1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/biasedLocking.hpp"
  35 #include "runtime/interfaceSupport.hpp"
  36 #include "runtime/objectMonitor.hpp"
  37 #include "runtime/os.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #ifndef SERIALGC
  41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc_implementation/g1/heapRegion.hpp"
  44 #endif
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 
  56 
  57 #ifdef ASSERT
  58 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  59 #endif
  60 
  61 static Assembler::Condition reverse[] = {
  62     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  63     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  64     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  65     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  66     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  67     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  68     Assembler::above          /* belowEqual    = 0x6 */ ,
  69     Assembler::belowEqual     /* above         = 0x7 */ ,
  70     Assembler::positive       /* negative      = 0x8 */ ,
  71     Assembler::negative       /* positive      = 0x9 */ ,
  72     Assembler::noParity       /* parity        = 0xa */ ,
  73     Assembler::parity         /* noParity      = 0xb */ ,
  74     Assembler::greaterEqual   /* less          = 0xc */ ,
  75     Assembler::less           /* greaterEqual  = 0xd */ ,
  76     Assembler::greater        /* lessEqual     = 0xe */ ,
  77     Assembler::lessEqual      /* greater       = 0xf, */
  78 
  79 };
  80 
  81 
  82 // Implementation of MacroAssembler
  83 
  84 // First all the versions that have distinct versions depending on 32/64 bit
  85 // Unless the difference is trivial (1 line or so).
  86 
  87 #ifndef _LP64
  88 
  89 // 32bit versions
  90 
  91 Address MacroAssembler::as_Address(AddressLiteral adr) {
  92   return Address(adr.target(), adr.rspec());
  93 }
  94 
  95 Address MacroAssembler::as_Address(ArrayAddress adr) {
  96   return Address::make_array(adr);
  97 }
  98 
  99 int MacroAssembler::biased_locking_enter(Register lock_reg,
 100                                          Register obj_reg,
 101                                          Register swap_reg,
 102                                          Register tmp_reg,
 103                                          bool swap_reg_contains_mark,
 104                                          Label& done,
 105                                          Label* slow_case,
 106                                          BiasedLockingCounters* counters) {
 107   assert(UseBiasedLocking, "why call this otherwise?");
 108   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
 109   assert_different_registers(lock_reg, obj_reg, swap_reg);
 110 
 111   if (PrintBiasedLockingStatistics && counters == NULL)
 112     counters = BiasedLocking::counters();
 113 
 114   bool need_tmp_reg = false;
 115   if (tmp_reg == noreg) {
 116     need_tmp_reg = true;
 117     tmp_reg = lock_reg;
 118   } else {
 119     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
 120   }
 121   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
 122   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
 123   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
 124   Address saved_mark_addr(lock_reg, 0);
 125 
 126   // Biased locking
 127   // See whether the lock is currently biased toward our thread and
 128   // whether the epoch is still valid
 129   // Note that the runtime guarantees sufficient alignment of JavaThread
 130   // pointers to allow age to be placed into low bits
 131   // First check to see whether biasing is even enabled for this object
 132   Label cas_label;
 133   int null_check_offset = -1;
 134   if (!swap_reg_contains_mark) {
 135     null_check_offset = offset();
 136     movl(swap_reg, mark_addr);
 137   }
 138   if (need_tmp_reg) {
 139     push(tmp_reg);
 140   }
 141   movl(tmp_reg, swap_reg);
 142   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
 143   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
 144   if (need_tmp_reg) {
 145     pop(tmp_reg);
 146   }
 147   jcc(Assembler::notEqual, cas_label);
 148   // The bias pattern is present in the object's header. Need to check
 149   // whether the bias owner and the epoch are both still current.
 150   // Note that because there is no current thread register on x86 we
 151   // need to store off the mark word we read out of the object to
 152   // avoid reloading it and needing to recheck invariants below. This
 153   // store is unfortunate but it makes the overall code shorter and
 154   // simpler.
 155   movl(saved_mark_addr, swap_reg);
 156   if (need_tmp_reg) {
 157     push(tmp_reg);
 158   }
 159   get_thread(tmp_reg);
 160   xorl(swap_reg, tmp_reg);
 161   if (swap_reg_contains_mark) {
 162     null_check_offset = offset();
 163   }
 164   movl(tmp_reg, klass_addr);
 165   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
 166   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
 167   if (need_tmp_reg) {
 168     pop(tmp_reg);
 169   }
 170   if (counters != NULL) {
 171     cond_inc32(Assembler::zero,
 172                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
 173   }
 174   jcc(Assembler::equal, done);
 175 
 176   Label try_revoke_bias;
 177   Label try_rebias;
 178 
 179   // At this point we know that the header has the bias pattern and
 180   // that we are not the bias owner in the current epoch. We need to
 181   // figure out more details about the state of the header in order to
 182   // know what operations can be legally performed on the object's
 183   // header.
 184 
 185   // If the low three bits in the xor result aren't clear, that means
 186   // the prototype header is no longer biased and we have to revoke
 187   // the bias on this object.
 188   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
 189   jcc(Assembler::notZero, try_revoke_bias);
 190 
 191   // Biasing is still enabled for this data type. See whether the
 192   // epoch of the current bias is still valid, meaning that the epoch
 193   // bits of the mark word are equal to the epoch bits of the
 194   // prototype header. (Note that the prototype header's epoch bits
 195   // only change at a safepoint.) If not, attempt to rebias the object
 196   // toward the current thread. Note that we must be absolutely sure
 197   // that the current epoch is invalid in order to do this because
 198   // otherwise the manipulations it performs on the mark word are
 199   // illegal.
 200   testl(swap_reg, markOopDesc::epoch_mask_in_place);
 201   jcc(Assembler::notZero, try_rebias);
 202 
 203   // The epoch of the current bias is still valid but we know nothing
 204   // about the owner; it might be set or it might be clear. Try to
 205   // acquire the bias of the object using an atomic operation. If this
 206   // fails we will go in to the runtime to revoke the object's bias.
 207   // Note that we first construct the presumed unbiased header so we
 208   // don't accidentally blow away another thread's valid bias.
 209   movl(swap_reg, saved_mark_addr);
 210   andl(swap_reg,
 211        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
 212   if (need_tmp_reg) {
 213     push(tmp_reg);
 214   }
 215   get_thread(tmp_reg);
 216   orl(tmp_reg, swap_reg);
 217   if (os::is_MP()) {
 218     lock();
 219   }
 220   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
 221   if (need_tmp_reg) {
 222     pop(tmp_reg);
 223   }
 224   // If the biasing toward our thread failed, this means that
 225   // another thread succeeded in biasing it toward itself and we
 226   // need to revoke that bias. The revocation will occur in the
 227   // interpreter runtime in the slow case.
 228   if (counters != NULL) {
 229     cond_inc32(Assembler::zero,
 230                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
 231   }
 232   if (slow_case != NULL) {
 233     jcc(Assembler::notZero, *slow_case);
 234   }
 235   jmp(done);
 236 
 237   bind(try_rebias);
 238   // At this point we know the epoch has expired, meaning that the
 239   // current "bias owner", if any, is actually invalid. Under these
 240   // circumstances _only_, we are allowed to use the current header's
 241   // value as the comparison value when doing the cas to acquire the
 242   // bias in the current epoch. In other words, we allow transfer of
 243   // the bias from one thread to another directly in this situation.
 244   //
 245   // FIXME: due to a lack of registers we currently blow away the age
 246   // bits in this situation. Should attempt to preserve them.
 247   if (need_tmp_reg) {
 248     push(tmp_reg);
 249   }
 250   get_thread(tmp_reg);
 251   movl(swap_reg, klass_addr);
 252   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
 253   movl(swap_reg, saved_mark_addr);
 254   if (os::is_MP()) {
 255     lock();
 256   }
 257   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
 258   if (need_tmp_reg) {
 259     pop(tmp_reg);
 260   }
 261   // If the biasing toward our thread failed, then another thread
 262   // succeeded in biasing it toward itself and we need to revoke that
 263   // bias. The revocation will occur in the runtime in the slow case.
 264   if (counters != NULL) {
 265     cond_inc32(Assembler::zero,
 266                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
 267   }
 268   if (slow_case != NULL) {
 269     jcc(Assembler::notZero, *slow_case);
 270   }
 271   jmp(done);
 272 
 273   bind(try_revoke_bias);
 274   // The prototype mark in the klass doesn't have the bias bit set any
 275   // more, indicating that objects of this data type are not supposed
 276   // to be biased any more. We are going to try to reset the mark of
 277   // this object to the prototype value and fall through to the
 278   // CAS-based locking scheme. Note that if our CAS fails, it means
 279   // that another thread raced us for the privilege of revoking the
 280   // bias of this particular object, so it's okay to continue in the
 281   // normal locking code.
 282   //
 283   // FIXME: due to a lack of registers we currently blow away the age
 284   // bits in this situation. Should attempt to preserve them.
 285   movl(swap_reg, saved_mark_addr);
 286   if (need_tmp_reg) {
 287     push(tmp_reg);
 288   }
 289   movl(tmp_reg, klass_addr);
 290   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
 291   if (os::is_MP()) {
 292     lock();
 293   }
 294   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
 295   if (need_tmp_reg) {
 296     pop(tmp_reg);
 297   }
 298   // Fall through to the normal CAS-based lock, because no matter what
 299   // the result of the above CAS, some thread must have succeeded in
 300   // removing the bias bit from the object's header.
 301   if (counters != NULL) {
 302     cond_inc32(Assembler::zero,
 303                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
 304   }
 305 
 306   bind(cas_label);
 307 
 308   return null_check_offset;
 309 }
 310 void MacroAssembler::call_VM_leaf_base(address entry_point,
 311                                        int number_of_arguments) {
 312   call(RuntimeAddress(entry_point));
 313   increment(rsp, number_of_arguments * wordSize);
 314 }
 315 
 316 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 317   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 318 }
 319 
 320 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 321   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 322 }
 323 
 324 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 325   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 326 }
 327 
 328 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 329   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 330 }
 331 
 332 void MacroAssembler::extend_sign(Register hi, Register lo) {
 333   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 334   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 335     cdql();
 336   } else {
 337     movl(hi, lo);
 338     sarl(hi, 31);
 339   }
 340 }
 341 
 342 void MacroAssembler::jC2(Register tmp, Label& L) {
 343   // set parity bit if FPU flag C2 is set (via rax)
 344   save_rax(tmp);
 345   fwait(); fnstsw_ax();
 346   sahf();
 347   restore_rax(tmp);
 348   // branch
 349   jcc(Assembler::parity, L);
 350 }
 351 
 352 void MacroAssembler::jnC2(Register tmp, Label& L) {
 353   // set parity bit if FPU flag C2 is set (via rax)
 354   save_rax(tmp);
 355   fwait(); fnstsw_ax();
 356   sahf();
 357   restore_rax(tmp);
 358   // branch
 359   jcc(Assembler::noParity, L);
 360 }
 361 
 362 // 32bit can do a case table jump in one instruction but we no longer allow the base
 363 // to be installed in the Address class
 364 void MacroAssembler::jump(ArrayAddress entry) {
 365   jmp(as_Address(entry));
 366 }
 367 
 368 // Note: y_lo will be destroyed
 369 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 370   // Long compare for Java (semantics as described in JVM spec.)
 371   Label high, low, done;
 372 
 373   cmpl(x_hi, y_hi);
 374   jcc(Assembler::less, low);
 375   jcc(Assembler::greater, high);
 376   // x_hi is the return register
 377   xorl(x_hi, x_hi);
 378   cmpl(x_lo, y_lo);
 379   jcc(Assembler::below, low);
 380   jcc(Assembler::equal, done);
 381 
 382   bind(high);
 383   xorl(x_hi, x_hi);
 384   increment(x_hi);
 385   jmp(done);
 386 
 387   bind(low);
 388   xorl(x_hi, x_hi);
 389   decrementl(x_hi);
 390 
 391   bind(done);
 392 }
 393 
 394 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 395     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 396 }
 397 
 398 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 399   // leal(dst, as_Address(adr));
 400   // see note in movl as to why we must use a move
 401   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 402 }
 403 
 404 void MacroAssembler::leave() {
 405   mov(rsp, rbp);
 406   pop(rbp);
 407 }
 408 
 409 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 410   // Multiplication of two Java long values stored on the stack
 411   // as illustrated below. Result is in rdx:rax.
 412   //
 413   // rsp ---> [  ??  ] \               \
 414   //            ....    | y_rsp_offset  |
 415   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 416   //          [ y_hi ]                  | (in bytes)
 417   //            ....                    |
 418   //          [ x_lo ]                 /
 419   //          [ x_hi ]
 420   //            ....
 421   //
 422   // Basic idea: lo(result) = lo(x_lo * y_lo)
 423   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 424   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 425   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 426   Label quick;
 427   // load x_hi, y_hi and check if quick
 428   // multiplication is possible
 429   movl(rbx, x_hi);
 430   movl(rcx, y_hi);
 431   movl(rax, rbx);
 432   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 433   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 434   // do full multiplication
 435   // 1st step
 436   mull(y_lo);                                    // x_hi * y_lo
 437   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 438   // 2nd step
 439   movl(rax, x_lo);
 440   mull(rcx);                                     // x_lo * y_hi
 441   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 442   // 3rd step
 443   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 444   movl(rax, x_lo);
 445   mull(y_lo);                                    // x_lo * y_lo
 446   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 447 }
 448 
 449 void MacroAssembler::lneg(Register hi, Register lo) {
 450   negl(lo);
 451   adcl(hi, 0);
 452   negl(hi);
 453 }
 454 
 455 void MacroAssembler::lshl(Register hi, Register lo) {
 456   // Java shift left long support (semantics as described in JVM spec., p.305)
 457   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 458   // shift value is in rcx !
 459   assert(hi != rcx, "must not use rcx");
 460   assert(lo != rcx, "must not use rcx");
 461   const Register s = rcx;                        // shift count
 462   const int      n = BitsPerWord;
 463   Label L;
 464   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 465   cmpl(s, n);                                    // if (s < n)
 466   jcc(Assembler::less, L);                       // else (s >= n)
 467   movl(hi, lo);                                  // x := x << n
 468   xorl(lo, lo);
 469   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 470   bind(L);                                       // s (mod n) < n
 471   shldl(hi, lo);                                 // x := x << s
 472   shll(lo);
 473 }
 474 
 475 
 476 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 477   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 478   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 479   assert(hi != rcx, "must not use rcx");
 480   assert(lo != rcx, "must not use rcx");
 481   const Register s = rcx;                        // shift count
 482   const int      n = BitsPerWord;
 483   Label L;
 484   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 485   cmpl(s, n);                                    // if (s < n)
 486   jcc(Assembler::less, L);                       // else (s >= n)
 487   movl(lo, hi);                                  // x := x >> n
 488   if (sign_extension) sarl(hi, 31);
 489   else                xorl(hi, hi);
 490   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 491   bind(L);                                       // s (mod n) < n
 492   shrdl(lo, hi);                                 // x := x >> s
 493   if (sign_extension) sarl(hi);
 494   else                shrl(hi);
 495 }
 496 
 497 void MacroAssembler::movoop(Register dst, jobject obj) {
 498   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 499 }
 500 
 501 void MacroAssembler::movoop(Address dst, jobject obj) {
 502   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 503 }
 504 
 505 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 506   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 507 }
 508 
 509 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 510   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 511 }
 512 
 513 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
 514   if (src.is_lval()) {
 515     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 516   } else {
 517     movl(dst, as_Address(src));
 518   }
 519 }
 520 
 521 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 522   movl(as_Address(dst), src);
 523 }
 524 
 525 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 526   movl(dst, as_Address(src));
 527 }
 528 
 529 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 530 void MacroAssembler::movptr(Address dst, intptr_t src) {
 531   movl(dst, src);
 532 }
 533 
 534 
 535 void MacroAssembler::pop_callee_saved_registers() {
 536   pop(rcx);
 537   pop(rdx);
 538   pop(rdi);
 539   pop(rsi);
 540 }
 541 
 542 void MacroAssembler::pop_fTOS() {
 543   fld_d(Address(rsp, 0));
 544   addl(rsp, 2 * wordSize);
 545 }
 546 
 547 void MacroAssembler::push_callee_saved_registers() {
 548   push(rsi);
 549   push(rdi);
 550   push(rdx);
 551   push(rcx);
 552 }
 553 
 554 void MacroAssembler::push_fTOS() {
 555   subl(rsp, 2 * wordSize);
 556   fstp_d(Address(rsp, 0));
 557 }
 558 
 559 
 560 void MacroAssembler::pushoop(jobject obj) {
 561   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 562 }
 563 
 564 void MacroAssembler::pushklass(Metadata* obj) {
 565   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 566 }
 567 
 568 void MacroAssembler::pushptr(AddressLiteral src) {
 569   if (src.is_lval()) {
 570     push_literal32((int32_t)src.target(), src.rspec());
 571   } else {
 572     pushl(as_Address(src));
 573   }
 574 }
 575 
 576 void MacroAssembler::set_word_if_not_zero(Register dst) {
 577   xorl(dst, dst);
 578   set_byte_if_not_zero(dst);
 579 }
 580 
 581 static void pass_arg0(MacroAssembler* masm, Register arg) {
 582   masm->push(arg);
 583 }
 584 
 585 static void pass_arg1(MacroAssembler* masm, Register arg) {
 586   masm->push(arg);
 587 }
 588 
 589 static void pass_arg2(MacroAssembler* masm, Register arg) {
 590   masm->push(arg);
 591 }
 592 
 593 static void pass_arg3(MacroAssembler* masm, Register arg) {
 594   masm->push(arg);
 595 }
 596 
 597 #ifndef PRODUCT
 598 extern "C" void findpc(intptr_t x);
 599 #endif
 600 
 601 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 602   // In order to get locks to work, we need to fake a in_VM state
 603   JavaThread* thread = JavaThread::current();
 604   JavaThreadState saved_state = thread->thread_state();
 605   thread->set_thread_state(_thread_in_vm);
 606   if (ShowMessageBoxOnError) {
 607     JavaThread* thread = JavaThread::current();
 608     JavaThreadState saved_state = thread->thread_state();
 609     thread->set_thread_state(_thread_in_vm);
 610     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 611       ttyLocker ttyl;
 612       BytecodeCounter::print();
 613     }
 614     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 615     // This is the value of eip which points to where verify_oop will return.
 616     if (os::message_box(msg, "Execution stopped, print registers?")) {
 617       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 618       BREAKPOINT;
 619     }
 620   } else {
 621     ttyLocker ttyl;
 622     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 623   }
 624   // Don't assert holding the ttyLock
 625     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 626   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 627 }
 628 
 629 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 630   ttyLocker ttyl;
 631   FlagSetting fs(Debugging, true);
 632   tty->print_cr("eip = 0x%08x", eip);
 633 #ifndef PRODUCT
 634   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 635     tty->cr();
 636     findpc(eip);
 637     tty->cr();
 638   }
 639 #endif
 640 #define PRINT_REG(rax) \
 641   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 642   PRINT_REG(rax);
 643   PRINT_REG(rbx);
 644   PRINT_REG(rcx);
 645   PRINT_REG(rdx);
 646   PRINT_REG(rdi);
 647   PRINT_REG(rsi);
 648   PRINT_REG(rbp);
 649   PRINT_REG(rsp);
 650 #undef PRINT_REG
 651   // Print some words near top of staack.
 652   int* dump_sp = (int*) rsp;
 653   for (int col1 = 0; col1 < 8; col1++) {
 654     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 655     os::print_location(tty, *dump_sp++);
 656   }
 657   for (int row = 0; row < 16; row++) {
 658     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 659     for (int col = 0; col < 8; col++) {
 660       tty->print(" 0x%08x", *dump_sp++);
 661     }
 662     tty->cr();
 663   }
 664   // Print some instructions around pc:
 665   Disassembler::decode((address)eip-64, (address)eip);
 666   tty->print_cr("--------");
 667   Disassembler::decode((address)eip, (address)eip+32);
 668 }
 669 
 670 void MacroAssembler::stop(const char* msg) {
 671   ExternalAddress message((address)msg);
 672   // push address of message
 673   pushptr(message.addr());
 674   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 675   pusha();                                            // push registers
 676   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 677   hlt();
 678 }
 679 
 680 void MacroAssembler::warn(const char* msg) {
 681   push_CPU_state();
 682 
 683   ExternalAddress message((address) msg);
 684   // push address of message
 685   pushptr(message.addr());
 686 
 687   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 688   addl(rsp, wordSize);       // discard argument
 689   pop_CPU_state();
 690 }
 691 
 692 void MacroAssembler::print_state() {
 693   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 694   pusha();                                            // push registers
 695 
 696   push_CPU_state();
 697   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 698   pop_CPU_state();
 699 
 700   popa();
 701   addl(rsp, wordSize);
 702 }
 703 
 704 #else // _LP64
 705 
 706 // 64 bit versions
 707 
 708 Address MacroAssembler::as_Address(AddressLiteral adr) {
 709   // amd64 always does this as a pc-rel
 710   // we can be absolute or disp based on the instruction type
 711   // jmp/call are displacements others are absolute
 712   assert(!adr.is_lval(), "must be rval");
 713   assert(reachable(adr), "must be");
 714   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 715 
 716 }
 717 
 718 Address MacroAssembler::as_Address(ArrayAddress adr) {
 719   AddressLiteral base = adr.base();
 720   lea(rscratch1, base);
 721   Address index = adr.index();
 722   assert(index._disp == 0, "must not have disp"); // maybe it can?
 723   Address array(rscratch1, index._index, index._scale, index._disp);
 724   return array;
 725 }
 726 
 727 int MacroAssembler::biased_locking_enter(Register lock_reg,
 728                                          Register obj_reg,
 729                                          Register swap_reg,
 730                                          Register tmp_reg,
 731                                          bool swap_reg_contains_mark,
 732                                          Label& done,
 733                                          Label* slow_case,
 734                                          BiasedLockingCounters* counters) {
 735   assert(UseBiasedLocking, "why call this otherwise?");
 736   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
 737   assert(tmp_reg != noreg, "tmp_reg must be supplied");
 738   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
 739   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
 740   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
 741   Address saved_mark_addr(lock_reg, 0);
 742 
 743   if (PrintBiasedLockingStatistics && counters == NULL)
 744     counters = BiasedLocking::counters();
 745 
 746   // Biased locking
 747   // See whether the lock is currently biased toward our thread and
 748   // whether the epoch is still valid
 749   // Note that the runtime guarantees sufficient alignment of JavaThread
 750   // pointers to allow age to be placed into low bits
 751   // First check to see whether biasing is even enabled for this object
 752   Label cas_label;
 753   int null_check_offset = -1;
 754   if (!swap_reg_contains_mark) {
 755     null_check_offset = offset();
 756     movq(swap_reg, mark_addr);
 757   }
 758   movq(tmp_reg, swap_reg);
 759   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
 760   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
 761   jcc(Assembler::notEqual, cas_label);
 762   // The bias pattern is present in the object's header. Need to check
 763   // whether the bias owner and the epoch are both still current.
 764   load_prototype_header(tmp_reg, obj_reg);
 765   orq(tmp_reg, r15_thread);
 766   xorq(tmp_reg, swap_reg);
 767   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
 768   if (counters != NULL) {
 769     cond_inc32(Assembler::zero,
 770                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
 771   }
 772   jcc(Assembler::equal, done);
 773 
 774   Label try_revoke_bias;
 775   Label try_rebias;
 776 
 777   // At this point we know that the header has the bias pattern and
 778   // that we are not the bias owner in the current epoch. We need to
 779   // figure out more details about the state of the header in order to
 780   // know what operations can be legally performed on the object's
 781   // header.
 782 
 783   // If the low three bits in the xor result aren't clear, that means
 784   // the prototype header is no longer biased and we have to revoke
 785   // the bias on this object.
 786   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
 787   jcc(Assembler::notZero, try_revoke_bias);
 788 
 789   // Biasing is still enabled for this data type. See whether the
 790   // epoch of the current bias is still valid, meaning that the epoch
 791   // bits of the mark word are equal to the epoch bits of the
 792   // prototype header. (Note that the prototype header's epoch bits
 793   // only change at a safepoint.) If not, attempt to rebias the object
 794   // toward the current thread. Note that we must be absolutely sure
 795   // that the current epoch is invalid in order to do this because
 796   // otherwise the manipulations it performs on the mark word are
 797   // illegal.
 798   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
 799   jcc(Assembler::notZero, try_rebias);
 800 
 801   // The epoch of the current bias is still valid but we know nothing
 802   // about the owner; it might be set or it might be clear. Try to
 803   // acquire the bias of the object using an atomic operation. If this
 804   // fails we will go in to the runtime to revoke the object's bias.
 805   // Note that we first construct the presumed unbiased header so we
 806   // don't accidentally blow away another thread's valid bias.
 807   andq(swap_reg,
 808        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
 809   movq(tmp_reg, swap_reg);
 810   orq(tmp_reg, r15_thread);
 811   if (os::is_MP()) {
 812     lock();
 813   }
 814   cmpxchgq(tmp_reg, Address(obj_reg, 0));
 815   // If the biasing toward our thread failed, this means that
 816   // another thread succeeded in biasing it toward itself and we
 817   // need to revoke that bias. The revocation will occur in the
 818   // interpreter runtime in the slow case.
 819   if (counters != NULL) {
 820     cond_inc32(Assembler::zero,
 821                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
 822   }
 823   if (slow_case != NULL) {
 824     jcc(Assembler::notZero, *slow_case);
 825   }
 826   jmp(done);
 827 
 828   bind(try_rebias);
 829   // At this point we know the epoch has expired, meaning that the
 830   // current "bias owner", if any, is actually invalid. Under these
 831   // circumstances _only_, we are allowed to use the current header's
 832   // value as the comparison value when doing the cas to acquire the
 833   // bias in the current epoch. In other words, we allow transfer of
 834   // the bias from one thread to another directly in this situation.
 835   //
 836   // FIXME: due to a lack of registers we currently blow away the age
 837   // bits in this situation. Should attempt to preserve them.
 838   load_prototype_header(tmp_reg, obj_reg);
 839   orq(tmp_reg, r15_thread);
 840   if (os::is_MP()) {
 841     lock();
 842   }
 843   cmpxchgq(tmp_reg, Address(obj_reg, 0));
 844   // If the biasing toward our thread failed, then another thread
 845   // succeeded in biasing it toward itself and we need to revoke that
 846   // bias. The revocation will occur in the runtime in the slow case.
 847   if (counters != NULL) {
 848     cond_inc32(Assembler::zero,
 849                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
 850   }
 851   if (slow_case != NULL) {
 852     jcc(Assembler::notZero, *slow_case);
 853   }
 854   jmp(done);
 855 
 856   bind(try_revoke_bias);
 857   // The prototype mark in the klass doesn't have the bias bit set any
 858   // more, indicating that objects of this data type are not supposed
 859   // to be biased any more. We are going to try to reset the mark of
 860   // this object to the prototype value and fall through to the
 861   // CAS-based locking scheme. Note that if our CAS fails, it means
 862   // that another thread raced us for the privilege of revoking the
 863   // bias of this particular object, so it's okay to continue in the
 864   // normal locking code.
 865   //
 866   // FIXME: due to a lack of registers we currently blow away the age
 867   // bits in this situation. Should attempt to preserve them.
 868   load_prototype_header(tmp_reg, obj_reg);
 869   if (os::is_MP()) {
 870     lock();
 871   }
 872   cmpxchgq(tmp_reg, Address(obj_reg, 0));
 873   // Fall through to the normal CAS-based lock, because no matter what
 874   // the result of the above CAS, some thread must have succeeded in
 875   // removing the bias bit from the object's header.
 876   if (counters != NULL) {
 877     cond_inc32(Assembler::zero,
 878                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
 879   }
 880 
 881   bind(cas_label);
 882 
 883   return null_check_offset;
 884 }
 885 
 886 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 887   Label L, E;
 888 
 889 #ifdef _WIN64
 890   // Windows always allocates space for it's register args
 891   assert(num_args <= 4, "only register arguments supported");
 892   subq(rsp,  frame::arg_reg_save_area_bytes);
 893 #endif
 894 
 895   // Align stack if necessary
 896   testl(rsp, 15);
 897   jcc(Assembler::zero, L);
 898 
 899   subq(rsp, 8);
 900   {
 901     call(RuntimeAddress(entry_point));
 902   }
 903   addq(rsp, 8);
 904   jmp(E);
 905 
 906   bind(L);
 907   {
 908     call(RuntimeAddress(entry_point));
 909   }
 910 
 911   bind(E);
 912 
 913 #ifdef _WIN64
 914   // restore stack pointer
 915   addq(rsp, frame::arg_reg_save_area_bytes);
 916 #endif
 917 
 918 }
 919 
 920 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 921   assert(!src2.is_lval(), "should use cmpptr");
 922 
 923   if (reachable(src2)) {
 924     cmpq(src1, as_Address(src2));
 925   } else {
 926     lea(rscratch1, src2);
 927     Assembler::cmpq(src1, Address(rscratch1, 0));
 928   }
 929 }
 930 
 931 int MacroAssembler::corrected_idivq(Register reg) {
 932   // Full implementation of Java ldiv and lrem; checks for special
 933   // case as described in JVM spec., p.243 & p.271.  The function
 934   // returns the (pc) offset of the idivl instruction - may be needed
 935   // for implicit exceptions.
 936   //
 937   //         normal case                           special case
 938   //
 939   // input : rax: dividend                         min_long
 940   //         reg: divisor   (may not be eax/edx)   -1
 941   //
 942   // output: rax: quotient  (= rax idiv reg)       min_long
 943   //         rdx: remainder (= rax irem reg)       0
 944   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 945   static const int64_t min_long = 0x8000000000000000;
 946   Label normal_case, special_case;
 947 
 948   // check for special case
 949   cmp64(rax, ExternalAddress((address) &min_long));
 950   jcc(Assembler::notEqual, normal_case);
 951   xorl(rdx, rdx); // prepare rdx for possible special case (where
 952                   // remainder = 0)
 953   cmpq(reg, -1);
 954   jcc(Assembler::equal, special_case);
 955 
 956   // handle normal case
 957   bind(normal_case);
 958   cdqq();
 959   int idivq_offset = offset();
 960   idivq(reg);
 961 
 962   // normal and special case exit
 963   bind(special_case);
 964 
 965   return idivq_offset;
 966 }
 967 
 968 void MacroAssembler::decrementq(Register reg, int value) {
 969   if (value == min_jint) { subq(reg, value); return; }
 970   if (value <  0) { incrementq(reg, -value); return; }
 971   if (value == 0) {                        ; return; }
 972   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 973   /* else */      { subq(reg, value)       ; return; }
 974 }
 975 
 976 void MacroAssembler::decrementq(Address dst, int value) {
 977   if (value == min_jint) { subq(dst, value); return; }
 978   if (value <  0) { incrementq(dst, -value); return; }
 979   if (value == 0) {                        ; return; }
 980   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 981   /* else */      { subq(dst, value)       ; return; }
 982 }
 983 
 984 void MacroAssembler::incrementq(Register reg, int value) {
 985   if (value == min_jint) { addq(reg, value); return; }
 986   if (value <  0) { decrementq(reg, -value); return; }
 987   if (value == 0) {                        ; return; }
 988   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 989   /* else */      { addq(reg, value)       ; return; }
 990 }
 991 
 992 void MacroAssembler::incrementq(Address dst, int value) {
 993   if (value == min_jint) { addq(dst, value); return; }
 994   if (value <  0) { decrementq(dst, -value); return; }
 995   if (value == 0) {                        ; return; }
 996   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 997   /* else */      { addq(dst, value)       ; return; }
 998 }
 999 
1000 // 32bit can do a case table jump in one instruction but we no longer allow the base
1001 // to be installed in the Address class
1002 void MacroAssembler::jump(ArrayAddress entry) {
1003   lea(rscratch1, entry.base());
1004   Address dispatch = entry.index();
1005   assert(dispatch._base == noreg, "must be");
1006   dispatch._base = rscratch1;
1007   jmp(dispatch);
1008 }
1009 
1010 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
1011   ShouldNotReachHere(); // 64bit doesn't use two regs
1012   cmpq(x_lo, y_lo);
1013 }
1014 
1015 void MacroAssembler::lea(Register dst, AddressLiteral src) {
1016     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
1017 }
1018 
1019 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
1020   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
1021   movptr(dst, rscratch1);
1022 }
1023 
1024 void MacroAssembler::leave() {
1025   // %%% is this really better? Why not on 32bit too?
1026   emit_byte(0xC9); // LEAVE
1027 }
1028 
1029 void MacroAssembler::lneg(Register hi, Register lo) {
1030   ShouldNotReachHere(); // 64bit doesn't use two regs
1031   negq(lo);
1032 }
1033 
1034 void MacroAssembler::movoop(Register dst, jobject obj) {
1035   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
1036 }
1037 
1038 void MacroAssembler::movoop(Address dst, jobject obj) {
1039   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
1040   movq(dst, rscratch1);
1041 }
1042 
1043 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
1044   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
1045 }
1046 
1047 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
1048   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
1049   movq(dst, rscratch1);
1050 }
1051 
1052 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
1053   if (src.is_lval()) {
1054     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
1055   } else {
1056     if (reachable(src)) {
1057       movq(dst, as_Address(src));
1058     } else {
1059       lea(rscratch1, src);
1060       movq(dst, Address(rscratch1,0));
1061     }
1062   }
1063 }
1064 
1065 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
1066   movq(as_Address(dst), src);
1067 }
1068 
1069 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
1070   movq(dst, as_Address(src));
1071 }
1072 
1073 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
1074 void MacroAssembler::movptr(Address dst, intptr_t src) {
1075   mov64(rscratch1, src);
1076   movq(dst, rscratch1);
1077 }
1078 
1079 // These are mostly for initializing NULL
1080 void MacroAssembler::movptr(Address dst, int32_t src) {
1081   movslq(dst, src);
1082 }
1083 
1084 void MacroAssembler::movptr(Register dst, int32_t src) {
1085   mov64(dst, (intptr_t)src);
1086 }
1087 
1088 void MacroAssembler::pushoop(jobject obj) {
1089   movoop(rscratch1, obj);
1090   push(rscratch1);
1091 }
1092 
1093 void MacroAssembler::pushklass(Metadata* obj) {
1094   mov_metadata(rscratch1, obj);
1095   push(rscratch1);
1096 }
1097 
1098 void MacroAssembler::pushptr(AddressLiteral src) {
1099   lea(rscratch1, src);
1100   if (src.is_lval()) {
1101     push(rscratch1);
1102   } else {
1103     pushq(Address(rscratch1, 0));
1104   }
1105 }
1106 
1107 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
1108                                            bool clear_pc) {
1109   // we must set sp to zero to clear frame
1110   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
1111   // must clear fp, so that compiled frames are not confused; it is
1112   // possible that we need it only for debugging
1113   if (clear_fp) {
1114     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
1115   }
1116 
1117   if (clear_pc) {
1118     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
1119   }
1120 }
1121 
1122 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
1123                                          Register last_java_fp,
1124                                          address  last_java_pc) {
1125   // determine last_java_sp register
1126   if (!last_java_sp->is_valid()) {
1127     last_java_sp = rsp;
1128   }
1129 
1130   // last_java_fp is optional
1131   if (last_java_fp->is_valid()) {
1132     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
1133            last_java_fp);
1134   }
1135 
1136   // last_java_pc is optional
1137   if (last_java_pc != NULL) {
1138     Address java_pc(r15_thread,
1139                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
1140     lea(rscratch1, InternalAddress(last_java_pc));
1141     movptr(java_pc, rscratch1);
1142   }
1143 
1144   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
1145 }
1146 
1147 static void pass_arg0(MacroAssembler* masm, Register arg) {
1148   if (c_rarg0 != arg ) {
1149     masm->mov(c_rarg0, arg);
1150   }
1151 }
1152 
1153 static void pass_arg1(MacroAssembler* masm, Register arg) {
1154   if (c_rarg1 != arg ) {
1155     masm->mov(c_rarg1, arg);
1156   }
1157 }
1158 
1159 static void pass_arg2(MacroAssembler* masm, Register arg) {
1160   if (c_rarg2 != arg ) {
1161     masm->mov(c_rarg2, arg);
1162   }
1163 }
1164 
1165 static void pass_arg3(MacroAssembler* masm, Register arg) {
1166   if (c_rarg3 != arg ) {
1167     masm->mov(c_rarg3, arg);
1168   }
1169 }
1170 
1171 void MacroAssembler::stop(const char* msg) {
1172   address rip = pc();
1173   pusha(); // get regs on stack
1174   lea(c_rarg0, ExternalAddress((address) msg));
1175   lea(c_rarg1, InternalAddress(rip));
1176   movq(c_rarg2, rsp); // pass pointer to regs array
1177   andq(rsp, -16); // align stack as required by ABI
1178   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1179   hlt();
1180 }
1181 
1182 void MacroAssembler::warn(const char* msg) {
1183   push(rbp);
1184   movq(rbp, rsp);
1185   andq(rsp, -16);     // align stack as required by push_CPU_state and call
1186   push_CPU_state();   // keeps alignment at 16 bytes
1187   lea(c_rarg0, ExternalAddress((address) msg));
1188   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
1189   pop_CPU_state();
1190   mov(rsp, rbp);
1191   pop(rbp);
1192 }
1193 
1194 void MacroAssembler::print_state() {
1195   address rip = pc();
1196   pusha();            // get regs on stack
1197   push(rbp);
1198   movq(rbp, rsp);
1199   andq(rsp, -16);     // align stack as required by push_CPU_state and call
1200   push_CPU_state();   // keeps alignment at 16 bytes
1201 
1202   lea(c_rarg0, InternalAddress(rip));
1203   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
1204   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
1205 
1206   pop_CPU_state();
1207   mov(rsp, rbp);
1208   pop(rbp);
1209   popa();
1210 }
1211 
1212 #ifndef PRODUCT
1213 extern "C" void findpc(intptr_t x);
1214 #endif
1215 
1216 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
1217   // In order to get locks to work, we need to fake a in_VM state
1218   if (ShowMessageBoxOnError) {
1219     JavaThread* thread = JavaThread::current();
1220     JavaThreadState saved_state = thread->thread_state();
1221     thread->set_thread_state(_thread_in_vm);
1222 #ifndef PRODUCT
1223     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1224       ttyLocker ttyl;
1225       BytecodeCounter::print();
1226     }
1227 #endif
1228     // To see where a verify_oop failed, get $ebx+40/X for this frame.
1229     // XXX correct this offset for amd64
1230     // This is the value of eip which points to where verify_oop will return.
1231     if (os::message_box(msg, "Execution stopped, print registers?")) {
1232       print_state64(pc, regs);
1233       BREAKPOINT;
1234       assert(false, "start up GDB");
1235     }
1236     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
1237   } else {
1238     ttyLocker ttyl;
1239     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
1240                     msg);
1241     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
1242   }
1243 }
1244 
1245 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
1246   ttyLocker ttyl;
1247   FlagSetting fs(Debugging, true);
1248   tty->print_cr("rip = 0x%016lx", pc);
1249 #ifndef PRODUCT
1250   tty->cr();
1251   findpc(pc);
1252   tty->cr();
1253 #endif
1254 #define PRINT_REG(rax, value) \
1255   { tty->print("%s = ", #rax); os::print_location(tty, value); }
1256   PRINT_REG(rax, regs[15]);
1257   PRINT_REG(rbx, regs[12]);
1258   PRINT_REG(rcx, regs[14]);
1259   PRINT_REG(rdx, regs[13]);
1260   PRINT_REG(rdi, regs[8]);
1261   PRINT_REG(rsi, regs[9]);
1262   PRINT_REG(rbp, regs[10]);
1263   PRINT_REG(rsp, regs[11]);
1264   PRINT_REG(r8 , regs[7]);
1265   PRINT_REG(r9 , regs[6]);
1266   PRINT_REG(r10, regs[5]);
1267   PRINT_REG(r11, regs[4]);
1268   PRINT_REG(r12, regs[3]);
1269   PRINT_REG(r13, regs[2]);
1270   PRINT_REG(r14, regs[1]);
1271   PRINT_REG(r15, regs[0]);
1272 #undef PRINT_REG
1273   // Print some words near top of staack.
1274   int64_t* rsp = (int64_t*) regs[11];
1275   int64_t* dump_sp = rsp;
1276   for (int col1 = 0; col1 < 8; col1++) {
1277     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
1278     os::print_location(tty, *dump_sp++);
1279   }
1280   for (int row = 0; row < 25; row++) {
1281     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
1282     for (int col = 0; col < 4; col++) {
1283       tty->print(" 0x%016lx", *dump_sp++);
1284     }
1285     tty->cr();
1286   }
1287   // Print some instructions around pc:
1288   Disassembler::decode((address)pc-64, (address)pc);
1289   tty->print_cr("--------");
1290   Disassembler::decode((address)pc, (address)pc+32);
1291 }
1292 
1293 #endif // _LP64
1294 
1295 // Now versions that are common to 32/64 bit
1296 
1297 void MacroAssembler::addptr(Register dst, int32_t imm32) {
1298   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
1299 }
1300 
1301 void MacroAssembler::addptr(Register dst, Register src) {
1302   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
1303 }
1304 
1305 void MacroAssembler::addptr(Address dst, Register src) {
1306   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
1307 }
1308 
1309 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
1310   if (reachable(src)) {
1311     Assembler::addsd(dst, as_Address(src));
1312   } else {
1313     lea(rscratch1, src);
1314     Assembler::addsd(dst, Address(rscratch1, 0));
1315   }
1316 }
1317 
1318 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
1319   if (reachable(src)) {
1320     addss(dst, as_Address(src));
1321   } else {
1322     lea(rscratch1, src);
1323     addss(dst, Address(rscratch1, 0));
1324   }
1325 }
1326 
1327 void MacroAssembler::align(int modulus) {
1328   if (offset() % modulus != 0) {
1329     nop(modulus - (offset() % modulus));
1330   }
1331 }
1332 
1333 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
1334   // Used in sign-masking with aligned address.
1335   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1336   if (reachable(src)) {
1337     Assembler::andpd(dst, as_Address(src));
1338   } else {
1339     lea(rscratch1, src);
1340     Assembler::andpd(dst, Address(rscratch1, 0));
1341   }
1342 }
1343 
1344 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1345   // Used in sign-masking with aligned address.
1346   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1347   if (reachable(src)) {
1348     Assembler::andps(dst, as_Address(src));
1349   } else {
1350     lea(rscratch1, src);
1351     Assembler::andps(dst, Address(rscratch1, 0));
1352   }
1353 }
1354 
1355 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1356   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1357 }
1358 
1359 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
1360   pushf();
1361   if (os::is_MP())
1362     lock();
1363   incrementl(counter_addr);
1364   popf();
1365 }
1366 
1367 // Writes to stack successive pages until offset reached to check for
1368 // stack overflow + shadow pages.  This clobbers tmp.
1369 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1370   movptr(tmp, rsp);
1371   // Bang stack for total size given plus shadow page size.
1372   // Bang one page at a time because large size can bang beyond yellow and
1373   // red zones.
1374   Label loop;
1375   bind(loop);
1376   movl(Address(tmp, (-os::vm_page_size())), size );
1377   subptr(tmp, os::vm_page_size());
1378   subl(size, os::vm_page_size());
1379   jcc(Assembler::greater, loop);
1380 
1381   // Bang down shadow pages too.
1382   // The -1 because we already subtracted 1 page.
1383   for (int i = 0; i< StackShadowPages-1; i++) {
1384     // this could be any sized move but this is can be a debugging crumb
1385     // so the bigger the better.
1386     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1387   }
1388 }
1389 
1390 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1391   assert(UseBiasedLocking, "why call this otherwise?");
1392 
1393   // Check for biased locking unlock case, which is a no-op
1394   // Note: we do not have to check the thread ID for two reasons.
1395   // First, the interpreter checks for IllegalMonitorStateException at
1396   // a higher level. Second, if the bias was revoked while we held the
1397   // lock, the object could not be rebiased toward another thread, so
1398   // the bias bit would be clear.
1399   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1400   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1401   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1402   jcc(Assembler::equal, done);
1403 }
1404 
1405 void MacroAssembler::c2bool(Register x) {
1406   // implements x == 0 ? 0 : 1
1407   // note: must only look at least-significant byte of x
1408   //       since C-style booleans are stored in one byte
1409   //       only! (was bug)
1410   andl(x, 0xFF);
1411   setb(Assembler::notZero, x);
1412 }
1413 
1414 // Wouldn't need if AddressLiteral version had new name
1415 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
1416   Assembler::call(L, rtype);
1417 }
1418 
1419 void MacroAssembler::call(Register entry) {
1420   Assembler::call(entry);
1421 }
1422 
1423 void MacroAssembler::call(AddressLiteral entry) {
1424   if (reachable(entry)) {
1425     Assembler::call_literal(entry.target(), entry.rspec());
1426   } else {
1427     lea(rscratch1, entry);
1428     Assembler::call(rscratch1);
1429   }
1430 }
1431 
1432 void MacroAssembler::ic_call(address entry) {
1433   RelocationHolder rh = virtual_call_Relocation::spec(pc());
1434   movptr(rax, (intptr_t)Universe::non_oop_word());
1435   call(AddressLiteral(entry, rh));
1436 }
1437 
1438 // Implementation of call_VM versions
1439 
1440 void MacroAssembler::call_VM(Register oop_result,
1441                              address entry_point,
1442                              bool check_exceptions) {
1443   Label C, E;
1444   call(C, relocInfo::none);
1445   jmp(E);
1446 
1447   bind(C);
1448   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
1449   ret(0);
1450 
1451   bind(E);
1452 }
1453 
1454 void MacroAssembler::call_VM(Register oop_result,
1455                              address entry_point,
1456                              Register arg_1,
1457                              bool check_exceptions) {
1458   Label C, E;
1459   call(C, relocInfo::none);
1460   jmp(E);
1461 
1462   bind(C);
1463   pass_arg1(this, arg_1);
1464   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
1465   ret(0);
1466 
1467   bind(E);
1468 }
1469 
1470 void MacroAssembler::call_VM(Register oop_result,
1471                              address entry_point,
1472                              Register arg_1,
1473                              Register arg_2,
1474                              bool check_exceptions) {
1475   Label C, E;
1476   call(C, relocInfo::none);
1477   jmp(E);
1478 
1479   bind(C);
1480 
1481   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
1482 
1483   pass_arg2(this, arg_2);
1484   pass_arg1(this, arg_1);
1485   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
1486   ret(0);
1487 
1488   bind(E);
1489 }
1490 
1491 void MacroAssembler::call_VM(Register oop_result,
1492                              address entry_point,
1493                              Register arg_1,
1494                              Register arg_2,
1495                              Register arg_3,
1496                              bool check_exceptions) {
1497   Label C, E;
1498   call(C, relocInfo::none);
1499   jmp(E);
1500 
1501   bind(C);
1502 
1503   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
1504   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
1505   pass_arg3(this, arg_3);
1506 
1507   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
1508   pass_arg2(this, arg_2);
1509 
1510   pass_arg1(this, arg_1);
1511   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
1512   ret(0);
1513 
1514   bind(E);
1515 }
1516 
1517 void MacroAssembler::call_VM(Register oop_result,
1518                              Register last_java_sp,
1519                              address entry_point,
1520                              int number_of_arguments,
1521                              bool check_exceptions) {
1522   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
1523   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1524 }
1525 
1526 void MacroAssembler::call_VM(Register oop_result,
1527                              Register last_java_sp,
1528                              address entry_point,
1529                              Register arg_1,
1530                              bool check_exceptions) {
1531   pass_arg1(this, arg_1);
1532   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1533 }
1534 
1535 void MacroAssembler::call_VM(Register oop_result,
1536                              Register last_java_sp,
1537                              address entry_point,
1538                              Register arg_1,
1539                              Register arg_2,
1540                              bool check_exceptions) {
1541 
1542   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
1543   pass_arg2(this, arg_2);
1544   pass_arg1(this, arg_1);
1545   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1546 }
1547 
1548 void MacroAssembler::call_VM(Register oop_result,
1549                              Register last_java_sp,
1550                              address entry_point,
1551                              Register arg_1,
1552                              Register arg_2,
1553                              Register arg_3,
1554                              bool check_exceptions) {
1555   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
1556   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
1557   pass_arg3(this, arg_3);
1558   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
1559   pass_arg2(this, arg_2);
1560   pass_arg1(this, arg_1);
1561   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1562 }
1563 
1564 void MacroAssembler::super_call_VM(Register oop_result,
1565                                    Register last_java_sp,
1566                                    address entry_point,
1567                                    int number_of_arguments,
1568                                    bool check_exceptions) {
1569   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
1570   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1571 }
1572 
1573 void MacroAssembler::super_call_VM(Register oop_result,
1574                                    Register last_java_sp,
1575                                    address entry_point,
1576                                    Register arg_1,
1577                                    bool check_exceptions) {
1578   pass_arg1(this, arg_1);
1579   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1580 }
1581 
1582 void MacroAssembler::super_call_VM(Register oop_result,
1583                                    Register last_java_sp,
1584                                    address entry_point,
1585                                    Register arg_1,
1586                                    Register arg_2,
1587                                    bool check_exceptions) {
1588 
1589   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
1590   pass_arg2(this, arg_2);
1591   pass_arg1(this, arg_1);
1592   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1593 }
1594 
1595 void MacroAssembler::super_call_VM(Register oop_result,
1596                                    Register last_java_sp,
1597                                    address entry_point,
1598                                    Register arg_1,
1599                                    Register arg_2,
1600                                    Register arg_3,
1601                                    bool check_exceptions) {
1602   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
1603   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
1604   pass_arg3(this, arg_3);
1605   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
1606   pass_arg2(this, arg_2);
1607   pass_arg1(this, arg_1);
1608   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1609 }
1610 
1611 void MacroAssembler::call_VM_base(Register oop_result,
1612                                   Register java_thread,
1613                                   Register last_java_sp,
1614                                   address  entry_point,
1615                                   int      number_of_arguments,
1616                                   bool     check_exceptions) {
1617   // determine java_thread register
1618   if (!java_thread->is_valid()) {
1619 #ifdef _LP64
1620     java_thread = r15_thread;
1621 #else
1622     java_thread = rdi;
1623     get_thread(java_thread);
1624 #endif // LP64
1625   }
1626   // determine last_java_sp register
1627   if (!last_java_sp->is_valid()) {
1628     last_java_sp = rsp;
1629   }
1630   // debugging support
1631   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
1632   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
1633 #ifdef ASSERT
1634   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
1635   // r12 is the heapbase.
1636   LP64_ONLY(if ((UseCompressedOops || UseCompressedKlassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
1637 #endif // ASSERT
1638 
1639   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
1640   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
1641 
1642   // push java thread (becomes first argument of C function)
1643 
1644   NOT_LP64(push(java_thread); number_of_arguments++);
1645   LP64_ONLY(mov(c_rarg0, r15_thread));
1646 
1647   // set last Java frame before call
1648   assert(last_java_sp != rbp, "can't use ebp/rbp");
1649 
1650   // Only interpreter should have to set fp
1651   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
1652 
1653   // do the call, remove parameters
1654   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1655 
1656   // restore the thread (cannot use the pushed argument since arguments
1657   // may be overwritten by C code generated by an optimizing compiler);
1658   // however can use the register value directly if it is callee saved.
1659   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
1660     // rdi & rsi (also r15) are callee saved -> nothing to do
1661 #ifdef ASSERT
1662     guarantee(java_thread != rax, "change this code");
1663     push(rax);
1664     { Label L;
1665       get_thread(rax);
1666       cmpptr(java_thread, rax);
1667       jcc(Assembler::equal, L);
1668       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
1669       bind(L);
1670     }
1671     pop(rax);
1672 #endif
1673   } else {
1674     get_thread(java_thread);
1675   }
1676   // reset last Java frame
1677   // Only interpreter should have to clear fp
1678   reset_last_Java_frame(java_thread, true, false);
1679 
1680 #ifndef CC_INTERP
1681    // C++ interp handles this in the interpreter
1682   check_and_handle_popframe(java_thread);
1683   check_and_handle_earlyret(java_thread);
1684 #endif /* CC_INTERP */
1685 
1686   if (check_exceptions) {
1687     // check for pending exceptions (java_thread is set upon return)
1688     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
1689 #ifndef _LP64
1690     jump_cc(Assembler::notEqual,
1691             RuntimeAddress(StubRoutines::forward_exception_entry()));
1692 #else
1693     // This used to conditionally jump to forward_exception however it is
1694     // possible if we relocate that the branch will not reach. So we must jump
1695     // around so we can always reach
1696 
1697     Label ok;
1698     jcc(Assembler::equal, ok);
1699     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1700     bind(ok);
1701 #endif // LP64
1702   }
1703 
1704   // get oop result if there is one and reset the value in the thread
1705   if (oop_result->is_valid()) {
1706     get_vm_result(oop_result, java_thread);
1707   }
1708 }
1709 
1710 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1711 
1712   // Calculate the value for last_Java_sp
1713   // somewhat subtle. call_VM does an intermediate call
1714   // which places a return address on the stack just under the
1715   // stack pointer as the user finsihed with it. This allows
1716   // use to retrieve last_Java_pc from last_Java_sp[-1].
1717   // On 32bit we then have to push additional args on the stack to accomplish
1718   // the actual requested call. On 64bit call_VM only can use register args
1719   // so the only extra space is the return address that call_VM created.
1720   // This hopefully explains the calculations here.
1721 
1722 #ifdef _LP64
1723   // We've pushed one address, correct last_Java_sp
1724   lea(rax, Address(rsp, wordSize));
1725 #else
1726   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
1727 #endif // LP64
1728 
1729   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
1730 
1731 }
1732 
1733 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1734   call_VM_leaf_base(entry_point, number_of_arguments);
1735 }
1736 
1737 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1738   pass_arg0(this, arg_0);
1739   call_VM_leaf(entry_point, 1);
1740 }
1741 
1742 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1743 
1744   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
1745   pass_arg1(this, arg_1);
1746   pass_arg0(this, arg_0);
1747   call_VM_leaf(entry_point, 2);
1748 }
1749 
1750 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1751   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
1752   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
1753   pass_arg2(this, arg_2);
1754   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
1755   pass_arg1(this, arg_1);
1756   pass_arg0(this, arg_0);
1757   call_VM_leaf(entry_point, 3);
1758 }
1759 
1760 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1761   pass_arg0(this, arg_0);
1762   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1763 }
1764 
1765 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1766 
1767   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
1768   pass_arg1(this, arg_1);
1769   pass_arg0(this, arg_0);
1770   MacroAssembler::call_VM_leaf_base(entry_point, 2);
1771 }
1772 
1773 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1774   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
1775   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
1776   pass_arg2(this, arg_2);
1777   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
1778   pass_arg1(this, arg_1);
1779   pass_arg0(this, arg_0);
1780   MacroAssembler::call_VM_leaf_base(entry_point, 3);
1781 }
1782 
1783 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1784   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
1785   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
1786   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
1787   pass_arg3(this, arg_3);
1788   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
1789   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
1790   pass_arg2(this, arg_2);
1791   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
1792   pass_arg1(this, arg_1);
1793   pass_arg0(this, arg_0);
1794   MacroAssembler::call_VM_leaf_base(entry_point, 4);
1795 }
1796 
1797 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
1798   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
1799   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
1800   verify_oop(oop_result, "broken oop in call_VM_base");
1801 }
1802 
1803 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
1804   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
1805   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
1806 }
1807 
1808 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
1809 }
1810 
1811 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
1812 }
1813 
1814 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
1815   if (reachable(src1)) {
1816     cmpl(as_Address(src1), imm);
1817   } else {
1818     lea(rscratch1, src1);
1819     cmpl(Address(rscratch1, 0), imm);
1820   }
1821 }
1822 
1823 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
1824   assert(!src2.is_lval(), "use cmpptr");
1825   if (reachable(src2)) {
1826     cmpl(src1, as_Address(src2));
1827   } else {
1828     lea(rscratch1, src2);
1829     cmpl(src1, Address(rscratch1, 0));
1830   }
1831 }
1832 
1833 void MacroAssembler::cmp32(Register src1, int32_t imm) {
1834   Assembler::cmpl(src1, imm);
1835 }
1836 
1837 void MacroAssembler::cmp32(Register src1, Address src2) {
1838   Assembler::cmpl(src1, src2);
1839 }
1840 
1841 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
1842   ucomisd(opr1, opr2);
1843 
1844   Label L;
1845   if (unordered_is_less) {
1846     movl(dst, -1);
1847     jcc(Assembler::parity, L);
1848     jcc(Assembler::below , L);
1849     movl(dst, 0);
1850     jcc(Assembler::equal , L);
1851     increment(dst);
1852   } else { // unordered is greater
1853     movl(dst, 1);
1854     jcc(Assembler::parity, L);
1855     jcc(Assembler::above , L);
1856     movl(dst, 0);
1857     jcc(Assembler::equal , L);
1858     decrementl(dst);
1859   }
1860   bind(L);
1861 }
1862 
1863 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
1864   ucomiss(opr1, opr2);
1865 
1866   Label L;
1867   if (unordered_is_less) {
1868     movl(dst, -1);
1869     jcc(Assembler::parity, L);
1870     jcc(Assembler::below , L);
1871     movl(dst, 0);
1872     jcc(Assembler::equal , L);
1873     increment(dst);
1874   } else { // unordered is greater
1875     movl(dst, 1);
1876     jcc(Assembler::parity, L);
1877     jcc(Assembler::above , L);
1878     movl(dst, 0);
1879     jcc(Assembler::equal , L);
1880     decrementl(dst);
1881   }
1882   bind(L);
1883 }
1884 
1885 
1886 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
1887   if (reachable(src1)) {
1888     cmpb(as_Address(src1), imm);
1889   } else {
1890     lea(rscratch1, src1);
1891     cmpb(Address(rscratch1, 0), imm);
1892   }
1893 }
1894 
1895 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
1896 #ifdef _LP64
1897   if (src2.is_lval()) {
1898     movptr(rscratch1, src2);
1899     Assembler::cmpq(src1, rscratch1);
1900   } else if (reachable(src2)) {
1901     cmpq(src1, as_Address(src2));
1902   } else {
1903     lea(rscratch1, src2);
1904     Assembler::cmpq(src1, Address(rscratch1, 0));
1905   }
1906 #else
1907   if (src2.is_lval()) {
1908     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
1909   } else {
1910     cmpl(src1, as_Address(src2));
1911   }
1912 #endif // _LP64
1913 }
1914 
1915 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
1916   assert(src2.is_lval(), "not a mem-mem compare");
1917 #ifdef _LP64
1918   // moves src2's literal address
1919   movptr(rscratch1, src2);
1920   Assembler::cmpq(src1, rscratch1);
1921 #else
1922   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
1923 #endif // _LP64
1924 }
1925 
1926 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
1927   if (reachable(adr)) {
1928     if (os::is_MP())
1929       lock();
1930     cmpxchgptr(reg, as_Address(adr));
1931   } else {
1932     lea(rscratch1, adr);
1933     if (os::is_MP())
1934       lock();
1935     cmpxchgptr(reg, Address(rscratch1, 0));
1936   }
1937 }
1938 
1939 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
1940   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
1941 }
1942 
1943 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
1944   if (reachable(src)) {
1945     Assembler::comisd(dst, as_Address(src));
1946   } else {
1947     lea(rscratch1, src);
1948     Assembler::comisd(dst, Address(rscratch1, 0));
1949   }
1950 }
1951 
1952 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
1953   if (reachable(src)) {
1954     Assembler::comiss(dst, as_Address(src));
1955   } else {
1956     lea(rscratch1, src);
1957     Assembler::comiss(dst, Address(rscratch1, 0));
1958   }
1959 }
1960 
1961 
1962 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
1963   Condition negated_cond = negate_condition(cond);
1964   Label L;
1965   jcc(negated_cond, L);
1966   atomic_incl(counter_addr);
1967   bind(L);
1968 }
1969 
1970 int MacroAssembler::corrected_idivl(Register reg) {
1971   // Full implementation of Java idiv and irem; checks for
1972   // special case as described in JVM spec., p.243 & p.271.
1973   // The function returns the (pc) offset of the idivl
1974   // instruction - may be needed for implicit exceptions.
1975   //
1976   //         normal case                           special case
1977   //
1978   // input : rax,: dividend                         min_int
1979   //         reg: divisor   (may not be rax,/rdx)   -1
1980   //
1981   // output: rax,: quotient  (= rax, idiv reg)       min_int
1982   //         rdx: remainder (= rax, irem reg)       0
1983   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
1984   const int min_int = 0x80000000;
1985   Label normal_case, special_case;
1986 
1987   // check for special case
1988   cmpl(rax, min_int);
1989   jcc(Assembler::notEqual, normal_case);
1990   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
1991   cmpl(reg, -1);
1992   jcc(Assembler::equal, special_case);
1993 
1994   // handle normal case
1995   bind(normal_case);
1996   cdql();
1997   int idivl_offset = offset();
1998   idivl(reg);
1999 
2000   // normal and special case exit
2001   bind(special_case);
2002 
2003   return idivl_offset;
2004 }
2005 
2006 
2007 
2008 void MacroAssembler::decrementl(Register reg, int value) {
2009   if (value == min_jint) {subl(reg, value) ; return; }
2010   if (value <  0) { incrementl(reg, -value); return; }
2011   if (value == 0) {                        ; return; }
2012   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2013   /* else */      { subl(reg, value)       ; return; }
2014 }
2015 
2016 void MacroAssembler::decrementl(Address dst, int value) {
2017   if (value == min_jint) {subl(dst, value) ; return; }
2018   if (value <  0) { incrementl(dst, -value); return; }
2019   if (value == 0) {                        ; return; }
2020   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2021   /* else */      { subl(dst, value)       ; return; }
2022 }
2023 
2024 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2025   assert (shift_value > 0, "illegal shift value");
2026   Label _is_positive;
2027   testl (reg, reg);
2028   jcc (Assembler::positive, _is_positive);
2029   int offset = (1 << shift_value) - 1 ;
2030 
2031   if (offset == 1) {
2032     incrementl(reg);
2033   } else {
2034     addl(reg, offset);
2035   }
2036 
2037   bind (_is_positive);
2038   sarl(reg, shift_value);
2039 }
2040 
2041 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2042   if (reachable(src)) {
2043     Assembler::divsd(dst, as_Address(src));
2044   } else {
2045     lea(rscratch1, src);
2046     Assembler::divsd(dst, Address(rscratch1, 0));
2047   }
2048 }
2049 
2050 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2051   if (reachable(src)) {
2052     Assembler::divss(dst, as_Address(src));
2053   } else {
2054     lea(rscratch1, src);
2055     Assembler::divss(dst, Address(rscratch1, 0));
2056   }
2057 }
2058 
2059 // !defined(COMPILER2) is because of stupid core builds
2060 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
2061 void MacroAssembler::empty_FPU_stack() {
2062   if (VM_Version::supports_mmx()) {
2063     emms();
2064   } else {
2065     for (int i = 8; i-- > 0; ) ffree(i);
2066   }
2067 }
2068 #endif // !LP64 || C1 || !C2
2069 
2070 
2071 // Defines obj, preserves var_size_in_bytes
2072 void MacroAssembler::eden_allocate(Register obj,
2073                                    Register var_size_in_bytes,
2074                                    int con_size_in_bytes,
2075                                    Register t1,
2076                                    Label& slow_case) {
2077   assert(obj == rax, "obj must be in rax, for cmpxchg");
2078   assert_different_registers(obj, var_size_in_bytes, t1);
2079   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
2080     jmp(slow_case);
2081   } else {
2082     Register end = t1;
2083     Label retry;
2084     bind(retry);
2085     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2086     movptr(obj, heap_top);
2087     if (var_size_in_bytes == noreg) {
2088       lea(end, Address(obj, con_size_in_bytes));
2089     } else {
2090       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2091     }
2092     // if end < obj then we wrapped around => object too long => slow case
2093     cmpptr(end, obj);
2094     jcc(Assembler::below, slow_case);
2095     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2096     jcc(Assembler::above, slow_case);
2097     // Compare obj with the top addr, and if still equal, store the new top addr in
2098     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2099     // it otherwise. Use lock prefix for atomicity on MPs.
2100     locked_cmpxchgptr(end, heap_top);
2101     jcc(Assembler::notEqual, retry);
2102   }
2103 }
2104 
2105 void MacroAssembler::enter() {
2106   push(rbp);
2107   mov(rbp, rsp);
2108 }
2109 
2110 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2111 void MacroAssembler::fat_nop() {
2112   if (UseAddressNop) {
2113     addr_nop_5();
2114   } else {
2115     emit_byte(0x26); // es:
2116     emit_byte(0x2e); // cs:
2117     emit_byte(0x64); // fs:
2118     emit_byte(0x65); // gs:
2119     emit_byte(0x90);
2120   }
2121 }
2122 
2123 void MacroAssembler::fcmp(Register tmp) {
2124   fcmp(tmp, 1, true, true);
2125 }
2126 
2127 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2128   assert(!pop_right || pop_left, "usage error");
2129   if (VM_Version::supports_cmov()) {
2130     assert(tmp == noreg, "unneeded temp");
2131     if (pop_left) {
2132       fucomip(index);
2133     } else {
2134       fucomi(index);
2135     }
2136     if (pop_right) {
2137       fpop();
2138     }
2139   } else {
2140     assert(tmp != noreg, "need temp");
2141     if (pop_left) {
2142       if (pop_right) {
2143         fcompp();
2144       } else {
2145         fcomp(index);
2146       }
2147     } else {
2148       fcom(index);
2149     }
2150     // convert FPU condition into eflags condition via rax,
2151     save_rax(tmp);
2152     fwait(); fnstsw_ax();
2153     sahf();
2154     restore_rax(tmp);
2155   }
2156   // condition codes set as follows:
2157   //
2158   // CF (corresponds to C0) if x < y
2159   // PF (corresponds to C2) if unordered
2160   // ZF (corresponds to C3) if x = y
2161 }
2162 
2163 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2164   fcmp2int(dst, unordered_is_less, 1, true, true);
2165 }
2166 
2167 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2168   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
2169   Label L;
2170   if (unordered_is_less) {
2171     movl(dst, -1);
2172     jcc(Assembler::parity, L);
2173     jcc(Assembler::below , L);
2174     movl(dst, 0);
2175     jcc(Assembler::equal , L);
2176     increment(dst);
2177   } else { // unordered is greater
2178     movl(dst, 1);
2179     jcc(Assembler::parity, L);
2180     jcc(Assembler::above , L);
2181     movl(dst, 0);
2182     jcc(Assembler::equal , L);
2183     decrementl(dst);
2184   }
2185   bind(L);
2186 }
2187 
2188 void MacroAssembler::fld_d(AddressLiteral src) {
2189   fld_d(as_Address(src));
2190 }
2191 
2192 void MacroAssembler::fld_s(AddressLiteral src) {
2193   fld_s(as_Address(src));
2194 }
2195 
2196 void MacroAssembler::fld_x(AddressLiteral src) {
2197   Assembler::fld_x(as_Address(src));
2198 }
2199 
2200 void MacroAssembler::fldcw(AddressLiteral src) {
2201   Assembler::fldcw(as_Address(src));
2202 }
2203 
2204 void MacroAssembler::pow_exp_core_encoding() {
2205   // kills rax, rcx, rdx
2206   subptr(rsp,sizeof(jdouble));
2207   // computes 2^X. Stack: X ...
2208   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
2209   // keep it on the thread's stack to compute 2^int(X) later
2210   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
2211   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
2212   fld_s(0);                 // Stack: X X ...
2213   frndint();                // Stack: int(X) X ...
2214   fsuba(1);                 // Stack: int(X) X-int(X) ...
2215   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
2216   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
2217   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
2218   faddp(1);                 // Stack: 2^(X-int(X))
2219   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
2220   // shift int(X)+1023 to exponent position.
2221   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
2222   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
2223   // values so detect them and set result to NaN.
2224   movl(rax,Address(rsp,0));
2225   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
2226   addl(rax, 1023);
2227   movl(rdx,rax);
2228   shll(rax,20);
2229   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
2230   addl(rdx,1);
2231   // Check that 1 < int(X)+1023+1 < 2048
2232   // in 3 steps:
2233   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
2234   // 2- (int(X)+1023+1)&-2048 != 0
2235   // 3- (int(X)+1023+1)&-2048 != 1
2236   // Do 2- first because addl just updated the flags.
2237   cmov32(Assembler::equal,rax,rcx);
2238   cmpl(rdx,1);
2239   cmov32(Assembler::equal,rax,rcx);
2240   testl(rdx,rcx);
2241   cmov32(Assembler::notEqual,rax,rcx);
2242   movl(Address(rsp,4),rax);
2243   movl(Address(rsp,0),0);
2244   fmul_d(Address(rsp,0));   // Stack: 2^X ...
2245   addptr(rsp,sizeof(jdouble));
2246 }
2247 
2248 void MacroAssembler::increase_precision() {
2249   subptr(rsp, BytesPerWord);
2250   fnstcw(Address(rsp, 0));
2251   movl(rax, Address(rsp, 0));
2252   orl(rax, 0x300);
2253   push(rax);
2254   fldcw(Address(rsp, 0));
2255   pop(rax);
2256 }
2257 
2258 void MacroAssembler::restore_precision() {
2259   fldcw(Address(rsp, 0));
2260   addptr(rsp, BytesPerWord);
2261 }
2262 
2263 void MacroAssembler::fast_pow() {
2264   // computes X^Y = 2^(Y * log2(X))
2265   // if fast computation is not possible, result is NaN. Requires
2266   // fallback from user of this macro.
2267   // increase precision for intermediate steps of the computation
2268   increase_precision();
2269   fyl2x();                 // Stack: (Y*log2(X)) ...
2270   pow_exp_core_encoding(); // Stack: exp(X) ...
2271   restore_precision();
2272 }
2273 
2274 void MacroAssembler::fast_exp() {
2275   // computes exp(X) = 2^(X * log2(e))
2276   // if fast computation is not possible, result is NaN. Requires
2277   // fallback from user of this macro.
2278   // increase precision for intermediate steps of the computation
2279   increase_precision();
2280   fldl2e();                // Stack: log2(e) X ...
2281   fmulp(1);                // Stack: (X*log2(e)) ...
2282   pow_exp_core_encoding(); // Stack: exp(X) ...
2283   restore_precision();
2284 }
2285 
2286 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
2287   // kills rax, rcx, rdx
2288   // pow and exp needs 2 extra registers on the fpu stack.
2289   Label slow_case, done;
2290   Register tmp = noreg;
2291   if (!VM_Version::supports_cmov()) {
2292     // fcmp needs a temporary so preserve rdx,
2293     tmp = rdx;
2294   }
2295   Register tmp2 = rax;
2296   Register tmp3 = rcx;
2297 
2298   if (is_exp) {
2299     // Stack: X
2300     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
2301     fast_exp();                 // Stack: exp(X) X
2302     fcmp(tmp, 0, false, false); // Stack: exp(X) X
2303     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
2304     jcc(Assembler::parity, slow_case);
2305     // get rid of duplicate argument. Stack: exp(X)
2306     if (num_fpu_regs_in_use > 0) {
2307       fxch();
2308       fpop();
2309     } else {
2310       ffree(1);
2311     }
2312     jmp(done);
2313   } else {
2314     // Stack: X Y
2315     Label x_negative, y_odd;
2316 
2317     fldz();                     // Stack: 0 X Y
2318     fcmp(tmp, 1, true, false);  // Stack: X Y
2319     jcc(Assembler::above, x_negative);
2320 
2321     // X >= 0
2322 
2323     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
2324     fld_s(1);                   // Stack: X Y X Y
2325     fast_pow();                 // Stack: X^Y X Y
2326     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
2327     // X^Y not equal to itself: X^Y is NaN go to slow case.
2328     jcc(Assembler::parity, slow_case);
2329     // get rid of duplicate arguments. Stack: X^Y
2330     if (num_fpu_regs_in_use > 0) {
2331       fxch(); fpop();
2332       fxch(); fpop();
2333     } else {
2334       ffree(2);
2335       ffree(1);
2336     }
2337     jmp(done);
2338 
2339     // X <= 0
2340     bind(x_negative);
2341 
2342     fld_s(1);                   // Stack: Y X Y
2343     frndint();                  // Stack: int(Y) X Y
2344     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
2345     jcc(Assembler::notEqual, slow_case);
2346 
2347     subptr(rsp, 8);
2348 
2349     // For X^Y, when X < 0, Y has to be an integer and the final
2350     // result depends on whether it's odd or even. We just checked
2351     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
2352     // integer to test its parity. If int(Y) is huge and doesn't fit
2353     // in the 64 bit integer range, the integer indefinite value will
2354     // end up in the gp registers. Huge numbers are all even, the
2355     // integer indefinite number is even so it's fine.
2356 
2357 #ifdef ASSERT
2358     // Let's check we don't end up with an integer indefinite number
2359     // when not expected. First test for huge numbers: check whether
2360     // int(Y)+1 == int(Y) which is true for very large numbers and
2361     // those are all even. A 64 bit integer is guaranteed to not
2362     // overflow for numbers where y+1 != y (when precision is set to
2363     // double precision).
2364     Label y_not_huge;
2365 
2366     fld1();                     // Stack: 1 int(Y) X Y
2367     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
2368 
2369 #ifdef _LP64
2370     // trip to memory to force the precision down from double extended
2371     // precision
2372     fstp_d(Address(rsp, 0));
2373     fld_d(Address(rsp, 0));
2374 #endif
2375 
2376     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
2377 #endif
2378 
2379     // move int(Y) as 64 bit integer to thread's stack
2380     fistp_d(Address(rsp,0));    // Stack: X Y
2381 
2382 #ifdef ASSERT
2383     jcc(Assembler::notEqual, y_not_huge);
2384 
2385     // Y is huge so we know it's even. It may not fit in a 64 bit
2386     // integer and we don't want the debug code below to see the
2387     // integer indefinite value so overwrite int(Y) on the thread's
2388     // stack with 0.
2389     movl(Address(rsp, 0), 0);
2390     movl(Address(rsp, 4), 0);
2391 
2392     bind(y_not_huge);
2393 #endif
2394 
2395     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
2396     fld_s(1);                   // Stack: X Y X Y
2397     fabs();                     // Stack: abs(X) Y X Y
2398     fast_pow();                 // Stack: abs(X)^Y X Y
2399     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
2400     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
2401 
2402     pop(tmp2);
2403     NOT_LP64(pop(tmp3));
2404     jcc(Assembler::parity, slow_case);
2405 
2406 #ifdef ASSERT
2407     // Check that int(Y) is not integer indefinite value (int
2408     // overflow). Shouldn't happen because for values that would
2409     // overflow, 1+int(Y)==Y which was tested earlier.
2410 #ifndef _LP64
2411     {
2412       Label integer;
2413       testl(tmp2, tmp2);
2414       jcc(Assembler::notZero, integer);
2415       cmpl(tmp3, 0x80000000);
2416       jcc(Assembler::notZero, integer);
2417       STOP("integer indefinite value shouldn't be seen here");
2418       bind(integer);
2419     }
2420 #else
2421     {
2422       Label integer;
2423       mov(tmp3, tmp2); // preserve tmp2 for parity check below
2424       shlq(tmp3, 1);
2425       jcc(Assembler::carryClear, integer);
2426       jcc(Assembler::notZero, integer);
2427       STOP("integer indefinite value shouldn't be seen here");
2428       bind(integer);
2429     }
2430 #endif
2431 #endif
2432 
2433     // get rid of duplicate arguments. Stack: X^Y
2434     if (num_fpu_regs_in_use > 0) {
2435       fxch(); fpop();
2436       fxch(); fpop();
2437     } else {
2438       ffree(2);
2439       ffree(1);
2440     }
2441 
2442     testl(tmp2, 1);
2443     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
2444     // X <= 0, Y even: X^Y = -abs(X)^Y
2445 
2446     fchs();                     // Stack: -abs(X)^Y Y
2447     jmp(done);
2448   }
2449 
2450   // slow case: runtime call
2451   bind(slow_case);
2452 
2453   fpop();                       // pop incorrect result or int(Y)
2454 
2455   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
2456                       is_exp ? 1 : 2, num_fpu_regs_in_use);
2457 
2458   // Come here with result in F-TOS
2459   bind(done);
2460 }
2461 
2462 void MacroAssembler::fpop() {
2463   ffree();
2464   fincstp();
2465 }
2466 
2467 void MacroAssembler::fremr(Register tmp) {
2468   save_rax(tmp);
2469   { Label L;
2470     bind(L);
2471     fprem();
2472     fwait(); fnstsw_ax();
2473 #ifdef _LP64
2474     testl(rax, 0x400);
2475     jcc(Assembler::notEqual, L);
2476 #else
2477     sahf();
2478     jcc(Assembler::parity, L);
2479 #endif // _LP64
2480   }
2481   restore_rax(tmp);
2482   // Result is in ST0.
2483   // Note: fxch & fpop to get rid of ST1
2484   // (otherwise FPU stack could overflow eventually)
2485   fxch(1);
2486   fpop();
2487 }
2488 
2489 
2490 void MacroAssembler::incrementl(AddressLiteral dst) {
2491   if (reachable(dst)) {
2492     incrementl(as_Address(dst));
2493   } else {
2494     lea(rscratch1, dst);
2495     incrementl(Address(rscratch1, 0));
2496   }
2497 }
2498 
2499 void MacroAssembler::incrementl(ArrayAddress dst) {
2500   incrementl(as_Address(dst));
2501 }
2502 
2503 void MacroAssembler::incrementl(Register reg, int value) {
2504   if (value == min_jint) {addl(reg, value) ; return; }
2505   if (value <  0) { decrementl(reg, -value); return; }
2506   if (value == 0) {                        ; return; }
2507   if (value == 1 && UseIncDec) { incl(reg) ; return; }
2508   /* else */      { addl(reg, value)       ; return; }
2509 }
2510 
2511 void MacroAssembler::incrementl(Address dst, int value) {
2512   if (value == min_jint) {addl(dst, value) ; return; }
2513   if (value <  0) { decrementl(dst, -value); return; }
2514   if (value == 0) {                        ; return; }
2515   if (value == 1 && UseIncDec) { incl(dst) ; return; }
2516   /* else */      { addl(dst, value)       ; return; }
2517 }
2518 
2519 void MacroAssembler::jump(AddressLiteral dst) {
2520   if (reachable(dst)) {
2521     jmp_literal(dst.target(), dst.rspec());
2522   } else {
2523     lea(rscratch1, dst);
2524     jmp(rscratch1);
2525   }
2526 }
2527 
2528 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
2529   if (reachable(dst)) {
2530     InstructionMark im(this);
2531     relocate(dst.reloc());
2532     const int short_size = 2;
2533     const int long_size = 6;
2534     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
2535     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
2536       // 0111 tttn #8-bit disp
2537       emit_byte(0x70 | cc);
2538       emit_byte((offs - short_size) & 0xFF);
2539     } else {
2540       // 0000 1111 1000 tttn #32-bit disp
2541       emit_byte(0x0F);
2542       emit_byte(0x80 | cc);
2543       emit_long(offs - long_size);
2544     }
2545   } else {
2546 #ifdef ASSERT
2547     warning("reversing conditional branch");
2548 #endif /* ASSERT */
2549     Label skip;
2550     jccb(reverse[cc], skip);
2551     lea(rscratch1, dst);
2552     Assembler::jmp(rscratch1);
2553     bind(skip);
2554   }
2555 }
2556 
2557 void MacroAssembler::ldmxcsr(AddressLiteral src) {
2558   if (reachable(src)) {
2559     Assembler::ldmxcsr(as_Address(src));
2560   } else {
2561     lea(rscratch1, src);
2562     Assembler::ldmxcsr(Address(rscratch1, 0));
2563   }
2564 }
2565 
2566 int MacroAssembler::load_signed_byte(Register dst, Address src) {
2567   int off;
2568   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
2569     off = offset();
2570     movsbl(dst, src); // movsxb
2571   } else {
2572     off = load_unsigned_byte(dst, src);
2573     shll(dst, 24);
2574     sarl(dst, 24);
2575   }
2576   return off;
2577 }
2578 
2579 // Note: load_signed_short used to be called load_signed_word.
2580 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
2581 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
2582 // The term "word" in HotSpot means a 32- or 64-bit machine word.
2583 int MacroAssembler::load_signed_short(Register dst, Address src) {
2584   int off;
2585   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
2586     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
2587     // version but this is what 64bit has always done. This seems to imply
2588     // that users are only using 32bits worth.
2589     off = offset();
2590     movswl(dst, src); // movsxw
2591   } else {
2592     off = load_unsigned_short(dst, src);
2593     shll(dst, 16);
2594     sarl(dst, 16);
2595   }
2596   return off;
2597 }
2598 
2599 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
2600   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
2601   // and "3.9 Partial Register Penalties", p. 22).
2602   int off;
2603   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
2604     off = offset();
2605     movzbl(dst, src); // movzxb
2606   } else {
2607     xorl(dst, dst);
2608     off = offset();
2609     movb(dst, src);
2610   }
2611   return off;
2612 }
2613 
2614 // Note: load_unsigned_short used to be called load_unsigned_word.
2615 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
2616   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
2617   // and "3.9 Partial Register Penalties", p. 22).
2618   int off;
2619   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
2620     off = offset();
2621     movzwl(dst, src); // movzxw
2622   } else {
2623     xorl(dst, dst);
2624     off = offset();
2625     movw(dst, src);
2626   }
2627   return off;
2628 }
2629 
2630 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
2631   switch (size_in_bytes) {
2632 #ifndef _LP64
2633   case  8:
2634     assert(dst2 != noreg, "second dest register required");
2635     movl(dst,  src);
2636     movl(dst2, src.plus_disp(BytesPerInt));
2637     break;
2638 #else
2639   case  8:  movq(dst, src); break;
2640 #endif
2641   case  4:  movl(dst, src); break;
2642   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
2643   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
2644   default:  ShouldNotReachHere();
2645   }
2646 }
2647 
2648 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
2649   switch (size_in_bytes) {
2650 #ifndef _LP64
2651   case  8:
2652     assert(src2 != noreg, "second source register required");
2653     movl(dst,                        src);
2654     movl(dst.plus_disp(BytesPerInt), src2);
2655     break;
2656 #else
2657   case  8:  movq(dst, src); break;
2658 #endif
2659   case  4:  movl(dst, src); break;
2660   case  2:  movw(dst, src); break;
2661   case  1:  movb(dst, src); break;
2662   default:  ShouldNotReachHere();
2663   }
2664 }
2665 
2666 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
2667   if (reachable(dst)) {
2668     movl(as_Address(dst), src);
2669   } else {
2670     lea(rscratch1, dst);
2671     movl(Address(rscratch1, 0), src);
2672   }
2673 }
2674 
2675 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
2676   if (reachable(src)) {
2677     movl(dst, as_Address(src));
2678   } else {
2679     lea(rscratch1, src);
2680     movl(dst, Address(rscratch1, 0));
2681   }
2682 }
2683 
2684 // C++ bool manipulation
2685 
2686 void MacroAssembler::movbool(Register dst, Address src) {
2687   if(sizeof(bool) == 1)
2688     movb(dst, src);
2689   else if(sizeof(bool) == 2)
2690     movw(dst, src);
2691   else if(sizeof(bool) == 4)
2692     movl(dst, src);
2693   else
2694     // unsupported
2695     ShouldNotReachHere();
2696 }
2697 
2698 void MacroAssembler::movbool(Address dst, bool boolconst) {
2699   if(sizeof(bool) == 1)
2700     movb(dst, (int) boolconst);
2701   else if(sizeof(bool) == 2)
2702     movw(dst, (int) boolconst);
2703   else if(sizeof(bool) == 4)
2704     movl(dst, (int) boolconst);
2705   else
2706     // unsupported
2707     ShouldNotReachHere();
2708 }
2709 
2710 void MacroAssembler::movbool(Address dst, Register src) {
2711   if(sizeof(bool) == 1)
2712     movb(dst, src);
2713   else if(sizeof(bool) == 2)
2714     movw(dst, src);
2715   else if(sizeof(bool) == 4)
2716     movl(dst, src);
2717   else
2718     // unsupported
2719     ShouldNotReachHere();
2720 }
2721 
2722 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
2723   movb(as_Address(dst), src);
2724 }
2725 
2726 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
2727   if (reachable(src)) {
2728     movdl(dst, as_Address(src));
2729   } else {
2730     lea(rscratch1, src);
2731     movdl(dst, Address(rscratch1, 0));
2732   }
2733 }
2734 
2735 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
2736   if (reachable(src)) {
2737     movq(dst, as_Address(src));
2738   } else {
2739     lea(rscratch1, src);
2740     movq(dst, Address(rscratch1, 0));
2741   }
2742 }
2743 
2744 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
2745   if (reachable(src)) {
2746     if (UseXmmLoadAndClearUpper) {
2747       movsd (dst, as_Address(src));
2748     } else {
2749       movlpd(dst, as_Address(src));
2750     }
2751   } else {
2752     lea(rscratch1, src);
2753     if (UseXmmLoadAndClearUpper) {
2754       movsd (dst, Address(rscratch1, 0));
2755     } else {
2756       movlpd(dst, Address(rscratch1, 0));
2757     }
2758   }
2759 }
2760 
2761 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
2762   if (reachable(src)) {
2763     movss(dst, as_Address(src));
2764   } else {
2765     lea(rscratch1, src);
2766     movss(dst, Address(rscratch1, 0));
2767   }
2768 }
2769 
2770 void MacroAssembler::movptr(Register dst, Register src) {
2771   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2772 }
2773 
2774 void MacroAssembler::movptr(Register dst, Address src) {
2775   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2776 }
2777 
2778 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
2779 void MacroAssembler::movptr(Register dst, intptr_t src) {
2780   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
2781 }
2782 
2783 void MacroAssembler::movptr(Address dst, Register src) {
2784   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2785 }
2786 
2787 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
2788   if (reachable(src)) {
2789     Assembler::movdqu(dst, as_Address(src));
2790   } else {
2791     lea(rscratch1, src);
2792     Assembler::movdqu(dst, Address(rscratch1, 0));
2793   }
2794 }
2795 
2796 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
2797   if (reachable(src)) {
2798     Assembler::movsd(dst, as_Address(src));
2799   } else {
2800     lea(rscratch1, src);
2801     Assembler::movsd(dst, Address(rscratch1, 0));
2802   }
2803 }
2804 
2805 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
2806   if (reachable(src)) {
2807     Assembler::movss(dst, as_Address(src));
2808   } else {
2809     lea(rscratch1, src);
2810     Assembler::movss(dst, Address(rscratch1, 0));
2811   }
2812 }
2813 
2814 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
2815   if (reachable(src)) {
2816     Assembler::mulsd(dst, as_Address(src));
2817   } else {
2818     lea(rscratch1, src);
2819     Assembler::mulsd(dst, Address(rscratch1, 0));
2820   }
2821 }
2822 
2823 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
2824   if (reachable(src)) {
2825     Assembler::mulss(dst, as_Address(src));
2826   } else {
2827     lea(rscratch1, src);
2828     Assembler::mulss(dst, Address(rscratch1, 0));
2829   }
2830 }
2831 
2832 void MacroAssembler::null_check(Register reg, int offset) {
2833   if (needs_explicit_null_check(offset)) {
2834     // provoke OS NULL exception if reg = NULL by
2835     // accessing M[reg] w/o changing any (non-CC) registers
2836     // NOTE: cmpl is plenty here to provoke a segv
2837     cmpptr(rax, Address(reg, 0));
2838     // Note: should probably use testl(rax, Address(reg, 0));
2839     //       may be shorter code (however, this version of
2840     //       testl needs to be implemented first)
2841   } else {
2842     // nothing to do, (later) access of M[reg + offset]
2843     // will provoke OS NULL exception if reg = NULL
2844   }
2845 }
2846 
2847 void MacroAssembler::os_breakpoint() {
2848   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
2849   // (e.g., MSVC can't call ps() otherwise)
2850   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
2851 }
2852 
2853 void MacroAssembler::pop_CPU_state() {
2854   pop_FPU_state();
2855   pop_IU_state();
2856 }
2857 
2858 void MacroAssembler::pop_FPU_state() {
2859   NOT_LP64(frstor(Address(rsp, 0));)
2860   LP64_ONLY(fxrstor(Address(rsp, 0));)
2861   addptr(rsp, FPUStateSizeInWords * wordSize);
2862 }
2863 
2864 void MacroAssembler::pop_IU_state() {
2865   popa();
2866   LP64_ONLY(addq(rsp, 8));
2867   popf();
2868 }
2869 
2870 // Save Integer and Float state
2871 // Warning: Stack must be 16 byte aligned (64bit)
2872 void MacroAssembler::push_CPU_state() {
2873   push_IU_state();
2874   push_FPU_state();
2875 }
2876 
2877 void MacroAssembler::push_FPU_state() {
2878   subptr(rsp, FPUStateSizeInWords * wordSize);
2879 #ifndef _LP64
2880   fnsave(Address(rsp, 0));
2881   fwait();
2882 #else
2883   fxsave(Address(rsp, 0));
2884 #endif // LP64
2885 }
2886 
2887 void MacroAssembler::push_IU_state() {
2888   // Push flags first because pusha kills them
2889   pushf();
2890   // Make sure rsp stays 16-byte aligned
2891   LP64_ONLY(subq(rsp, 8));
2892   pusha();
2893 }
2894 
2895 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
2896   // determine java_thread register
2897   if (!java_thread->is_valid()) {
2898     java_thread = rdi;
2899     get_thread(java_thread);
2900   }
2901   // we must set sp to zero to clear frame
2902   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
2903   if (clear_fp) {
2904     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
2905   }
2906 
2907   if (clear_pc)
2908     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
2909 
2910 }
2911 
2912 void MacroAssembler::restore_rax(Register tmp) {
2913   if (tmp == noreg) pop(rax);
2914   else if (tmp != rax) mov(rax, tmp);
2915 }
2916 
2917 void MacroAssembler::round_to(Register reg, int modulus) {
2918   addptr(reg, modulus - 1);
2919   andptr(reg, -modulus);
2920 }
2921 
2922 void MacroAssembler::save_rax(Register tmp) {
2923   if (tmp == noreg) push(rax);
2924   else if (tmp != rax) mov(tmp, rax);
2925 }
2926 
2927 // Write serialization page so VM thread can do a pseudo remote membar.
2928 // We use the current thread pointer to calculate a thread specific
2929 // offset to write to within the page. This minimizes bus traffic
2930 // due to cache line collision.
2931 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
2932   movl(tmp, thread);
2933   shrl(tmp, os::get_serialize_page_shift_count());
2934   andl(tmp, (os::vm_page_size() - sizeof(int)));
2935 
2936   Address index(noreg, tmp, Address::times_1);
2937   ExternalAddress page(os::get_memory_serialize_page());
2938 
2939   // Size of store must match masking code above
2940   movl(as_Address(ArrayAddress(page, index)), tmp);
2941 }
2942 
2943 // Calls to C land
2944 //
2945 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
2946 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
2947 // has to be reset to 0. This is required to allow proper stack traversal.
2948 void MacroAssembler::set_last_Java_frame(Register java_thread,
2949                                          Register last_java_sp,
2950                                          Register last_java_fp,
2951                                          address  last_java_pc) {
2952   // determine java_thread register
2953   if (!java_thread->is_valid()) {
2954     java_thread = rdi;
2955     get_thread(java_thread);
2956   }
2957   // determine last_java_sp register
2958   if (!last_java_sp->is_valid()) {
2959     last_java_sp = rsp;
2960   }
2961 
2962   // last_java_fp is optional
2963 
2964   if (last_java_fp->is_valid()) {
2965     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
2966   }
2967 
2968   // last_java_pc is optional
2969 
2970   if (last_java_pc != NULL) {
2971     lea(Address(java_thread,
2972                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
2973         InternalAddress(last_java_pc));
2974 
2975   }
2976   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
2977 }
2978 
2979 void MacroAssembler::shlptr(Register dst, int imm8) {
2980   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
2981 }
2982 
2983 void MacroAssembler::shrptr(Register dst, int imm8) {
2984   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
2985 }
2986 
2987 void MacroAssembler::sign_extend_byte(Register reg) {
2988   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
2989     movsbl(reg, reg); // movsxb
2990   } else {
2991     shll(reg, 24);
2992     sarl(reg, 24);
2993   }
2994 }
2995 
2996 void MacroAssembler::sign_extend_short(Register reg) {
2997   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
2998     movswl(reg, reg); // movsxw
2999   } else {
3000     shll(reg, 16);
3001     sarl(reg, 16);
3002   }
3003 }
3004 
3005 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3006   assert(reachable(src), "Address should be reachable");
3007   testl(dst, as_Address(src));
3008 }
3009 
3010 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3011   if (reachable(src)) {
3012     Assembler::sqrtsd(dst, as_Address(src));
3013   } else {
3014     lea(rscratch1, src);
3015     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3016   }
3017 }
3018 
3019 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3020   if (reachable(src)) {
3021     Assembler::sqrtss(dst, as_Address(src));
3022   } else {
3023     lea(rscratch1, src);
3024     Assembler::sqrtss(dst, Address(rscratch1, 0));
3025   }
3026 }
3027 
3028 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3029   if (reachable(src)) {
3030     Assembler::subsd(dst, as_Address(src));
3031   } else {
3032     lea(rscratch1, src);
3033     Assembler::subsd(dst, Address(rscratch1, 0));
3034   }
3035 }
3036 
3037 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3038   if (reachable(src)) {
3039     Assembler::subss(dst, as_Address(src));
3040   } else {
3041     lea(rscratch1, src);
3042     Assembler::subss(dst, Address(rscratch1, 0));
3043   }
3044 }
3045 
3046 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3047   if (reachable(src)) {
3048     Assembler::ucomisd(dst, as_Address(src));
3049   } else {
3050     lea(rscratch1, src);
3051     Assembler::ucomisd(dst, Address(rscratch1, 0));
3052   }
3053 }
3054 
3055 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3056   if (reachable(src)) {
3057     Assembler::ucomiss(dst, as_Address(src));
3058   } else {
3059     lea(rscratch1, src);
3060     Assembler::ucomiss(dst, Address(rscratch1, 0));
3061   }
3062 }
3063 
3064 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3065   // Used in sign-bit flipping with aligned address.
3066   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3067   if (reachable(src)) {
3068     Assembler::xorpd(dst, as_Address(src));
3069   } else {
3070     lea(rscratch1, src);
3071     Assembler::xorpd(dst, Address(rscratch1, 0));
3072   }
3073 }
3074 
3075 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3076   // Used in sign-bit flipping with aligned address.
3077   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3078   if (reachable(src)) {
3079     Assembler::xorps(dst, as_Address(src));
3080   } else {
3081     lea(rscratch1, src);
3082     Assembler::xorps(dst, Address(rscratch1, 0));
3083   }
3084 }
3085 
3086 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3087   // Used in sign-bit flipping with aligned address.
3088   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3089   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3090   if (reachable(src)) {
3091     Assembler::pshufb(dst, as_Address(src), aligned_adr);
3092   } else {
3093     lea(rscratch1, src);
3094     Assembler::pshufb(dst, Address(rscratch1, 0), aligned_adr);
3095   }
3096 }
3097 
3098 // AVX 3-operands instructions
3099 
3100 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3101   if (reachable(src)) {
3102     vaddsd(dst, nds, as_Address(src));
3103   } else {
3104     lea(rscratch1, src);
3105     vaddsd(dst, nds, Address(rscratch1, 0));
3106   }
3107 }
3108 
3109 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3110   if (reachable(src)) {
3111     vaddss(dst, nds, as_Address(src));
3112   } else {
3113     lea(rscratch1, src);
3114     vaddss(dst, nds, Address(rscratch1, 0));
3115   }
3116 }
3117 
3118 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
3119   if (reachable(src)) {
3120     vandpd(dst, nds, as_Address(src), vector256);
3121   } else {
3122     lea(rscratch1, src);
3123     vandpd(dst, nds, Address(rscratch1, 0), vector256);
3124   }
3125 }
3126 
3127 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
3128   if (reachable(src)) {
3129     vandps(dst, nds, as_Address(src), vector256);
3130   } else {
3131     lea(rscratch1, src);
3132     vandps(dst, nds, Address(rscratch1, 0), vector256);
3133   }
3134 }
3135 
3136 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3137   if (reachable(src)) {
3138     vdivsd(dst, nds, as_Address(src));
3139   } else {
3140     lea(rscratch1, src);
3141     vdivsd(dst, nds, Address(rscratch1, 0));
3142   }
3143 }
3144 
3145 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3146   if (reachable(src)) {
3147     vdivss(dst, nds, as_Address(src));
3148   } else {
3149     lea(rscratch1, src);
3150     vdivss(dst, nds, Address(rscratch1, 0));
3151   }
3152 }
3153 
3154 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3155   if (reachable(src)) {
3156     vmulsd(dst, nds, as_Address(src));
3157   } else {
3158     lea(rscratch1, src);
3159     vmulsd(dst, nds, Address(rscratch1, 0));
3160   }
3161 }
3162 
3163 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3164   if (reachable(src)) {
3165     vmulss(dst, nds, as_Address(src));
3166   } else {
3167     lea(rscratch1, src);
3168     vmulss(dst, nds, Address(rscratch1, 0));
3169   }
3170 }
3171 
3172 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3173   if (reachable(src)) {
3174     vsubsd(dst, nds, as_Address(src));
3175   } else {
3176     lea(rscratch1, src);
3177     vsubsd(dst, nds, Address(rscratch1, 0));
3178   }
3179 }
3180 
3181 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3182   if (reachable(src)) {
3183     vsubss(dst, nds, as_Address(src));
3184   } else {
3185     lea(rscratch1, src);
3186     vsubss(dst, nds, Address(rscratch1, 0));
3187   }
3188 }
3189 
3190 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
3191   if (reachable(src)) {
3192     vxorpd(dst, nds, as_Address(src), vector256);
3193   } else {
3194     lea(rscratch1, src);
3195     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
3196   }
3197 }
3198 
3199 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
3200   if (reachable(src)) {
3201     vxorps(dst, nds, as_Address(src), vector256);
3202   } else {
3203     lea(rscratch1, src);
3204     vxorps(dst, nds, Address(rscratch1, 0), vector256);
3205   }
3206 }
3207 
3208 
3209 //////////////////////////////////////////////////////////////////////////////////
3210 #ifndef SERIALGC
3211 
3212 void MacroAssembler::g1_write_barrier_pre(Register obj,
3213                                           Register pre_val,
3214                                           Register thread,
3215                                           Register tmp,
3216                                           bool tosca_live,
3217                                           bool expand_call) {
3218 
3219   // If expand_call is true then we expand the call_VM_leaf macro
3220   // directly to skip generating the check by
3221   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
3222 
3223 #ifdef _LP64
3224   assert(thread == r15_thread, "must be");
3225 #endif // _LP64
3226 
3227   Label done;
3228   Label runtime;
3229 
3230   assert(pre_val != noreg, "check this code");
3231 
3232   if (obj != noreg) {
3233     assert_different_registers(obj, pre_val, tmp);
3234     assert(pre_val != rax, "check this code");
3235   }
3236 
3237   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3238                                        PtrQueue::byte_offset_of_active()));
3239   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3240                                        PtrQueue::byte_offset_of_index()));
3241   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3242                                        PtrQueue::byte_offset_of_buf()));
3243 
3244 
3245   // Is marking active?
3246   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
3247     cmpl(in_progress, 0);
3248   } else {
3249     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
3250     cmpb(in_progress, 0);
3251   }
3252   jcc(Assembler::equal, done);
3253 
3254   // Do we need to load the previous value?
3255   if (obj != noreg) {
3256     load_heap_oop(pre_val, Address(obj, 0));
3257   }
3258 
3259   // Is the previous value null?
3260   cmpptr(pre_val, (int32_t) NULL_WORD);
3261   jcc(Assembler::equal, done);
3262 
3263   // Can we store original value in the thread's buffer?
3264   // Is index == 0?
3265   // (The index field is typed as size_t.)
3266 
3267   movptr(tmp, index);                   // tmp := *index_adr
3268   cmpptr(tmp, 0);                       // tmp == 0?
3269   jcc(Assembler::equal, runtime);       // If yes, goto runtime
3270 
3271   subptr(tmp, wordSize);                // tmp := tmp - wordSize
3272   movptr(index, tmp);                   // *index_adr := tmp
3273   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
3274 
3275   // Record the previous value
3276   movptr(Address(tmp, 0), pre_val);
3277   jmp(done);
3278 
3279   bind(runtime);
3280   // save the live input values
3281   if(tosca_live) push(rax);
3282 
3283   if (obj != noreg && obj != rax)
3284     push(obj);
3285 
3286   if (pre_val != rax)
3287     push(pre_val);
3288 
3289   // Calling the runtime using the regular call_VM_leaf mechanism generates
3290   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
3291   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
3292   //
3293   // If we care generating the pre-barrier without a frame (e.g. in the
3294   // intrinsified Reference.get() routine) then ebp might be pointing to
3295   // the caller frame and so this check will most likely fail at runtime.
3296   //
3297   // Expanding the call directly bypasses the generation of the check.
3298   // So when we do not have have a full interpreter frame on the stack
3299   // expand_call should be passed true.
3300 
3301   NOT_LP64( push(thread); )
3302 
3303   if (expand_call) {
3304     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
3305     pass_arg1(this, thread);
3306     pass_arg0(this, pre_val);
3307     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
3308   } else {
3309     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
3310   }
3311 
3312   NOT_LP64( pop(thread); )
3313 
3314   // save the live input values
3315   if (pre_val != rax)
3316     pop(pre_val);
3317 
3318   if (obj != noreg && obj != rax)
3319     pop(obj);
3320 
3321   if(tosca_live) pop(rax);
3322 
3323   bind(done);
3324 }
3325 
3326 void MacroAssembler::g1_write_barrier_post(Register store_addr,
3327                                            Register new_val,
3328                                            Register thread,
3329                                            Register tmp,
3330                                            Register tmp2) {
3331 #ifdef _LP64
3332   assert(thread == r15_thread, "must be");
3333 #endif // _LP64
3334 
3335   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3336                                        PtrQueue::byte_offset_of_index()));
3337   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3338                                        PtrQueue::byte_offset_of_buf()));
3339 
3340   BarrierSet* bs = Universe::heap()->barrier_set();
3341   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
3342   Label done;
3343   Label runtime;
3344 
3345   // Does store cross heap regions?
3346 
3347   movptr(tmp, store_addr);
3348   xorptr(tmp, new_val);
3349   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
3350   jcc(Assembler::equal, done);
3351 
3352   // crosses regions, storing NULL?
3353 
3354   cmpptr(new_val, (int32_t) NULL_WORD);
3355   jcc(Assembler::equal, done);
3356 
3357   // storing region crossing non-NULL, is card already dirty?
3358 
3359   ExternalAddress cardtable((address) ct->byte_map_base);
3360   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3361 #ifdef _LP64
3362   const Register card_addr = tmp;
3363 
3364   movq(card_addr, store_addr);
3365   shrq(card_addr, CardTableModRefBS::card_shift);
3366 
3367   lea(tmp2, cardtable);
3368 
3369   // get the address of the card
3370   addq(card_addr, tmp2);
3371 #else
3372   const Register card_index = tmp;
3373 
3374   movl(card_index, store_addr);
3375   shrl(card_index, CardTableModRefBS::card_shift);
3376 
3377   Address index(noreg, card_index, Address::times_1);
3378   const Register card_addr = tmp;
3379   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
3380 #endif
3381   cmpb(Address(card_addr, 0), 0);
3382   jcc(Assembler::equal, done);
3383 
3384   // storing a region crossing, non-NULL oop, card is clean.
3385   // dirty card and log.
3386 
3387   movb(Address(card_addr, 0), 0);
3388 
3389   cmpl(queue_index, 0);
3390   jcc(Assembler::equal, runtime);
3391   subl(queue_index, wordSize);
3392   movptr(tmp2, buffer);
3393 #ifdef _LP64
3394   movslq(rscratch1, queue_index);
3395   addq(tmp2, rscratch1);
3396   movq(Address(tmp2, 0), card_addr);
3397 #else
3398   addl(tmp2, queue_index);
3399   movl(Address(tmp2, 0), card_index);
3400 #endif
3401   jmp(done);
3402 
3403   bind(runtime);
3404   // save the live input values
3405   push(store_addr);
3406   push(new_val);
3407 #ifdef _LP64
3408   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
3409 #else
3410   push(thread);
3411   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
3412   pop(thread);
3413 #endif
3414   pop(new_val);
3415   pop(store_addr);
3416 
3417   bind(done);
3418 }
3419 
3420 #endif // SERIALGC
3421 //////////////////////////////////////////////////////////////////////////////////
3422 
3423 
3424 void MacroAssembler::store_check(Register obj) {
3425   // Does a store check for the oop in register obj. The content of
3426   // register obj is destroyed afterwards.
3427   store_check_part_1(obj);
3428   store_check_part_2(obj);
3429 }
3430 
3431 void MacroAssembler::store_check(Register obj, Address dst) {
3432   store_check(obj);
3433 }
3434 
3435 
3436 // split the store check operation so that other instructions can be scheduled inbetween
3437 void MacroAssembler::store_check_part_1(Register obj) {
3438   BarrierSet* bs = Universe::heap()->barrier_set();
3439   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
3440   shrptr(obj, CardTableModRefBS::card_shift);
3441 }
3442 
3443 void MacroAssembler::store_check_part_2(Register obj) {
3444   BarrierSet* bs = Universe::heap()->barrier_set();
3445   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
3446   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
3447   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3448 
3449   // The calculation for byte_map_base is as follows:
3450   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
3451   // So this essentially converts an address to a displacement and
3452   // it will never need to be relocated. On 64bit however the value may be too
3453   // large for a 32bit displacement
3454 
3455   intptr_t disp = (intptr_t) ct->byte_map_base;
3456   if (is_simm32(disp)) {
3457     Address cardtable(noreg, obj, Address::times_1, disp);
3458     movb(cardtable, 0);
3459   } else {
3460     // By doing it as an ExternalAddress disp could be converted to a rip-relative
3461     // displacement and done in a single instruction given favorable mapping and
3462     // a smarter version of as_Address. Worst case it is two instructions which
3463     // is no worse off then loading disp into a register and doing as a simple
3464     // Address() as above.
3465     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
3466     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
3467     // in some cases we'll get a single instruction version.
3468 
3469     ExternalAddress cardtable((address)disp);
3470     Address index(noreg, obj, Address::times_1);
3471     movb(as_Address(ArrayAddress(cardtable, index)), 0);
3472   }
3473 }
3474 
3475 void MacroAssembler::subptr(Register dst, int32_t imm32) {
3476   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
3477 }
3478 
3479 // Force generation of a 4 byte immediate value even if it fits into 8bit
3480 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
3481   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
3482 }
3483 
3484 void MacroAssembler::subptr(Register dst, Register src) {
3485   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
3486 }
3487 
3488 // C++ bool manipulation
3489 void MacroAssembler::testbool(Register dst) {
3490   if(sizeof(bool) == 1)
3491     testb(dst, 0xff);
3492   else if(sizeof(bool) == 2) {
3493     // testw implementation needed for two byte bools
3494     ShouldNotReachHere();
3495   } else if(sizeof(bool) == 4)
3496     testl(dst, dst);
3497   else
3498     // unsupported
3499     ShouldNotReachHere();
3500 }
3501 
3502 void MacroAssembler::testptr(Register dst, Register src) {
3503   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
3504 }
3505 
3506 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
3507 void MacroAssembler::tlab_allocate(Register obj,
3508                                    Register var_size_in_bytes,
3509                                    int con_size_in_bytes,
3510                                    Register t1,
3511                                    Register t2,
3512                                    Label& slow_case) {
3513   assert_different_registers(obj, t1, t2);
3514   assert_different_registers(obj, var_size_in_bytes, t1);
3515   Register end = t2;
3516   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
3517 
3518   verify_tlab();
3519 
3520   NOT_LP64(get_thread(thread));
3521 
3522   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
3523   if (var_size_in_bytes == noreg) {
3524     lea(end, Address(obj, con_size_in_bytes));
3525   } else {
3526     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
3527   }
3528   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
3529   jcc(Assembler::above, slow_case);
3530 
3531   // update the tlab top pointer
3532   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
3533 
3534   // recover var_size_in_bytes if necessary
3535   if (var_size_in_bytes == end) {
3536     subptr(var_size_in_bytes, obj);
3537   }
3538   verify_tlab();
3539 }
3540 
3541 // Preserves rbx, and rdx.
3542 Register MacroAssembler::tlab_refill(Label& retry,
3543                                      Label& try_eden,
3544                                      Label& slow_case) {
3545   Register top = rax;
3546   Register t1  = rcx;
3547   Register t2  = rsi;
3548   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
3549   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
3550   Label do_refill, discard_tlab;
3551 
3552   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3553     // No allocation in the shared eden.
3554     jmp(slow_case);
3555   }
3556 
3557   NOT_LP64(get_thread(thread_reg));
3558 
3559   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
3560   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
3561 
3562   // calculate amount of free space
3563   subptr(t1, top);
3564   shrptr(t1, LogHeapWordSize);
3565 
3566   // Retain tlab and allocate object in shared space if
3567   // the amount free in the tlab is too large to discard.
3568   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3569   jcc(Assembler::lessEqual, discard_tlab);
3570 
3571   // Retain
3572   // %%% yuck as movptr...
3573   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
3574   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
3575   if (TLABStats) {
3576     // increment number of slow_allocations
3577     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
3578   }
3579   jmp(try_eden);
3580 
3581   bind(discard_tlab);
3582   if (TLABStats) {
3583     // increment number of refills
3584     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
3585     // accumulate wastage -- t1 is amount free in tlab
3586     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
3587   }
3588 
3589   // if tlab is currently allocated (top or end != null) then
3590   // fill [top, end + alignment_reserve) with array object
3591   testptr(top, top);
3592   jcc(Assembler::zero, do_refill);
3593 
3594   // set up the mark word
3595   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
3596   // set the length to the remaining space
3597   subptr(t1, typeArrayOopDesc::header_size(T_INT));
3598   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
3599   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
3600   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
3601   // set klass to intArrayKlass
3602   // dubious reloc why not an oop reloc?
3603   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
3604   // store klass last.  concurrent gcs assumes klass length is valid if
3605   // klass field is not null.
3606   store_klass(top, t1);
3607 
3608   movptr(t1, top);
3609   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
3610   incr_allocated_bytes(thread_reg, t1, 0);
3611 
3612   // refill the tlab with an eden allocation
3613   bind(do_refill);
3614   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
3615   shlptr(t1, LogHeapWordSize);
3616   // allocate new tlab, address returned in top
3617   eden_allocate(top, t1, 0, t2, slow_case);
3618 
3619   // Check that t1 was preserved in eden_allocate.
3620 #ifdef ASSERT
3621   if (UseTLAB) {
3622     Label ok;
3623     Register tsize = rsi;
3624     assert_different_registers(tsize, thread_reg, t1);
3625     push(tsize);
3626     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
3627     shlptr(tsize, LogHeapWordSize);
3628     cmpptr(t1, tsize);
3629     jcc(Assembler::equal, ok);
3630     STOP("assert(t1 != tlab size)");
3631     should_not_reach_here();
3632 
3633     bind(ok);
3634     pop(tsize);
3635   }
3636 #endif
3637   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
3638   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
3639   addptr(top, t1);
3640   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
3641   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
3642   verify_tlab();
3643   jmp(retry);
3644 
3645   return thread_reg; // for use by caller
3646 }
3647 
3648 void MacroAssembler::incr_allocated_bytes(Register thread,
3649                                           Register var_size_in_bytes,
3650                                           int con_size_in_bytes,
3651                                           Register t1) {
3652   if (!thread->is_valid()) {
3653 #ifdef _LP64
3654     thread = r15_thread;
3655 #else
3656     assert(t1->is_valid(), "need temp reg");
3657     thread = t1;
3658     get_thread(thread);
3659 #endif
3660   }
3661 
3662 #ifdef _LP64
3663   if (var_size_in_bytes->is_valid()) {
3664     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
3665   } else {
3666     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
3667   }
3668 #else
3669   if (var_size_in_bytes->is_valid()) {
3670     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
3671   } else {
3672     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
3673   }
3674   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
3675 #endif
3676 }
3677 
3678 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
3679   pusha();
3680 
3681   // if we are coming from c1, xmm registers may be live
3682   int off = 0;
3683   if (UseSSE == 1)  {
3684     subptr(rsp, sizeof(jdouble)*8);
3685     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
3686     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
3687     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
3688     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
3689     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
3690     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
3691     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
3692     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
3693   } else if (UseSSE >= 2)  {
3694 #ifdef COMPILER2
3695     if (MaxVectorSize > 16) {
3696       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
3697       // Save upper half of YMM registes
3698       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
3699       vextractf128h(Address(rsp,  0),xmm0);
3700       vextractf128h(Address(rsp, 16),xmm1);
3701       vextractf128h(Address(rsp, 32),xmm2);
3702       vextractf128h(Address(rsp, 48),xmm3);
3703       vextractf128h(Address(rsp, 64),xmm4);
3704       vextractf128h(Address(rsp, 80),xmm5);
3705       vextractf128h(Address(rsp, 96),xmm6);
3706       vextractf128h(Address(rsp,112),xmm7);
3707 #ifdef _LP64
3708       vextractf128h(Address(rsp,128),xmm8);
3709       vextractf128h(Address(rsp,144),xmm9);
3710       vextractf128h(Address(rsp,160),xmm10);
3711       vextractf128h(Address(rsp,176),xmm11);
3712       vextractf128h(Address(rsp,192),xmm12);
3713       vextractf128h(Address(rsp,208),xmm13);
3714       vextractf128h(Address(rsp,224),xmm14);
3715       vextractf128h(Address(rsp,240),xmm15);
3716 #endif
3717     }
3718 #endif
3719     // Save whole 128bit (16 bytes) XMM regiters
3720     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
3721     movdqu(Address(rsp,off++*16),xmm0);
3722     movdqu(Address(rsp,off++*16),xmm1);
3723     movdqu(Address(rsp,off++*16),xmm2);
3724     movdqu(Address(rsp,off++*16),xmm3);
3725     movdqu(Address(rsp,off++*16),xmm4);
3726     movdqu(Address(rsp,off++*16),xmm5);
3727     movdqu(Address(rsp,off++*16),xmm6);
3728     movdqu(Address(rsp,off++*16),xmm7);
3729 #ifdef _LP64
3730     movdqu(Address(rsp,off++*16),xmm8);
3731     movdqu(Address(rsp,off++*16),xmm9);
3732     movdqu(Address(rsp,off++*16),xmm10);
3733     movdqu(Address(rsp,off++*16),xmm11);
3734     movdqu(Address(rsp,off++*16),xmm12);
3735     movdqu(Address(rsp,off++*16),xmm13);
3736     movdqu(Address(rsp,off++*16),xmm14);
3737     movdqu(Address(rsp,off++*16),xmm15);
3738 #endif
3739   }
3740 
3741   // Preserve registers across runtime call
3742   int incoming_argument_and_return_value_offset = -1;
3743   if (num_fpu_regs_in_use > 1) {
3744     // Must preserve all other FPU regs (could alternatively convert
3745     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
3746     // FPU state, but can not trust C compiler)
3747     NEEDS_CLEANUP;
3748     // NOTE that in this case we also push the incoming argument(s) to
3749     // the stack and restore it later; we also use this stack slot to
3750     // hold the return value from dsin, dcos etc.
3751     for (int i = 0; i < num_fpu_regs_in_use; i++) {
3752       subptr(rsp, sizeof(jdouble));
3753       fstp_d(Address(rsp, 0));
3754     }
3755     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
3756     for (int i = nb_args-1; i >= 0; i--) {
3757       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
3758     }
3759   }
3760 
3761   subptr(rsp, nb_args*sizeof(jdouble));
3762   for (int i = 0; i < nb_args; i++) {
3763     fstp_d(Address(rsp, i*sizeof(jdouble)));
3764   }
3765 
3766 #ifdef _LP64
3767   if (nb_args > 0) {
3768     movdbl(xmm0, Address(rsp, 0));
3769   }
3770   if (nb_args > 1) {
3771     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
3772   }
3773   assert(nb_args <= 2, "unsupported number of args");
3774 #endif // _LP64
3775 
3776   // NOTE: we must not use call_VM_leaf here because that requires a
3777   // complete interpreter frame in debug mode -- same bug as 4387334
3778   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
3779   // do proper 64bit abi
3780 
3781   NEEDS_CLEANUP;
3782   // Need to add stack banging before this runtime call if it needs to
3783   // be taken; however, there is no generic stack banging routine at
3784   // the MacroAssembler level
3785 
3786   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
3787 
3788 #ifdef _LP64
3789   movsd(Address(rsp, 0), xmm0);
3790   fld_d(Address(rsp, 0));
3791 #endif // _LP64
3792   addptr(rsp, sizeof(jdouble) * nb_args);
3793   if (num_fpu_regs_in_use > 1) {
3794     // Must save return value to stack and then restore entire FPU
3795     // stack except incoming arguments
3796     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
3797     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
3798       fld_d(Address(rsp, 0));
3799       addptr(rsp, sizeof(jdouble));
3800     }
3801     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
3802     addptr(rsp, sizeof(jdouble) * nb_args);
3803   }
3804 
3805   off = 0;
3806   if (UseSSE == 1)  {
3807     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
3808     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
3809     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
3810     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
3811     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
3812     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
3813     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
3814     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
3815     addptr(rsp, sizeof(jdouble)*8);
3816   } else if (UseSSE >= 2)  {
3817     // Restore whole 128bit (16 bytes) XMM regiters
3818     movdqu(xmm0, Address(rsp,off++*16));
3819     movdqu(xmm1, Address(rsp,off++*16));
3820     movdqu(xmm2, Address(rsp,off++*16));
3821     movdqu(xmm3, Address(rsp,off++*16));
3822     movdqu(xmm4, Address(rsp,off++*16));
3823     movdqu(xmm5, Address(rsp,off++*16));
3824     movdqu(xmm6, Address(rsp,off++*16));
3825     movdqu(xmm7, Address(rsp,off++*16));
3826 #ifdef _LP64
3827     movdqu(xmm8, Address(rsp,off++*16));
3828     movdqu(xmm9, Address(rsp,off++*16));
3829     movdqu(xmm10, Address(rsp,off++*16));
3830     movdqu(xmm11, Address(rsp,off++*16));
3831     movdqu(xmm12, Address(rsp,off++*16));
3832     movdqu(xmm13, Address(rsp,off++*16));
3833     movdqu(xmm14, Address(rsp,off++*16));
3834     movdqu(xmm15, Address(rsp,off++*16));
3835 #endif
3836     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
3837 #ifdef COMPILER2
3838     if (MaxVectorSize > 16) {
3839       // Restore upper half of YMM registes.
3840       vinsertf128h(xmm0, Address(rsp,  0));
3841       vinsertf128h(xmm1, Address(rsp, 16));
3842       vinsertf128h(xmm2, Address(rsp, 32));
3843       vinsertf128h(xmm3, Address(rsp, 48));
3844       vinsertf128h(xmm4, Address(rsp, 64));
3845       vinsertf128h(xmm5, Address(rsp, 80));
3846       vinsertf128h(xmm6, Address(rsp, 96));
3847       vinsertf128h(xmm7, Address(rsp,112));
3848 #ifdef _LP64
3849       vinsertf128h(xmm8, Address(rsp,128));
3850       vinsertf128h(xmm9, Address(rsp,144));
3851       vinsertf128h(xmm10, Address(rsp,160));
3852       vinsertf128h(xmm11, Address(rsp,176));
3853       vinsertf128h(xmm12, Address(rsp,192));
3854       vinsertf128h(xmm13, Address(rsp,208));
3855       vinsertf128h(xmm14, Address(rsp,224));
3856       vinsertf128h(xmm15, Address(rsp,240));
3857 #endif
3858       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
3859     }
3860 #endif
3861   }
3862   popa();
3863 }
3864 
3865 static const double     pi_4 =  0.7853981633974483;
3866 
3867 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
3868   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
3869   // was attempted in this code; unfortunately it appears that the
3870   // switch to 80-bit precision and back causes this to be
3871   // unprofitable compared with simply performing a runtime call if
3872   // the argument is out of the (-pi/4, pi/4) range.
3873 
3874   Register tmp = noreg;
3875   if (!VM_Version::supports_cmov()) {
3876     // fcmp needs a temporary so preserve rbx,
3877     tmp = rbx;
3878     push(tmp);
3879   }
3880 
3881   Label slow_case, done;
3882 
3883   ExternalAddress pi4_adr = (address)&pi_4;
3884   if (reachable(pi4_adr)) {
3885     // x ?<= pi/4
3886     fld_d(pi4_adr);
3887     fld_s(1);                // Stack:  X  PI/4  X
3888     fabs();                  // Stack: |X| PI/4  X
3889     fcmp(tmp);
3890     jcc(Assembler::above, slow_case);
3891 
3892     // fastest case: -pi/4 <= x <= pi/4
3893     switch(trig) {
3894     case 's':
3895       fsin();
3896       break;
3897     case 'c':
3898       fcos();
3899       break;
3900     case 't':
3901       ftan();
3902       break;
3903     default:
3904       assert(false, "bad intrinsic");
3905       break;
3906     }
3907     jmp(done);
3908   }
3909 
3910   // slow case: runtime call
3911   bind(slow_case);
3912 
3913   switch(trig) {
3914   case 's':
3915     {
3916       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
3917     }
3918     break;
3919   case 'c':
3920     {
3921       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
3922     }
3923     break;
3924   case 't':
3925     {
3926       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
3927     }
3928     break;
3929   default:
3930     assert(false, "bad intrinsic");
3931     break;
3932   }
3933 
3934   // Come here with result in F-TOS
3935   bind(done);
3936 
3937   if (tmp != noreg) {
3938     pop(tmp);
3939   }
3940 }
3941 
3942 
3943 // Look up the method for a megamorphic invokeinterface call.
3944 // The target method is determined by <intf_klass, itable_index>.
3945 // The receiver klass is in recv_klass.
3946 // On success, the result will be in method_result, and execution falls through.
3947 // On failure, execution transfers to the given label.
3948 void MacroAssembler::lookup_interface_method(Register recv_klass,
3949                                              Register intf_klass,
3950                                              RegisterOrConstant itable_index,
3951                                              Register method_result,
3952                                              Register scan_temp,
3953                                              Label& L_no_such_interface) {
3954   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
3955   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
3956          "caller must use same register for non-constant itable index as for method");
3957 
3958   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
3959   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
3960   int itentry_off = itableMethodEntry::method_offset_in_bytes();
3961   int scan_step   = itableOffsetEntry::size() * wordSize;
3962   int vte_size    = vtableEntry::size() * wordSize;
3963   Address::ScaleFactor times_vte_scale = Address::times_ptr;
3964   assert(vte_size == wordSize, "else adjust times_vte_scale");
3965 
3966   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
3967 
3968   // %%% Could store the aligned, prescaled offset in the klassoop.
3969   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
3970   if (HeapWordsPerLong > 1) {
3971     // Round up to align_object_offset boundary
3972     // see code for InstanceKlass::start_of_itable!
3973     round_to(scan_temp, BytesPerLong);
3974   }
3975 
3976   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
3977   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
3978   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
3979 
3980   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
3981   //   if (scan->interface() == intf) {
3982   //     result = (klass + scan->offset() + itable_index);
3983   //   }
3984   // }
3985   Label search, found_method;
3986 
3987   for (int peel = 1; peel >= 0; peel--) {
3988     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
3989     cmpptr(intf_klass, method_result);
3990 
3991     if (peel) {
3992       jccb(Assembler::equal, found_method);
3993     } else {
3994       jccb(Assembler::notEqual, search);
3995       // (invert the test to fall through to found_method...)
3996     }
3997 
3998     if (!peel)  break;
3999 
4000     bind(search);
4001 
4002     // Check that the previous entry is non-null.  A null entry means that
4003     // the receiver class doesn't implement the interface, and wasn't the
4004     // same as when the caller was compiled.
4005     testptr(method_result, method_result);
4006     jcc(Assembler::zero, L_no_such_interface);
4007     addptr(scan_temp, scan_step);
4008   }
4009 
4010   bind(found_method);
4011 
4012   // Got a hit.
4013   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4014   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4015 }
4016 
4017 
4018 // virtual method calling
4019 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4020                                            RegisterOrConstant vtable_index,
4021                                            Register method_result) {
4022   const int base = InstanceKlass::vtable_start_offset() * wordSize;
4023   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4024   Address vtable_entry_addr(recv_klass,
4025                             vtable_index, Address::times_ptr,
4026                             base + vtableEntry::method_offset_in_bytes());
4027   movptr(method_result, vtable_entry_addr);
4028 }
4029 
4030 
4031 void MacroAssembler::check_klass_subtype(Register sub_klass,
4032                            Register super_klass,
4033                            Register temp_reg,
4034                            Label& L_success) {
4035   Label L_failure;
4036   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4037   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4038   bind(L_failure);
4039 }
4040 
4041 
4042 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4043                                                    Register super_klass,
4044                                                    Register temp_reg,
4045                                                    Label* L_success,
4046                                                    Label* L_failure,
4047                                                    Label* L_slow_path,
4048                                         RegisterOrConstant super_check_offset) {
4049   assert_different_registers(sub_klass, super_klass, temp_reg);
4050   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4051   if (super_check_offset.is_register()) {
4052     assert_different_registers(sub_klass, super_klass,
4053                                super_check_offset.as_register());
4054   } else if (must_load_sco) {
4055     assert(temp_reg != noreg, "supply either a temp or a register offset");
4056   }
4057 
4058   Label L_fallthrough;
4059   int label_nulls = 0;
4060   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4061   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4062   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4063   assert(label_nulls <= 1, "at most one NULL in the batch");
4064 
4065   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4066   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4067   Address super_check_offset_addr(super_klass, sco_offset);
4068 
4069   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4070   // range of a jccb.  If this routine grows larger, reconsider at
4071   // least some of these.
4072 #define local_jcc(assembler_cond, label)                                \
4073   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4074   else                             jcc( assembler_cond, label) /*omit semi*/
4075 
4076   // Hacked jmp, which may only be used just before L_fallthrough.
4077 #define final_jmp(label)                                                \
4078   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4079   else                            jmp(label)                /*omit semi*/
4080 
4081   // If the pointers are equal, we are done (e.g., String[] elements).
4082   // This self-check enables sharing of secondary supertype arrays among
4083   // non-primary types such as array-of-interface.  Otherwise, each such
4084   // type would need its own customized SSA.
4085   // We move this check to the front of the fast path because many
4086   // type checks are in fact trivially successful in this manner,
4087   // so we get a nicely predicted branch right at the start of the check.
4088   cmpptr(sub_klass, super_klass);
4089   local_jcc(Assembler::equal, *L_success);
4090 
4091   // Check the supertype display:
4092   if (must_load_sco) {
4093     // Positive movl does right thing on LP64.
4094     movl(temp_reg, super_check_offset_addr);
4095     super_check_offset = RegisterOrConstant(temp_reg);
4096   }
4097   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4098   cmpptr(super_klass, super_check_addr); // load displayed supertype
4099 
4100   // This check has worked decisively for primary supers.
4101   // Secondary supers are sought in the super_cache ('super_cache_addr').
4102   // (Secondary supers are interfaces and very deeply nested subtypes.)
4103   // This works in the same check above because of a tricky aliasing
4104   // between the super_cache and the primary super display elements.
4105   // (The 'super_check_addr' can address either, as the case requires.)
4106   // Note that the cache is updated below if it does not help us find
4107   // what we need immediately.
4108   // So if it was a primary super, we can just fail immediately.
4109   // Otherwise, it's the slow path for us (no success at this point).
4110 
4111   if (super_check_offset.is_register()) {
4112     local_jcc(Assembler::equal, *L_success);
4113     cmpl(super_check_offset.as_register(), sc_offset);
4114     if (L_failure == &L_fallthrough) {
4115       local_jcc(Assembler::equal, *L_slow_path);
4116     } else {
4117       local_jcc(Assembler::notEqual, *L_failure);
4118       final_jmp(*L_slow_path);
4119     }
4120   } else if (super_check_offset.as_constant() == sc_offset) {
4121     // Need a slow path; fast failure is impossible.
4122     if (L_slow_path == &L_fallthrough) {
4123       local_jcc(Assembler::equal, *L_success);
4124     } else {
4125       local_jcc(Assembler::notEqual, *L_slow_path);
4126       final_jmp(*L_success);
4127     }
4128   } else {
4129     // No slow path; it's a fast decision.
4130     if (L_failure == &L_fallthrough) {
4131       local_jcc(Assembler::equal, *L_success);
4132     } else {
4133       local_jcc(Assembler::notEqual, *L_failure);
4134       final_jmp(*L_success);
4135     }
4136   }
4137 
4138   bind(L_fallthrough);
4139 
4140 #undef local_jcc
4141 #undef final_jmp
4142 }
4143 
4144 
4145 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4146                                                    Register super_klass,
4147                                                    Register temp_reg,
4148                                                    Register temp2_reg,
4149                                                    Label* L_success,
4150                                                    Label* L_failure,
4151                                                    bool set_cond_codes) {
4152   assert_different_registers(sub_klass, super_klass, temp_reg);
4153   if (temp2_reg != noreg)
4154     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
4155 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
4156 
4157   Label L_fallthrough;
4158   int label_nulls = 0;
4159   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4160   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4161   assert(label_nulls <= 1, "at most one NULL in the batch");
4162 
4163   // a couple of useful fields in sub_klass:
4164   int ss_offset = in_bytes(Klass::secondary_supers_offset());
4165   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4166   Address secondary_supers_addr(sub_klass, ss_offset);
4167   Address super_cache_addr(     sub_klass, sc_offset);
4168 
4169   // Do a linear scan of the secondary super-klass chain.
4170   // This code is rarely used, so simplicity is a virtue here.
4171   // The repne_scan instruction uses fixed registers, which we must spill.
4172   // Don't worry too much about pre-existing connections with the input regs.
4173 
4174   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
4175   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
4176 
4177   // Get super_klass value into rax (even if it was in rdi or rcx).
4178   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
4179   if (super_klass != rax || UseCompressedOops) {
4180     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
4181     mov(rax, super_klass);
4182   }
4183   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
4184   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
4185 
4186 #ifndef PRODUCT
4187   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
4188   ExternalAddress pst_counter_addr((address) pst_counter);
4189   NOT_LP64(  incrementl(pst_counter_addr) );
4190   LP64_ONLY( lea(rcx, pst_counter_addr) );
4191   LP64_ONLY( incrementl(Address(rcx, 0)) );
4192 #endif //PRODUCT
4193 
4194   // We will consult the secondary-super array.
4195   movptr(rdi, secondary_supers_addr);
4196   // Load the array length.  (Positive movl does right thing on LP64.)
4197   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
4198   // Skip to start of data.
4199   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
4200 
4201   // Scan RCX words at [RDI] for an occurrence of RAX.
4202   // Set NZ/Z based on last compare.
4203   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
4204   // not change flags (only scas instruction which is repeated sets flags).
4205   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
4206 
4207     testptr(rax,rax); // Set Z = 0
4208     repne_scan();
4209 
4210   // Unspill the temp. registers:
4211   if (pushed_rdi)  pop(rdi);
4212   if (pushed_rcx)  pop(rcx);
4213   if (pushed_rax)  pop(rax);
4214 
4215   if (set_cond_codes) {
4216     // Special hack for the AD files:  rdi is guaranteed non-zero.
4217     assert(!pushed_rdi, "rdi must be left non-NULL");
4218     // Also, the condition codes are properly set Z/NZ on succeed/failure.
4219   }
4220 
4221   if (L_failure == &L_fallthrough)
4222         jccb(Assembler::notEqual, *L_failure);
4223   else  jcc(Assembler::notEqual, *L_failure);
4224 
4225   // Success.  Cache the super we found and proceed in triumph.
4226   movptr(super_cache_addr, super_klass);
4227 
4228   if (L_success != &L_fallthrough) {
4229     jmp(*L_success);
4230   }
4231 
4232 #undef IS_A_TEMP
4233 
4234   bind(L_fallthrough);
4235 }
4236 
4237 
4238 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
4239   if (VM_Version::supports_cmov()) {
4240     cmovl(cc, dst, src);
4241   } else {
4242     Label L;
4243     jccb(negate_condition(cc), L);
4244     movl(dst, src);
4245     bind(L);
4246   }
4247 }
4248 
4249 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
4250   if (VM_Version::supports_cmov()) {
4251     cmovl(cc, dst, src);
4252   } else {
4253     Label L;
4254     jccb(negate_condition(cc), L);
4255     movl(dst, src);
4256     bind(L);
4257   }
4258 }
4259 
4260 void MacroAssembler::verify_oop(Register reg, const char* s) {
4261   if (!VerifyOops) return;
4262 
4263   // Pass register number to verify_oop_subroutine
4264   char* b = new char[strlen(s) + 50];
4265   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
4266   BLOCK_COMMENT("verify_oop {");
4267 #ifdef _LP64
4268   push(rscratch1);                    // save r10, trashed by movptr()
4269 #endif
4270   push(rax);                          // save rax,
4271   push(reg);                          // pass register argument
4272   ExternalAddress buffer((address) b);
4273   // avoid using pushptr, as it modifies scratch registers
4274   // and our contract is not to modify anything
4275   movptr(rax, buffer.addr());
4276   push(rax);
4277   // call indirectly to solve generation ordering problem
4278   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4279   call(rax);
4280   // Caller pops the arguments (oop, message) and restores rax, r10
4281   BLOCK_COMMENT("} verify_oop");
4282 }
4283 
4284 
4285 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
4286                                                       Register tmp,
4287                                                       int offset) {
4288   intptr_t value = *delayed_value_addr;
4289   if (value != 0)
4290     return RegisterOrConstant(value + offset);
4291 
4292   // load indirectly to solve generation ordering problem
4293   movptr(tmp, ExternalAddress((address) delayed_value_addr));
4294 
4295 #ifdef ASSERT
4296   { Label L;
4297     testptr(tmp, tmp);
4298     if (WizardMode) {
4299       jcc(Assembler::notZero, L);
4300       char* buf = new char[40];
4301       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
4302       STOP(buf);
4303     } else {
4304       jccb(Assembler::notZero, L);
4305       hlt();
4306     }
4307     bind(L);
4308   }
4309 #endif
4310 
4311   if (offset != 0)
4312     addptr(tmp, offset);
4313 
4314   return RegisterOrConstant(tmp);
4315 }
4316 
4317 
4318 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
4319                                          int extra_slot_offset) {
4320   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
4321   int stackElementSize = Interpreter::stackElementSize;
4322   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
4323 #ifdef ASSERT
4324   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
4325   assert(offset1 - offset == stackElementSize, "correct arithmetic");
4326 #endif
4327   Register             scale_reg    = noreg;
4328   Address::ScaleFactor scale_factor = Address::no_scale;
4329   if (arg_slot.is_constant()) {
4330     offset += arg_slot.as_constant() * stackElementSize;
4331   } else {
4332     scale_reg    = arg_slot.as_register();
4333     scale_factor = Address::times(stackElementSize);
4334   }
4335   offset += wordSize;           // return PC is on stack
4336   return Address(rsp, scale_reg, scale_factor, offset);
4337 }
4338 
4339 
4340 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
4341   if (!VerifyOops) return;
4342 
4343   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
4344   // Pass register number to verify_oop_subroutine
4345   char* b = new char[strlen(s) + 50];
4346   sprintf(b, "verify_oop_addr: %s", s);
4347 
4348 #ifdef _LP64
4349   push(rscratch1);                    // save r10, trashed by movptr()
4350 #endif
4351   push(rax);                          // save rax,
4352   // addr may contain rsp so we will have to adjust it based on the push
4353   // we just did (and on 64 bit we do two pushes)
4354   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
4355   // stores rax into addr which is backwards of what was intended.
4356   if (addr.uses(rsp)) {
4357     lea(rax, addr);
4358     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
4359   } else {
4360     pushptr(addr);
4361   }
4362 
4363   ExternalAddress buffer((address) b);
4364   // pass msg argument
4365   // avoid using pushptr, as it modifies scratch registers
4366   // and our contract is not to modify anything
4367   movptr(rax, buffer.addr());
4368   push(rax);
4369 
4370   // call indirectly to solve generation ordering problem
4371   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4372   call(rax);
4373   // Caller pops the arguments (addr, message) and restores rax, r10.
4374 }
4375 
4376 void MacroAssembler::verify_tlab() {
4377 #ifdef ASSERT
4378   if (UseTLAB && VerifyOops) {
4379     Label next, ok;
4380     Register t1 = rsi;
4381     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
4382 
4383     push(t1);
4384     NOT_LP64(push(thread_reg));
4385     NOT_LP64(get_thread(thread_reg));
4386 
4387     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4388     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4389     jcc(Assembler::aboveEqual, next);
4390     STOP("assert(top >= start)");
4391     should_not_reach_here();
4392 
4393     bind(next);
4394     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4395     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4396     jcc(Assembler::aboveEqual, ok);
4397     STOP("assert(top <= end)");
4398     should_not_reach_here();
4399 
4400     bind(ok);
4401     NOT_LP64(pop(thread_reg));
4402     pop(t1);
4403   }
4404 #endif
4405 }
4406 
4407 class ControlWord {
4408  public:
4409   int32_t _value;
4410 
4411   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
4412   int  precision_control() const       { return  (_value >>  8) & 3      ; }
4413   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4414   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4415   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4416   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4417   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4418   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4419 
4420   void print() const {
4421     // rounding control
4422     const char* rc;
4423     switch (rounding_control()) {
4424       case 0: rc = "round near"; break;
4425       case 1: rc = "round down"; break;
4426       case 2: rc = "round up  "; break;
4427       case 3: rc = "chop      "; break;
4428     };
4429     // precision control
4430     const char* pc;
4431     switch (precision_control()) {
4432       case 0: pc = "24 bits "; break;
4433       case 1: pc = "reserved"; break;
4434       case 2: pc = "53 bits "; break;
4435       case 3: pc = "64 bits "; break;
4436     };
4437     // flags
4438     char f[9];
4439     f[0] = ' ';
4440     f[1] = ' ';
4441     f[2] = (precision   ()) ? 'P' : 'p';
4442     f[3] = (underflow   ()) ? 'U' : 'u';
4443     f[4] = (overflow    ()) ? 'O' : 'o';
4444     f[5] = (zero_divide ()) ? 'Z' : 'z';
4445     f[6] = (denormalized()) ? 'D' : 'd';
4446     f[7] = (invalid     ()) ? 'I' : 'i';
4447     f[8] = '\x0';
4448     // output
4449     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
4450   }
4451 
4452 };
4453 
4454 class StatusWord {
4455  public:
4456   int32_t _value;
4457 
4458   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
4459   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
4460   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
4461   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
4462   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
4463   int  top() const                     { return  (_value >> 11) & 7      ; }
4464   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
4465   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
4466   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4467   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4468   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4469   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4470   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4471   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4472 
4473   void print() const {
4474     // condition codes
4475     char c[5];
4476     c[0] = (C3()) ? '3' : '-';
4477     c[1] = (C2()) ? '2' : '-';
4478     c[2] = (C1()) ? '1' : '-';
4479     c[3] = (C0()) ? '0' : '-';
4480     c[4] = '\x0';
4481     // flags
4482     char f[9];
4483     f[0] = (error_status()) ? 'E' : '-';
4484     f[1] = (stack_fault ()) ? 'S' : '-';
4485     f[2] = (precision   ()) ? 'P' : '-';
4486     f[3] = (underflow   ()) ? 'U' : '-';
4487     f[4] = (overflow    ()) ? 'O' : '-';
4488     f[5] = (zero_divide ()) ? 'Z' : '-';
4489     f[6] = (denormalized()) ? 'D' : '-';
4490     f[7] = (invalid     ()) ? 'I' : '-';
4491     f[8] = '\x0';
4492     // output
4493     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
4494   }
4495 
4496 };
4497 
4498 class TagWord {
4499  public:
4500   int32_t _value;
4501 
4502   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
4503 
4504   void print() const {
4505     printf("%04x", _value & 0xFFFF);
4506   }
4507 
4508 };
4509 
4510 class FPU_Register {
4511  public:
4512   int32_t _m0;
4513   int32_t _m1;
4514   int16_t _ex;
4515 
4516   bool is_indefinite() const           {
4517     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
4518   }
4519 
4520   void print() const {
4521     char  sign = (_ex < 0) ? '-' : '+';
4522     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
4523     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
4524   };
4525 
4526 };
4527 
4528 class FPU_State {
4529  public:
4530   enum {
4531     register_size       = 10,
4532     number_of_registers =  8,
4533     register_mask       =  7
4534   };
4535 
4536   ControlWord  _control_word;
4537   StatusWord   _status_word;
4538   TagWord      _tag_word;
4539   int32_t      _error_offset;
4540   int32_t      _error_selector;
4541   int32_t      _data_offset;
4542   int32_t      _data_selector;
4543   int8_t       _register[register_size * number_of_registers];
4544 
4545   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
4546   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
4547 
4548   const char* tag_as_string(int tag) const {
4549     switch (tag) {
4550       case 0: return "valid";
4551       case 1: return "zero";
4552       case 2: return "special";
4553       case 3: return "empty";
4554     }
4555     ShouldNotReachHere();
4556     return NULL;
4557   }
4558 
4559   void print() const {
4560     // print computation registers
4561     { int t = _status_word.top();
4562       for (int i = 0; i < number_of_registers; i++) {
4563         int j = (i - t) & register_mask;
4564         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
4565         st(j)->print();
4566         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
4567       }
4568     }
4569     printf("\n");
4570     // print control registers
4571     printf("ctrl = "); _control_word.print(); printf("\n");
4572     printf("stat = "); _status_word .print(); printf("\n");
4573     printf("tags = "); _tag_word    .print(); printf("\n");
4574   }
4575 
4576 };
4577 
4578 class Flag_Register {
4579  public:
4580   int32_t _value;
4581 
4582   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
4583   bool direction() const               { return ((_value >> 10) & 1) != 0; }
4584   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
4585   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
4586   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
4587   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
4588   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
4589 
4590   void print() const {
4591     // flags
4592     char f[8];
4593     f[0] = (overflow       ()) ? 'O' : '-';
4594     f[1] = (direction      ()) ? 'D' : '-';
4595     f[2] = (sign           ()) ? 'S' : '-';
4596     f[3] = (zero           ()) ? 'Z' : '-';
4597     f[4] = (auxiliary_carry()) ? 'A' : '-';
4598     f[5] = (parity         ()) ? 'P' : '-';
4599     f[6] = (carry          ()) ? 'C' : '-';
4600     f[7] = '\x0';
4601     // output
4602     printf("%08x  flags = %s", _value, f);
4603   }
4604 
4605 };
4606 
4607 class IU_Register {
4608  public:
4609   int32_t _value;
4610 
4611   void print() const {
4612     printf("%08x  %11d", _value, _value);
4613   }
4614 
4615 };
4616 
4617 class IU_State {
4618  public:
4619   Flag_Register _eflags;
4620   IU_Register   _rdi;
4621   IU_Register   _rsi;
4622   IU_Register   _rbp;
4623   IU_Register   _rsp;
4624   IU_Register   _rbx;
4625   IU_Register   _rdx;
4626   IU_Register   _rcx;
4627   IU_Register   _rax;
4628 
4629   void print() const {
4630     // computation registers
4631     printf("rax,  = "); _rax.print(); printf("\n");
4632     printf("rbx,  = "); _rbx.print(); printf("\n");
4633     printf("rcx  = "); _rcx.print(); printf("\n");
4634     printf("rdx  = "); _rdx.print(); printf("\n");
4635     printf("rdi  = "); _rdi.print(); printf("\n");
4636     printf("rsi  = "); _rsi.print(); printf("\n");
4637     printf("rbp,  = "); _rbp.print(); printf("\n");
4638     printf("rsp  = "); _rsp.print(); printf("\n");
4639     printf("\n");
4640     // control registers
4641     printf("flgs = "); _eflags.print(); printf("\n");
4642   }
4643 };
4644 
4645 
4646 class CPU_State {
4647  public:
4648   FPU_State _fpu_state;
4649   IU_State  _iu_state;
4650 
4651   void print() const {
4652     printf("--------------------------------------------------\n");
4653     _iu_state .print();
4654     printf("\n");
4655     _fpu_state.print();
4656     printf("--------------------------------------------------\n");
4657   }
4658 
4659 };
4660 
4661 
4662 static void _print_CPU_state(CPU_State* state) {
4663   state->print();
4664 };
4665 
4666 
4667 void MacroAssembler::print_CPU_state() {
4668   push_CPU_state();
4669   push(rsp);                // pass CPU state
4670   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
4671   addptr(rsp, wordSize);       // discard argument
4672   pop_CPU_state();
4673 }
4674 
4675 
4676 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
4677   static int counter = 0;
4678   FPU_State* fs = &state->_fpu_state;
4679   counter++;
4680   // For leaf calls, only verify that the top few elements remain empty.
4681   // We only need 1 empty at the top for C2 code.
4682   if( stack_depth < 0 ) {
4683     if( fs->tag_for_st(7) != 3 ) {
4684       printf("FPR7 not empty\n");
4685       state->print();
4686       assert(false, "error");
4687       return false;
4688     }
4689     return true;                // All other stack states do not matter
4690   }
4691 
4692   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
4693          "bad FPU control word");
4694 
4695   // compute stack depth
4696   int i = 0;
4697   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
4698   int d = i;
4699   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
4700   // verify findings
4701   if (i != FPU_State::number_of_registers) {
4702     // stack not contiguous
4703     printf("%s: stack not contiguous at ST%d\n", s, i);
4704     state->print();
4705     assert(false, "error");
4706     return false;
4707   }
4708   // check if computed stack depth corresponds to expected stack depth
4709   if (stack_depth < 0) {
4710     // expected stack depth is -stack_depth or less
4711     if (d > -stack_depth) {
4712       // too many elements on the stack
4713       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
4714       state->print();
4715       assert(false, "error");
4716       return false;
4717     }
4718   } else {
4719     // expected stack depth is stack_depth
4720     if (d != stack_depth) {
4721       // wrong stack depth
4722       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
4723       state->print();
4724       assert(false, "error");
4725       return false;
4726     }
4727   }
4728   // everything is cool
4729   return true;
4730 }
4731 
4732 
4733 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
4734   if (!VerifyFPU) return;
4735   push_CPU_state();
4736   push(rsp);                // pass CPU state
4737   ExternalAddress msg((address) s);
4738   // pass message string s
4739   pushptr(msg.addr());
4740   push(stack_depth);        // pass stack depth
4741   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
4742   addptr(rsp, 3 * wordSize);   // discard arguments
4743   // check for error
4744   { Label L;
4745     testl(rax, rax);
4746     jcc(Assembler::notZero, L);
4747     int3();                  // break if error condition
4748     bind(L);
4749   }
4750   pop_CPU_state();
4751 }
4752 
4753 void MacroAssembler::load_klass(Register dst, Register src) {
4754 #ifdef _LP64
4755   if (UseCompressedKlassPointers) {
4756     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4757     decode_klass_not_null(dst);
4758   } else
4759 #endif
4760     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4761 }
4762 
4763 void MacroAssembler::load_prototype_header(Register dst, Register src) {
4764 #ifdef _LP64
4765   if (UseCompressedKlassPointers) {
4766     assert (Universe::heap() != NULL, "java heap should be initialized");
4767     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4768     if (Universe::narrow_klass_shift() != 0) {
4769       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4770       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
4771       movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
4772     } else {
4773       movq(dst, Address(dst, Klass::prototype_header_offset()));
4774     }
4775   } else
4776 #endif
4777   {
4778     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4779     movptr(dst, Address(dst, Klass::prototype_header_offset()));
4780   }
4781 }
4782 
4783 void MacroAssembler::store_klass(Register dst, Register src) {
4784 #ifdef _LP64
4785   if (UseCompressedKlassPointers) {
4786     encode_klass_not_null(src);
4787     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
4788   } else
4789 #endif
4790     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
4791 }
4792 
4793 void MacroAssembler::load_heap_oop(Register dst, Address src) {
4794 #ifdef _LP64
4795   // FIXME: Must change all places where we try to load the klass.
4796   if (UseCompressedOops) {
4797     movl(dst, src);
4798     decode_heap_oop(dst);
4799   } else
4800 #endif
4801     movptr(dst, src);
4802 }
4803 
4804 // Doesn't do verfication, generates fixed size code
4805 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
4806 #ifdef _LP64
4807   if (UseCompressedOops) {
4808     movl(dst, src);
4809     decode_heap_oop_not_null(dst);
4810   } else
4811 #endif
4812     movptr(dst, src);
4813 }
4814 
4815 void MacroAssembler::store_heap_oop(Address dst, Register src) {
4816 #ifdef _LP64
4817   if (UseCompressedOops) {
4818     assert(!dst.uses(src), "not enough registers");
4819     encode_heap_oop(src);
4820     movl(dst, src);
4821   } else
4822 #endif
4823     movptr(dst, src);
4824 }
4825 
4826 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
4827   assert_different_registers(src1, tmp);
4828 #ifdef _LP64
4829   if (UseCompressedOops) {
4830     bool did_push = false;
4831     if (tmp == noreg) {
4832       tmp = rax;
4833       push(tmp);
4834       did_push = true;
4835       assert(!src2.uses(rsp), "can't push");
4836     }
4837     load_heap_oop(tmp, src2);
4838     cmpptr(src1, tmp);
4839     if (did_push)  pop(tmp);
4840   } else
4841 #endif
4842     cmpptr(src1, src2);
4843 }
4844 
4845 // Used for storing NULLs.
4846 void MacroAssembler::store_heap_oop_null(Address dst) {
4847 #ifdef _LP64
4848   if (UseCompressedOops) {
4849     movl(dst, (int32_t)NULL_WORD);
4850   } else {
4851     movslq(dst, (int32_t)NULL_WORD);
4852   }
4853 #else
4854   movl(dst, (int32_t)NULL_WORD);
4855 #endif
4856 }
4857 
4858 #ifdef _LP64
4859 void MacroAssembler::store_klass_gap(Register dst, Register src) {
4860   if (UseCompressedKlassPointers) {
4861     // Store to klass gap in destination
4862     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
4863   }
4864 }
4865 
4866 #ifdef ASSERT
4867 void MacroAssembler::verify_heapbase(const char* msg) {
4868   assert (UseCompressedOops || UseCompressedKlassPointers, "should be compressed");
4869   assert (Universe::heap() != NULL, "java heap should be initialized");
4870   if (CheckCompressedOops) {
4871     Label ok;
4872     push(rscratch1); // cmpptr trashes rscratch1
4873     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
4874     jcc(Assembler::equal, ok);
4875     STOP(msg);
4876     bind(ok);
4877     pop(rscratch1);
4878   }
4879 }
4880 #endif
4881 
4882 // Algorithm must match oop.inline.hpp encode_heap_oop.
4883 void MacroAssembler::encode_heap_oop(Register r) {
4884 #ifdef ASSERT
4885   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
4886 #endif
4887   verify_oop(r, "broken oop in encode_heap_oop");
4888   if (Universe::narrow_oop_base() == NULL) {
4889     if (Universe::narrow_oop_shift() != 0) {
4890       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4891       shrq(r, LogMinObjAlignmentInBytes);
4892     }
4893     return;
4894   }
4895   testq(r, r);
4896   cmovq(Assembler::equal, r, r12_heapbase);
4897   subq(r, r12_heapbase);
4898   shrq(r, LogMinObjAlignmentInBytes);
4899 }
4900 
4901 void MacroAssembler::encode_heap_oop_not_null(Register r) {
4902 #ifdef ASSERT
4903   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
4904   if (CheckCompressedOops) {
4905     Label ok;
4906     testq(r, r);
4907     jcc(Assembler::notEqual, ok);
4908     STOP("null oop passed to encode_heap_oop_not_null");
4909     bind(ok);
4910   }
4911 #endif
4912   verify_oop(r, "broken oop in encode_heap_oop_not_null");
4913   if (Universe::narrow_oop_base() != NULL) {
4914     subq(r, r12_heapbase);
4915   }
4916   if (Universe::narrow_oop_shift() != 0) {
4917     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4918     shrq(r, LogMinObjAlignmentInBytes);
4919   }
4920 }
4921 
4922 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
4923 #ifdef ASSERT
4924   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
4925   if (CheckCompressedOops) {
4926     Label ok;
4927     testq(src, src);
4928     jcc(Assembler::notEqual, ok);
4929     STOP("null oop passed to encode_heap_oop_not_null2");
4930     bind(ok);
4931   }
4932 #endif
4933   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
4934   if (dst != src) {
4935     movq(dst, src);
4936   }
4937   if (Universe::narrow_oop_base() != NULL) {
4938     subq(dst, r12_heapbase);
4939   }
4940   if (Universe::narrow_oop_shift() != 0) {
4941     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4942     shrq(dst, LogMinObjAlignmentInBytes);
4943   }
4944 }
4945 
4946 void  MacroAssembler::decode_heap_oop(Register r) {
4947 #ifdef ASSERT
4948   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
4949 #endif
4950   if (Universe::narrow_oop_base() == NULL) {
4951     if (Universe::narrow_oop_shift() != 0) {
4952       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4953       shlq(r, LogMinObjAlignmentInBytes);
4954     }
4955   } else {
4956     Label done;
4957     shlq(r, LogMinObjAlignmentInBytes);
4958     jccb(Assembler::equal, done);
4959     addq(r, r12_heapbase);
4960     bind(done);
4961   }
4962   verify_oop(r, "broken oop in decode_heap_oop");
4963 }
4964 
4965 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4966   // Note: it will change flags
4967   assert (UseCompressedOops, "should only be used for compressed headers");
4968   assert (Universe::heap() != NULL, "java heap should be initialized");
4969   // Cannot assert, unverified entry point counts instructions (see .ad file)
4970   // vtableStubs also counts instructions in pd_code_size_limit.
4971   // Also do not verify_oop as this is called by verify_oop.
4972   if (Universe::narrow_oop_shift() != 0) {
4973     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4974     shlq(r, LogMinObjAlignmentInBytes);
4975     if (Universe::narrow_oop_base() != NULL) {
4976       addq(r, r12_heapbase);
4977     }
4978   } else {
4979     assert (Universe::narrow_oop_base() == NULL, "sanity");
4980   }
4981 }
4982 
4983 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
4984   // Note: it will change flags
4985   assert (UseCompressedOops, "should only be used for compressed headers");
4986   assert (Universe::heap() != NULL, "java heap should be initialized");
4987   // Cannot assert, unverified entry point counts instructions (see .ad file)
4988   // vtableStubs also counts instructions in pd_code_size_limit.
4989   // Also do not verify_oop as this is called by verify_oop.
4990   if (Universe::narrow_oop_shift() != 0) {
4991     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4992     if (LogMinObjAlignmentInBytes == Address::times_8) {
4993       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
4994     } else {
4995       if (dst != src) {
4996         movq(dst, src);
4997       }
4998       shlq(dst, LogMinObjAlignmentInBytes);
4999       if (Universe::narrow_oop_base() != NULL) {
5000         addq(dst, r12_heapbase);
5001       }
5002     }
5003   } else {
5004     assert (Universe::narrow_oop_base() == NULL, "sanity");
5005     if (dst != src) {
5006       movq(dst, src);
5007     }
5008   }
5009 }
5010 
5011 void MacroAssembler::encode_klass_not_null(Register r) {
5012   assert(Metaspace::is_initialized(), "metaspace should be initialized");
5013 #ifdef ASSERT
5014   verify_heapbase("MacroAssembler::encode_klass_not_null: heap base corrupted?");
5015 #endif
5016   if (Universe::narrow_klass_base() != NULL) {
5017     subq(r, r12_heapbase);
5018   }
5019   if (Universe::narrow_klass_shift() != 0) {
5020     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5021     shrq(r, LogKlassAlignmentInBytes);
5022   }
5023 }
5024 
5025 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5026   assert(Metaspace::is_initialized(), "metaspace should be initialized");
5027 #ifdef ASSERT
5028   verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
5029 #endif
5030   if (dst != src) {
5031     movq(dst, src);
5032   }
5033   if (Universe::narrow_klass_base() != NULL) {
5034     subq(dst, r12_heapbase);
5035   }
5036   if (Universe::narrow_klass_shift() != 0) {
5037     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5038     shrq(dst, LogKlassAlignmentInBytes);
5039   }
5040 }
5041 
5042 void  MacroAssembler::decode_klass_not_null(Register r) {
5043   assert(Metaspace::is_initialized(), "metaspace should be initialized");
5044   // Note: it will change flags
5045   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
5046   // Cannot assert, unverified entry point counts instructions (see .ad file)
5047   // vtableStubs also counts instructions in pd_code_size_limit.
5048   // Also do not verify_oop as this is called by verify_oop.
5049   if (Universe::narrow_klass_shift() != 0) {
5050     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5051     shlq(r, LogKlassAlignmentInBytes);
5052     if (Universe::narrow_klass_base() != NULL) {
5053       addq(r, r12_heapbase);
5054     }
5055   } else {
5056     assert (Universe::narrow_klass_base() == NULL, "sanity");
5057   }
5058 }
5059 
5060 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5061   assert(Metaspace::is_initialized(), "metaspace should be initialized");
5062   // Note: it will change flags
5063   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
5064   // Cannot assert, unverified entry point counts instructions (see .ad file)
5065   // vtableStubs also counts instructions in pd_code_size_limit.
5066   // Also do not verify_oop as this is called by verify_oop.
5067   if (Universe::narrow_klass_shift() != 0) {
5068     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5069     assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5070     leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5071   } else {
5072     assert (Universe::narrow_klass_base() == NULL, "sanity");
5073     if (dst != src) {
5074       movq(dst, src);
5075     }
5076   }
5077 }
5078 
5079 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5080   assert (UseCompressedOops, "should only be used for compressed headers");
5081   assert (Universe::heap() != NULL, "java heap should be initialized");
5082   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5083   int oop_index = oop_recorder()->find_index(obj);
5084   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5085   mov_narrow_oop(dst, oop_index, rspec);
5086 }
5087 
5088 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5089   assert (UseCompressedOops, "should only be used for compressed headers");
5090   assert (Universe::heap() != NULL, "java heap should be initialized");
5091   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5092   int oop_index = oop_recorder()->find_index(obj);
5093   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5094   mov_narrow_oop(dst, oop_index, rspec);
5095 }
5096 
5097 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5098   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
5099   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5100   int klass_index = oop_recorder()->find_index(k);
5101   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5102   mov_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
5103 }
5104 
5105 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5106   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
5107   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5108   int klass_index = oop_recorder()->find_index(k);
5109   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5110   mov_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
5111 }
5112 
5113 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5114   assert (UseCompressedOops, "should only be used for compressed headers");
5115   assert (Universe::heap() != NULL, "java heap should be initialized");
5116   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5117   int oop_index = oop_recorder()->find_index(obj);
5118   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5119   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5120 }
5121 
5122 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
5123   assert (UseCompressedOops, "should only be used for compressed headers");
5124   assert (Universe::heap() != NULL, "java heap should be initialized");
5125   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5126   int oop_index = oop_recorder()->find_index(obj);
5127   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5128   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5129 }
5130 
5131 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
5132   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
5133   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5134   int klass_index = oop_recorder()->find_index(k);
5135   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5136   Assembler::cmp_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
5137 }
5138 
5139 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
5140   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
5141   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5142   int klass_index = oop_recorder()->find_index(k);
5143   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5144   Assembler::cmp_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
5145 }
5146 
5147 void MacroAssembler::reinit_heapbase() {
5148   if (UseCompressedOops || UseCompressedKlassPointers) {
5149     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5150   }
5151 }
5152 #endif // _LP64
5153 
5154 
5155 // C2 compiled method's prolog code.
5156 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
5157 
5158   // WARNING: Initial instruction MUST be 5 bytes or longer so that
5159   // NativeJump::patch_verified_entry will be able to patch out the entry
5160   // code safely. The push to verify stack depth is ok at 5 bytes,
5161   // the frame allocation can be either 3 or 6 bytes. So if we don't do
5162   // stack bang then we must use the 6 byte frame allocation even if
5163   // we have no frame. :-(
5164 
5165   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
5166   // Remove word for return addr
5167   framesize -= wordSize;
5168 
5169   // Calls to C2R adapters often do not accept exceptional returns.
5170   // We require that their callers must bang for them.  But be careful, because
5171   // some VM calls (such as call site linkage) can use several kilobytes of
5172   // stack.  But the stack safety zone should account for that.
5173   // See bugs 4446381, 4468289, 4497237.
5174   if (stack_bang) {
5175     generate_stack_overflow_check(framesize);
5176 
5177     // We always push rbp, so that on return to interpreter rbp, will be
5178     // restored correctly and we can correct the stack.
5179     push(rbp);
5180     // Remove word for ebp
5181     framesize -= wordSize;
5182 
5183     // Create frame
5184     if (framesize) {
5185       subptr(rsp, framesize);
5186     }
5187   } else {
5188     // Create frame (force generation of a 4 byte immediate value)
5189     subptr_imm32(rsp, framesize);
5190 
5191     // Save RBP register now.
5192     framesize -= wordSize;
5193     movptr(Address(rsp, framesize), rbp);
5194   }
5195 
5196   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
5197     framesize -= wordSize;
5198     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
5199   }
5200 
5201 #ifndef _LP64
5202   // If method sets FPU control word do it now
5203   if (fp_mode_24b) {
5204     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
5205   }
5206   if (UseSSE >= 2 && VerifyFPU) {
5207     verify_FPU(0, "FPU stack must be clean on entry");
5208   }
5209 #endif
5210 
5211 #ifdef ASSERT
5212   if (VerifyStackAtCalls) {
5213     Label L;
5214     push(rax);
5215     mov(rax, rsp);
5216     andptr(rax, StackAlignmentInBytes-1);
5217     cmpptr(rax, StackAlignmentInBytes-wordSize);
5218     pop(rax);
5219     jcc(Assembler::equal, L);
5220     STOP("Stack is not properly aligned!");
5221     bind(L);
5222   }
5223 #endif
5224 
5225 }
5226 
5227 
5228 // IndexOf for constant substrings with size >= 8 chars
5229 // which don't need to be loaded through stack.
5230 void MacroAssembler::string_indexofC8(Register str1, Register str2,
5231                                       Register cnt1, Register cnt2,
5232                                       int int_cnt2,  Register result,
5233                                       XMMRegister vec, Register tmp) {
5234   ShortBranchVerifier sbv(this);
5235   assert(UseSSE42Intrinsics, "SSE4.2 is required");
5236 
5237   // This method uses pcmpestri inxtruction with bound registers
5238   //   inputs:
5239   //     xmm - substring
5240   //     rax - substring length (elements count)
5241   //     mem - scanned string
5242   //     rdx - string length (elements count)
5243   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
5244   //   outputs:
5245   //     rcx - matched index in string
5246   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5247 
5248   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
5249         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
5250         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
5251 
5252   // Note, inline_string_indexOf() generates checks:
5253   // if (substr.count > string.count) return -1;
5254   // if (substr.count == 0) return 0;
5255   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
5256 
5257   // Load substring.
5258   movdqu(vec, Address(str2, 0));
5259   movl(cnt2, int_cnt2);
5260   movptr(result, str1); // string addr
5261 
5262   if (int_cnt2 > 8) {
5263     jmpb(SCAN_TO_SUBSTR);
5264 
5265     // Reload substr for rescan, this code
5266     // is executed only for large substrings (> 8 chars)
5267     bind(RELOAD_SUBSTR);
5268     movdqu(vec, Address(str2, 0));
5269     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
5270 
5271     bind(RELOAD_STR);
5272     // We came here after the beginning of the substring was
5273     // matched but the rest of it was not so we need to search
5274     // again. Start from the next element after the previous match.
5275 
5276     // cnt2 is number of substring reminding elements and
5277     // cnt1 is number of string reminding elements when cmp failed.
5278     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
5279     subl(cnt1, cnt2);
5280     addl(cnt1, int_cnt2);
5281     movl(cnt2, int_cnt2); // Now restore cnt2
5282 
5283     decrementl(cnt1);     // Shift to next element
5284     cmpl(cnt1, cnt2);
5285     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5286 
5287     addptr(result, 2);
5288 
5289   } // (int_cnt2 > 8)
5290 
5291   // Scan string for start of substr in 16-byte vectors
5292   bind(SCAN_TO_SUBSTR);
5293   pcmpestri(vec, Address(result, 0), 0x0d);
5294   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
5295   subl(cnt1, 8);
5296   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
5297   cmpl(cnt1, cnt2);
5298   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5299   addptr(result, 16);
5300   jmpb(SCAN_TO_SUBSTR);
5301 
5302   // Found a potential substr
5303   bind(FOUND_CANDIDATE);
5304   // Matched whole vector if first element matched (tmp(rcx) == 0).
5305   if (int_cnt2 == 8) {
5306     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
5307   } else { // int_cnt2 > 8
5308     jccb(Assembler::overflow, FOUND_SUBSTR);
5309   }
5310   // After pcmpestri tmp(rcx) contains matched element index
5311   // Compute start addr of substr
5312   lea(result, Address(result, tmp, Address::times_2));
5313 
5314   // Make sure string is still long enough
5315   subl(cnt1, tmp);
5316   cmpl(cnt1, cnt2);
5317   if (int_cnt2 == 8) {
5318     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
5319   } else { // int_cnt2 > 8
5320     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
5321   }
5322   // Left less then substring.
5323 
5324   bind(RET_NOT_FOUND);
5325   movl(result, -1);
5326   jmpb(EXIT);
5327 
5328   if (int_cnt2 > 8) {
5329     // This code is optimized for the case when whole substring
5330     // is matched if its head is matched.
5331     bind(MATCH_SUBSTR_HEAD);
5332     pcmpestri(vec, Address(result, 0), 0x0d);
5333     // Reload only string if does not match
5334     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
5335 
5336     Label CONT_SCAN_SUBSTR;
5337     // Compare the rest of substring (> 8 chars).
5338     bind(FOUND_SUBSTR);
5339     // First 8 chars are already matched.
5340     negptr(cnt2);
5341     addptr(cnt2, 8);
5342 
5343     bind(SCAN_SUBSTR);
5344     subl(cnt1, 8);
5345     cmpl(cnt2, -8); // Do not read beyond substring
5346     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
5347     // Back-up strings to avoid reading beyond substring:
5348     // cnt1 = cnt1 - cnt2 + 8
5349     addl(cnt1, cnt2); // cnt2 is negative
5350     addl(cnt1, 8);
5351     movl(cnt2, 8); negptr(cnt2);
5352     bind(CONT_SCAN_SUBSTR);
5353     if (int_cnt2 < (int)G) {
5354       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
5355       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
5356     } else {
5357       // calculate index in register to avoid integer overflow (int_cnt2*2)
5358       movl(tmp, int_cnt2);
5359       addptr(tmp, cnt2);
5360       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
5361       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
5362     }
5363     // Need to reload strings pointers if not matched whole vector
5364     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
5365     addptr(cnt2, 8);
5366     jcc(Assembler::negative, SCAN_SUBSTR);
5367     // Fall through if found full substring
5368 
5369   } // (int_cnt2 > 8)
5370 
5371   bind(RET_FOUND);
5372   // Found result if we matched full small substring.
5373   // Compute substr offset
5374   subptr(result, str1);
5375   shrl(result, 1); // index
5376   bind(EXIT);
5377 
5378 } // string_indexofC8
5379 
5380 // Small strings are loaded through stack if they cross page boundary.
5381 void MacroAssembler::string_indexof(Register str1, Register str2,
5382                                     Register cnt1, Register cnt2,
5383                                     int int_cnt2,  Register result,
5384                                     XMMRegister vec, Register tmp) {
5385   ShortBranchVerifier sbv(this);
5386   assert(UseSSE42Intrinsics, "SSE4.2 is required");
5387   //
5388   // int_cnt2 is length of small (< 8 chars) constant substring
5389   // or (-1) for non constant substring in which case its length
5390   // is in cnt2 register.
5391   //
5392   // Note, inline_string_indexOf() generates checks:
5393   // if (substr.count > string.count) return -1;
5394   // if (substr.count == 0) return 0;
5395   //
5396   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
5397 
5398   // This method uses pcmpestri inxtruction with bound registers
5399   //   inputs:
5400   //     xmm - substring
5401   //     rax - substring length (elements count)
5402   //     mem - scanned string
5403   //     rdx - string length (elements count)
5404   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
5405   //   outputs:
5406   //     rcx - matched index in string
5407   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5408 
5409   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
5410         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
5411         FOUND_CANDIDATE;
5412 
5413   { //========================================================
5414     // We don't know where these strings are located
5415     // and we can't read beyond them. Load them through stack.
5416     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
5417 
5418     movptr(tmp, rsp); // save old SP
5419 
5420     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
5421       if (int_cnt2 == 1) {  // One char
5422         load_unsigned_short(result, Address(str2, 0));
5423         movdl(vec, result); // move 32 bits
5424       } else if (int_cnt2 == 2) { // Two chars
5425         movdl(vec, Address(str2, 0)); // move 32 bits
5426       } else if (int_cnt2 == 4) { // Four chars
5427         movq(vec, Address(str2, 0));  // move 64 bits
5428       } else { // cnt2 = { 3, 5, 6, 7 }
5429         // Array header size is 12 bytes in 32-bit VM
5430         // + 6 bytes for 3 chars == 18 bytes,
5431         // enough space to load vec and shift.
5432         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
5433         movdqu(vec, Address(str2, (int_cnt2*2)-16));
5434         psrldq(vec, 16-(int_cnt2*2));
5435       }
5436     } else { // not constant substring
5437       cmpl(cnt2, 8);
5438       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
5439 
5440       // We can read beyond string if srt+16 does not cross page boundary
5441       // since heaps are aligned and mapped by pages.
5442       assert(os::vm_page_size() < (int)G, "default page should be small");
5443       movl(result, str2); // We need only low 32 bits
5444       andl(result, (os::vm_page_size()-1));
5445       cmpl(result, (os::vm_page_size()-16));
5446       jccb(Assembler::belowEqual, CHECK_STR);
5447 
5448       // Move small strings to stack to allow load 16 bytes into vec.
5449       subptr(rsp, 16);
5450       int stk_offset = wordSize-2;
5451       push(cnt2);
5452 
5453       bind(COPY_SUBSTR);
5454       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
5455       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
5456       decrement(cnt2);
5457       jccb(Assembler::notZero, COPY_SUBSTR);
5458 
5459       pop(cnt2);
5460       movptr(str2, rsp);  // New substring address
5461     } // non constant
5462 
5463     bind(CHECK_STR);
5464     cmpl(cnt1, 8);
5465     jccb(Assembler::aboveEqual, BIG_STRINGS);
5466 
5467     // Check cross page boundary.
5468     movl(result, str1); // We need only low 32 bits
5469     andl(result, (os::vm_page_size()-1));
5470     cmpl(result, (os::vm_page_size()-16));
5471     jccb(Assembler::belowEqual, BIG_STRINGS);
5472 
5473     subptr(rsp, 16);
5474     int stk_offset = -2;
5475     if (int_cnt2 < 0) { // not constant
5476       push(cnt2);
5477       stk_offset += wordSize;
5478     }
5479     movl(cnt2, cnt1);
5480 
5481     bind(COPY_STR);
5482     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
5483     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
5484     decrement(cnt2);
5485     jccb(Assembler::notZero, COPY_STR);
5486 
5487     if (int_cnt2 < 0) { // not constant
5488       pop(cnt2);
5489     }
5490     movptr(str1, rsp);  // New string address
5491 
5492     bind(BIG_STRINGS);
5493     // Load substring.
5494     if (int_cnt2 < 0) { // -1
5495       movdqu(vec, Address(str2, 0));
5496       push(cnt2);       // substr count
5497       push(str2);       // substr addr
5498       push(str1);       // string addr
5499     } else {
5500       // Small (< 8 chars) constant substrings are loaded already.
5501       movl(cnt2, int_cnt2);
5502     }
5503     push(tmp);  // original SP
5504 
5505   } // Finished loading
5506 
5507   //========================================================
5508   // Start search
5509   //
5510 
5511   movptr(result, str1); // string addr
5512 
5513   if (int_cnt2  < 0) {  // Only for non constant substring
5514     jmpb(SCAN_TO_SUBSTR);
5515 
5516     // SP saved at sp+0
5517     // String saved at sp+1*wordSize
5518     // Substr saved at sp+2*wordSize
5519     // Substr count saved at sp+3*wordSize
5520 
5521     // Reload substr for rescan, this code
5522     // is executed only for large substrings (> 8 chars)
5523     bind(RELOAD_SUBSTR);
5524     movptr(str2, Address(rsp, 2*wordSize));
5525     movl(cnt2, Address(rsp, 3*wordSize));
5526     movdqu(vec, Address(str2, 0));
5527     // We came here after the beginning of the substring was
5528     // matched but the rest of it was not so we need to search
5529     // again. Start from the next element after the previous match.
5530     subptr(str1, result); // Restore counter
5531     shrl(str1, 1);
5532     addl(cnt1, str1);
5533     decrementl(cnt1);   // Shift to next element
5534     cmpl(cnt1, cnt2);
5535     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5536 
5537     addptr(result, 2);
5538   } // non constant
5539 
5540   // Scan string for start of substr in 16-byte vectors
5541   bind(SCAN_TO_SUBSTR);
5542   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5543   pcmpestri(vec, Address(result, 0), 0x0d);
5544   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
5545   subl(cnt1, 8);
5546   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
5547   cmpl(cnt1, cnt2);
5548   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5549   addptr(result, 16);
5550 
5551   bind(ADJUST_STR);
5552   cmpl(cnt1, 8); // Do not read beyond string
5553   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
5554   // Back-up string to avoid reading beyond string.
5555   lea(result, Address(result, cnt1, Address::times_2, -16));
5556   movl(cnt1, 8);
5557   jmpb(SCAN_TO_SUBSTR);
5558 
5559   // Found a potential substr
5560   bind(FOUND_CANDIDATE);
5561   // After pcmpestri tmp(rcx) contains matched element index
5562 
5563   // Make sure string is still long enough
5564   subl(cnt1, tmp);
5565   cmpl(cnt1, cnt2);
5566   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
5567   // Left less then substring.
5568 
5569   bind(RET_NOT_FOUND);
5570   movl(result, -1);
5571   jmpb(CLEANUP);
5572 
5573   bind(FOUND_SUBSTR);
5574   // Compute start addr of substr
5575   lea(result, Address(result, tmp, Address::times_2));
5576 
5577   if (int_cnt2 > 0) { // Constant substring
5578     // Repeat search for small substring (< 8 chars)
5579     // from new point without reloading substring.
5580     // Have to check that we don't read beyond string.
5581     cmpl(tmp, 8-int_cnt2);
5582     jccb(Assembler::greater, ADJUST_STR);
5583     // Fall through if matched whole substring.
5584   } else { // non constant
5585     assert(int_cnt2 == -1, "should be != 0");
5586 
5587     addl(tmp, cnt2);
5588     // Found result if we matched whole substring.
5589     cmpl(tmp, 8);
5590     jccb(Assembler::lessEqual, RET_FOUND);
5591 
5592     // Repeat search for small substring (<= 8 chars)
5593     // from new point 'str1' without reloading substring.
5594     cmpl(cnt2, 8);
5595     // Have to check that we don't read beyond string.
5596     jccb(Assembler::lessEqual, ADJUST_STR);
5597 
5598     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
5599     // Compare the rest of substring (> 8 chars).
5600     movptr(str1, result);
5601 
5602     cmpl(tmp, cnt2);
5603     // First 8 chars are already matched.
5604     jccb(Assembler::equal, CHECK_NEXT);
5605 
5606     bind(SCAN_SUBSTR);
5607     pcmpestri(vec, Address(str1, 0), 0x0d);
5608     // Need to reload strings pointers if not matched whole vector
5609     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
5610 
5611     bind(CHECK_NEXT);
5612     subl(cnt2, 8);
5613     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
5614     addptr(str1, 16);
5615     addptr(str2, 16);
5616     subl(cnt1, 8);
5617     cmpl(cnt2, 8); // Do not read beyond substring
5618     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
5619     // Back-up strings to avoid reading beyond substring.
5620     lea(str2, Address(str2, cnt2, Address::times_2, -16));
5621     lea(str1, Address(str1, cnt2, Address::times_2, -16));
5622     subl(cnt1, cnt2);
5623     movl(cnt2, 8);
5624     addl(cnt1, 8);
5625     bind(CONT_SCAN_SUBSTR);
5626     movdqu(vec, Address(str2, 0));
5627     jmpb(SCAN_SUBSTR);
5628 
5629     bind(RET_FOUND_LONG);
5630     movptr(str1, Address(rsp, wordSize));
5631   } // non constant
5632 
5633   bind(RET_FOUND);
5634   // Compute substr offset
5635   subptr(result, str1);
5636   shrl(result, 1); // index
5637 
5638   bind(CLEANUP);
5639   pop(rsp); // restore SP
5640 
5641 } // string_indexof
5642 
5643 // Compare strings.
5644 void MacroAssembler::string_compare(Register str1, Register str2,
5645                                     Register cnt1, Register cnt2, Register result,
5646                                     XMMRegister vec1) {
5647   ShortBranchVerifier sbv(this);
5648   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
5649 
5650   // Compute the minimum of the string lengths and the
5651   // difference of the string lengths (stack).
5652   // Do the conditional move stuff
5653   movl(result, cnt1);
5654   subl(cnt1, cnt2);
5655   push(cnt1);
5656   cmov32(Assembler::lessEqual, cnt2, result);
5657 
5658   // Is the minimum length zero?
5659   testl(cnt2, cnt2);
5660   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
5661 
5662   // Load first characters
5663   load_unsigned_short(result, Address(str1, 0));
5664   load_unsigned_short(cnt1, Address(str2, 0));
5665 
5666   // Compare first characters
5667   subl(result, cnt1);
5668   jcc(Assembler::notZero,  POP_LABEL);
5669   decrementl(cnt2);
5670   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
5671 
5672   {
5673     // Check after comparing first character to see if strings are equivalent
5674     Label LSkip2;
5675     // Check if the strings start at same location
5676     cmpptr(str1, str2);
5677     jccb(Assembler::notEqual, LSkip2);
5678 
5679     // Check if the length difference is zero (from stack)
5680     cmpl(Address(rsp, 0), 0x0);
5681     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
5682 
5683     // Strings might not be equivalent
5684     bind(LSkip2);
5685   }
5686 
5687   Address::ScaleFactor scale = Address::times_2;
5688   int stride = 8;
5689 
5690   // Advance to next element
5691   addptr(str1, 16/stride);
5692   addptr(str2, 16/stride);
5693 
5694   if (UseSSE42Intrinsics) {
5695     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
5696     int pcmpmask = 0x19;
5697     // Setup to compare 16-byte vectors
5698     movl(result, cnt2);
5699     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
5700     jccb(Assembler::zero, COMPARE_TAIL);
5701 
5702     lea(str1, Address(str1, result, scale));
5703     lea(str2, Address(str2, result, scale));
5704     negptr(result);
5705 
5706     // pcmpestri
5707     //   inputs:
5708     //     vec1- substring
5709     //     rax - negative string length (elements count)
5710     //     mem - scaned string
5711     //     rdx - string length (elements count)
5712     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
5713     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
5714     //   outputs:
5715     //     rcx - first mismatched element index
5716     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
5717 
5718     bind(COMPARE_WIDE_VECTORS);
5719     movdqu(vec1, Address(str1, result, scale));
5720     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
5721     // After pcmpestri cnt1(rcx) contains mismatched element index
5722 
5723     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
5724     addptr(result, stride);
5725     subptr(cnt2, stride);
5726     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
5727 
5728     // compare wide vectors tail
5729     testl(result, result);
5730     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
5731 
5732     movl(cnt2, stride);
5733     movl(result, stride);
5734     negptr(result);
5735     movdqu(vec1, Address(str1, result, scale));
5736     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
5737     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
5738 
5739     // Mismatched characters in the vectors
5740     bind(VECTOR_NOT_EQUAL);
5741     addptr(result, cnt1);
5742     movptr(cnt2, result);
5743     load_unsigned_short(result, Address(str1, cnt2, scale));
5744     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
5745     subl(result, cnt1);
5746     jmpb(POP_LABEL);
5747 
5748     bind(COMPARE_TAIL); // limit is zero
5749     movl(cnt2, result);
5750     // Fallthru to tail compare
5751   }
5752 
5753   // Shift str2 and str1 to the end of the arrays, negate min
5754   lea(str1, Address(str1, cnt2, scale, 0));
5755   lea(str2, Address(str2, cnt2, scale, 0));
5756   negptr(cnt2);
5757 
5758   // Compare the rest of the elements
5759   bind(WHILE_HEAD_LABEL);
5760   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
5761   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
5762   subl(result, cnt1);
5763   jccb(Assembler::notZero, POP_LABEL);
5764   increment(cnt2);
5765   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
5766 
5767   // Strings are equal up to min length.  Return the length difference.
5768   bind(LENGTH_DIFF_LABEL);
5769   pop(result);
5770   jmpb(DONE_LABEL);
5771 
5772   // Discard the stored length difference
5773   bind(POP_LABEL);
5774   pop(cnt1);
5775 
5776   // That's it
5777   bind(DONE_LABEL);
5778 }
5779 
5780 // Compare char[] arrays aligned to 4 bytes or substrings.
5781 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
5782                                         Register limit, Register result, Register chr,
5783                                         XMMRegister vec1, XMMRegister vec2) {
5784   ShortBranchVerifier sbv(this);
5785   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
5786 
5787   int length_offset  = arrayOopDesc::length_offset_in_bytes();
5788   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
5789 
5790   // Check the input args
5791   cmpptr(ary1, ary2);
5792   jcc(Assembler::equal, TRUE_LABEL);
5793 
5794   if (is_array_equ) {
5795     // Need additional checks for arrays_equals.
5796     testptr(ary1, ary1);
5797     jcc(Assembler::zero, FALSE_LABEL);
5798     testptr(ary2, ary2);
5799     jcc(Assembler::zero, FALSE_LABEL);
5800 
5801     // Check the lengths
5802     movl(limit, Address(ary1, length_offset));
5803     cmpl(limit, Address(ary2, length_offset));
5804     jcc(Assembler::notEqual, FALSE_LABEL);
5805   }
5806 
5807   // count == 0
5808   testl(limit, limit);
5809   jcc(Assembler::zero, TRUE_LABEL);
5810 
5811   if (is_array_equ) {
5812     // Load array address
5813     lea(ary1, Address(ary1, base_offset));
5814     lea(ary2, Address(ary2, base_offset));
5815   }
5816 
5817   shll(limit, 1);      // byte count != 0
5818   movl(result, limit); // copy
5819 
5820   if (UseSSE42Intrinsics) {
5821     // With SSE4.2, use double quad vector compare
5822     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
5823 
5824     // Compare 16-byte vectors
5825     andl(result, 0x0000000e);  //   tail count (in bytes)
5826     andl(limit, 0xfffffff0);   // vector count (in bytes)
5827     jccb(Assembler::zero, COMPARE_TAIL);
5828 
5829     lea(ary1, Address(ary1, limit, Address::times_1));
5830     lea(ary2, Address(ary2, limit, Address::times_1));
5831     negptr(limit);
5832 
5833     bind(COMPARE_WIDE_VECTORS);
5834     movdqu(vec1, Address(ary1, limit, Address::times_1));
5835     movdqu(vec2, Address(ary2, limit, Address::times_1));
5836     pxor(vec1, vec2);
5837 
5838     ptest(vec1, vec1);
5839     jccb(Assembler::notZero, FALSE_LABEL);
5840     addptr(limit, 16);
5841     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
5842 
5843     testl(result, result);
5844     jccb(Assembler::zero, TRUE_LABEL);
5845 
5846     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
5847     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
5848     pxor(vec1, vec2);
5849 
5850     ptest(vec1, vec1);
5851     jccb(Assembler::notZero, FALSE_LABEL);
5852     jmpb(TRUE_LABEL);
5853 
5854     bind(COMPARE_TAIL); // limit is zero
5855     movl(limit, result);
5856     // Fallthru to tail compare
5857   }
5858 
5859   // Compare 4-byte vectors
5860   andl(limit, 0xfffffffc); // vector count (in bytes)
5861   jccb(Assembler::zero, COMPARE_CHAR);
5862 
5863   lea(ary1, Address(ary1, limit, Address::times_1));
5864   lea(ary2, Address(ary2, limit, Address::times_1));
5865   negptr(limit);
5866 
5867   bind(COMPARE_VECTORS);
5868   movl(chr, Address(ary1, limit, Address::times_1));
5869   cmpl(chr, Address(ary2, limit, Address::times_1));
5870   jccb(Assembler::notEqual, FALSE_LABEL);
5871   addptr(limit, 4);
5872   jcc(Assembler::notZero, COMPARE_VECTORS);
5873 
5874   // Compare trailing char (final 2 bytes), if any
5875   bind(COMPARE_CHAR);
5876   testl(result, 0x2);   // tail  char
5877   jccb(Assembler::zero, TRUE_LABEL);
5878   load_unsigned_short(chr, Address(ary1, 0));
5879   load_unsigned_short(limit, Address(ary2, 0));
5880   cmpl(chr, limit);
5881   jccb(Assembler::notEqual, FALSE_LABEL);
5882 
5883   bind(TRUE_LABEL);
5884   movl(result, 1);   // return true
5885   jmpb(DONE);
5886 
5887   bind(FALSE_LABEL);
5888   xorl(result, result); // return false
5889 
5890   // That's it
5891   bind(DONE);
5892 }
5893 
5894 void MacroAssembler::generate_fill(BasicType t, bool aligned,
5895                                    Register to, Register value, Register count,
5896                                    Register rtmp, XMMRegister xtmp) {
5897   ShortBranchVerifier sbv(this);
5898   assert_different_registers(to, value, count, rtmp);
5899   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
5900   Label L_fill_2_bytes, L_fill_4_bytes;
5901 
5902   int shift = -1;
5903   switch (t) {
5904     case T_BYTE:
5905       shift = 2;
5906       break;
5907     case T_SHORT:
5908       shift = 1;
5909       break;
5910     case T_INT:
5911       shift = 0;
5912       break;
5913     default: ShouldNotReachHere();
5914   }
5915 
5916   if (t == T_BYTE) {
5917     andl(value, 0xff);
5918     movl(rtmp, value);
5919     shll(rtmp, 8);
5920     orl(value, rtmp);
5921   }
5922   if (t == T_SHORT) {
5923     andl(value, 0xffff);
5924   }
5925   if (t == T_BYTE || t == T_SHORT) {
5926     movl(rtmp, value);
5927     shll(rtmp, 16);
5928     orl(value, rtmp);
5929   }
5930 
5931   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
5932   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
5933   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
5934     // align source address at 4 bytes address boundary
5935     if (t == T_BYTE) {
5936       // One byte misalignment happens only for byte arrays
5937       testptr(to, 1);
5938       jccb(Assembler::zero, L_skip_align1);
5939       movb(Address(to, 0), value);
5940       increment(to);
5941       decrement(count);
5942       BIND(L_skip_align1);
5943     }
5944     // Two bytes misalignment happens only for byte and short (char) arrays
5945     testptr(to, 2);
5946     jccb(Assembler::zero, L_skip_align2);
5947     movw(Address(to, 0), value);
5948     addptr(to, 2);
5949     subl(count, 1<<(shift-1));
5950     BIND(L_skip_align2);
5951   }
5952   if (UseSSE < 2) {
5953     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
5954     // Fill 32-byte chunks
5955     subl(count, 8 << shift);
5956     jcc(Assembler::less, L_check_fill_8_bytes);
5957     align(16);
5958 
5959     BIND(L_fill_32_bytes_loop);
5960 
5961     for (int i = 0; i < 32; i += 4) {
5962       movl(Address(to, i), value);
5963     }
5964 
5965     addptr(to, 32);
5966     subl(count, 8 << shift);
5967     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
5968     BIND(L_check_fill_8_bytes);
5969     addl(count, 8 << shift);
5970     jccb(Assembler::zero, L_exit);
5971     jmpb(L_fill_8_bytes);
5972 
5973     //
5974     // length is too short, just fill qwords
5975     //
5976     BIND(L_fill_8_bytes_loop);
5977     movl(Address(to, 0), value);
5978     movl(Address(to, 4), value);
5979     addptr(to, 8);
5980     BIND(L_fill_8_bytes);
5981     subl(count, 1 << (shift + 1));
5982     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
5983     // fall through to fill 4 bytes
5984   } else {
5985     Label L_fill_32_bytes;
5986     if (!UseUnalignedLoadStores) {
5987       // align to 8 bytes, we know we are 4 byte aligned to start
5988       testptr(to, 4);
5989       jccb(Assembler::zero, L_fill_32_bytes);
5990       movl(Address(to, 0), value);
5991       addptr(to, 4);
5992       subl(count, 1<<shift);
5993     }
5994     BIND(L_fill_32_bytes);
5995     {
5996       assert( UseSSE >= 2, "supported cpu only" );
5997       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
5998       // Fill 32-byte chunks
5999       movdl(xtmp, value);
6000       pshufd(xtmp, xtmp, 0);
6001 
6002       subl(count, 8 << shift);
6003       jcc(Assembler::less, L_check_fill_8_bytes);
6004       align(16);
6005 
6006       BIND(L_fill_32_bytes_loop);
6007 
6008       if (UseUnalignedLoadStores) {
6009         movdqu(Address(to, 0), xtmp);
6010         movdqu(Address(to, 16), xtmp);
6011       } else {
6012         movq(Address(to, 0), xtmp);
6013         movq(Address(to, 8), xtmp);
6014         movq(Address(to, 16), xtmp);
6015         movq(Address(to, 24), xtmp);
6016       }
6017 
6018       addptr(to, 32);
6019       subl(count, 8 << shift);
6020       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
6021       BIND(L_check_fill_8_bytes);
6022       addl(count, 8 << shift);
6023       jccb(Assembler::zero, L_exit);
6024       jmpb(L_fill_8_bytes);
6025 
6026       //
6027       // length is too short, just fill qwords
6028       //
6029       BIND(L_fill_8_bytes_loop);
6030       movq(Address(to, 0), xtmp);
6031       addptr(to, 8);
6032       BIND(L_fill_8_bytes);
6033       subl(count, 1 << (shift + 1));
6034       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
6035     }
6036   }
6037   // fill trailing 4 bytes
6038   BIND(L_fill_4_bytes);
6039   testl(count, 1<<shift);
6040   jccb(Assembler::zero, L_fill_2_bytes);
6041   movl(Address(to, 0), value);
6042   if (t == T_BYTE || t == T_SHORT) {
6043     addptr(to, 4);
6044     BIND(L_fill_2_bytes);
6045     // fill trailing 2 bytes
6046     testl(count, 1<<(shift-1));
6047     jccb(Assembler::zero, L_fill_byte);
6048     movw(Address(to, 0), value);
6049     if (t == T_BYTE) {
6050       addptr(to, 2);
6051       BIND(L_fill_byte);
6052       // fill trailing byte
6053       testl(count, 1);
6054       jccb(Assembler::zero, L_exit);
6055       movb(Address(to, 0), value);
6056     } else {
6057       BIND(L_fill_byte);
6058     }
6059   } else {
6060     BIND(L_fill_2_bytes);
6061   }
6062   BIND(L_exit);
6063 }
6064 #undef BIND
6065 #undef BLOCK_COMMENT
6066 
6067 
6068 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
6069   switch (cond) {
6070     // Note some conditions are synonyms for others
6071     case Assembler::zero:         return Assembler::notZero;
6072     case Assembler::notZero:      return Assembler::zero;
6073     case Assembler::less:         return Assembler::greaterEqual;
6074     case Assembler::lessEqual:    return Assembler::greater;
6075     case Assembler::greater:      return Assembler::lessEqual;
6076     case Assembler::greaterEqual: return Assembler::less;
6077     case Assembler::below:        return Assembler::aboveEqual;
6078     case Assembler::belowEqual:   return Assembler::above;
6079     case Assembler::above:        return Assembler::belowEqual;
6080     case Assembler::aboveEqual:   return Assembler::below;
6081     case Assembler::overflow:     return Assembler::noOverflow;
6082     case Assembler::noOverflow:   return Assembler::overflow;
6083     case Assembler::negative:     return Assembler::positive;
6084     case Assembler::positive:     return Assembler::negative;
6085     case Assembler::parity:       return Assembler::noParity;
6086     case Assembler::noParity:     return Assembler::parity;
6087   }
6088   ShouldNotReachHere(); return Assembler::overflow;
6089 }
6090 
6091 SkipIfEqual::SkipIfEqual(
6092     MacroAssembler* masm, const bool* flag_addr, bool value) {
6093   _masm = masm;
6094   _masm->cmp8(ExternalAddress((address)flag_addr), value);
6095   _masm->jcc(Assembler::equal, _label);
6096 }
6097 
6098 SkipIfEqual::~SkipIfEqual() {
6099   _masm->bind(_label);
6100 }