Op_StrEquals:
 512     case Op_StrIndexOf: {
 513       add_local_var(n, PointsToNode::ArgEscape);
 514       delayed_worklist->push(n); // Process it later.
 515       break;
 516     }
 517     case Op_ThreadLocal: {
 518       add_java_object(n, PointsToNode::ArgEscape);
 519       break;
 520     }
 521     default:
 522       ; // Do nothing for nodes not related to EA.
 523   }
 524   return;
 525 }
 526 
 527 #ifdef ASSERT
 528 #define ELSE_FAIL(name)                               \
 529       /* Should not be called for not pointer type. */  \
 530       n->dump(1);                                       \
 531       assert(false, name);                              \
 532       break;
 533 #else
 534 #define ELSE_FAIL(name) \
 535       break;
 536 #endif
 537 
 538 // Add final simple edges to graph.
 539 void ConnectionGraph::add_final_edges(Node *n) {
 540   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 541 #ifdef ASSERT
 542   if (_verify && n_ptn->is_JavaObject())
 543     return; // This method does not change graph for JavaObject.
 544 #endif
 545 
 546   if (n->is_Call()) {
 547     process_call_arguments(n->as_Call());
 548     return;
 549   }
 550   assert(n->is_Store() || n->is_LoadStore() ||
 551          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 552          "node should be registered already");
 553   int opcode = n->Opcode();
 554   switch (opcode) {
 555     case Op_AddP: {
 556       Node* base = get_addp_base(n);
 557       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 558       assert(ptn_base != NULL, "field's base should be registered");
 559       add_base(n_ptn->as_Field(), ptn_base);
 560       break;
 561     }
 562     case Op_CastPP:
 563     case Op_CheckCastPP:
 564     case Op_EncodeP:
 565     case Op_DecodeN: {
 566       add_local_var_and_edge(n, PointsToNode::NoEscape,
 567                              n->in(1), NULL);
 568       break;
 569     }
 570     case Op_CMoveP: {
 571       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 572         Node* in = n->in(i);
 573         if (in == NULL)
 574           continue;  // ignore NULL
 575         Node* uncast_in = in->uncast();
 576         if (uncast_in->is_top() || uncast_in == n)
 577           continue;  // ignore top or inputs which go back this node
 578         PointsToNode* ptn = ptnode_adr(in->_idx);
 579         assert(ptn != NULL, "node should be registered");
 580         add_edge(n_ptn, ptn);
 581       }
 582       break;
 583     }
 584     case Op_LoadP:
 585     case Op_LoadN:
 586     case Op_LoadPLocked: {
 587       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 588       // ThreadLocal has RawPrt type.
 589       const Type* t = _igvn->type(n);
 590       if (t->make_ptr() != NULL) {
 591         Node* adr = n->in(MemNode::Address);
 592         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 593         break;
 594       }
 595       ELSE_FAIL("Op_LoadP");
 596     }
 597     case Op_Phi: {
 598       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 599       // ThreadLocal has RawPrt type.
 600       const Type* t = n->as_Phi()->type();
 601       if (t->make_ptr() != NULL) {
 602         for (uint i = 1; i < n->req(); i++) {
 603           Node* in = n->in(i);
 604           if (in == NULL)
 605             continue;  // ignore NULL
 606           Node* uncast_in = in->uncast();
 607           if (uncast_in->is_top() || uncast_in == n)
 608             continue;  // ignore top or inputs which go back this node
 609           PointsToNode* ptn = ptnode_adr(in->_idx);
 610           assert(ptn != NULL, "node should be registered");
 611           add_edge(n_ptn, ptn);
 612         }
 613         break;
 614       }
 615       ELSE_FAIL("Op_Phi");
 616     }
 617     case Op_Proj: {
 618       // we are only interested in the oop result projection from a call
 619       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 620           n->in(0)->as_Call()->returns_pointer()) {
 621         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 622         break;
 623       }
 624       ELSE_FAIL("Op_Proj");
 625     }
 626     case Op_Rethrow: // Exception object escapes
 627     case Op_Return: {
 628       if (n->req() > TypeFunc::Parms &&
 629           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 630         // Treat Return value as LocalVar with GlobalEscape escape state.
 631         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 632                                n->in(TypeFunc::Parms), NULL);
 633         break;
 634       }
 635       ELSE_FAIL("Op_Return");
 636     }
 637     case Op_StoreP:
 638     case Op_StoreN:
 639     case Op_StorePConditional:
 640     case Op_CompareAndSwapP:
 641     case Op_CompareAndSwapN: {
 642       Node* adr = n->in(MemNode::Address);
 643       const Type *adr_type = _igvn->type(adr);
 644       adr_type = adr_type->make_ptr();
 645       if (adr_type->isa_oopptr() ||
 646           (opcode == Op_StoreP || opcode == Op_StoreN) &&
 647                         (adr_type == TypeRawPtr::NOTNULL &&
 648                          adr->in(AddPNode::Address)->is_Proj() &&
 649                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 650         // Point Address to Value
 651         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 652         assert(adr_ptn != NULL &&
 653                adr_ptn->as_Field()->is_oop(), "node should be registered");
 654         Node *val = n->in(MemNode::ValueIn);
 655         PointsToNode* ptn = ptnode_adr(val->_idx);
 656         assert(ptn != NULL, "node should be registered");
 657         add_edge(adr_ptn, ptn);
 658         break;
 659       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 660         // Stored value escapes in unsafe access.
 661         Node *val = n->in(MemNode::ValueIn);
 662         PointsToNode* ptn = ptnode_adr(val->_idx);
 663         assert(ptn != NULL, "node should be registered");
 664         ptn->set_escape_state(PointsToNode::GlobalEscape);
 665         // Add edge to object for unsafe access with offset.
 666         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 667         assert(adr_ptn != NULL, "node should be registered");
 668         if (adr_ptn->is_Field()) {
 669           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 670           add_edge(adr_ptn, ptn);
 671         }
 672         break;
 673       }
 674       ELSE_FAIL("Op_StoreP");
 675     }
 676     case Op_AryEq:
 677     case Op_StrComp:
 678     case Op_StrEquals:
 679     case Op_StrIndexOf: {
 680       // char[] arrays passed to string intrinsic do not escape but
 681       // they are not scalar replaceable. Adjust escape state for them.
 682       // Start from in(2) edge since in(1) is memory edge.
 683       for (uint i = 2; i < n->req(); i++) {
 684         Node* adr = n->in(i);
 685         const Type* at = _igvn->type(adr);
 686         if (!adr->is_top() && at->isa_ptr()) {
 687           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 688                  at->isa_ptr() != NULL, "expecting a pointer");
 689           if (adr->is_AddP()) {
 690             adr = get_addp_base(adr);
 691           }
 692           PointsToNode* ptn = ptnode_adr(adr->_idx);
 693           assert(ptn != NULL, "node should be registered");
 694           add_edge(n_ptn, ptn);
 695         }
 696       }
 697       break;
 698     }
 699     default: {
 700       // This method should be called only for EA specific nodes which may
 701       // miss some edges when they were created.
 702 #ifdef ASSERT
 703       n->dump(1);
 704 #endif
 705       guarantee(false, "unknown node");
 706     }
 707   }
 708   return;
 709 }
 710 
 711 void ConnectionGraph::add_call_node(CallNode* call) {
 712   assert(call->returns_pointer(), "only for call which returns pointer");
 713   uint call_idx = call->_idx;
 714   if (call->is_Allocate()) {
 715     Node* k = call->in(AllocateNode::KlassNode);
 716     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 717     assert(kt != NULL, "TypeKlassPtr  required.");
 718     ciKlass* cik = kt->klass();
 719     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 720     bool scalar_replaceable = true;
 721     if (call->is_AllocateArray()) {
 722       if (!cik->is_array_klass()) { // StressReflectiveCode
 723         es = PointsToNode::GlobalEscape;
 724       } else {
 725         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 726         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 727           // Not scalar replaceable if the length is not constant or too big.
 728           scalar_replaceable = false;
 729         }
 730       }
 731     } else {  // Allocate instance
 732       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 733          !cik->is_instance_klass() || // StressReflectiveCode
 734           cik->as_instance_klass()->has_finalizer()) {
 735         es = PointsToNode::GlobalEscape;
 736       }
 737     }
 738     add_java_object(call, es);
 739     PointsToNode* ptn = ptnode_adr(call_idx);
 740     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 741       ptn->set_scalar_replaceable(false);
 742     }
 743   } else if (call->is_CallStaticJava()) {
 744     // Call nodes could be different types:
 745     //
 746     // 1. CallDynamicJavaNode (what happened during call is unknown):
 747     //
 748     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 749     //
 750     //    - all oop arguments are escaping globally;
 751     //
 752     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 753     //
 754     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 755     //
 756     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 757     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 758     //      during call is returned;
 759     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 760     //      which are returned and does not escape during call;
 761     //
 762     //    - oop arguments escaping status is defined by bytecode analysis;
 763     //
 764     // For a static call, we know exactly what method is being called.
 765     // Use bytecode estimator to record whether the call's return value escapes.
 766     ciMethod* meth = call->as_CallJava()->method();
 767     if (meth == NULL) {
 768       const char* name = call->as_CallStaticJava()->_name;
 769       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 770       // Returns a newly allocated unescaped object.
 771       add_java_object(call, PointsToNode::NoEscape);
 772       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 773     } else {
 774       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 775       call_analyzer->copy_dependencies(_compile->dependencies());
 776       if (call_analyzer->is_return_allocated()) {
 777         // Returns a newly allocated unescaped object, simply
 778         // update dependency information.
 779         // Mark it as NoEscape so that objects referenced by
 780         // it's fields will be marked as NoEscape at least.
 781         add_java_object(call, PointsToNode::NoEscape);
 782         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 783       } else {
 784         // Determine whether any arguments are returned.
 785         const TypeTuple* d = call->tf()->domain();
 786         bool ret_arg = false;
 787         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 788           if (d->field_at(i)->isa_ptr() != NULL &&
 789               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 790             ret_arg = true;
 791             break;
 792           }
 793         }
 794         if (ret_arg) {
 795           add_local_var(call, PointsToNode::ArgEscape);
 796         } else {
 797           // Returns unknown object.
 798           map_ideal_node(call, phantom_obj);
 799         }
 800       }
 801     }
 802   } else {
 803     // An other type of call, assume the worst case:
 804     // returned value is unknown and globally escapes.
 805     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 806     map_ideal_node(call, phantom_obj);
 807   }
 808 }
 809 
 810 void ConnectionGraph::process_call_arguments(CallNode *call) {
 811     bool is_arraycopy = false;
 812     switch (call->Opcode()) {
 813 #ifdef ASSERT
 814     case Op_Allocate:
 815     case Op_AllocateArray:
 816     case Op_Lock:
 817     case Op_Unlock:
 818       assert(false, "should be done already");
 819       break;
 820 #endif
 821     case Op_CallLeafNoFP:
 822       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
 823                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
 824       // fall through
 825     case Op_CallLeaf: {
 826       // Stub calls, objects do not escape but they are not scale replaceable.
 827       // Adjust escape state for outgoing arguments.
 828       const TypeTuple * d = call->tf()->domain();
 829       bool src_has_oops = false;
 830       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 831         const Type* at = d->field_at(i);
 832         Node *arg = call->in(i);
 833         const Type *aat = _igvn->type(arg);
 834         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 835           continue;
 836         if (arg->is_AddP()) {
 837           //
 838           // The inline_native_clone() case when the arraycopy stub is called
 839           // after the allocation before Initialize and CheckCastPP nodes.
 840           // Or normal arraycopy for object arrays case.
 841           //
 842           // Set AddP's base (Allocate) as not scalar replaceable since
 843           // pointer to the base (with offset) is passed as argument.
 844           //
 845           arg = get_addp_base(arg);
 846         }
 847         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 848         assert(arg_ptn != NULL, "should be registered");
 849         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 850         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 851           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 852                  aat->isa_ptr() != NULL, "expecting an Ptr");
 853           bool arg_has_oops = aat->isa_oopptr() &&
 854                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 855                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 856           if (i == TypeFunc::Parms) {
 857             src_has_oops = arg_has_oops;
 858           }
 859           //
 860           // src or dst could be j.l.Object when other is basic type array:
 861           //
 862           //   arraycopy(char[],0,Object*,0,size);
 863           //   arraycopy(Object*,0,char[],0,size);
 864           //
 865           // Don't add edges in such cases.
 866           //
 867           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 868                                        arg_has_oops && (i > TypeFunc::Parms);
 869 #ifdef ASSERT
 870           if (!(is_arraycopy ||
 871                 call->as_CallLeaf()->_name != NULL &&
 872                 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 873                  strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
 874           ) {
 875             call->dump();
 876             assert(false, "EA: unexpected CallLeaf");
 877           }
 878 #endif
 879           // Always process arraycopy's destination object since
 880           // we need to add all possible edges to references in
 881           // source object.
 882           if (arg_esc >= PointsToNode::ArgEscape &&
 883               !arg_is_arraycopy_dest) {
 884             continue;
 885           }
 886           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 887           if (arg_is_arraycopy_dest) {
 888             Node* src = call->in(TypeFunc::Parms);
 889             if (src->is_AddP()) {
 890               src = get_addp_base(src);
 891             }
 892             PointsToNode* src_ptn = ptnode_adr(src->_idx);
 893             assert(src_ptn != NULL, "should be registered");
 894             if (arg_ptn != src_ptn) {
 895               // Special arraycopy edge:
 896               // A destination object's field can't have the source object
 897               // as base since objects escape states are not related.
 898               // Only escape state of destination object's fields affects
 899               // escape state of fields in source object.
 900               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
 901             }
 902           }
 903         }
 904       }
 905       break;
 906     }
 907     case Op_CallStaticJava: {
 908       // For a static call, we know exactly what method is being called.
 909       // Use bytecode estimator to record the call's escape affects
 910 #ifdef ASSERT
 911       const char* name = call->as_CallStaticJava()->_name;
 912       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
 913 #endif
 914       ciMethod* meth = call->as_CallJava()->method();
 915       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
 916       // fall-through if not a Java method or no analyzer information
 917       if (call_analyzer != NULL) {
 918         PointsToNode* call_ptn = ptnode_adr(call->_idx);
 919         const TypeTuple* d = call->tf()->domain();
 920         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 921           const Type* at = d->field_at(i);
 922           int k = i - TypeFunc::Parms;
 923           Node* arg = call->in(i);
 924           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 925           if (at->isa_ptr() != NULL &&
 926               call_analyzer->is_arg_returned(k)) {
 927             // The call returns arguments.
 928             if (call_ptn != NULL) { // Is call's result used?
 929               assert(call_ptn->is_LocalVar(), "node should be registered");
 930               assert(arg_ptn != NULL, "node should be registered");
 931               add_edge(call_ptn, arg_ptn);
 932             }
 933           }
 934           if (at->isa_oopptr() != NULL &&
 935               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
 936             if (!call_analyzer->is_arg_stack(k)) {
 937               // The argument global escapes
 938               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
 939             } else {
 940               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 941               if (!call_analyzer->is_arg_local(k)) {
 942                 // The argument itself doesn't escape, but any fields might
 943                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
 944               }
 945             }
 946           }
 947         }
 948         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
 949           // The call returns arguments.
 950           assert(call_ptn->edge_count() > 0, "sanity");
 951           if (!call_analyzer->is_return_local()) {
 952             // Returns also unknown object.
 953             add_edge(call_ptn, phantom_obj);
 954           }
 955         }
 956         break;
 957       }
 958     }
 959     default: {
 960       // Fall-through here if not a Java method or no analyzer information
 961       // or some other type of call, assume the worst case: all arguments
 962       // globally escape.
 963       const TypeTuple* d = call->tf()->domain();
 964       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 965         const Type* at = d->field_at(i);
 966         if (at->isa_oopptr() != NULL) {
 967           Node* arg = call->in(i);
 968           if (arg->is_AddP()) {
 969             arg = get_addp_base(arg);
 970           }
 971           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
 972           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
 973         }
 974       }
 975     }
 976   }
 977 }
 978 
 979 
 980 // Finish Graph construction.
 981 bool ConnectionGraph::complete_connection_graph(
 982                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
 983                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
 984                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
 985                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
 986   // Normally only 1-3 passes needed to build Connection Graph depending
 987   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
 988   // Set limit to 20 to catch situation when something did go wrong and
 989   // bailout Escape Analysis.
 990   // Also limit build time to 30 sec (60 in debug VM).
 991 #define CG_BUILD_ITER_LIMIT 20
 992 #ifdef ASSERT
 993 #define CG_BUILD_TIME_LIMIT 60.0
 994 #else
 995 #define CG_BUILD_TIME_LIMIT 30.0
 996 #endif
 997 
 998   // Propagate GlobalEscape and ArgEscape escape states and check that
 999   // we still have non-escaping objects. The method pushs on _worklist
1000   // Field nodes which reference phantom_object.
1001   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1002     return false; // Nothing to do.
1003   }
1004   // Now propagate references to all JavaObject nodes.
1005   int java_objects_length = java_objects_worklist.length();
1006   elapsedTimer time;
1007   int new_edges = 1;
1008   int iterations = 0;
1009   do {
1010     while ((new_edges > 0) &&
1011           (iterations++   < CG_BUILD_ITER_LIMIT) &&
1012           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1013       time.start();
1014       new_edges = 0;
1015       // Propagate references to phantom_object for nodes pushed on _worklist
1016       // by find_non_escaped_objects() and find_field_value().
1017       new_edges += add_java_object_edges(phantom_obj, false);
1018       for (int next = 0; next < java_objects_length; ++next) {
1019         JavaObjectNode* ptn = java_objects_worklist.at(next);
1020         new_edges += add_java_object_edges(ptn, true);
1021       }
1022       if (new_edges > 0) {
1023         // Update escape states on each iteration if graph was updated.
1024         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1025           return false; // Nothing to do.
1026         }
1027       }
1028       time.stop();
1029     }
1030     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
1031         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1032       time.start();
1033       // Find fields which have unknown value.
1034       int fields_length = oop_fields_worklist.length();
1035       for (int next = 0; next < fields_length; next++) {
1036         FieldNode* field = oop_fields_worklist.at(next);
1037         if (field->edge_count() == 0) {
1038           new_edges += find_field_value(field);
1039           // This code may added new edges to phantom_object.
1040           // Need an other cycle to propagate references to phantom_object.
1041         }
1042       }
1043       time.stop();
1044     } else {
1045       new_edges = 0; // Bailout
1046     }
1047   } while (new_edges > 0);
1048 
1049   // Bailout if passed limits.
1050   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
1051       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
1052     Compile* C = _compile;
1053     if (C->log() != NULL) {
1054       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1055       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
1056       C->log()->end_elem(" limit'");
1057     }
1058     assert(false, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1059            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1060     // Possible infinite build_connection_graph loop,
1061     // bailout (no changes to ideal graph were made).
1062     return false;
1063   }
1064 #ifdef ASSERT
1065   if (Verbose && PrintEscapeAnalysis) {
1066     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1067                   iterations, nodes_size(), ptnodes_worklist.length());
1068   }
1069 #endif
1070 
1071 #undef CG_BUILD_ITER_LIMIT
1072 #undef CG_BUILD_TIME_LIMIT
1073 
1074   // Find fields initialized by NULL for non-escaping Allocations.
1075   int non_escaped_length = non_escaped_worklist.length();
1076   for (int next = 0; next < non_escaped_length; next++) {
1077     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1078     PointsToNode::EscapeState es = ptn->escape_state();
1079     assert(es <= PointsToNode::ArgEscape, "sanity");
1080     if (es == PointsToNode::NoEscape) {
1081       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1082         // Adding references to NULL object does not change escape states
1083         // since it does not escape. Also no fields are added to NULL object.
1084         add_java_object_edges(null_obj, false);
1085       }
1086     }
1087     Node* n = ptn->ideal_node();
1088     if (n->is_Allocate()) {
1089       // The object allocated by this Allocate node will never be
1090       // seen by an other thread. Mark it so that when it is
1091       // expanded no MemBarStoreStore is added.
1092       InitializeNode* ini = n->as_Allocate()->initialization();
1093       if (ini != NULL)
1094         ini->set_does_not_escape();
1095     }
1096   }
1097   return true; // Finished graph construction.
1098 }
1099 
1100 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1101 // and check that we still have non-escaping java objects.
1102 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1103                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1104   GrowableArray<PointsToNode*> escape_worklist;
1105   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1106   int ptnodes_length = ptnodes_worklist.length();
1107   for (int next = 0; next < ptnodes_length; ++next) {
1108     PointsToNode* ptn = ptnodes_worklist.at(next);
1109     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1110         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1111       escape_worklist.push(ptn);
1112     }
1113   }
1114   // Set escape states to referenced nodes (edges list).
1115   while (escape_worklist.length() > 0) {
1116     PointsToNode* ptn = escape_worklist.pop();
1117     PointsToNode::EscapeState es  = ptn->escape_state();
1118     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1119     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1120         es >= PointsToNode::ArgEscape) {
1121       // GlobalEscape or ArgEscape state of field means it has unknown value.
1122       if (add_edge(ptn, phantom_obj)) {
1123         // New edge was added
1124         add_field_uses_to_worklist(ptn->as_Field());
1125       }
1126     }
1127     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1128       PointsToNode* e = i.get();
1129       if (e->is_Arraycopy()) {
1130         assert(ptn->arraycopy_dst(), "sanity");
1131         // Propagate only fields escape state through arraycopy edge.
1132         if (e->fields_escape_state() < field_es) {
1133           set_fields_escape_state(e, field_es);
1134           escape_worklist.push(e);
1135         }
1136       } else if (es >= field_es) {
1137         // fields_escape_state is also set to 'es' if it is less than 'es'.
1138         if (e->escape_state() < es) {
1139           set_escape_state(e, es);
1140           escape_worklist.push(e);
1141         }
1142       } else {
1143         // Propagate field escape state.
1144         bool es_changed = false;
1145         if (e->fields_escape_state() < field_es) {
1146           set_fields_escape_state(e, field_es);
1147           es_changed = true;
1148         }
1149         if ((e->escape_state() < field_es) &&
1150             e->is_Field() && ptn->is_JavaObject() &&
1151             e->as_Field()->is_oop()) {
1152           // Change escape state of referenced fileds.
1153           set_escape_state(e, field_es);
1154           es_changed = true;;
1155         } else if (e->escape_state() < es) {
1156           set_escape_state(e, es);
1157           es_changed = true;;
1158         }
1159         if (es_changed) {
1160           escape_worklist.push(e);
1161         }
1162       }
1163     }
1164   }
1165   // Remove escaped objects from non_escaped list.
1166   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1167     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1168     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1169       non_escaped_worklist.delete_at(next);
1170     }
1171     if (ptn->escape_state() == PointsToNode::NoEscape) {
1172       // Find fields in non-escaped allocations which have unknown value.
1173       find_init_values(ptn, phantom_obj, NULL);
1174     }
1175   }
1176   return (non_escaped_worklist.length() > 0);
1177 }
1178 
1179 // Add all references to JavaObject node by walking over all uses.
1180 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1181   int new_edges = 0;
1182   if (populate_worklist) {
1183     // Populate _worklist by uses of jobj's uses.
1184     for (UseIterator i(jobj); i.has_next(); i.next()) {
1185       PointsToNode* use = i.get();
1186       if (use->is_Arraycopy())
1187         continue;
1188       add_uses_to_worklist(use);
1189       if (use->is_Field() && use->as_Field()->is_oop()) {
1190         // Put on worklist all field's uses (loads) and
1191         // related field nodes (same base and offset).
1192         add_field_uses_to_worklist(use->as_Field());
1193       }
1194     }
1195   }
1196   while(_worklist.length() > 0) {
1197     PointsToNode* use = _worklist.pop();
1198     if (PointsToNode::is_base_use(use)) {
1199       // Add reference from jobj to field and from field to jobj (field's base).
1200       use = PointsToNode::get_use_node(use)->as_Field();
1201       if (add_base(use->as_Field(), jobj)) {
1202         new_edges++;
1203       }
1204       continue;
1205     }
1206     assert(!use->is_JavaObject(), "sanity");
1207     if (use->is_Arraycopy()) {
1208       if (jobj == null_obj) // NULL object does not have field edges
1209         continue;
1210       // Added edge from Arraycopy node to arraycopy's source java object
1211       if (add_edge(use, jobj)) {
1212         jobj->set_arraycopy_src();
1213         new_edges++;
1214       }
1215       // and stop here.
1216       continue;
1217     }
1218     if (!add_edge(use, jobj))
1219       continue; // No new edge added, there was such edge already.
1220     new_edges++;
1221     if (use->is_LocalVar()) {
1222       add_uses_to_worklist(use);
1223       if (use->arraycopy_dst()) {
1224         for (EdgeIterator i(use); i.has_next(); i.next()) {
1225           PointsToNode* e = i.get();
1226           if (e->is_Arraycopy()) {
1227             if (jobj == null_obj) // NULL object does not have field edges
1228               continue;
1229             // Add edge from arraycopy's destination java object to Arraycopy node.
1230             if (add_edge(jobj, e)) {
1231               new_edges++;
1232               jobj->set_arraycopy_dst();
1233             }
1234           }
1235         }
1236       }
1237     } else {
1238       // Added new edge to stored in field values.
1239       // Put on worklist all field's uses (loads) and
1240       // related field nodes (same base and offset).
1241       add_field_uses_to_worklist(use->as_Field());
1242     }
1243   }
1244   return new_edges;
1245 }
1246 
1247 // Put on worklist all related field nodes.
1248 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1249   assert(field->is_oop(), "sanity");
1250   int offset = field->offset();
1251   add_uses_to_worklist(field);
1252   // Loop over all bases of this field and push on worklist Field nodes
1253   // with the same offset and base (since they may reference the same field).
1254   for (BaseIterator i(field); i.has_next(); i.next()) {
1255     PointsToNode* base = i.get();
1256     add_fields_to_worklist(field, base);
1257     // Check if the base was source object of arraycopy and go over arraycopy's
1258     // destination objects since values stored to a field of source object are
1259     // accessable by uses (loads) of fields of destination objects.
1260     if (base->arraycopy_src()) {
1261       for (UseIterator j(base); j.has_next(); j.next()) {
1262         PointsToNode* arycp = j.get();
1263         if (arycp->is_Arraycopy()) {
1264           for (UseIterator k(arycp); k.has_next(); k.next()) {
1265             PointsToNode* abase = k.get();
1266             if (abase->arraycopy_dst() && abase != base) {
1267               // Look for the same arracopy reference.
1268               add_fields_to_worklist(field, abase);
1269             }
1270           }
1271         }
1272       }
1273     }
1274   }
1275 }
1276 
1277 // Put on worklist all related field nodes.
1278 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1279   int offset = field->offset();
1280   if (base->is_LocalVar()) {
1281     for (UseIterator j(base); j.has_next(); j.next()) {
1282       PointsToNode* f = j.get();
1283       if (PointsToNode::is_base_use(f)) { // Field
1284         f = PointsToNode::get_use_node(f);
1285         if (f == field || !f->as_Field()->is_oop())
1286           continue;
1287         int offs = f->as_Field()->offset();
1288         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1289           add_to_worklist(f);
1290         }
1291       }
1292     }
1293   } else {
1294     assert(base->is_JavaObject(), "sanity");
1295     if (// Skip phantom_object since it is only used to indicate that
1296         // this field's content globally escapes.
1297         (base != phantom_obj) &&
1298         // NULL object node does not have fields.
1299         (base != null_obj)) {
1300       for (EdgeIterator i(base); i.has_next(); i.next()) {
1301         PointsToNode* f = i.get();
1302         // Skip arraycopy edge since store to destination object field
1303         // does not update value in source object field.
1304         if (f->is_Arraycopy()) {
1305           assert(base->arraycopy_dst(), "sanity");
1306           continue;
1307         }
1308         if (f == field || !f->as_Field()->is_oop())
1309           continue;
1310         int offs = f->as_Field()->offset();
1311         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1312           add_to_worklist(f);
1313         }
1314       }
1315     }
1316   }
1317 }
1318 
1319 // Find fields which have unknown value.
1320 int ConnectionGraph::find_field_value(FieldNode* field) {
1321   // Escaped fields should have init value already.
1322   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1323   int new_edges = 0;
1324   for (BaseIterator i(field); i.has_next(); i.next()) {
1325     PointsToNode* base = i.get();
1326     if (base->is_JavaObject()) {
1327       // Skip Allocate's fields which will be processed later.
1328       if (base->ideal_node()->is_Allocate())
1329         return 0;
1330       assert(base == null_obj, "only NULL ptr base expected here");
1331     }
1332   }
1333   if (add_edge(field, phantom_obj)) {
1334     // New edge was added
1335     new_edges++;
1336     add_field_uses_to_worklist(field);
1337   }
1338   return new_edges;
1339 }
1340 
1341 // Find fields initializing values for allocations.
1342 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1343   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1344   int new_edges = 0;
1345   Node* alloc = pta->ideal_node();
1346   if (init_val == phantom_obj) {
1347     // Do nothing for Allocate nodes since its fields values are "known".
1348     if (alloc->is_Allocate())
1349       return 0;
1350     assert(alloc->as_CallStaticJava(), "sanity");
1351 #ifdef ASSERT
1352     if (alloc->as_CallStaticJava()->method() == NULL) {
1353       const char* name = alloc->as_CallStaticJava()->_name;
1354       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1355     }
1356 #endif
1357     // Non-escaped allocation returned from Java or runtime call have
1358     // unknown values in fields.
1359     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1360       PointsToNode* ptn = i.get();
1361       if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
1362         if (add_edge(ptn, phantom_obj)) {
1363           // New edge was added
1364           new_edges++;
1365           add_field_uses_to_worklist(ptn->as_Field());
1366         }
1367       }
1368     }
1369     return new_edges;
1370   }
1371   assert(init_val == null_obj, "sanity");
1372   // Do nothing for Call nodes since its fields values are unknown.
1373   if (!alloc->is_Allocate())
1374     return 0;
1375 
1376   InitializeNode* ini = alloc->as_Allocate()->initialization();
1377   Compile* C = _compile;
1378   bool visited_bottom_offset = false;
1379   GrowableArray<int> offsets_worklist;
1380 
1381   // Check if an oop field's initializing value is recorded and add
1382   // a corresponding NULL if field's value if it is not recorded.
1383   // Connection Graph does not record a default initialization by NULL
1384   // captured by Initialize node.
1385   //
1386   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1387     PointsToNode* ptn = i.get(); // Field (AddP)
1388     if (!ptn->is_Field() || !ptn->as_Field()->is_oop())
1389       continue; // Not oop field
1390     int offset = ptn->as_Field()->offset();
1391     if (offset == Type::OffsetBot) {
1392       if (!visited_bottom_offset) {
1393         // OffsetBot is used to reference array's element,
1394         // always add reference to NULL to all Field nodes since we don't
1395         // known which element is referenced.
1396         if (add_edge(ptn, null_obj)) {
1397           // New edge was added
1398           new_edges++;
1399           add_field_uses_to_worklist(ptn->as_Field());
1400           visited_bottom_offset = true;
1401         }
1402       }
1403     } else {
1404       // Check only oop fields.
1405       const Type* adr_type = ptn->ideal_node()->as_AddP()->bottom_type();
1406       if (adr_type->isa_rawptr()) {
1407 #ifdef ASSERT
1408         // Raw pointers are used for initializing stores so skip it
1409         // since it should be recorded already
1410         Node* base = get_addp_base(ptn->ideal_node());
1411         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1412                (base->in(0) == alloc),"unexpected pointer type");
1413 #endif
1414         continue;
1415       }
1416       if (!offsets_worklist.contains(offset)) {
1417         offsets_worklist.append(offset);
1418         Node* value = NULL;
1419         if (ini != NULL) {
1420           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
1421           Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
1422           if (store != NULL && store->is_Store()) {
1423             value = store->in(MemNode::ValueIn);
1424           } else {
1425             // There could be initializing stores which follow allocation.
1426             // For example, a volatile field store is not collected
1427             // by Initialize node.
1428             //
1429             // Need to check for dependent loads to separate such stores from
1430             // stores which follow loads. For now, add initial value NULL so
1431             // that compare pointers optimization works correctly.
1432           }
1433         }
1434         if (value == NULL) {
1435           // A field's initializing value was not recorded. Add NULL.
1436           if (add_edge(ptn, null_obj)) {
1437             // New edge was added
1438             new_edges++;
1439             add_field_uses_to_worklist(ptn->as_Field());
1440           }
1441         }
1442       }
1443     }
1444   }
1445   return new_edges;
1446 }
1447 
1448 // Adjust scalar_replaceable state after Connection Graph is built.
1449 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1450   // Search for non-escaping objects which are not scalar replaceable
1451   // and mark them to propagate the state to referenced objects.
1452 
1453   // 1. An object is not scalar replaceable if the field into which it is
1454   // stored has unknown offset (stored into unknown element of an array).
1455   //
1456   for (UseIterator i(jobj); i.has_next(); i.next()) {
1457     PointsToNode* use = i.get();
1458     assert(!use->is_Arraycopy(), "sanity");
1459     if (use->is_Field()) {
1460       FieldNode* field = use->as_Field();
1461       assert(field->is_oop() && field->scalar_replaceable() &&
1462              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1463       if (field->offset() == Type::OffsetBot) {
1464         jobj->set_scalar_replaceable(false);
1465         return;
1466       }
1467     }
1468     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1469     // 2. An object is not scalar replaceable if it is merged with other objects.
1470     for (EdgeIterator j(use); j.has_next(); j.next()) {
1471       PointsToNode* ptn = j.get();
1472       if (ptn->is_JavaObject() && ptn != jobj) {
1473         // Mark all objects.
1474         jobj->set_scalar_replaceable(false);
1475          ptn->set_scalar_replaceable(false);
1476       }
1477     }
1478     if (!jobj->scalar_replaceable()) {
1479       return;
1480     }
1481   }
1482 
1483   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1484     // Non-escaping object node should point only to field nodes.
1485     FieldNode* field = j.get()->as_Field();
1486     int offset = field->as_Field()->offset();
1487 
1488     // 3. An object is not scalar replaceable if it has a field with unknown
1489     // offset (array's element is accessed in loop).
1490     if (offset == Type::OffsetBot) {
1491       jobj->set_scalar_replaceable(false);
1492       return;
1493     }
1494     // 4. Currently an object is not scalar replaceable if a LoadStore node
1495     // access its field since the field value is unknown after it.
1496     //
1497     Node* n = field->ideal_node();
1498     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1499       if (n->fast_out(i)->is_LoadStore()) {
1500         jobj->set_scalar_replaceable(false);
1501         return;
1502       }
1503     }
1504 
1505     // 5. Or the address may point to more then one object. This may produce
1506     // the false positive result (set not scalar replaceable)
1507     // since the flow-insensitive escape analysis can't separate
1508     // the case when stores overwrite the field's value from the case
1509     // when stores happened on different control branches.
1510     //
1511     // Note: it will disable scalar replacement in some cases:
1512     //
1513     //    Point p[] = new Point[1];
1514     //    p[0] = new Point(); // Will be not scalar replaced
1515     //
1516     // but it will save us from incorrect optimizations in next cases:
1517     //
1518     //    Point p[] = new Point[1];
1519     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1520     //
1521     if (field->base_count() > 1) {
1522       for (BaseIterator i(field); i.has_next(); i.next()) {
1523         PointsToNode* base = i.get();
1524         // Don't take into account LocalVar nodes which
1525         // may point to only one object which should be also
1526         // this field's base by now.
1527         if (base->is_JavaObject() && base != jobj) {
1528           // Mark all bases.
1529           jobj->set_scalar_replaceable(false);
1530           base->set_scalar_replaceable(false);
1531         }
1532       }
1533     }
1534   }
1535 }
1536 
1537 #ifdef ASSERT
1538 void ConnectionGraph::verify_connection_graph(
1539                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1540                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1541                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1542                          GrowableArray<Node*>& addp_worklist) {
1543   // Verify that graph is complete - no new edges could be added.
1544   int java_objects_length = java_objects_worklist.length();
1545   int non_escaped_length  = non_escaped_worklist.length();
1546   int new_edges = 0;
1547   for (int next = 0; next < java_objects_length; ++next) {
1548     JavaObjectNode* ptn = java_objects_worklist.at(next);
1549     new_edges += add_java_object_edges(ptn, true);
1550   }
1551   assert(new_edges == 0, "graph was not complete");
1552   // Verify that escape state is final.
1553   int length = non_escaped_worklist.length();
1554   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1555   assert((non_escaped_length == non_escaped_worklist.length()) &&
1556          (non_escaped_length == length) &&
1557          (_worklist.length() == 0), "escape state was not final");
1558 
1559   // Verify fields information.
1560   int addp_length = addp_worklist.length();
1561   for (int next = 0; next < addp_length; ++next ) {
1562     Node* n = addp_worklist.at(next);
1563     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1564     if (field->is_oop()) {
1565       // Verify that field has all bases
1566       Node* base = get_addp_base(n);
1567       PointsToNode* ptn = ptnode_adr(base->_idx);
1568       if (ptn->is_JavaObject()) {
1569         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1570       } else {
1571         assert(ptn->is_LocalVar(), "sanity");
1572         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1573           PointsToNode* e = i.get();
1574           if (e->is_JavaObject()) {
1575             assert(field->has_base(e->as_JavaObject()), "sanity");
1576           }
1577         }
1578       }
1579       // Verify that all fields have initializing values.
1580       if (field->edge_count() == 0) {
1581         field->dump();
1582         assert(field->edge_count() > 0, "sanity");
1583       }
1584     }
1585   }
1586 }
1587 #endif
1588 
1589 // Optimize ideal graph.
1590 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1591                                            GrowableArray<Node*>& storestore_worklist) {
1592   Compile* C = _compile;
1593   PhaseIterGVN* igvn = _igvn;
1594   if (EliminateLocks) {
1595     // Mark locks before changing ideal graph.
1596     int cnt = C->macro_count();
1597     for( int i=0; i < cnt; i++ ) {
1598       Node *n = C->macro_node(i);
1599       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1600         AbstractLockNode* alock = n->as_AbstractLock();
1601         if (!alock->is_non_esc_obj()) {
1602           if (not_global_escape(alock->obj_node())) {
1603             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1604             // The lock could be marked eliminated by lock coarsening
1605             // code during first IGVN before EA. Replace coarsened flag
1606             // to eliminate all associated locks/unlocks.
1607             alock->set_non_esc_obj();
1608           }
1609         }
1610       }
1611     }
1612   }
1613 
1614   if (OptimizePtrCompare) {
1615     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1616     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1617     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1618     // Optimize objects compare.
1619     while (ptr_cmp_worklist.length() != 0) {
1620       Node *n = ptr_cmp_worklist.pop();
1621       Node *res = optimize_ptr_compare(n);
1622       if (res != NULL) {
1623 #ifndef PRODUCT
1624         if (PrintOptimizePtrCompare) {
1625           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1626           if (Verbose) {
1627             n->dump(1);
1628           }
1629         }
1630 #endif
1631         igvn->replace_node(n, res);
1632       }
1633     }
1634     // cleanup
1635     if (_pcmp_neq->outcnt() == 0)
1636       igvn->hash_delete(_pcmp_neq);
1637     if (_pcmp_eq->outcnt()  == 0)
1638       igvn->hash_delete(_pcmp_eq);
1639   }
1640 
1641   // For MemBarStoreStore nodes added in library_call.cpp, check
1642   // escape status of associated AllocateNode and optimize out
1643   // MemBarStoreStore node if the allocated object never escapes.
1644   while (storestore_worklist.length() != 0) {
1645     Node *n = storestore_worklist.pop();
1646     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1647     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1648     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1649     if (not_global_escape(alloc)) {
1650       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1651       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1652       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1653       igvn->register_new_node_with_optimizer(mb);
1654       igvn->replace_node(storestore, mb);
1655     }
1656   }
1657 }
1658 
1659 // Optimize objects compare.
1660 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1661   assert(OptimizePtrCompare, "sanity");
1662   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1663   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1664   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1665   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1666   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1667   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1668 
1669   // Check simple cases first.
1670   if (jobj1 != NULL) {
1671     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1672       if (jobj1 == jobj2) {
1673         // Comparing the same not escaping object.
1674         return _pcmp_eq;
1675       }
1676       Node* obj = jobj1->ideal_node();
1677       // Comparing not escaping allocation.
1678       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1679           !ptn2->points_to(jobj1)) {
1680         return _pcmp_neq; // This includes nullness check.
1681       }
1682     }
1683   }
1684   if (jobj2 != NULL) {
1685     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1686       Node* obj = jobj2->ideal_node();
1687       // Comparing not escaping allocation.
1688       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1689           !ptn1->points_to(jobj2)) {
1690         return _pcmp_neq; // This includes nullness check.
1691       }
1692     }
1693   }
1694   if (jobj1 != NULL && jobj1 != phantom_obj &&
1695       jobj2 != NULL && jobj2 != phantom_obj &&
1696       jobj1->ideal_node()->is_Con() &&
1697       jobj2->ideal_node()->is_Con()) {
1698     // Klass or String constants compare. Need to be careful with
1699     // compressed pointers - compare types of ConN and ConP instead of nodes.
1700     const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr();
1701     const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr();
1702     assert(t1 != NULL && t2 != NULL, "sanity");
1703     if (t1->make_ptr() == t2->make_ptr()) {
1704       return _pcmp_eq;
1705     } else {
1706       return _pcmp_neq;
1707     }
1708   }
1709   if (ptn1->meet(ptn2)) {
1710     return NULL; // Sets are not disjoint
1711   }
1712 
1713   // Sets are disjoint.
1714   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1715   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1716   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1717   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1718   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1719       set2_has_unknown_ptr && set1_has_null_ptr) {
1720     // Check nullness of unknown object.
1721     return NULL;
1722   }
1723 
1724   // Disjointness by itself is not sufficient since
1725   // alias analysis is not complete for escaped objects.
1726   // Disjoint sets are definitely unrelated only when
1727   // at least one set has only not escaping allocations.
1728   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1729     if (ptn1->non_escaping_allocation()) {
1730       return _pcmp_neq;
1731     }
1732   }
1733   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1734     if (ptn2->non_escaping_allocation()) {
1735       return _pcmp_neq;
1736     }
1737   }
1738   return NULL;
1739 }
1740 
1741 // Connection Graph constuction functions.
1742 
1743 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1744   PointsToNode* ptadr = _nodes.at(n->_idx);
1745   if (ptadr != NULL) {
1746     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1747     return;
1748   }
1749   Compile* C = _compile;
1750   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
1751   _nodes.at_put(n->_idx, ptadr);
1752 }
1753 
1754 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1755   PointsToNode* ptadr = _nodes.at(n->_idx);
1756   if (ptadr != NULL) {
1757     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1758     return;
1759   }
1760   Compile* C = _compile;
1761   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
1762   _nodes.at_put(n->_idx, ptadr);
1763 }
1764 
1765 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1766   PointsToNode* ptadr = _nodes.at(n->_idx);
1767   if (ptadr != NULL) {
1768     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1769     return;
1770   }
1771   bool unsafe = false;
1772   bool is_oop = is_oop_field(n, offset, &unsafe);
1773   if (unsafe) {
1774     es = PointsToNode::GlobalEscape;
1775   }
1776   Compile* C = _compile;
1777   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
1778   _nodes.at_put(n->_idx, field);
1779 }
1780 
1781 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1782                                     PointsToNode* src, PointsToNode* dst) {
1783   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1784   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1785   PointsToNode* ptadr = _nodes.at(n->_idx);
1786   if (ptadr != NULL) {
1787     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
1788     return;
1789   }
1790   Compile* C = _compile;
1791   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
1792   _nodes.at_put(n->_idx, ptadr);
1793   // Add edge from arraycopy node to source object.
1794   (void)add_edge(ptadr, src);
1795   src->set_arraycopy_src();
1796   // Add edge from destination object to arraycopy node.
1797   (void)add_edge(dst, ptadr);
1798   dst->set_arraycopy_dst();
1799 }
1800 
1801 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
1802   const Type* adr_type = n->as_AddP()->bottom_type();
1803   BasicType bt = T_INT;
1804   if (offset == Type::OffsetBot) {
1805     // Check only oop fields.
1806     if (!adr_type->isa_aryptr() ||
1807         (adr_type->isa_aryptr()->klass() == NULL) ||
1808          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
1809       // OffsetBot is used to reference array's element. Ignore first AddP.
1810       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
1811         bt = T_OBJECT;
1812       }
1813     }
1814   } else if (offset != oopDesc::klass_offset_in_bytes()) {
1815     if (adr_type->isa_instptr()) {
1816       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
1817       if (field != NULL) {
1818         bt = field->layout_type();
1819       } else {
1820         // Check for unsafe oop field access
1821         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1822           int opcode = n->fast_out(i)->Opcode();
1823           if (opcode == Op_StoreP || opcode == Op_LoadP ||
1824               opcode == Op_StoreN || opcode == Op_LoadN) {
1825             bt = T_OBJECT;
1826             (*unsafe) = true;
1827             break;
1828           }
1829         }
1830       }
1831     } else if (adr_type->isa_aryptr()) {
1832       if (offset == arrayOopDesc::length_offset_in_bytes()) {
1833         // Ignore array length load.
1834       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
1835         // Ignore first AddP.
1836       } else {
1837         const Type* elemtype = adr_type->isa_aryptr()->elem();
1838         bt = elemtype->array_element_basic_type();
1839       }
1840     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
1841       // Allocation initialization, ThreadLocal field access, unsafe access
1842       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1843         int opcode = n->fast_out(i)->Opcode();
1844         if (opcode == Op_StoreP || opcode == Op_LoadP ||
1845             opcode == Op_StoreN || opcode == Op_LoadN) {
1846           bt = T_OBJECT;
1847           break;
1848         }
1849       }
1850     }
1851   }
1852   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
1853 }
1854 
1855 // Returns unique pointed java object or NULL.
1856 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
1857   assert(!_collecting, "should not call when contructed graph");
1858   // If the node was created after the escape computation we can't answer.
1859   uint idx = n->_idx;
1860   if (idx >= nodes_size()) {
1861     return NULL;
1862   }
1863   PointsToNode* ptn = ptnode_adr(idx);
1864   if (ptn->is_JavaObject()) {
1865     return ptn->as_JavaObject();
1866   }
1867   assert(ptn->is_LocalVar(), "sanity");
1868   // Check all java objects it points to.
1869   JavaObjectNode* jobj = NULL;
1870   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1871     PointsToNode* e = i.get();
1872     if (e->is_JavaObject()) {
1873       if (jobj == NULL) {
1874         jobj = e->as_JavaObject();
1875       } else if (jobj != e) {
1876         return NULL;
1877       }
1878     }
1879   }
1880   return jobj;
1881 }
1882 
1883 // Return true if this node points only to non-escaping allocations.
1884 bool PointsToNode::non_escaping_allocation() {
1885   if (is_JavaObject()) {
1886     Node* n = ideal_node();
1887     if (n->is_Allocate() || n->is_CallStaticJava()) {
1888       return (escape_state() == PointsToNode::NoEscape);
1889     } else {
1890       return false;
1891     }
1892   }
1893   assert(is_LocalVar(), "sanity");
1894   // Check all java objects it points to.
1895   for (EdgeIterator i(this); i.has_next(); i.next()) {
1896     PointsToNode* e = i.get();
1897     if (e->is_JavaObject()) {
1898       Node* n = e->ideal_node();
1899       if ((e->escape_state() != PointsToNode::NoEscape) ||
1900           !(n->is_Allocate() || n->is_CallStaticJava())) {
1901         return false;
1902       }
1903     }
1904   }
1905   return true;
1906 }
1907 
1908 // Return true if we know the node does not escape globally.
1909 bool ConnectionGraph::not_global_escape(Node *n) {
1910   assert(!_collecting, "should not call during graph construction");
1911   // If the node was created after the escape computation we can't answer.
1912   uint idx = n->_idx;
1913   if (idx >= nodes_size()) {
1914     return false;
1915   }
1916   PointsToNode* ptn = ptnode_adr(idx);
1917   PointsToNode::EscapeState es = ptn->escape_state();
1918   // If we have already computed a value, return it.
1919   if (es >= PointsToNode::GlobalEscape)
1920     return false;
1921   if (ptn->is_JavaObject()) {
1922     return true; // (es < PointsToNode::GlobalEscape);
1923   }
1924   assert(ptn->is_LocalVar(), "sanity");
1925   // Check all java objects it points to.
1926   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1927     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
1928       return false;
1929   }
1930   return true;
1931 }
1932 
1933 
1934 // Helper functions
1935 
1936 // Return true if this node points to specified node or nodes it points to.
1937 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
1938   if (is_JavaObject()) {
1939     return (this == ptn);
1940   }
1941   assert(is_LocalVar(), "sanity");
1942   for (EdgeIterator i(this); i.has_next(); i.next()) {
1943     if (i.get() == ptn)
1944       return true;
1945   }
1946   return false;
1947 }
1948 
1949 // Return true if one node points to an other.
1950 bool PointsToNode::meet(PointsToNode* ptn) {
1951   if (this == ptn) {
1952     return true;
1953   } else if (ptn->is_JavaObject()) {
1954     return this->points_to(ptn->as_JavaObject());
1955   } else if (this->is_JavaObject()) {
1956     return ptn->points_to(this->as_JavaObject());
1957   }
1958   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
1959   int ptn_count =  ptn->edge_count();
1960   for (EdgeIterator i(this); i.has_next(); i.next()) {
1961     PointsToNode* this_e = i.get();
1962     for (int j = 0; j < ptn_count; j++) {
1963       if (this_e == ptn->edge(j))
1964         return true;
1965     }
1966   }
1967   return false;
1968 }
1969 
1970 #ifdef ASSERT
1971 // Return true if bases point to this java object.
1972 bool FieldNode::has_base(JavaObjectNode* jobj) const {
1973   for (BaseIterator i(this); i.has_next(); i.next()) {
1974     if (i.get() == jobj)
1975       return true;
1976   }
1977   return false;
1978 }
1979 #endif
1980 
1981 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
1982   const Type *adr_type = phase->type(adr);
1983   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
1984       adr->in(AddPNode::Address)->is_Proj() &&
1985       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
1986     // We are computing a raw address for a store captured by an Initialize
1987     // compute an appropriate address type. AddP cases #3 and #5 (see below).
1988     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1989     assert(offs != Type::OffsetBot ||
1990            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
1991            "offset must be a constant or it is initialization of array");
1992     return offs;
1993   }
1994   const TypePtr *t_ptr = adr_type->isa_ptr();
1995   assert(t_ptr != NULL, "must be a pointer type");
1996   return t_ptr->offset();
1997 }
1998 
1999 Node* ConnectionGraph::get_addp_base(Node *addp) {
2000   assert(addp->is_AddP(), "must be AddP");
2001   //
2002   // AddP cases for Base and Address inputs:
2003   // case #1. Direct object's field reference:
2004   //     Allocate
2005   //       |
2006   //     Proj #5 ( oop result )
2007   //       |
2008   //     CheckCastPP (cast to instance type)
2009   //      | |
2010   //     AddP  ( base == address )
2011   //
2012   // case #2. Indirect object's field reference:
2013   //      Phi
2014   //       |
2015   //     CastPP (cast to instance type)
2016   //      | |
2017   //     AddP  ( base == address )
2018   //
2019   // case #3. Raw object's field reference for Initialize node:
2020   //      Allocate
2021   //        |
2022   //      Proj #5 ( oop result )
2023   //  top   |
2024   //     \  |
2025   //     AddP  ( base == top )
2026   //
2027   // case #4. Array's element reference:
2028   //   {CheckCastPP | CastPP}
2029   //     |  | |
2030   //     |  AddP ( array's element offset )
2031   //     |  |
2032   //     AddP ( array's offset )
2033   //
2034   // case #5. Raw object's field reference for arraycopy stub call:
2035   //          The inline_native_clone() case when the arraycopy stub is called
2036   //          after the allocation before Initialize and CheckCastPP nodes.
2037   //      Allocate
2038   //        |
2039   //      Proj #5 ( oop result )
2040   //       | |
2041   //       AddP  ( base == address )
2042   //
2043   // case #6. Constant Pool, ThreadLocal, CastX2P or
2044   //          Raw object's field reference:
2045   //      {ConP, ThreadLocal, CastX2P, raw Load}
2046   //  top   |
2047   //     \  |
2048   //     AddP  ( base == top )
2049   //
2050   // case #7. Klass's field reference.
2051   //      LoadKlass
2052   //       | |
2053   //       AddP  ( base == address )
2054   //
2055   // case #8. narrow Klass's field reference.
2056   //      LoadNKlass
2057   //       |
2058   //      DecodeN
2059   //       | |
2060   //       AddP  ( base == address )
2061   //
2062   Node *base = addp->in(AddPNode::Base);
2063   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2064     base = addp->in(AddPNode::Address);
2065     while (base->is_AddP()) {
2066       // Case #6 (unsafe access) may have several chained AddP nodes.
2067       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2068       base = base->in(AddPNode::Address);
2069     }
2070     Node* uncast_base = base->uncast();
2071     int opcode = uncast_base->Opcode();
2072     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2073            opcode == Op_CastX2P || uncast_base->is_DecodeN() ||
2074            (uncast_base->is_Mem() && uncast_base->bottom_type() == TypeRawPtr::NOTNULL) ||
2075            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2076   }
2077   return base;
2078 }
2079 
2080 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2081   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2082   Node* addp2 = addp->raw_out(0);
2083   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2084       addp2->in(AddPNode::Base) == n &&
2085       addp2->in(AddPNode::Address) == addp) {
2086     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2087     //
2088     // Find array's offset to push it on worklist first and
2089     // as result process an array's element offset first (pushed second)
2090     // to avoid CastPP for the array's offset.
2091     // Otherwise the inserted CastPP (LocalVar) will point to what
2092     // the AddP (Field) points to. Which would be wrong since
2093     // the algorithm expects the CastPP has the same point as
2094     // as AddP's base CheckCastPP (LocalVar).
2095     //
2096     //    ArrayAllocation
2097     //     |
2098     //    CheckCastPP
2099     //     |
2100     //    memProj (from ArrayAllocation CheckCastPP)
2101     //     |  ||
2102     //     |  ||   Int (element index)
2103     //     |  ||    |   ConI (log(element size))
2104     //     |  ||    |   /
2105     //     |  ||   LShift
2106     //     |  ||  /
2107     //     |  AddP (array's element offset)
2108     //     |  |
2109     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2110     //     | / /
2111     //     AddP (array's offset)
2112     //      |
2113     //     Load/Store (memory operation on array's element)
2114     //
2115     return addp2;
2116   }
2117   return NULL;
2118 }
2119 
2120 //
2121 // Adjust the type and inputs of an AddP which computes the
2122 // address of a field of an instance
2123 //
2124 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2125   PhaseGVN* igvn = _igvn;
2126   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2127   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2128   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2129   if (t == NULL) {
2130     // We are computing a raw address for a store captured by an Initialize
2131     // compute an appropriate address type (cases #3 and #5).
2132     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2133     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2134     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2135     assert(offs != Type::OffsetBot, "offset must be a constant");
2136     t = base_t->add_offset(offs)->is_oopptr();
2137   }
2138   int inst_id =  base_t->instance_id();
2139   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2140                              "old type must be non-instance or match new type");
2141 
2142   // The type 't' could be subclass of 'base_t'.
2143   // As result t->offset() could be large then base_t's size and it will
2144   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2145   // constructor verifies correctness of the offset.
2146   //
2147   // It could happened on subclass's branch (from the type profiling
2148   // inlining) which was not eliminated during parsing since the exactness
2149   // of the allocation type was not propagated to the subclass type check.
2150   //
2151   // Or the type 't' could be not related to 'base_t' at all.
2152   // It could happened when CHA type is different from MDO type on a dead path
2153   // (for example, from instanceof check) which is not collapsed during parsing.
2154   //
2155   // Do nothing for such AddP node and don't process its users since
2156   // this code branch will go away.
2157   //
2158   if (!t->is_known_instance() &&
2159       !base_t->klass()->is_subtype_of(t->klass())) {
2160      return false; // bail out
2161   }
2162   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2163   // Do NOT remove the next line: ensure a new alias index is allocated
2164   // for the instance type. Note: C++ will not remove it since the call
2165   // has side effect.
2166   int alias_idx = _compile->get_alias_index(tinst);
2167   igvn->set_type(addp, tinst);
2168   // record the allocation in the node map
2169   set_map(addp, get_map(base->_idx));
2170   // Set addp's Base and Address to 'base'.
2171   Node *abase = addp->in(AddPNode::Base);
2172   Node *adr   = addp->in(AddPNode::Address);
2173   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2174       adr->in(0)->_idx == (uint)inst_id) {
2175     // Skip AddP cases #3 and #5.
2176   } else {
2177     assert(!abase->is_top(), "sanity"); // AddP case #3
2178     if (abase != base) {
2179       igvn->hash_delete(addp);
2180       addp->set_req(AddPNode::Base, base);
2181       if (abase == adr) {
2182         addp->set_req(AddPNode::Address, base);
2183       } else {
2184         // AddP case #4 (adr is array's element offset AddP node)
2185 #ifdef ASSERT
2186         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2187         assert(adr->is_AddP() && atype != NULL &&
2188                atype->instance_id() == inst_id, "array's element offset should be processed first");
2189 #endif
2190       }
2191       igvn->hash_insert(addp);
2192     }
2193   }
2194   // Put on IGVN worklist since at least addp's type was changed above.
2195   record_for_optimizer(addp);
2196   return true;
2197 }
2198 
2199 //
2200 // Create a new version of orig_phi if necessary. Returns either the newly
2201 // created phi or an existing phi.  Sets create_new to indicate whether a new
2202 // phi was created.  Cache the last newly created phi in the node map.
2203 //
2204 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2205   Compile *C = _compile;
2206   PhaseGVN* igvn = _igvn;
2207   new_created = false;
2208   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2209   // nothing to do if orig_phi is bottom memory or matches alias_idx
2210   if (phi_alias_idx == alias_idx) {
2211     return orig_phi;
2212   }
2213   // Have we recently created a Phi for this alias index?
2214   PhiNode *result = get_map_phi(orig_phi->_idx);
2215   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2216     return result;
2217   }
2218   // Previous check may fail when the same wide memory Phi was split into Phis
2219   // for different memory slices. Search all Phis for this region.
2220   if (result != NULL) {
2221     Node* region = orig_phi->in(0);
2222     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2223       Node* phi = region->fast_out(i);
2224       if (phi->is_Phi() &&
2225           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2226         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2227         return phi->as_Phi();
2228       }
2229     }
2230   }
2231   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
2232     if (C->do_escape_analysis() == true && !C->failing()) {
2233       // Retry compilation without escape analysis.
2234       // If this is the first failure, the sentinel string will "stick"
2235       // to the Compile object, and the C2Compiler will see it and retry.
2236       C->record_failure(C2Compiler::retry_no_escape_analysis());
2237     }
2238     return NULL;
2239   }
2240   orig_phi_worklist.append_if_missing(orig_phi);
2241   const TypePtr *atype = C->get_adr_type(alias_idx);
2242   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2243   C->copy_node_notes_to(result, orig_phi);
2244   igvn->set_type(result, result->bottom_type());
2245   record_for_optimizer(result);
2246   set_map(orig_phi, result);
2247   new_created = true;
2248   return result;
2249 }
2250 
2251 //
2252 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2253 // specified alias index.
2254 //
2255 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2256   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2257   Compile *C = _compile;
2258   PhaseGVN* igvn = _igvn;
2259   bool new_phi_created;
2260   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2261   if (!new_phi_created) {
2262     return result;
2263   }
2264   GrowableArray<PhiNode *>  phi_list;
2265   GrowableArray<uint>  cur_input;
2266   PhiNode *phi = orig_phi;
2267   uint idx = 1;
2268   bool finished = false;
2269   while(!finished) {
2270     while (idx < phi->req()) {
2271       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2272       if (mem != NULL && mem->is_Phi()) {
2273         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2274         if (new_phi_created) {
2275           // found an phi for which we created a new split, push current one on worklist and begin
2276           // processing new one
2277           phi_list.push(phi);
2278           cur_input.push(idx);
2279           phi = mem->as_Phi();
2280           result = newphi;
2281           idx = 1;
2282           continue;
2283         } else {
2284           mem = newphi;
2285         }
2286       }
2287       if (C->failing()) {
2288         return NULL;
2289       }
2290       result->set_req(idx++, mem);
2291     }
2292 #ifdef ASSERT
2293     // verify that the new Phi has an input for each input of the original
2294     assert( phi->req() == result->req(), "must have same number of inputs.");
2295     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2296 #endif
2297     // Check if all new phi's inputs have specified alias index.
2298     // Otherwise use old phi.
2299     for (uint i = 1; i < phi->req(); i++) {
2300       Node* in = result->in(i);
2301       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2302     }
2303     // we have finished processing a Phi, see if there are any more to do
2304     finished = (phi_list.length() == 0 );
2305     if (!finished) {
2306       phi = phi_list.pop();
2307       idx = cur_input.pop();
2308       PhiNode *prev_result = get_map_phi(phi->_idx);
2309       prev_result->set_req(idx++, result);
2310       result = prev_result;
2311     }
2312   }
2313   return result;
2314 }
2315 
2316 //
2317 // The next methods are derived from methods in MemNode.
2318 //
2319 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2320   Node *mem = mmem;
2321   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2322   // means an array I have not precisely typed yet.  Do not do any
2323   // alias stuff with it any time soon.
2324   if (toop->base() != Type::AnyPtr &&
2325       !(toop->klass() != NULL &&
2326         toop->klass()->is_java_lang_Object() &&
2327         toop->offset() == Type::OffsetBot)) {
2328     mem = mmem->memory_at(alias_idx);
2329     // Update input if it is progress over what we have now
2330   }
2331   return mem;
2332 }
2333 
2334 //
2335 // Move memory users to their memory slices.
2336 //
2337 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2338   Compile* C = _compile;
2339   PhaseGVN* igvn = _igvn;
2340   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2341   assert(tp != NULL, "ptr type");
2342   int alias_idx = C->get_alias_index(tp);
2343   int general_idx = C->get_general_index(alias_idx);
2344 
2345   // Move users first
2346   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2347     Node* use = n->fast_out(i);
2348     if (use->is_MergeMem()) {
2349       MergeMemNode* mmem = use->as_MergeMem();
2350       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2351       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2352         continue; // Nothing to do
2353       }
2354       // Replace previous general reference to mem node.
2355       uint orig_uniq = C->unique();
2356       Node* m = find_inst_mem(n, general_idx, orig_phis);
2357       assert(orig_uniq == C->unique(), "no new nodes");
2358       mmem->set_memory_at(general_idx, m);
2359       --imax;
2360       --i;
2361     } else if (use->is_MemBar()) {
2362       assert(!use->is_Initialize(), "initializing stores should not be moved");
2363       if (use->req() > MemBarNode::Precedent &&
2364           use->in(MemBarNode::Precedent) == n) {
2365         // Don't move related membars.
2366         record_for_optimizer(use);
2367         continue;
2368       }
2369       tp = use->as_MemBar()->adr_type()->isa_ptr();
2370       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2371           alias_idx == general_idx) {
2372         continue; // Nothing to do
2373       }
2374       // Move to general memory slice.
2375       uint orig_uniq = C->unique();
2376       Node* m = find_inst_mem(n, general_idx, orig_phis);
2377       assert(orig_uniq == C->unique(), "no new nodes");
2378       igvn->hash_delete(use);
2379       imax -= use->replace_edge(n, m);
2380       igvn->hash_insert(use);
2381       record_for_optimizer(use);
2382       --i;
2383 #ifdef ASSERT
2384     } else if (use->is_Mem()) {
2385       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2386         // Don't move related cardmark.
2387         continue;
2388       }
2389       // Memory nodes should have new memory input.
2390       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2391       assert(tp != NULL, "ptr type");
2392       int idx = C->get_alias_index(tp);
2393       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2394              "Following memory nodes should have new memory input or be on the same memory slice");
2395     } else if (use->is_Phi()) {
2396       // Phi nodes should be split and moved already.
2397       tp = use->as_Phi()->adr_type()->isa_ptr();
2398       assert(tp != NULL, "ptr type");
2399       int idx = C->get_alias_index(tp);
2400       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2401     } else {
2402       use->dump();
2403       assert(false, "should not be here");
2404 #endif
2405     }
2406   }
2407 }
2408 
2409 //
2410 // Search memory chain of "mem" to find a MemNode whose address
2411 // is the specified alias index.
2412 //
2413 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2414   if (orig_mem == NULL)
2415     return orig_mem;
2416   Compile* C = _compile;
2417   PhaseGVN* igvn = _igvn;
2418   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2419   bool is_instance = (toop != NULL) && toop->is_known_instance();
2420   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2421   Node *prev = NULL;
2422   Node *result = orig_mem;
2423   while (prev != result) {
2424     prev = result;
2425     if (result == start_mem)
2426       break;  // hit one of our sentinels
2427     if (result->is_Mem()) {
2428       const Type *at = igvn->type(result->in(MemNode::Address));
2429       if (at == Type::TOP)
2430         break; // Dead
2431       assert (at->isa_ptr() != NULL, "pointer type required.");
2432       int idx = C->get_alias_index(at->is_ptr());
2433       if (idx == alias_idx)
2434         break; // Found
2435       if (!is_instance && (at->isa_oopptr() == NULL ||
2436                            !at->is_oopptr()->is_known_instance())) {
2437         break; // Do not skip store to general memory slice.
2438       }
2439       result = result->in(MemNode::Memory);
2440     }
2441     if (!is_instance)
2442       continue;  // don't search further for non-instance types
2443     // skip over a call which does not affect this memory slice
2444     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2445       Node *proj_in = result->in(0);
2446       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2447         break;  // hit one of our sentinels
2448       } else if (proj_in->is_Call()) {
2449         CallNode *call = proj_in->as_Call();
2450         if (!call->may_modify(toop, igvn)) {
2451           result = call->in(TypeFunc::Memory);
2452         }
2453       } else if (proj_in->is_Initialize()) {
2454         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2455         // Stop if this is the initialization for the object instance which
2456         // which contains this memory slice, otherwise skip over it.
2457         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2458           result = proj_in->in(TypeFunc::Memory);
2459         }
2460       } else if (proj_in->is_MemBar()) {
2461         result = proj_in->in(TypeFunc::Memory);
2462       }
2463     } else if (result->is_MergeMem()) {
2464       MergeMemNode *mmem = result->as_MergeMem();
2465       result = step_through_mergemem(mmem, alias_idx, toop);
2466       if (result == mmem->base_memory()) {
2467         // Didn't find instance memory, search through general slice recursively.
2468         result = mmem->memory_at(C->get_general_index(alias_idx));
2469         result = find_inst_mem(result, alias_idx, orig_phis);
2470         if (C->failing()) {
2471           return NULL;
2472         }
2473         mmem->set_memory_at(alias_idx, result);
2474       }
2475     } else if (result->is_Phi() &&
2476                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2477       Node *un = result->as_Phi()->unique_input(igvn);
2478       if (un != NULL) {
2479         orig_phis.append_if_missing(result->as_Phi());
2480         result = un;
2481       } else {
2482         break;
2483       }
2484     } else if (result->is_ClearArray()) {
2485       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2486         // Can not bypass initialization of the instance
2487         // we are looking for.
2488         break;
2489       }
2490       // Otherwise skip it (the call updated 'result' value).
2491     } else if (result->Opcode() == Op_SCMemProj) {
2492       assert(result->in(0)->is_LoadStore(), "sanity");
2493       const Type *at = igvn->type(result->in(0)->in(MemNode::Address));
2494       if (at != Type::TOP) {
2495         assert (at->isa_ptr() != NULL, "pointer type required.");
2496         int idx = C->get_alias_index(at->is_ptr());
2497         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2498         break;
2499       }
2500       result = result->in(0)->in(MemNode::Memory);
2501     }
2502   }
2503   if (result->is_Phi()) {
2504     PhiNode *mphi = result->as_Phi();
2505     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2506     const TypePtr *t = mphi->adr_type();
2507     if (!is_instance) {
2508       // Push all non-instance Phis on the orig_phis worklist to update inputs
2509       // during Phase 4 if needed.
2510       orig_phis.append_if_missing(mphi);
2511     } else if (C->get_alias_index(t) != alias_idx) {
2512       // Create a new Phi with the specified alias index type.
2513       result = split_memory_phi(mphi, alias_idx, orig_phis);
2514     }
2515   }
2516   // the result is either MemNode, PhiNode, InitializeNode.
2517   return result;
2518 }
2519 
2520 //
2521 //  Convert the types of unescaped object to instance types where possible,
2522 //  propagate the new type information through the graph, and update memory
2523 //  edges and MergeMem inputs to reflect the new type.
2524 //
2525 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2526 //  The processing is done in 4 phases:
2527 //
2528 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2529 //            types for the CheckCastPP for allocations where possible.
2530 //            Propagate the the new types through users as follows:
2531 //               casts and Phi:  push users on alloc_worklist
2532 //               AddP:  cast Base and Address inputs to the instance type
2533 //                      push any AddP users on alloc_worklist and push any memnode
2534 //                      users onto memnode_worklist.
2535 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2536 //            search the Memory chain for a store with the appropriate type
2537 //            address type.  If a Phi is found, create a new version with
2538 //            the appropriate memory slices from each of the Phi inputs.
2539 //            For stores, process the users as follows:
2540 //               MemNode:  push on memnode_worklist
2541 //               MergeMem: push on mergemem_worklist
2542 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2543 //            moving the first node encountered of each  instance type to the
2544 //            the input corresponding to its alias index.
2545 //            appropriate memory slice.
2546 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2547 //
2548 // In the following example, the CheckCastPP nodes are the cast of allocation
2549 // results and the allocation of node 29 is unescaped and eligible to be an
2550 // instance type.
2551 //
2552 // We start with:
2553 //
2554 //     7 Parm #memory
2555 //    10  ConI  "12"
2556 //    19  CheckCastPP   "Foo"
2557 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2558 //    29  CheckCastPP   "Foo"
2559 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2560 //
2561 //    40  StoreP  25   7  20   ... alias_index=4
2562 //    50  StoreP  35  40  30   ... alias_index=4
2563 //    60  StoreP  45  50  20   ... alias_index=4
2564 //    70  LoadP    _  60  30   ... alias_index=4
2565 //    80  Phi     75  50  60   Memory alias_index=4
2566 //    90  LoadP    _  80  30   ... alias_index=4
2567 //   100  LoadP    _  80  20   ... alias_index=4
2568 //
2569 //
2570 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2571 // and creating a new alias index for node 30.  This gives:
2572 //
2573 //     7 Parm #memory
2574 //    10  ConI  "12"
2575 //    19  CheckCastPP   "Foo"
2576 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2577 //    29  CheckCastPP   "Foo"  iid=24
2578 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2579 //
2580 //    40  StoreP  25   7  20   ... alias_index=4
2581 //    50  StoreP  35  40  30   ... alias_index=6
2582 //    60  StoreP  45  50  20   ... alias_index=4
2583 //    70  LoadP    _  60  30   ... alias_index=6
2584 //    80  Phi     75  50  60   Memory alias_index=4
2585 //    90  LoadP    _  80  30   ... alias_index=6
2586 //   100  LoadP    _  80  20   ... alias_index=4
2587 //
2588 // In phase 2, new memory inputs are computed for the loads and stores,
2589 // And a new version of the phi is created.  In phase 4, the inputs to
2590 // node 80 are updated and then the memory nodes are updated with the
2591 // values computed in phase 2.  This results in:
2592 //
2593 //     7 Parm #memory
2594 //    10  ConI  "12"
2595 //    19  CheckCastPP   "Foo"
2596 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2597 //    29  CheckCastPP   "Foo"  iid=24
2598 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2599 //
2600 //    40  StoreP  25  7   20   ... alias_index=4
2601 //    50  StoreP  35  7   30   ... alias_index=6
2602 //    60  StoreP  45  40  20   ... alias_index=4
2603 //    70  LoadP    _  50  30   ... alias_index=6
2604 //    80  Phi     75  40  60   Memory alias_index=4
2605 //   120  Phi     75  50  50   Memory alias_index=6
2606 //    90  LoadP    _ 120  30   ... alias_index=6
2607 //   100  LoadP    _  80  20   ... alias_index=4
2608 //
2609 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
2610   GrowableArray<Node *>  memnode_worklist;
2611   GrowableArray<PhiNode *>  orig_phis;
2612   PhaseIterGVN  *igvn = _igvn;
2613   uint new_index_start = (uint) _compile->num_alias_types();
2614   Arena* arena = Thread::current()->resource_area();
2615   VectorSet visited(arena);
2616   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2617   uint unique_old = _compile->unique();
2618 
2619   //  Phase 1:  Process possible allocations from alloc_worklist.
2620   //  Create instance types for the CheckCastPP for allocations where possible.
2621   //
2622   // (Note: don't forget to change the order of the second AddP node on
2623   //  the alloc_worklist if the order of the worklist processing is changed,
2624   //  see the comment in find_second_addp().)
2625   //
2626   while (alloc_worklist.length() != 0) {
2627     Node *n = alloc_worklist.pop();
2628     uint ni = n->_idx;
2629     if (n->is_Call()) {
2630       CallNode *alloc = n->as_Call();
2631       // copy escape information to call node
2632       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2633       PointsToNode::EscapeState es = ptn->escape_state();
2634       // We have an allocation or call which returns a Java object,
2635       // see if it is unescaped.
2636       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2637         continue;
2638       // Find CheckCastPP for the allocate or for the return value of a call
2639       n = alloc->result_cast();
2640       if (n == NULL) {            // No uses except Initialize node
2641         if (alloc->is_Allocate()) {
2642           // Set the scalar_replaceable flag for allocation
2643           // so it could be eliminated if it has no uses.
2644           alloc->as_Allocate()->_is_scalar_replaceable = true;
2645         }
2646         continue;
2647       }
2648       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2649         assert(!alloc->is_Allocate(), "allocation should have unique type");
2650         continue;
2651       }
2652 
2653       // The inline code for Object.clone() casts the allocation result to
2654       // java.lang.Object and then to the actual type of the allocated
2655       // object. Detect this case and use the second cast.
2656       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2657       // the allocation result is cast to java.lang.Object and then
2658       // to the actual Array type.
2659       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2660           && (alloc->is_AllocateArray() ||
2661               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2662         Node *cast2 = NULL;
2663         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2664           Node *use = n->fast_out(i);
2665           if (use->is_CheckCastPP()) {
2666             cast2 = use;
2667             break;
2668           }
2669         }
2670         if (cast2 != NULL) {
2671           n = cast2;
2672         } else {
2673           // Non-scalar replaceable if the allocation type is unknown statically
2674           // (reflection allocation), the object can't be restored during
2675           // deoptimization without precise type.
2676           continue;
2677         }
2678       }
2679       if (alloc->is_Allocate()) {
2680         // Set the scalar_replaceable flag for allocation
2681         // so it could be eliminated.
2682         alloc->as_Allocate()->_is_scalar_replaceable = true;
2683       }
2684       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2685       // in order for an object to be scalar-replaceable, it must be:
2686       //   - a direct allocation (not a call returning an object)
2687       //   - non-escaping
2688       //   - eligible to be a unique type
2689       //   - not determined to be ineligible by escape analysis
2690       set_map(alloc, n);
2691       set_map(n, alloc);
2692       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2693       if (t == NULL)
2694         continue;  // not a TypeOopPtr
2695       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
2696       igvn->hash_delete(n);
2697       igvn->set_type(n,  tinst);
2698       n->raise_bottom_type(tinst);
2699       igvn->hash_insert(n);
2700       record_for_optimizer(n);
2701       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2702 
2703         // First, put on the worklist all Field edges from Connection Graph
2704         // which is more accurate then putting immediate users from Ideal Graph.
2705         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2706           PointsToNode* tgt = e.get();
2707           Node* use = tgt->ideal_node();
2708           assert(tgt->is_Field() && use->is_AddP(),
2709                  "only AddP nodes are Field edges in CG");
2710           if (use->outcnt() > 0) { // Don't process dead nodes
2711             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2712             if (addp2 != NULL) {
2713               assert(alloc->is_AllocateArray(),"array allocation was expected");
2714               alloc_worklist.append_if_missing(addp2);
2715             }
2716             alloc_worklist.append_if_missing(use);
2717           }
2718         }
2719 
2720         // An allocation may have an Initialize which has raw stores. Scan
2721         // the users of the raw allocation result and push AddP users
2722         // on alloc_worklist.
2723         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2724         assert (raw_result != NULL, "must have an allocation result");
2725         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2726           Node *use = raw_result->fast_out(i);
2727           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2728             Node* addp2 = find_second_addp(use, raw_result);
2729             if (addp2 != NULL) {
2730               assert(alloc->is_AllocateArray(),"array allocation was expected");
2731               alloc_worklist.append_if_missing(addp2);
2732             }
2733             alloc_worklist.append_if_missing(use);
2734           } else if (use->is_MemBar()) {
2735             memnode_worklist.append_if_missing(use);
2736           }
2737         }
2738       }
2739     } else if (n->is_AddP()) {
2740       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2741       if (jobj == NULL || jobj == phantom_obj) {
2742 #ifdef ASSERT
2743         ptnode_adr(get_addp_base(n)->_idx)->dump();
2744         ptnode_adr(n->_idx)->dump();
2745         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2746 #endif
2747         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2748         return;
2749       }
2750       Node *base = get_map(jobj->idx());  // CheckCastPP node
2751       if (!split_AddP(n, base)) continue; // wrong type from dead path
2752     } else if (n->is_Phi() ||
2753                n->is_CheckCastPP() ||
2754                n->is_EncodeP() ||
2755                n->is_DecodeN() ||
2756                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
2757       if (visited.test_set(n->_idx)) {
2758         assert(n->is_Phi(), "loops only through Phi's");
2759         continue;  // already processed
2760       }
2761       JavaObjectNode* jobj = unique_java_object(n);
2762       if (jobj == NULL || jobj == phantom_obj) {
2763 #ifdef ASSERT
2764         ptnode_adr(n->_idx)->dump();
2765         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2766 #endif
2767         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2768         return;
2769       } else {
2770         Node *val = get_map(jobj->idx());   // CheckCastPP node
2771         TypeNode *tn = n->as_Type();
2772         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
2773         assert(tinst != NULL && tinst->is_known_instance() &&
2774                tinst->instance_id() == jobj->idx() , "instance type expected.");
2775 
2776         const Type *tn_type = igvn->type(tn);
2777         const TypeOopPtr *tn_t;
2778         if (tn_type->isa_narrowoop()) {
2779           tn_t = tn_type->make_ptr()->isa_oopptr();
2780         } else {
2781           tn_t = tn_type->isa_oopptr();
2782         }
2783         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
2784           if (tn_type->isa_narrowoop()) {
2785             tn_type = tinst->make_narrowoop();
2786           } else {
2787             tn_type = tinst;
2788           }
2789           igvn->hash_delete(tn);
2790           igvn->set_type(tn, tn_type);
2791           tn->set_type(tn_type);
2792           igvn->hash_insert(tn);
2793           record_for_optimizer(n);
2794         } else {
2795           assert(tn_type == TypePtr::NULL_PTR ||
2796                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
2797                  "unexpected type");
2798           continue; // Skip dead path with different type
2799         }
2800       }
2801     } else {
2802       debug_only(n->dump();)
2803       assert(false, "EA: unexpected node");
2804       continue;
2805     }
2806     // push allocation's users on appropriate worklist
2807     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2808       Node *use = n->fast_out(i);
2809       if(use->is_Mem() && use->in(MemNode::Address) == n) {
2810         // Load/store to instance's field
2811         memnode_worklist.append_if_missing(use);
2812       } else if (use->is_MemBar()) {
2813         memnode_worklist.append_if_missing(use);
2814       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
2815         Node* addp2 = find_second_addp(use, n);
2816         if (addp2 != NULL) {
2817           alloc_worklist.append_if_missing(addp2);
2818         }
2819         alloc_worklist.append_if_missing(use);
2820       } else if (use->is_Phi() ||
2821                  use->is_CheckCastPP() ||
2822                  use->is_EncodeP() ||
2823                  use->is_DecodeN() ||
2824                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
2825         alloc_worklist.append_if_missing(use);
2826 #ifdef ASSERT
2827       } else if (use->is_Mem()) {
2828         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
2829       } else if (use->is_MergeMem()) {
2830         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2831       } else if (use->is_SafePoint()) {
2832         // Look for MergeMem nodes for calls which reference unique allocation
2833         // (through CheckCastPP nodes) even for debug info.
2834         Node* m = use->in(TypeFunc::Memory);
2835         if (m->is_MergeMem()) {
2836           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2837         }
2838       } else {
2839         uint op = use->Opcode();
2840         if (!(op == Op_CmpP || op == Op_Conv2B ||
2841               op == Op_CastP2X || op == Op_StoreCM ||
2842               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
2843               op == Op_StrEquals || op == Op_StrIndexOf)) {
2844           n->dump();
2845           use->dump();
2846           assert(false, "EA: missing allocation reference path");
2847         }
2848 #endif
2849       }
2850     }
2851 
2852   }
2853   // New alias types were created in split_AddP().
2854   uint new_index_end = (uint) _compile->num_alias_types();
2855   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
2856 
2857   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2858   //            compute new values for Memory inputs  (the Memory inputs are not
2859   //            actually updated until phase 4.)
2860   if (memnode_worklist.length() == 0)
2861     return;  // nothing to do
2862   while (memnode_worklist.length() != 0) {
2863     Node *n = memnode_worklist.pop();
2864     if (visited.test_set(n->_idx))
2865       continue;
2866     if (n->is_Phi() || n->is_ClearArray()) {
2867       // we don't need to do anything, but the users must be pushed
2868     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
2869       // we don't need to do anything, but the users must be pushed
2870       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
2871       if (n == NULL)
2872         continue;
2873     } else {
2874       assert(n->is_Mem(), "memory node required.");
2875       Node *addr = n->in(MemNode::Address);
2876       const Type *addr_t = igvn->type(addr);
2877       if (addr_t == Type::TOP)
2878         continue;
2879       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
2880       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
2881       assert ((uint)alias_idx < new_index_end, "wrong alias index");
2882       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
2883       if (_compile->failing()) {
2884         return;
2885       }
2886       if (mem != n->in(MemNode::Memory)) {
2887         // We delay the memory edge update since we need old one in
2888         // MergeMem code below when instances memory slices are separated.
2889         set_map(n, mem);
2890       }
2891       if (n->is_Load()) {
2892         continue;  // don't push users
2893       } else if (n->is_LoadStore()) {
2894         // get the memory projection
2895         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2896           Node *use = n->fast_out(i);
2897           if (use->Opcode() == Op_SCMemProj) {
2898             n = use;
2899             break;
2900           }
2901         }
2902         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
2903       }
2904     }
2905     // push user on appropriate worklist
2906     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2907       Node *use = n->fast_out(i);
2908       if (use->is_Phi() || use->is_ClearArray()) {
2909         memnode_worklist.append_if_missing(use);
2910       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
2911         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
2912           continue;
2913         memnode_worklist.append_if_missing(use);
2914       } else if (use->is_MemBar()) {
2915         memnode_worklist.append_if_missing(use);
2916 #ifdef ASSERT
2917       } else if(use->is_Mem()) {
2918         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
2919       } else if (use->is_MergeMem()) {
2920         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2921       } else {
2922         uint op = use->Opcode();
2923         if (!(op == Op_StoreCM ||
2924               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
2925                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
2926               op == Op_AryEq || op == Op_StrComp ||
2927               op == Op_StrEquals || op == Op_StrIndexOf)) {
2928           n->dump();
2929           use->dump();
2930           assert(false, "EA: missing memory path");
2931         }
2932 #endif
2933       }
2934     }
2935   }
2936 
2937   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
2938   //            Walk each memory slice moving the first node encountered of each
2939   //            instance type to the the input corresponding to its alias index.
2940   uint length = _mergemem_worklist.length();
2941   for( uint next = 0; next < length; ++next ) {
2942     MergeMemNode* nmm = _mergemem_worklist.at(next);
2943     assert(!visited.test_set(nmm->_idx), "should not be visited before");
2944     // Note: we don't want to use MergeMemStream here because we only want to
2945     // scan inputs which exist at the start, not ones we add during processing.
2946     // Note 2: MergeMem may already contains instance memory slices added
2947     // during find_inst_mem() call when memory nodes were processed above.
2948     igvn->hash_delete(nmm);
2949     uint nslices = nmm->req();
2950     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
2951       Node* mem = nmm->in(i);
2952       Node* cur = NULL;
2953       if (mem == NULL || mem->is_top())
2954         continue;
2955       // First, update mergemem by moving memory nodes to corresponding slices
2956       // if their type became more precise since this mergemem was created.
2957       while (mem->is_Mem()) {
2958         const Type *at = igvn->type(mem->in(MemNode::Address));
2959         if (at != Type::TOP) {
2960           assert (at->isa_ptr() != NULL, "pointer type required.");
2961           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
2962           if (idx == i) {
2963             if (cur == NULL)
2964               cur = mem;
2965           } else {
2966             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
2967               nmm->set_memory_at(idx, mem);
2968             }
2969           }
2970         }
2971         mem = mem->in(MemNode::Memory);
2972       }
2973       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
2974       // Find any instance of the current type if we haven't encountered
2975       // already a memory slice of the instance along the memory chain.
2976       for (uint ni = new_index_start; ni < new_index_end; ni++) {
2977         if((uint)_compile->get_general_index(ni) == i) {
2978           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
2979           if (nmm->is_empty_memory(m)) {
2980             Node* result = find_inst_mem(mem, ni, orig_phis);
2981             if (_compile->failing()) {
2982               return;
2983             }
2984             nmm->set_memory_at(ni, result);
2985           }
2986         }
2987       }
2988     }
2989     // Find the rest of instances values
2990     for (uint ni = new_index_start; ni < new_index_end; ni++) {
2991       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
2992       Node* result = step_through_mergemem(nmm, ni, tinst);
2993       if (result == nmm->base_memory()) {
2994         // Didn't find instance memory, search through general slice recursively.
2995         result = nmm->memory_at(_compile->get_general_index(ni));
2996         result = find_inst_mem(result, ni, orig_phis);
2997         if (_compile->failing()) {
2998           return;
2999         }
3000         nmm->set_memory_at(ni, result);
3001       }
3002     }
3003     igvn->hash_insert(nmm);
3004     record_for_optimizer(nmm);
3005   }
3006 
3007   //  Phase 4:  Update the inputs of non-instance memory Phis and
3008   //            the Memory input of memnodes
3009   // First update the inputs of any non-instance Phi's from
3010   // which we split out an instance Phi.  Note we don't have
3011   // to recursively process Phi's encounted on the input memory
3012   // chains as is done in split_memory_phi() since they  will
3013   // also be processed here.
3014   for (int j = 0; j < orig_phis.length(); j++) {
3015     PhiNode *phi = orig_phis.at(j);
3016     int alias_idx = _compile->get_alias_index(phi->adr_type());
3017     igvn->hash_delete(phi);
3018     for (uint i = 1; i < phi->req(); i++) {
3019       Node *mem = phi->in(i);
3020       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3021       if (_compile->failing()) {
3022         return;
3023       }
3024       if (mem != new_mem) {
3025         phi->set_req(i, new_mem);
3026       }
3027     }
3028     igvn->hash_insert(phi);
3029     record_for_optimizer(phi);
3030   }
3031 
3032   // Update the memory inputs of MemNodes with the value we computed
3033   // in Phase 2 and move stores memory users to corresponding memory slices.
3034   // Disable memory split verification code until the fix for 6984348.
3035   // Currently it produces false negative results since it does not cover all cases.
3036 #if 0 // ifdef ASSERT
3037   visited.Reset();
3038   Node_Stack old_mems(arena, _compile->unique() >> 2);
3039 #endif
3040   for (uint i = 0; i < ideal_nodes.size(); i++) {
3041     Node*    n = ideal_nodes.at(i);
3042     Node* nmem = get_map(n->_idx);
3043     assert(nmem != NULL, "sanity");
3044     if (n->is_Mem()) {
3045 #if 0 // ifdef ASSERT
3046       Node* old_mem = n->in(MemNode::Memory);
3047       if (!visited.test_set(old_mem->_idx)) {
3048         old_mems.push(old_mem, old_mem->outcnt());
3049       }
3050 #endif
3051       assert(n->in(MemNode::Memory) != nmem, "sanity");
3052       if (!n->is_Load()) {
3053         // Move memory users of a store first.
3054         move_inst_mem(n, orig_phis);
3055       }
3056       // Now update memory input
3057       igvn->hash_delete(n);
3058       n->set_req(MemNode::Memory, nmem);
3059       igvn->hash_insert(n);
3060       record_for_optimizer(n);
3061     } else {
3062       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3063              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3064     }
3065   }
3066 #if 0 // ifdef ASSERT
3067   // Verify that memory was split correctly
3068   while (old_mems.is_nonempty()) {
3069     Node* old_mem = old_mems.node();
3070     uint  old_cnt = old_mems.index();
3071     old_mems.pop();
3072     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3073   }
3074 #endif
3075 }
3076 
3077 #ifndef PRODUCT
3078 static const char *node_type_names[] = {
3079   "UnknownType",
3080   "JavaObject",
3081   "LocalVar",
3082   "Field",
3083   "Arraycopy"
3084 };
3085 
3086 static const char *esc_names[] = {
3087   "UnknownEscape",
3088   "NoEscape",
3089   "ArgEscape",
3090   "GlobalEscape"
3091 };
3092 
3093 void PointsToNode::dump(bool print_state) const {
3094   NodeType nt = node_type();
3095   tty->print("%s ", node_type_names[(int) nt]);
3096   if (print_state) {
3097     EscapeState es = escape_state();
3098     EscapeState fields_es = fields_escape_state();
3099     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3100     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3101       tty->print("NSR");
3102   }
3103   if (is_Field()) {
3104     FieldNode* f = (FieldNode*)this;
3105     tty->print("(");
3106     for (BaseIterator i(f); i.has_next(); i.next()) {
3107       PointsToNode* b = i.get();
3108       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3109     }
3110     tty->print(" )");
3111   }
3112   tty->print("[");
3113   for (EdgeIterator i(this); i.has_next(); i.next()) {
3114     PointsToNode* e = i.get();
3115     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3116   }
3117   tty->print(" [");
3118   for (UseIterator i(this); i.has_next(); i.next()) {
3119     PointsToNode* u = i.get();
3120     bool is_base = false;
3121     if (PointsToNode::is_base_use(u)) {
3122       is_base = true;
3123       u = PointsToNode::get_use_node(u)->as_Field();
3124     }
3125     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3126   }
3127   tty->print(" ]]  ");
3128   if (_node == NULL)
3129     tty->print_cr("<null>");
3130   else
3131     _node->dump();
3132 }
3133 
3134 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3135   bool first = true;
3136   int ptnodes_length = ptnodes_worklist.length();
3137   for (int i = 0; i < ptnodes_length; i++) {
3138     PointsToNode *ptn = ptnodes_worklist.at(i);
3139     if (ptn == NULL || !ptn->is_JavaObject())
3140       continue;
3141     PointsToNode::EscapeState es = ptn->escape_state();
3142     if (ptn->ideal_node()->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
3143       if (first) {
3144         tty->cr();
3145         tty->print("======== Connection graph for ");
3146         _compile->method()->print_short_name();
3147         tty->cr();
3148         first = false;
3149       }
3150       ptn->dump();
3151       // Print all locals and fields which reference this allocation
3152       for (UseIterator j(ptn); j.has_next(); j.next()) {
3153         PointsToNode* use = j.get();
3154         if (use->is_LocalVar()) {
3155           use->dump(Verbose);
3156         } else if (Verbose) {
3157           use->dump();
3158         }
3159       }
3160       tty->cr();
3161     }
3162   }
3163 }
3164 #endif