1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 class AbstractLockNode;
  39 class AddNode;
  40 class AddPNode;
  41 class AliasInfo;
  42 class AllocateArrayNode;
  43 class AllocateNode;
  44 class Block;
  45 class Block_Array;
  46 class BoolNode;
  47 class BoxLockNode;
  48 class CMoveNode;
  49 class CallDynamicJavaNode;
  50 class CallJavaNode;
  51 class CallLeafNode;
  52 class CallNode;
  53 class CallRuntimeNode;
  54 class CallStaticJavaNode;
  55 class CatchNode;
  56 class CatchProjNode;
  57 class CheckCastPPNode;
  58 class ClearArrayNode;
  59 class CmpNode;
  60 class CodeBuffer;
  61 class ConstraintCastNode;
  62 class ConNode;
  63 class CountedLoopNode;
  64 class CountedLoopEndNode;
  65 class DecodeNNode;
  66 class EncodePNode;
  67 class FastLockNode;
  68 class FastUnlockNode;
  69 class IfNode;
  70 class IfFalseNode;
  71 class IfTrueNode;
  72 class InitializeNode;
  73 class JVMState;
  74 class JumpNode;
  75 class JumpProjNode;
  76 class LoadNode;
  77 class LoadStoreNode;
  78 class LockNode;
  79 class LoopNode;
  80 class MachBranchNode;
  81 class MachCallDynamicJavaNode;
  82 class MachCallJavaNode;
  83 class MachCallLeafNode;
  84 class MachCallNode;
  85 class MachCallRuntimeNode;
  86 class MachCallStaticJavaNode;
  87 class MachConstantBaseNode;
  88 class MachConstantNode;
  89 class MachGotoNode;
  90 class MachIfNode;
  91 class MachNode;
  92 class MachNullCheckNode;
  93 class MachProjNode;
  94 class MachReturnNode;
  95 class MachSafePointNode;
  96 class MachSpillCopyNode;
  97 class MachTempNode;
  98 class Matcher;
  99 class MemBarNode;
 100 class MemBarStoreStoreNode;
 101 class MemNode;
 102 class MergeMemNode;
 103 class MulNode;
 104 class MultiNode;
 105 class MultiBranchNode;
 106 class NeverBranchNode;
 107 class Node;
 108 class Node_Array;
 109 class Node_List;
 110 class Node_Stack;
 111 class NullCheckNode;
 112 class OopMap;
 113 class ParmNode;
 114 class PCTableNode;
 115 class PhaseCCP;
 116 class PhaseGVN;
 117 class PhaseIterGVN;
 118 class PhaseRegAlloc;
 119 class PhaseTransform;
 120 class PhaseValues;
 121 class PhiNode;
 122 class Pipeline;
 123 class ProjNode;
 124 class RegMask;
 125 class RegionNode;
 126 class RootNode;
 127 class SafePointNode;
 128 class SafePointScalarObjectNode;
 129 class StartNode;
 130 class State;
 131 class StoreNode;
 132 class SubNode;
 133 class Type;
 134 class TypeNode;
 135 class UnlockNode;
 136 class VectorNode;
 137 class LoadVectorNode;
 138 class StoreVectorNode;
 139 class VectorSet;
 140 typedef void (*NFunc)(Node&,void*);
 141 extern "C" {
 142   typedef int (*C_sort_func_t)(const void *, const void *);
 143 }
 144 
 145 // The type of all node counts and indexes.
 146 // It must hold at least 16 bits, but must also be fast to load and store.
 147 // This type, if less than 32 bits, could limit the number of possible nodes.
 148 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 149 typedef unsigned int node_idx_t;
 150 
 151 
 152 #ifndef OPTO_DU_ITERATOR_ASSERT
 153 #ifdef ASSERT
 154 #define OPTO_DU_ITERATOR_ASSERT 1
 155 #else
 156 #define OPTO_DU_ITERATOR_ASSERT 0
 157 #endif
 158 #endif //OPTO_DU_ITERATOR_ASSERT
 159 
 160 #if OPTO_DU_ITERATOR_ASSERT
 161 class DUIterator;
 162 class DUIterator_Fast;
 163 class DUIterator_Last;
 164 #else
 165 typedef uint   DUIterator;
 166 typedef Node** DUIterator_Fast;
 167 typedef Node** DUIterator_Last;
 168 #endif
 169 
 170 // Node Sentinel
 171 #define NodeSentinel (Node*)-1
 172 
 173 // Unknown count frequency
 174 #define COUNT_UNKNOWN (-1.0f)
 175 
 176 //------------------------------Node-------------------------------------------
 177 // Nodes define actions in the program.  They create values, which have types.
 178 // They are both vertices in a directed graph and program primitives.  Nodes
 179 // are labeled; the label is the "opcode", the primitive function in the lambda
 180 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 181 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 182 // the Node's function.  These inputs also define a Type equation for the Node.
 183 // Solving these Type equations amounts to doing dataflow analysis.
 184 // Control and data are uniformly represented in the graph.  Finally, Nodes
 185 // have a unique dense integer index which is used to index into side arrays
 186 // whenever I have phase-specific information.
 187 
 188 class Node {
 189   friend class VMStructs;
 190 
 191   // Lots of restrictions on cloning Nodes
 192   Node(const Node&);            // not defined; linker error to use these
 193   Node &operator=(const Node &rhs);
 194 
 195 public:
 196   friend class Compile;
 197   #if OPTO_DU_ITERATOR_ASSERT
 198   friend class DUIterator_Common;
 199   friend class DUIterator;
 200   friend class DUIterator_Fast;
 201   friend class DUIterator_Last;
 202   #endif
 203 
 204   // Because Nodes come and go, I define an Arena of Node structures to pull
 205   // from.  This should allow fast access to node creation & deletion.  This
 206   // field is a local cache of a value defined in some "program fragment" for
 207   // which these Nodes are just a part of.
 208 
 209   // New Operator that takes a Compile pointer, this will eventually
 210   // be the "new" New operator.
 211   inline void* operator new( size_t x, Compile* C) {
 212     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 213 #ifdef ASSERT
 214     n->_in = (Node**)n; // magic cookie for assertion check
 215 #endif
 216     n->_out = (Node**)C;
 217     return (void*)n;
 218   }
 219 
 220   // New Operator that takes a Compile pointer, this will eventually
 221   // be the "new" New operator.
 222   inline void* operator new( size_t x, Compile* C, int y) {
 223     Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
 224     n->_in = (Node**)(((char*)n) + x);
 225 #ifdef ASSERT
 226     n->_in[y-1] = n; // magic cookie for assertion check
 227 #endif
 228     n->_out = (Node**)C;
 229     return (void*)n;
 230   }
 231 
 232   // Delete is a NOP
 233   void operator delete( void *ptr ) {}
 234   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 235   void destruct();
 236 
 237   // Create a new Node.  Required is the number is of inputs required for
 238   // semantic correctness.
 239   Node( uint required );
 240 
 241   // Create a new Node with given input edges.
 242   // This version requires use of the "edge-count" new.
 243   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 244   Node( Node *n0 );
 245   Node( Node *n0, Node *n1 );
 246   Node( Node *n0, Node *n1, Node *n2 );
 247   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 248   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 249   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 250   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 251             Node *n4, Node *n5, Node *n6 );
 252 
 253   // Clone an inherited Node given only the base Node type.
 254   Node* clone() const;
 255 
 256   // Clone a Node, immediately supplying one or two new edges.
 257   // The first and second arguments, if non-null, replace in(1) and in(2),
 258   // respectively.
 259   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 260     Node* nn = clone();
 261     if (in1 != NULL)  nn->set_req(1, in1);
 262     if (in2 != NULL)  nn->set_req(2, in2);
 263     return nn;
 264   }
 265 
 266 private:
 267   // Shared setup for the above constructors.
 268   // Handles all interactions with Compile::current.
 269   // Puts initial values in all Node fields except _idx.
 270   // Returns the initial value for _idx, which cannot
 271   // be initialized by assignment.
 272   inline int Init(int req, Compile* C);
 273 
 274 //----------------- input edge handling
 275 protected:
 276   friend class PhaseCFG;        // Access to address of _in array elements
 277   Node **_in;                   // Array of use-def references to Nodes
 278   Node **_out;                  // Array of def-use references to Nodes
 279 
 280   // Input edges are split into two categories.  Required edges are required
 281   // for semantic correctness; order is important and NULLs are allowed.
 282   // Precedence edges are used to help determine execution order and are
 283   // added, e.g., for scheduling purposes.  They are unordered and not
 284   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 285   // are required, from _cnt to _max-1 are precedence edges.
 286   node_idx_t _cnt;              // Total number of required Node inputs.
 287 
 288   node_idx_t _max;              // Actual length of input array.
 289 
 290   // Output edges are an unordered list of def-use edges which exactly
 291   // correspond to required input edges which point from other nodes
 292   // to this one.  Thus the count of the output edges is the number of
 293   // users of this node.
 294   node_idx_t _outcnt;           // Total number of Node outputs.
 295 
 296   node_idx_t _outmax;           // Actual length of output array.
 297 
 298   // Grow the actual input array to the next larger power-of-2 bigger than len.
 299   void grow( uint len );
 300   // Grow the output array to the next larger power-of-2 bigger than len.
 301   void out_grow( uint len );
 302 
 303  public:
 304   // Each Node is assigned a unique small/dense number.  This number is used
 305   // to index into auxiliary arrays of data and bitvectors.
 306   // It is declared const to defend against inadvertant assignment,
 307   // since it is used by clients as a naked field.
 308   const node_idx_t _idx;
 309 
 310   // Get the (read-only) number of input edges
 311   uint req() const { return _cnt; }
 312   uint len() const { return _max; }
 313   // Get the (read-only) number of output edges
 314   uint outcnt() const { return _outcnt; }
 315 
 316 #if OPTO_DU_ITERATOR_ASSERT
 317   // Iterate over the out-edges of this node.  Deletions are illegal.
 318   inline DUIterator outs() const;
 319   // Use this when the out array might have changed to suppress asserts.
 320   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 321   // Does the node have an out at this position?  (Used for iteration.)
 322   inline bool has_out(DUIterator& i) const;
 323   inline Node*    out(DUIterator& i) const;
 324   // Iterate over the out-edges of this node.  All changes are illegal.
 325   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 326   inline Node*    fast_out(DUIterator_Fast& i) const;
 327   // Iterate over the out-edges of this node, deleting one at a time.
 328   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 329   inline Node*    last_out(DUIterator_Last& i) const;
 330   // The inline bodies of all these methods are after the iterator definitions.
 331 #else
 332   // Iterate over the out-edges of this node.  Deletions are illegal.
 333   // This iteration uses integral indexes, to decouple from array reallocations.
 334   DUIterator outs() const  { return 0; }
 335   // Use this when the out array might have changed to suppress asserts.
 336   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 337 
 338   // Reference to the i'th output Node.  Error if out of bounds.
 339   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 340   // Does the node have an out at this position?  (Used for iteration.)
 341   bool has_out(DUIterator i) const { return i < _outcnt; }
 342 
 343   // Iterate over the out-edges of this node.  All changes are illegal.
 344   // This iteration uses a pointer internal to the out array.
 345   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 346     Node** out = _out;
 347     // Assign a limit pointer to the reference argument:
 348     max = out + (ptrdiff_t)_outcnt;
 349     // Return the base pointer:
 350     return out;
 351   }
 352   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 353   // Iterate over the out-edges of this node, deleting one at a time.
 354   // This iteration uses a pointer internal to the out array.
 355   DUIterator_Last last_outs(DUIterator_Last& min) const {
 356     Node** out = _out;
 357     // Assign a limit pointer to the reference argument:
 358     min = out;
 359     // Return the pointer to the start of the iteration:
 360     return out + (ptrdiff_t)_outcnt - 1;
 361   }
 362   Node*    last_out(DUIterator_Last i) const  { return *i; }
 363 #endif
 364 
 365   // Reference to the i'th input Node.  Error if out of bounds.
 366   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
 367   // Reference to the i'th output Node.  Error if out of bounds.
 368   // Use this accessor sparingly.  We are going trying to use iterators instead.
 369   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 370   // Return the unique out edge.
 371   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 372   // Delete out edge at position 'i' by moving last out edge to position 'i'
 373   void  raw_del_out(uint i) {
 374     assert(i < _outcnt,"oob");
 375     assert(_outcnt > 0,"oob");
 376     #if OPTO_DU_ITERATOR_ASSERT
 377     // Record that a change happened here.
 378     debug_only(_last_del = _out[i]; ++_del_tick);
 379     #endif
 380     _out[i] = _out[--_outcnt];
 381     // Smash the old edge so it can't be used accidentally.
 382     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 383   }
 384 
 385 #ifdef ASSERT
 386   bool is_dead() const;
 387 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 388 #endif
 389 
 390   // Set a required input edge, also updates corresponding output edge
 391   void add_req( Node *n ); // Append a NEW required input
 392   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 393   void del_req( uint idx ); // Delete required edge & compact
 394   void ins_req( uint i, Node *n ); // Insert a NEW required input
 395   void set_req( uint i, Node *n ) {
 396     assert( is_not_dead(n), "can not use dead node");
 397     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
 398     assert( !VerifyHashTableKeys || _hash_lock == 0,
 399             "remove node from hash table before modifying it");
 400     Node** p = &_in[i];    // cache this._in, across the del_out call
 401     if (*p != NULL)  (*p)->del_out((Node *)this);
 402     (*p) = n;
 403     if (n != NULL)      n->add_out((Node *)this);
 404   }
 405   // Light version of set_req() to init inputs after node creation.
 406   void init_req( uint i, Node *n ) {
 407     assert( i == 0 && this == n ||
 408             is_not_dead(n), "can not use dead node");
 409     assert( i < _cnt, "oob");
 410     assert( !VerifyHashTableKeys || _hash_lock == 0,
 411             "remove node from hash table before modifying it");
 412     assert( _in[i] == NULL, "sanity");
 413     _in[i] = n;
 414     if (n != NULL)      n->add_out((Node *)this);
 415   }
 416   // Find first occurrence of n among my edges:
 417   int find_edge(Node* n);
 418   int replace_edge(Node* old, Node* neww);
 419   // NULL out all inputs to eliminate incoming Def-Use edges.
 420   // Return the number of edges between 'n' and 'this'
 421   int  disconnect_inputs(Node *n);
 422 
 423   // Quickly, return true if and only if I am Compile::current()->top().
 424   bool is_top() const {
 425     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 426     return (_out == NULL);
 427   }
 428   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 429   void setup_is_top();
 430 
 431   // Strip away casting.  (It is depth-limited.)
 432   Node* uncast() const;
 433   // Return whether two Nodes are equivalent, after stripping casting.
 434   bool eqv_uncast(const Node* n) const {
 435     return (this->uncast() == n->uncast());
 436   }
 437 
 438 private:
 439   static Node* uncast_helper(const Node* n);
 440 
 441   // Add an output edge to the end of the list
 442   void add_out( Node *n ) {
 443     if (is_top())  return;
 444     if( _outcnt == _outmax ) out_grow(_outcnt);
 445     _out[_outcnt++] = n;
 446   }
 447   // Delete an output edge
 448   void del_out( Node *n ) {
 449     if (is_top())  return;
 450     Node** outp = &_out[_outcnt];
 451     // Find and remove n
 452     do {
 453       assert(outp > _out, "Missing Def-Use edge");
 454     } while (*--outp != n);
 455     *outp = _out[--_outcnt];
 456     // Smash the old edge so it can't be used accidentally.
 457     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 458     // Record that a change happened here.
 459     #if OPTO_DU_ITERATOR_ASSERT
 460     debug_only(_last_del = n; ++_del_tick);
 461     #endif
 462   }
 463 
 464 public:
 465   // Globally replace this node by a given new node, updating all uses.
 466   void replace_by(Node* new_node);
 467   // Globally replace this node by a given new node, updating all uses
 468   // and cutting input edges of old node.
 469   void subsume_by(Node* new_node) {
 470     replace_by(new_node);
 471     disconnect_inputs(NULL);
 472   }
 473   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 474   // Find the one non-null required input.  RegionNode only
 475   Node *nonnull_req() const;
 476   // Add or remove precedence edges
 477   void add_prec( Node *n );
 478   void rm_prec( uint i );
 479   void set_prec( uint i, Node *n ) {
 480     assert( is_not_dead(n), "can not use dead node");
 481     assert( i >= _cnt, "not a precedence edge");
 482     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 483     _in[i] = n;
 484     if (n != NULL) n->add_out((Node *)this);
 485   }
 486   // Set this node's index, used by cisc_version to replace current node
 487   void set_idx(uint new_idx) {
 488     const node_idx_t* ref = &_idx;
 489     *(node_idx_t*)ref = new_idx;
 490   }
 491   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 492   void swap_edges(uint i1, uint i2) {
 493     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 494     // Def-Use info is unchanged
 495     Node* n1 = in(i1);
 496     Node* n2 = in(i2);
 497     _in[i1] = n2;
 498     _in[i2] = n1;
 499     // If this node is in the hash table, make sure it doesn't need a rehash.
 500     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 501   }
 502 
 503   // Iterators over input Nodes for a Node X are written as:
 504   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 505   // NOTE: Required edges can contain embedded NULL pointers.
 506 
 507 //----------------- Other Node Properties
 508 
 509   // Generate class id for some ideal nodes to avoid virtual query
 510   // methods is_<Node>().
 511   // Class id is the set of bits corresponded to the node class and all its
 512   // super classes so that queries for super classes are also valid.
 513   // Subclasses of the same super class have different assigned bit
 514   // (the third parameter in the macro DEFINE_CLASS_ID).
 515   // Classes with deeper hierarchy are declared first.
 516   // Classes with the same hierarchy depth are sorted by usage frequency.
 517   //
 518   // The query method masks the bits to cut off bits of subclasses
 519   // and then compare the result with the class id
 520   // (see the macro DEFINE_CLASS_QUERY below).
 521   //
 522   //  Class_MachCall=30, ClassMask_MachCall=31
 523   // 12               8               4               0
 524   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 525   //                                  |   |   |   |
 526   //                                  |   |   |   Bit_Mach=2
 527   //                                  |   |   Bit_MachReturn=4
 528   //                                  |   Bit_MachSafePoint=8
 529   //                                  Bit_MachCall=16
 530   //
 531   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 532   // 12               8               4               0
 533   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 534   //                              |   |   |
 535   //                              |   |   Bit_Region=8
 536   //                              |   Bit_Loop=16
 537   //                              Bit_CountedLoop=32
 538 
 539   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 540   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 541   Class_##cl = Class_##supcl + Bit_##cl , \
 542   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 543 
 544   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 545   // so that it's values fits into 16 bits.
 546   enum NodeClasses {
 547     Bit_Node   = 0x0000,
 548     Class_Node = 0x0000,
 549     ClassMask_Node = 0xFFFF,
 550 
 551     DEFINE_CLASS_ID(Multi, Node, 0)
 552       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 553         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 554           DEFINE_CLASS_ID(CallJava,         Call, 0)
 555             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 556             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 557           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 558             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 559           DEFINE_CLASS_ID(Allocate,         Call, 2)
 560             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 561           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 562             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 563             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 564       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 565         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 566           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 567           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 568         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 569           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 570         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 571       DEFINE_CLASS_ID(Start,       Multi, 2)
 572       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 573         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 574         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 575 
 576     DEFINE_CLASS_ID(Mach,  Node, 1)
 577       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 578         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 579           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 580             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 581               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 582               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 583             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 584               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 585       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 586         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 587         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 588         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 589       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 590       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 591       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 592       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 593 
 594     DEFINE_CLASS_ID(Type,  Node, 2)
 595       DEFINE_CLASS_ID(Phi,   Type, 0)
 596       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 597       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 598       DEFINE_CLASS_ID(CMove, Type, 3)
 599       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 600       DEFINE_CLASS_ID(DecodeN, Type, 5)
 601       DEFINE_CLASS_ID(EncodeP, Type, 6)
 602 
 603     DEFINE_CLASS_ID(Proj,  Node, 3)
 604       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 605       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 606       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 607       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 608       DEFINE_CLASS_ID(Parm,      Proj, 4)
 609       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 610 
 611     DEFINE_CLASS_ID(Mem,   Node, 4)
 612       DEFINE_CLASS_ID(Load,  Mem, 0)
 613         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 614       DEFINE_CLASS_ID(Store, Mem, 1)
 615         DEFINE_CLASS_ID(StoreVector, Store, 0)
 616       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 617 
 618     DEFINE_CLASS_ID(Region, Node, 5)
 619       DEFINE_CLASS_ID(Loop, Region, 0)
 620         DEFINE_CLASS_ID(Root,        Loop, 0)
 621         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 622 
 623     DEFINE_CLASS_ID(Sub,   Node, 6)
 624       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 625         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 626         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 627 
 628     DEFINE_CLASS_ID(MergeMem, Node, 7)
 629     DEFINE_CLASS_ID(Bool,     Node, 8)
 630     DEFINE_CLASS_ID(AddP,     Node, 9)
 631     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 632     DEFINE_CLASS_ID(Add,      Node, 11)
 633     DEFINE_CLASS_ID(Mul,      Node, 12)
 634     DEFINE_CLASS_ID(Vector,   Node, 13)
 635     DEFINE_CLASS_ID(ClearArray, Node, 14)
 636 
 637     _max_classes  = ClassMask_ClearArray
 638   };
 639   #undef DEFINE_CLASS_ID
 640 
 641   // Flags are sorted by usage frequency.
 642   enum NodeFlags {
 643     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
 644     Flag_rematerialize       = Flag_is_Copy << 1,
 645     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 646     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
 647     Flag_is_Con              = Flag_is_macro << 1,
 648     Flag_is_cisc_alternate   = Flag_is_Con << 1,
 649     Flag_is_dead_loop_safe   = Flag_is_cisc_alternate << 1,
 650     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
 651     Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
 652     Flag_has_call            = Flag_avoid_back_to_back << 1,
 653     _max_flags = (Flag_has_call << 1) - 1 // allow flags combination
 654   };
 655 
 656 private:
 657   jushort _class_id;
 658   jushort _flags;
 659 
 660 protected:
 661   // These methods should be called from constructors only.
 662   void init_class_id(jushort c) {
 663     assert(c <= _max_classes, "invalid node class");
 664     _class_id = c; // cast out const
 665   }
 666   void init_flags(jushort fl) {
 667     assert(fl <= _max_flags, "invalid node flag");
 668     _flags |= fl;
 669   }
 670   void clear_flag(jushort fl) {
 671     assert(fl <= _max_flags, "invalid node flag");
 672     _flags &= ~fl;
 673   }
 674 
 675 public:
 676   const jushort class_id() const { return _class_id; }
 677 
 678   const jushort flags() const { return _flags; }
 679 
 680   // Return a dense integer opcode number
 681   virtual int Opcode() const;
 682 
 683   // Virtual inherited Node size
 684   virtual uint size_of() const;
 685 
 686   // Other interesting Node properties
 687   #define DEFINE_CLASS_QUERY(type)                           \
 688   bool is_##type() const {                                   \
 689     return ((_class_id & ClassMask_##type) == Class_##type); \
 690   }                                                          \
 691   type##Node *as_##type() const {                            \
 692     assert(is_##type(), "invalid node class");               \
 693     return (type##Node*)this;                                \
 694   }                                                          \
 695   type##Node* isa_##type() const {                           \
 696     return (is_##type()) ? as_##type() : NULL;               \
 697   }
 698 
 699   DEFINE_CLASS_QUERY(AbstractLock)
 700   DEFINE_CLASS_QUERY(Add)
 701   DEFINE_CLASS_QUERY(AddP)
 702   DEFINE_CLASS_QUERY(Allocate)
 703   DEFINE_CLASS_QUERY(AllocateArray)
 704   DEFINE_CLASS_QUERY(Bool)
 705   DEFINE_CLASS_QUERY(BoxLock)
 706   DEFINE_CLASS_QUERY(Call)
 707   DEFINE_CLASS_QUERY(CallDynamicJava)
 708   DEFINE_CLASS_QUERY(CallJava)
 709   DEFINE_CLASS_QUERY(CallLeaf)
 710   DEFINE_CLASS_QUERY(CallRuntime)
 711   DEFINE_CLASS_QUERY(CallStaticJava)
 712   DEFINE_CLASS_QUERY(Catch)
 713   DEFINE_CLASS_QUERY(CatchProj)
 714   DEFINE_CLASS_QUERY(CheckCastPP)
 715   DEFINE_CLASS_QUERY(ConstraintCast)
 716   DEFINE_CLASS_QUERY(ClearArray)
 717   DEFINE_CLASS_QUERY(CMove)
 718   DEFINE_CLASS_QUERY(Cmp)
 719   DEFINE_CLASS_QUERY(CountedLoop)
 720   DEFINE_CLASS_QUERY(CountedLoopEnd)
 721   DEFINE_CLASS_QUERY(DecodeN)
 722   DEFINE_CLASS_QUERY(EncodeP)
 723   DEFINE_CLASS_QUERY(FastLock)
 724   DEFINE_CLASS_QUERY(FastUnlock)
 725   DEFINE_CLASS_QUERY(If)
 726   DEFINE_CLASS_QUERY(IfFalse)
 727   DEFINE_CLASS_QUERY(IfTrue)
 728   DEFINE_CLASS_QUERY(Initialize)
 729   DEFINE_CLASS_QUERY(Jump)
 730   DEFINE_CLASS_QUERY(JumpProj)
 731   DEFINE_CLASS_QUERY(Load)
 732   DEFINE_CLASS_QUERY(LoadStore)
 733   DEFINE_CLASS_QUERY(Lock)
 734   DEFINE_CLASS_QUERY(Loop)
 735   DEFINE_CLASS_QUERY(Mach)
 736   DEFINE_CLASS_QUERY(MachBranch)
 737   DEFINE_CLASS_QUERY(MachCall)
 738   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 739   DEFINE_CLASS_QUERY(MachCallJava)
 740   DEFINE_CLASS_QUERY(MachCallLeaf)
 741   DEFINE_CLASS_QUERY(MachCallRuntime)
 742   DEFINE_CLASS_QUERY(MachCallStaticJava)
 743   DEFINE_CLASS_QUERY(MachConstantBase)
 744   DEFINE_CLASS_QUERY(MachConstant)
 745   DEFINE_CLASS_QUERY(MachGoto)
 746   DEFINE_CLASS_QUERY(MachIf)
 747   DEFINE_CLASS_QUERY(MachNullCheck)
 748   DEFINE_CLASS_QUERY(MachProj)
 749   DEFINE_CLASS_QUERY(MachReturn)
 750   DEFINE_CLASS_QUERY(MachSafePoint)
 751   DEFINE_CLASS_QUERY(MachSpillCopy)
 752   DEFINE_CLASS_QUERY(MachTemp)
 753   DEFINE_CLASS_QUERY(Mem)
 754   DEFINE_CLASS_QUERY(MemBar)
 755   DEFINE_CLASS_QUERY(MemBarStoreStore)
 756   DEFINE_CLASS_QUERY(MergeMem)
 757   DEFINE_CLASS_QUERY(Mul)
 758   DEFINE_CLASS_QUERY(Multi)
 759   DEFINE_CLASS_QUERY(MultiBranch)
 760   DEFINE_CLASS_QUERY(Parm)
 761   DEFINE_CLASS_QUERY(PCTable)
 762   DEFINE_CLASS_QUERY(Phi)
 763   DEFINE_CLASS_QUERY(Proj)
 764   DEFINE_CLASS_QUERY(Region)
 765   DEFINE_CLASS_QUERY(Root)
 766   DEFINE_CLASS_QUERY(SafePoint)
 767   DEFINE_CLASS_QUERY(SafePointScalarObject)
 768   DEFINE_CLASS_QUERY(Start)
 769   DEFINE_CLASS_QUERY(Store)
 770   DEFINE_CLASS_QUERY(Sub)
 771   DEFINE_CLASS_QUERY(Type)
 772   DEFINE_CLASS_QUERY(Vector)
 773   DEFINE_CLASS_QUERY(LoadVector)
 774   DEFINE_CLASS_QUERY(StoreVector)
 775   DEFINE_CLASS_QUERY(Unlock)
 776 
 777   #undef DEFINE_CLASS_QUERY
 778 
 779   // duplicate of is_MachSpillCopy()
 780   bool is_SpillCopy () const {
 781     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 782   }
 783 
 784   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 785   // The data node which is safe to leave in dead loop during IGVN optimization.
 786   bool is_dead_loop_safe() const {
 787     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 788            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 789             (!is_Proj() || !in(0)->is_Allocate()));
 790   }
 791 
 792   // is_Copy() returns copied edge index (0 or 1)
 793   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 794 
 795   virtual bool is_CFG() const { return false; }
 796 
 797   // If this node is control-dependent on a test, can it be
 798   // rerouted to a dominating equivalent test?  This is usually
 799   // true of non-CFG nodes, but can be false for operations which
 800   // depend for their correct sequencing on more than one test.
 801   // (In that case, hoisting to a dominating test may silently
 802   // skip some other important test.)
 803   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 804 
 805   // When building basic blocks, I need to have a notion of block beginning
 806   // Nodes, next block selector Nodes (block enders), and next block
 807   // projections.  These calls need to work on their machine equivalents.  The
 808   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 809   bool is_block_start() const {
 810     if ( is_Region() )
 811       return this == (const Node*)in(0);
 812     else
 813       return is_Start();
 814   }
 815 
 816   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 817   // Goto and Return.  This call also returns the block ending Node.
 818   virtual const Node *is_block_proj() const;
 819 
 820   // The node is a "macro" node which needs to be expanded before matching
 821   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 822 
 823 //----------------- Optimization
 824 
 825   // Get the worst-case Type output for this Node.
 826   virtual const class Type *bottom_type() const;
 827 
 828   // If we find a better type for a node, try to record it permanently.
 829   // Return true if this node actually changed.
 830   // Be sure to do the hash_delete game in the "rehash" variant.
 831   void raise_bottom_type(const Type* new_type);
 832 
 833   // Get the address type with which this node uses and/or defs memory,
 834   // or NULL if none.  The address type is conservatively wide.
 835   // Returns non-null for calls, membars, loads, stores, etc.
 836   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 837   virtual const class TypePtr *adr_type() const { return NULL; }
 838 
 839   // Return an existing node which computes the same function as this node.
 840   // The optimistic combined algorithm requires this to return a Node which
 841   // is a small number of steps away (e.g., one of my inputs).
 842   virtual Node *Identity( PhaseTransform *phase );
 843 
 844   // Return the set of values this Node can take on at runtime.
 845   virtual const Type *Value( PhaseTransform *phase ) const;
 846 
 847   // Return a node which is more "ideal" than the current node.
 848   // The invariants on this call are subtle.  If in doubt, read the
 849   // treatise in node.cpp above the default implemention AND TEST WITH
 850   // +VerifyIterativeGVN!
 851   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 852 
 853   // Some nodes have specific Ideal subgraph transformations only if they are
 854   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 855   // for the transformations to happen.
 856   bool has_special_unique_user() const;
 857 
 858   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 859   Node* find_exact_control(Node* ctrl);
 860 
 861   // Check if 'this' node dominates or equal to 'sub'.
 862   bool dominates(Node* sub, Node_List &nlist);
 863 
 864 protected:
 865   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 866 public:
 867 
 868   // Idealize graph, using DU info.  Done after constant propagation
 869   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
 870 
 871   // See if there is valid pipeline info
 872   static  const Pipeline *pipeline_class();
 873   virtual const Pipeline *pipeline() const;
 874 
 875   // Compute the latency from the def to this instruction of the ith input node
 876   uint latency(uint i);
 877 
 878   // Hash & compare functions, for pessimistic value numbering
 879 
 880   // If the hash function returns the special sentinel value NO_HASH,
 881   // the node is guaranteed never to compare equal to any other node.
 882   // If we accidentally generate a hash with value NO_HASH the node
 883   // won't go into the table and we'll lose a little optimization.
 884   enum { NO_HASH = 0 };
 885   virtual uint hash() const;
 886   virtual uint cmp( const Node &n ) const;
 887 
 888   // Operation appears to be iteratively computed (such as an induction variable)
 889   // It is possible for this operation to return false for a loop-varying
 890   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 891   bool is_iteratively_computed();
 892 
 893   // Determine if a node is Counted loop induction variable.
 894   // The method is defined in loopnode.cpp.
 895   const Node* is_loop_iv() const;
 896 
 897   // Return a node with opcode "opc" and same inputs as "this" if one can
 898   // be found; Otherwise return NULL;
 899   Node* find_similar(int opc);
 900 
 901   // Return the unique control out if only one. Null if none or more than one.
 902   Node* unique_ctrl_out();
 903 
 904 //----------------- Code Generation
 905 
 906   // Ideal register class for Matching.  Zero means unmatched instruction
 907   // (these are cloned instead of converted to machine nodes).
 908   virtual uint ideal_reg() const;
 909 
 910   static const uint NotAMachineReg;   // must be > max. machine register
 911 
 912   // Do we Match on this edge index or not?  Generally false for Control
 913   // and true for everything else.  Weird for calls & returns.
 914   virtual uint match_edge(uint idx) const;
 915 
 916   // Register class output is returned in
 917   virtual const RegMask &out_RegMask() const;
 918   // Register class input is expected in
 919   virtual const RegMask &in_RegMask(uint) const;
 920   // Should we clone rather than spill this instruction?
 921   bool rematerialize() const;
 922 
 923   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 924   virtual JVMState* jvms() const;
 925 
 926   // Print as assembly
 927   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 928   // Emit bytes starting at parameter 'ptr'
 929   // Bump 'ptr' by the number of output bytes
 930   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 931   // Size of instruction in bytes
 932   virtual uint size(PhaseRegAlloc *ra_) const;
 933 
 934   // Convenience function to extract an integer constant from a node.
 935   // If it is not an integer constant (either Con, CastII, or Mach),
 936   // return value_if_unknown.
 937   jint find_int_con(jint value_if_unknown) const {
 938     const TypeInt* t = find_int_type();
 939     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 940   }
 941   // Return the constant, knowing it is an integer constant already
 942   jint get_int() const {
 943     const TypeInt* t = find_int_type();
 944     guarantee(t != NULL, "must be con");
 945     return t->get_con();
 946   }
 947   // Here's where the work is done.  Can produce non-constant int types too.
 948   const TypeInt* find_int_type() const;
 949 
 950   // Same thing for long (and intptr_t, via type.hpp):
 951   jlong get_long() const {
 952     const TypeLong* t = find_long_type();
 953     guarantee(t != NULL, "must be con");
 954     return t->get_con();
 955   }
 956   jlong find_long_con(jint value_if_unknown) const {
 957     const TypeLong* t = find_long_type();
 958     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 959   }
 960   const TypeLong* find_long_type() const;
 961 
 962   // These guys are called by code generated by ADLC:
 963   intptr_t get_ptr() const;
 964   intptr_t get_narrowcon() const;
 965   jdouble getd() const;
 966   jfloat getf() const;
 967 
 968   // Nodes which are pinned into basic blocks
 969   virtual bool pinned() const { return false; }
 970 
 971   // Nodes which use memory without consuming it, hence need antidependences
 972   // More specifically, needs_anti_dependence_check returns true iff the node
 973   // (a) does a load, and (b) does not perform a store (except perhaps to a
 974   // stack slot or some other unaliased location).
 975   bool needs_anti_dependence_check() const;
 976 
 977   // Return which operand this instruction may cisc-spill. In other words,
 978   // return operand position that can convert from reg to memory access
 979   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
 980   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
 981 
 982 //----------------- Graph walking
 983 public:
 984   // Walk and apply member functions recursively.
 985   // Supplied (this) pointer is root.
 986   void walk(NFunc pre, NFunc post, void *env);
 987   static void nop(Node &, void*); // Dummy empty function
 988   static void packregion( Node &n, void* );
 989 private:
 990   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
 991 
 992 //----------------- Printing, etc
 993 public:
 994 #ifndef PRODUCT
 995   Node* find(int idx) const;         // Search the graph for the given idx.
 996   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
 997   void dump() const;                 // Print this node,
 998   void dump(int depth) const;        // Print this node, recursively to depth d
 999   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1000   virtual void dump_req() const;     // Print required-edge info
1001   virtual void dump_prec() const;    // Print precedence-edge info
1002   virtual void dump_out() const;     // Print the output edge info
1003   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1004   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1005   void verify() const;               // Check Def-Use info for my subgraph
1006   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1007 
1008   // This call defines a class-unique string used to identify class instances
1009   virtual const char *Name() const;
1010 
1011   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1012   // RegMask Print Functions
1013   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1014   void dump_out_regmask() { out_RegMask().dump(); }
1015   static int _in_dump_cnt;
1016   static bool in_dump() { return _in_dump_cnt > 0; }
1017   void fast_dump() const {
1018     tty->print("%4d: %-17s", _idx, Name());
1019     for (uint i = 0; i < len(); i++)
1020       if (in(i))
1021         tty->print(" %4d", in(i)->_idx);
1022       else
1023         tty->print(" NULL");
1024     tty->print("\n");
1025   }
1026 #endif
1027 #ifdef ASSERT
1028   void verify_construction();
1029   bool verify_jvms(const JVMState* jvms) const;
1030   int  _debug_idx;                     // Unique value assigned to every node.
1031   int   debug_idx() const              { return _debug_idx; }
1032   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1033 
1034   Node* _debug_orig;                   // Original version of this, if any.
1035   Node*  debug_orig() const            { return _debug_orig; }
1036   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1037 
1038   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1039   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1040   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1041 
1042   static void init_NodeProperty();
1043 
1044   #if OPTO_DU_ITERATOR_ASSERT
1045   const Node* _last_del;               // The last deleted node.
1046   uint        _del_tick;               // Bumped when a deletion happens..
1047   #endif
1048 #endif
1049 };
1050 
1051 //-----------------------------------------------------------------------------
1052 // Iterators over DU info, and associated Node functions.
1053 
1054 #if OPTO_DU_ITERATOR_ASSERT
1055 
1056 // Common code for assertion checking on DU iterators.
1057 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1058 #ifdef ASSERT
1059  protected:
1060   bool         _vdui;               // cached value of VerifyDUIterators
1061   const Node*  _node;               // the node containing the _out array
1062   uint         _outcnt;             // cached node->_outcnt
1063   uint         _del_tick;           // cached node->_del_tick
1064   Node*        _last;               // last value produced by the iterator
1065 
1066   void sample(const Node* node);    // used by c'tor to set up for verifies
1067   void verify(const Node* node, bool at_end_ok = false);
1068   void verify_resync();
1069   void reset(const DUIterator_Common& that);
1070 
1071 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1072   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1073 #else
1074   #define I_VDUI_ONLY(i,x) { }
1075 #endif //ASSERT
1076 };
1077 
1078 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1079 
1080 // Default DU iterator.  Allows appends onto the out array.
1081 // Allows deletion from the out array only at the current point.
1082 // Usage:
1083 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1084 //    Node* y = x->out(i);
1085 //    ...
1086 //  }
1087 // Compiles in product mode to a unsigned integer index, which indexes
1088 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1089 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1090 // before continuing the loop.  You must delete only the last-produced
1091 // edge.  You must delete only a single copy of the last-produced edge,
1092 // or else you must delete all copies at once (the first time the edge
1093 // is produced by the iterator).
1094 class DUIterator : public DUIterator_Common {
1095   friend class Node;
1096 
1097   // This is the index which provides the product-mode behavior.
1098   // Whatever the product-mode version of the system does to the
1099   // DUI index is done to this index.  All other fields in
1100   // this class are used only for assertion checking.
1101   uint         _idx;
1102 
1103   #ifdef ASSERT
1104   uint         _refresh_tick;    // Records the refresh activity.
1105 
1106   void sample(const Node* node); // Initialize _refresh_tick etc.
1107   void verify(const Node* node, bool at_end_ok = false);
1108   void verify_increment();       // Verify an increment operation.
1109   void verify_resync();          // Verify that we can back up over a deletion.
1110   void verify_finish();          // Verify that the loop terminated properly.
1111   void refresh();                // Resample verification info.
1112   void reset(const DUIterator& that);  // Resample after assignment.
1113   #endif
1114 
1115   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1116     { _idx = 0;                         debug_only(sample(node)); }
1117 
1118  public:
1119   // initialize to garbage; clear _vdui to disable asserts
1120   DUIterator()
1121     { /*initialize to garbage*/         debug_only(_vdui = false); }
1122 
1123   void operator++(int dummy_to_specify_postfix_op)
1124     { _idx++;                           VDUI_ONLY(verify_increment()); }
1125 
1126   void operator--()
1127     { VDUI_ONLY(verify_resync());       --_idx; }
1128 
1129   ~DUIterator()
1130     { VDUI_ONLY(verify_finish()); }
1131 
1132   void operator=(const DUIterator& that)
1133     { _idx = that._idx;                 debug_only(reset(that)); }
1134 };
1135 
1136 DUIterator Node::outs() const
1137   { return DUIterator(this, 0); }
1138 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1139   { I_VDUI_ONLY(i, i.refresh());        return i; }
1140 bool Node::has_out(DUIterator& i) const
1141   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1142 Node*    Node::out(DUIterator& i) const
1143   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1144 
1145 
1146 // Faster DU iterator.  Disallows insertions into the out array.
1147 // Allows deletion from the out array only at the current point.
1148 // Usage:
1149 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1150 //    Node* y = x->fast_out(i);
1151 //    ...
1152 //  }
1153 // Compiles in product mode to raw Node** pointer arithmetic, with
1154 // no reloading of pointers from the original node x.  If you delete,
1155 // you must perform "--i; --imax" just before continuing the loop.
1156 // If you delete multiple copies of the same edge, you must decrement
1157 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1158 class DUIterator_Fast : public DUIterator_Common {
1159   friend class Node;
1160   friend class DUIterator_Last;
1161 
1162   // This is the pointer which provides the product-mode behavior.
1163   // Whatever the product-mode version of the system does to the
1164   // DUI pointer is done to this pointer.  All other fields in
1165   // this class are used only for assertion checking.
1166   Node**       _outp;
1167 
1168   #ifdef ASSERT
1169   void verify(const Node* node, bool at_end_ok = false);
1170   void verify_limit();
1171   void verify_resync();
1172   void verify_relimit(uint n);
1173   void reset(const DUIterator_Fast& that);
1174   #endif
1175 
1176   // Note:  offset must be signed, since -1 is sometimes passed
1177   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1178     { _outp = node->_out + offset;      debug_only(sample(node)); }
1179 
1180  public:
1181   // initialize to garbage; clear _vdui to disable asserts
1182   DUIterator_Fast()
1183     { /*initialize to garbage*/         debug_only(_vdui = false); }
1184 
1185   void operator++(int dummy_to_specify_postfix_op)
1186     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1187 
1188   void operator--()
1189     { VDUI_ONLY(verify_resync());       --_outp; }
1190 
1191   void operator-=(uint n)   // applied to the limit only
1192     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1193 
1194   bool operator<(DUIterator_Fast& limit) {
1195     I_VDUI_ONLY(*this, this->verify(_node, true));
1196     I_VDUI_ONLY(limit, limit.verify_limit());
1197     return _outp < limit._outp;
1198   }
1199 
1200   void operator=(const DUIterator_Fast& that)
1201     { _outp = that._outp;               debug_only(reset(that)); }
1202 };
1203 
1204 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1205   // Assign a limit pointer to the reference argument:
1206   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1207   // Return the base pointer:
1208   return DUIterator_Fast(this, 0);
1209 }
1210 Node* Node::fast_out(DUIterator_Fast& i) const {
1211   I_VDUI_ONLY(i, i.verify(this));
1212   return debug_only(i._last=) *i._outp;
1213 }
1214 
1215 
1216 // Faster DU iterator.  Requires each successive edge to be removed.
1217 // Does not allow insertion of any edges.
1218 // Usage:
1219 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1220 //    Node* y = x->last_out(i);
1221 //    ...
1222 //  }
1223 // Compiles in product mode to raw Node** pointer arithmetic, with
1224 // no reloading of pointers from the original node x.
1225 class DUIterator_Last : private DUIterator_Fast {
1226   friend class Node;
1227 
1228   #ifdef ASSERT
1229   void verify(const Node* node, bool at_end_ok = false);
1230   void verify_limit();
1231   void verify_step(uint num_edges);
1232   #endif
1233 
1234   // Note:  offset must be signed, since -1 is sometimes passed
1235   DUIterator_Last(const Node* node, ptrdiff_t offset)
1236     : DUIterator_Fast(node, offset) { }
1237 
1238   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1239   void operator<(int)                              {} // do not use
1240 
1241  public:
1242   DUIterator_Last() { }
1243   // initialize to garbage
1244 
1245   void operator--()
1246     { _outp--;              VDUI_ONLY(verify_step(1));  }
1247 
1248   void operator-=(uint n)
1249     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1250 
1251   bool operator>=(DUIterator_Last& limit) {
1252     I_VDUI_ONLY(*this, this->verify(_node, true));
1253     I_VDUI_ONLY(limit, limit.verify_limit());
1254     return _outp >= limit._outp;
1255   }
1256 
1257   void operator=(const DUIterator_Last& that)
1258     { DUIterator_Fast::operator=(that); }
1259 };
1260 
1261 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1262   // Assign a limit pointer to the reference argument:
1263   imin = DUIterator_Last(this, 0);
1264   // Return the initial pointer:
1265   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1266 }
1267 Node* Node::last_out(DUIterator_Last& i) const {
1268   I_VDUI_ONLY(i, i.verify(this));
1269   return debug_only(i._last=) *i._outp;
1270 }
1271 
1272 #endif //OPTO_DU_ITERATOR_ASSERT
1273 
1274 #undef I_VDUI_ONLY
1275 #undef VDUI_ONLY
1276 
1277 // An Iterator that truly follows the iterator pattern.  Doesn't
1278 // support deletion but could be made to.
1279 //
1280 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1281 //     Node* m = i.get();
1282 //
1283 class SimpleDUIterator : public StackObj {
1284  private:
1285   Node* node;
1286   DUIterator_Fast i;
1287   DUIterator_Fast imax;
1288  public:
1289   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1290   bool has_next() { return i < imax; }
1291   void next() { i++; }
1292   Node* get() { return node->fast_out(i); }
1293 };
1294 
1295 
1296 //-----------------------------------------------------------------------------
1297 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1298 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1299 // Note that the constructor just zeros things, and since I use Arena
1300 // allocation I do not need a destructor to reclaim storage.
1301 class Node_Array : public ResourceObj {
1302   friend class VMStructs;
1303 protected:
1304   Arena *_a;                    // Arena to allocate in
1305   uint   _max;
1306   Node **_nodes;
1307   void   grow( uint i );        // Grow array node to fit
1308 public:
1309   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1310     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1311     for( int i = 0; i < OptoNodeListSize; i++ ) {
1312       _nodes[i] = NULL;
1313     }
1314   }
1315 
1316   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1317   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1318   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1319   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1320   Node **adr() { return _nodes; }
1321   // Extend the mapping: index i maps to Node *n.
1322   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1323   void insert( uint i, Node *n );
1324   void remove( uint i );        // Remove, preserving order
1325   void sort( C_sort_func_t func);
1326   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1327   void clear();                 // Set all entries to NULL, keep storage
1328   uint Size() const { return _max; }
1329   void dump() const;
1330 };
1331 
1332 class Node_List : public Node_Array {
1333   friend class VMStructs;
1334   uint _cnt;
1335 public:
1336   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1337   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1338   bool contains(Node* n) {
1339     for (uint e = 0; e < size(); e++) {
1340       if (at(e) == n) return true;
1341     }
1342     return false;
1343   }
1344   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1345   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1346   void push( Node *b ) { map(_cnt++,b); }
1347   void yank( Node *n );         // Find and remove
1348   Node *pop() { return _nodes[--_cnt]; }
1349   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1350   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1351   uint size() const { return _cnt; }
1352   void dump() const;
1353 };
1354 
1355 //------------------------------Unique_Node_List-------------------------------
1356 class Unique_Node_List : public Node_List {
1357   friend class VMStructs;
1358   VectorSet _in_worklist;
1359   uint _clock_index;            // Index in list where to pop from next
1360 public:
1361   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1362   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1363 
1364   void remove( Node *n );
1365   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1366   VectorSet &member_set(){ return _in_worklist; }
1367 
1368   void push( Node *b ) {
1369     if( !_in_worklist.test_set(b->_idx) )
1370       Node_List::push(b);
1371   }
1372   Node *pop() {
1373     if( _clock_index >= size() ) _clock_index = 0;
1374     Node *b = at(_clock_index);
1375     map( _clock_index, Node_List::pop());
1376     if (size() != 0) _clock_index++; // Always start from 0
1377     _in_worklist >>= b->_idx;
1378     return b;
1379   }
1380   Node *remove( uint i ) {
1381     Node *b = Node_List::at(i);
1382     _in_worklist >>= b->_idx;
1383     map(i,Node_List::pop());
1384     return b;
1385   }
1386   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1387   void  clear() {
1388     _in_worklist.Clear();        // Discards storage but grows automatically
1389     Node_List::clear();
1390     _clock_index = 0;
1391   }
1392 
1393   // Used after parsing to remove useless nodes before Iterative GVN
1394   void remove_useless_nodes(VectorSet &useful);
1395 
1396 #ifndef PRODUCT
1397   void print_set() const { _in_worklist.print(); }
1398 #endif
1399 };
1400 
1401 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1402 inline void Compile::record_for_igvn(Node* n) {
1403   _for_igvn->push(n);
1404 }
1405 
1406 //------------------------------Node_Stack-------------------------------------
1407 class Node_Stack {
1408   friend class VMStructs;
1409 protected:
1410   struct INode {
1411     Node *node; // Processed node
1412     uint  indx; // Index of next node's child
1413   };
1414   INode *_inode_top; // tos, stack grows up
1415   INode *_inode_max; // End of _inodes == _inodes + _max
1416   INode *_inodes;    // Array storage for the stack
1417   Arena *_a;         // Arena to allocate in
1418   void grow();
1419 public:
1420   Node_Stack(int size) {
1421     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1422     _a = Thread::current()->resource_area();
1423     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1424     _inode_max = _inodes + max;
1425     _inode_top = _inodes - 1; // stack is empty
1426   }
1427 
1428   Node_Stack(Arena *a, int size) : _a(a) {
1429     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1430     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1431     _inode_max = _inodes + max;
1432     _inode_top = _inodes - 1; // stack is empty
1433   }
1434 
1435   void pop() {
1436     assert(_inode_top >= _inodes, "node stack underflow");
1437     --_inode_top;
1438   }
1439   void push(Node *n, uint i) {
1440     ++_inode_top;
1441     if (_inode_top >= _inode_max) grow();
1442     INode *top = _inode_top; // optimization
1443     top->node = n;
1444     top->indx = i;
1445   }
1446   Node *node() const {
1447     return _inode_top->node;
1448   }
1449   Node* node_at(uint i) const {
1450     assert(_inodes + i <= _inode_top, "in range");
1451     return _inodes[i].node;
1452   }
1453   uint index() const {
1454     return _inode_top->indx;
1455   }
1456   uint index_at(uint i) const {
1457     assert(_inodes + i <= _inode_top, "in range");
1458     return _inodes[i].indx;
1459   }
1460   void set_node(Node *n) {
1461     _inode_top->node = n;
1462   }
1463   void set_index(uint i) {
1464     _inode_top->indx = i;
1465   }
1466   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1467   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1468   bool is_nonempty() const { return (_inode_top >= _inodes); }
1469   bool is_empty() const { return (_inode_top < _inodes); }
1470   void clear() { _inode_top = _inodes - 1; } // retain storage
1471 
1472   // Node_Stack is used to map nodes.
1473   Node* find(uint idx) const;
1474 };
1475 
1476 
1477 //-----------------------------Node_Notes--------------------------------------
1478 // Debugging or profiling annotations loosely and sparsely associated
1479 // with some nodes.  See Compile::node_notes_at for the accessor.
1480 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1481   friend class VMStructs;
1482   JVMState* _jvms;
1483 
1484 public:
1485   Node_Notes(JVMState* jvms = NULL) {
1486     _jvms = jvms;
1487   }
1488 
1489   JVMState* jvms()            { return _jvms; }
1490   void  set_jvms(JVMState* x) {        _jvms = x; }
1491 
1492   // True if there is nothing here.
1493   bool is_clear() {
1494     return (_jvms == NULL);
1495   }
1496 
1497   // Make there be nothing here.
1498   void clear() {
1499     _jvms = NULL;
1500   }
1501 
1502   // Make a new, clean node notes.
1503   static Node_Notes* make(Compile* C) {
1504     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1505     nn->clear();
1506     return nn;
1507   }
1508 
1509   Node_Notes* clone(Compile* C) {
1510     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1511     (*nn) = (*this);
1512     return nn;
1513   }
1514 
1515   // Absorb any information from source.
1516   bool update_from(Node_Notes* source) {
1517     bool changed = false;
1518     if (source != NULL) {
1519       if (source->jvms() != NULL) {
1520         set_jvms(source->jvms());
1521         changed = true;
1522       }
1523     }
1524     return changed;
1525   }
1526 };
1527 
1528 // Inlined accessors for Compile::node_nodes that require the preceding class:
1529 inline Node_Notes*
1530 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1531                            int idx, bool can_grow) {
1532   assert(idx >= 0, "oob");
1533   int block_idx = (idx >> _log2_node_notes_block_size);
1534   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1535   if (grow_by >= 0) {
1536     if (!can_grow)  return NULL;
1537     grow_node_notes(arr, grow_by + 1);
1538   }
1539   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1540   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1541 }
1542 
1543 inline bool
1544 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1545   if (value == NULL || value->is_clear())
1546     return false;  // nothing to write => write nothing
1547   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1548   assert(loc != NULL, "");
1549   return loc->update_from(value);
1550 }
1551 
1552 
1553 //------------------------------TypeNode---------------------------------------
1554 // Node with a Type constant.
1555 class TypeNode : public Node {
1556 protected:
1557   virtual uint hash() const;    // Check the type
1558   virtual uint cmp( const Node &n ) const;
1559   virtual uint size_of() const; // Size is bigger
1560   const Type* const _type;
1561 public:
1562   void set_type(const Type* t) {
1563     assert(t != NULL, "sanity");
1564     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1565     *(const Type**)&_type = t;   // cast away const-ness
1566     // If this node is in the hash table, make sure it doesn't need a rehash.
1567     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1568   }
1569   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1570   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1571     init_class_id(Class_Type);
1572   }
1573   virtual const Type *Value( PhaseTransform *phase ) const;
1574   virtual const Type *bottom_type() const;
1575   virtual       uint  ideal_reg() const;
1576 #ifndef PRODUCT
1577   virtual void dump_spec(outputStream *st) const;
1578 #endif
1579 };
1580 
1581 #endif // SHARE_VM_OPTO_NODE_HPP