1 //
   2 // Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 extern bool use_block_zeroing(Node* count);
 464 
 465 // Macros to extract hi & lo halves from a long pair.
 466 // G0 is not part of any long pair, so assert on that.
 467 // Prevents accidentally using G1 instead of G0.
 468 #define LONG_HI_REG(x) (x)
 469 #define LONG_LO_REG(x) (x)
 470 
 471 %}
 472 
 473 source %{
 474 #define __ _masm.
 475 
 476 // tertiary op of a LoadP or StoreP encoding
 477 #define REGP_OP true
 478 
 479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 481 static Register reg_to_register_object(int register_encoding);
 482 
 483 // Used by the DFA in dfa_sparc.cpp.
 484 // Check for being able to use a V9 branch-on-register.  Requires a
 485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 486 // extended.  Doesn't work following an integer ADD, for example, because of
 487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 489 // replace them with zero, which could become sign-extension in a different OS
 490 // release.  There's no obvious reason why an interrupt will ever fill these
 491 // bits with non-zero junk (the registers are reloaded with standard LD
 492 // instructions which either zero-fill or sign-fill).
 493 bool can_branch_register( Node *bol, Node *cmp ) {
 494   if( !BranchOnRegister ) return false;
 495 #ifdef _LP64
 496   if( cmp->Opcode() == Op_CmpP )
 497     return true;  // No problems with pointer compares
 498 #endif
 499   if( cmp->Opcode() == Op_CmpL )
 500     return true;  // No problems with long compares
 501 
 502   if( !SparcV9RegsHiBitsZero ) return false;
 503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 504       bol->as_Bool()->_test._test != BoolTest::eq )
 505      return false;
 506 
 507   // Check for comparing against a 'safe' value.  Any operation which
 508   // clears out the high word is safe.  Thus, loads and certain shifts
 509   // are safe, as are non-negative constants.  Any operation which
 510   // preserves zero bits in the high word is safe as long as each of its
 511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 512   // inputs are safe.  At present, the only important case to recognize
 513   // seems to be loads.  Constants should fold away, and shifts &
 514   // logicals can use the 'cc' forms.
 515   Node *x = cmp->in(1);
 516   if( x->is_Load() ) return true;
 517   if( x->is_Phi() ) {
 518     for( uint i = 1; i < x->req(); i++ )
 519       if( !x->in(i)->is_Load() )
 520         return false;
 521     return true;
 522   }
 523   return false;
 524 }
 525 
 526 bool use_block_zeroing(Node* count) {
 527   // Use BIS for zeroing if count is not constant
 528   // or it is >= BlockZeroingLowLimit.
 529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 530 }
 531 
 532 // ****************************************************************************
 533 
 534 // REQUIRED FUNCTIONALITY
 535 
 536 // !!!!! Special hack to get all type of calls to specify the byte offset
 537 //       from the start of the call to the point where the return address
 538 //       will point.
 539 //       The "return address" is the address of the call instruction, plus 8.
 540 
 541 int MachCallStaticJavaNode::ret_addr_offset() {
 542   int offset = NativeCall::instruction_size;  // call; delay slot
 543   if (_method_handle_invoke)
 544     offset += 4;  // restore SP
 545   return offset;
 546 }
 547 
 548 int MachCallDynamicJavaNode::ret_addr_offset() {
 549   int vtable_index = this->_vtable_index;
 550   if (vtable_index < 0) {
 551     // must be invalid_vtable_index, not nonvirtual_vtable_index
 552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 553     return (NativeMovConstReg::instruction_size +
 554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 555   } else {
 556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 559     int klass_load_size;
 560     if (UseCompressedOops && UseCompressedKlassPointers) {
 561       assert(Universe::heap() != NULL, "java heap should be initialized");
 562       if (Universe::narrow_oop_base() == NULL)
 563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 564       else
 565         klass_load_size = 3*BytesPerInstWord;
 566     } else {
 567       klass_load_size = 1*BytesPerInstWord;
 568     }
 569     if (Assembler::is_simm13(v_off)) {
 570       return klass_load_size +
 571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 572              NativeCall::instruction_size);  // call; delay slot
 573     } else {
 574       return klass_load_size +
 575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 576              NativeCall::instruction_size);  // call; delay slot
 577     }
 578   }
 579 }
 580 
 581 int MachCallRuntimeNode::ret_addr_offset() {
 582 #ifdef _LP64
 583   if (MacroAssembler::is_far_target(entry_point())) {
 584     return NativeFarCall::instruction_size;
 585   } else {
 586     return NativeCall::instruction_size;
 587   }
 588 #else
 589   return NativeCall::instruction_size;  // call; delay slot
 590 #endif
 591 }
 592 
 593 // Indicate if the safepoint node needs the polling page as an input.
 594 // Since Sparc does not have absolute addressing, it does.
 595 bool SafePointNode::needs_polling_address_input() {
 596   return true;
 597 }
 598 
 599 // emit an interrupt that is caught by the debugger (for debugging compiler)
 600 void emit_break(CodeBuffer &cbuf) {
 601   MacroAssembler _masm(&cbuf);
 602   __ breakpoint_trap();
 603 }
 604 
 605 #ifndef PRODUCT
 606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 607   st->print("TA");
 608 }
 609 #endif
 610 
 611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 612   emit_break(cbuf);
 613 }
 614 
 615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 616   return MachNode::size(ra_);
 617 }
 618 
 619 // Traceable jump
 620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 621   MacroAssembler _masm(&cbuf);
 622   Register rdest = reg_to_register_object(jump_target);
 623   __ JMP(rdest, 0);
 624   __ delayed()->nop();
 625 }
 626 
 627 // Traceable jump and set exception pc
 628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 629   MacroAssembler _masm(&cbuf);
 630   Register rdest = reg_to_register_object(jump_target);
 631   __ JMP(rdest, 0);
 632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 633 }
 634 
 635 void emit_nop(CodeBuffer &cbuf) {
 636   MacroAssembler _masm(&cbuf);
 637   __ nop();
 638 }
 639 
 640 void emit_illtrap(CodeBuffer &cbuf) {
 641   MacroAssembler _masm(&cbuf);
 642   __ illtrap(0);
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 651   const Node* addr = n->get_base_and_disp(offset, adr_type);
 652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 655   atype = atype->add_offset(offset);
 656   assert(disp32 == offset, "wrong disp32");
 657   return atype->_offset;
 658 }
 659 
 660 
 661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 662   assert(n->rule() != loadUB_rule, "");
 663 
 664   intptr_t offset = 0;
 665   Node* addr = n->in(2);
 666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 668     Node* a = addr->in(2/*AddPNode::Address*/);
 669     Node* o = addr->in(3/*AddPNode::Offset*/);
 670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 672     assert(atype->isa_oop_ptr(), "still an oop");
 673   }
 674   offset = atype->is_ptr()->_offset;
 675   if (offset != Type::OffsetBot)  offset += disp32;
 676   return offset;
 677 }
 678 
 679 static inline jdouble replicate_immI(int con, int count, int width) {
 680   // Load a constant replicated "count" times with width "width"
 681   assert(count*width == 8 && width <= 4, "sanity");
 682   int bit_width = width * 8;
 683   jlong val = con;
 684   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 685   for (int i = 0; i < count - 1; i++) {
 686     val |= (val << bit_width);
 687   }
 688   jdouble dval = *((jdouble*) &val);  // coerce to double type
 689   return dval;
 690 }
 691 
 692 static inline jdouble replicate_immF(float con) {
 693   // Replicate float con 2 times and pack into vector.
 694   int val = *((int*)&con);
 695   jlong lval = val;
 696   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 697   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 698   return dval;
 699 }
 700 
 701 // Standard Sparc opcode form2 field breakdown
 702 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 703   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 704   int op = (f30 << 30) |
 705            (f29 << 29) |
 706            (f25 << 25) |
 707            (f22 << 22) |
 708            (f20 << 20) |
 709            (f19 << 19) |
 710            (f0  <<  0);
 711   cbuf.insts()->emit_int32(op);
 712 }
 713 
 714 // Standard Sparc opcode form2 field breakdown
 715 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 716   f0 >>= 10;           // Drop 10 bits
 717   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 718   int op = (f30 << 30) |
 719            (f25 << 25) |
 720            (f22 << 22) |
 721            (f0  <<  0);
 722   cbuf.insts()->emit_int32(op);
 723 }
 724 
 725 // Standard Sparc opcode form3 field breakdown
 726 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 727   int op = (f30 << 30) |
 728            (f25 << 25) |
 729            (f19 << 19) |
 730            (f14 << 14) |
 731            (f5  <<  5) |
 732            (f0  <<  0);
 733   cbuf.insts()->emit_int32(op);
 734 }
 735 
 736 // Standard Sparc opcode form3 field breakdown
 737 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 738   simm13 &= (1<<13)-1; // Mask to 13 bits
 739   int op = (f30 << 30) |
 740            (f25 << 25) |
 741            (f19 << 19) |
 742            (f14 << 14) |
 743            (1   << 13) | // bit to indicate immediate-mode
 744            (simm13<<0);
 745   cbuf.insts()->emit_int32(op);
 746 }
 747 
 748 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 749   simm10 &= (1<<10)-1; // Mask to 10 bits
 750   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 751 }
 752 
 753 #ifdef ASSERT
 754 // Helper function for VerifyOops in emit_form3_mem_reg
 755 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 756   warning("VerifyOops encountered unexpected instruction:");
 757   n->dump(2);
 758   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 759 }
 760 #endif
 761 
 762 
 763 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 764                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 765 
 766 #ifdef ASSERT
 767   // The following code implements the +VerifyOops feature.
 768   // It verifies oop values which are loaded into or stored out of
 769   // the current method activation.  +VerifyOops complements techniques
 770   // like ScavengeALot, because it eagerly inspects oops in transit,
 771   // as they enter or leave the stack, as opposed to ScavengeALot,
 772   // which inspects oops "at rest", in the stack or heap, at safepoints.
 773   // For this reason, +VerifyOops can sometimes detect bugs very close
 774   // to their point of creation.  It can also serve as a cross-check
 775   // on the validity of oop maps, when used toegether with ScavengeALot.
 776 
 777   // It would be good to verify oops at other points, especially
 778   // when an oop is used as a base pointer for a load or store.
 779   // This is presently difficult, because it is hard to know when
 780   // a base address is biased or not.  (If we had such information,
 781   // it would be easy and useful to make a two-argument version of
 782   // verify_oop which unbiases the base, and performs verification.)
 783 
 784   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 785   bool is_verified_oop_base  = false;
 786   bool is_verified_oop_load  = false;
 787   bool is_verified_oop_store = false;
 788   int tmp_enc = -1;
 789   if (VerifyOops && src1_enc != R_SP_enc) {
 790     // classify the op, mainly for an assert check
 791     int st_op = 0, ld_op = 0;
 792     switch (primary) {
 793     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 794     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 795     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 796     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 797     case Assembler::std_op3:  st_op = Op_StoreL; break;
 798     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 799     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 800 
 801     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 802     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 803     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 804     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 805     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 806     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 807     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 808     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 809     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 810     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 811     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 812 
 813     default: ShouldNotReachHere();
 814     }
 815     if (tertiary == REGP_OP) {
 816       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 817       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 818       else                          ShouldNotReachHere();
 819       if (st_op) {
 820         // a store
 821         // inputs are (0:control, 1:memory, 2:address, 3:value)
 822         Node* n2 = n->in(3);
 823         if (n2 != NULL) {
 824           const Type* t = n2->bottom_type();
 825           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 826         }
 827       } else {
 828         // a load
 829         const Type* t = n->bottom_type();
 830         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 831       }
 832     }
 833 
 834     if (ld_op) {
 835       // a Load
 836       // inputs are (0:control, 1:memory, 2:address)
 837       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 838           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 839           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 840           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 841           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 842           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 843           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 844           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 845           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 846           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 847           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 848           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 849           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 850           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 851           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 852           !(n->rule() == loadUB_rule)) {
 853         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 854       }
 855     } else if (st_op) {
 856       // a Store
 857       // inputs are (0:control, 1:memory, 2:address, 3:value)
 858       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 859           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 860           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 861           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 862           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 863           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 864           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 865         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 866       }
 867     }
 868 
 869     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 870       Node* addr = n->in(2);
 871       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 872         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 873         if (atype != NULL) {
 874           intptr_t offset = get_offset_from_base(n, atype, disp32);
 875           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 876           if (offset != offset_2) {
 877             get_offset_from_base(n, atype, disp32);
 878             get_offset_from_base_2(n, atype, disp32);
 879           }
 880           assert(offset == offset_2, "different offsets");
 881           if (offset == disp32) {
 882             // we now know that src1 is a true oop pointer
 883             is_verified_oop_base = true;
 884             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 885               if( primary == Assembler::ldd_op3 ) {
 886                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 887               } else {
 888                 tmp_enc = dst_enc;
 889                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 890                 assert(src1_enc != dst_enc, "");
 891               }
 892             }
 893           }
 894           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 895                        || offset == oopDesc::mark_offset_in_bytes())) {
 896                       // loading the mark should not be allowed either, but
 897                       // we don't check this since it conflicts with InlineObjectHash
 898                       // usage of LoadINode to get the mark. We could keep the
 899                       // check if we create a new LoadMarkNode
 900             // but do not verify the object before its header is initialized
 901             ShouldNotReachHere();
 902           }
 903         }
 904       }
 905     }
 906   }
 907 #endif
 908 
 909   uint instr;
 910   instr = (Assembler::ldst_op << 30)
 911         | (dst_enc        << 25)
 912         | (primary        << 19)
 913         | (src1_enc       << 14);
 914 
 915   uint index = src2_enc;
 916   int disp = disp32;
 917 
 918   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 919     disp += STACK_BIAS;
 920 
 921   // We should have a compiler bailout here rather than a guarantee.
 922   // Better yet would be some mechanism to handle variable-size matches correctly.
 923   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 924 
 925   if( disp == 0 ) {
 926     // use reg-reg form
 927     // bit 13 is already zero
 928     instr |= index;
 929   } else {
 930     // use reg-imm form
 931     instr |= 0x00002000;          // set bit 13 to one
 932     instr |= disp & 0x1FFF;
 933   }
 934 
 935   cbuf.insts()->emit_int32(instr);
 936 
 937 #ifdef ASSERT
 938   {
 939     MacroAssembler _masm(&cbuf);
 940     if (is_verified_oop_base) {
 941       __ verify_oop(reg_to_register_object(src1_enc));
 942     }
 943     if (is_verified_oop_store) {
 944       __ verify_oop(reg_to_register_object(dst_enc));
 945     }
 946     if (tmp_enc != -1) {
 947       __ mov(O7, reg_to_register_object(tmp_enc));
 948     }
 949     if (is_verified_oop_load) {
 950       __ verify_oop(reg_to_register_object(dst_enc));
 951     }
 952   }
 953 #endif
 954 }
 955 
 956 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 957   // The method which records debug information at every safepoint
 958   // expects the call to be the first instruction in the snippet as
 959   // it creates a PcDesc structure which tracks the offset of a call
 960   // from the start of the codeBlob. This offset is computed as
 961   // code_end() - code_begin() of the code which has been emitted
 962   // so far.
 963   // In this particular case we have skirted around the problem by
 964   // putting the "mov" instruction in the delay slot but the problem
 965   // may bite us again at some other point and a cleaner/generic
 966   // solution using relocations would be needed.
 967   MacroAssembler _masm(&cbuf);
 968   __ set_inst_mark();
 969 
 970   // We flush the current window just so that there is a valid stack copy
 971   // the fact that the current window becomes active again instantly is
 972   // not a problem there is nothing live in it.
 973 
 974 #ifdef ASSERT
 975   int startpos = __ offset();
 976 #endif /* ASSERT */
 977 
 978   __ call((address)entry_point, rtype);
 979 
 980   if (preserve_g2)   __ delayed()->mov(G2, L7);
 981   else __ delayed()->nop();
 982 
 983   if (preserve_g2)   __ mov(L7, G2);
 984 
 985 #ifdef ASSERT
 986   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 987 #ifdef _LP64
 988     // Trash argument dump slots.
 989     __ set(0xb0b8ac0db0b8ac0d, G1);
 990     __ mov(G1, G5);
 991     __ stx(G1, SP, STACK_BIAS + 0x80);
 992     __ stx(G1, SP, STACK_BIAS + 0x88);
 993     __ stx(G1, SP, STACK_BIAS + 0x90);
 994     __ stx(G1, SP, STACK_BIAS + 0x98);
 995     __ stx(G1, SP, STACK_BIAS + 0xA0);
 996     __ stx(G1, SP, STACK_BIAS + 0xA8);
 997 #else // _LP64
 998     // this is also a native call, so smash the first 7 stack locations,
 999     // and the various registers
1000 
1001     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1002     // while [SP+0x44..0x58] are the argument dump slots.
1003     __ set((intptr_t)0xbaadf00d, G1);
1004     __ mov(G1, G5);
1005     __ sllx(G1, 32, G1);
1006     __ or3(G1, G5, G1);
1007     __ mov(G1, G5);
1008     __ stx(G1, SP, 0x40);
1009     __ stx(G1, SP, 0x48);
1010     __ stx(G1, SP, 0x50);
1011     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1012 #endif // _LP64
1013   }
1014 #endif /*ASSERT*/
1015 }
1016 
1017 //=============================================================================
1018 // REQUIRED FUNCTIONALITY for encoding
1019 void emit_lo(CodeBuffer &cbuf, int val) {  }
1020 void emit_hi(CodeBuffer &cbuf, int val) {  }
1021 
1022 
1023 //=============================================================================
1024 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1025 
1026 int Compile::ConstantTable::calculate_table_base_offset() const {
1027   if (UseRDPCForConstantTableBase) {
1028     // The table base offset might be less but then it fits into
1029     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1030     return Assembler::min_simm13();
1031   } else {
1032     int offset = -(size() / 2);
1033     if (!Assembler::is_simm13(offset)) {
1034       offset = Assembler::min_simm13();
1035     }
1036     return offset;
1037   }
1038 }
1039 
1040 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1041   Compile* C = ra_->C;
1042   Compile::ConstantTable& constant_table = C->constant_table();
1043   MacroAssembler _masm(&cbuf);
1044 
1045   Register r = as_Register(ra_->get_encode(this));
1046   CodeSection* consts_section = __ code()->consts();
1047   int consts_size = consts_section->align_at_start(consts_section->size());
1048   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1049 
1050   if (UseRDPCForConstantTableBase) {
1051     // For the following RDPC logic to work correctly the consts
1052     // section must be allocated right before the insts section.  This
1053     // assert checks for that.  The layout and the SECT_* constants
1054     // are defined in src/share/vm/asm/codeBuffer.hpp.
1055     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1056     int insts_offset = __ offset();
1057 
1058     // Layout:
1059     //
1060     // |----------- consts section ------------|----------- insts section -----------...
1061     // |------ constant table -----|- padding -|------------------x----
1062     //                                                            \ current PC (RDPC instruction)
1063     // |<------------- consts_size ----------->|<- insts_offset ->|
1064     //                                                            \ table base
1065     // The table base offset is later added to the load displacement
1066     // so it has to be negative.
1067     int table_base_offset = -(consts_size + insts_offset);
1068     int disp;
1069 
1070     // If the displacement from the current PC to the constant table
1071     // base fits into simm13 we set the constant table base to the
1072     // current PC.
1073     if (Assembler::is_simm13(table_base_offset)) {
1074       constant_table.set_table_base_offset(table_base_offset);
1075       disp = 0;
1076     } else {
1077       // Otherwise we set the constant table base offset to the
1078       // maximum negative displacement of load instructions to keep
1079       // the disp as small as possible:
1080       //
1081       // |<------------- consts_size ----------->|<- insts_offset ->|
1082       // |<--------- min_simm13 --------->|<-------- disp --------->|
1083       //                                  \ table base
1084       table_base_offset = Assembler::min_simm13();
1085       constant_table.set_table_base_offset(table_base_offset);
1086       disp = (consts_size + insts_offset) + table_base_offset;
1087     }
1088 
1089     __ rdpc(r);
1090 
1091     if (disp != 0) {
1092       assert(r != O7, "need temporary");
1093       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1094     }
1095   }
1096   else {
1097     // Materialize the constant table base.
1098     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1099     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1100     AddressLiteral base(baseaddr, rspec);
1101     __ set(base, r);
1102   }
1103 }
1104 
1105 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1106   if (UseRDPCForConstantTableBase) {
1107     // This is really the worst case but generally it's only 1 instruction.
1108     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1109   } else {
1110     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1111   }
1112 }
1113 
1114 #ifndef PRODUCT
1115 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1116   char reg[128];
1117   ra_->dump_register(this, reg);
1118   if (UseRDPCForConstantTableBase) {
1119     st->print("RDPC   %s\t! constant table base", reg);
1120   } else {
1121     st->print("SET    &constanttable,%s\t! constant table base", reg);
1122   }
1123 }
1124 #endif
1125 
1126 
1127 //=============================================================================
1128 
1129 #ifndef PRODUCT
1130 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1131   Compile* C = ra_->C;
1132 
1133   for (int i = 0; i < OptoPrologueNops; i++) {
1134     st->print_cr("NOP"); st->print("\t");
1135   }
1136 
1137   if( VerifyThread ) {
1138     st->print_cr("Verify_Thread"); st->print("\t");
1139   }
1140 
1141   size_t framesize = C->frame_slots() << LogBytesPerInt;
1142 
1143   // Calls to C2R adapters often do not accept exceptional returns.
1144   // We require that their callers must bang for them.  But be careful, because
1145   // some VM calls (such as call site linkage) can use several kilobytes of
1146   // stack.  But the stack safety zone should account for that.
1147   // See bugs 4446381, 4468289, 4497237.
1148   if (C->need_stack_bang(framesize)) {
1149     st->print_cr("! stack bang"); st->print("\t");
1150   }
1151 
1152   if (Assembler::is_simm13(-framesize)) {
1153     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1154   } else {
1155     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1156     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1157     st->print   ("SAVE   R_SP,R_G3,R_SP");
1158   }
1159 
1160 }
1161 #endif
1162 
1163 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1164   Compile* C = ra_->C;
1165   MacroAssembler _masm(&cbuf);
1166 
1167   for (int i = 0; i < OptoPrologueNops; i++) {
1168     __ nop();
1169   }
1170 
1171   __ verify_thread();
1172 
1173   size_t framesize = C->frame_slots() << LogBytesPerInt;
1174   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1175   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1176 
1177   // Calls to C2R adapters often do not accept exceptional returns.
1178   // We require that their callers must bang for them.  But be careful, because
1179   // some VM calls (such as call site linkage) can use several kilobytes of
1180   // stack.  But the stack safety zone should account for that.
1181   // See bugs 4446381, 4468289, 4497237.
1182   if (C->need_stack_bang(framesize)) {
1183     __ generate_stack_overflow_check(framesize);
1184   }
1185 
1186   if (Assembler::is_simm13(-framesize)) {
1187     __ save(SP, -framesize, SP);
1188   } else {
1189     __ sethi(-framesize & ~0x3ff, G3);
1190     __ add(G3, -framesize & 0x3ff, G3);
1191     __ save(SP, G3, SP);
1192   }
1193   C->set_frame_complete( __ offset() );
1194 
1195   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1196     // NOTE: We set the table base offset here because users might be
1197     // emitted before MachConstantBaseNode.
1198     Compile::ConstantTable& constant_table = C->constant_table();
1199     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1200   }
1201 }
1202 
1203 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1204   return MachNode::size(ra_);
1205 }
1206 
1207 int MachPrologNode::reloc() const {
1208   return 10; // a large enough number
1209 }
1210 
1211 //=============================================================================
1212 #ifndef PRODUCT
1213 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1214   Compile* C = ra_->C;
1215 
1216   if( do_polling() && ra_->C->is_method_compilation() ) {
1217     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1218 #ifdef _LP64
1219     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1220 #else
1221     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1222 #endif
1223   }
1224 
1225   if( do_polling() )
1226     st->print("RET\n\t");
1227 
1228   st->print("RESTORE");
1229 }
1230 #endif
1231 
1232 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1233   MacroAssembler _masm(&cbuf);
1234   Compile* C = ra_->C;
1235 
1236   __ verify_thread();
1237 
1238   // If this does safepoint polling, then do it here
1239   if( do_polling() && ra_->C->is_method_compilation() ) {
1240     AddressLiteral polling_page(os::get_polling_page());
1241     __ sethi(polling_page, L0);
1242     __ relocate(relocInfo::poll_return_type);
1243     __ ld_ptr( L0, 0, G0 );
1244   }
1245 
1246   // If this is a return, then stuff the restore in the delay slot
1247   if( do_polling() ) {
1248     __ ret();
1249     __ delayed()->restore();
1250   } else {
1251     __ restore();
1252   }
1253 }
1254 
1255 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1256   return MachNode::size(ra_);
1257 }
1258 
1259 int MachEpilogNode::reloc() const {
1260   return 16; // a large enough number
1261 }
1262 
1263 const Pipeline * MachEpilogNode::pipeline() const {
1264   return MachNode::pipeline_class();
1265 }
1266 
1267 int MachEpilogNode::safepoint_offset() const {
1268   assert( do_polling(), "no return for this epilog node");
1269   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1270 }
1271 
1272 //=============================================================================
1273 
1274 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1275 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1276 static enum RC rc_class( OptoReg::Name reg ) {
1277   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1278   if (OptoReg::is_stack(reg)) return rc_stack;
1279   VMReg r = OptoReg::as_VMReg(reg);
1280   if (r->is_Register()) return rc_int;
1281   assert(r->is_FloatRegister(), "must be");
1282   return rc_float;
1283 }
1284 
1285 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1286   if( cbuf ) {
1287     // Better yet would be some mechanism to handle variable-size matches correctly
1288     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1289       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1290     } else {
1291       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1292     }
1293   }
1294 #ifndef PRODUCT
1295   else if( !do_size ) {
1296     if( size != 0 ) st->print("\n\t");
1297     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1298     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1299   }
1300 #endif
1301   return size+4;
1302 }
1303 
1304 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1305   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1306 #ifndef PRODUCT
1307   else if( !do_size ) {
1308     if( size != 0 ) st->print("\n\t");
1309     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1310   }
1311 #endif
1312   return size+4;
1313 }
1314 
1315 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1316                                         PhaseRegAlloc *ra_,
1317                                         bool do_size,
1318                                         outputStream* st ) const {
1319   // Get registers to move
1320   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1321   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1322   OptoReg::Name dst_second = ra_->get_reg_second(this );
1323   OptoReg::Name dst_first = ra_->get_reg_first(this );
1324 
1325   enum RC src_second_rc = rc_class(src_second);
1326   enum RC src_first_rc = rc_class(src_first);
1327   enum RC dst_second_rc = rc_class(dst_second);
1328   enum RC dst_first_rc = rc_class(dst_first);
1329 
1330   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1331 
1332   // Generate spill code!
1333   int size = 0;
1334 
1335   if( src_first == dst_first && src_second == dst_second )
1336     return size;            // Self copy, no move
1337 
1338   // --------------------------------------
1339   // Check for mem-mem move.  Load into unused float registers and fall into
1340   // the float-store case.
1341   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1342     int offset = ra_->reg2offset(src_first);
1343     // Further check for aligned-adjacent pair, so we can use a double load
1344     if( (src_first&1)==0 && src_first+1 == src_second ) {
1345       src_second    = OptoReg::Name(R_F31_num);
1346       src_second_rc = rc_float;
1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1348     } else {
1349       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1350     }
1351     src_first    = OptoReg::Name(R_F30_num);
1352     src_first_rc = rc_float;
1353   }
1354 
1355   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1356     int offset = ra_->reg2offset(src_second);
1357     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1358     src_second    = OptoReg::Name(R_F31_num);
1359     src_second_rc = rc_float;
1360   }
1361 
1362   // --------------------------------------
1363   // Check for float->int copy; requires a trip through memory
1364   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1365     int offset = frame::register_save_words*wordSize;
1366     if (cbuf) {
1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1368       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1369       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1370       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1371     }
1372 #ifndef PRODUCT
1373     else if (!do_size) {
1374       if (size != 0) st->print("\n\t");
1375       st->print(  "SUB    R_SP,16,R_SP\n");
1376       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1377       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1378       st->print("\tADD    R_SP,16,R_SP\n");
1379     }
1380 #endif
1381     size += 16;
1382   }
1383 
1384   // Check for float->int copy on T4
1385   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1386     // Further check for aligned-adjacent pair, so we can use a double move
1387     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1388       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1389     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1390   }
1391   // Check for int->float copy on T4
1392   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1393     // Further check for aligned-adjacent pair, so we can use a double move
1394     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1395       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1396     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1397   }
1398 
1399   // --------------------------------------
1400   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1401   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1402   // hardware does the flop for me.  Doubles are always aligned, so no problem
1403   // there.  Misaligned sources only come from native-long-returns (handled
1404   // special below).
1405 #ifndef _LP64
1406   if( src_first_rc == rc_int &&     // source is already big-endian
1407       src_second_rc != rc_bad &&    // 64-bit move
1408       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1409     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1410     // Do the big-endian flop.
1411     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1412     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1413   }
1414 #endif
1415 
1416   // --------------------------------------
1417   // Check for integer reg-reg copy
1418   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1419 #ifndef _LP64
1420     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1421       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1422       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1423       //       operand contains the least significant word of the 64-bit value and vice versa.
1424       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1425       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1426       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1427       if( cbuf ) {
1428         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1429         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1430         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1431 #ifndef PRODUCT
1432       } else if( !do_size ) {
1433         if( size != 0 ) st->print("\n\t");
1434         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1435         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1436         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1437 #endif
1438       }
1439       return size+12;
1440     }
1441     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1442       // returning a long value in I0/I1
1443       // a SpillCopy must be able to target a return instruction's reg_class
1444       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1445       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1446       //       operand contains the least significant word of the 64-bit value and vice versa.
1447       OptoReg::Name tdest = dst_first;
1448 
1449       if (src_first == dst_first) {
1450         tdest = OptoReg::Name(R_O7_num);
1451         size += 4;
1452       }
1453 
1454       if( cbuf ) {
1455         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1456         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1457         // ShrL_reg_imm6
1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1459         // ShrR_reg_imm6  src, 0, dst
1460         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1461         if (tdest != dst_first) {
1462           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1463         }
1464       }
1465 #ifndef PRODUCT
1466       else if( !do_size ) {
1467         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1468         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1469         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1470         if (tdest != dst_first) {
1471           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1472         }
1473       }
1474 #endif // PRODUCT
1475       return size+8;
1476     }
1477 #endif // !_LP64
1478     // Else normal reg-reg copy
1479     assert( src_second != dst_first, "smashed second before evacuating it" );
1480     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1481     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1482     // This moves an aligned adjacent pair.
1483     // See if we are done.
1484     if( src_first+1 == src_second && dst_first+1 == dst_second )
1485       return size;
1486   }
1487 
1488   // Check for integer store
1489   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1490     int offset = ra_->reg2offset(dst_first);
1491     // Further check for aligned-adjacent pair, so we can use a double store
1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1493       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1494     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1495   }
1496 
1497   // Check for integer load
1498   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1499     int offset = ra_->reg2offset(src_first);
1500     // Further check for aligned-adjacent pair, so we can use a double load
1501     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1502       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1503     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1504   }
1505 
1506   // Check for float reg-reg copy
1507   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1508     // Further check for aligned-adjacent pair, so we can use a double move
1509     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1510       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1511     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1512   }
1513 
1514   // Check for float store
1515   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1516     int offset = ra_->reg2offset(dst_first);
1517     // Further check for aligned-adjacent pair, so we can use a double store
1518     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1519       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1520     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1521   }
1522 
1523   // Check for float load
1524   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1525     int offset = ra_->reg2offset(src_first);
1526     // Further check for aligned-adjacent pair, so we can use a double load
1527     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1528       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1529     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1530   }
1531 
1532   // --------------------------------------------------------------------
1533   // Check for hi bits still needing moving.  Only happens for misaligned
1534   // arguments to native calls.
1535   if( src_second == dst_second )
1536     return size;               // Self copy; no move
1537   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1538 
1539 #ifndef _LP64
1540   // In the LP64 build, all registers can be moved as aligned/adjacent
1541   // pairs, so there's never any need to move the high bits separately.
1542   // The 32-bit builds have to deal with the 32-bit ABI which can force
1543   // all sorts of silly alignment problems.
1544 
1545   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1546   // 32-bits of a 64-bit register, but are needed in low bits of another
1547   // register (else it's a hi-bits-to-hi-bits copy which should have
1548   // happened already as part of a 64-bit move)
1549   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1550     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1551     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1552     // Shift src_second down to dst_second's low bits.
1553     if( cbuf ) {
1554       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1555 #ifndef PRODUCT
1556     } else if( !do_size ) {
1557       if( size != 0 ) st->print("\n\t");
1558       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1559 #endif
1560     }
1561     return size+4;
1562   }
1563 
1564   // Check for high word integer store.  Must down-shift the hi bits
1565   // into a temp register, then fall into the case of storing int bits.
1566   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1567     // Shift src_second down to dst_second's low bits.
1568     if( cbuf ) {
1569       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1570 #ifndef PRODUCT
1571     } else if( !do_size ) {
1572       if( size != 0 ) st->print("\n\t");
1573       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1574 #endif
1575     }
1576     size+=4;
1577     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1578   }
1579 
1580   // Check for high word integer load
1581   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1582     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1583 
1584   // Check for high word integer store
1585   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1586     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1587 
1588   // Check for high word float store
1589   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1590     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1591 
1592 #endif // !_LP64
1593 
1594   Unimplemented();
1595 }
1596 
1597 #ifndef PRODUCT
1598 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1599   implementation( NULL, ra_, false, st );
1600 }
1601 #endif
1602 
1603 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1604   implementation( &cbuf, ra_, false, NULL );
1605 }
1606 
1607 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1608   return implementation( NULL, ra_, true, NULL );
1609 }
1610 
1611 //=============================================================================
1612 #ifndef PRODUCT
1613 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1614   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1615 }
1616 #endif
1617 
1618 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1619   MacroAssembler _masm(&cbuf);
1620   for(int i = 0; i < _count; i += 1) {
1621     __ nop();
1622   }
1623 }
1624 
1625 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1626   return 4 * _count;
1627 }
1628 
1629 
1630 //=============================================================================
1631 #ifndef PRODUCT
1632 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1633   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1634   int reg = ra_->get_reg_first(this);
1635   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1636 }
1637 #endif
1638 
1639 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1640   MacroAssembler _masm(&cbuf);
1641   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1642   int reg = ra_->get_encode(this);
1643 
1644   if (Assembler::is_simm13(offset)) {
1645      __ add(SP, offset, reg_to_register_object(reg));
1646   } else {
1647      __ set(offset, O7);
1648      __ add(SP, O7, reg_to_register_object(reg));
1649   }
1650 }
1651 
1652 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1653   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1654   assert(ra_ == ra_->C->regalloc(), "sanity");
1655   return ra_->C->scratch_emit_size(this);
1656 }
1657 
1658 //=============================================================================
1659 
1660 // emit call stub, compiled java to interpretor
1661 void emit_java_to_interp(CodeBuffer &cbuf ) {
1662 
1663   // Stub is fixed up when the corresponding call is converted from calling
1664   // compiled code to calling interpreted code.
1665   // set (empty), G5
1666   // jmp -1
1667 
1668   address mark = cbuf.insts_mark();  // get mark within main instrs section
1669 
1670   MacroAssembler _masm(&cbuf);
1671 
1672   address base =
1673   __ start_a_stub(Compile::MAX_stubs_size);
1674   if (base == NULL)  return;  // CodeBuffer::expand failed
1675 
1676   // static stub relocation stores the instruction address of the call
1677   __ relocate(static_stub_Relocation::spec(mark));
1678 
1679   __ set_metadata(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1680 
1681   __ set_inst_mark();
1682   AddressLiteral addrlit(-1);
1683   __ JUMP(addrlit, G3, 0);
1684 
1685   __ delayed()->nop();
1686 
1687   // Update current stubs pointer and restore code_end.
1688   __ end_a_stub();
1689 }
1690 
1691 // size of call stub, compiled java to interpretor
1692 uint size_java_to_interp() {
1693   // This doesn't need to be accurate but it must be larger or equal to
1694   // the real size of the stub.
1695   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1696           NativeJump::instruction_size + // sethi; jmp; nop
1697           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1698 }
1699 // relocation entries for call stub, compiled java to interpretor
1700 uint reloc_java_to_interp() {
1701   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1702 }
1703 
1704 
1705 //=============================================================================
1706 #ifndef PRODUCT
1707 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1708   st->print_cr("\nUEP:");
1709 #ifdef    _LP64
1710   if (UseCompressedOops) {
1711     assert(Universe::heap() != NULL, "java heap should be initialized");
1712     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1713     st->print_cr("\tSLL    R_G5,3,R_G5");
1714     if (Universe::narrow_oop_base() != NULL)
1715       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1716   } else {
1717     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1718   }
1719   st->print_cr("\tCMP    R_G5,R_G3" );
1720   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1721 #else  // _LP64
1722   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1723   st->print_cr("\tCMP    R_G5,R_G3" );
1724   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1725 #endif // _LP64
1726 }
1727 #endif
1728 
1729 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1730   MacroAssembler _masm(&cbuf);
1731   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1732   Register temp_reg   = G3;
1733   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1734 
1735   // Load klass from receiver
1736   __ load_klass(O0, temp_reg);
1737   // Compare against expected klass
1738   __ cmp(temp_reg, G5_ic_reg);
1739   // Branch to miss code, checks xcc or icc depending
1740   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1741 }
1742 
1743 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1744   return MachNode::size(ra_);
1745 }
1746 
1747 
1748 //=============================================================================
1749 
1750 uint size_exception_handler() {
1751   if (TraceJumps) {
1752     return (400); // just a guess
1753   }
1754   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1755 }
1756 
1757 uint size_deopt_handler() {
1758   if (TraceJumps) {
1759     return (400); // just a guess
1760   }
1761   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1762 }
1763 
1764 // Emit exception handler code.
1765 int emit_exception_handler(CodeBuffer& cbuf) {
1766   Register temp_reg = G3;
1767   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1768   MacroAssembler _masm(&cbuf);
1769 
1770   address base =
1771   __ start_a_stub(size_exception_handler());
1772   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1773 
1774   int offset = __ offset();
1775 
1776   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1777   __ delayed()->nop();
1778 
1779   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1780 
1781   __ end_a_stub();
1782 
1783   return offset;
1784 }
1785 
1786 int emit_deopt_handler(CodeBuffer& cbuf) {
1787   // Can't use any of the current frame's registers as we may have deopted
1788   // at a poll and everything (including G3) can be live.
1789   Register temp_reg = L0;
1790   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1791   MacroAssembler _masm(&cbuf);
1792 
1793   address base =
1794   __ start_a_stub(size_deopt_handler());
1795   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1796 
1797   int offset = __ offset();
1798   __ save_frame(0);
1799   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1800   __ delayed()->restore();
1801 
1802   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1803 
1804   __ end_a_stub();
1805   return offset;
1806 
1807 }
1808 
1809 // Given a register encoding, produce a Integer Register object
1810 static Register reg_to_register_object(int register_encoding) {
1811   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1812   return as_Register(register_encoding);
1813 }
1814 
1815 // Given a register encoding, produce a single-precision Float Register object
1816 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1817   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1818   return as_SingleFloatRegister(register_encoding);
1819 }
1820 
1821 // Given a register encoding, produce a double-precision Float Register object
1822 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1823   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1824   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1825   return as_DoubleFloatRegister(register_encoding);
1826 }
1827 
1828 const bool Matcher::match_rule_supported(int opcode) {
1829   if (!has_match_rule(opcode))
1830     return false;
1831 
1832   switch (opcode) {
1833   case Op_CountLeadingZerosI:
1834   case Op_CountLeadingZerosL:
1835   case Op_CountTrailingZerosI:
1836   case Op_CountTrailingZerosL:
1837   case Op_PopCountI:
1838   case Op_PopCountL:
1839     if (!UsePopCountInstruction)
1840       return false;
1841   case Op_CompareAndSwapL:
1842 #ifdef _LP64
1843   case Op_CompareAndSwapP:
1844 #endif
1845     if (!VM_Version::supports_cx8())
1846       return false;
1847     break;
1848   }
1849 
1850   return true;  // Per default match rules are supported.
1851 }
1852 
1853 int Matcher::regnum_to_fpu_offset(int regnum) {
1854   return regnum - 32; // The FP registers are in the second chunk
1855 }
1856 
1857 #ifdef ASSERT
1858 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1859 #endif
1860 
1861 // Vector width in bytes
1862 const int Matcher::vector_width_in_bytes(BasicType bt) {
1863   assert(MaxVectorSize == 8, "");
1864   return 8;
1865 }
1866 
1867 // Vector ideal reg
1868 const int Matcher::vector_ideal_reg(int size) {
1869   assert(MaxVectorSize == 8, "");
1870   return Op_RegD;
1871 }
1872 
1873 const int Matcher::vector_shift_count_ideal_reg(int size) {
1874   fatal("vector shift is not supported");
1875   return Node::NotAMachineReg;
1876 }
1877 
1878 // Limits on vector size (number of elements) loaded into vector.
1879 const int Matcher::max_vector_size(const BasicType bt) {
1880   assert(is_java_primitive(bt), "only primitive type vectors");
1881   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1882 }
1883 
1884 const int Matcher::min_vector_size(const BasicType bt) {
1885   return max_vector_size(bt); // Same as max.
1886 }
1887 
1888 // SPARC doesn't support misaligned vectors store/load.
1889 const bool Matcher::misaligned_vectors_ok() {
1890   return false;
1891 }
1892 
1893 // USII supports fxtof through the whole range of number, USIII doesn't
1894 const bool Matcher::convL2FSupported(void) {
1895   return VM_Version::has_fast_fxtof();
1896 }
1897 
1898 // Is this branch offset short enough that a short branch can be used?
1899 //
1900 // NOTE: If the platform does not provide any short branch variants, then
1901 //       this method should return false for offset 0.
1902 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1903   // The passed offset is relative to address of the branch.
1904   // Don't need to adjust the offset.
1905   return UseCBCond && Assembler::is_simm12(offset);
1906 }
1907 
1908 const bool Matcher::isSimpleConstant64(jlong value) {
1909   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1910   // Depends on optimizations in MacroAssembler::setx.
1911   int hi = (int)(value >> 32);
1912   int lo = (int)(value & ~0);
1913   return (hi == 0) || (hi == -1) || (lo == 0);
1914 }
1915 
1916 // No scaling for the parameter the ClearArray node.
1917 const bool Matcher::init_array_count_is_in_bytes = true;
1918 
1919 // Threshold size for cleararray.
1920 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1921 
1922 // No additional cost for CMOVL.
1923 const int Matcher::long_cmove_cost() { return 0; }
1924 
1925 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1926 const int Matcher::float_cmove_cost() {
1927   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1928 }
1929 
1930 // Should the Matcher clone shifts on addressing modes, expecting them to
1931 // be subsumed into complex addressing expressions or compute them into
1932 // registers?  True for Intel but false for most RISCs
1933 const bool Matcher::clone_shift_expressions = false;
1934 
1935 // Do we need to mask the count passed to shift instructions or does
1936 // the cpu only look at the lower 5/6 bits anyway?
1937 const bool Matcher::need_masked_shift_count = false;
1938 
1939 bool Matcher::narrow_oop_use_complex_address() {
1940   NOT_LP64(ShouldNotCallThis());
1941   assert(UseCompressedOops, "only for compressed oops code");
1942   return false;
1943 }
1944 
1945 // Is it better to copy float constants, or load them directly from memory?
1946 // Intel can load a float constant from a direct address, requiring no
1947 // extra registers.  Most RISCs will have to materialize an address into a
1948 // register first, so they would do better to copy the constant from stack.
1949 const bool Matcher::rematerialize_float_constants = false;
1950 
1951 // If CPU can load and store mis-aligned doubles directly then no fixup is
1952 // needed.  Else we split the double into 2 integer pieces and move it
1953 // piece-by-piece.  Only happens when passing doubles into C code as the
1954 // Java calling convention forces doubles to be aligned.
1955 #ifdef _LP64
1956 const bool Matcher::misaligned_doubles_ok = true;
1957 #else
1958 const bool Matcher::misaligned_doubles_ok = false;
1959 #endif
1960 
1961 // No-op on SPARC.
1962 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1963 }
1964 
1965 // Advertise here if the CPU requires explicit rounding operations
1966 // to implement the UseStrictFP mode.
1967 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1968 
1969 // Are floats conerted to double when stored to stack during deoptimization?
1970 // Sparc does not handle callee-save floats.
1971 bool Matcher::float_in_double() { return false; }
1972 
1973 // Do ints take an entire long register or just half?
1974 // Note that we if-def off of _LP64.
1975 // The relevant question is how the int is callee-saved.  In _LP64
1976 // the whole long is written but de-opt'ing will have to extract
1977 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1978 #ifdef _LP64
1979 const bool Matcher::int_in_long = true;
1980 #else
1981 const bool Matcher::int_in_long = false;
1982 #endif
1983 
1984 // Return whether or not this register is ever used as an argument.  This
1985 // function is used on startup to build the trampoline stubs in generateOptoStub.
1986 // Registers not mentioned will be killed by the VM call in the trampoline, and
1987 // arguments in those registers not be available to the callee.
1988 bool Matcher::can_be_java_arg( int reg ) {
1989   // Standard sparc 6 args in registers
1990   if( reg == R_I0_num ||
1991       reg == R_I1_num ||
1992       reg == R_I2_num ||
1993       reg == R_I3_num ||
1994       reg == R_I4_num ||
1995       reg == R_I5_num ) return true;
1996 #ifdef _LP64
1997   // 64-bit builds can pass 64-bit pointers and longs in
1998   // the high I registers
1999   if( reg == R_I0H_num ||
2000       reg == R_I1H_num ||
2001       reg == R_I2H_num ||
2002       reg == R_I3H_num ||
2003       reg == R_I4H_num ||
2004       reg == R_I5H_num ) return true;
2005 
2006   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
2007     return true;
2008   }
2009 
2010 #else
2011   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
2012   // Longs cannot be passed in O regs, because O regs become I regs
2013   // after a 'save' and I regs get their high bits chopped off on
2014   // interrupt.
2015   if( reg == R_G1H_num || reg == R_G1_num ) return true;
2016   if( reg == R_G4H_num || reg == R_G4_num ) return true;
2017 #endif
2018   // A few float args in registers
2019   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
2020 
2021   return false;
2022 }
2023 
2024 bool Matcher::is_spillable_arg( int reg ) {
2025   return can_be_java_arg(reg);
2026 }
2027 
2028 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
2029   // Use hardware SDIVX instruction when it is
2030   // faster than a code which use multiply.
2031   return VM_Version::has_fast_idiv();
2032 }
2033 
2034 // Register for DIVI projection of divmodI
2035 RegMask Matcher::divI_proj_mask() {
2036   ShouldNotReachHere();
2037   return RegMask();
2038 }
2039 
2040 // Register for MODI projection of divmodI
2041 RegMask Matcher::modI_proj_mask() {
2042   ShouldNotReachHere();
2043   return RegMask();
2044 }
2045 
2046 // Register for DIVL projection of divmodL
2047 RegMask Matcher::divL_proj_mask() {
2048   ShouldNotReachHere();
2049   return RegMask();
2050 }
2051 
2052 // Register for MODL projection of divmodL
2053 RegMask Matcher::modL_proj_mask() {
2054   ShouldNotReachHere();
2055   return RegMask();
2056 }
2057 
2058 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2059   return L7_REGP_mask();
2060 }
2061 
2062 %}
2063 
2064 
2065 // The intptr_t operand types, defined by textual substitution.
2066 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2067 #ifdef _LP64
2068 #define immX      immL
2069 #define immX13    immL13
2070 #define immX13m7  immL13m7
2071 #define iRegX     iRegL
2072 #define g1RegX    g1RegL
2073 #else
2074 #define immX      immI
2075 #define immX13    immI13
2076 #define immX13m7  immI13m7
2077 #define iRegX     iRegI
2078 #define g1RegX    g1RegI
2079 #endif
2080 
2081 //----------ENCODING BLOCK-----------------------------------------------------
2082 // This block specifies the encoding classes used by the compiler to output
2083 // byte streams.  Encoding classes are parameterized macros used by
2084 // Machine Instruction Nodes in order to generate the bit encoding of the
2085 // instruction.  Operands specify their base encoding interface with the
2086 // interface keyword.  There are currently supported four interfaces,
2087 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2088 // operand to generate a function which returns its register number when
2089 // queried.   CONST_INTER causes an operand to generate a function which
2090 // returns the value of the constant when queried.  MEMORY_INTER causes an
2091 // operand to generate four functions which return the Base Register, the
2092 // Index Register, the Scale Value, and the Offset Value of the operand when
2093 // queried.  COND_INTER causes an operand to generate six functions which
2094 // return the encoding code (ie - encoding bits for the instruction)
2095 // associated with each basic boolean condition for a conditional instruction.
2096 //
2097 // Instructions specify two basic values for encoding.  Again, a function
2098 // is available to check if the constant displacement is an oop. They use the
2099 // ins_encode keyword to specify their encoding classes (which must be
2100 // a sequence of enc_class names, and their parameters, specified in
2101 // the encoding block), and they use the
2102 // opcode keyword to specify, in order, their primary, secondary, and
2103 // tertiary opcode.  Only the opcode sections which a particular instruction
2104 // needs for encoding need to be specified.
2105 encode %{
2106   enc_class enc_untested %{
2107 #ifdef ASSERT
2108     MacroAssembler _masm(&cbuf);
2109     __ untested("encoding");
2110 #endif
2111   %}
2112 
2113   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2114     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2115                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2116   %}
2117 
2118   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2119     emit_form3_mem_reg(cbuf, this, $primary, -1,
2120                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2121   %}
2122 
2123   enc_class form3_mem_prefetch_read( memory mem ) %{
2124     emit_form3_mem_reg(cbuf, this, $primary, -1,
2125                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2126   %}
2127 
2128   enc_class form3_mem_prefetch_write( memory mem ) %{
2129     emit_form3_mem_reg(cbuf, this, $primary, -1,
2130                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2131   %}
2132 
2133   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2134     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2135     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2136     guarantee($mem$$index == R_G0_enc, "double index?");
2137     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2138     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2139     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2140     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2141   %}
2142 
2143   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2144     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2145     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2146     guarantee($mem$$index == R_G0_enc, "double index?");
2147     // Load long with 2 instructions
2148     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2149     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2150   %}
2151 
2152   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2153   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2154     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2155     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2156   %}
2157 
2158   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2159     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2160     if( $rs2$$reg != $rd$$reg )
2161       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2162   %}
2163 
2164   // Target lo half of long
2165   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2166     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2167     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2168       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2169   %}
2170 
2171   // Source lo half of long
2172   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2173     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2174     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2175       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2176   %}
2177 
2178   // Target hi half of long
2179   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2180     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2181   %}
2182 
2183   // Source lo half of long, and leave it sign extended.
2184   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2185     // Sign extend low half
2186     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2187   %}
2188 
2189   // Source hi half of long, and leave it sign extended.
2190   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2191     // Shift high half to low half
2192     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2193   %}
2194 
2195   // Source hi half of long
2196   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2197     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2198     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2199       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2200   %}
2201 
2202   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2203     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2204   %}
2205 
2206   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2207     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2208     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2209   %}
2210 
2211   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2212     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2213     // clear if nothing else is happening
2214     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2215     // blt,a,pn done
2216     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2217     // mov dst,-1 in delay slot
2218     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2219   %}
2220 
2221   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2222     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2223   %}
2224 
2225   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2226     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2227   %}
2228 
2229   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2230     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2231   %}
2232 
2233   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2234     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2235   %}
2236 
2237   enc_class move_return_pc_to_o1() %{
2238     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2239   %}
2240 
2241 #ifdef _LP64
2242   /* %%% merge with enc_to_bool */
2243   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2244     MacroAssembler _masm(&cbuf);
2245 
2246     Register   src_reg = reg_to_register_object($src$$reg);
2247     Register   dst_reg = reg_to_register_object($dst$$reg);
2248     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2249   %}
2250 #endif
2251 
2252   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2253     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2254     MacroAssembler _masm(&cbuf);
2255 
2256     Register   p_reg = reg_to_register_object($p$$reg);
2257     Register   q_reg = reg_to_register_object($q$$reg);
2258     Register   y_reg = reg_to_register_object($y$$reg);
2259     Register tmp_reg = reg_to_register_object($tmp$$reg);
2260 
2261     __ subcc( p_reg, q_reg,   p_reg );
2262     __ add  ( p_reg, y_reg, tmp_reg );
2263     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2264   %}
2265 
2266   enc_class form_d2i_helper(regD src, regF dst) %{
2267     // fcmp %fcc0,$src,$src
2268     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2269     // branch %fcc0 not-nan, predict taken
2270     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2271     // fdtoi $src,$dst
2272     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2273     // fitos $dst,$dst (if nan)
2274     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2275     // clear $dst (if nan)
2276     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2277     // carry on here...
2278   %}
2279 
2280   enc_class form_d2l_helper(regD src, regD dst) %{
2281     // fcmp %fcc0,$src,$src  check for NAN
2282     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2283     // branch %fcc0 not-nan, predict taken
2284     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2285     // fdtox $src,$dst   convert in delay slot
2286     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2287     // fxtod $dst,$dst  (if nan)
2288     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2289     // clear $dst (if nan)
2290     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2291     // carry on here...
2292   %}
2293 
2294   enc_class form_f2i_helper(regF src, regF dst) %{
2295     // fcmps %fcc0,$src,$src
2296     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2297     // branch %fcc0 not-nan, predict taken
2298     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2299     // fstoi $src,$dst
2300     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2301     // fitos $dst,$dst (if nan)
2302     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2303     // clear $dst (if nan)
2304     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2305     // carry on here...
2306   %}
2307 
2308   enc_class form_f2l_helper(regF src, regD dst) %{
2309     // fcmps %fcc0,$src,$src
2310     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2311     // branch %fcc0 not-nan, predict taken
2312     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2313     // fstox $src,$dst
2314     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2315     // fxtod $dst,$dst (if nan)
2316     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2317     // clear $dst (if nan)
2318     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2319     // carry on here...
2320   %}
2321 
2322   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2323   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2324   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2325   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2326 
2327   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2328 
2329   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2330   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2331 
2332   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2333     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2334   %}
2335 
2336   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2337     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2338   %}
2339 
2340   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2341     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2342   %}
2343 
2344   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2345     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2346   %}
2347 
2348   enc_class form3_convI2F(regF rs2, regF rd) %{
2349     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2350   %}
2351 
2352   // Encloding class for traceable jumps
2353   enc_class form_jmpl(g3RegP dest) %{
2354     emit_jmpl(cbuf, $dest$$reg);
2355   %}
2356 
2357   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2358     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2359   %}
2360 
2361   enc_class form2_nop() %{
2362     emit_nop(cbuf);
2363   %}
2364 
2365   enc_class form2_illtrap() %{
2366     emit_illtrap(cbuf);
2367   %}
2368 
2369 
2370   // Compare longs and convert into -1, 0, 1.
2371   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2372     // CMP $src1,$src2
2373     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2374     // blt,a,pn done
2375     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2376     // mov dst,-1 in delay slot
2377     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2378     // bgt,a,pn done
2379     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2380     // mov dst,1 in delay slot
2381     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2382     // CLR    $dst
2383     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2384   %}
2385 
2386   enc_class enc_PartialSubtypeCheck() %{
2387     MacroAssembler _masm(&cbuf);
2388     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2389     __ delayed()->nop();
2390   %}
2391 
2392   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2393     MacroAssembler _masm(&cbuf);
2394     Label* L = $labl$$label;
2395     Assembler::Predict predict_taken =
2396       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2397 
2398     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2399     __ delayed()->nop();
2400   %}
2401 
2402   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2403     MacroAssembler _masm(&cbuf);
2404     Label* L = $labl$$label;
2405     Assembler::Predict predict_taken =
2406       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2407 
2408     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2409     __ delayed()->nop();
2410   %}
2411 
2412   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2413     int op = (Assembler::arith_op << 30) |
2414              ($dst$$reg << 25) |
2415              (Assembler::movcc_op3 << 19) |
2416              (1 << 18) |                    // cc2 bit for 'icc'
2417              ($cmp$$cmpcode << 14) |
2418              (0 << 13) |                    // select register move
2419              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2420              ($src$$reg << 0);
2421     cbuf.insts()->emit_int32(op);
2422   %}
2423 
2424   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2425     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2426     int op = (Assembler::arith_op << 30) |
2427              ($dst$$reg << 25) |
2428              (Assembler::movcc_op3 << 19) |
2429              (1 << 18) |                    // cc2 bit for 'icc'
2430              ($cmp$$cmpcode << 14) |
2431              (1 << 13) |                    // select immediate move
2432              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2433              (simm11 << 0);
2434     cbuf.insts()->emit_int32(op);
2435   %}
2436 
2437   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2438     int op = (Assembler::arith_op << 30) |
2439              ($dst$$reg << 25) |
2440              (Assembler::movcc_op3 << 19) |
2441              (0 << 18) |                    // cc2 bit for 'fccX'
2442              ($cmp$$cmpcode << 14) |
2443              (0 << 13) |                    // select register move
2444              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2445              ($src$$reg << 0);
2446     cbuf.insts()->emit_int32(op);
2447   %}
2448 
2449   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2450     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2451     int op = (Assembler::arith_op << 30) |
2452              ($dst$$reg << 25) |
2453              (Assembler::movcc_op3 << 19) |
2454              (0 << 18) |                    // cc2 bit for 'fccX'
2455              ($cmp$$cmpcode << 14) |
2456              (1 << 13) |                    // select immediate move
2457              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2458              (simm11 << 0);
2459     cbuf.insts()->emit_int32(op);
2460   %}
2461 
2462   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2463     int op = (Assembler::arith_op << 30) |
2464              ($dst$$reg << 25) |
2465              (Assembler::fpop2_op3 << 19) |
2466              (0 << 18) |
2467              ($cmp$$cmpcode << 14) |
2468              (1 << 13) |                    // select register move
2469              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2470              ($primary << 5) |              // select single, double or quad
2471              ($src$$reg << 0);
2472     cbuf.insts()->emit_int32(op);
2473   %}
2474 
2475   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2476     int op = (Assembler::arith_op << 30) |
2477              ($dst$$reg << 25) |
2478              (Assembler::fpop2_op3 << 19) |
2479              (0 << 18) |
2480              ($cmp$$cmpcode << 14) |
2481              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2482              ($primary << 5) |              // select single, double or quad
2483              ($src$$reg << 0);
2484     cbuf.insts()->emit_int32(op);
2485   %}
2486 
2487   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2488   // the condition comes from opcode-field instead of an argument.
2489   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2490     int op = (Assembler::arith_op << 30) |
2491              ($dst$$reg << 25) |
2492              (Assembler::movcc_op3 << 19) |
2493              (1 << 18) |                    // cc2 bit for 'icc'
2494              ($primary << 14) |
2495              (0 << 13) |                    // select register move
2496              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2497              ($src$$reg << 0);
2498     cbuf.insts()->emit_int32(op);
2499   %}
2500 
2501   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2502     int op = (Assembler::arith_op << 30) |
2503              ($dst$$reg << 25) |
2504              (Assembler::movcc_op3 << 19) |
2505              (6 << 16) |                    // cc2 bit for 'xcc'
2506              ($primary << 14) |
2507              (0 << 13) |                    // select register move
2508              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2509              ($src$$reg << 0);
2510     cbuf.insts()->emit_int32(op);
2511   %}
2512 
2513   enc_class Set13( immI13 src, iRegI rd ) %{
2514     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2515   %}
2516 
2517   enc_class SetHi22( immI src, iRegI rd ) %{
2518     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2519   %}
2520 
2521   enc_class Set32( immI src, iRegI rd ) %{
2522     MacroAssembler _masm(&cbuf);
2523     __ set($src$$constant, reg_to_register_object($rd$$reg));
2524   %}
2525 
2526   enc_class call_epilog %{
2527     if( VerifyStackAtCalls ) {
2528       MacroAssembler _masm(&cbuf);
2529       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2530       Register temp_reg = G3;
2531       __ add(SP, framesize, temp_reg);
2532       __ cmp(temp_reg, FP);
2533       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2534     }
2535   %}
2536 
2537   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2538   // to G1 so the register allocator will not have to deal with the misaligned register
2539   // pair.
2540   enc_class adjust_long_from_native_call %{
2541 #ifndef _LP64
2542     if (returns_long()) {
2543       //    sllx  O0,32,O0
2544       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2545       //    srl   O1,0,O1
2546       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2547       //    or    O0,O1,G1
2548       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2549     }
2550 #endif
2551   %}
2552 
2553   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2554     // CALL directly to the runtime
2555     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2556     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2557                     /*preserve_g2=*/true);
2558   %}
2559 
2560   enc_class preserve_SP %{
2561     MacroAssembler _masm(&cbuf);
2562     __ mov(SP, L7_mh_SP_save);
2563   %}
2564 
2565   enc_class restore_SP %{
2566     MacroAssembler _masm(&cbuf);
2567     __ mov(L7_mh_SP_save, SP);
2568   %}
2569 
2570   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2571     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2572     // who we intended to call.
2573     if ( !_method ) {
2574       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2575     } else if (_optimized_virtual) {
2576       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2577     } else {
2578       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2579     }
2580     if( _method ) {  // Emit stub for static call
2581       emit_java_to_interp(cbuf);
2582     }
2583   %}
2584 
2585   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2586     MacroAssembler _masm(&cbuf);
2587     __ set_inst_mark();
2588     int vtable_index = this->_vtable_index;
2589     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2590     if (vtable_index < 0) {
2591       // must be invalid_vtable_index, not nonvirtual_vtable_index
2592       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2593       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2594       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2595       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2596       __ ic_call((address)$meth$$method);
2597     } else {
2598       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2599       // Just go thru the vtable
2600       // get receiver klass (receiver already checked for non-null)
2601       // If we end up going thru a c2i adapter interpreter expects method in G5
2602       int off = __ offset();
2603       __ load_klass(O0, G3_scratch);
2604       int klass_load_size;
2605       if (UseCompressedOops && UseCompressedKlassPointers) {
2606         assert(Universe::heap() != NULL, "java heap should be initialized");
2607         if (Universe::narrow_oop_base() == NULL)
2608           klass_load_size = 2*BytesPerInstWord;
2609         else
2610           klass_load_size = 3*BytesPerInstWord;
2611       } else {
2612         klass_load_size = 1*BytesPerInstWord;
2613       }
2614       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2615       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2616       if (Assembler::is_simm13(v_off)) {
2617         __ ld_ptr(G3, v_off, G5_method);
2618       } else {
2619         // Generate 2 instructions
2620         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2621         __ or3(G5_method, v_off & 0x3ff, G5_method);
2622         // ld_ptr, set_hi, set
2623         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2624                "Unexpected instruction size(s)");
2625         __ ld_ptr(G3, G5_method, G5_method);
2626       }
2627       // NOTE: for vtable dispatches, the vtable entry will never be null.
2628       // However it may very well end up in handle_wrong_method if the
2629       // method is abstract for the particular class.
2630       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2631       // jump to target (either compiled code or c2iadapter)
2632       __ jmpl(G3_scratch, G0, O7);
2633       __ delayed()->nop();
2634     }
2635   %}
2636 
2637   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2638     MacroAssembler _masm(&cbuf);
2639 
2640     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2641     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2642                               // we might be calling a C2I adapter which needs it.
2643 
2644     assert(temp_reg != G5_ic_reg, "conflicting registers");
2645     // Load nmethod
2646     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2647 
2648     // CALL to compiled java, indirect the contents of G3
2649     __ set_inst_mark();
2650     __ callr(temp_reg, G0);
2651     __ delayed()->nop();
2652   %}
2653 
2654 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2655     MacroAssembler _masm(&cbuf);
2656     Register Rdividend = reg_to_register_object($src1$$reg);
2657     Register Rdivisor = reg_to_register_object($src2$$reg);
2658     Register Rresult = reg_to_register_object($dst$$reg);
2659 
2660     __ sra(Rdivisor, 0, Rdivisor);
2661     __ sra(Rdividend, 0, Rdividend);
2662     __ sdivx(Rdividend, Rdivisor, Rresult);
2663 %}
2664 
2665 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2666     MacroAssembler _masm(&cbuf);
2667 
2668     Register Rdividend = reg_to_register_object($src1$$reg);
2669     int divisor = $imm$$constant;
2670     Register Rresult = reg_to_register_object($dst$$reg);
2671 
2672     __ sra(Rdividend, 0, Rdividend);
2673     __ sdivx(Rdividend, divisor, Rresult);
2674 %}
2675 
2676 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2677     MacroAssembler _masm(&cbuf);
2678     Register Rsrc1 = reg_to_register_object($src1$$reg);
2679     Register Rsrc2 = reg_to_register_object($src2$$reg);
2680     Register Rdst  = reg_to_register_object($dst$$reg);
2681 
2682     __ sra( Rsrc1, 0, Rsrc1 );
2683     __ sra( Rsrc2, 0, Rsrc2 );
2684     __ mulx( Rsrc1, Rsrc2, Rdst );
2685     __ srlx( Rdst, 32, Rdst );
2686 %}
2687 
2688 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2689     MacroAssembler _masm(&cbuf);
2690     Register Rdividend = reg_to_register_object($src1$$reg);
2691     Register Rdivisor = reg_to_register_object($src2$$reg);
2692     Register Rresult = reg_to_register_object($dst$$reg);
2693     Register Rscratch = reg_to_register_object($scratch$$reg);
2694 
2695     assert(Rdividend != Rscratch, "");
2696     assert(Rdivisor  != Rscratch, "");
2697 
2698     __ sra(Rdividend, 0, Rdividend);
2699     __ sra(Rdivisor, 0, Rdivisor);
2700     __ sdivx(Rdividend, Rdivisor, Rscratch);
2701     __ mulx(Rscratch, Rdivisor, Rscratch);
2702     __ sub(Rdividend, Rscratch, Rresult);
2703 %}
2704 
2705 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2706     MacroAssembler _masm(&cbuf);
2707 
2708     Register Rdividend = reg_to_register_object($src1$$reg);
2709     int divisor = $imm$$constant;
2710     Register Rresult = reg_to_register_object($dst$$reg);
2711     Register Rscratch = reg_to_register_object($scratch$$reg);
2712 
2713     assert(Rdividend != Rscratch, "");
2714 
2715     __ sra(Rdividend, 0, Rdividend);
2716     __ sdivx(Rdividend, divisor, Rscratch);
2717     __ mulx(Rscratch, divisor, Rscratch);
2718     __ sub(Rdividend, Rscratch, Rresult);
2719 %}
2720 
2721 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2722     MacroAssembler _masm(&cbuf);
2723 
2724     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2725     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2726 
2727     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2728 %}
2729 
2730 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2731     MacroAssembler _masm(&cbuf);
2732 
2733     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2734     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2735 
2736     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2737 %}
2738 
2739 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2740     MacroAssembler _masm(&cbuf);
2741 
2742     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2743     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2744 
2745     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2746 %}
2747 
2748 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2749     MacroAssembler _masm(&cbuf);
2750 
2751     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2752     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2753 
2754     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2755 %}
2756 
2757 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2758     MacroAssembler _masm(&cbuf);
2759 
2760     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2761     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2762 
2763     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2764 %}
2765 
2766 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2767     MacroAssembler _masm(&cbuf);
2768 
2769     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2770     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2771 
2772     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2773 %}
2774 
2775 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2776     MacroAssembler _masm(&cbuf);
2777 
2778     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2779     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2780 
2781     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2782 %}
2783 
2784 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2785     MacroAssembler _masm(&cbuf);
2786 
2787     Register Roop  = reg_to_register_object($oop$$reg);
2788     Register Rbox  = reg_to_register_object($box$$reg);
2789     Register Rscratch = reg_to_register_object($scratch$$reg);
2790     Register Rmark =    reg_to_register_object($scratch2$$reg);
2791 
2792     assert(Roop  != Rscratch, "");
2793     assert(Roop  != Rmark, "");
2794     assert(Rbox  != Rscratch, "");
2795     assert(Rbox  != Rmark, "");
2796 
2797     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2798 %}
2799 
2800 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2801     MacroAssembler _masm(&cbuf);
2802 
2803     Register Roop  = reg_to_register_object($oop$$reg);
2804     Register Rbox  = reg_to_register_object($box$$reg);
2805     Register Rscratch = reg_to_register_object($scratch$$reg);
2806     Register Rmark =    reg_to_register_object($scratch2$$reg);
2807 
2808     assert(Roop  != Rscratch, "");
2809     assert(Roop  != Rmark, "");
2810     assert(Rbox  != Rscratch, "");
2811     assert(Rbox  != Rmark, "");
2812 
2813     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2814   %}
2815 
2816   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2817     MacroAssembler _masm(&cbuf);
2818     Register Rmem = reg_to_register_object($mem$$reg);
2819     Register Rold = reg_to_register_object($old$$reg);
2820     Register Rnew = reg_to_register_object($new$$reg);
2821 
2822     // casx_under_lock picks 1 of 3 encodings:
2823     // For 32-bit pointers you get a 32-bit CAS
2824     // For 64-bit pointers you get a 64-bit CASX
2825     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2826     __ cmp( Rold, Rnew );
2827   %}
2828 
2829   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2830     Register Rmem = reg_to_register_object($mem$$reg);
2831     Register Rold = reg_to_register_object($old$$reg);
2832     Register Rnew = reg_to_register_object($new$$reg);
2833 
2834     MacroAssembler _masm(&cbuf);
2835     __ mov(Rnew, O7);
2836     __ casx(Rmem, Rold, O7);
2837     __ cmp( Rold, O7 );
2838   %}
2839 
2840   // raw int cas, used for compareAndSwap
2841   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2842     Register Rmem = reg_to_register_object($mem$$reg);
2843     Register Rold = reg_to_register_object($old$$reg);
2844     Register Rnew = reg_to_register_object($new$$reg);
2845 
2846     MacroAssembler _masm(&cbuf);
2847     __ mov(Rnew, O7);
2848     __ cas(Rmem, Rold, O7);
2849     __ cmp( Rold, O7 );
2850   %}
2851 
2852   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2853     Register Rres = reg_to_register_object($res$$reg);
2854 
2855     MacroAssembler _masm(&cbuf);
2856     __ mov(1, Rres);
2857     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2858   %}
2859 
2860   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2861     Register Rres = reg_to_register_object($res$$reg);
2862 
2863     MacroAssembler _masm(&cbuf);
2864     __ mov(1, Rres);
2865     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2866   %}
2867 
2868   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2869     MacroAssembler _masm(&cbuf);
2870     Register Rdst = reg_to_register_object($dst$$reg);
2871     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2872                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2873     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2874                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2875 
2876     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2877     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2878   %}
2879 
2880 
2881   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2882     Label Ldone, Lloop;
2883     MacroAssembler _masm(&cbuf);
2884 
2885     Register   str1_reg = reg_to_register_object($str1$$reg);
2886     Register   str2_reg = reg_to_register_object($str2$$reg);
2887     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2888     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2889     Register result_reg = reg_to_register_object($result$$reg);
2890 
2891     assert(result_reg != str1_reg &&
2892            result_reg != str2_reg &&
2893            result_reg != cnt1_reg &&
2894            result_reg != cnt2_reg ,
2895            "need different registers");
2896 
2897     // Compute the minimum of the string lengths(str1_reg) and the
2898     // difference of the string lengths (stack)
2899 
2900     // See if the lengths are different, and calculate min in str1_reg.
2901     // Stash diff in O7 in case we need it for a tie-breaker.
2902     Label Lskip;
2903     __ subcc(cnt1_reg, cnt2_reg, O7);
2904     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2905     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2906     // cnt2 is shorter, so use its count:
2907     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2908     __ bind(Lskip);
2909 
2910     // reallocate cnt1_reg, cnt2_reg, result_reg
2911     // Note:  limit_reg holds the string length pre-scaled by 2
2912     Register limit_reg =   cnt1_reg;
2913     Register  chr2_reg =   cnt2_reg;
2914     Register  chr1_reg = result_reg;
2915     // str{12} are the base pointers
2916 
2917     // Is the minimum length zero?
2918     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2919     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2920     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2921 
2922     // Load first characters
2923     __ lduh(str1_reg, 0, chr1_reg);
2924     __ lduh(str2_reg, 0, chr2_reg);
2925 
2926     // Compare first characters
2927     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2928     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2929     assert(chr1_reg == result_reg, "result must be pre-placed");
2930     __ delayed()->nop();
2931 
2932     {
2933       // Check after comparing first character to see if strings are equivalent
2934       Label LSkip2;
2935       // Check if the strings start at same location
2936       __ cmp(str1_reg, str2_reg);
2937       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2938       __ delayed()->nop();
2939 
2940       // Check if the length difference is zero (in O7)
2941       __ cmp(G0, O7);
2942       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2943       __ delayed()->mov(G0, result_reg);  // result is zero
2944 
2945       // Strings might not be equal
2946       __ bind(LSkip2);
2947     }
2948 
2949     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2950     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2951     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2952 
2953     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2954     __ add(str1_reg, limit_reg, str1_reg);
2955     __ add(str2_reg, limit_reg, str2_reg);
2956     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2957 
2958     // Compare the rest of the characters
2959     __ lduh(str1_reg, limit_reg, chr1_reg);
2960     __ bind(Lloop);
2961     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2962     __ lduh(str2_reg, limit_reg, chr2_reg);
2963     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2964     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2965     assert(chr1_reg == result_reg, "result must be pre-placed");
2966     __ delayed()->inccc(limit_reg, sizeof(jchar));
2967     // annul LDUH if branch is not taken to prevent access past end of string
2968     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2969     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2970 
2971     // If strings are equal up to min length, return the length difference.
2972     __ mov(O7, result_reg);
2973 
2974     // Otherwise, return the difference between the first mismatched chars.
2975     __ bind(Ldone);
2976   %}
2977 
2978 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2979     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2980     MacroAssembler _masm(&cbuf);
2981 
2982     Register   str1_reg = reg_to_register_object($str1$$reg);
2983     Register   str2_reg = reg_to_register_object($str2$$reg);
2984     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2985     Register   tmp1_reg = O7;
2986     Register result_reg = reg_to_register_object($result$$reg);
2987 
2988     assert(result_reg != str1_reg &&
2989            result_reg != str2_reg &&
2990            result_reg !=  cnt_reg &&
2991            result_reg != tmp1_reg ,
2992            "need different registers");
2993 
2994     __ cmp(str1_reg, str2_reg); //same char[] ?
2995     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2996     __ delayed()->add(G0, 1, result_reg);
2997 
2998     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
2999     __ delayed()->add(G0, 1, result_reg); // count == 0
3000 
3001     //rename registers
3002     Register limit_reg =    cnt_reg;
3003     Register  chr1_reg = result_reg;
3004     Register  chr2_reg =   tmp1_reg;
3005 
3006     //check for alignment and position the pointers to the ends
3007     __ or3(str1_reg, str2_reg, chr1_reg);
3008     __ andcc(chr1_reg, 0x3, chr1_reg);
3009     // notZero means at least one not 4-byte aligned.
3010     // We could optimize the case when both arrays are not aligned
3011     // but it is not frequent case and it requires additional checks.
3012     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
3013     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
3014 
3015     // Compare char[] arrays aligned to 4 bytes.
3016     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
3017                           chr1_reg, chr2_reg, Ldone);
3018     __ ba(Ldone);
3019     __ delayed()->add(G0, 1, result_reg);
3020 
3021     // char by char compare
3022     __ bind(Lchar);
3023     __ add(str1_reg, limit_reg, str1_reg);
3024     __ add(str2_reg, limit_reg, str2_reg);
3025     __ neg(limit_reg); //negate count
3026 
3027     __ lduh(str1_reg, limit_reg, chr1_reg);
3028     // Lchar_loop
3029     __ bind(Lchar_loop);
3030     __ lduh(str2_reg, limit_reg, chr2_reg);
3031     __ cmp(chr1_reg, chr2_reg);
3032     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3033     __ delayed()->mov(G0, result_reg); //not equal
3034     __ inccc(limit_reg, sizeof(jchar));
3035     // annul LDUH if branch is not taken to prevent access past end of string
3036     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3037     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3038 
3039     __ add(G0, 1, result_reg);  //equal
3040 
3041     __ bind(Ldone);
3042   %}
3043 
3044 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3045     Label Lvector, Ldone, Lloop;
3046     MacroAssembler _masm(&cbuf);
3047 
3048     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3049     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3050     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3051     Register   tmp2_reg = O7;
3052     Register result_reg = reg_to_register_object($result$$reg);
3053 
3054     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3055     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3056 
3057     // return true if the same array
3058     __ cmp(ary1_reg, ary2_reg);
3059     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3060     __ delayed()->add(G0, 1, result_reg); // equal
3061 
3062     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3063     __ delayed()->mov(G0, result_reg);    // not equal
3064 
3065     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3066     __ delayed()->mov(G0, result_reg);    // not equal
3067 
3068     //load the lengths of arrays
3069     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3070     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3071 
3072     // return false if the two arrays are not equal length
3073     __ cmp(tmp1_reg, tmp2_reg);
3074     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3075     __ delayed()->mov(G0, result_reg);     // not equal
3076 
3077     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3078     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3079 
3080     // load array addresses
3081     __ add(ary1_reg, base_offset, ary1_reg);
3082     __ add(ary2_reg, base_offset, ary2_reg);
3083 
3084     // renaming registers
3085     Register chr1_reg  =  result_reg; // for characters in ary1
3086     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3087     Register limit_reg =  tmp1_reg;   // length
3088 
3089     // set byte count
3090     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3091 
3092     // Compare char[] arrays aligned to 4 bytes.
3093     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3094                           chr1_reg, chr2_reg, Ldone);
3095     __ add(G0, 1, result_reg); // equals
3096 
3097     __ bind(Ldone);
3098   %}
3099 
3100   enc_class enc_rethrow() %{
3101     cbuf.set_insts_mark();
3102     Register temp_reg = G3;
3103     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3104     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3105     MacroAssembler _masm(&cbuf);
3106 #ifdef ASSERT
3107     __ save_frame(0);
3108     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3109     __ sethi(last_rethrow_addrlit, L1);
3110     Address addr(L1, last_rethrow_addrlit.low10());
3111     __ get_pc(L2);
3112     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3113     __ st_ptr(L2, addr);
3114     __ restore();
3115 #endif
3116     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3117     __ delayed()->nop();
3118   %}
3119 
3120   enc_class emit_mem_nop() %{
3121     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3122     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3123   %}
3124 
3125   enc_class emit_fadd_nop() %{
3126     // Generates the instruction FMOVS f31,f31
3127     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3128   %}
3129 
3130   enc_class emit_br_nop() %{
3131     // Generates the instruction BPN,PN .
3132     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3133   %}
3134 
3135   enc_class enc_membar_acquire %{
3136     MacroAssembler _masm(&cbuf);
3137     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3138   %}
3139 
3140   enc_class enc_membar_release %{
3141     MacroAssembler _masm(&cbuf);
3142     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3143   %}
3144 
3145   enc_class enc_membar_volatile %{
3146     MacroAssembler _masm(&cbuf);
3147     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3148   %}
3149 
3150 %}
3151 
3152 //----------FRAME--------------------------------------------------------------
3153 // Definition of frame structure and management information.
3154 //
3155 //  S T A C K   L A Y O U T    Allocators stack-slot number
3156 //                             |   (to get allocators register number
3157 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3158 //  r   CALLER     |        |
3159 //  o     |        +--------+      pad to even-align allocators stack-slot
3160 //  w     V        |  pad0  |        numbers; owned by CALLER
3161 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3162 //  h     ^        |   in   |  5
3163 //        |        |  args  |  4   Holes in incoming args owned by SELF
3164 //  |     |        |        |  3
3165 //  |     |        +--------+
3166 //  V     |        | old out|      Empty on Intel, window on Sparc
3167 //        |    old |preserve|      Must be even aligned.
3168 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3169 //        |        |   in   |  3   area for Intel ret address
3170 //     Owned by    |preserve|      Empty on Sparc.
3171 //       SELF      +--------+
3172 //        |        |  pad2  |  2   pad to align old SP
3173 //        |        +--------+  1
3174 //        |        | locks  |  0
3175 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3176 //        |        |  pad1  | 11   pad to align new SP
3177 //        |        +--------+
3178 //        |        |        | 10
3179 //        |        | spills |  9   spills
3180 //        V        |        |  8   (pad0 slot for callee)
3181 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3182 //        ^        |  out   |  7
3183 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3184 //     Owned by    +--------+
3185 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3186 //        |    new |preserve|      Must be even-aligned.
3187 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3188 //        |        |        |
3189 //
3190 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3191 //         known from SELF's arguments and the Java calling convention.
3192 //         Region 6-7 is determined per call site.
3193 // Note 2: If the calling convention leaves holes in the incoming argument
3194 //         area, those holes are owned by SELF.  Holes in the outgoing area
3195 //         are owned by the CALLEE.  Holes should not be nessecary in the
3196 //         incoming area, as the Java calling convention is completely under
3197 //         the control of the AD file.  Doubles can be sorted and packed to
3198 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3199 //         varargs C calling conventions.
3200 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3201 //         even aligned with pad0 as needed.
3202 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3203 //         region 6-11 is even aligned; it may be padded out more so that
3204 //         the region from SP to FP meets the minimum stack alignment.
3205 
3206 frame %{
3207   // What direction does stack grow in (assumed to be same for native & Java)
3208   stack_direction(TOWARDS_LOW);
3209 
3210   // These two registers define part of the calling convention
3211   // between compiled code and the interpreter.
3212   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3213   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3214 
3215   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3216   cisc_spilling_operand_name(indOffset);
3217 
3218   // Number of stack slots consumed by a Monitor enter
3219 #ifdef _LP64
3220   sync_stack_slots(2);
3221 #else
3222   sync_stack_slots(1);
3223 #endif
3224 
3225   // Compiled code's Frame Pointer
3226   frame_pointer(R_SP);
3227 
3228   // Stack alignment requirement
3229   stack_alignment(StackAlignmentInBytes);
3230   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3231   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3232 
3233   // Number of stack slots between incoming argument block and the start of
3234   // a new frame.  The PROLOG must add this many slots to the stack.  The
3235   // EPILOG must remove this many slots.
3236   in_preserve_stack_slots(0);
3237 
3238   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3239   // for calls to C.  Supports the var-args backing area for register parms.
3240   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3241 #ifdef _LP64
3242   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3243   varargs_C_out_slots_killed(12);
3244 #else
3245   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3246   varargs_C_out_slots_killed( 7);
3247 #endif
3248 
3249   // The after-PROLOG location of the return address.  Location of
3250   // return address specifies a type (REG or STACK) and a number
3251   // representing the register number (i.e. - use a register name) or
3252   // stack slot.
3253   return_addr(REG R_I7);          // Ret Addr is in register I7
3254 
3255   // Body of function which returns an OptoRegs array locating
3256   // arguments either in registers or in stack slots for calling
3257   // java
3258   calling_convention %{
3259     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3260 
3261   %}
3262 
3263   // Body of function which returns an OptoRegs array locating
3264   // arguments either in registers or in stack slots for callin
3265   // C.
3266   c_calling_convention %{
3267     // This is obviously always outgoing
3268     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3269   %}
3270 
3271   // Location of native (C/C++) and interpreter return values.  This is specified to
3272   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3273   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3274   // to and from the register pairs is done by the appropriate call and epilog
3275   // opcodes.  This simplifies the register allocator.
3276   c_return_value %{
3277     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3278 #ifdef     _LP64
3279     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3280     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3281     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3282     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3283 #else  // !_LP64
3284     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3285     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3286     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3287     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3288 #endif
3289     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3290                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3291   %}
3292 
3293   // Location of compiled Java return values.  Same as C
3294   return_value %{
3295     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3296 #ifdef     _LP64
3297     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3298     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3299     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3300     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3301 #else  // !_LP64
3302     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3303     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3304     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3305     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3306 #endif
3307     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3308                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3309   %}
3310 
3311 %}
3312 
3313 
3314 //----------ATTRIBUTES---------------------------------------------------------
3315 //----------Operand Attributes-------------------------------------------------
3316 op_attrib op_cost(1);          // Required cost attribute
3317 
3318 //----------Instruction Attributes---------------------------------------------
3319 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3320 ins_attrib ins_size(32);           // Required size attribute (in bits)
3321 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3322 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3323                                    // non-matching short branch variant of some
3324                                                             // long branch?
3325 
3326 //----------OPERANDS-----------------------------------------------------------
3327 // Operand definitions must precede instruction definitions for correct parsing
3328 // in the ADLC because operands constitute user defined types which are used in
3329 // instruction definitions.
3330 
3331 //----------Simple Operands----------------------------------------------------
3332 // Immediate Operands
3333 // Integer Immediate: 32-bit
3334 operand immI() %{
3335   match(ConI);
3336 
3337   op_cost(0);
3338   // formats are generated automatically for constants and base registers
3339   format %{ %}
3340   interface(CONST_INTER);
3341 %}
3342 
3343 // Integer Immediate: 8-bit
3344 operand immI8() %{
3345   predicate(Assembler::is_simm8(n->get_int()));
3346   match(ConI);
3347   op_cost(0);
3348   format %{ %}
3349   interface(CONST_INTER);
3350 %}
3351 
3352 // Integer Immediate: 13-bit
3353 operand immI13() %{
3354   predicate(Assembler::is_simm13(n->get_int()));
3355   match(ConI);
3356   op_cost(0);
3357 
3358   format %{ %}
3359   interface(CONST_INTER);
3360 %}
3361 
3362 // Integer Immediate: 13-bit minus 7
3363 operand immI13m7() %{
3364   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3365   match(ConI);
3366   op_cost(0);
3367 
3368   format %{ %}
3369   interface(CONST_INTER);
3370 %}
3371 
3372 // Integer Immediate: 16-bit
3373 operand immI16() %{
3374   predicate(Assembler::is_simm16(n->get_int()));
3375   match(ConI);
3376   op_cost(0);
3377   format %{ %}
3378   interface(CONST_INTER);
3379 %}
3380 
3381 // Unsigned (positive) Integer Immediate: 13-bit
3382 operand immU13() %{
3383   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3384   match(ConI);
3385   op_cost(0);
3386 
3387   format %{ %}
3388   interface(CONST_INTER);
3389 %}
3390 
3391 // Integer Immediate: 6-bit
3392 operand immU6() %{
3393   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3394   match(ConI);
3395   op_cost(0);
3396   format %{ %}
3397   interface(CONST_INTER);
3398 %}
3399 
3400 // Integer Immediate: 11-bit
3401 operand immI11() %{
3402   predicate(Assembler::is_simm11(n->get_int()));
3403   match(ConI);
3404   op_cost(0);
3405   format %{ %}
3406   interface(CONST_INTER);
3407 %}
3408 
3409 // Integer Immediate: 5-bit
3410 operand immI5() %{
3411   predicate(Assembler::is_simm5(n->get_int()));
3412   match(ConI);
3413   op_cost(0);
3414   format %{ %}
3415   interface(CONST_INTER);
3416 %}
3417 
3418 // Integer Immediate: 0-bit
3419 operand immI0() %{
3420   predicate(n->get_int() == 0);
3421   match(ConI);
3422   op_cost(0);
3423 
3424   format %{ %}
3425   interface(CONST_INTER);
3426 %}
3427 
3428 // Integer Immediate: the value 10
3429 operand immI10() %{
3430   predicate(n->get_int() == 10);
3431   match(ConI);
3432   op_cost(0);
3433 
3434   format %{ %}
3435   interface(CONST_INTER);
3436 %}
3437 
3438 // Integer Immediate: the values 0-31
3439 operand immU5() %{
3440   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3441   match(ConI);
3442   op_cost(0);
3443 
3444   format %{ %}
3445   interface(CONST_INTER);
3446 %}
3447 
3448 // Integer Immediate: the values 1-31
3449 operand immI_1_31() %{
3450   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3451   match(ConI);
3452   op_cost(0);
3453 
3454   format %{ %}
3455   interface(CONST_INTER);
3456 %}
3457 
3458 // Integer Immediate: the values 32-63
3459 operand immI_32_63() %{
3460   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3461   match(ConI);
3462   op_cost(0);
3463 
3464   format %{ %}
3465   interface(CONST_INTER);
3466 %}
3467 
3468 // Immediates for special shifts (sign extend)
3469 
3470 // Integer Immediate: the value 16
3471 operand immI_16() %{
3472   predicate(n->get_int() == 16);
3473   match(ConI);
3474   op_cost(0);
3475 
3476   format %{ %}
3477   interface(CONST_INTER);
3478 %}
3479 
3480 // Integer Immediate: the value 24
3481 operand immI_24() %{
3482   predicate(n->get_int() == 24);
3483   match(ConI);
3484   op_cost(0);
3485 
3486   format %{ %}
3487   interface(CONST_INTER);
3488 %}
3489 
3490 // Integer Immediate: the value 255
3491 operand immI_255() %{
3492   predicate( n->get_int() == 255 );
3493   match(ConI);
3494   op_cost(0);
3495 
3496   format %{ %}
3497   interface(CONST_INTER);
3498 %}
3499 
3500 // Integer Immediate: the value 65535
3501 operand immI_65535() %{
3502   predicate(n->get_int() == 65535);
3503   match(ConI);
3504   op_cost(0);
3505 
3506   format %{ %}
3507   interface(CONST_INTER);
3508 %}
3509 
3510 // Long Immediate: the value FF
3511 operand immL_FF() %{
3512   predicate( n->get_long() == 0xFFL );
3513   match(ConL);
3514   op_cost(0);
3515 
3516   format %{ %}
3517   interface(CONST_INTER);
3518 %}
3519 
3520 // Long Immediate: the value FFFF
3521 operand immL_FFFF() %{
3522   predicate( n->get_long() == 0xFFFFL );
3523   match(ConL);
3524   op_cost(0);
3525 
3526   format %{ %}
3527   interface(CONST_INTER);
3528 %}
3529 
3530 // Pointer Immediate: 32 or 64-bit
3531 operand immP() %{
3532   match(ConP);
3533 
3534   op_cost(5);
3535   // formats are generated automatically for constants and base registers
3536   format %{ %}
3537   interface(CONST_INTER);
3538 %}
3539 
3540 #ifdef _LP64
3541 // Pointer Immediate: 64-bit
3542 operand immP_set() %{
3543   predicate(!VM_Version::is_niagara_plus());
3544   match(ConP);
3545 
3546   op_cost(5);
3547   // formats are generated automatically for constants and base registers
3548   format %{ %}
3549   interface(CONST_INTER);
3550 %}
3551 
3552 // Pointer Immediate: 64-bit
3553 // From Niagara2 processors on a load should be better than materializing.
3554 operand immP_load() %{
3555   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3556   match(ConP);
3557 
3558   op_cost(5);
3559   // formats are generated automatically for constants and base registers
3560   format %{ %}
3561   interface(CONST_INTER);
3562 %}
3563 
3564 // Pointer Immediate: 64-bit
3565 operand immP_no_oop_cheap() %{
3566   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3567   match(ConP);
3568 
3569   op_cost(5);
3570   // formats are generated automatically for constants and base registers
3571   format %{ %}
3572   interface(CONST_INTER);
3573 %}
3574 #endif
3575 
3576 operand immP13() %{
3577   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3578   match(ConP);
3579   op_cost(0);
3580 
3581   format %{ %}
3582   interface(CONST_INTER);
3583 %}
3584 
3585 operand immP0() %{
3586   predicate(n->get_ptr() == 0);
3587   match(ConP);
3588   op_cost(0);
3589 
3590   format %{ %}
3591   interface(CONST_INTER);
3592 %}
3593 
3594 operand immP_poll() %{
3595   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3596   match(ConP);
3597 
3598   // formats are generated automatically for constants and base registers
3599   format %{ %}
3600   interface(CONST_INTER);
3601 %}
3602 
3603 // Pointer Immediate
3604 operand immN()
3605 %{
3606   match(ConN);
3607 
3608   op_cost(10);
3609   format %{ %}
3610   interface(CONST_INTER);
3611 %}
3612 
3613 // NULL Pointer Immediate
3614 operand immN0()
3615 %{
3616   predicate(n->get_narrowcon() == 0);
3617   match(ConN);
3618 
3619   op_cost(0);
3620   format %{ %}
3621   interface(CONST_INTER);
3622 %}
3623 
3624 operand immL() %{
3625   match(ConL);
3626   op_cost(40);
3627   // formats are generated automatically for constants and base registers
3628   format %{ %}
3629   interface(CONST_INTER);
3630 %}
3631 
3632 operand immL0() %{
3633   predicate(n->get_long() == 0L);
3634   match(ConL);
3635   op_cost(0);
3636   // formats are generated automatically for constants and base registers
3637   format %{ %}
3638   interface(CONST_INTER);
3639 %}
3640 
3641 // Integer Immediate: 5-bit
3642 operand immL5() %{
3643   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3644   match(ConL);
3645   op_cost(0);
3646   format %{ %}
3647   interface(CONST_INTER);
3648 %}
3649 
3650 // Long Immediate: 13-bit
3651 operand immL13() %{
3652   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3653   match(ConL);
3654   op_cost(0);
3655 
3656   format %{ %}
3657   interface(CONST_INTER);
3658 %}
3659 
3660 // Long Immediate: 13-bit minus 7
3661 operand immL13m7() %{
3662   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3663   match(ConL);
3664   op_cost(0);
3665 
3666   format %{ %}
3667   interface(CONST_INTER);
3668 %}
3669 
3670 // Long Immediate: low 32-bit mask
3671 operand immL_32bits() %{
3672   predicate(n->get_long() == 0xFFFFFFFFL);
3673   match(ConL);
3674   op_cost(0);
3675 
3676   format %{ %}
3677   interface(CONST_INTER);
3678 %}
3679 
3680 // Long Immediate: cheap (materialize in <= 3 instructions)
3681 operand immL_cheap() %{
3682   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3683   match(ConL);
3684   op_cost(0);
3685 
3686   format %{ %}
3687   interface(CONST_INTER);
3688 %}
3689 
3690 // Long Immediate: expensive (materialize in > 3 instructions)
3691 operand immL_expensive() %{
3692   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3693   match(ConL);
3694   op_cost(0);
3695 
3696   format %{ %}
3697   interface(CONST_INTER);
3698 %}
3699 
3700 // Double Immediate
3701 operand immD() %{
3702   match(ConD);
3703 
3704   op_cost(40);
3705   format %{ %}
3706   interface(CONST_INTER);
3707 %}
3708 
3709 operand immD0() %{
3710 #ifdef _LP64
3711   // on 64-bit architectures this comparision is faster
3712   predicate(jlong_cast(n->getd()) == 0);
3713 #else
3714   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3715 #endif
3716   match(ConD);
3717 
3718   op_cost(0);
3719   format %{ %}
3720   interface(CONST_INTER);
3721 %}
3722 
3723 // Float Immediate
3724 operand immF() %{
3725   match(ConF);
3726 
3727   op_cost(20);
3728   format %{ %}
3729   interface(CONST_INTER);
3730 %}
3731 
3732 // Float Immediate: 0
3733 operand immF0() %{
3734   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3735   match(ConF);
3736 
3737   op_cost(0);
3738   format %{ %}
3739   interface(CONST_INTER);
3740 %}
3741 
3742 // Integer Register Operands
3743 // Integer Register
3744 operand iRegI() %{
3745   constraint(ALLOC_IN_RC(int_reg));
3746   match(RegI);
3747 
3748   match(notemp_iRegI);
3749   match(g1RegI);
3750   match(o0RegI);
3751   match(iRegIsafe);
3752 
3753   format %{ %}
3754   interface(REG_INTER);
3755 %}
3756 
3757 operand notemp_iRegI() %{
3758   constraint(ALLOC_IN_RC(notemp_int_reg));
3759   match(RegI);
3760 
3761   match(o0RegI);
3762 
3763   format %{ %}
3764   interface(REG_INTER);
3765 %}
3766 
3767 operand o0RegI() %{
3768   constraint(ALLOC_IN_RC(o0_regI));
3769   match(iRegI);
3770 
3771   format %{ %}
3772   interface(REG_INTER);
3773 %}
3774 
3775 // Pointer Register
3776 operand iRegP() %{
3777   constraint(ALLOC_IN_RC(ptr_reg));
3778   match(RegP);
3779 
3780   match(lock_ptr_RegP);
3781   match(g1RegP);
3782   match(g2RegP);
3783   match(g3RegP);
3784   match(g4RegP);
3785   match(i0RegP);
3786   match(o0RegP);
3787   match(o1RegP);
3788   match(l7RegP);
3789 
3790   format %{ %}
3791   interface(REG_INTER);
3792 %}
3793 
3794 operand sp_ptr_RegP() %{
3795   constraint(ALLOC_IN_RC(sp_ptr_reg));
3796   match(RegP);
3797   match(iRegP);
3798 
3799   format %{ %}
3800   interface(REG_INTER);
3801 %}
3802 
3803 operand lock_ptr_RegP() %{
3804   constraint(ALLOC_IN_RC(lock_ptr_reg));
3805   match(RegP);
3806   match(i0RegP);
3807   match(o0RegP);
3808   match(o1RegP);
3809   match(l7RegP);
3810 
3811   format %{ %}
3812   interface(REG_INTER);
3813 %}
3814 
3815 operand g1RegP() %{
3816   constraint(ALLOC_IN_RC(g1_regP));
3817   match(iRegP);
3818 
3819   format %{ %}
3820   interface(REG_INTER);
3821 %}
3822 
3823 operand g2RegP() %{
3824   constraint(ALLOC_IN_RC(g2_regP));
3825   match(iRegP);
3826 
3827   format %{ %}
3828   interface(REG_INTER);
3829 %}
3830 
3831 operand g3RegP() %{
3832   constraint(ALLOC_IN_RC(g3_regP));
3833   match(iRegP);
3834 
3835   format %{ %}
3836   interface(REG_INTER);
3837 %}
3838 
3839 operand g1RegI() %{
3840   constraint(ALLOC_IN_RC(g1_regI));
3841   match(iRegI);
3842 
3843   format %{ %}
3844   interface(REG_INTER);
3845 %}
3846 
3847 operand g3RegI() %{
3848   constraint(ALLOC_IN_RC(g3_regI));
3849   match(iRegI);
3850 
3851   format %{ %}
3852   interface(REG_INTER);
3853 %}
3854 
3855 operand g4RegI() %{
3856   constraint(ALLOC_IN_RC(g4_regI));
3857   match(iRegI);
3858 
3859   format %{ %}
3860   interface(REG_INTER);
3861 %}
3862 
3863 operand g4RegP() %{
3864   constraint(ALLOC_IN_RC(g4_regP));
3865   match(iRegP);
3866 
3867   format %{ %}
3868   interface(REG_INTER);
3869 %}
3870 
3871 operand i0RegP() %{
3872   constraint(ALLOC_IN_RC(i0_regP));
3873   match(iRegP);
3874 
3875   format %{ %}
3876   interface(REG_INTER);
3877 %}
3878 
3879 operand o0RegP() %{
3880   constraint(ALLOC_IN_RC(o0_regP));
3881   match(iRegP);
3882 
3883   format %{ %}
3884   interface(REG_INTER);
3885 %}
3886 
3887 operand o1RegP() %{
3888   constraint(ALLOC_IN_RC(o1_regP));
3889   match(iRegP);
3890 
3891   format %{ %}
3892   interface(REG_INTER);
3893 %}
3894 
3895 operand o2RegP() %{
3896   constraint(ALLOC_IN_RC(o2_regP));
3897   match(iRegP);
3898 
3899   format %{ %}
3900   interface(REG_INTER);
3901 %}
3902 
3903 operand o7RegP() %{
3904   constraint(ALLOC_IN_RC(o7_regP));
3905   match(iRegP);
3906 
3907   format %{ %}
3908   interface(REG_INTER);
3909 %}
3910 
3911 operand l7RegP() %{
3912   constraint(ALLOC_IN_RC(l7_regP));
3913   match(iRegP);
3914 
3915   format %{ %}
3916   interface(REG_INTER);
3917 %}
3918 
3919 operand o7RegI() %{
3920   constraint(ALLOC_IN_RC(o7_regI));
3921   match(iRegI);
3922 
3923   format %{ %}
3924   interface(REG_INTER);
3925 %}
3926 
3927 operand iRegN() %{
3928   constraint(ALLOC_IN_RC(int_reg));
3929   match(RegN);
3930 
3931   format %{ %}
3932   interface(REG_INTER);
3933 %}
3934 
3935 // Long Register
3936 operand iRegL() %{
3937   constraint(ALLOC_IN_RC(long_reg));
3938   match(RegL);
3939 
3940   format %{ %}
3941   interface(REG_INTER);
3942 %}
3943 
3944 operand o2RegL() %{
3945   constraint(ALLOC_IN_RC(o2_regL));
3946   match(iRegL);
3947 
3948   format %{ %}
3949   interface(REG_INTER);
3950 %}
3951 
3952 operand o7RegL() %{
3953   constraint(ALLOC_IN_RC(o7_regL));
3954   match(iRegL);
3955 
3956   format %{ %}
3957   interface(REG_INTER);
3958 %}
3959 
3960 operand g1RegL() %{
3961   constraint(ALLOC_IN_RC(g1_regL));
3962   match(iRegL);
3963 
3964   format %{ %}
3965   interface(REG_INTER);
3966 %}
3967 
3968 operand g3RegL() %{
3969   constraint(ALLOC_IN_RC(g3_regL));
3970   match(iRegL);
3971 
3972   format %{ %}
3973   interface(REG_INTER);
3974 %}
3975 
3976 // Int Register safe
3977 // This is 64bit safe
3978 operand iRegIsafe() %{
3979   constraint(ALLOC_IN_RC(long_reg));
3980 
3981   match(iRegI);
3982 
3983   format %{ %}
3984   interface(REG_INTER);
3985 %}
3986 
3987 // Condition Code Flag Register
3988 operand flagsReg() %{
3989   constraint(ALLOC_IN_RC(int_flags));
3990   match(RegFlags);
3991 
3992   format %{ "ccr" %} // both ICC and XCC
3993   interface(REG_INTER);
3994 %}
3995 
3996 // Condition Code Register, unsigned comparisons.
3997 operand flagsRegU() %{
3998   constraint(ALLOC_IN_RC(int_flags));
3999   match(RegFlags);
4000 
4001   format %{ "icc_U" %}
4002   interface(REG_INTER);
4003 %}
4004 
4005 // Condition Code Register, pointer comparisons.
4006 operand flagsRegP() %{
4007   constraint(ALLOC_IN_RC(int_flags));
4008   match(RegFlags);
4009 
4010 #ifdef _LP64
4011   format %{ "xcc_P" %}
4012 #else
4013   format %{ "icc_P" %}
4014 #endif
4015   interface(REG_INTER);
4016 %}
4017 
4018 // Condition Code Register, long comparisons.
4019 operand flagsRegL() %{
4020   constraint(ALLOC_IN_RC(int_flags));
4021   match(RegFlags);
4022 
4023   format %{ "xcc_L" %}
4024   interface(REG_INTER);
4025 %}
4026 
4027 // Condition Code Register, floating comparisons, unordered same as "less".
4028 operand flagsRegF() %{
4029   constraint(ALLOC_IN_RC(float_flags));
4030   match(RegFlags);
4031   match(flagsRegF0);
4032 
4033   format %{ %}
4034   interface(REG_INTER);
4035 %}
4036 
4037 operand flagsRegF0() %{
4038   constraint(ALLOC_IN_RC(float_flag0));
4039   match(RegFlags);
4040 
4041   format %{ %}
4042   interface(REG_INTER);
4043 %}
4044 
4045 
4046 // Condition Code Flag Register used by long compare
4047 operand flagsReg_long_LTGE() %{
4048   constraint(ALLOC_IN_RC(int_flags));
4049   match(RegFlags);
4050   format %{ "icc_LTGE" %}
4051   interface(REG_INTER);
4052 %}
4053 operand flagsReg_long_EQNE() %{
4054   constraint(ALLOC_IN_RC(int_flags));
4055   match(RegFlags);
4056   format %{ "icc_EQNE" %}
4057   interface(REG_INTER);
4058 %}
4059 operand flagsReg_long_LEGT() %{
4060   constraint(ALLOC_IN_RC(int_flags));
4061   match(RegFlags);
4062   format %{ "icc_LEGT" %}
4063   interface(REG_INTER);
4064 %}
4065 
4066 
4067 operand regD() %{
4068   constraint(ALLOC_IN_RC(dflt_reg));
4069   match(RegD);
4070 
4071   match(regD_low);
4072 
4073   format %{ %}
4074   interface(REG_INTER);
4075 %}
4076 
4077 operand regF() %{
4078   constraint(ALLOC_IN_RC(sflt_reg));
4079   match(RegF);
4080 
4081   format %{ %}
4082   interface(REG_INTER);
4083 %}
4084 
4085 operand regD_low() %{
4086   constraint(ALLOC_IN_RC(dflt_low_reg));
4087   match(regD);
4088 
4089   format %{ %}
4090   interface(REG_INTER);
4091 %}
4092 
4093 // Special Registers
4094 
4095 // Method Register
4096 operand inline_cache_regP(iRegP reg) %{
4097   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4098   match(reg);
4099   format %{ %}
4100   interface(REG_INTER);
4101 %}
4102 
4103 operand interpreter_method_oop_regP(iRegP reg) %{
4104   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4105   match(reg);
4106   format %{ %}
4107   interface(REG_INTER);
4108 %}
4109 
4110 
4111 //----------Complex Operands---------------------------------------------------
4112 // Indirect Memory Reference
4113 operand indirect(sp_ptr_RegP reg) %{
4114   constraint(ALLOC_IN_RC(sp_ptr_reg));
4115   match(reg);
4116 
4117   op_cost(100);
4118   format %{ "[$reg]" %}
4119   interface(MEMORY_INTER) %{
4120     base($reg);
4121     index(0x0);
4122     scale(0x0);
4123     disp(0x0);
4124   %}
4125 %}
4126 
4127 // Indirect with simm13 Offset
4128 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4129   constraint(ALLOC_IN_RC(sp_ptr_reg));
4130   match(AddP reg offset);
4131 
4132   op_cost(100);
4133   format %{ "[$reg + $offset]" %}
4134   interface(MEMORY_INTER) %{
4135     base($reg);
4136     index(0x0);
4137     scale(0x0);
4138     disp($offset);
4139   %}
4140 %}
4141 
4142 // Indirect with simm13 Offset minus 7
4143 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4144   constraint(ALLOC_IN_RC(sp_ptr_reg));
4145   match(AddP reg offset);
4146 
4147   op_cost(100);
4148   format %{ "[$reg + $offset]" %}
4149   interface(MEMORY_INTER) %{
4150     base($reg);
4151     index(0x0);
4152     scale(0x0);
4153     disp($offset);
4154   %}
4155 %}
4156 
4157 // Note:  Intel has a swapped version also, like this:
4158 //operand indOffsetX(iRegI reg, immP offset) %{
4159 //  constraint(ALLOC_IN_RC(int_reg));
4160 //  match(AddP offset reg);
4161 //
4162 //  op_cost(100);
4163 //  format %{ "[$reg + $offset]" %}
4164 //  interface(MEMORY_INTER) %{
4165 //    base($reg);
4166 //    index(0x0);
4167 //    scale(0x0);
4168 //    disp($offset);
4169 //  %}
4170 //%}
4171 //// However, it doesn't make sense for SPARC, since
4172 // we have no particularly good way to embed oops in
4173 // single instructions.
4174 
4175 // Indirect with Register Index
4176 operand indIndex(iRegP addr, iRegX index) %{
4177   constraint(ALLOC_IN_RC(ptr_reg));
4178   match(AddP addr index);
4179 
4180   op_cost(100);
4181   format %{ "[$addr + $index]" %}
4182   interface(MEMORY_INTER) %{
4183     base($addr);
4184     index($index);
4185     scale(0x0);
4186     disp(0x0);
4187   %}
4188 %}
4189 
4190 //----------Special Memory Operands--------------------------------------------
4191 // Stack Slot Operand - This operand is used for loading and storing temporary
4192 //                      values on the stack where a match requires a value to
4193 //                      flow through memory.
4194 operand stackSlotI(sRegI reg) %{
4195   constraint(ALLOC_IN_RC(stack_slots));
4196   op_cost(100);
4197   //match(RegI);
4198   format %{ "[$reg]" %}
4199   interface(MEMORY_INTER) %{
4200     base(0xE);   // R_SP
4201     index(0x0);
4202     scale(0x0);
4203     disp($reg);  // Stack Offset
4204   %}
4205 %}
4206 
4207 operand stackSlotP(sRegP reg) %{
4208   constraint(ALLOC_IN_RC(stack_slots));
4209   op_cost(100);
4210   //match(RegP);
4211   format %{ "[$reg]" %}
4212   interface(MEMORY_INTER) %{
4213     base(0xE);   // R_SP
4214     index(0x0);
4215     scale(0x0);
4216     disp($reg);  // Stack Offset
4217   %}
4218 %}
4219 
4220 operand stackSlotF(sRegF reg) %{
4221   constraint(ALLOC_IN_RC(stack_slots));
4222   op_cost(100);
4223   //match(RegF);
4224   format %{ "[$reg]" %}
4225   interface(MEMORY_INTER) %{
4226     base(0xE);   // R_SP
4227     index(0x0);
4228     scale(0x0);
4229     disp($reg);  // Stack Offset
4230   %}
4231 %}
4232 operand stackSlotD(sRegD reg) %{
4233   constraint(ALLOC_IN_RC(stack_slots));
4234   op_cost(100);
4235   //match(RegD);
4236   format %{ "[$reg]" %}
4237   interface(MEMORY_INTER) %{
4238     base(0xE);   // R_SP
4239     index(0x0);
4240     scale(0x0);
4241     disp($reg);  // Stack Offset
4242   %}
4243 %}
4244 operand stackSlotL(sRegL reg) %{
4245   constraint(ALLOC_IN_RC(stack_slots));
4246   op_cost(100);
4247   //match(RegL);
4248   format %{ "[$reg]" %}
4249   interface(MEMORY_INTER) %{
4250     base(0xE);   // R_SP
4251     index(0x0);
4252     scale(0x0);
4253     disp($reg);  // Stack Offset
4254   %}
4255 %}
4256 
4257 // Operands for expressing Control Flow
4258 // NOTE:  Label is a predefined operand which should not be redefined in
4259 //        the AD file.  It is generically handled within the ADLC.
4260 
4261 //----------Conditional Branch Operands----------------------------------------
4262 // Comparison Op  - This is the operation of the comparison, and is limited to
4263 //                  the following set of codes:
4264 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4265 //
4266 // Other attributes of the comparison, such as unsignedness, are specified
4267 // by the comparison instruction that sets a condition code flags register.
4268 // That result is represented by a flags operand whose subtype is appropriate
4269 // to the unsignedness (etc.) of the comparison.
4270 //
4271 // Later, the instruction which matches both the Comparison Op (a Bool) and
4272 // the flags (produced by the Cmp) specifies the coding of the comparison op
4273 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4274 
4275 operand cmpOp() %{
4276   match(Bool);
4277 
4278   format %{ "" %}
4279   interface(COND_INTER) %{
4280     equal(0x1);
4281     not_equal(0x9);
4282     less(0x3);
4283     greater_equal(0xB);
4284     less_equal(0x2);
4285     greater(0xA);
4286   %}
4287 %}
4288 
4289 // Comparison Op, unsigned
4290 operand cmpOpU() %{
4291   match(Bool);
4292 
4293   format %{ "u" %}
4294   interface(COND_INTER) %{
4295     equal(0x1);
4296     not_equal(0x9);
4297     less(0x5);
4298     greater_equal(0xD);
4299     less_equal(0x4);
4300     greater(0xC);
4301   %}
4302 %}
4303 
4304 // Comparison Op, pointer (same as unsigned)
4305 operand cmpOpP() %{
4306   match(Bool);
4307 
4308   format %{ "p" %}
4309   interface(COND_INTER) %{
4310     equal(0x1);
4311     not_equal(0x9);
4312     less(0x5);
4313     greater_equal(0xD);
4314     less_equal(0x4);
4315     greater(0xC);
4316   %}
4317 %}
4318 
4319 // Comparison Op, branch-register encoding
4320 operand cmpOp_reg() %{
4321   match(Bool);
4322 
4323   format %{ "" %}
4324   interface(COND_INTER) %{
4325     equal        (0x1);
4326     not_equal    (0x5);
4327     less         (0x3);
4328     greater_equal(0x7);
4329     less_equal   (0x2);
4330     greater      (0x6);
4331   %}
4332 %}
4333 
4334 // Comparison Code, floating, unordered same as less
4335 operand cmpOpF() %{
4336   match(Bool);
4337 
4338   format %{ "fl" %}
4339   interface(COND_INTER) %{
4340     equal(0x9);
4341     not_equal(0x1);
4342     less(0x3);
4343     greater_equal(0xB);
4344     less_equal(0xE);
4345     greater(0x6);
4346   %}
4347 %}
4348 
4349 // Used by long compare
4350 operand cmpOp_commute() %{
4351   match(Bool);
4352 
4353   format %{ "" %}
4354   interface(COND_INTER) %{
4355     equal(0x1);
4356     not_equal(0x9);
4357     less(0xA);
4358     greater_equal(0x2);
4359     less_equal(0xB);
4360     greater(0x3);
4361   %}
4362 %}
4363 
4364 //----------OPERAND CLASSES----------------------------------------------------
4365 // Operand Classes are groups of operands that are used to simplify
4366 // instruction definitions by not requiring the AD writer to specify separate
4367 // instructions for every form of operand when the instruction accepts
4368 // multiple operand types with the same basic encoding and format.  The classic
4369 // case of this is memory operands.
4370 opclass memory( indirect, indOffset13, indIndex );
4371 opclass indIndexMemory( indIndex );
4372 
4373 //----------PIPELINE-----------------------------------------------------------
4374 pipeline %{
4375 
4376 //----------ATTRIBUTES---------------------------------------------------------
4377 attributes %{
4378   fixed_size_instructions;           // Fixed size instructions
4379   branch_has_delay_slot;             // Branch has delay slot following
4380   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4381   instruction_unit_size = 4;         // An instruction is 4 bytes long
4382   instruction_fetch_unit_size = 16;  // The processor fetches one line
4383   instruction_fetch_units = 1;       // of 16 bytes
4384 
4385   // List of nop instructions
4386   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4387 %}
4388 
4389 //----------RESOURCES----------------------------------------------------------
4390 // Resources are the functional units available to the machine
4391 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4392 
4393 //----------PIPELINE DESCRIPTION-----------------------------------------------
4394 // Pipeline Description specifies the stages in the machine's pipeline
4395 
4396 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4397 
4398 //----------PIPELINE CLASSES---------------------------------------------------
4399 // Pipeline Classes describe the stages in which input and output are
4400 // referenced by the hardware pipeline.
4401 
4402 // Integer ALU reg-reg operation
4403 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4404     single_instruction;
4405     dst   : E(write);
4406     src1  : R(read);
4407     src2  : R(read);
4408     IALU  : R;
4409 %}
4410 
4411 // Integer ALU reg-reg long operation
4412 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4413     instruction_count(2);
4414     dst   : E(write);
4415     src1  : R(read);
4416     src2  : R(read);
4417     IALU  : R;
4418     IALU  : R;
4419 %}
4420 
4421 // Integer ALU reg-reg long dependent operation
4422 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4423     instruction_count(1); multiple_bundles;
4424     dst   : E(write);
4425     src1  : R(read);
4426     src2  : R(read);
4427     cr    : E(write);
4428     IALU  : R(2);
4429 %}
4430 
4431 // Integer ALU reg-imm operaion
4432 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4433     single_instruction;
4434     dst   : E(write);
4435     src1  : R(read);
4436     IALU  : R;
4437 %}
4438 
4439 // Integer ALU reg-reg operation with condition code
4440 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4441     single_instruction;
4442     dst   : E(write);
4443     cr    : E(write);
4444     src1  : R(read);
4445     src2  : R(read);
4446     IALU  : R;
4447 %}
4448 
4449 // Integer ALU reg-imm operation with condition code
4450 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4451     single_instruction;
4452     dst   : E(write);
4453     cr    : E(write);
4454     src1  : R(read);
4455     IALU  : R;
4456 %}
4457 
4458 // Integer ALU zero-reg operation
4459 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4460     single_instruction;
4461     dst   : E(write);
4462     src2  : R(read);
4463     IALU  : R;
4464 %}
4465 
4466 // Integer ALU zero-reg operation with condition code only
4467 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4468     single_instruction;
4469     cr    : E(write);
4470     src   : R(read);
4471     IALU  : R;
4472 %}
4473 
4474 // Integer ALU reg-reg operation with condition code only
4475 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4476     single_instruction;
4477     cr    : E(write);
4478     src1  : R(read);
4479     src2  : R(read);
4480     IALU  : R;
4481 %}
4482 
4483 // Integer ALU reg-imm operation with condition code only
4484 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4485     single_instruction;
4486     cr    : E(write);
4487     src1  : R(read);
4488     IALU  : R;
4489 %}
4490 
4491 // Integer ALU reg-reg-zero operation with condition code only
4492 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4493     single_instruction;
4494     cr    : E(write);
4495     src1  : R(read);
4496     src2  : R(read);
4497     IALU  : R;
4498 %}
4499 
4500 // Integer ALU reg-imm-zero operation with condition code only
4501 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4502     single_instruction;
4503     cr    : E(write);
4504     src1  : R(read);
4505     IALU  : R;
4506 %}
4507 
4508 // Integer ALU reg-reg operation with condition code, src1 modified
4509 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4510     single_instruction;
4511     cr    : E(write);
4512     src1  : E(write);
4513     src1  : R(read);
4514     src2  : R(read);
4515     IALU  : R;
4516 %}
4517 
4518 // Integer ALU reg-imm operation with condition code, src1 modified
4519 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4520     single_instruction;
4521     cr    : E(write);
4522     src1  : E(write);
4523     src1  : R(read);
4524     IALU  : R;
4525 %}
4526 
4527 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4528     multiple_bundles;
4529     dst   : E(write)+4;
4530     cr    : E(write);
4531     src1  : R(read);
4532     src2  : R(read);
4533     IALU  : R(3);
4534     BR    : R(2);
4535 %}
4536 
4537 // Integer ALU operation
4538 pipe_class ialu_none(iRegI dst) %{
4539     single_instruction;
4540     dst   : E(write);
4541     IALU  : R;
4542 %}
4543 
4544 // Integer ALU reg operation
4545 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4546     single_instruction; may_have_no_code;
4547     dst   : E(write);
4548     src   : R(read);
4549     IALU  : R;
4550 %}
4551 
4552 // Integer ALU reg conditional operation
4553 // This instruction has a 1 cycle stall, and cannot execute
4554 // in the same cycle as the instruction setting the condition
4555 // code. We kludge this by pretending to read the condition code
4556 // 1 cycle earlier, and by marking the functional units as busy
4557 // for 2 cycles with the result available 1 cycle later than
4558 // is really the case.
4559 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4560     single_instruction;
4561     op2_out : C(write);
4562     op1     : R(read);
4563     cr      : R(read);       // This is really E, with a 1 cycle stall
4564     BR      : R(2);
4565     MS      : R(2);
4566 %}
4567 
4568 #ifdef _LP64
4569 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4570     instruction_count(1); multiple_bundles;
4571     dst     : C(write)+1;
4572     src     : R(read)+1;
4573     IALU    : R(1);
4574     BR      : E(2);
4575     MS      : E(2);
4576 %}
4577 #endif
4578 
4579 // Integer ALU reg operation
4580 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4581     single_instruction; may_have_no_code;
4582     dst   : E(write);
4583     src   : R(read);
4584     IALU  : R;
4585 %}
4586 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4587     single_instruction; may_have_no_code;
4588     dst   : E(write);
4589     src   : R(read);
4590     IALU  : R;
4591 %}
4592 
4593 // Two integer ALU reg operations
4594 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4595     instruction_count(2);
4596     dst   : E(write);
4597     src   : R(read);
4598     A0    : R;
4599     A1    : R;
4600 %}
4601 
4602 // Two integer ALU reg operations
4603 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4604     instruction_count(2); may_have_no_code;
4605     dst   : E(write);
4606     src   : R(read);
4607     A0    : R;
4608     A1    : R;
4609 %}
4610 
4611 // Integer ALU imm operation
4612 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4613     single_instruction;
4614     dst   : E(write);
4615     IALU  : R;
4616 %}
4617 
4618 // Integer ALU reg-reg with carry operation
4619 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4620     single_instruction;
4621     dst   : E(write);
4622     src1  : R(read);
4623     src2  : R(read);
4624     IALU  : R;
4625 %}
4626 
4627 // Integer ALU cc operation
4628 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4629     single_instruction;
4630     dst   : E(write);
4631     cc    : R(read);
4632     IALU  : R;
4633 %}
4634 
4635 // Integer ALU cc / second IALU operation
4636 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4637     instruction_count(1); multiple_bundles;
4638     dst   : E(write)+1;
4639     src   : R(read);
4640     IALU  : R;
4641 %}
4642 
4643 // Integer ALU cc / second IALU operation
4644 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4645     instruction_count(1); multiple_bundles;
4646     dst   : E(write)+1;
4647     p     : R(read);
4648     q     : R(read);
4649     IALU  : R;
4650 %}
4651 
4652 // Integer ALU hi-lo-reg operation
4653 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4654     instruction_count(1); multiple_bundles;
4655     dst   : E(write)+1;
4656     IALU  : R(2);
4657 %}
4658 
4659 // Float ALU hi-lo-reg operation (with temp)
4660 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4661     instruction_count(1); multiple_bundles;
4662     dst   : E(write)+1;
4663     IALU  : R(2);
4664 %}
4665 
4666 // Long Constant
4667 pipe_class loadConL( iRegL dst, immL src ) %{
4668     instruction_count(2); multiple_bundles;
4669     dst   : E(write)+1;
4670     IALU  : R(2);
4671     IALU  : R(2);
4672 %}
4673 
4674 // Pointer Constant
4675 pipe_class loadConP( iRegP dst, immP src ) %{
4676     instruction_count(0); multiple_bundles;
4677     fixed_latency(6);
4678 %}
4679 
4680 // Polling Address
4681 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4682 #ifdef _LP64
4683     instruction_count(0); multiple_bundles;
4684     fixed_latency(6);
4685 #else
4686     dst   : E(write);
4687     IALU  : R;
4688 #endif
4689 %}
4690 
4691 // Long Constant small
4692 pipe_class loadConLlo( iRegL dst, immL src ) %{
4693     instruction_count(2);
4694     dst   : E(write);
4695     IALU  : R;
4696     IALU  : R;
4697 %}
4698 
4699 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4700 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4701     instruction_count(1); multiple_bundles;
4702     src   : R(read);
4703     dst   : M(write)+1;
4704     IALU  : R;
4705     MS    : E;
4706 %}
4707 
4708 // Integer ALU nop operation
4709 pipe_class ialu_nop() %{
4710     single_instruction;
4711     IALU  : R;
4712 %}
4713 
4714 // Integer ALU nop operation
4715 pipe_class ialu_nop_A0() %{
4716     single_instruction;
4717     A0    : R;
4718 %}
4719 
4720 // Integer ALU nop operation
4721 pipe_class ialu_nop_A1() %{
4722     single_instruction;
4723     A1    : R;
4724 %}
4725 
4726 // Integer Multiply reg-reg operation
4727 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4728     single_instruction;
4729     dst   : E(write);
4730     src1  : R(read);
4731     src2  : R(read);
4732     MS    : R(5);
4733 %}
4734 
4735 // Integer Multiply reg-imm operation
4736 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4737     single_instruction;
4738     dst   : E(write);
4739     src1  : R(read);
4740     MS    : R(5);
4741 %}
4742 
4743 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4744     single_instruction;
4745     dst   : E(write)+4;
4746     src1  : R(read);
4747     src2  : R(read);
4748     MS    : R(6);
4749 %}
4750 
4751 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4752     single_instruction;
4753     dst   : E(write)+4;
4754     src1  : R(read);
4755     MS    : R(6);
4756 %}
4757 
4758 // Integer Divide reg-reg
4759 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4760     instruction_count(1); multiple_bundles;
4761     dst   : E(write);
4762     temp  : E(write);
4763     src1  : R(read);
4764     src2  : R(read);
4765     temp  : R(read);
4766     MS    : R(38);
4767 %}
4768 
4769 // Integer Divide reg-imm
4770 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4771     instruction_count(1); multiple_bundles;
4772     dst   : E(write);
4773     temp  : E(write);
4774     src1  : R(read);
4775     temp  : R(read);
4776     MS    : R(38);
4777 %}
4778 
4779 // Long Divide
4780 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4781     dst  : E(write)+71;
4782     src1 : R(read);
4783     src2 : R(read)+1;
4784     MS   : R(70);
4785 %}
4786 
4787 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4788     dst  : E(write)+71;
4789     src1 : R(read);
4790     MS   : R(70);
4791 %}
4792 
4793 // Floating Point Add Float
4794 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4795     single_instruction;
4796     dst   : X(write);
4797     src1  : E(read);
4798     src2  : E(read);
4799     FA    : R;
4800 %}
4801 
4802 // Floating Point Add Double
4803 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4804     single_instruction;
4805     dst   : X(write);
4806     src1  : E(read);
4807     src2  : E(read);
4808     FA    : R;
4809 %}
4810 
4811 // Floating Point Conditional Move based on integer flags
4812 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4813     single_instruction;
4814     dst   : X(write);
4815     src   : E(read);
4816     cr    : R(read);
4817     FA    : R(2);
4818     BR    : R(2);
4819 %}
4820 
4821 // Floating Point Conditional Move based on integer flags
4822 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4823     single_instruction;
4824     dst   : X(write);
4825     src   : E(read);
4826     cr    : R(read);
4827     FA    : R(2);
4828     BR    : R(2);
4829 %}
4830 
4831 // Floating Point Multiply Float
4832 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4833     single_instruction;
4834     dst   : X(write);
4835     src1  : E(read);
4836     src2  : E(read);
4837     FM    : R;
4838 %}
4839 
4840 // Floating Point Multiply Double
4841 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4842     single_instruction;
4843     dst   : X(write);
4844     src1  : E(read);
4845     src2  : E(read);
4846     FM    : R;
4847 %}
4848 
4849 // Floating Point Divide Float
4850 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4851     single_instruction;
4852     dst   : X(write);
4853     src1  : E(read);
4854     src2  : E(read);
4855     FM    : R;
4856     FDIV  : C(14);
4857 %}
4858 
4859 // Floating Point Divide Double
4860 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4861     single_instruction;
4862     dst   : X(write);
4863     src1  : E(read);
4864     src2  : E(read);
4865     FM    : R;
4866     FDIV  : C(17);
4867 %}
4868 
4869 // Floating Point Move/Negate/Abs Float
4870 pipe_class faddF_reg(regF dst, regF src) %{
4871     single_instruction;
4872     dst   : W(write);
4873     src   : E(read);
4874     FA    : R(1);
4875 %}
4876 
4877 // Floating Point Move/Negate/Abs Double
4878 pipe_class faddD_reg(regD dst, regD src) %{
4879     single_instruction;
4880     dst   : W(write);
4881     src   : E(read);
4882     FA    : R;
4883 %}
4884 
4885 // Floating Point Convert F->D
4886 pipe_class fcvtF2D(regD dst, regF src) %{
4887     single_instruction;
4888     dst   : X(write);
4889     src   : E(read);
4890     FA    : R;
4891 %}
4892 
4893 // Floating Point Convert I->D
4894 pipe_class fcvtI2D(regD dst, regF src) %{
4895     single_instruction;
4896     dst   : X(write);
4897     src   : E(read);
4898     FA    : R;
4899 %}
4900 
4901 // Floating Point Convert LHi->D
4902 pipe_class fcvtLHi2D(regD dst, regD src) %{
4903     single_instruction;
4904     dst   : X(write);
4905     src   : E(read);
4906     FA    : R;
4907 %}
4908 
4909 // Floating Point Convert L->D
4910 pipe_class fcvtL2D(regD dst, regF src) %{
4911     single_instruction;
4912     dst   : X(write);
4913     src   : E(read);
4914     FA    : R;
4915 %}
4916 
4917 // Floating Point Convert L->F
4918 pipe_class fcvtL2F(regD dst, regF src) %{
4919     single_instruction;
4920     dst   : X(write);
4921     src   : E(read);
4922     FA    : R;
4923 %}
4924 
4925 // Floating Point Convert D->F
4926 pipe_class fcvtD2F(regD dst, regF src) %{
4927     single_instruction;
4928     dst   : X(write);
4929     src   : E(read);
4930     FA    : R;
4931 %}
4932 
4933 // Floating Point Convert I->L
4934 pipe_class fcvtI2L(regD dst, regF src) %{
4935     single_instruction;
4936     dst   : X(write);
4937     src   : E(read);
4938     FA    : R;
4939 %}
4940 
4941 // Floating Point Convert D->F
4942 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4943     instruction_count(1); multiple_bundles;
4944     dst   : X(write)+6;
4945     src   : E(read);
4946     FA    : R;
4947 %}
4948 
4949 // Floating Point Convert D->L
4950 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4951     instruction_count(1); multiple_bundles;
4952     dst   : X(write)+6;
4953     src   : E(read);
4954     FA    : R;
4955 %}
4956 
4957 // Floating Point Convert F->I
4958 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4959     instruction_count(1); multiple_bundles;
4960     dst   : X(write)+6;
4961     src   : E(read);
4962     FA    : R;
4963 %}
4964 
4965 // Floating Point Convert F->L
4966 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4967     instruction_count(1); multiple_bundles;
4968     dst   : X(write)+6;
4969     src   : E(read);
4970     FA    : R;
4971 %}
4972 
4973 // Floating Point Convert I->F
4974 pipe_class fcvtI2F(regF dst, regF src) %{
4975     single_instruction;
4976     dst   : X(write);
4977     src   : E(read);
4978     FA    : R;
4979 %}
4980 
4981 // Floating Point Compare
4982 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4983     single_instruction;
4984     cr    : X(write);
4985     src1  : E(read);
4986     src2  : E(read);
4987     FA    : R;
4988 %}
4989 
4990 // Floating Point Compare
4991 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4992     single_instruction;
4993     cr    : X(write);
4994     src1  : E(read);
4995     src2  : E(read);
4996     FA    : R;
4997 %}
4998 
4999 // Floating Add Nop
5000 pipe_class fadd_nop() %{
5001     single_instruction;
5002     FA  : R;
5003 %}
5004 
5005 // Integer Store to Memory
5006 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5007     single_instruction;
5008     mem   : R(read);
5009     src   : C(read);
5010     MS    : R;
5011 %}
5012 
5013 // Integer Store to Memory
5014 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5015     single_instruction;
5016     mem   : R(read);
5017     src   : C(read);
5018     MS    : R;
5019 %}
5020 
5021 // Integer Store Zero to Memory
5022 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5023     single_instruction;
5024     mem   : R(read);
5025     MS    : R;
5026 %}
5027 
5028 // Special Stack Slot Store
5029 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5030     single_instruction;
5031     stkSlot : R(read);
5032     src     : C(read);
5033     MS      : R;
5034 %}
5035 
5036 // Special Stack Slot Store
5037 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5038     instruction_count(2); multiple_bundles;
5039     stkSlot : R(read);
5040     src     : C(read);
5041     MS      : R(2);
5042 %}
5043 
5044 // Float Store
5045 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5046     single_instruction;
5047     mem : R(read);
5048     src : C(read);
5049     MS  : R;
5050 %}
5051 
5052 // Float Store
5053 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5054     single_instruction;
5055     mem : R(read);
5056     MS  : R;
5057 %}
5058 
5059 // Double Store
5060 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5061     instruction_count(1);
5062     mem : R(read);
5063     src : C(read);
5064     MS  : R;
5065 %}
5066 
5067 // Double Store
5068 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5069     single_instruction;
5070     mem : R(read);
5071     MS  : R;
5072 %}
5073 
5074 // Special Stack Slot Float Store
5075 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5076     single_instruction;
5077     stkSlot : R(read);
5078     src     : C(read);
5079     MS      : R;
5080 %}
5081 
5082 // Special Stack Slot Double Store
5083 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5084     single_instruction;
5085     stkSlot : R(read);
5086     src     : C(read);
5087     MS      : R;
5088 %}
5089 
5090 // Integer Load (when sign bit propagation not needed)
5091 pipe_class iload_mem(iRegI dst, memory mem) %{
5092     single_instruction;
5093     mem : R(read);
5094     dst : C(write);
5095     MS  : R;
5096 %}
5097 
5098 // Integer Load from stack operand
5099 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5100     single_instruction;
5101     mem : R(read);
5102     dst : C(write);
5103     MS  : R;
5104 %}
5105 
5106 // Integer Load (when sign bit propagation or masking is needed)
5107 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5108     single_instruction;
5109     mem : R(read);
5110     dst : M(write);
5111     MS  : R;
5112 %}
5113 
5114 // Float Load
5115 pipe_class floadF_mem(regF dst, memory mem) %{
5116     single_instruction;
5117     mem : R(read);
5118     dst : M(write);
5119     MS  : R;
5120 %}
5121 
5122 // Float Load
5123 pipe_class floadD_mem(regD dst, memory mem) %{
5124     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5125     mem : R(read);
5126     dst : M(write);
5127     MS  : R;
5128 %}
5129 
5130 // Float Load
5131 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5132     single_instruction;
5133     stkSlot : R(read);
5134     dst : M(write);
5135     MS  : R;
5136 %}
5137 
5138 // Float Load
5139 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5140     single_instruction;
5141     stkSlot : R(read);
5142     dst : M(write);
5143     MS  : R;
5144 %}
5145 
5146 // Memory Nop
5147 pipe_class mem_nop() %{
5148     single_instruction;
5149     MS  : R;
5150 %}
5151 
5152 pipe_class sethi(iRegP dst, immI src) %{
5153     single_instruction;
5154     dst  : E(write);
5155     IALU : R;
5156 %}
5157 
5158 pipe_class loadPollP(iRegP poll) %{
5159     single_instruction;
5160     poll : R(read);
5161     MS   : R;
5162 %}
5163 
5164 pipe_class br(Universe br, label labl) %{
5165     single_instruction_with_delay_slot;
5166     BR  : R;
5167 %}
5168 
5169 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5170     single_instruction_with_delay_slot;
5171     cr    : E(read);
5172     BR    : R;
5173 %}
5174 
5175 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5176     single_instruction_with_delay_slot;
5177     op1 : E(read);
5178     BR  : R;
5179     MS  : R;
5180 %}
5181 
5182 // Compare and branch
5183 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5184     instruction_count(2); has_delay_slot;
5185     cr    : E(write);
5186     src1  : R(read);
5187     src2  : R(read);
5188     IALU  : R;
5189     BR    : R;
5190 %}
5191 
5192 // Compare and branch
5193 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5194     instruction_count(2); has_delay_slot;
5195     cr    : E(write);
5196     src1  : R(read);
5197     IALU  : R;
5198     BR    : R;
5199 %}
5200 
5201 // Compare and branch using cbcond
5202 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5203     single_instruction;
5204     src1  : E(read);
5205     src2  : E(read);
5206     IALU  : R;
5207     BR    : R;
5208 %}
5209 
5210 // Compare and branch using cbcond
5211 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5212     single_instruction;
5213     src1  : E(read);
5214     IALU  : R;
5215     BR    : R;
5216 %}
5217 
5218 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5219     single_instruction_with_delay_slot;
5220     cr    : E(read);
5221     BR    : R;
5222 %}
5223 
5224 pipe_class br_nop() %{
5225     single_instruction;
5226     BR  : R;
5227 %}
5228 
5229 pipe_class simple_call(method meth) %{
5230     instruction_count(2); multiple_bundles; force_serialization;
5231     fixed_latency(100);
5232     BR  : R(1);
5233     MS  : R(1);
5234     A0  : R(1);
5235 %}
5236 
5237 pipe_class compiled_call(method meth) %{
5238     instruction_count(1); multiple_bundles; force_serialization;
5239     fixed_latency(100);
5240     MS  : R(1);
5241 %}
5242 
5243 pipe_class call(method meth) %{
5244     instruction_count(0); multiple_bundles; force_serialization;
5245     fixed_latency(100);
5246 %}
5247 
5248 pipe_class tail_call(Universe ignore, label labl) %{
5249     single_instruction; has_delay_slot;
5250     fixed_latency(100);
5251     BR  : R(1);
5252     MS  : R(1);
5253 %}
5254 
5255 pipe_class ret(Universe ignore) %{
5256     single_instruction; has_delay_slot;
5257     BR  : R(1);
5258     MS  : R(1);
5259 %}
5260 
5261 pipe_class ret_poll(g3RegP poll) %{
5262     instruction_count(3); has_delay_slot;
5263     poll : E(read);
5264     MS   : R;
5265 %}
5266 
5267 // The real do-nothing guy
5268 pipe_class empty( ) %{
5269     instruction_count(0);
5270 %}
5271 
5272 pipe_class long_memory_op() %{
5273     instruction_count(0); multiple_bundles; force_serialization;
5274     fixed_latency(25);
5275     MS  : R(1);
5276 %}
5277 
5278 // Check-cast
5279 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5280     array : R(read);
5281     match  : R(read);
5282     IALU   : R(2);
5283     BR     : R(2);
5284     MS     : R;
5285 %}
5286 
5287 // Convert FPU flags into +1,0,-1
5288 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5289     src1  : E(read);
5290     src2  : E(read);
5291     dst   : E(write);
5292     FA    : R;
5293     MS    : R(2);
5294     BR    : R(2);
5295 %}
5296 
5297 // Compare for p < q, and conditionally add y
5298 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5299     p     : E(read);
5300     q     : E(read);
5301     y     : E(read);
5302     IALU  : R(3)
5303 %}
5304 
5305 // Perform a compare, then move conditionally in a branch delay slot.
5306 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5307     src2   : E(read);
5308     srcdst : E(read);
5309     IALU   : R;
5310     BR     : R;
5311 %}
5312 
5313 // Define the class for the Nop node
5314 define %{
5315    MachNop = ialu_nop;
5316 %}
5317 
5318 %}
5319 
5320 //----------INSTRUCTIONS-------------------------------------------------------
5321 
5322 //------------Special Stack Slot instructions - no match rules-----------------
5323 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5324   // No match rule to avoid chain rule match.
5325   effect(DEF dst, USE src);
5326   ins_cost(MEMORY_REF_COST);
5327   size(4);
5328   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5329   opcode(Assembler::ldf_op3);
5330   ins_encode(simple_form3_mem_reg(src, dst));
5331   ins_pipe(floadF_stk);
5332 %}
5333 
5334 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5335   // No match rule to avoid chain rule match.
5336   effect(DEF dst, USE src);
5337   ins_cost(MEMORY_REF_COST);
5338   size(4);
5339   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5340   opcode(Assembler::lddf_op3);
5341   ins_encode(simple_form3_mem_reg(src, dst));
5342   ins_pipe(floadD_stk);
5343 %}
5344 
5345 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5346   // No match rule to avoid chain rule match.
5347   effect(DEF dst, USE src);
5348   ins_cost(MEMORY_REF_COST);
5349   size(4);
5350   format %{ "STF    $src,$dst\t! regF to stkI" %}
5351   opcode(Assembler::stf_op3);
5352   ins_encode(simple_form3_mem_reg(dst, src));
5353   ins_pipe(fstoreF_stk_reg);
5354 %}
5355 
5356 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5357   // No match rule to avoid chain rule match.
5358   effect(DEF dst, USE src);
5359   ins_cost(MEMORY_REF_COST);
5360   size(4);
5361   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5362   opcode(Assembler::stdf_op3);
5363   ins_encode(simple_form3_mem_reg(dst, src));
5364   ins_pipe(fstoreD_stk_reg);
5365 %}
5366 
5367 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5368   effect(DEF dst, USE src);
5369   ins_cost(MEMORY_REF_COST*2);
5370   size(8);
5371   format %{ "STW    $src,$dst.hi\t! long\n\t"
5372             "STW    R_G0,$dst.lo" %}
5373   opcode(Assembler::stw_op3);
5374   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5375   ins_pipe(lstoreI_stk_reg);
5376 %}
5377 
5378 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5379   // No match rule to avoid chain rule match.
5380   effect(DEF dst, USE src);
5381   ins_cost(MEMORY_REF_COST);
5382   size(4);
5383   format %{ "STX    $src,$dst\t! regL to stkD" %}
5384   opcode(Assembler::stx_op3);
5385   ins_encode(simple_form3_mem_reg( dst, src ) );
5386   ins_pipe(istore_stk_reg);
5387 %}
5388 
5389 //---------- Chain stack slots between similar types --------
5390 
5391 // Load integer from stack slot
5392 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5393   match(Set dst src);
5394   ins_cost(MEMORY_REF_COST);
5395 
5396   size(4);
5397   format %{ "LDUW   $src,$dst\t!stk" %}
5398   opcode(Assembler::lduw_op3);
5399   ins_encode(simple_form3_mem_reg( src, dst ) );
5400   ins_pipe(iload_mem);
5401 %}
5402 
5403 // Store integer to stack slot
5404 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5405   match(Set dst src);
5406   ins_cost(MEMORY_REF_COST);
5407 
5408   size(4);
5409   format %{ "STW    $src,$dst\t!stk" %}
5410   opcode(Assembler::stw_op3);
5411   ins_encode(simple_form3_mem_reg( dst, src ) );
5412   ins_pipe(istore_mem_reg);
5413 %}
5414 
5415 // Load long from stack slot
5416 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5417   match(Set dst src);
5418 
5419   ins_cost(MEMORY_REF_COST);
5420   size(4);
5421   format %{ "LDX    $src,$dst\t! long" %}
5422   opcode(Assembler::ldx_op3);
5423   ins_encode(simple_form3_mem_reg( src, dst ) );
5424   ins_pipe(iload_mem);
5425 %}
5426 
5427 // Store long to stack slot
5428 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5429   match(Set dst src);
5430 
5431   ins_cost(MEMORY_REF_COST);
5432   size(4);
5433   format %{ "STX    $src,$dst\t! long" %}
5434   opcode(Assembler::stx_op3);
5435   ins_encode(simple_form3_mem_reg( dst, src ) );
5436   ins_pipe(istore_mem_reg);
5437 %}
5438 
5439 #ifdef _LP64
5440 // Load pointer from stack slot, 64-bit encoding
5441 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5442   match(Set dst src);
5443   ins_cost(MEMORY_REF_COST);
5444   size(4);
5445   format %{ "LDX    $src,$dst\t!ptr" %}
5446   opcode(Assembler::ldx_op3);
5447   ins_encode(simple_form3_mem_reg( src, dst ) );
5448   ins_pipe(iload_mem);
5449 %}
5450 
5451 // Store pointer to stack slot
5452 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5453   match(Set dst src);
5454   ins_cost(MEMORY_REF_COST);
5455   size(4);
5456   format %{ "STX    $src,$dst\t!ptr" %}
5457   opcode(Assembler::stx_op3);
5458   ins_encode(simple_form3_mem_reg( dst, src ) );
5459   ins_pipe(istore_mem_reg);
5460 %}
5461 #else // _LP64
5462 // Load pointer from stack slot, 32-bit encoding
5463 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5464   match(Set dst src);
5465   ins_cost(MEMORY_REF_COST);
5466   format %{ "LDUW   $src,$dst\t!ptr" %}
5467   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5468   ins_encode(simple_form3_mem_reg( src, dst ) );
5469   ins_pipe(iload_mem);
5470 %}
5471 
5472 // Store pointer to stack slot
5473 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5474   match(Set dst src);
5475   ins_cost(MEMORY_REF_COST);
5476   format %{ "STW    $src,$dst\t!ptr" %}
5477   opcode(Assembler::stw_op3, Assembler::ldst_op);
5478   ins_encode(simple_form3_mem_reg( dst, src ) );
5479   ins_pipe(istore_mem_reg);
5480 %}
5481 #endif // _LP64
5482 
5483 //------------Special Nop instructions for bundling - no match rules-----------
5484 // Nop using the A0 functional unit
5485 instruct Nop_A0() %{
5486   ins_cost(0);
5487 
5488   format %{ "NOP    ! Alu Pipeline" %}
5489   opcode(Assembler::or_op3, Assembler::arith_op);
5490   ins_encode( form2_nop() );
5491   ins_pipe(ialu_nop_A0);
5492 %}
5493 
5494 // Nop using the A1 functional unit
5495 instruct Nop_A1( ) %{
5496   ins_cost(0);
5497 
5498   format %{ "NOP    ! Alu Pipeline" %}
5499   opcode(Assembler::or_op3, Assembler::arith_op);
5500   ins_encode( form2_nop() );
5501   ins_pipe(ialu_nop_A1);
5502 %}
5503 
5504 // Nop using the memory functional unit
5505 instruct Nop_MS( ) %{
5506   ins_cost(0);
5507 
5508   format %{ "NOP    ! Memory Pipeline" %}
5509   ins_encode( emit_mem_nop );
5510   ins_pipe(mem_nop);
5511 %}
5512 
5513 // Nop using the floating add functional unit
5514 instruct Nop_FA( ) %{
5515   ins_cost(0);
5516 
5517   format %{ "NOP    ! Floating Add Pipeline" %}
5518   ins_encode( emit_fadd_nop );
5519   ins_pipe(fadd_nop);
5520 %}
5521 
5522 // Nop using the branch functional unit
5523 instruct Nop_BR( ) %{
5524   ins_cost(0);
5525 
5526   format %{ "NOP    ! Branch Pipeline" %}
5527   ins_encode( emit_br_nop );
5528   ins_pipe(br_nop);
5529 %}
5530 
5531 //----------Load/Store/Move Instructions---------------------------------------
5532 //----------Load Instructions--------------------------------------------------
5533 // Load Byte (8bit signed)
5534 instruct loadB(iRegI dst, memory mem) %{
5535   match(Set dst (LoadB mem));
5536   ins_cost(MEMORY_REF_COST);
5537 
5538   size(4);
5539   format %{ "LDSB   $mem,$dst\t! byte" %}
5540   ins_encode %{
5541     __ ldsb($mem$$Address, $dst$$Register);
5542   %}
5543   ins_pipe(iload_mask_mem);
5544 %}
5545 
5546 // Load Byte (8bit signed) into a Long Register
5547 instruct loadB2L(iRegL dst, memory mem) %{
5548   match(Set dst (ConvI2L (LoadB mem)));
5549   ins_cost(MEMORY_REF_COST);
5550 
5551   size(4);
5552   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5553   ins_encode %{
5554     __ ldsb($mem$$Address, $dst$$Register);
5555   %}
5556   ins_pipe(iload_mask_mem);
5557 %}
5558 
5559 // Load Unsigned Byte (8bit UNsigned) into an int reg
5560 instruct loadUB(iRegI dst, memory mem) %{
5561   match(Set dst (LoadUB mem));
5562   ins_cost(MEMORY_REF_COST);
5563 
5564   size(4);
5565   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5566   ins_encode %{
5567     __ ldub($mem$$Address, $dst$$Register);
5568   %}
5569   ins_pipe(iload_mem);
5570 %}
5571 
5572 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5573 instruct loadUB2L(iRegL dst, memory mem) %{
5574   match(Set dst (ConvI2L (LoadUB mem)));
5575   ins_cost(MEMORY_REF_COST);
5576 
5577   size(4);
5578   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5579   ins_encode %{
5580     __ ldub($mem$$Address, $dst$$Register);
5581   %}
5582   ins_pipe(iload_mem);
5583 %}
5584 
5585 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5586 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5587   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5588   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5589 
5590   size(2*4);
5591   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5592             "AND    $dst,$mask,$dst" %}
5593   ins_encode %{
5594     __ ldub($mem$$Address, $dst$$Register);
5595     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5596   %}
5597   ins_pipe(iload_mem);
5598 %}
5599 
5600 // Load Short (16bit signed)
5601 instruct loadS(iRegI dst, memory mem) %{
5602   match(Set dst (LoadS mem));
5603   ins_cost(MEMORY_REF_COST);
5604 
5605   size(4);
5606   format %{ "LDSH   $mem,$dst\t! short" %}
5607   ins_encode %{
5608     __ ldsh($mem$$Address, $dst$$Register);
5609   %}
5610   ins_pipe(iload_mask_mem);
5611 %}
5612 
5613 // Load Short (16 bit signed) to Byte (8 bit signed)
5614 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5615   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5616   ins_cost(MEMORY_REF_COST);
5617 
5618   size(4);
5619 
5620   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5621   ins_encode %{
5622     __ ldsb($mem$$Address, $dst$$Register, 1);
5623   %}
5624   ins_pipe(iload_mask_mem);
5625 %}
5626 
5627 // Load Short (16bit signed) into a Long Register
5628 instruct loadS2L(iRegL dst, memory mem) %{
5629   match(Set dst (ConvI2L (LoadS mem)));
5630   ins_cost(MEMORY_REF_COST);
5631 
5632   size(4);
5633   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5634   ins_encode %{
5635     __ ldsh($mem$$Address, $dst$$Register);
5636   %}
5637   ins_pipe(iload_mask_mem);
5638 %}
5639 
5640 // Load Unsigned Short/Char (16bit UNsigned)
5641 instruct loadUS(iRegI dst, memory mem) %{
5642   match(Set dst (LoadUS mem));
5643   ins_cost(MEMORY_REF_COST);
5644 
5645   size(4);
5646   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5647   ins_encode %{
5648     __ lduh($mem$$Address, $dst$$Register);
5649   %}
5650   ins_pipe(iload_mem);
5651 %}
5652 
5653 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5654 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5655   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5656   ins_cost(MEMORY_REF_COST);
5657 
5658   size(4);
5659   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5660   ins_encode %{
5661     __ ldsb($mem$$Address, $dst$$Register, 1);
5662   %}
5663   ins_pipe(iload_mask_mem);
5664 %}
5665 
5666 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5667 instruct loadUS2L(iRegL dst, memory mem) %{
5668   match(Set dst (ConvI2L (LoadUS mem)));
5669   ins_cost(MEMORY_REF_COST);
5670 
5671   size(4);
5672   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5673   ins_encode %{
5674     __ lduh($mem$$Address, $dst$$Register);
5675   %}
5676   ins_pipe(iload_mem);
5677 %}
5678 
5679 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5680 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5681   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5682   ins_cost(MEMORY_REF_COST);
5683 
5684   size(4);
5685   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5686   ins_encode %{
5687     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5688   %}
5689   ins_pipe(iload_mem);
5690 %}
5691 
5692 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5693 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5694   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5695   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5696 
5697   size(2*4);
5698   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5699             "AND    $dst,$mask,$dst" %}
5700   ins_encode %{
5701     Register Rdst = $dst$$Register;
5702     __ lduh($mem$$Address, Rdst);
5703     __ and3(Rdst, $mask$$constant, Rdst);
5704   %}
5705   ins_pipe(iload_mem);
5706 %}
5707 
5708 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5709 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5710   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5711   effect(TEMP dst, TEMP tmp);
5712   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5713 
5714   size((3+1)*4);  // set may use two instructions.
5715   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5716             "SET    $mask,$tmp\n\t"
5717             "AND    $dst,$tmp,$dst" %}
5718   ins_encode %{
5719     Register Rdst = $dst$$Register;
5720     Register Rtmp = $tmp$$Register;
5721     __ lduh($mem$$Address, Rdst);
5722     __ set($mask$$constant, Rtmp);
5723     __ and3(Rdst, Rtmp, Rdst);
5724   %}
5725   ins_pipe(iload_mem);
5726 %}
5727 
5728 // Load Integer
5729 instruct loadI(iRegI dst, memory mem) %{
5730   match(Set dst (LoadI mem));
5731   ins_cost(MEMORY_REF_COST);
5732 
5733   size(4);
5734   format %{ "LDUW   $mem,$dst\t! int" %}
5735   ins_encode %{
5736     __ lduw($mem$$Address, $dst$$Register);
5737   %}
5738   ins_pipe(iload_mem);
5739 %}
5740 
5741 // Load Integer to Byte (8 bit signed)
5742 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5743   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5744   ins_cost(MEMORY_REF_COST);
5745 
5746   size(4);
5747 
5748   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5749   ins_encode %{
5750     __ ldsb($mem$$Address, $dst$$Register, 3);
5751   %}
5752   ins_pipe(iload_mask_mem);
5753 %}
5754 
5755 // Load Integer to Unsigned Byte (8 bit UNsigned)
5756 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5757   match(Set dst (AndI (LoadI mem) mask));
5758   ins_cost(MEMORY_REF_COST);
5759 
5760   size(4);
5761 
5762   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5763   ins_encode %{
5764     __ ldub($mem$$Address, $dst$$Register, 3);
5765   %}
5766   ins_pipe(iload_mask_mem);
5767 %}
5768 
5769 // Load Integer to Short (16 bit signed)
5770 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5771   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5772   ins_cost(MEMORY_REF_COST);
5773 
5774   size(4);
5775 
5776   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5777   ins_encode %{
5778     __ ldsh($mem$$Address, $dst$$Register, 2);
5779   %}
5780   ins_pipe(iload_mask_mem);
5781 %}
5782 
5783 // Load Integer to Unsigned Short (16 bit UNsigned)
5784 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5785   match(Set dst (AndI (LoadI mem) mask));
5786   ins_cost(MEMORY_REF_COST);
5787 
5788   size(4);
5789 
5790   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5791   ins_encode %{
5792     __ lduh($mem$$Address, $dst$$Register, 2);
5793   %}
5794   ins_pipe(iload_mask_mem);
5795 %}
5796 
5797 // Load Integer into a Long Register
5798 instruct loadI2L(iRegL dst, memory mem) %{
5799   match(Set dst (ConvI2L (LoadI mem)));
5800   ins_cost(MEMORY_REF_COST);
5801 
5802   size(4);
5803   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5804   ins_encode %{
5805     __ ldsw($mem$$Address, $dst$$Register);
5806   %}
5807   ins_pipe(iload_mask_mem);
5808 %}
5809 
5810 // Load Integer with mask 0xFF into a Long Register
5811 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5812   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5813   ins_cost(MEMORY_REF_COST);
5814 
5815   size(4);
5816   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5817   ins_encode %{
5818     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5819   %}
5820   ins_pipe(iload_mem);
5821 %}
5822 
5823 // Load Integer with mask 0xFFFF into a Long Register
5824 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5825   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5826   ins_cost(MEMORY_REF_COST);
5827 
5828   size(4);
5829   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5830   ins_encode %{
5831     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5832   %}
5833   ins_pipe(iload_mem);
5834 %}
5835 
5836 // Load Integer with a 13-bit mask into a Long Register
5837 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5838   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5839   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5840 
5841   size(2*4);
5842   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5843             "AND    $dst,$mask,$dst" %}
5844   ins_encode %{
5845     Register Rdst = $dst$$Register;
5846     __ lduw($mem$$Address, Rdst);
5847     __ and3(Rdst, $mask$$constant, Rdst);
5848   %}
5849   ins_pipe(iload_mem);
5850 %}
5851 
5852 // Load Integer with a 32-bit mask into a Long Register
5853 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5854   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5855   effect(TEMP dst, TEMP tmp);
5856   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5857 
5858   size((3+1)*4);  // set may use two instructions.
5859   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5860             "SET    $mask,$tmp\n\t"
5861             "AND    $dst,$tmp,$dst" %}
5862   ins_encode %{
5863     Register Rdst = $dst$$Register;
5864     Register Rtmp = $tmp$$Register;
5865     __ lduw($mem$$Address, Rdst);
5866     __ set($mask$$constant, Rtmp);
5867     __ and3(Rdst, Rtmp, Rdst);
5868   %}
5869   ins_pipe(iload_mem);
5870 %}
5871 
5872 // Load Unsigned Integer into a Long Register
5873 instruct loadUI2L(iRegL dst, memory mem) %{
5874   match(Set dst (LoadUI2L mem));
5875   ins_cost(MEMORY_REF_COST);
5876 
5877   size(4);
5878   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5879   ins_encode %{
5880     __ lduw($mem$$Address, $dst$$Register);
5881   %}
5882   ins_pipe(iload_mem);
5883 %}
5884 
5885 // Load Long - aligned
5886 instruct loadL(iRegL dst, memory mem ) %{
5887   match(Set dst (LoadL mem));
5888   ins_cost(MEMORY_REF_COST);
5889 
5890   size(4);
5891   format %{ "LDX    $mem,$dst\t! long" %}
5892   ins_encode %{
5893     __ ldx($mem$$Address, $dst$$Register);
5894   %}
5895   ins_pipe(iload_mem);
5896 %}
5897 
5898 // Load Long - UNaligned
5899 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5900   match(Set dst (LoadL_unaligned mem));
5901   effect(KILL tmp);
5902   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5903   size(16);
5904   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5905           "\tLDUW   $mem  ,$dst\n"
5906           "\tSLLX   #32, $dst, $dst\n"
5907           "\tOR     $dst, R_O7, $dst" %}
5908   opcode(Assembler::lduw_op3);
5909   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5910   ins_pipe(iload_mem);
5911 %}
5912 
5913 // Load Range
5914 instruct loadRange(iRegI dst, memory mem) %{
5915   match(Set dst (LoadRange mem));
5916   ins_cost(MEMORY_REF_COST);
5917 
5918   size(4);
5919   format %{ "LDUW   $mem,$dst\t! range" %}
5920   opcode(Assembler::lduw_op3);
5921   ins_encode(simple_form3_mem_reg( mem, dst ) );
5922   ins_pipe(iload_mem);
5923 %}
5924 
5925 // Load Integer into %f register (for fitos/fitod)
5926 instruct loadI_freg(regF dst, memory mem) %{
5927   match(Set dst (LoadI mem));
5928   ins_cost(MEMORY_REF_COST);
5929   size(4);
5930 
5931   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5932   opcode(Assembler::ldf_op3);
5933   ins_encode(simple_form3_mem_reg( mem, dst ) );
5934   ins_pipe(floadF_mem);
5935 %}
5936 
5937 // Load Pointer
5938 instruct loadP(iRegP dst, memory mem) %{
5939   match(Set dst (LoadP mem));
5940   ins_cost(MEMORY_REF_COST);
5941   size(4);
5942 
5943 #ifndef _LP64
5944   format %{ "LDUW   $mem,$dst\t! ptr" %}
5945   ins_encode %{
5946     __ lduw($mem$$Address, $dst$$Register);
5947   %}
5948 #else
5949   format %{ "LDX    $mem,$dst\t! ptr" %}
5950   ins_encode %{
5951     __ ldx($mem$$Address, $dst$$Register);
5952   %}
5953 #endif
5954   ins_pipe(iload_mem);
5955 %}
5956 
5957 // Load Compressed Pointer
5958 instruct loadN(iRegN dst, memory mem) %{
5959   match(Set dst (LoadN mem));
5960   ins_cost(MEMORY_REF_COST);
5961   size(4);
5962 
5963   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5964   ins_encode %{
5965     __ lduw($mem$$Address, $dst$$Register);
5966   %}
5967   ins_pipe(iload_mem);
5968 %}
5969 
5970 // Load Klass Pointer
5971 instruct loadKlass(iRegP dst, memory mem) %{
5972   match(Set dst (LoadKlass mem));
5973   ins_cost(MEMORY_REF_COST);
5974   size(4);
5975 
5976 #ifndef _LP64
5977   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5978   ins_encode %{
5979     __ lduw($mem$$Address, $dst$$Register);
5980   %}
5981 #else
5982   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5983   ins_encode %{
5984     __ ldx($mem$$Address, $dst$$Register);
5985   %}
5986 #endif
5987   ins_pipe(iload_mem);
5988 %}
5989 
5990 // Load narrow Klass Pointer
5991 instruct loadNKlass(iRegN dst, memory mem) %{
5992   match(Set dst (LoadNKlass mem));
5993   ins_cost(MEMORY_REF_COST);
5994   size(4);
5995 
5996   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5997   ins_encode %{
5998     __ lduw($mem$$Address, $dst$$Register);
5999   %}
6000   ins_pipe(iload_mem);
6001 %}
6002 
6003 // Load Double
6004 instruct loadD(regD dst, memory mem) %{
6005   match(Set dst (LoadD mem));
6006   ins_cost(MEMORY_REF_COST);
6007 
6008   size(4);
6009   format %{ "LDDF   $mem,$dst" %}
6010   opcode(Assembler::lddf_op3);
6011   ins_encode(simple_form3_mem_reg( mem, dst ) );
6012   ins_pipe(floadD_mem);
6013 %}
6014 
6015 // Load Double - UNaligned
6016 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6017   match(Set dst (LoadD_unaligned mem));
6018   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6019   size(8);
6020   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6021           "\tLDF    $mem+4,$dst.lo\t!" %}
6022   opcode(Assembler::ldf_op3);
6023   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6024   ins_pipe(iload_mem);
6025 %}
6026 
6027 // Load Float
6028 instruct loadF(regF dst, memory mem) %{
6029   match(Set dst (LoadF mem));
6030   ins_cost(MEMORY_REF_COST);
6031 
6032   size(4);
6033   format %{ "LDF    $mem,$dst" %}
6034   opcode(Assembler::ldf_op3);
6035   ins_encode(simple_form3_mem_reg( mem, dst ) );
6036   ins_pipe(floadF_mem);
6037 %}
6038 
6039 // Load Constant
6040 instruct loadConI( iRegI dst, immI src ) %{
6041   match(Set dst src);
6042   ins_cost(DEFAULT_COST * 3/2);
6043   format %{ "SET    $src,$dst" %}
6044   ins_encode( Set32(src, dst) );
6045   ins_pipe(ialu_hi_lo_reg);
6046 %}
6047 
6048 instruct loadConI13( iRegI dst, immI13 src ) %{
6049   match(Set dst src);
6050 
6051   size(4);
6052   format %{ "MOV    $src,$dst" %}
6053   ins_encode( Set13( src, dst ) );
6054   ins_pipe(ialu_imm);
6055 %}
6056 
6057 #ifndef _LP64
6058 instruct loadConP(iRegP dst, immP con) %{
6059   match(Set dst con);
6060   ins_cost(DEFAULT_COST * 3/2);
6061   format %{ "SET    $con,$dst\t!ptr" %}
6062   ins_encode %{
6063     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6064       intptr_t val = $con$$constant;
6065     if (constant_reloc == relocInfo::oop_type) {
6066       __ set_oop_constant((jobject) val, $dst$$Register);
6067     } else if (constant_reloc == relocInfo::metadata_type) {
6068       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6069     } else {          // non-oop pointers, e.g. card mark base, heap top
6070       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6071       __ set(val, $dst$$Register);
6072     }
6073   %}
6074   ins_pipe(loadConP);
6075 %}
6076 #else
6077 instruct loadConP_set(iRegP dst, immP_set con) %{
6078   match(Set dst con);
6079   ins_cost(DEFAULT_COST * 3/2);
6080   format %{ "SET    $con,$dst\t! ptr" %}
6081   ins_encode %{
6082     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6083       intptr_t val = $con$$constant;
6084     if (constant_reloc == relocInfo::oop_type) {
6085       __ set_oop_constant((jobject) val, $dst$$Register);
6086     } else if (constant_reloc == relocInfo::metadata_type) {
6087       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6088     } else {          // non-oop pointers, e.g. card mark base, heap top
6089       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6090       __ set(val, $dst$$Register);
6091     }
6092   %}
6093   ins_pipe(loadConP);
6094 %}
6095 
6096 instruct loadConP_load(iRegP dst, immP_load con) %{
6097   match(Set dst con);
6098   ins_cost(MEMORY_REF_COST);
6099   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6100   ins_encode %{
6101     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6102     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6103   %}
6104   ins_pipe(loadConP);
6105 %}
6106 
6107 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6108   match(Set dst con);
6109   ins_cost(DEFAULT_COST * 3/2);
6110   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6111   ins_encode %{
6112     __ set($con$$constant, $dst$$Register);
6113   %}
6114   ins_pipe(loadConP);
6115 %}
6116 #endif // _LP64
6117 
6118 instruct loadConP0(iRegP dst, immP0 src) %{
6119   match(Set dst src);
6120 
6121   size(4);
6122   format %{ "CLR    $dst\t!ptr" %}
6123   ins_encode %{
6124     __ clr($dst$$Register);
6125   %}
6126   ins_pipe(ialu_imm);
6127 %}
6128 
6129 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6130   match(Set dst src);
6131   ins_cost(DEFAULT_COST);
6132   format %{ "SET    $src,$dst\t!ptr" %}
6133   ins_encode %{
6134     AddressLiteral polling_page(os::get_polling_page());
6135     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6136   %}
6137   ins_pipe(loadConP_poll);
6138 %}
6139 
6140 instruct loadConN0(iRegN dst, immN0 src) %{
6141   match(Set dst src);
6142 
6143   size(4);
6144   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6145   ins_encode %{
6146     __ clr($dst$$Register);
6147   %}
6148   ins_pipe(ialu_imm);
6149 %}
6150 
6151 instruct loadConN(iRegN dst, immN src) %{
6152   match(Set dst src);
6153   ins_cost(DEFAULT_COST * 3/2);
6154   format %{ "SET    $src,$dst\t! compressed ptr" %}
6155   ins_encode %{
6156     Register dst = $dst$$Register;
6157     __ set_narrow_oop((jobject)$src$$constant, dst);
6158   %}
6159   ins_pipe(ialu_hi_lo_reg);
6160 %}
6161 
6162 // Materialize long value (predicated by immL_cheap).
6163 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6164   match(Set dst con);
6165   effect(KILL tmp);
6166   ins_cost(DEFAULT_COST * 3);
6167   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6168   ins_encode %{
6169     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6170   %}
6171   ins_pipe(loadConL);
6172 %}
6173 
6174 // Load long value from constant table (predicated by immL_expensive).
6175 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6176   match(Set dst con);
6177   ins_cost(MEMORY_REF_COST);
6178   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6179   ins_encode %{
6180       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6181     __ ldx($constanttablebase, con_offset, $dst$$Register);
6182   %}
6183   ins_pipe(loadConL);
6184 %}
6185 
6186 instruct loadConL0( iRegL dst, immL0 src ) %{
6187   match(Set dst src);
6188   ins_cost(DEFAULT_COST);
6189   size(4);
6190   format %{ "CLR    $dst\t! long" %}
6191   ins_encode( Set13( src, dst ) );
6192   ins_pipe(ialu_imm);
6193 %}
6194 
6195 instruct loadConL13( iRegL dst, immL13 src ) %{
6196   match(Set dst src);
6197   ins_cost(DEFAULT_COST * 2);
6198 
6199   size(4);
6200   format %{ "MOV    $src,$dst\t! long" %}
6201   ins_encode( Set13( src, dst ) );
6202   ins_pipe(ialu_imm);
6203 %}
6204 
6205 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6206   match(Set dst con);
6207   effect(KILL tmp);
6208   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6209   ins_encode %{
6210       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6211     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6212   %}
6213   ins_pipe(loadConFD);
6214 %}
6215 
6216 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6217   match(Set dst con);
6218   effect(KILL tmp);
6219   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6220   ins_encode %{
6221     // XXX This is a quick fix for 6833573.
6222     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6223     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6224     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6225   %}
6226   ins_pipe(loadConFD);
6227 %}
6228 
6229 // Prefetch instructions.
6230 // Must be safe to execute with invalid address (cannot fault).
6231 
6232 instruct prefetchr( memory mem ) %{
6233   match( PrefetchRead mem );
6234   ins_cost(MEMORY_REF_COST);
6235   size(4);
6236 
6237   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6238   opcode(Assembler::prefetch_op3);
6239   ins_encode( form3_mem_prefetch_read( mem ) );
6240   ins_pipe(iload_mem);
6241 %}
6242 
6243 instruct prefetchw( memory mem ) %{
6244   match( PrefetchWrite mem );
6245   ins_cost(MEMORY_REF_COST);
6246   size(4);
6247 
6248   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6249   opcode(Assembler::prefetch_op3);
6250   ins_encode( form3_mem_prefetch_write( mem ) );
6251   ins_pipe(iload_mem);
6252 %}
6253 
6254 // Prefetch instructions for allocation.
6255 
6256 instruct prefetchAlloc( memory mem ) %{
6257   predicate(AllocatePrefetchInstr == 0);
6258   match( PrefetchAllocation mem );
6259   ins_cost(MEMORY_REF_COST);
6260   size(4);
6261 
6262   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6263   opcode(Assembler::prefetch_op3);
6264   ins_encode( form3_mem_prefetch_write( mem ) );
6265   ins_pipe(iload_mem);
6266 %}
6267 
6268 // Use BIS instruction to prefetch for allocation.
6269 // Could fault, need space at the end of TLAB.
6270 instruct prefetchAlloc_bis( iRegP dst ) %{
6271   predicate(AllocatePrefetchInstr == 1);
6272   match( PrefetchAllocation dst );
6273   ins_cost(MEMORY_REF_COST);
6274   size(4);
6275 
6276   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6277   ins_encode %{
6278     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6279   %}
6280   ins_pipe(istore_mem_reg);
6281 %}
6282 
6283 // Next code is used for finding next cache line address to prefetch.
6284 #ifndef _LP64
6285 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6286   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6287   ins_cost(DEFAULT_COST);
6288   size(4);
6289 
6290   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6291   ins_encode %{
6292     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6293   %}
6294   ins_pipe(ialu_reg_imm);
6295 %}
6296 #else
6297 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6298   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6299   ins_cost(DEFAULT_COST);
6300   size(4);
6301 
6302   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6303   ins_encode %{
6304     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6305   %}
6306   ins_pipe(ialu_reg_imm);
6307 %}
6308 #endif
6309 
6310 //----------Store Instructions-------------------------------------------------
6311 // Store Byte
6312 instruct storeB(memory mem, iRegI src) %{
6313   match(Set mem (StoreB mem src));
6314   ins_cost(MEMORY_REF_COST);
6315 
6316   size(4);
6317   format %{ "STB    $src,$mem\t! byte" %}
6318   opcode(Assembler::stb_op3);
6319   ins_encode(simple_form3_mem_reg( mem, src ) );
6320   ins_pipe(istore_mem_reg);
6321 %}
6322 
6323 instruct storeB0(memory mem, immI0 src) %{
6324   match(Set mem (StoreB mem src));
6325   ins_cost(MEMORY_REF_COST);
6326 
6327   size(4);
6328   format %{ "STB    $src,$mem\t! byte" %}
6329   opcode(Assembler::stb_op3);
6330   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6331   ins_pipe(istore_mem_zero);
6332 %}
6333 
6334 instruct storeCM0(memory mem, immI0 src) %{
6335   match(Set mem (StoreCM mem src));
6336   ins_cost(MEMORY_REF_COST);
6337 
6338   size(4);
6339   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6340   opcode(Assembler::stb_op3);
6341   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6342   ins_pipe(istore_mem_zero);
6343 %}
6344 
6345 // Store Char/Short
6346 instruct storeC(memory mem, iRegI src) %{
6347   match(Set mem (StoreC mem src));
6348   ins_cost(MEMORY_REF_COST);
6349 
6350   size(4);
6351   format %{ "STH    $src,$mem\t! short" %}
6352   opcode(Assembler::sth_op3);
6353   ins_encode(simple_form3_mem_reg( mem, src ) );
6354   ins_pipe(istore_mem_reg);
6355 %}
6356 
6357 instruct storeC0(memory mem, immI0 src) %{
6358   match(Set mem (StoreC mem src));
6359   ins_cost(MEMORY_REF_COST);
6360 
6361   size(4);
6362   format %{ "STH    $src,$mem\t! short" %}
6363   opcode(Assembler::sth_op3);
6364   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6365   ins_pipe(istore_mem_zero);
6366 %}
6367 
6368 // Store Integer
6369 instruct storeI(memory mem, iRegI src) %{
6370   match(Set mem (StoreI mem src));
6371   ins_cost(MEMORY_REF_COST);
6372 
6373   size(4);
6374   format %{ "STW    $src,$mem" %}
6375   opcode(Assembler::stw_op3);
6376   ins_encode(simple_form3_mem_reg( mem, src ) );
6377   ins_pipe(istore_mem_reg);
6378 %}
6379 
6380 // Store Long
6381 instruct storeL(memory mem, iRegL src) %{
6382   match(Set mem (StoreL mem src));
6383   ins_cost(MEMORY_REF_COST);
6384   size(4);
6385   format %{ "STX    $src,$mem\t! long" %}
6386   opcode(Assembler::stx_op3);
6387   ins_encode(simple_form3_mem_reg( mem, src ) );
6388   ins_pipe(istore_mem_reg);
6389 %}
6390 
6391 instruct storeI0(memory mem, immI0 src) %{
6392   match(Set mem (StoreI mem src));
6393   ins_cost(MEMORY_REF_COST);
6394 
6395   size(4);
6396   format %{ "STW    $src,$mem" %}
6397   opcode(Assembler::stw_op3);
6398   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6399   ins_pipe(istore_mem_zero);
6400 %}
6401 
6402 instruct storeL0(memory mem, immL0 src) %{
6403   match(Set mem (StoreL mem src));
6404   ins_cost(MEMORY_REF_COST);
6405 
6406   size(4);
6407   format %{ "STX    $src,$mem" %}
6408   opcode(Assembler::stx_op3);
6409   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6410   ins_pipe(istore_mem_zero);
6411 %}
6412 
6413 // Store Integer from float register (used after fstoi)
6414 instruct storeI_Freg(memory mem, regF src) %{
6415   match(Set mem (StoreI mem src));
6416   ins_cost(MEMORY_REF_COST);
6417 
6418   size(4);
6419   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6420   opcode(Assembler::stf_op3);
6421   ins_encode(simple_form3_mem_reg( mem, src ) );
6422   ins_pipe(fstoreF_mem_reg);
6423 %}
6424 
6425 // Store Pointer
6426 instruct storeP(memory dst, sp_ptr_RegP src) %{
6427   match(Set dst (StoreP dst src));
6428   ins_cost(MEMORY_REF_COST);
6429   size(4);
6430 
6431 #ifndef _LP64
6432   format %{ "STW    $src,$dst\t! ptr" %}
6433   opcode(Assembler::stw_op3, 0, REGP_OP);
6434 #else
6435   format %{ "STX    $src,$dst\t! ptr" %}
6436   opcode(Assembler::stx_op3, 0, REGP_OP);
6437 #endif
6438   ins_encode( form3_mem_reg( dst, src ) );
6439   ins_pipe(istore_mem_spORreg);
6440 %}
6441 
6442 instruct storeP0(memory dst, immP0 src) %{
6443   match(Set dst (StoreP dst src));
6444   ins_cost(MEMORY_REF_COST);
6445   size(4);
6446 
6447 #ifndef _LP64
6448   format %{ "STW    $src,$dst\t! ptr" %}
6449   opcode(Assembler::stw_op3, 0, REGP_OP);
6450 #else
6451   format %{ "STX    $src,$dst\t! ptr" %}
6452   opcode(Assembler::stx_op3, 0, REGP_OP);
6453 #endif
6454   ins_encode( form3_mem_reg( dst, R_G0 ) );
6455   ins_pipe(istore_mem_zero);
6456 %}
6457 
6458 // Store Compressed Pointer
6459 instruct storeN(memory dst, iRegN src) %{
6460    match(Set dst (StoreN dst src));
6461    ins_cost(MEMORY_REF_COST);
6462    size(4);
6463 
6464    format %{ "STW    $src,$dst\t! compressed ptr" %}
6465    ins_encode %{
6466      Register base = as_Register($dst$$base);
6467      Register index = as_Register($dst$$index);
6468      Register src = $src$$Register;
6469      if (index != G0) {
6470        __ stw(src, base, index);
6471      } else {
6472        __ stw(src, base, $dst$$disp);
6473      }
6474    %}
6475    ins_pipe(istore_mem_spORreg);
6476 %}
6477 
6478 instruct storeN0(memory dst, immN0 src) %{
6479    match(Set dst (StoreN dst src));
6480    ins_cost(MEMORY_REF_COST);
6481    size(4);
6482 
6483    format %{ "STW    $src,$dst\t! compressed ptr" %}
6484    ins_encode %{
6485      Register base = as_Register($dst$$base);
6486      Register index = as_Register($dst$$index);
6487      if (index != G0) {
6488        __ stw(0, base, index);
6489      } else {
6490        __ stw(0, base, $dst$$disp);
6491      }
6492    %}
6493    ins_pipe(istore_mem_zero);
6494 %}
6495 
6496 // Store Double
6497 instruct storeD( memory mem, regD src) %{
6498   match(Set mem (StoreD mem src));
6499   ins_cost(MEMORY_REF_COST);
6500 
6501   size(4);
6502   format %{ "STDF   $src,$mem" %}
6503   opcode(Assembler::stdf_op3);
6504   ins_encode(simple_form3_mem_reg( mem, src ) );
6505   ins_pipe(fstoreD_mem_reg);
6506 %}
6507 
6508 instruct storeD0( memory mem, immD0 src) %{
6509   match(Set mem (StoreD mem src));
6510   ins_cost(MEMORY_REF_COST);
6511 
6512   size(4);
6513   format %{ "STX    $src,$mem" %}
6514   opcode(Assembler::stx_op3);
6515   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6516   ins_pipe(fstoreD_mem_zero);
6517 %}
6518 
6519 // Store Float
6520 instruct storeF( memory mem, regF src) %{
6521   match(Set mem (StoreF mem src));
6522   ins_cost(MEMORY_REF_COST);
6523 
6524   size(4);
6525   format %{ "STF    $src,$mem" %}
6526   opcode(Assembler::stf_op3);
6527   ins_encode(simple_form3_mem_reg( mem, src ) );
6528   ins_pipe(fstoreF_mem_reg);
6529 %}
6530 
6531 instruct storeF0( memory mem, immF0 src) %{
6532   match(Set mem (StoreF mem src));
6533   ins_cost(MEMORY_REF_COST);
6534 
6535   size(4);
6536   format %{ "STW    $src,$mem\t! storeF0" %}
6537   opcode(Assembler::stw_op3);
6538   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6539   ins_pipe(fstoreF_mem_zero);
6540 %}
6541 
6542 // Convert oop pointer into compressed form
6543 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6544   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6545   match(Set dst (EncodeP src));
6546   format %{ "encode_heap_oop $src, $dst" %}
6547   ins_encode %{
6548     __ encode_heap_oop($src$$Register, $dst$$Register);
6549   %}
6550   ins_pipe(ialu_reg);
6551 %}
6552 
6553 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6554   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6555   match(Set dst (EncodeP src));
6556   format %{ "encode_heap_oop_not_null $src, $dst" %}
6557   ins_encode %{
6558     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6559   %}
6560   ins_pipe(ialu_reg);
6561 %}
6562 
6563 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6564   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6565             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6566   match(Set dst (DecodeN src));
6567   format %{ "decode_heap_oop $src, $dst" %}
6568   ins_encode %{
6569     __ decode_heap_oop($src$$Register, $dst$$Register);
6570   %}
6571   ins_pipe(ialu_reg);
6572 %}
6573 
6574 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6575   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6576             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6577   match(Set dst (DecodeN src));
6578   format %{ "decode_heap_oop_not_null $src, $dst" %}
6579   ins_encode %{
6580     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6581   %}
6582   ins_pipe(ialu_reg);
6583 %}
6584 
6585 
6586 //----------MemBar Instructions-----------------------------------------------
6587 // Memory barrier flavors
6588 
6589 instruct membar_acquire() %{
6590   match(MemBarAcquire);
6591   ins_cost(4*MEMORY_REF_COST);
6592 
6593   size(0);
6594   format %{ "MEMBAR-acquire" %}
6595   ins_encode( enc_membar_acquire );
6596   ins_pipe(long_memory_op);
6597 %}
6598 
6599 instruct membar_acquire_lock() %{
6600   match(MemBarAcquireLock);
6601   ins_cost(0);
6602 
6603   size(0);
6604   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6605   ins_encode( );
6606   ins_pipe(empty);
6607 %}
6608 
6609 instruct membar_release() %{
6610   match(MemBarRelease);
6611   ins_cost(4*MEMORY_REF_COST);
6612 
6613   size(0);
6614   format %{ "MEMBAR-release" %}
6615   ins_encode( enc_membar_release );
6616   ins_pipe(long_memory_op);
6617 %}
6618 
6619 instruct membar_release_lock() %{
6620   match(MemBarReleaseLock);
6621   ins_cost(0);
6622 
6623   size(0);
6624   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6625   ins_encode( );
6626   ins_pipe(empty);
6627 %}
6628 
6629 instruct membar_volatile() %{
6630   match(MemBarVolatile);
6631   ins_cost(4*MEMORY_REF_COST);
6632 
6633   size(4);
6634   format %{ "MEMBAR-volatile" %}
6635   ins_encode( enc_membar_volatile );
6636   ins_pipe(long_memory_op);
6637 %}
6638 
6639 instruct unnecessary_membar_volatile() %{
6640   match(MemBarVolatile);
6641   predicate(Matcher::post_store_load_barrier(n));
6642   ins_cost(0);
6643 
6644   size(0);
6645   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6646   ins_encode( );
6647   ins_pipe(empty);
6648 %}
6649 
6650 instruct membar_storestore() %{
6651   match(MemBarStoreStore);
6652   ins_cost(0);
6653 
6654   size(0);
6655   format %{ "!MEMBAR-storestore (empty encoding)" %}
6656   ins_encode( );
6657   ins_pipe(empty);
6658 %}
6659 
6660 //----------Register Move Instructions-----------------------------------------
6661 instruct roundDouble_nop(regD dst) %{
6662   match(Set dst (RoundDouble dst));
6663   ins_cost(0);
6664   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6665   ins_encode( );
6666   ins_pipe(empty);
6667 %}
6668 
6669 
6670 instruct roundFloat_nop(regF dst) %{
6671   match(Set dst (RoundFloat dst));
6672   ins_cost(0);
6673   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6674   ins_encode( );
6675   ins_pipe(empty);
6676 %}
6677 
6678 
6679 // Cast Index to Pointer for unsafe natives
6680 instruct castX2P(iRegX src, iRegP dst) %{
6681   match(Set dst (CastX2P src));
6682 
6683   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6684   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6685   ins_pipe(ialu_reg);
6686 %}
6687 
6688 // Cast Pointer to Index for unsafe natives
6689 instruct castP2X(iRegP src, iRegX dst) %{
6690   match(Set dst (CastP2X src));
6691 
6692   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6693   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6694   ins_pipe(ialu_reg);
6695 %}
6696 
6697 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6698   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6699   match(Set stkSlot src);   // chain rule
6700   ins_cost(MEMORY_REF_COST);
6701   format %{ "STDF   $src,$stkSlot\t!stk" %}
6702   opcode(Assembler::stdf_op3);
6703   ins_encode(simple_form3_mem_reg(stkSlot, src));
6704   ins_pipe(fstoreD_stk_reg);
6705 %}
6706 
6707 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6708   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6709   match(Set dst stkSlot);   // chain rule
6710   ins_cost(MEMORY_REF_COST);
6711   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6712   opcode(Assembler::lddf_op3);
6713   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6714   ins_pipe(floadD_stk);
6715 %}
6716 
6717 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6718   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6719   match(Set stkSlot src);   // chain rule
6720   ins_cost(MEMORY_REF_COST);
6721   format %{ "STF   $src,$stkSlot\t!stk" %}
6722   opcode(Assembler::stf_op3);
6723   ins_encode(simple_form3_mem_reg(stkSlot, src));
6724   ins_pipe(fstoreF_stk_reg);
6725 %}
6726 
6727 //----------Conditional Move---------------------------------------------------
6728 // Conditional move
6729 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6730   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6731   ins_cost(150);
6732   format %{ "MOV$cmp $pcc,$src,$dst" %}
6733   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6734   ins_pipe(ialu_reg);
6735 %}
6736 
6737 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6738   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6739   ins_cost(140);
6740   format %{ "MOV$cmp $pcc,$src,$dst" %}
6741   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6742   ins_pipe(ialu_imm);
6743 %}
6744 
6745 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6746   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6747   ins_cost(150);
6748   size(4);
6749   format %{ "MOV$cmp  $icc,$src,$dst" %}
6750   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6751   ins_pipe(ialu_reg);
6752 %}
6753 
6754 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6755   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6756   ins_cost(140);
6757   size(4);
6758   format %{ "MOV$cmp  $icc,$src,$dst" %}
6759   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6760   ins_pipe(ialu_imm);
6761 %}
6762 
6763 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6764   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6765   ins_cost(150);
6766   size(4);
6767   format %{ "MOV$cmp  $icc,$src,$dst" %}
6768   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6769   ins_pipe(ialu_reg);
6770 %}
6771 
6772 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6773   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6774   ins_cost(140);
6775   size(4);
6776   format %{ "MOV$cmp  $icc,$src,$dst" %}
6777   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6778   ins_pipe(ialu_imm);
6779 %}
6780 
6781 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6782   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6783   ins_cost(150);
6784   size(4);
6785   format %{ "MOV$cmp $fcc,$src,$dst" %}
6786   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6787   ins_pipe(ialu_reg);
6788 %}
6789 
6790 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6791   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6792   ins_cost(140);
6793   size(4);
6794   format %{ "MOV$cmp $fcc,$src,$dst" %}
6795   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6796   ins_pipe(ialu_imm);
6797 %}
6798 
6799 // Conditional move for RegN. Only cmov(reg,reg).
6800 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6801   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6802   ins_cost(150);
6803   format %{ "MOV$cmp $pcc,$src,$dst" %}
6804   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6805   ins_pipe(ialu_reg);
6806 %}
6807 
6808 // This instruction also works with CmpN so we don't need cmovNN_reg.
6809 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6810   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6811   ins_cost(150);
6812   size(4);
6813   format %{ "MOV$cmp  $icc,$src,$dst" %}
6814   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6815   ins_pipe(ialu_reg);
6816 %}
6817 
6818 // This instruction also works with CmpN so we don't need cmovNN_reg.
6819 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6820   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6821   ins_cost(150);
6822   size(4);
6823   format %{ "MOV$cmp  $icc,$src,$dst" %}
6824   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6825   ins_pipe(ialu_reg);
6826 %}
6827 
6828 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6829   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6830   ins_cost(150);
6831   size(4);
6832   format %{ "MOV$cmp $fcc,$src,$dst" %}
6833   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6834   ins_pipe(ialu_reg);
6835 %}
6836 
6837 // Conditional move
6838 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6839   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6840   ins_cost(150);
6841   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6842   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6843   ins_pipe(ialu_reg);
6844 %}
6845 
6846 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6847   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6848   ins_cost(140);
6849   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6850   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6851   ins_pipe(ialu_imm);
6852 %}
6853 
6854 // This instruction also works with CmpN so we don't need cmovPN_reg.
6855 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6856   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6857   ins_cost(150);
6858 
6859   size(4);
6860   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6861   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6862   ins_pipe(ialu_reg);
6863 %}
6864 
6865 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6866   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6867   ins_cost(150);
6868 
6869   size(4);
6870   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6871   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6872   ins_pipe(ialu_reg);
6873 %}
6874 
6875 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6876   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6877   ins_cost(140);
6878 
6879   size(4);
6880   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6881   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6882   ins_pipe(ialu_imm);
6883 %}
6884 
6885 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6886   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6887   ins_cost(140);
6888 
6889   size(4);
6890   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6891   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6892   ins_pipe(ialu_imm);
6893 %}
6894 
6895 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6896   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6897   ins_cost(150);
6898   size(4);
6899   format %{ "MOV$cmp $fcc,$src,$dst" %}
6900   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6901   ins_pipe(ialu_imm);
6902 %}
6903 
6904 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6905   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6906   ins_cost(140);
6907   size(4);
6908   format %{ "MOV$cmp $fcc,$src,$dst" %}
6909   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6910   ins_pipe(ialu_imm);
6911 %}
6912 
6913 // Conditional move
6914 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6915   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6916   ins_cost(150);
6917   opcode(0x101);
6918   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6919   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6920   ins_pipe(int_conditional_float_move);
6921 %}
6922 
6923 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6924   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6925   ins_cost(150);
6926 
6927   size(4);
6928   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6929   opcode(0x101);
6930   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6931   ins_pipe(int_conditional_float_move);
6932 %}
6933 
6934 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6935   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6936   ins_cost(150);
6937 
6938   size(4);
6939   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6940   opcode(0x101);
6941   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6942   ins_pipe(int_conditional_float_move);
6943 %}
6944 
6945 // Conditional move,
6946 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6947   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6948   ins_cost(150);
6949   size(4);
6950   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6951   opcode(0x1);
6952   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6953   ins_pipe(int_conditional_double_move);
6954 %}
6955 
6956 // Conditional move
6957 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6958   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6959   ins_cost(150);
6960   size(4);
6961   opcode(0x102);
6962   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6963   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6964   ins_pipe(int_conditional_double_move);
6965 %}
6966 
6967 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6968   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6969   ins_cost(150);
6970 
6971   size(4);
6972   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6973   opcode(0x102);
6974   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6975   ins_pipe(int_conditional_double_move);
6976 %}
6977 
6978 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6979   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6980   ins_cost(150);
6981 
6982   size(4);
6983   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6984   opcode(0x102);
6985   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6986   ins_pipe(int_conditional_double_move);
6987 %}
6988 
6989 // Conditional move,
6990 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6991   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6992   ins_cost(150);
6993   size(4);
6994   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6995   opcode(0x2);
6996   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6997   ins_pipe(int_conditional_double_move);
6998 %}
6999 
7000 // Conditional move
7001 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7002   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7003   ins_cost(150);
7004   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7005   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7006   ins_pipe(ialu_reg);
7007 %}
7008 
7009 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7010   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7011   ins_cost(140);
7012   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7013   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7014   ins_pipe(ialu_imm);
7015 %}
7016 
7017 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7018   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7019   ins_cost(150);
7020 
7021   size(4);
7022   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7023   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7024   ins_pipe(ialu_reg);
7025 %}
7026 
7027 
7028 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7029   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7030   ins_cost(150);
7031 
7032   size(4);
7033   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7034   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7035   ins_pipe(ialu_reg);
7036 %}
7037 
7038 
7039 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7040   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7041   ins_cost(150);
7042 
7043   size(4);
7044   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7045   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7046   ins_pipe(ialu_reg);
7047 %}
7048 
7049 
7050 
7051 //----------OS and Locking Instructions----------------------------------------
7052 
7053 // This name is KNOWN by the ADLC and cannot be changed.
7054 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7055 // for this guy.
7056 instruct tlsLoadP(g2RegP dst) %{
7057   match(Set dst (ThreadLocal));
7058 
7059   size(0);
7060   ins_cost(0);
7061   format %{ "# TLS is in G2" %}
7062   ins_encode( /*empty encoding*/ );
7063   ins_pipe(ialu_none);
7064 %}
7065 
7066 instruct checkCastPP( iRegP dst ) %{
7067   match(Set dst (CheckCastPP dst));
7068 
7069   size(0);
7070   format %{ "# checkcastPP of $dst" %}
7071   ins_encode( /*empty encoding*/ );
7072   ins_pipe(empty);
7073 %}
7074 
7075 
7076 instruct castPP( iRegP dst ) %{
7077   match(Set dst (CastPP dst));
7078   format %{ "# castPP of $dst" %}
7079   ins_encode( /*empty encoding*/ );
7080   ins_pipe(empty);
7081 %}
7082 
7083 instruct castII( iRegI dst ) %{
7084   match(Set dst (CastII dst));
7085   format %{ "# castII of $dst" %}
7086   ins_encode( /*empty encoding*/ );
7087   ins_cost(0);
7088   ins_pipe(empty);
7089 %}
7090 
7091 //----------Arithmetic Instructions--------------------------------------------
7092 // Addition Instructions
7093 // Register Addition
7094 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7095   match(Set dst (AddI src1 src2));
7096 
7097   size(4);
7098   format %{ "ADD    $src1,$src2,$dst" %}
7099   ins_encode %{
7100     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7101   %}
7102   ins_pipe(ialu_reg_reg);
7103 %}
7104 
7105 // Immediate Addition
7106 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7107   match(Set dst (AddI src1 src2));
7108 
7109   size(4);
7110   format %{ "ADD    $src1,$src2,$dst" %}
7111   opcode(Assembler::add_op3, Assembler::arith_op);
7112   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7113   ins_pipe(ialu_reg_imm);
7114 %}
7115 
7116 // Pointer Register Addition
7117 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7118   match(Set dst (AddP src1 src2));
7119 
7120   size(4);
7121   format %{ "ADD    $src1,$src2,$dst" %}
7122   opcode(Assembler::add_op3, Assembler::arith_op);
7123   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7124   ins_pipe(ialu_reg_reg);
7125 %}
7126 
7127 // Pointer Immediate Addition
7128 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7129   match(Set dst (AddP src1 src2));
7130 
7131   size(4);
7132   format %{ "ADD    $src1,$src2,$dst" %}
7133   opcode(Assembler::add_op3, Assembler::arith_op);
7134   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7135   ins_pipe(ialu_reg_imm);
7136 %}
7137 
7138 // Long Addition
7139 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7140   match(Set dst (AddL src1 src2));
7141 
7142   size(4);
7143   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7144   opcode(Assembler::add_op3, Assembler::arith_op);
7145   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7146   ins_pipe(ialu_reg_reg);
7147 %}
7148 
7149 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7150   match(Set dst (AddL src1 con));
7151 
7152   size(4);
7153   format %{ "ADD    $src1,$con,$dst" %}
7154   opcode(Assembler::add_op3, Assembler::arith_op);
7155   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7156   ins_pipe(ialu_reg_imm);
7157 %}
7158 
7159 //----------Conditional_store--------------------------------------------------
7160 // Conditional-store of the updated heap-top.
7161 // Used during allocation of the shared heap.
7162 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7163 
7164 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7165 instruct loadPLocked(iRegP dst, memory mem) %{
7166   match(Set dst (LoadPLocked mem));
7167   ins_cost(MEMORY_REF_COST);
7168 
7169 #ifndef _LP64
7170   size(4);
7171   format %{ "LDUW   $mem,$dst\t! ptr" %}
7172   opcode(Assembler::lduw_op3, 0, REGP_OP);
7173 #else
7174   format %{ "LDX    $mem,$dst\t! ptr" %}
7175   opcode(Assembler::ldx_op3, 0, REGP_OP);
7176 #endif
7177   ins_encode( form3_mem_reg( mem, dst ) );
7178   ins_pipe(iload_mem);
7179 %}
7180 
7181 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7182   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7183   effect( KILL newval );
7184   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7185             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7186   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7187   ins_pipe( long_memory_op );
7188 %}
7189 
7190 // Conditional-store of an int value.
7191 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7192   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7193   effect( KILL newval );
7194   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7195             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7196   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7197   ins_pipe( long_memory_op );
7198 %}
7199 
7200 // Conditional-store of a long value.
7201 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7202   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7203   effect( KILL newval );
7204   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7205             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7206   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7207   ins_pipe( long_memory_op );
7208 %}
7209 
7210 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7211 
7212 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7213   predicate(VM_Version::supports_cx8());
7214   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7215   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7216   format %{
7217             "MOV    $newval,O7\n\t"
7218             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7219             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7220             "MOV    1,$res\n\t"
7221             "MOVne  xcc,R_G0,$res"
7222   %}
7223   ins_encode( enc_casx(mem_ptr, oldval, newval),
7224               enc_lflags_ne_to_boolean(res) );
7225   ins_pipe( long_memory_op );
7226 %}
7227 
7228 
7229 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7230   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7231   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7232   format %{
7233             "MOV    $newval,O7\n\t"
7234             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7235             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7236             "MOV    1,$res\n\t"
7237             "MOVne  icc,R_G0,$res"
7238   %}
7239   ins_encode( enc_casi(mem_ptr, oldval, newval),
7240               enc_iflags_ne_to_boolean(res) );
7241   ins_pipe( long_memory_op );
7242 %}
7243 
7244 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7245 #ifdef _LP64
7246   predicate(VM_Version::supports_cx8());
7247 #endif
7248   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7249   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7250   format %{
7251             "MOV    $newval,O7\n\t"
7252             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7253             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7254             "MOV    1,$res\n\t"
7255             "MOVne  xcc,R_G0,$res"
7256   %}
7257 #ifdef _LP64
7258   ins_encode( enc_casx(mem_ptr, oldval, newval),
7259               enc_lflags_ne_to_boolean(res) );
7260 #else
7261   ins_encode( enc_casi(mem_ptr, oldval, newval),
7262               enc_iflags_ne_to_boolean(res) );
7263 #endif
7264   ins_pipe( long_memory_op );
7265 %}
7266 
7267 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7268   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7269   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7270   format %{
7271             "MOV    $newval,O7\n\t"
7272             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7273             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7274             "MOV    1,$res\n\t"
7275             "MOVne  icc,R_G0,$res"
7276   %}
7277   ins_encode( enc_casi(mem_ptr, oldval, newval),
7278               enc_iflags_ne_to_boolean(res) );
7279   ins_pipe( long_memory_op );
7280 %}
7281 
7282 instruct xchgI( memory mem, iRegI newval) %{
7283   match(Set newval (GetAndSetI mem newval));
7284   format %{ "SWAP  [$mem],$newval" %}
7285   size(4);
7286   ins_encode %{
7287     __ swap($mem$$Address, $newval$$Register);
7288   %}
7289   ins_pipe( long_memory_op );
7290 %}
7291 
7292 #ifndef _LP64
7293 instruct xchgP( memory mem, iRegP newval) %{
7294   match(Set newval (GetAndSetP mem newval));
7295   format %{ "SWAP  [$mem],$newval" %}
7296   size(4);
7297   ins_encode %{
7298     __ swap($mem$$Address, $newval$$Register);
7299   %}
7300   ins_pipe( long_memory_op );
7301 %}
7302 #endif
7303 
7304 instruct xchgN( memory mem, iRegN newval) %{
7305   match(Set newval (GetAndSetN mem newval));
7306   format %{ "SWAP  [$mem],$newval" %}
7307   size(4);
7308   ins_encode %{
7309     __ swap($mem$$Address, $newval$$Register);
7310   %}
7311   ins_pipe( long_memory_op );
7312 %}
7313 
7314 //---------------------
7315 // Subtraction Instructions
7316 // Register Subtraction
7317 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7318   match(Set dst (SubI src1 src2));
7319 
7320   size(4);
7321   format %{ "SUB    $src1,$src2,$dst" %}
7322   opcode(Assembler::sub_op3, Assembler::arith_op);
7323   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7324   ins_pipe(ialu_reg_reg);
7325 %}
7326 
7327 // Immediate Subtraction
7328 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7329   match(Set dst (SubI src1 src2));
7330 
7331   size(4);
7332   format %{ "SUB    $src1,$src2,$dst" %}
7333   opcode(Assembler::sub_op3, Assembler::arith_op);
7334   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7335   ins_pipe(ialu_reg_imm);
7336 %}
7337 
7338 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7339   match(Set dst (SubI zero src2));
7340 
7341   size(4);
7342   format %{ "NEG    $src2,$dst" %}
7343   opcode(Assembler::sub_op3, Assembler::arith_op);
7344   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7345   ins_pipe(ialu_zero_reg);
7346 %}
7347 
7348 // Long subtraction
7349 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7350   match(Set dst (SubL src1 src2));
7351 
7352   size(4);
7353   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7354   opcode(Assembler::sub_op3, Assembler::arith_op);
7355   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7356   ins_pipe(ialu_reg_reg);
7357 %}
7358 
7359 // Immediate Subtraction
7360 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7361   match(Set dst (SubL src1 con));
7362 
7363   size(4);
7364   format %{ "SUB    $src1,$con,$dst\t! long" %}
7365   opcode(Assembler::sub_op3, Assembler::arith_op);
7366   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7367   ins_pipe(ialu_reg_imm);
7368 %}
7369 
7370 // Long negation
7371 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7372   match(Set dst (SubL zero src2));
7373 
7374   size(4);
7375   format %{ "NEG    $src2,$dst\t! long" %}
7376   opcode(Assembler::sub_op3, Assembler::arith_op);
7377   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7378   ins_pipe(ialu_zero_reg);
7379 %}
7380 
7381 // Multiplication Instructions
7382 // Integer Multiplication
7383 // Register Multiplication
7384 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7385   match(Set dst (MulI src1 src2));
7386 
7387   size(4);
7388   format %{ "MULX   $src1,$src2,$dst" %}
7389   opcode(Assembler::mulx_op3, Assembler::arith_op);
7390   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7391   ins_pipe(imul_reg_reg);
7392 %}
7393 
7394 // Immediate Multiplication
7395 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7396   match(Set dst (MulI src1 src2));
7397 
7398   size(4);
7399   format %{ "MULX   $src1,$src2,$dst" %}
7400   opcode(Assembler::mulx_op3, Assembler::arith_op);
7401   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7402   ins_pipe(imul_reg_imm);
7403 %}
7404 
7405 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7406   match(Set dst (MulL src1 src2));
7407   ins_cost(DEFAULT_COST * 5);
7408   size(4);
7409   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7410   opcode(Assembler::mulx_op3, Assembler::arith_op);
7411   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7412   ins_pipe(mulL_reg_reg);
7413 %}
7414 
7415 // Immediate Multiplication
7416 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7417   match(Set dst (MulL src1 src2));
7418   ins_cost(DEFAULT_COST * 5);
7419   size(4);
7420   format %{ "MULX   $src1,$src2,$dst" %}
7421   opcode(Assembler::mulx_op3, Assembler::arith_op);
7422   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7423   ins_pipe(mulL_reg_imm);
7424 %}
7425 
7426 // Integer Division
7427 // Register Division
7428 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7429   match(Set dst (DivI src1 src2));
7430   ins_cost((2+71)*DEFAULT_COST);
7431 
7432   format %{ "SRA     $src2,0,$src2\n\t"
7433             "SRA     $src1,0,$src1\n\t"
7434             "SDIVX   $src1,$src2,$dst" %}
7435   ins_encode( idiv_reg( src1, src2, dst ) );
7436   ins_pipe(sdiv_reg_reg);
7437 %}
7438 
7439 // Immediate Division
7440 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7441   match(Set dst (DivI src1 src2));
7442   ins_cost((2+71)*DEFAULT_COST);
7443 
7444   format %{ "SRA     $src1,0,$src1\n\t"
7445             "SDIVX   $src1,$src2,$dst" %}
7446   ins_encode( idiv_imm( src1, src2, dst ) );
7447   ins_pipe(sdiv_reg_imm);
7448 %}
7449 
7450 //----------Div-By-10-Expansion------------------------------------------------
7451 // Extract hi bits of a 32x32->64 bit multiply.
7452 // Expand rule only, not matched
7453 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7454   effect( DEF dst, USE src1, USE src2 );
7455   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7456             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7457   ins_encode( enc_mul_hi(dst,src1,src2));
7458   ins_pipe(sdiv_reg_reg);
7459 %}
7460 
7461 // Magic constant, reciprocal of 10
7462 instruct loadConI_x66666667(iRegIsafe dst) %{
7463   effect( DEF dst );
7464 
7465   size(8);
7466   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7467   ins_encode( Set32(0x66666667, dst) );
7468   ins_pipe(ialu_hi_lo_reg);
7469 %}
7470 
7471 // Register Shift Right Arithmetic Long by 32-63
7472 instruct sra_31( iRegI dst, iRegI src ) %{
7473   effect( DEF dst, USE src );
7474   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7475   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7476   ins_pipe(ialu_reg_reg);
7477 %}
7478 
7479 // Arithmetic Shift Right by 8-bit immediate
7480 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7481   effect( DEF dst, USE src );
7482   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7483   opcode(Assembler::sra_op3, Assembler::arith_op);
7484   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7485   ins_pipe(ialu_reg_imm);
7486 %}
7487 
7488 // Integer DIV with 10
7489 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7490   match(Set dst (DivI src div));
7491   ins_cost((6+6)*DEFAULT_COST);
7492   expand %{
7493     iRegIsafe tmp1;               // Killed temps;
7494     iRegIsafe tmp2;               // Killed temps;
7495     iRegI tmp3;                   // Killed temps;
7496     iRegI tmp4;                   // Killed temps;
7497     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7498     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7499     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7500     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7501     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7502   %}
7503 %}
7504 
7505 // Register Long Division
7506 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7507   match(Set dst (DivL src1 src2));
7508   ins_cost(DEFAULT_COST*71);
7509   size(4);
7510   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7511   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7512   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7513   ins_pipe(divL_reg_reg);
7514 %}
7515 
7516 // Register Long Division
7517 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7518   match(Set dst (DivL src1 src2));
7519   ins_cost(DEFAULT_COST*71);
7520   size(4);
7521   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7522   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7523   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7524   ins_pipe(divL_reg_imm);
7525 %}
7526 
7527 // Integer Remainder
7528 // Register Remainder
7529 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7530   match(Set dst (ModI src1 src2));
7531   effect( KILL ccr, KILL temp);
7532 
7533   format %{ "SREM   $src1,$src2,$dst" %}
7534   ins_encode( irem_reg(src1, src2, dst, temp) );
7535   ins_pipe(sdiv_reg_reg);
7536 %}
7537 
7538 // Immediate Remainder
7539 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7540   match(Set dst (ModI src1 src2));
7541   effect( KILL ccr, KILL temp);
7542 
7543   format %{ "SREM   $src1,$src2,$dst" %}
7544   ins_encode( irem_imm(src1, src2, dst, temp) );
7545   ins_pipe(sdiv_reg_imm);
7546 %}
7547 
7548 // Register Long Remainder
7549 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7550   effect(DEF dst, USE src1, USE src2);
7551   size(4);
7552   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7553   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7554   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7555   ins_pipe(divL_reg_reg);
7556 %}
7557 
7558 // Register Long Division
7559 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7560   effect(DEF dst, USE src1, USE src2);
7561   size(4);
7562   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7563   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7564   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7565   ins_pipe(divL_reg_imm);
7566 %}
7567 
7568 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7569   effect(DEF dst, USE src1, USE src2);
7570   size(4);
7571   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7572   opcode(Assembler::mulx_op3, Assembler::arith_op);
7573   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7574   ins_pipe(mulL_reg_reg);
7575 %}
7576 
7577 // Immediate Multiplication
7578 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7579   effect(DEF dst, USE src1, USE src2);
7580   size(4);
7581   format %{ "MULX   $src1,$src2,$dst" %}
7582   opcode(Assembler::mulx_op3, Assembler::arith_op);
7583   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7584   ins_pipe(mulL_reg_imm);
7585 %}
7586 
7587 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7588   effect(DEF dst, USE src1, USE src2);
7589   size(4);
7590   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7591   opcode(Assembler::sub_op3, Assembler::arith_op);
7592   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7593   ins_pipe(ialu_reg_reg);
7594 %}
7595 
7596 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7597   effect(DEF dst, USE src1, USE src2);
7598   size(4);
7599   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7600   opcode(Assembler::sub_op3, Assembler::arith_op);
7601   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7602   ins_pipe(ialu_reg_reg);
7603 %}
7604 
7605 // Register Long Remainder
7606 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7607   match(Set dst (ModL src1 src2));
7608   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7609   expand %{
7610     iRegL tmp1;
7611     iRegL tmp2;
7612     divL_reg_reg_1(tmp1, src1, src2);
7613     mulL_reg_reg_1(tmp2, tmp1, src2);
7614     subL_reg_reg_1(dst,  src1, tmp2);
7615   %}
7616 %}
7617 
7618 // Register Long Remainder
7619 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7620   match(Set dst (ModL src1 src2));
7621   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7622   expand %{
7623     iRegL tmp1;
7624     iRegL tmp2;
7625     divL_reg_imm13_1(tmp1, src1, src2);
7626     mulL_reg_imm13_1(tmp2, tmp1, src2);
7627     subL_reg_reg_2  (dst,  src1, tmp2);
7628   %}
7629 %}
7630 
7631 // Integer Shift Instructions
7632 // Register Shift Left
7633 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7634   match(Set dst (LShiftI src1 src2));
7635 
7636   size(4);
7637   format %{ "SLL    $src1,$src2,$dst" %}
7638   opcode(Assembler::sll_op3, Assembler::arith_op);
7639   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7640   ins_pipe(ialu_reg_reg);
7641 %}
7642 
7643 // Register Shift Left Immediate
7644 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7645   match(Set dst (LShiftI src1 src2));
7646 
7647   size(4);
7648   format %{ "SLL    $src1,$src2,$dst" %}
7649   opcode(Assembler::sll_op3, Assembler::arith_op);
7650   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7651   ins_pipe(ialu_reg_imm);
7652 %}
7653 
7654 // Register Shift Left
7655 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7656   match(Set dst (LShiftL src1 src2));
7657 
7658   size(4);
7659   format %{ "SLLX   $src1,$src2,$dst" %}
7660   opcode(Assembler::sllx_op3, Assembler::arith_op);
7661   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7662   ins_pipe(ialu_reg_reg);
7663 %}
7664 
7665 // Register Shift Left Immediate
7666 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7667   match(Set dst (LShiftL src1 src2));
7668 
7669   size(4);
7670   format %{ "SLLX   $src1,$src2,$dst" %}
7671   opcode(Assembler::sllx_op3, Assembler::arith_op);
7672   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7673   ins_pipe(ialu_reg_imm);
7674 %}
7675 
7676 // Register Arithmetic Shift Right
7677 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7678   match(Set dst (RShiftI src1 src2));
7679   size(4);
7680   format %{ "SRA    $src1,$src2,$dst" %}
7681   opcode(Assembler::sra_op3, Assembler::arith_op);
7682   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7683   ins_pipe(ialu_reg_reg);
7684 %}
7685 
7686 // Register Arithmetic Shift Right Immediate
7687 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7688   match(Set dst (RShiftI src1 src2));
7689 
7690   size(4);
7691   format %{ "SRA    $src1,$src2,$dst" %}
7692   opcode(Assembler::sra_op3, Assembler::arith_op);
7693   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7694   ins_pipe(ialu_reg_imm);
7695 %}
7696 
7697 // Register Shift Right Arithmatic Long
7698 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7699   match(Set dst (RShiftL src1 src2));
7700 
7701   size(4);
7702   format %{ "SRAX   $src1,$src2,$dst" %}
7703   opcode(Assembler::srax_op3, Assembler::arith_op);
7704   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7705   ins_pipe(ialu_reg_reg);
7706 %}
7707 
7708 // Register Shift Left Immediate
7709 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7710   match(Set dst (RShiftL src1 src2));
7711 
7712   size(4);
7713   format %{ "SRAX   $src1,$src2,$dst" %}
7714   opcode(Assembler::srax_op3, Assembler::arith_op);
7715   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7716   ins_pipe(ialu_reg_imm);
7717 %}
7718 
7719 // Register Shift Right
7720 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7721   match(Set dst (URShiftI src1 src2));
7722 
7723   size(4);
7724   format %{ "SRL    $src1,$src2,$dst" %}
7725   opcode(Assembler::srl_op3, Assembler::arith_op);
7726   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7727   ins_pipe(ialu_reg_reg);
7728 %}
7729 
7730 // Register Shift Right Immediate
7731 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7732   match(Set dst (URShiftI src1 src2));
7733 
7734   size(4);
7735   format %{ "SRL    $src1,$src2,$dst" %}
7736   opcode(Assembler::srl_op3, Assembler::arith_op);
7737   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7738   ins_pipe(ialu_reg_imm);
7739 %}
7740 
7741 // Register Shift Right
7742 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7743   match(Set dst (URShiftL src1 src2));
7744 
7745   size(4);
7746   format %{ "SRLX   $src1,$src2,$dst" %}
7747   opcode(Assembler::srlx_op3, Assembler::arith_op);
7748   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7749   ins_pipe(ialu_reg_reg);
7750 %}
7751 
7752 // Register Shift Right Immediate
7753 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7754   match(Set dst (URShiftL src1 src2));
7755 
7756   size(4);
7757   format %{ "SRLX   $src1,$src2,$dst" %}
7758   opcode(Assembler::srlx_op3, Assembler::arith_op);
7759   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7760   ins_pipe(ialu_reg_imm);
7761 %}
7762 
7763 // Register Shift Right Immediate with a CastP2X
7764 #ifdef _LP64
7765 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7766   match(Set dst (URShiftL (CastP2X src1) src2));
7767   size(4);
7768   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7769   opcode(Assembler::srlx_op3, Assembler::arith_op);
7770   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7771   ins_pipe(ialu_reg_imm);
7772 %}
7773 #else
7774 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7775   match(Set dst (URShiftI (CastP2X src1) src2));
7776   size(4);
7777   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7778   opcode(Assembler::srl_op3, Assembler::arith_op);
7779   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7780   ins_pipe(ialu_reg_imm);
7781 %}
7782 #endif
7783 
7784 
7785 //----------Floating Point Arithmetic Instructions-----------------------------
7786 
7787 //  Add float single precision
7788 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7789   match(Set dst (AddF src1 src2));
7790 
7791   size(4);
7792   format %{ "FADDS  $src1,$src2,$dst" %}
7793   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7794   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7795   ins_pipe(faddF_reg_reg);
7796 %}
7797 
7798 //  Add float double precision
7799 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7800   match(Set dst (AddD src1 src2));
7801 
7802   size(4);
7803   format %{ "FADDD  $src1,$src2,$dst" %}
7804   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7805   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7806   ins_pipe(faddD_reg_reg);
7807 %}
7808 
7809 //  Sub float single precision
7810 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7811   match(Set dst (SubF src1 src2));
7812 
7813   size(4);
7814   format %{ "FSUBS  $src1,$src2,$dst" %}
7815   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7816   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7817   ins_pipe(faddF_reg_reg);
7818 %}
7819 
7820 //  Sub float double precision
7821 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7822   match(Set dst (SubD src1 src2));
7823 
7824   size(4);
7825   format %{ "FSUBD  $src1,$src2,$dst" %}
7826   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7827   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7828   ins_pipe(faddD_reg_reg);
7829 %}
7830 
7831 //  Mul float single precision
7832 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7833   match(Set dst (MulF src1 src2));
7834 
7835   size(4);
7836   format %{ "FMULS  $src1,$src2,$dst" %}
7837   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7838   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7839   ins_pipe(fmulF_reg_reg);
7840 %}
7841 
7842 //  Mul float double precision
7843 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7844   match(Set dst (MulD src1 src2));
7845 
7846   size(4);
7847   format %{ "FMULD  $src1,$src2,$dst" %}
7848   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7849   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7850   ins_pipe(fmulD_reg_reg);
7851 %}
7852 
7853 //  Div float single precision
7854 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7855   match(Set dst (DivF src1 src2));
7856 
7857   size(4);
7858   format %{ "FDIVS  $src1,$src2,$dst" %}
7859   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7860   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7861   ins_pipe(fdivF_reg_reg);
7862 %}
7863 
7864 //  Div float double precision
7865 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7866   match(Set dst (DivD src1 src2));
7867 
7868   size(4);
7869   format %{ "FDIVD  $src1,$src2,$dst" %}
7870   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7871   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7872   ins_pipe(fdivD_reg_reg);
7873 %}
7874 
7875 //  Absolute float double precision
7876 instruct absD_reg(regD dst, regD src) %{
7877   match(Set dst (AbsD src));
7878 
7879   format %{ "FABSd  $src,$dst" %}
7880   ins_encode(fabsd(dst, src));
7881   ins_pipe(faddD_reg);
7882 %}
7883 
7884 //  Absolute float single precision
7885 instruct absF_reg(regF dst, regF src) %{
7886   match(Set dst (AbsF src));
7887 
7888   format %{ "FABSs  $src,$dst" %}
7889   ins_encode(fabss(dst, src));
7890   ins_pipe(faddF_reg);
7891 %}
7892 
7893 instruct negF_reg(regF dst, regF src) %{
7894   match(Set dst (NegF src));
7895 
7896   size(4);
7897   format %{ "FNEGs  $src,$dst" %}
7898   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7899   ins_encode(form3_opf_rs2F_rdF(src, dst));
7900   ins_pipe(faddF_reg);
7901 %}
7902 
7903 instruct negD_reg(regD dst, regD src) %{
7904   match(Set dst (NegD src));
7905 
7906   format %{ "FNEGd  $src,$dst" %}
7907   ins_encode(fnegd(dst, src));
7908   ins_pipe(faddD_reg);
7909 %}
7910 
7911 //  Sqrt float double precision
7912 instruct sqrtF_reg_reg(regF dst, regF src) %{
7913   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7914 
7915   size(4);
7916   format %{ "FSQRTS $src,$dst" %}
7917   ins_encode(fsqrts(dst, src));
7918   ins_pipe(fdivF_reg_reg);
7919 %}
7920 
7921 //  Sqrt float double precision
7922 instruct sqrtD_reg_reg(regD dst, regD src) %{
7923   match(Set dst (SqrtD src));
7924 
7925   size(4);
7926   format %{ "FSQRTD $src,$dst" %}
7927   ins_encode(fsqrtd(dst, src));
7928   ins_pipe(fdivD_reg_reg);
7929 %}
7930 
7931 //----------Logical Instructions-----------------------------------------------
7932 // And Instructions
7933 // Register And
7934 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7935   match(Set dst (AndI src1 src2));
7936 
7937   size(4);
7938   format %{ "AND    $src1,$src2,$dst" %}
7939   opcode(Assembler::and_op3, Assembler::arith_op);
7940   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7941   ins_pipe(ialu_reg_reg);
7942 %}
7943 
7944 // Immediate And
7945 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7946   match(Set dst (AndI src1 src2));
7947 
7948   size(4);
7949   format %{ "AND    $src1,$src2,$dst" %}
7950   opcode(Assembler::and_op3, Assembler::arith_op);
7951   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7952   ins_pipe(ialu_reg_imm);
7953 %}
7954 
7955 // Register And Long
7956 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7957   match(Set dst (AndL src1 src2));
7958 
7959   ins_cost(DEFAULT_COST);
7960   size(4);
7961   format %{ "AND    $src1,$src2,$dst\t! long" %}
7962   opcode(Assembler::and_op3, Assembler::arith_op);
7963   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7964   ins_pipe(ialu_reg_reg);
7965 %}
7966 
7967 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7968   match(Set dst (AndL src1 con));
7969 
7970   ins_cost(DEFAULT_COST);
7971   size(4);
7972   format %{ "AND    $src1,$con,$dst\t! long" %}
7973   opcode(Assembler::and_op3, Assembler::arith_op);
7974   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7975   ins_pipe(ialu_reg_imm);
7976 %}
7977 
7978 // Or Instructions
7979 // Register Or
7980 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7981   match(Set dst (OrI src1 src2));
7982 
7983   size(4);
7984   format %{ "OR     $src1,$src2,$dst" %}
7985   opcode(Assembler::or_op3, Assembler::arith_op);
7986   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7987   ins_pipe(ialu_reg_reg);
7988 %}
7989 
7990 // Immediate Or
7991 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7992   match(Set dst (OrI src1 src2));
7993 
7994   size(4);
7995   format %{ "OR     $src1,$src2,$dst" %}
7996   opcode(Assembler::or_op3, Assembler::arith_op);
7997   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7998   ins_pipe(ialu_reg_imm);
7999 %}
8000 
8001 // Register Or Long
8002 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8003   match(Set dst (OrL src1 src2));
8004 
8005   ins_cost(DEFAULT_COST);
8006   size(4);
8007   format %{ "OR     $src1,$src2,$dst\t! long" %}
8008   opcode(Assembler::or_op3, Assembler::arith_op);
8009   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8010   ins_pipe(ialu_reg_reg);
8011 %}
8012 
8013 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8014   match(Set dst (OrL src1 con));
8015   ins_cost(DEFAULT_COST*2);
8016 
8017   ins_cost(DEFAULT_COST);
8018   size(4);
8019   format %{ "OR     $src1,$con,$dst\t! long" %}
8020   opcode(Assembler::or_op3, Assembler::arith_op);
8021   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8022   ins_pipe(ialu_reg_imm);
8023 %}
8024 
8025 #ifndef _LP64
8026 
8027 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8028 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8029   match(Set dst (OrI src1 (CastP2X src2)));
8030 
8031   size(4);
8032   format %{ "OR     $src1,$src2,$dst" %}
8033   opcode(Assembler::or_op3, Assembler::arith_op);
8034   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8035   ins_pipe(ialu_reg_reg);
8036 %}
8037 
8038 #else
8039 
8040 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8041   match(Set dst (OrL src1 (CastP2X src2)));
8042 
8043   ins_cost(DEFAULT_COST);
8044   size(4);
8045   format %{ "OR     $src1,$src2,$dst\t! long" %}
8046   opcode(Assembler::or_op3, Assembler::arith_op);
8047   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8048   ins_pipe(ialu_reg_reg);
8049 %}
8050 
8051 #endif
8052 
8053 // Xor Instructions
8054 // Register Xor
8055 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8056   match(Set dst (XorI src1 src2));
8057 
8058   size(4);
8059   format %{ "XOR    $src1,$src2,$dst" %}
8060   opcode(Assembler::xor_op3, Assembler::arith_op);
8061   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8062   ins_pipe(ialu_reg_reg);
8063 %}
8064 
8065 // Immediate Xor
8066 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8067   match(Set dst (XorI src1 src2));
8068 
8069   size(4);
8070   format %{ "XOR    $src1,$src2,$dst" %}
8071   opcode(Assembler::xor_op3, Assembler::arith_op);
8072   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8073   ins_pipe(ialu_reg_imm);
8074 %}
8075 
8076 // Register Xor Long
8077 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8078   match(Set dst (XorL src1 src2));
8079 
8080   ins_cost(DEFAULT_COST);
8081   size(4);
8082   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8083   opcode(Assembler::xor_op3, Assembler::arith_op);
8084   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8085   ins_pipe(ialu_reg_reg);
8086 %}
8087 
8088 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8089   match(Set dst (XorL src1 con));
8090 
8091   ins_cost(DEFAULT_COST);
8092   size(4);
8093   format %{ "XOR    $src1,$con,$dst\t! long" %}
8094   opcode(Assembler::xor_op3, Assembler::arith_op);
8095   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8096   ins_pipe(ialu_reg_imm);
8097 %}
8098 
8099 //----------Convert to Boolean-------------------------------------------------
8100 // Nice hack for 32-bit tests but doesn't work for
8101 // 64-bit pointers.
8102 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8103   match(Set dst (Conv2B src));
8104   effect( KILL ccr );
8105   ins_cost(DEFAULT_COST*2);
8106   format %{ "CMP    R_G0,$src\n\t"
8107             "ADDX   R_G0,0,$dst" %}
8108   ins_encode( enc_to_bool( src, dst ) );
8109   ins_pipe(ialu_reg_ialu);
8110 %}
8111 
8112 #ifndef _LP64
8113 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8114   match(Set dst (Conv2B src));
8115   effect( KILL ccr );
8116   ins_cost(DEFAULT_COST*2);
8117   format %{ "CMP    R_G0,$src\n\t"
8118             "ADDX   R_G0,0,$dst" %}
8119   ins_encode( enc_to_bool( src, dst ) );
8120   ins_pipe(ialu_reg_ialu);
8121 %}
8122 #else
8123 instruct convP2B( iRegI dst, iRegP src ) %{
8124   match(Set dst (Conv2B src));
8125   ins_cost(DEFAULT_COST*2);
8126   format %{ "MOV    $src,$dst\n\t"
8127             "MOVRNZ $src,1,$dst" %}
8128   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8129   ins_pipe(ialu_clr_and_mover);
8130 %}
8131 #endif
8132 
8133 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8134   match(Set dst (CmpLTMask src zero));
8135   effect(KILL ccr);
8136   size(4);
8137   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8138   ins_encode %{
8139     __ sra($src$$Register, 31, $dst$$Register);
8140   %}
8141   ins_pipe(ialu_reg_imm);
8142 %}
8143 
8144 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8145   match(Set dst (CmpLTMask p q));
8146   effect( KILL ccr );
8147   ins_cost(DEFAULT_COST*4);
8148   format %{ "CMP    $p,$q\n\t"
8149             "MOV    #0,$dst\n\t"
8150             "BLT,a  .+8\n\t"
8151             "MOV    #-1,$dst" %}
8152   ins_encode( enc_ltmask(p,q,dst) );
8153   ins_pipe(ialu_reg_reg_ialu);
8154 %}
8155 
8156 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8157   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8158   effect(KILL ccr, TEMP tmp);
8159   ins_cost(DEFAULT_COST*3);
8160 
8161   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8162             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8163             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8164   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8165   ins_pipe( cadd_cmpltmask );
8166 %}
8167 
8168 
8169 //-----------------------------------------------------------------
8170 // Direct raw moves between float and general registers using VIS3.
8171 
8172 //  ins_pipe(faddF_reg);
8173 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8174   predicate(UseVIS >= 3);
8175   match(Set dst (MoveF2I src));
8176 
8177   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8178   ins_encode %{
8179     __ movstouw($src$$FloatRegister, $dst$$Register);
8180   %}
8181   ins_pipe(ialu_reg_reg);
8182 %}
8183 
8184 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8185   predicate(UseVIS >= 3);
8186   match(Set dst (MoveI2F src));
8187 
8188   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8189   ins_encode %{
8190     __ movwtos($src$$Register, $dst$$FloatRegister);
8191   %}
8192   ins_pipe(ialu_reg_reg);
8193 %}
8194 
8195 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8196   predicate(UseVIS >= 3);
8197   match(Set dst (MoveD2L src));
8198 
8199   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8200   ins_encode %{
8201     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8202   %}
8203   ins_pipe(ialu_reg_reg);
8204 %}
8205 
8206 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8207   predicate(UseVIS >= 3);
8208   match(Set dst (MoveL2D src));
8209 
8210   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8211   ins_encode %{
8212     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8213   %}
8214   ins_pipe(ialu_reg_reg);
8215 %}
8216 
8217 
8218 // Raw moves between float and general registers using stack.
8219 
8220 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8221   match(Set dst (MoveF2I src));
8222   effect(DEF dst, USE src);
8223   ins_cost(MEMORY_REF_COST);
8224 
8225   size(4);
8226   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8227   opcode(Assembler::lduw_op3);
8228   ins_encode(simple_form3_mem_reg( src, dst ) );
8229   ins_pipe(iload_mem);
8230 %}
8231 
8232 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8233   match(Set dst (MoveI2F src));
8234   effect(DEF dst, USE src);
8235   ins_cost(MEMORY_REF_COST);
8236 
8237   size(4);
8238   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8239   opcode(Assembler::ldf_op3);
8240   ins_encode(simple_form3_mem_reg(src, dst));
8241   ins_pipe(floadF_stk);
8242 %}
8243 
8244 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8245   match(Set dst (MoveD2L src));
8246   effect(DEF dst, USE src);
8247   ins_cost(MEMORY_REF_COST);
8248 
8249   size(4);
8250   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8251   opcode(Assembler::ldx_op3);
8252   ins_encode(simple_form3_mem_reg( src, dst ) );
8253   ins_pipe(iload_mem);
8254 %}
8255 
8256 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8257   match(Set dst (MoveL2D src));
8258   effect(DEF dst, USE src);
8259   ins_cost(MEMORY_REF_COST);
8260 
8261   size(4);
8262   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8263   opcode(Assembler::lddf_op3);
8264   ins_encode(simple_form3_mem_reg(src, dst));
8265   ins_pipe(floadD_stk);
8266 %}
8267 
8268 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8269   match(Set dst (MoveF2I src));
8270   effect(DEF dst, USE src);
8271   ins_cost(MEMORY_REF_COST);
8272 
8273   size(4);
8274   format %{ "STF   $src,$dst\t! MoveF2I" %}
8275   opcode(Assembler::stf_op3);
8276   ins_encode(simple_form3_mem_reg(dst, src));
8277   ins_pipe(fstoreF_stk_reg);
8278 %}
8279 
8280 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8281   match(Set dst (MoveI2F src));
8282   effect(DEF dst, USE src);
8283   ins_cost(MEMORY_REF_COST);
8284 
8285   size(4);
8286   format %{ "STW    $src,$dst\t! MoveI2F" %}
8287   opcode(Assembler::stw_op3);
8288   ins_encode(simple_form3_mem_reg( dst, src ) );
8289   ins_pipe(istore_mem_reg);
8290 %}
8291 
8292 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8293   match(Set dst (MoveD2L src));
8294   effect(DEF dst, USE src);
8295   ins_cost(MEMORY_REF_COST);
8296 
8297   size(4);
8298   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8299   opcode(Assembler::stdf_op3);
8300   ins_encode(simple_form3_mem_reg(dst, src));
8301   ins_pipe(fstoreD_stk_reg);
8302 %}
8303 
8304 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8305   match(Set dst (MoveL2D src));
8306   effect(DEF dst, USE src);
8307   ins_cost(MEMORY_REF_COST);
8308 
8309   size(4);
8310   format %{ "STX    $src,$dst\t! MoveL2D" %}
8311   opcode(Assembler::stx_op3);
8312   ins_encode(simple_form3_mem_reg( dst, src ) );
8313   ins_pipe(istore_mem_reg);
8314 %}
8315 
8316 
8317 //----------Arithmetic Conversion Instructions---------------------------------
8318 // The conversions operations are all Alpha sorted.  Please keep it that way!
8319 
8320 instruct convD2F_reg(regF dst, regD src) %{
8321   match(Set dst (ConvD2F src));
8322   size(4);
8323   format %{ "FDTOS  $src,$dst" %}
8324   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8325   ins_encode(form3_opf_rs2D_rdF(src, dst));
8326   ins_pipe(fcvtD2F);
8327 %}
8328 
8329 
8330 // Convert a double to an int in a float register.
8331 // If the double is a NAN, stuff a zero in instead.
8332 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8333   effect(DEF dst, USE src, KILL fcc0);
8334   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8335             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8336             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8337             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8338             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8339       "skip:" %}
8340   ins_encode(form_d2i_helper(src,dst));
8341   ins_pipe(fcvtD2I);
8342 %}
8343 
8344 instruct convD2I_stk(stackSlotI dst, regD src) %{
8345   match(Set dst (ConvD2I src));
8346   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8347   expand %{
8348     regF tmp;
8349     convD2I_helper(tmp, src);
8350     regF_to_stkI(dst, tmp);
8351   %}
8352 %}
8353 
8354 instruct convD2I_reg(iRegI dst, regD src) %{
8355   predicate(UseVIS >= 3);
8356   match(Set dst (ConvD2I src));
8357   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8358   expand %{
8359     regF tmp;
8360     convD2I_helper(tmp, src);
8361     MoveF2I_reg_reg(dst, tmp);
8362   %}
8363 %}
8364 
8365 
8366 // Convert a double to a long in a double register.
8367 // If the double is a NAN, stuff a zero in instead.
8368 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8369   effect(DEF dst, USE src, KILL fcc0);
8370   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8371             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8372             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8373             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8374             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8375       "skip:" %}
8376   ins_encode(form_d2l_helper(src,dst));
8377   ins_pipe(fcvtD2L);
8378 %}
8379 
8380 instruct convD2L_stk(stackSlotL dst, regD src) %{
8381   match(Set dst (ConvD2L src));
8382   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8383   expand %{
8384     regD tmp;
8385     convD2L_helper(tmp, src);
8386     regD_to_stkL(dst, tmp);
8387   %}
8388 %}
8389 
8390 instruct convD2L_reg(iRegL dst, regD src) %{
8391   predicate(UseVIS >= 3);
8392   match(Set dst (ConvD2L src));
8393   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8394   expand %{
8395     regD tmp;
8396     convD2L_helper(tmp, src);
8397     MoveD2L_reg_reg(dst, tmp);
8398   %}
8399 %}
8400 
8401 
8402 instruct convF2D_reg(regD dst, regF src) %{
8403   match(Set dst (ConvF2D src));
8404   format %{ "FSTOD  $src,$dst" %}
8405   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8406   ins_encode(form3_opf_rs2F_rdD(src, dst));
8407   ins_pipe(fcvtF2D);
8408 %}
8409 
8410 
8411 // Convert a float to an int in a float register.
8412 // If the float is a NAN, stuff a zero in instead.
8413 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8414   effect(DEF dst, USE src, KILL fcc0);
8415   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8416             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8417             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8418             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8419             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8420       "skip:" %}
8421   ins_encode(form_f2i_helper(src,dst));
8422   ins_pipe(fcvtF2I);
8423 %}
8424 
8425 instruct convF2I_stk(stackSlotI dst, regF src) %{
8426   match(Set dst (ConvF2I src));
8427   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8428   expand %{
8429     regF tmp;
8430     convF2I_helper(tmp, src);
8431     regF_to_stkI(dst, tmp);
8432   %}
8433 %}
8434 
8435 instruct convF2I_reg(iRegI dst, regF src) %{
8436   predicate(UseVIS >= 3);
8437   match(Set dst (ConvF2I src));
8438   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8439   expand %{
8440     regF tmp;
8441     convF2I_helper(tmp, src);
8442     MoveF2I_reg_reg(dst, tmp);
8443   %}
8444 %}
8445 
8446 
8447 // Convert a float to a long in a float register.
8448 // If the float is a NAN, stuff a zero in instead.
8449 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8450   effect(DEF dst, USE src, KILL fcc0);
8451   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8452             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8453             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8454             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8455             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8456       "skip:" %}
8457   ins_encode(form_f2l_helper(src,dst));
8458   ins_pipe(fcvtF2L);
8459 %}
8460 
8461 instruct convF2L_stk(stackSlotL dst, regF src) %{
8462   match(Set dst (ConvF2L src));
8463   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8464   expand %{
8465     regD tmp;
8466     convF2L_helper(tmp, src);
8467     regD_to_stkL(dst, tmp);
8468   %}
8469 %}
8470 
8471 instruct convF2L_reg(iRegL dst, regF src) %{
8472   predicate(UseVIS >= 3);
8473   match(Set dst (ConvF2L src));
8474   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8475   expand %{
8476     regD tmp;
8477     convF2L_helper(tmp, src);
8478     MoveD2L_reg_reg(dst, tmp);
8479   %}
8480 %}
8481 
8482 
8483 instruct convI2D_helper(regD dst, regF tmp) %{
8484   effect(USE tmp, DEF dst);
8485   format %{ "FITOD  $tmp,$dst" %}
8486   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8487   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8488   ins_pipe(fcvtI2D);
8489 %}
8490 
8491 instruct convI2D_stk(stackSlotI src, regD dst) %{
8492   match(Set dst (ConvI2D src));
8493   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8494   expand %{
8495     regF tmp;
8496     stkI_to_regF(tmp, src);
8497     convI2D_helper(dst, tmp);
8498   %}
8499 %}
8500 
8501 instruct convI2D_reg(regD_low dst, iRegI src) %{
8502   predicate(UseVIS >= 3);
8503   match(Set dst (ConvI2D src));
8504   expand %{
8505     regF tmp;
8506     MoveI2F_reg_reg(tmp, src);
8507     convI2D_helper(dst, tmp);
8508   %}
8509 %}
8510 
8511 instruct convI2D_mem(regD_low dst, memory mem) %{
8512   match(Set dst (ConvI2D (LoadI mem)));
8513   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8514   size(8);
8515   format %{ "LDF    $mem,$dst\n\t"
8516             "FITOD  $dst,$dst" %}
8517   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8518   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8519   ins_pipe(floadF_mem);
8520 %}
8521 
8522 
8523 instruct convI2F_helper(regF dst, regF tmp) %{
8524   effect(DEF dst, USE tmp);
8525   format %{ "FITOS  $tmp,$dst" %}
8526   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8527   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8528   ins_pipe(fcvtI2F);
8529 %}
8530 
8531 instruct convI2F_stk(regF dst, stackSlotI src) %{
8532   match(Set dst (ConvI2F src));
8533   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8534   expand %{
8535     regF tmp;
8536     stkI_to_regF(tmp,src);
8537     convI2F_helper(dst, tmp);
8538   %}
8539 %}
8540 
8541 instruct convI2F_reg(regF dst, iRegI src) %{
8542   predicate(UseVIS >= 3);
8543   match(Set dst (ConvI2F src));
8544   ins_cost(DEFAULT_COST);
8545   expand %{
8546     regF tmp;
8547     MoveI2F_reg_reg(tmp, src);
8548     convI2F_helper(dst, tmp);
8549   %}
8550 %}
8551 
8552 instruct convI2F_mem( regF dst, memory mem ) %{
8553   match(Set dst (ConvI2F (LoadI mem)));
8554   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8555   size(8);
8556   format %{ "LDF    $mem,$dst\n\t"
8557             "FITOS  $dst,$dst" %}
8558   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8559   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8560   ins_pipe(floadF_mem);
8561 %}
8562 
8563 
8564 instruct convI2L_reg(iRegL dst, iRegI src) %{
8565   match(Set dst (ConvI2L src));
8566   size(4);
8567   format %{ "SRA    $src,0,$dst\t! int->long" %}
8568   opcode(Assembler::sra_op3, Assembler::arith_op);
8569   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8570   ins_pipe(ialu_reg_reg);
8571 %}
8572 
8573 // Zero-extend convert int to long
8574 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8575   match(Set dst (AndL (ConvI2L src) mask) );
8576   size(4);
8577   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8578   opcode(Assembler::srl_op3, Assembler::arith_op);
8579   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8580   ins_pipe(ialu_reg_reg);
8581 %}
8582 
8583 // Zero-extend long
8584 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8585   match(Set dst (AndL src mask) );
8586   size(4);
8587   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8588   opcode(Assembler::srl_op3, Assembler::arith_op);
8589   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8590   ins_pipe(ialu_reg_reg);
8591 %}
8592 
8593 
8594 //-----------
8595 // Long to Double conversion using V8 opcodes.
8596 // Still useful because cheetah traps and becomes
8597 // amazingly slow for some common numbers.
8598 
8599 // Magic constant, 0x43300000
8600 instruct loadConI_x43300000(iRegI dst) %{
8601   effect(DEF dst);
8602   size(4);
8603   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8604   ins_encode(SetHi22(0x43300000, dst));
8605   ins_pipe(ialu_none);
8606 %}
8607 
8608 // Magic constant, 0x41f00000
8609 instruct loadConI_x41f00000(iRegI dst) %{
8610   effect(DEF dst);
8611   size(4);
8612   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8613   ins_encode(SetHi22(0x41f00000, dst));
8614   ins_pipe(ialu_none);
8615 %}
8616 
8617 // Construct a double from two float halves
8618 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8619   effect(DEF dst, USE src1, USE src2);
8620   size(8);
8621   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8622             "FMOVS  $src2.lo,$dst.lo" %}
8623   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8624   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8625   ins_pipe(faddD_reg_reg);
8626 %}
8627 
8628 // Convert integer in high half of a double register (in the lower half of
8629 // the double register file) to double
8630 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8631   effect(DEF dst, USE src);
8632   size(4);
8633   format %{ "FITOD  $src,$dst" %}
8634   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8635   ins_encode(form3_opf_rs2D_rdD(src, dst));
8636   ins_pipe(fcvtLHi2D);
8637 %}
8638 
8639 // Add float double precision
8640 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8641   effect(DEF dst, USE src1, USE src2);
8642   size(4);
8643   format %{ "FADDD  $src1,$src2,$dst" %}
8644   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8645   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8646   ins_pipe(faddD_reg_reg);
8647 %}
8648 
8649 // Sub float double precision
8650 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8651   effect(DEF dst, USE src1, USE src2);
8652   size(4);
8653   format %{ "FSUBD  $src1,$src2,$dst" %}
8654   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8655   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8656   ins_pipe(faddD_reg_reg);
8657 %}
8658 
8659 // Mul float double precision
8660 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8661   effect(DEF dst, USE src1, USE src2);
8662   size(4);
8663   format %{ "FMULD  $src1,$src2,$dst" %}
8664   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8665   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8666   ins_pipe(fmulD_reg_reg);
8667 %}
8668 
8669 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8670   match(Set dst (ConvL2D src));
8671   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8672 
8673   expand %{
8674     regD_low   tmpsrc;
8675     iRegI      ix43300000;
8676     iRegI      ix41f00000;
8677     stackSlotL lx43300000;
8678     stackSlotL lx41f00000;
8679     regD_low   dx43300000;
8680     regD       dx41f00000;
8681     regD       tmp1;
8682     regD_low   tmp2;
8683     regD       tmp3;
8684     regD       tmp4;
8685 
8686     stkL_to_regD(tmpsrc, src);
8687 
8688     loadConI_x43300000(ix43300000);
8689     loadConI_x41f00000(ix41f00000);
8690     regI_to_stkLHi(lx43300000, ix43300000);
8691     regI_to_stkLHi(lx41f00000, ix41f00000);
8692     stkL_to_regD(dx43300000, lx43300000);
8693     stkL_to_regD(dx41f00000, lx41f00000);
8694 
8695     convI2D_regDHi_regD(tmp1, tmpsrc);
8696     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8697     subD_regD_regD(tmp3, tmp2, dx43300000);
8698     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8699     addD_regD_regD(dst, tmp3, tmp4);
8700   %}
8701 %}
8702 
8703 // Long to Double conversion using fast fxtof
8704 instruct convL2D_helper(regD dst, regD tmp) %{
8705   effect(DEF dst, USE tmp);
8706   size(4);
8707   format %{ "FXTOD  $tmp,$dst" %}
8708   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8709   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8710   ins_pipe(fcvtL2D);
8711 %}
8712 
8713 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8714   predicate(VM_Version::has_fast_fxtof());
8715   match(Set dst (ConvL2D src));
8716   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8717   expand %{
8718     regD tmp;
8719     stkL_to_regD(tmp, src);
8720     convL2D_helper(dst, tmp);
8721   %}
8722 %}
8723 
8724 instruct convL2D_reg(regD dst, iRegL src) %{
8725   predicate(UseVIS >= 3);
8726   match(Set dst (ConvL2D src));
8727   expand %{
8728     regD tmp;
8729     MoveL2D_reg_reg(tmp, src);
8730     convL2D_helper(dst, tmp);
8731   %}
8732 %}
8733 
8734 // Long to Float conversion using fast fxtof
8735 instruct convL2F_helper(regF dst, regD tmp) %{
8736   effect(DEF dst, USE tmp);
8737   size(4);
8738   format %{ "FXTOS  $tmp,$dst" %}
8739   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8740   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8741   ins_pipe(fcvtL2F);
8742 %}
8743 
8744 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8745   match(Set dst (ConvL2F src));
8746   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8747   expand %{
8748     regD tmp;
8749     stkL_to_regD(tmp, src);
8750     convL2F_helper(dst, tmp);
8751   %}
8752 %}
8753 
8754 instruct convL2F_reg(regF dst, iRegL src) %{
8755   predicate(UseVIS >= 3);
8756   match(Set dst (ConvL2F src));
8757   ins_cost(DEFAULT_COST);
8758   expand %{
8759     regD tmp;
8760     MoveL2D_reg_reg(tmp, src);
8761     convL2F_helper(dst, tmp);
8762   %}
8763 %}
8764 
8765 //-----------
8766 
8767 instruct convL2I_reg(iRegI dst, iRegL src) %{
8768   match(Set dst (ConvL2I src));
8769 #ifndef _LP64
8770   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8771   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8772   ins_pipe(ialu_move_reg_I_to_L);
8773 #else
8774   size(4);
8775   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8776   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8777   ins_pipe(ialu_reg);
8778 #endif
8779 %}
8780 
8781 // Register Shift Right Immediate
8782 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8783   match(Set dst (ConvL2I (RShiftL src cnt)));
8784 
8785   size(4);
8786   format %{ "SRAX   $src,$cnt,$dst" %}
8787   opcode(Assembler::srax_op3, Assembler::arith_op);
8788   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8789   ins_pipe(ialu_reg_imm);
8790 %}
8791 
8792 //----------Control Flow Instructions------------------------------------------
8793 // Compare Instructions
8794 // Compare Integers
8795 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8796   match(Set icc (CmpI op1 op2));
8797   effect( DEF icc, USE op1, USE op2 );
8798 
8799   size(4);
8800   format %{ "CMP    $op1,$op2" %}
8801   opcode(Assembler::subcc_op3, Assembler::arith_op);
8802   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8803   ins_pipe(ialu_cconly_reg_reg);
8804 %}
8805 
8806 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8807   match(Set icc (CmpU op1 op2));
8808 
8809   size(4);
8810   format %{ "CMP    $op1,$op2\t! unsigned" %}
8811   opcode(Assembler::subcc_op3, Assembler::arith_op);
8812   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8813   ins_pipe(ialu_cconly_reg_reg);
8814 %}
8815 
8816 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8817   match(Set icc (CmpI op1 op2));
8818   effect( DEF icc, USE op1 );
8819 
8820   size(4);
8821   format %{ "CMP    $op1,$op2" %}
8822   opcode(Assembler::subcc_op3, Assembler::arith_op);
8823   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8824   ins_pipe(ialu_cconly_reg_imm);
8825 %}
8826 
8827 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8828   match(Set icc (CmpI (AndI op1 op2) zero));
8829 
8830   size(4);
8831   format %{ "BTST   $op2,$op1" %}
8832   opcode(Assembler::andcc_op3, Assembler::arith_op);
8833   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8834   ins_pipe(ialu_cconly_reg_reg_zero);
8835 %}
8836 
8837 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8838   match(Set icc (CmpI (AndI op1 op2) zero));
8839 
8840   size(4);
8841   format %{ "BTST   $op2,$op1" %}
8842   opcode(Assembler::andcc_op3, Assembler::arith_op);
8843   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8844   ins_pipe(ialu_cconly_reg_imm_zero);
8845 %}
8846 
8847 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8848   match(Set xcc (CmpL op1 op2));
8849   effect( DEF xcc, USE op1, USE op2 );
8850 
8851   size(4);
8852   format %{ "CMP    $op1,$op2\t\t! long" %}
8853   opcode(Assembler::subcc_op3, Assembler::arith_op);
8854   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8855   ins_pipe(ialu_cconly_reg_reg);
8856 %}
8857 
8858 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8859   match(Set xcc (CmpL op1 con));
8860   effect( DEF xcc, USE op1, USE con );
8861 
8862   size(4);
8863   format %{ "CMP    $op1,$con\t\t! long" %}
8864   opcode(Assembler::subcc_op3, Assembler::arith_op);
8865   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8866   ins_pipe(ialu_cconly_reg_reg);
8867 %}
8868 
8869 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8870   match(Set xcc (CmpL (AndL op1 op2) zero));
8871   effect( DEF xcc, USE op1, USE op2 );
8872 
8873   size(4);
8874   format %{ "BTST   $op1,$op2\t\t! long" %}
8875   opcode(Assembler::andcc_op3, Assembler::arith_op);
8876   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8877   ins_pipe(ialu_cconly_reg_reg);
8878 %}
8879 
8880 // useful for checking the alignment of a pointer:
8881 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8882   match(Set xcc (CmpL (AndL op1 con) zero));
8883   effect( DEF xcc, USE op1, USE con );
8884 
8885   size(4);
8886   format %{ "BTST   $op1,$con\t\t! long" %}
8887   opcode(Assembler::andcc_op3, Assembler::arith_op);
8888   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8889   ins_pipe(ialu_cconly_reg_reg);
8890 %}
8891 
8892 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8893   match(Set icc (CmpU op1 op2));
8894 
8895   size(4);
8896   format %{ "CMP    $op1,$op2\t! unsigned" %}
8897   opcode(Assembler::subcc_op3, Assembler::arith_op);
8898   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8899   ins_pipe(ialu_cconly_reg_imm);
8900 %}
8901 
8902 // Compare Pointers
8903 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8904   match(Set pcc (CmpP op1 op2));
8905 
8906   size(4);
8907   format %{ "CMP    $op1,$op2\t! ptr" %}
8908   opcode(Assembler::subcc_op3, Assembler::arith_op);
8909   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8910   ins_pipe(ialu_cconly_reg_reg);
8911 %}
8912 
8913 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8914   match(Set pcc (CmpP op1 op2));
8915 
8916   size(4);
8917   format %{ "CMP    $op1,$op2\t! ptr" %}
8918   opcode(Assembler::subcc_op3, Assembler::arith_op);
8919   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8920   ins_pipe(ialu_cconly_reg_imm);
8921 %}
8922 
8923 // Compare Narrow oops
8924 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8925   match(Set icc (CmpN op1 op2));
8926 
8927   size(4);
8928   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8929   opcode(Assembler::subcc_op3, Assembler::arith_op);
8930   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8931   ins_pipe(ialu_cconly_reg_reg);
8932 %}
8933 
8934 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8935   match(Set icc (CmpN op1 op2));
8936 
8937   size(4);
8938   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8939   opcode(Assembler::subcc_op3, Assembler::arith_op);
8940   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8941   ins_pipe(ialu_cconly_reg_imm);
8942 %}
8943 
8944 //----------Max and Min--------------------------------------------------------
8945 // Min Instructions
8946 // Conditional move for min
8947 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8948   effect( USE_DEF op2, USE op1, USE icc );
8949 
8950   size(4);
8951   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8952   opcode(Assembler::less);
8953   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8954   ins_pipe(ialu_reg_flags);
8955 %}
8956 
8957 // Min Register with Register.
8958 instruct minI_eReg(iRegI op1, iRegI op2) %{
8959   match(Set op2 (MinI op1 op2));
8960   ins_cost(DEFAULT_COST*2);
8961   expand %{
8962     flagsReg icc;
8963     compI_iReg(icc,op1,op2);
8964     cmovI_reg_lt(op2,op1,icc);
8965   %}
8966 %}
8967 
8968 // Max Instructions
8969 // Conditional move for max
8970 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8971   effect( USE_DEF op2, USE op1, USE icc );
8972   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8973   opcode(Assembler::greater);
8974   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8975   ins_pipe(ialu_reg_flags);
8976 %}
8977 
8978 // Max Register with Register
8979 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8980   match(Set op2 (MaxI op1 op2));
8981   ins_cost(DEFAULT_COST*2);
8982   expand %{
8983     flagsReg icc;
8984     compI_iReg(icc,op1,op2);
8985     cmovI_reg_gt(op2,op1,icc);
8986   %}
8987 %}
8988 
8989 
8990 //----------Float Compares----------------------------------------------------
8991 // Compare floating, generate condition code
8992 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8993   match(Set fcc (CmpF src1 src2));
8994 
8995   size(4);
8996   format %{ "FCMPs  $fcc,$src1,$src2" %}
8997   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8998   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8999   ins_pipe(faddF_fcc_reg_reg_zero);
9000 %}
9001 
9002 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9003   match(Set fcc (CmpD src1 src2));
9004 
9005   size(4);
9006   format %{ "FCMPd  $fcc,$src1,$src2" %}
9007   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9008   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9009   ins_pipe(faddD_fcc_reg_reg_zero);
9010 %}
9011 
9012 
9013 // Compare floating, generate -1,0,1
9014 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9015   match(Set dst (CmpF3 src1 src2));
9016   effect(KILL fcc0);
9017   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9018   format %{ "fcmpl  $dst,$src1,$src2" %}
9019   // Primary = float
9020   opcode( true );
9021   ins_encode( floating_cmp( dst, src1, src2 ) );
9022   ins_pipe( floating_cmp );
9023 %}
9024 
9025 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9026   match(Set dst (CmpD3 src1 src2));
9027   effect(KILL fcc0);
9028   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9029   format %{ "dcmpl  $dst,$src1,$src2" %}
9030   // Primary = double (not float)
9031   opcode( false );
9032   ins_encode( floating_cmp( dst, src1, src2 ) );
9033   ins_pipe( floating_cmp );
9034 %}
9035 
9036 //----------Branches---------------------------------------------------------
9037 // Jump
9038 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9039 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9040   match(Jump switch_val);
9041   effect(TEMP table);
9042 
9043   ins_cost(350);
9044 
9045   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9046              "LD     [O7 + $switch_val], O7\n\t"
9047              "JUMP   O7" %}
9048   ins_encode %{
9049     // Calculate table address into a register.
9050     Register table_reg;
9051     Register label_reg = O7;
9052     // If we are calculating the size of this instruction don't trust
9053     // zero offsets because they might change when
9054     // MachConstantBaseNode decides to optimize the constant table
9055     // base.
9056     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9057       table_reg = $constanttablebase;
9058     } else {
9059       table_reg = O7;
9060       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9061       __ add($constanttablebase, con_offset, table_reg);
9062     }
9063 
9064     // Jump to base address + switch value
9065     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9066     __ jmp(label_reg, G0);
9067     __ delayed()->nop();
9068   %}
9069   ins_pipe(ialu_reg_reg);
9070 %}
9071 
9072 // Direct Branch.  Use V8 version with longer range.
9073 instruct branch(label labl) %{
9074   match(Goto);
9075   effect(USE labl);
9076 
9077   size(8);
9078   ins_cost(BRANCH_COST);
9079   format %{ "BA     $labl" %}
9080   ins_encode %{
9081     Label* L = $labl$$label;
9082     __ ba(*L);
9083     __ delayed()->nop();
9084   %}
9085   ins_pipe(br);
9086 %}
9087 
9088 // Direct Branch, short with no delay slot
9089 instruct branch_short(label labl) %{
9090   match(Goto);
9091   predicate(UseCBCond);
9092   effect(USE labl);
9093 
9094   size(4);
9095   ins_cost(BRANCH_COST);
9096   format %{ "BA     $labl\t! short branch" %}
9097   ins_encode %{ 
9098     Label* L = $labl$$label;
9099     assert(__ use_cbcond(*L), "back to back cbcond");
9100     __ ba_short(*L);
9101   %}
9102   ins_short_branch(1);
9103   ins_avoid_back_to_back(1);
9104   ins_pipe(cbcond_reg_imm);
9105 %}
9106 
9107 // Conditional Direct Branch
9108 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9109   match(If cmp icc);
9110   effect(USE labl);
9111 
9112   size(8);
9113   ins_cost(BRANCH_COST);
9114   format %{ "BP$cmp   $icc,$labl" %}
9115   // Prim = bits 24-22, Secnd = bits 31-30
9116   ins_encode( enc_bp( labl, cmp, icc ) );
9117   ins_pipe(br_cc);
9118 %}
9119 
9120 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9121   match(If cmp icc);
9122   effect(USE labl);
9123 
9124   ins_cost(BRANCH_COST);
9125   format %{ "BP$cmp  $icc,$labl" %}
9126   // Prim = bits 24-22, Secnd = bits 31-30
9127   ins_encode( enc_bp( labl, cmp, icc ) );
9128   ins_pipe(br_cc);
9129 %}
9130 
9131 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9132   match(If cmp pcc);
9133   effect(USE labl);
9134 
9135   size(8);
9136   ins_cost(BRANCH_COST);
9137   format %{ "BP$cmp  $pcc,$labl" %}
9138   ins_encode %{
9139     Label* L = $labl$$label;
9140     Assembler::Predict predict_taken =
9141       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9142 
9143     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9144     __ delayed()->nop();
9145   %}
9146   ins_pipe(br_cc);
9147 %}
9148 
9149 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9150   match(If cmp fcc);
9151   effect(USE labl);
9152 
9153   size(8);
9154   ins_cost(BRANCH_COST);
9155   format %{ "FBP$cmp $fcc,$labl" %}
9156   ins_encode %{
9157     Label* L = $labl$$label;
9158     Assembler::Predict predict_taken =
9159       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9160 
9161     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9162     __ delayed()->nop();
9163   %}
9164   ins_pipe(br_fcc);
9165 %}
9166 
9167 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9168   match(CountedLoopEnd cmp icc);
9169   effect(USE labl);
9170 
9171   size(8);
9172   ins_cost(BRANCH_COST);
9173   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9174   // Prim = bits 24-22, Secnd = bits 31-30
9175   ins_encode( enc_bp( labl, cmp, icc ) );
9176   ins_pipe(br_cc);
9177 %}
9178 
9179 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9180   match(CountedLoopEnd cmp icc);
9181   effect(USE labl);
9182 
9183   size(8);
9184   ins_cost(BRANCH_COST);
9185   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9186   // Prim = bits 24-22, Secnd = bits 31-30
9187   ins_encode( enc_bp( labl, cmp, icc ) );
9188   ins_pipe(br_cc);
9189 %}
9190 
9191 // Compare and branch instructions
9192 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9193   match(If cmp (CmpI op1 op2));
9194   effect(USE labl, KILL icc);
9195 
9196   size(12);
9197   ins_cost(BRANCH_COST);
9198   format %{ "CMP    $op1,$op2\t! int\n\t"
9199             "BP$cmp   $labl" %}
9200   ins_encode %{
9201     Label* L = $labl$$label;
9202     Assembler::Predict predict_taken =
9203       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9204     __ cmp($op1$$Register, $op2$$Register);
9205     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9206     __ delayed()->nop();
9207   %}
9208   ins_pipe(cmp_br_reg_reg);
9209 %}
9210 
9211 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9212   match(If cmp (CmpI op1 op2));
9213   effect(USE labl, KILL icc);
9214 
9215   size(12);
9216   ins_cost(BRANCH_COST);
9217   format %{ "CMP    $op1,$op2\t! int\n\t"
9218             "BP$cmp   $labl" %}
9219   ins_encode %{
9220     Label* L = $labl$$label;
9221     Assembler::Predict predict_taken =
9222       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9223     __ cmp($op1$$Register, $op2$$constant);
9224     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9225     __ delayed()->nop();
9226   %}
9227   ins_pipe(cmp_br_reg_imm);
9228 %}
9229 
9230 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9231   match(If cmp (CmpU op1 op2));
9232   effect(USE labl, KILL icc);
9233 
9234   size(12);
9235   ins_cost(BRANCH_COST);
9236   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9237             "BP$cmp  $labl" %}
9238   ins_encode %{
9239     Label* L = $labl$$label;
9240     Assembler::Predict predict_taken =
9241       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9242     __ cmp($op1$$Register, $op2$$Register);
9243     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9244     __ delayed()->nop();
9245   %}
9246   ins_pipe(cmp_br_reg_reg);
9247 %}
9248 
9249 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9250   match(If cmp (CmpU op1 op2));
9251   effect(USE labl, KILL icc);
9252 
9253   size(12);
9254   ins_cost(BRANCH_COST);
9255   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9256             "BP$cmp  $labl" %}
9257   ins_encode %{
9258     Label* L = $labl$$label;
9259     Assembler::Predict predict_taken =
9260       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9261     __ cmp($op1$$Register, $op2$$constant);
9262     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9263     __ delayed()->nop();
9264   %}
9265   ins_pipe(cmp_br_reg_imm);
9266 %}
9267 
9268 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9269   match(If cmp (CmpL op1 op2));
9270   effect(USE labl, KILL xcc);
9271 
9272   size(12);
9273   ins_cost(BRANCH_COST);
9274   format %{ "CMP    $op1,$op2\t! long\n\t"
9275             "BP$cmp   $labl" %}
9276   ins_encode %{
9277     Label* L = $labl$$label;
9278     Assembler::Predict predict_taken =
9279       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9280     __ cmp($op1$$Register, $op2$$Register);
9281     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9282     __ delayed()->nop();
9283   %}
9284   ins_pipe(cmp_br_reg_reg);
9285 %}
9286 
9287 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9288   match(If cmp (CmpL op1 op2));
9289   effect(USE labl, KILL xcc);
9290 
9291   size(12);
9292   ins_cost(BRANCH_COST);
9293   format %{ "CMP    $op1,$op2\t! long\n\t"
9294             "BP$cmp   $labl" %}
9295   ins_encode %{
9296     Label* L = $labl$$label;
9297     Assembler::Predict predict_taken =
9298       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9299     __ cmp($op1$$Register, $op2$$constant);
9300     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9301     __ delayed()->nop();
9302   %}
9303   ins_pipe(cmp_br_reg_imm);
9304 %}
9305 
9306 // Compare Pointers and branch
9307 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9308   match(If cmp (CmpP op1 op2));
9309   effect(USE labl, KILL pcc);
9310 
9311   size(12);
9312   ins_cost(BRANCH_COST);
9313   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9314             "B$cmp   $labl" %}
9315   ins_encode %{
9316     Label* L = $labl$$label;
9317     Assembler::Predict predict_taken =
9318       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9319     __ cmp($op1$$Register, $op2$$Register);
9320     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9321     __ delayed()->nop();
9322   %}
9323   ins_pipe(cmp_br_reg_reg);
9324 %}
9325 
9326 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9327   match(If cmp (CmpP op1 null));
9328   effect(USE labl, KILL pcc);
9329 
9330   size(12);
9331   ins_cost(BRANCH_COST);
9332   format %{ "CMP    $op1,0\t! ptr\n\t"
9333             "B$cmp   $labl" %}
9334   ins_encode %{
9335     Label* L = $labl$$label;
9336     Assembler::Predict predict_taken =
9337       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9338     __ cmp($op1$$Register, G0);
9339     // bpr() is not used here since it has shorter distance.
9340     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9341     __ delayed()->nop();
9342   %}
9343   ins_pipe(cmp_br_reg_reg);
9344 %}
9345 
9346 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9347   match(If cmp (CmpN op1 op2));
9348   effect(USE labl, KILL icc);
9349 
9350   size(12);
9351   ins_cost(BRANCH_COST);
9352   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9353             "BP$cmp   $labl" %}
9354   ins_encode %{
9355     Label* L = $labl$$label;
9356     Assembler::Predict predict_taken =
9357       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9358     __ cmp($op1$$Register, $op2$$Register);
9359     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9360     __ delayed()->nop();
9361   %}
9362   ins_pipe(cmp_br_reg_reg);
9363 %}
9364 
9365 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9366   match(If cmp (CmpN op1 null));
9367   effect(USE labl, KILL icc);
9368 
9369   size(12);
9370   ins_cost(BRANCH_COST);
9371   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9372             "BP$cmp   $labl" %}
9373   ins_encode %{
9374     Label* L = $labl$$label;
9375     Assembler::Predict predict_taken =
9376       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9377     __ cmp($op1$$Register, G0);
9378     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9379     __ delayed()->nop();
9380   %}
9381   ins_pipe(cmp_br_reg_reg);
9382 %}
9383 
9384 // Loop back branch
9385 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9386   match(CountedLoopEnd cmp (CmpI op1 op2));
9387   effect(USE labl, KILL icc);
9388 
9389   size(12);
9390   ins_cost(BRANCH_COST);
9391   format %{ "CMP    $op1,$op2\t! int\n\t"
9392             "BP$cmp   $labl\t! Loop end" %}
9393   ins_encode %{
9394     Label* L = $labl$$label;
9395     Assembler::Predict predict_taken =
9396       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9397     __ cmp($op1$$Register, $op2$$Register);
9398     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9399     __ delayed()->nop();
9400   %}
9401   ins_pipe(cmp_br_reg_reg);
9402 %}
9403 
9404 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9405   match(CountedLoopEnd cmp (CmpI op1 op2));
9406   effect(USE labl, KILL icc);
9407 
9408   size(12);
9409   ins_cost(BRANCH_COST);
9410   format %{ "CMP    $op1,$op2\t! int\n\t"
9411             "BP$cmp   $labl\t! Loop end" %}
9412   ins_encode %{
9413     Label* L = $labl$$label;
9414     Assembler::Predict predict_taken =
9415       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9416     __ cmp($op1$$Register, $op2$$constant);
9417     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9418     __ delayed()->nop();
9419   %}
9420   ins_pipe(cmp_br_reg_imm);
9421 %}
9422 
9423 // Short compare and branch instructions
9424 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9425   match(If cmp (CmpI op1 op2));
9426   predicate(UseCBCond);
9427   effect(USE labl, KILL icc);
9428 
9429   size(4);
9430   ins_cost(BRANCH_COST);
9431   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9432   ins_encode %{
9433     Label* L = $labl$$label;
9434     assert(__ use_cbcond(*L), "back to back cbcond");
9435     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9436   %}
9437   ins_short_branch(1);
9438   ins_avoid_back_to_back(1);
9439   ins_pipe(cbcond_reg_reg);
9440 %}
9441 
9442 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9443   match(If cmp (CmpI op1 op2));
9444   predicate(UseCBCond);
9445   effect(USE labl, KILL icc);
9446 
9447   size(4);
9448   ins_cost(BRANCH_COST);
9449   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9450   ins_encode %{
9451     Label* L = $labl$$label;
9452     assert(__ use_cbcond(*L), "back to back cbcond");
9453     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9454   %}
9455   ins_short_branch(1);
9456   ins_avoid_back_to_back(1);
9457   ins_pipe(cbcond_reg_imm);
9458 %}
9459 
9460 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9461   match(If cmp (CmpU op1 op2));
9462   predicate(UseCBCond);
9463   effect(USE labl, KILL icc);
9464 
9465   size(4);
9466   ins_cost(BRANCH_COST);
9467   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9468   ins_encode %{
9469     Label* L = $labl$$label;
9470     assert(__ use_cbcond(*L), "back to back cbcond");
9471     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9472   %}
9473   ins_short_branch(1);
9474   ins_avoid_back_to_back(1);
9475   ins_pipe(cbcond_reg_reg);
9476 %}
9477 
9478 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9479   match(If cmp (CmpU op1 op2));
9480   predicate(UseCBCond);
9481   effect(USE labl, KILL icc);
9482 
9483   size(4);
9484   ins_cost(BRANCH_COST);
9485   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9486   ins_encode %{
9487     Label* L = $labl$$label;
9488     assert(__ use_cbcond(*L), "back to back cbcond");
9489     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9490   %}
9491   ins_short_branch(1);
9492   ins_avoid_back_to_back(1);
9493   ins_pipe(cbcond_reg_imm);
9494 %}
9495 
9496 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9497   match(If cmp (CmpL op1 op2));
9498   predicate(UseCBCond);
9499   effect(USE labl, KILL xcc);
9500 
9501   size(4);
9502   ins_cost(BRANCH_COST);
9503   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9504   ins_encode %{
9505     Label* L = $labl$$label;
9506     assert(__ use_cbcond(*L), "back to back cbcond");
9507     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9508   %}
9509   ins_short_branch(1);
9510   ins_avoid_back_to_back(1);
9511   ins_pipe(cbcond_reg_reg);
9512 %}
9513 
9514 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9515   match(If cmp (CmpL op1 op2));
9516   predicate(UseCBCond);
9517   effect(USE labl, KILL xcc);
9518 
9519   size(4);
9520   ins_cost(BRANCH_COST);
9521   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9522   ins_encode %{
9523     Label* L = $labl$$label;
9524     assert(__ use_cbcond(*L), "back to back cbcond");
9525     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9526   %}
9527   ins_short_branch(1);
9528   ins_avoid_back_to_back(1);
9529   ins_pipe(cbcond_reg_imm);
9530 %}
9531 
9532 // Compare Pointers and branch
9533 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9534   match(If cmp (CmpP op1 op2));
9535   predicate(UseCBCond);
9536   effect(USE labl, KILL pcc);
9537 
9538   size(4);
9539   ins_cost(BRANCH_COST);
9540 #ifdef _LP64
9541   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9542 #else
9543   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9544 #endif
9545   ins_encode %{
9546     Label* L = $labl$$label;
9547     assert(__ use_cbcond(*L), "back to back cbcond");
9548     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9549   %}
9550   ins_short_branch(1);
9551   ins_avoid_back_to_back(1);
9552   ins_pipe(cbcond_reg_reg);
9553 %}
9554 
9555 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9556   match(If cmp (CmpP op1 null));
9557   predicate(UseCBCond);
9558   effect(USE labl, KILL pcc);
9559 
9560   size(4);
9561   ins_cost(BRANCH_COST);
9562 #ifdef _LP64
9563   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9564 #else
9565   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9566 #endif
9567   ins_encode %{
9568     Label* L = $labl$$label;
9569     assert(__ use_cbcond(*L), "back to back cbcond");
9570     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9571   %}
9572   ins_short_branch(1);
9573   ins_avoid_back_to_back(1);
9574   ins_pipe(cbcond_reg_reg);
9575 %}
9576 
9577 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9578   match(If cmp (CmpN op1 op2));
9579   predicate(UseCBCond);
9580   effect(USE labl, KILL icc);
9581 
9582   size(4);
9583   ins_cost(BRANCH_COST);
9584   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9585   ins_encode %{
9586     Label* L = $labl$$label;
9587     assert(__ use_cbcond(*L), "back to back cbcond");
9588     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9589   %}
9590   ins_short_branch(1);
9591   ins_avoid_back_to_back(1);
9592   ins_pipe(cbcond_reg_reg);
9593 %}
9594 
9595 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9596   match(If cmp (CmpN op1 null));
9597   predicate(UseCBCond);
9598   effect(USE labl, KILL icc);
9599 
9600   size(4);
9601   ins_cost(BRANCH_COST);
9602   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9603   ins_encode %{
9604     Label* L = $labl$$label;
9605     assert(__ use_cbcond(*L), "back to back cbcond");
9606     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9607   %}
9608   ins_short_branch(1);
9609   ins_avoid_back_to_back(1);
9610   ins_pipe(cbcond_reg_reg);
9611 %}
9612 
9613 // Loop back branch
9614 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9615   match(CountedLoopEnd cmp (CmpI op1 op2));
9616   predicate(UseCBCond);
9617   effect(USE labl, KILL icc);
9618 
9619   size(4);
9620   ins_cost(BRANCH_COST);
9621   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9622   ins_encode %{
9623     Label* L = $labl$$label;
9624     assert(__ use_cbcond(*L), "back to back cbcond");
9625     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9626   %}
9627   ins_short_branch(1);
9628   ins_avoid_back_to_back(1);
9629   ins_pipe(cbcond_reg_reg);
9630 %}
9631 
9632 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9633   match(CountedLoopEnd cmp (CmpI op1 op2));
9634   predicate(UseCBCond);
9635   effect(USE labl, KILL icc);
9636 
9637   size(4);
9638   ins_cost(BRANCH_COST);
9639   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9640   ins_encode %{
9641     Label* L = $labl$$label;
9642     assert(__ use_cbcond(*L), "back to back cbcond");
9643     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9644   %}
9645   ins_short_branch(1);
9646   ins_avoid_back_to_back(1);
9647   ins_pipe(cbcond_reg_imm);
9648 %}
9649 
9650 // Branch-on-register tests all 64 bits.  We assume that values
9651 // in 64-bit registers always remains zero or sign extended
9652 // unless our code munges the high bits.  Interrupts can chop
9653 // the high order bits to zero or sign at any time.
9654 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9655   match(If cmp (CmpI op1 zero));
9656   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9657   effect(USE labl);
9658 
9659   size(8);
9660   ins_cost(BRANCH_COST);
9661   format %{ "BR$cmp   $op1,$labl" %}
9662   ins_encode( enc_bpr( labl, cmp, op1 ) );
9663   ins_pipe(br_reg);
9664 %}
9665 
9666 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9667   match(If cmp (CmpP op1 null));
9668   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9669   effect(USE labl);
9670 
9671   size(8);
9672   ins_cost(BRANCH_COST);
9673   format %{ "BR$cmp   $op1,$labl" %}
9674   ins_encode( enc_bpr( labl, cmp, op1 ) );
9675   ins_pipe(br_reg);
9676 %}
9677 
9678 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9679   match(If cmp (CmpL op1 zero));
9680   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9681   effect(USE labl);
9682 
9683   size(8);
9684   ins_cost(BRANCH_COST);
9685   format %{ "BR$cmp   $op1,$labl" %}
9686   ins_encode( enc_bpr( labl, cmp, op1 ) );
9687   ins_pipe(br_reg);
9688 %}
9689 
9690 
9691 // ============================================================================
9692 // Long Compare
9693 //
9694 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9695 // is tricky.  The flavor of compare used depends on whether we are testing
9696 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9697 // The GE test is the negated LT test.  The LE test can be had by commuting
9698 // the operands (yielding a GE test) and then negating; negate again for the
9699 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9700 // NE test is negated from that.
9701 
9702 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9703 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9704 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9705 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9706 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9707 // foo match ends up with the wrong leaf.  One fix is to not match both
9708 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9709 // both forms beat the trinary form of long-compare and both are very useful
9710 // on Intel which has so few registers.
9711 
9712 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9713   match(If cmp xcc);
9714   effect(USE labl);
9715 
9716   size(8);
9717   ins_cost(BRANCH_COST);
9718   format %{ "BP$cmp   $xcc,$labl" %}
9719   ins_encode %{
9720     Label* L = $labl$$label;
9721     Assembler::Predict predict_taken =
9722       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9723 
9724     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9725     __ delayed()->nop();
9726   %}
9727   ins_pipe(br_cc);
9728 %}
9729 
9730 // Manifest a CmpL3 result in an integer register.  Very painful.
9731 // This is the test to avoid.
9732 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9733   match(Set dst (CmpL3 src1 src2) );
9734   effect( KILL ccr );
9735   ins_cost(6*DEFAULT_COST);
9736   size(24);
9737   format %{ "CMP    $src1,$src2\t\t! long\n"
9738           "\tBLT,a,pn done\n"
9739           "\tMOV    -1,$dst\t! delay slot\n"
9740           "\tBGT,a,pn done\n"
9741           "\tMOV    1,$dst\t! delay slot\n"
9742           "\tCLR    $dst\n"
9743     "done:"     %}
9744   ins_encode( cmpl_flag(src1,src2,dst) );
9745   ins_pipe(cmpL_reg);
9746 %}
9747 
9748 // Conditional move
9749 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9750   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9751   ins_cost(150);
9752   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9753   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9754   ins_pipe(ialu_reg);
9755 %}
9756 
9757 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9758   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9759   ins_cost(140);
9760   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9761   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9762   ins_pipe(ialu_imm);
9763 %}
9764 
9765 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9766   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9767   ins_cost(150);
9768   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9769   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9770   ins_pipe(ialu_reg);
9771 %}
9772 
9773 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9774   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9775   ins_cost(140);
9776   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9777   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9778   ins_pipe(ialu_imm);
9779 %}
9780 
9781 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9782   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9783   ins_cost(150);
9784   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9785   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9786   ins_pipe(ialu_reg);
9787 %}
9788 
9789 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9790   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9791   ins_cost(150);
9792   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9793   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9794   ins_pipe(ialu_reg);
9795 %}
9796 
9797 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9798   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9799   ins_cost(140);
9800   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9801   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9802   ins_pipe(ialu_imm);
9803 %}
9804 
9805 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9806   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9807   ins_cost(150);
9808   opcode(0x101);
9809   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9810   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9811   ins_pipe(int_conditional_float_move);
9812 %}
9813 
9814 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9815   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9816   ins_cost(150);
9817   opcode(0x102);
9818   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9819   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9820   ins_pipe(int_conditional_float_move);
9821 %}
9822 
9823 // ============================================================================
9824 // Safepoint Instruction
9825 instruct safePoint_poll(iRegP poll) %{
9826   match(SafePoint poll);
9827   effect(USE poll);
9828 
9829   size(4);
9830 #ifdef _LP64
9831   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9832 #else
9833   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9834 #endif
9835   ins_encode %{
9836     __ relocate(relocInfo::poll_type);
9837     __ ld_ptr($poll$$Register, 0, G0);
9838   %}
9839   ins_pipe(loadPollP);
9840 %}
9841 
9842 // ============================================================================
9843 // Call Instructions
9844 // Call Java Static Instruction
9845 instruct CallStaticJavaDirect( method meth ) %{
9846   match(CallStaticJava);
9847   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9848   effect(USE meth);
9849 
9850   size(8);
9851   ins_cost(CALL_COST);
9852   format %{ "CALL,static  ; NOP ==> " %}
9853   ins_encode( Java_Static_Call( meth ), call_epilog );
9854   ins_pipe(simple_call);
9855 %}
9856 
9857 // Call Java Static Instruction (method handle version)
9858 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9859   match(CallStaticJava);
9860   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9861   effect(USE meth, KILL l7_mh_SP_save);
9862 
9863   size(16);
9864   ins_cost(CALL_COST);
9865   format %{ "CALL,static/MethodHandle" %}
9866   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9867   ins_pipe(simple_call);
9868 %}
9869 
9870 // Call Java Dynamic Instruction
9871 instruct CallDynamicJavaDirect( method meth ) %{
9872   match(CallDynamicJava);
9873   effect(USE meth);
9874 
9875   ins_cost(CALL_COST);
9876   format %{ "SET    (empty),R_G5\n\t"
9877             "CALL,dynamic  ; NOP ==> " %}
9878   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9879   ins_pipe(call);
9880 %}
9881 
9882 // Call Runtime Instruction
9883 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9884   match(CallRuntime);
9885   effect(USE meth, KILL l7);
9886   ins_cost(CALL_COST);
9887   format %{ "CALL,runtime" %}
9888   ins_encode( Java_To_Runtime( meth ),
9889               call_epilog, adjust_long_from_native_call );
9890   ins_pipe(simple_call);
9891 %}
9892 
9893 // Call runtime without safepoint - same as CallRuntime
9894 instruct CallLeafDirect(method meth, l7RegP l7) %{
9895   match(CallLeaf);
9896   effect(USE meth, KILL l7);
9897   ins_cost(CALL_COST);
9898   format %{ "CALL,runtime leaf" %}
9899   ins_encode( Java_To_Runtime( meth ),
9900               call_epilog,
9901               adjust_long_from_native_call );
9902   ins_pipe(simple_call);
9903 %}
9904 
9905 // Call runtime without safepoint - same as CallLeaf
9906 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9907   match(CallLeafNoFP);
9908   effect(USE meth, KILL l7);
9909   ins_cost(CALL_COST);
9910   format %{ "CALL,runtime leaf nofp" %}
9911   ins_encode( Java_To_Runtime( meth ),
9912               call_epilog,
9913               adjust_long_from_native_call );
9914   ins_pipe(simple_call);
9915 %}
9916 
9917 // Tail Call; Jump from runtime stub to Java code.
9918 // Also known as an 'interprocedural jump'.
9919 // Target of jump will eventually return to caller.
9920 // TailJump below removes the return address.
9921 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9922   match(TailCall jump_target method_oop );
9923 
9924   ins_cost(CALL_COST);
9925   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9926   ins_encode(form_jmpl(jump_target));
9927   ins_pipe(tail_call);
9928 %}
9929 
9930 
9931 // Return Instruction
9932 instruct Ret() %{
9933   match(Return);
9934 
9935   // The epilogue node did the ret already.
9936   size(0);
9937   format %{ "! return" %}
9938   ins_encode();
9939   ins_pipe(empty);
9940 %}
9941 
9942 
9943 // Tail Jump; remove the return address; jump to target.
9944 // TailCall above leaves the return address around.
9945 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9946 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9947 // "restore" before this instruction (in Epilogue), we need to materialize it
9948 // in %i0.
9949 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9950   match( TailJump jump_target ex_oop );
9951   ins_cost(CALL_COST);
9952   format %{ "! discard R_O7\n\t"
9953             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9954   ins_encode(form_jmpl_set_exception_pc(jump_target));
9955   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9956   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9957   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9958   ins_pipe(tail_call);
9959 %}
9960 
9961 // Create exception oop: created by stack-crawling runtime code.
9962 // Created exception is now available to this handler, and is setup
9963 // just prior to jumping to this handler.  No code emitted.
9964 instruct CreateException( o0RegP ex_oop )
9965 %{
9966   match(Set ex_oop (CreateEx));
9967   ins_cost(0);
9968 
9969   size(0);
9970   // use the following format syntax
9971   format %{ "! exception oop is in R_O0; no code emitted" %}
9972   ins_encode();
9973   ins_pipe(empty);
9974 %}
9975 
9976 
9977 // Rethrow exception:
9978 // The exception oop will come in the first argument position.
9979 // Then JUMP (not call) to the rethrow stub code.
9980 instruct RethrowException()
9981 %{
9982   match(Rethrow);
9983   ins_cost(CALL_COST);
9984 
9985   // use the following format syntax
9986   format %{ "Jmp    rethrow_stub" %}
9987   ins_encode(enc_rethrow);
9988   ins_pipe(tail_call);
9989 %}
9990 
9991 
9992 // Die now
9993 instruct ShouldNotReachHere( )
9994 %{
9995   match(Halt);
9996   ins_cost(CALL_COST);
9997 
9998   size(4);
9999   // Use the following format syntax
10000   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10001   ins_encode( form2_illtrap() );
10002   ins_pipe(tail_call);
10003 %}
10004 
10005 // ============================================================================
10006 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10007 // array for an instance of the superklass.  Set a hidden internal cache on a
10008 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10009 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10010 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10011   match(Set index (PartialSubtypeCheck sub super));
10012   effect( KILL pcc, KILL o7 );
10013   ins_cost(DEFAULT_COST*10);
10014   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10015   ins_encode( enc_PartialSubtypeCheck() );
10016   ins_pipe(partial_subtype_check_pipe);
10017 %}
10018 
10019 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10020   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10021   effect( KILL idx, KILL o7 );
10022   ins_cost(DEFAULT_COST*10);
10023   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10024   ins_encode( enc_PartialSubtypeCheck() );
10025   ins_pipe(partial_subtype_check_pipe);
10026 %}
10027 
10028 
10029 // ============================================================================
10030 // inlined locking and unlocking
10031 
10032 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10033   match(Set pcc (FastLock object box));
10034 
10035   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10036   ins_cost(100);
10037 
10038   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10039   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10040   ins_pipe(long_memory_op);
10041 %}
10042 
10043 
10044 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10045   match(Set pcc (FastUnlock object box));
10046   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10047   ins_cost(100);
10048 
10049   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10050   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10051   ins_pipe(long_memory_op);
10052 %}
10053 
10054 // The encodings are generic.
10055 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10056   predicate(!use_block_zeroing(n->in(2)) );
10057   match(Set dummy (ClearArray cnt base));
10058   effect(TEMP temp, KILL ccr);
10059   ins_cost(300);
10060   format %{ "MOV    $cnt,$temp\n"
10061     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10062     "        BRge   loop\t\t! Clearing loop\n"
10063     "        STX    G0,[$base+$temp]\t! delay slot" %}
10064 
10065   ins_encode %{
10066     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10067     Register nof_bytes_arg    = $cnt$$Register;
10068     Register nof_bytes_tmp    = $temp$$Register;
10069     Register base_pointer_arg = $base$$Register;
10070 
10071     Label loop;
10072     __ mov(nof_bytes_arg, nof_bytes_tmp);
10073 
10074     // Loop and clear, walking backwards through the array.
10075     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10076     __ bind(loop);
10077     __ deccc(nof_bytes_tmp, 8);
10078     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10079     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10080     // %%%% this mini-loop must not cross a cache boundary!
10081   %}
10082   ins_pipe(long_memory_op);
10083 %}
10084 
10085 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10086   predicate(use_block_zeroing(n->in(2)));
10087   match(Set dummy (ClearArray cnt base));
10088   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10089   ins_cost(300);
10090   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10091 
10092   ins_encode %{
10093 
10094     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10095     Register to    = $base$$Register;
10096     Register count = $cnt$$Register;
10097 
10098     Label Ldone;
10099     __ nop(); // Separate short branches
10100     // Use BIS for zeroing (temp is not used).
10101     __ bis_zeroing(to, count, G0, Ldone);
10102     __ bind(Ldone);
10103 
10104   %}
10105   ins_pipe(long_memory_op);
10106 %}
10107 
10108 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10109   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10110   match(Set dummy (ClearArray cnt base));
10111   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10112   ins_cost(300);
10113   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10114 
10115   ins_encode %{
10116 
10117     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10118     Register to    = $base$$Register;
10119     Register count = $cnt$$Register;
10120     Register temp  = $tmp$$Register;
10121 
10122     Label Ldone;
10123     __ nop(); // Separate short branches
10124     // Use BIS for zeroing
10125     __ bis_zeroing(to, count, temp, Ldone);
10126     __ bind(Ldone);
10127 
10128   %}
10129   ins_pipe(long_memory_op);
10130 %}
10131 
10132 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10133                         o7RegI tmp, flagsReg ccr) %{
10134   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10135   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10136   ins_cost(300);
10137   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10138   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10139   ins_pipe(long_memory_op);
10140 %}
10141 
10142 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10143                        o7RegI tmp, flagsReg ccr) %{
10144   match(Set result (StrEquals (Binary str1 str2) cnt));
10145   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10146   ins_cost(300);
10147   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10148   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10149   ins_pipe(long_memory_op);
10150 %}
10151 
10152 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10153                       o7RegI tmp2, flagsReg ccr) %{
10154   match(Set result (AryEq ary1 ary2));
10155   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10156   ins_cost(300);
10157   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10158   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10159   ins_pipe(long_memory_op);
10160 %}
10161 
10162 
10163 //---------- Zeros Count Instructions ------------------------------------------
10164 
10165 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
10166   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10167   match(Set dst (CountLeadingZerosI src));
10168   effect(TEMP dst, TEMP tmp, KILL cr);
10169 
10170   // x |= (x >> 1);
10171   // x |= (x >> 2);
10172   // x |= (x >> 4);
10173   // x |= (x >> 8);
10174   // x |= (x >> 16);
10175   // return (WORDBITS - popc(x));
10176   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10177             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10178             "OR      $dst,$tmp,$dst\n\t"
10179             "SRL     $dst,2,$tmp\n\t"
10180             "OR      $dst,$tmp,$dst\n\t"
10181             "SRL     $dst,4,$tmp\n\t"
10182             "OR      $dst,$tmp,$dst\n\t"
10183             "SRL     $dst,8,$tmp\n\t"
10184             "OR      $dst,$tmp,$dst\n\t"
10185             "SRL     $dst,16,$tmp\n\t"
10186             "OR      $dst,$tmp,$dst\n\t"
10187             "POPC    $dst,$dst\n\t"
10188             "MOV     32,$tmp\n\t"
10189             "SUB     $tmp,$dst,$dst" %}
10190   ins_encode %{
10191     Register Rdst = $dst$$Register;
10192     Register Rsrc = $src$$Register;
10193     Register Rtmp = $tmp$$Register;
10194     __ srl(Rsrc, 1,    Rtmp);
10195     __ srl(Rsrc, 0,    Rdst);
10196     __ or3(Rdst, Rtmp, Rdst);
10197     __ srl(Rdst, 2,    Rtmp);
10198     __ or3(Rdst, Rtmp, Rdst);
10199     __ srl(Rdst, 4,    Rtmp);
10200     __ or3(Rdst, Rtmp, Rdst);
10201     __ srl(Rdst, 8,    Rtmp);
10202     __ or3(Rdst, Rtmp, Rdst);
10203     __ srl(Rdst, 16,   Rtmp);
10204     __ or3(Rdst, Rtmp, Rdst);
10205     __ popc(Rdst, Rdst);
10206     __ mov(BitsPerInt, Rtmp);
10207     __ sub(Rtmp, Rdst, Rdst);
10208   %}
10209   ins_pipe(ialu_reg);
10210 %}
10211 
10212 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10213   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10214   match(Set dst (CountLeadingZerosL src));
10215   effect(TEMP dst, TEMP tmp, KILL cr);
10216 
10217   // x |= (x >> 1);
10218   // x |= (x >> 2);
10219   // x |= (x >> 4);
10220   // x |= (x >> 8);
10221   // x |= (x >> 16);
10222   // x |= (x >> 32);
10223   // return (WORDBITS - popc(x));
10224   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10225             "OR      $src,$tmp,$dst\n\t"
10226             "SRLX    $dst,2,$tmp\n\t"
10227             "OR      $dst,$tmp,$dst\n\t"
10228             "SRLX    $dst,4,$tmp\n\t"
10229             "OR      $dst,$tmp,$dst\n\t"
10230             "SRLX    $dst,8,$tmp\n\t"
10231             "OR      $dst,$tmp,$dst\n\t"
10232             "SRLX    $dst,16,$tmp\n\t"
10233             "OR      $dst,$tmp,$dst\n\t"
10234             "SRLX    $dst,32,$tmp\n\t"
10235             "OR      $dst,$tmp,$dst\n\t"
10236             "POPC    $dst,$dst\n\t"
10237             "MOV     64,$tmp\n\t"
10238             "SUB     $tmp,$dst,$dst" %}
10239   ins_encode %{
10240     Register Rdst = $dst$$Register;
10241     Register Rsrc = $src$$Register;
10242     Register Rtmp = $tmp$$Register;
10243     __ srlx(Rsrc, 1,    Rtmp);
10244     __ or3( Rsrc, Rtmp, Rdst);
10245     __ srlx(Rdst, 2,    Rtmp);
10246     __ or3( Rdst, Rtmp, Rdst);
10247     __ srlx(Rdst, 4,    Rtmp);
10248     __ or3( Rdst, Rtmp, Rdst);
10249     __ srlx(Rdst, 8,    Rtmp);
10250     __ or3( Rdst, Rtmp, Rdst);
10251     __ srlx(Rdst, 16,   Rtmp);
10252     __ or3( Rdst, Rtmp, Rdst);
10253     __ srlx(Rdst, 32,   Rtmp);
10254     __ or3( Rdst, Rtmp, Rdst);
10255     __ popc(Rdst, Rdst);
10256     __ mov(BitsPerLong, Rtmp);
10257     __ sub(Rtmp, Rdst, Rdst);
10258   %}
10259   ins_pipe(ialu_reg);
10260 %}
10261 
10262 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
10263   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10264   match(Set dst (CountTrailingZerosI src));
10265   effect(TEMP dst, KILL cr);
10266 
10267   // return popc(~x & (x - 1));
10268   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10269             "ANDN    $dst,$src,$dst\n\t"
10270             "SRL     $dst,R_G0,$dst\n\t"
10271             "POPC    $dst,$dst" %}
10272   ins_encode %{
10273     Register Rdst = $dst$$Register;
10274     Register Rsrc = $src$$Register;
10275     __ sub(Rsrc, 1, Rdst);
10276     __ andn(Rdst, Rsrc, Rdst);
10277     __ srl(Rdst, G0, Rdst);
10278     __ popc(Rdst, Rdst);
10279   %}
10280   ins_pipe(ialu_reg);
10281 %}
10282 
10283 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10284   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10285   match(Set dst (CountTrailingZerosL src));
10286   effect(TEMP dst, KILL cr);
10287 
10288   // return popc(~x & (x - 1));
10289   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10290             "ANDN    $dst,$src,$dst\n\t"
10291             "POPC    $dst,$dst" %}
10292   ins_encode %{
10293     Register Rdst = $dst$$Register;
10294     Register Rsrc = $src$$Register;
10295     __ sub(Rsrc, 1, Rdst);
10296     __ andn(Rdst, Rsrc, Rdst);
10297     __ popc(Rdst, Rdst);
10298   %}
10299   ins_pipe(ialu_reg);
10300 %}
10301 
10302 
10303 //---------- Population Count Instructions -------------------------------------
10304 
10305 instruct popCountI(iRegI dst, iRegI src) %{
10306   predicate(UsePopCountInstruction);
10307   match(Set dst (PopCountI src));
10308 
10309   format %{ "POPC   $src, $dst" %}
10310   ins_encode %{
10311     __ popc($src$$Register, $dst$$Register);
10312   %}
10313   ins_pipe(ialu_reg);
10314 %}
10315 
10316 // Note: Long.bitCount(long) returns an int.
10317 instruct popCountL(iRegI dst, iRegL src) %{
10318   predicate(UsePopCountInstruction);
10319   match(Set dst (PopCountL src));
10320 
10321   format %{ "POPC   $src, $dst" %}
10322   ins_encode %{
10323     __ popc($src$$Register, $dst$$Register);
10324   %}
10325   ins_pipe(ialu_reg);
10326 %}
10327 
10328 
10329 // ============================================================================
10330 //------------Bytes reverse--------------------------------------------------
10331 
10332 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10333   match(Set dst (ReverseBytesI src));
10334 
10335   // Op cost is artificially doubled to make sure that load or store
10336   // instructions are preferred over this one which requires a spill
10337   // onto a stack slot.
10338   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10339   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10340 
10341   ins_encode %{
10342     __ set($src$$disp + STACK_BIAS, O7);
10343     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10344   %}
10345   ins_pipe( iload_mem );
10346 %}
10347 
10348 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10349   match(Set dst (ReverseBytesL src));
10350 
10351   // Op cost is artificially doubled to make sure that load or store
10352   // instructions are preferred over this one which requires a spill
10353   // onto a stack slot.
10354   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10355   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10356 
10357   ins_encode %{
10358     __ set($src$$disp + STACK_BIAS, O7);
10359     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10360   %}
10361   ins_pipe( iload_mem );
10362 %}
10363 
10364 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10365   match(Set dst (ReverseBytesUS src));
10366 
10367   // Op cost is artificially doubled to make sure that load or store
10368   // instructions are preferred over this one which requires a spill
10369   // onto a stack slot.
10370   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10371   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10372 
10373   ins_encode %{
10374     // the value was spilled as an int so bias the load
10375     __ set($src$$disp + STACK_BIAS + 2, O7);
10376     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10377   %}
10378   ins_pipe( iload_mem );
10379 %}
10380 
10381 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10382   match(Set dst (ReverseBytesS src));
10383 
10384   // Op cost is artificially doubled to make sure that load or store
10385   // instructions are preferred over this one which requires a spill
10386   // onto a stack slot.
10387   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10388   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10389 
10390   ins_encode %{
10391     // the value was spilled as an int so bias the load
10392     __ set($src$$disp + STACK_BIAS + 2, O7);
10393     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10394   %}
10395   ins_pipe( iload_mem );
10396 %}
10397 
10398 // Load Integer reversed byte order
10399 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10400   match(Set dst (ReverseBytesI (LoadI src)));
10401 
10402   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10403   size(4);
10404   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10405 
10406   ins_encode %{
10407     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10408   %}
10409   ins_pipe(iload_mem);
10410 %}
10411 
10412 // Load Long - aligned and reversed
10413 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10414   match(Set dst (ReverseBytesL (LoadL src)));
10415 
10416   ins_cost(MEMORY_REF_COST);
10417   size(4);
10418   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10419 
10420   ins_encode %{
10421     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10422   %}
10423   ins_pipe(iload_mem);
10424 %}
10425 
10426 // Load unsigned short / char reversed byte order
10427 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10428   match(Set dst (ReverseBytesUS (LoadUS src)));
10429 
10430   ins_cost(MEMORY_REF_COST);
10431   size(4);
10432   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10433 
10434   ins_encode %{
10435     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10436   %}
10437   ins_pipe(iload_mem);
10438 %}
10439 
10440 // Load short reversed byte order
10441 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10442   match(Set dst (ReverseBytesS (LoadS src)));
10443 
10444   ins_cost(MEMORY_REF_COST);
10445   size(4);
10446   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10447 
10448   ins_encode %{
10449     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10450   %}
10451   ins_pipe(iload_mem);
10452 %}
10453 
10454 // Store Integer reversed byte order
10455 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10456   match(Set dst (StoreI dst (ReverseBytesI src)));
10457 
10458   ins_cost(MEMORY_REF_COST);
10459   size(4);
10460   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10461 
10462   ins_encode %{
10463     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10464   %}
10465   ins_pipe(istore_mem_reg);
10466 %}
10467 
10468 // Store Long reversed byte order
10469 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10470   match(Set dst (StoreL dst (ReverseBytesL src)));
10471 
10472   ins_cost(MEMORY_REF_COST);
10473   size(4);
10474   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10475 
10476   ins_encode %{
10477     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10478   %}
10479   ins_pipe(istore_mem_reg);
10480 %}
10481 
10482 // Store unsighed short/char reversed byte order
10483 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10484   match(Set dst (StoreC dst (ReverseBytesUS src)));
10485 
10486   ins_cost(MEMORY_REF_COST);
10487   size(4);
10488   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10489 
10490   ins_encode %{
10491     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10492   %}
10493   ins_pipe(istore_mem_reg);
10494 %}
10495 
10496 // Store short reversed byte order
10497 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10498   match(Set dst (StoreC dst (ReverseBytesS src)));
10499 
10500   ins_cost(MEMORY_REF_COST);
10501   size(4);
10502   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10503 
10504   ins_encode %{
10505     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10506   %}
10507   ins_pipe(istore_mem_reg);
10508 %}
10509 
10510 // ====================VECTOR INSTRUCTIONS=====================================
10511 
10512 // Load Aligned Packed values into a Double Register
10513 instruct loadV8(regD dst, memory mem) %{
10514   predicate(n->as_LoadVector()->memory_size() == 8);
10515   match(Set dst (LoadVector mem));
10516   ins_cost(MEMORY_REF_COST);
10517   size(4);
10518   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10519   ins_encode %{
10520     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10521   %}
10522   ins_pipe(floadD_mem);
10523 %}
10524 
10525 // Store Vector in Double register to memory
10526 instruct storeV8(memory mem, regD src) %{
10527   predicate(n->as_StoreVector()->memory_size() == 8);
10528   match(Set mem (StoreVector mem src));
10529   ins_cost(MEMORY_REF_COST);
10530   size(4);
10531   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10532   ins_encode %{
10533     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10534   %}
10535   ins_pipe(fstoreD_mem_reg);
10536 %}
10537 
10538 // Store Zero into vector in memory
10539 instruct storeV8B_zero(memory mem, immI0 zero) %{
10540   predicate(n->as_StoreVector()->memory_size() == 8);
10541   match(Set mem (StoreVector mem (ReplicateB zero)));
10542   ins_cost(MEMORY_REF_COST);
10543   size(4);
10544   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10545   ins_encode %{
10546     __ stx(G0, $mem$$Address);
10547   %}
10548   ins_pipe(fstoreD_mem_zero);
10549 %}
10550 
10551 instruct storeV4S_zero(memory mem, immI0 zero) %{
10552   predicate(n->as_StoreVector()->memory_size() == 8);
10553   match(Set mem (StoreVector mem (ReplicateS zero)));
10554   ins_cost(MEMORY_REF_COST);
10555   size(4);
10556   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10557   ins_encode %{
10558     __ stx(G0, $mem$$Address);
10559   %}
10560   ins_pipe(fstoreD_mem_zero);
10561 %}
10562 
10563 instruct storeV2I_zero(memory mem, immI0 zero) %{
10564   predicate(n->as_StoreVector()->memory_size() == 8);
10565   match(Set mem (StoreVector mem (ReplicateI zero)));
10566   ins_cost(MEMORY_REF_COST);
10567   size(4);
10568   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10569   ins_encode %{
10570     __ stx(G0, $mem$$Address);
10571   %}
10572   ins_pipe(fstoreD_mem_zero);
10573 %}
10574 
10575 instruct storeV2F_zero(memory mem, immF0 zero) %{
10576   predicate(n->as_StoreVector()->memory_size() == 8);
10577   match(Set mem (StoreVector mem (ReplicateF zero)));
10578   ins_cost(MEMORY_REF_COST);
10579   size(4);
10580   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10581   ins_encode %{
10582     __ stx(G0, $mem$$Address);
10583   %}
10584   ins_pipe(fstoreD_mem_zero);
10585 %}
10586 
10587 // Replicate scalar to packed byte values into Double register
10588 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10589   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10590   match(Set dst (ReplicateB src));
10591   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10592   format %{ "SLLX  $src,56,$tmp\n\t"
10593             "SRLX  $tmp, 8,$tmp2\n\t"
10594             "OR    $tmp,$tmp2,$tmp\n\t"
10595             "SRLX  $tmp,16,$tmp2\n\t"
10596             "OR    $tmp,$tmp2,$tmp\n\t"
10597             "SRLX  $tmp,32,$tmp2\n\t"
10598             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10599             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10600   ins_encode %{
10601     Register Rsrc = $src$$Register;
10602     Register Rtmp = $tmp$$Register;
10603     Register Rtmp2 = $tmp2$$Register;
10604     __ sllx(Rsrc,    56, Rtmp);
10605     __ srlx(Rtmp,     8, Rtmp2);
10606     __ or3 (Rtmp, Rtmp2, Rtmp);
10607     __ srlx(Rtmp,    16, Rtmp2);
10608     __ or3 (Rtmp, Rtmp2, Rtmp);
10609     __ srlx(Rtmp,    32, Rtmp2);
10610     __ or3 (Rtmp, Rtmp2, Rtmp);
10611     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10612   %}
10613   ins_pipe(ialu_reg);
10614 %}
10615 
10616 // Replicate scalar to packed byte values into Double stack
10617 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10618   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10619   match(Set dst (ReplicateB src));
10620   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10621   format %{ "SLLX  $src,56,$tmp\n\t"
10622             "SRLX  $tmp, 8,$tmp2\n\t"
10623             "OR    $tmp,$tmp2,$tmp\n\t"
10624             "SRLX  $tmp,16,$tmp2\n\t"
10625             "OR    $tmp,$tmp2,$tmp\n\t"
10626             "SRLX  $tmp,32,$tmp2\n\t"
10627             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10628             "STX   $tmp,$dst\t! regL to stkD" %}
10629   ins_encode %{
10630     Register Rsrc = $src$$Register;
10631     Register Rtmp = $tmp$$Register;
10632     Register Rtmp2 = $tmp2$$Register;
10633     __ sllx(Rsrc,    56, Rtmp);
10634     __ srlx(Rtmp,     8, Rtmp2);
10635     __ or3 (Rtmp, Rtmp2, Rtmp);
10636     __ srlx(Rtmp,    16, Rtmp2);
10637     __ or3 (Rtmp, Rtmp2, Rtmp);
10638     __ srlx(Rtmp,    32, Rtmp2);
10639     __ or3 (Rtmp, Rtmp2, Rtmp);
10640     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10641     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10642   %}
10643   ins_pipe(ialu_reg);
10644 %}
10645 
10646 // Replicate scalar constant to packed byte values in Double register
10647 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10648   predicate(n->as_Vector()->length() == 8);
10649   match(Set dst (ReplicateB con));
10650   effect(KILL tmp);
10651   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10652   ins_encode %{
10653     // XXX This is a quick fix for 6833573.
10654     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10655     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10656     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10657   %}
10658   ins_pipe(loadConFD);
10659 %}
10660 
10661 // Replicate scalar to packed char/short values into Double register
10662 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10663   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10664   match(Set dst (ReplicateS src));
10665   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10666   format %{ "SLLX  $src,48,$tmp\n\t"
10667             "SRLX  $tmp,16,$tmp2\n\t"
10668             "OR    $tmp,$tmp2,$tmp\n\t"
10669             "SRLX  $tmp,32,$tmp2\n\t"
10670             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10671             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10672   ins_encode %{
10673     Register Rsrc = $src$$Register;
10674     Register Rtmp = $tmp$$Register;
10675     Register Rtmp2 = $tmp2$$Register;
10676     __ sllx(Rsrc,    48, Rtmp);
10677     __ srlx(Rtmp,    16, Rtmp2);
10678     __ or3 (Rtmp, Rtmp2, Rtmp);
10679     __ srlx(Rtmp,    32, Rtmp2);
10680     __ or3 (Rtmp, Rtmp2, Rtmp);
10681     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10682   %}
10683   ins_pipe(ialu_reg);
10684 %}
10685 
10686 // Replicate scalar to packed char/short values into Double stack
10687 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10688   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10689   match(Set dst (ReplicateS src));
10690   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10691   format %{ "SLLX  $src,48,$tmp\n\t"
10692             "SRLX  $tmp,16,$tmp2\n\t"
10693             "OR    $tmp,$tmp2,$tmp\n\t"
10694             "SRLX  $tmp,32,$tmp2\n\t"
10695             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10696             "STX   $tmp,$dst\t! regL to stkD" %}
10697   ins_encode %{
10698     Register Rsrc = $src$$Register;
10699     Register Rtmp = $tmp$$Register;
10700     Register Rtmp2 = $tmp2$$Register;
10701     __ sllx(Rsrc,    48, Rtmp);
10702     __ srlx(Rtmp,    16, Rtmp2);
10703     __ or3 (Rtmp, Rtmp2, Rtmp);
10704     __ srlx(Rtmp,    32, Rtmp2);
10705     __ or3 (Rtmp, Rtmp2, Rtmp);
10706     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10707     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10708   %}
10709   ins_pipe(ialu_reg);
10710 %}
10711 
10712 // Replicate scalar constant to packed char/short values in Double register
10713 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10714   predicate(n->as_Vector()->length() == 4);
10715   match(Set dst (ReplicateS con));
10716   effect(KILL tmp);
10717   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10718   ins_encode %{
10719     // XXX This is a quick fix for 6833573.
10720     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10721     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10722     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10723   %}
10724   ins_pipe(loadConFD);
10725 %}
10726 
10727 // Replicate scalar to packed int values into Double register
10728 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10729   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10730   match(Set dst (ReplicateI src));
10731   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10732   format %{ "SLLX  $src,32,$tmp\n\t"
10733             "SRLX  $tmp,32,$tmp2\n\t"
10734             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10735             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10736   ins_encode %{
10737     Register Rsrc = $src$$Register;
10738     Register Rtmp = $tmp$$Register;
10739     Register Rtmp2 = $tmp2$$Register;
10740     __ sllx(Rsrc,    32, Rtmp);
10741     __ srlx(Rtmp,    32, Rtmp2);
10742     __ or3 (Rtmp, Rtmp2, Rtmp);
10743     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10744   %}
10745   ins_pipe(ialu_reg);
10746 %}
10747 
10748 // Replicate scalar to packed int values into Double stack
10749 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10750   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10751   match(Set dst (ReplicateI src));
10752   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10753   format %{ "SLLX  $src,32,$tmp\n\t"
10754             "SRLX  $tmp,32,$tmp2\n\t"
10755             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10756             "STX   $tmp,$dst\t! regL to stkD" %}
10757   ins_encode %{
10758     Register Rsrc = $src$$Register;
10759     Register Rtmp = $tmp$$Register;
10760     Register Rtmp2 = $tmp2$$Register;
10761     __ sllx(Rsrc,    32, Rtmp);
10762     __ srlx(Rtmp,    32, Rtmp2);
10763     __ or3 (Rtmp, Rtmp2, Rtmp);
10764     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10765     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10766   %}
10767   ins_pipe(ialu_reg);
10768 %}
10769 
10770 // Replicate scalar zero constant to packed int values in Double register
10771 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10772   predicate(n->as_Vector()->length() == 2);
10773   match(Set dst (ReplicateI con));
10774   effect(KILL tmp);
10775   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10776   ins_encode %{
10777     // XXX This is a quick fix for 6833573.
10778     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10779     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10780     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10781   %}
10782   ins_pipe(loadConFD);
10783 %}
10784 
10785 // Replicate scalar to packed float values into Double stack
10786 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10787   predicate(n->as_Vector()->length() == 2);
10788   match(Set dst (ReplicateF src));
10789   ins_cost(MEMORY_REF_COST*2);
10790   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10791             "STF    $src,$dst.lo" %}
10792   opcode(Assembler::stf_op3);
10793   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10794   ins_pipe(fstoreF_stk_reg);
10795 %}
10796 
10797 // Replicate scalar zero constant to packed float values in Double register
10798 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10799   predicate(n->as_Vector()->length() == 2);
10800   match(Set dst (ReplicateF con));
10801   effect(KILL tmp);
10802   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10803   ins_encode %{
10804     // XXX This is a quick fix for 6833573.
10805     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10806     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10807     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10808   %}
10809   ins_pipe(loadConFD);
10810 %}
10811 
10812 //----------PEEPHOLE RULES-----------------------------------------------------
10813 // These must follow all instruction definitions as they use the names
10814 // defined in the instructions definitions.
10815 //
10816 // peepmatch ( root_instr_name [preceding_instruction]* );
10817 //
10818 // peepconstraint %{
10819 // (instruction_number.operand_name relational_op instruction_number.operand_name
10820 //  [, ...] );
10821 // // instruction numbers are zero-based using left to right order in peepmatch
10822 //
10823 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10824 // // provide an instruction_number.operand_name for each operand that appears
10825 // // in the replacement instruction's match rule
10826 //
10827 // ---------VM FLAGS---------------------------------------------------------
10828 //
10829 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10830 //
10831 // Each peephole rule is given an identifying number starting with zero and
10832 // increasing by one in the order seen by the parser.  An individual peephole
10833 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10834 // on the command-line.
10835 //
10836 // ---------CURRENT LIMITATIONS----------------------------------------------
10837 //
10838 // Only match adjacent instructions in same basic block
10839 // Only equality constraints
10840 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10841 // Only one replacement instruction
10842 //
10843 // ---------EXAMPLE----------------------------------------------------------
10844 //
10845 // // pertinent parts of existing instructions in architecture description
10846 // instruct movI(eRegI dst, eRegI src) %{
10847 //   match(Set dst (CopyI src));
10848 // %}
10849 //
10850 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10851 //   match(Set dst (AddI dst src));
10852 //   effect(KILL cr);
10853 // %}
10854 //
10855 // // Change (inc mov) to lea
10856 // peephole %{
10857 //   // increment preceeded by register-register move
10858 //   peepmatch ( incI_eReg movI );
10859 //   // require that the destination register of the increment
10860 //   // match the destination register of the move
10861 //   peepconstraint ( 0.dst == 1.dst );
10862 //   // construct a replacement instruction that sets
10863 //   // the destination to ( move's source register + one )
10864 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10865 // %}
10866 //
10867 
10868 // // Change load of spilled value to only a spill
10869 // instruct storeI(memory mem, eRegI src) %{
10870 //   match(Set mem (StoreI mem src));
10871 // %}
10872 //
10873 // instruct loadI(eRegI dst, memory mem) %{
10874 //   match(Set dst (LoadI mem));
10875 // %}
10876 //
10877 // peephole %{
10878 //   peepmatch ( loadI storeI );
10879 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10880 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10881 // %}
10882 
10883 //----------SMARTSPILL RULES---------------------------------------------------
10884 // These must follow all instruction definitions as they use the names
10885 // defined in the instructions definitions.
10886 //
10887 // SPARC will probably not have any of these rules due to RISC instruction set.
10888 
10889 //----------PIPELINE-----------------------------------------------------------
10890 // Rules which define the behavior of the target architectures pipeline.